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Abstract

In the IEEE 802.16e wireless communication standard, a forward error correction (FEC)
mechanism is presented at‘the transmitterside to'reduce the noisy channel effect. The focus
is on the channel coding.

The focus of the fist part-of this thesis is the research of the convolutional code (CC)
with tail biting defined”in IEEE 802.16e OFDMA standard and implement the project on
Viterbi-decoder coprocessor (VCP) of the Texas Instruments (T1)’s TMS320C6416T digital
signal processor (DSP) and-also.sturdy for-tail-biting encoding property, interrupt service
routine (ISR) and enhanced.direct memory access (EDMA). Besides, we also employ the
EDMA under 3L Diamond real-time operating-system (RTOS) for the VVCP applications of
multi-DSP operation. We compare CC infAWGN channel on the C program to CC on the
VCP applications for BER performance and processing rate. In BER performance, the
simulation is limited to the hardware fixed-point and VCP branch metric input bit numbers;
however, if we utilize the same condition to compare them, we can find their performance
are close. In processing rate, after optimizing the programs on the DSP platform, encoder
can achieve two data processing rates of 16,667 Kbps and 3,764 Kbps, the VCP decoder
can achieve two processing rates of 7,897 Kbps and 2,997 Kbps and the C program decoder
can achieve two processing rates of 805 Kbps and 632 Khbps, respectively on the C6416
CCS simulator and 3L Diamond. In short, we utilize the CCS and 3L to measure, finding
decoding processing rate can be improve significantly about 9.8 and 4.7 times, respectively.

The focus of second part is the research of the convolutional turbo code (CTC) defined
in IEEE 802.16e OFDMA and implement on the C6416 DSP. We explain the duo-binary
circular recursive systematic convolutional encoding (duo-binary CRSC) and the max-log
MAP decoding algorithm. We employ the C program to insure the correctness of our



algorithm and simulate the CTC for different modulation in AWGN; then, we implement on
Tl C6416 DSP. The encoder can achieve a data processing rate of 8,223 Kbps and the
decoder can achieve a processing rate of 30 Kbps on the 3L. Then we utilize some
optimized techniques to improve the decoder's speed, which is approximately 10 times
speeded up in decoding rate. Therefore, the decoder can achieve a further data processing
rate of 300 Kbps.
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Chapter 1

Introduction

1.1 Scope of the Work

Digital wireless transmission is a trend-n the next generation of consumer electronics. Due to
this demand high data transmission rate and|mobility are needed. The OFDM modulation
technique for wireless communication has been' & main stream in recent years. IEEE has
completed several standards, including the IEEE802.11 series for LANs (local area networks)
and IEEE 802.16 series for MANs (metropolitan areanetworks); based on OFDM technique.
Our study is based on the IEEE 802 16¢standard;=which. specifies the air interface of mobile

broadband wireless multiple access, systems providing'multiple access.

In wireless communication, the transmitted signals are easily interfered and distorted by
variance things sources such as the crowd traffic, bad weather, the obstacle of buildings,
etc. Digital wireless transmission with multimedia contents such as audio and video is a
trend. These services often exhibit high data rates and require high quality reproduction.
To improve the robustness of the wireless communication against the noisy channel condition,
the FEC (forward-error-correcting coding) mechanism is a must in almost every commercial

communication standard, including the IEEE 802.16e.

CC (convolutional code) with tail-biting and CTCs (convolutional turbo codes) comprise



the mandatory channel coding schemes in Mobile WiMAX. A growing number of research
studies are now available to shed some light on the convolution code and turbo code. A
number of studies have been conducted using viterbi algorithm as the convolution decoding
and BCJR algorithm as the turbo decoding. There have been numerous studies in the

literature dealing with different decoding algorithms.

However we need to reduce the complexity for actual DSP implementation. In convolu-
tion code, the TI C6416 is equipped with a Viterbi-decoder coprocessor (VCP) [19]. Using
this coprocessor can be helpful in raising the decoding speed. Furthermore, we also consider
runnig the VCP under 3L Diamond RTOS for more digital signal processors (DSPs) applica-
tions. In addition, We also discuss the CTC in IEEE 802.16e for OFDMA. It uses a double
binary circular recursive systematig, Gonvolutional (CRSC) code, which makes CTC efficient
for coding of data cells in blocks. - Note thatg*‘ecireular” can be equated with tail-biting, which
means the initial state of the encoding-start frame to be the same as the end state of the

encoding end frame.

In this thesis, my work can'be summarized as following;:

e Study IEEE 802.16e specifications.

e Study tail-biting CC.
— Study TI Viterbi-decoder coprocessor (VCP) and 3L Diamond EDMA.
— Design tail-biting CC with VCP.

e Study CTCs.

— Design rate-1/3 CTC floating-point and fixed-point versions.
— Compare the performance and complexity.

— Use optimization methods to implement CTC on DSP.



1.2 Organization of This Thesis

This thesis is organized as follows.

Chapter 2 introduces CC with tail-biting and the CTC (convolution turbo code) of
IEEE 802.16e specifications.

Chapter 3 describes the DSP implementation environment, which is composed of the

VCP, TT EDMA, and 3L EDMA.

Chapter 4 discusses simulation and the DSP implementation of the convolutional de-

code with VCP.

‘mentation of the CTC encoder and

Chapter 5 discusses simulat nd the DSP 1my

decoder.

Chapter 6 contains the



Chapter 2

Overview of CC and CTCs in IEEE
802.16e OFDMA

Convolutional code with tail-biting and convolutional turbo codes comprise the mandatory
channel coding schemes in Mobile WiMAX. In this chapterf we introduce their specifications

in IEEE 802.16e and their déeoding methods.

2.1 Tail-Biting Convolutional Code Specifications [1]

The contents of this section have been faken to a large extent from [2], [3].

The mandatory channel coding secheme used-in IEEE 802.16e OFDMA is as shown in Fig.
2.1. The input data stream is processed by the randomizer to clean up the bit correlation,
and then each data block is encoded by the convolutional encoder with tail-biting, which
means the encoder starts in the same state as it ends up after encoding. The block-by-block

coding makes the convolutional code effectively a block code.

However, we do not implement the repetition block, which can be used to further increase
signal margin over the modulation and FEC mechanisms, for the channel coding procedures
in IEEE 802.16e. As the repetition block can be applied only to QPSK modulation, we

bypass it in the present study. The reader interested in the repetition block can refer to



. Convolutional .
— Randomizer - = Interlecaver = Modulation —=
Encoder
, Convolutional . .
-+— De-randomizer |- Decoder < De-interleaver |- De-modulation |[—

Figure 2.1: Structure of convolutional coding in transmitter (top path) and decoding in
receiver (bottom path).

relevant material in [1].

We note again that our study concerns convolutional code with tail-biting, because an
optional channel coding scheme of IEEE 802.16e is convolutional code with zero-tailing,
which means the encoder is forced to return.to the all-zero state after encoding. The two

can be confused easily.

Between the convolutional’éncoder-and the modulator is @ bit interleaver, which protects
the convolutional code fromusevere impact of burst'errors.and=increases overall coding per-
formance. This approach has been termed “bittinterleaved coded modulation (BICM)” in

the literature [4].

To make the system more flexibly adaptable to the channel condition, 19 coding-modulation
schemes are defined in IEEE 802.16¢,:as shown in Table 2.1. The different coding rates are
made by puncturing of the native convolutional code. The puncturing mechanism in convo-

lutional coding can provide variable code rates through one convolutional encoder.

2.1.1 Randomizer [1]

The randomizer is a pseudo random binary sequence (PRBS) generator defined by the poly-
nomial 1+ X 4 X% as depicted in Fig. 2.2. Data randomization is performed on all data
transmitted on the downlike (DL) and uplink (UL), expect the frame control header (FCH).

The randomization is initialized on each FEC block.



Table 2.1: Mandatory Channel Coding Schemes for Each Modulation Method

Uncoded Number of
Modulation Block Size | Overall Code (;(')dedeiock Used
(bytes) Rate ize (bytes) Sub-channels
QPSK 6 1/2 12 1
QPSK 12 1/2 24 2
QPSK 18 i 36 3
QPSK 24 48 4
QPSK 30 4 ~1/2 60 5
QPSK — 6
QPSK — 1
QPSK i - L 2
QPSK ‘ - 3
QPSK 1 ) 4
16QAM 1
16QAM A - 2
16QAM 3 1/2 (2 3
16QAM 18 3/4 24 1
16QAM 36 E 48 2
64QAM 18 1/2 36 1
64QAM 36 1/2 72 2
GAQAM 24 2/3 36 1
64QAM 27 3/4 36 1
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Figure 2.2: PRBS for data randomization (from [1]).

If the amount of data to transmit does not fit exactly the amount of data allocated,
padding of OxFF (“1” only) shall be added to the end of the transmission block, up to the
amount of data allocated. Here, the amount of data allocated means the amount of data that
corresponds to the amount of slots | Ny/R |y where Ny is the number of the slots allocated

for the data burst and R is the repétition factor used.

Each data byte to be transmitted shall enter sequentially into randomizer, msb first, to
make the “0” and “1” bits insthe.input data streams well-distributed and hence improve the
coding performance. The randomization is applied only to infermation bits. Preambles are

not randomized. In both Uli"fand DL;.the-randemizer-is initialized with the vector

(LSB) 0110111000 10401 (MSB).

As we do not implement the HAR(Q mechanism, we bypass it in the present study. Note
that the randomizer can be initialized with different vector for HARQ required, which can

refer to [1] in detail.

2.1.2 Convolutional Encoder [1]

Each block is encoded by a binary convolutional encoder, which has native rate 1/2 and
constraint length 7. The generator polynomials for the two output bits are 171pcr and

133pcT, respectively, as depicted in Fig. 2.3.



Data in

Figure 2.3: Convolutional encoder of rate 1/2 (from [1]).

Table 2.2: The Convolutional Code with Puncturing Configuration

Code Rates
Rate L/2 2/3 3/4
Dtree 10 6 D
X w ol 10 : 101
Y 1 11 110
XY X1Y1 X1Y1Y2 X1Y1Y2X3

The coded bits may bepunctured. to allow -different ;rates, which is known as rate-
compatible punctured convolutional.coding (RCPC). Eurthermore, tail-biting is performed,

by initializing the encoder’s memory with the last 6 data bits of the block.
Punctured Convolutional Code

Puncturing patterns and serialization order of the convolutional code in IEEE 802.16e are
as defined in Table 2.2. In this table, “1” means a transmitted bit and “0” a removed bit,
whereas X and Y are in reference to Fig. 2.3. Note that the Dy, after puncturing is lower

than that of the native convolutional code at rate 1/2, which is equal to 10 [8, Chapter 8].



Tail-Biting

The CC in IEEE 802.16e is terminated in a block; it therefore becomes a block code. In
general, there are three methods to achieve code termination [5]. For ease of understanding,
we describe these methods in terms of a binary (n, k, m) CC (of rate k/n and register length

m) for an information sequence length of L bits.

e Direct truncation. The codeword is produced by inputting into the encoder (initialized
with all zeros) L information bits, so the codeword length is nL/k. However, this code
has the disadvantage that there is lower error protection ability afforded to the last

information bits.

e Zero tail. The codeword is'produced by inputting into the encoder (initialized with
all zeros) L information bits followed by m zeros (tail bits), so the codeword length
is n(L + m)/k. This eode has the disadvantage of ratedoss of m/(L + m) since the
effective rate is (k/n)(L/(L +m)) = (E/n)(1 —m/(L + m)).

e Tail biting. We first initialize the-encoder with the last m information bits, and then
inputting into the encoder L information bits te produce codeword whose length is
nL/k. This code has the disadvantage of complex Viterbi decoding since the starting

and ending states of the trellis are unknown.

IEEE 802.16e uses the tail-biting approach, which has better performance compared with
direct-truncation CC and does not lose rate compared with zero-tail CC. Nevertheless, we
pay the price of a complex decoder. The optimal decoder of tail-biting convolutional code,
as suggested in [5], is to run M parallel Viterbi decoders, where M = 2™ is the number of
states in the trellis. FEach Viterbi decoder postulates a different starting and ending state.

The Viterbi decoder that produces the globally best metric gives the maximum likelihood



Table 2.3: Bit Interleaved Block Sizes and Modulos

) Coded Bits per Modulo used
Modulation Subcarrier (Nepe) (d)
QPSK 2 16
16QAM 4 16
64QAM 6 16

estimate of the transmitted bits. The obvious disadvantage of this method is the M times
complexity compared to decoding for the code with zero tail bits. Therefore, we consider
a suboptimal decoder which can reduce the complexity to less than 2 times the normal
Viterbi algorithm. This decoder combin@s the algorithms proposed in [6] and [7] and will be

introduced later.

2.1.3 Interleaver [1]

The encoded data bits are interleaved by asblock interleaver with a block size corresponding
to the number of coded bits#per' the speécified allocation, Ne,s (see Table 2.3). The inter-
leaver is defined by a two-step permutation. The first.ensures that adjacent coded bits are
mapped onto non-adjacent carriers. The second insures that adjacent coded bits are mapped
alternately onto less or more significant bits of the constellation, thus avoiding long runs of

lowly reliable bits.

Let s = Ngp/2, k be the index of the coded bit before the first permutation, m the
index after the first and before the second permutation and j the index after the second

permutation, just prior to modulation mapping. The first permutation is defined by

N, cbps )
d

k
© Kimod(d) + floor(a), k=0,1, -, Ngps — 1, (2.1)

m=(

10



QPSK 16QAM 640QAM
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16| 24 | 52
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53 106 |15

Figure 2.4: The second permutation of interleaver.

and the second permutation is defined by

d .
() (m+ Nugps — F1007 (o moate), 1= 0,1, Npps — 1. (2.2)
S Ncbps P

j=s- floor
The first permutation is a block“interleaving. And in Fig. 2.4, we show the second permuta-

tion after the block interleaving.

2.1.4 Modulation [1]

After bit interleaving, the data bits are cntered serially tosthe constellation mapper. Gray-
mapped QPSK and 16-QAM afe supported, whereas the support of 64-QAM is optional.
The constellations as shown in Fig. 2.5 shall be normalized by multiplying the constellation
points with the indicated factor ¢ to achieve equal average power. The constellation-mapped

data shall be subsequently modulated onto the allocated data carriers.

2.2 Decoding of CC

In this section, we introduce the decoding method for CC. As there is a bit interleaver
between the convolutional encoder and the modulator in the transmitter, the decoder should

be based on the super-trellis combining the convolutional code, the interleaver, and the QAM

11
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Figure 2.5: QPSK, 16-QAM, and 64-QAM constellations (from [1]).

modulator. So we mainly introduce the demodulation.for bit*interleaved modulation in the
section. For decoding of CC,with tail-biting, we discuss it_in c¢hapter 3 along with the VCP

and discuss how to do tail-biting with the VCPin chapter 4.

2.2.1 Demodulation for. Bit-Interleaved Coded Modulation [9]

Let ali] = azli] + jag[i] denote the QAM-symbol transmitted in the ith sub-carrier of
OFDMA symbol and {b;1, - ,br, - .br+,001, +* ,bgr, -+ ,bo+} be the corresponding
bit sequence. Assuming that the ISI (inter-OFDMA symbol interference) and ICI (inter—
channel interference) are completely eliminated, we can write the received signal of the

sub-carrier as

rli] = Genli] - ali] + wli], (2.3)

where Gp[i] is the complex channel frequency response at the ith sub-carrier and wli] is

the complex additive white Gaussian noise (AWGN) with variance 02 = Nj. If the channel

12



estimate is error free, the output of the one-tap equalizer is given by
yli] = ali] + w[i]/Genli] = ali] + w'[i], (2.4)
where w'[i] is still complex AWGN noise with variance 0/?(i) = 02/|Go[i]]?.

According to the MAPSE (maximum a posterior sequence estimation) criterion, the

following maximization should be performed to estimate the encoded bit sequence b:
b = arg mgxxP[b|r], (2.5)

where r is the received sequence of QAM signals. Assume that the transmitted symbols
are equally distributed. Then the MAPSE criterion can be replaced by the ML (maximum
likelihood) criterion as:

b=arg max Plr|b. (2.6)
We further assume that G.,[d] 18 - knownjto the receiver and*that the transmitted bits are

independent and identicallysdistributed (i.i.d.).

For each in-phase or quadrature bit (i.e4 bix or bg x), twommetrics can be derived cor-
responding to the two possible values O and 1] Tespectively.. For bit by, first the QAM
constellation is split into two "partitions of complex symbels, namely S} ,, comprising the
symbols with a “0” in position (/%) and S}k, which is complementary. Then the two

metrics are obtained by

m.(brx) = Z log p(r a) & max log p(r[i]|ali] = a), ¢=0,1. (2.7)
a€gsS;”
aes() =S

Since the conditional pdf of r[i] is complex Gaussian as

p(r{llafi] = ) = —— exp{— ST = Canlilal’y (2.8

and 7[i] = Gelt] - y[i], the metrics defined in (2.35) are equivalent to

me(br) = |Genld]|* - min [y[i] —af”. (2.9)

ozESEc,)C
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Table 2.4: Bit Metric for Method-ML and Method-LLR

Method-ML Method-LLR
Bit metric (decided “0”) mo [+ (mg —mq) + 1)
Bit metric (decided “1”) my [z(mg —my) — 1)]2

P | s |

Finally, these metrics are de-interleaved, i.e., each couple (mg, m;) is assigned to the bit
position in the decoded sequence according to the de-interleaver map, and fed to the Viterbi
decoder which selects the binary sequence with the smallest cumulative sum of metrics. We

name this method Method-ML in the following discussion.

From the concept of log-likelihood ratio (LLR), a method named Method-LLR is proposed

in [9] to reduce the complexity of Method-ML. 1t defines LLR(b; ;) as

A ]Gch[z”z - . 2 . . 2
LLR(bry) 2 SE0E (il lgfila|* <vtain yli] - of?}
aeS}% aeSg,i
= | (molbrr) —mi(bir))/4
=1 |G, TR (2.10)

The quadrature part is similarly defined. The-metrics sentito the Viterbi decoder in the
two methods are defined in Table 2.4: Note that thedifference between the bit metrics for
the decided “0” and “1” is the same for the two'methods, namely +(mg — m;). Thus the
decoded bit sequence will be the same for the two methods.

In Method-LLR, only (mg—m1)/4 is sent to the de-interleaver while in Method-ML, both

mo and m; are sent. Besides, we can reduce (mg —my)/4 = |G li]|* - Dr to a simple form
constituting of y,[i] itself because Gray coding is used in the constellation map of M-ary

QAM modulation in IEEE 802.16e.

Figure 2.6 shows the partitions of (S§?,2, S}llz) for the generic bit by j, in the case of 16-QAM.

14
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Figure 2.6: Metric partitions of the 16-QAM constellation (from [9]).

As a consequence,

1 ) . ) .
Dy = Z_l{ min |y[i] — a|2 — mln) lyli] — a|2}

aeSy) s
can be simplified as follows.
—yrldl, @) < 2
Dry = —2(yrla =A% a7 392 = —y;lil,
=2yl +1), () <2
Drs = glyili]] =2

(2.11)

(2.12)

The same observation holds for QPSK and 64-QAM; constellations. For QPSK, D; = —y;]i].

For 64-QAM,
[ —uii], lyrli] <2 )
=2(yr[i] = 1), 2<ygli] <4
=3(ysli] —2), 4 <yrli] <6
Diy = —4(ys[i] = 3), wili] > 6 = —ygli],
oyl + 1), —4 < yli] < —2
—3(y[[2] + 2), —6 < y[[Z] < —4
( —4(ysli] +3), wili] <6 )
2(|yrlil] = 3), lyili]] <2
Dry =  —4+yli]], 2<lyifi]| <6 = —4 + Jyg[d]],
2(lys[e]] = 5), |yrlil] > 6
=yl + 2, (yrli]] <4 T
Dia = L ptiLel IS ) =tz
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Figure 2.7: CTCs coding block diagram (from [1]).

2.3 Convolutional Turbo Codes Specifications [1]

The convolution turbo codes (CTCs) defined in TEEE 802.16e OFDMA is shown in Fig. 2.7.
The input data are first encoded by the GFGrencoder.. Then, they are interleaved by the
interleaving block and followed by puncturing. Tikewise, 'there are three different modulation
types. Note that the interléaving and the puncturing are also called subpacket generation.
CTC is not only defined in dEEE 802.16e:OFDMA but also inelEEE 802.16e OFDM. They

are differentiated by their puneturing mechanisni aud subpacket generation.
Overview of CTC

Turbo code is first presented for error correction coding in 1993, which has provided for very

long codewords with only modest decoding complexity.

In later years, researchers have shown that non-binary circular Turbo codes can offer many
advantages in comparison to the classical single binary Turbo codes. Hence they have been
used as one of FEC options in some recent satellite and mobile communication standards,
in particular, DVB-RCS (Digital Video Broadcasting—Return Channel via Satellite) and

WiMAX (IEEE 802.16e).

16



The

Double-Binary Code Advantages [17]

Better convergence: The advantage is well marked when replacing binary codes by

double-binary code. The gain is less noticeable for inputs > 2.
Larger minimum distance.

Less sensitivity to puncturing patterns.

Reduced latency.

— As data are processed using symbols of 2 bits and ignoring the side effects, latency

is divided by 2, from both coding and decoding viewpoints.

— The trellis contains halfias'many states as arbinary code of identical constraint
length and the decoding hardware ¢an be clocked at half the rate as a binary code

[16, Chapter 12].
Robustness of the decoder.

Better performance for max-log-MAP algorithm: The duo-binary code can be decoded
with max-log-MAP algorithm, which loses only about:0.1-0.2 dB relative to the optimal
log-MAP algorithm. This is in contrasti to binary codes, which lose about 0.3-0.4 dB
when decoded with the max-log-MAP algorithm [16, Chapter 12].

A more detailed understanding of this relationship can be gained form [17].

2.3.1 CTC Encoder in IEEE 802.16e OFDMA [1]

The CTC encoder, including its constituent encoder, is shown in Figure 2.8. It uses a double

binary circular recursive systematic convolutional (CRSC) code. The bits of the data to be

encoded are alternately fed to A and B, starting with the MSB of the first byte being fed to

17
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Figure 2.8: CTC encoder (modiﬁed from [1]).

A. The encoder is fed by blocks of k bits or IV cbupl;as (k = 2' N bits). For all the frame

sizes, k is a multiple of 8 and IV is'a multiple of 4" Further, N is limited to 8 < N/4 < 1024.

The polynomials defining the corltiections-are deseribed, in octal and symbol notations as

follows:

e For the feedback branch: 0xB, eqlivalently 1=+ D + D3.
e For the Y parity bit: 0xD, equivalently 1 + D? 4 D3,

e For the W parity bit: 0x9, equivalently 1 + D3,

First, the encoder (after initialization by the circulation state Scy) is fed the sequence in the
natural order (position 1) with the incremental address ¢ = 0,..., N — 1, which is called C}
encoding. Second, the encoder (after initialization by the circulation state Se¢o) is fed the

sequence in the natural order (position 2) with the incremental address j = 0,..., N — 1,

18
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Figure 2.9: rCTCirate 143 endoder flow chart.

=

Constituent Enceder1
Stepl: S0 =>RSC =>S0yy
Step2: SOy == CSLT => S¢;
\Step3: S¢; =>RSC =Y. W /

Y1=¥ |\

which is called C5 encoding. The order-ingwhich the encodedsbits are fed into the subpacket

generation block is A, B, Yy, Y5, Wy, Wo =

AO7A1> :eof ANr—17 BO; B17 L) BN—17
}/1770, Yi,la B }/—1,N—17 l/772,0:1/2,17 s )/Q,N—la
Wio, Wias sV o1, Wao, Wad, e, Wa vy

However, we can represent the above rule with the flow chart shown as Fig. 2.9. Note that

CSLT express the circulation state look-up table, as shown in Table2.5.

The encoding block size shall depend on the number of slots allocated and the modulation
specified for the current transmission. Concatenation of a number of slots can be performed
in order to make larger blocks of coding where it is possible, with the limitation of not

exceeding the largest supported block size for the applied modulation and coding.

There are 32 different block sizes as shown in Fig. 2.10. The specification for QPSK-1/2

may be in error, which should be 9 rather than 10. The concatenation rule shall not be used
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Modulation and rate i
QPFSK-112 11 | phould be 9
(QPSK-3/4 6
16-QAN-112 5
16-QAM-34 3
B-QAM-112 3
(H-QAN-213 2
f-QAM-314 2
H-QAM-5i6 2

Figure 2.10: CTC encoding slot concatenation for different rate (modified from [1]).

when using IR HARQ (incremental redundancy hybrid automatic repeat request).

2.3.2 CTC Interleaver [1]

The interleaver requires thesparameters £y, Py, P,7and P; shown in Fig. 2.11, which gives
the block sizes, code rates, channel efficieney;‘and code paramefers for different modulation

and coding schemes.

The two-step interleaver canibe performed as shown'in Fig. 2.12, where two possible

errors in the draft standard is indicated:.

2.3.3 CTC Tail-Biting [1], [10]

For recursive encoders, tail-biting is not as easy as it is for non-recursive encoders. To ensure
that the starting state is the same as the ending state, which is called circulation state, for

recursive encoders an initial encoding of the whole sequence has to be performed [10].

The initial encoding is started in the all-zero state and depending on the information

sequence it ends up in a special state, S.,4. Based on this ending state, the circulation state
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Figure 2.11: CTC channel coding per modulation (modified from
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Step 1: Switch alternate couples
Let the sequence g = [(4g. Bp). (4y. By) . (42, By). (A3, B3). ... (Ap_y. By-y)] be the input to
first encoding Cy.
fori = 0..N-1
if (i mod 2), let (4;, B;) — (B 4;) (i.e.. switch the couple)
This step gives a sequence iy = { (Bp.4p). (43, By), (B3, Az«
(Ba1- Ayep)] = [u(0). 1y (1), 0(2), 14(3), sty (N-1)].
Step 2: P(j)
The function P(j) provides the address of the couple of the sequence i that shall be mapped
onto the address j of the interleaved sequence (i.e.. t5(]) = 1y (P())).
for j=0..N-1
switch (j mod 4);
case 0: P(j) = (Py-j+1) mod ¥V
case I: P(j) = (Py-j+1+N/2+P)) mod N
case 2: P(j) = (Py-j+1+P;) mod N
case 3. P(j) = (Py-j+1+4N/2+Py) modV

This ste /és a sequence u i PO) uy(P(1)), ul(P (2)). 1 (P(3)). ...y (P(N-1))]

= [[Broy. Apoy)| “pqry: Bpay: [ ) (Ap(ay Bpeay): --» (Apy-1)- Bp(y-1))])- Sequence
---"Hn is the inpuf to the :.e‘.oncl encodmo C;

Reverse error ?

Figure 2.12: CTC interleayer in tworsteps (modified from [1]).

can be computed using linear algebra methods based on the state space description of the
encoder. In order to eliminate this linear algebra computationfthe IEEE 802.16 provides a
so-called circulation state look-up tabiez b\}rﬁmofrespondence between the final state
Sena of the initial encoding process and the circulation state-as a function of the information

sequence length is listed in Table 2.5.

Afterwards, the real encoding can be started, whereby the encoder state is initialized
now with the circulation state. Hence, a tail-biting encoder needs two complete encoding
processes, which adds complexity to the encoder. Complexity is also added to the decoder
of the constituent code. The complexity added to the decoder compared to the case where
the starting and ending state is known to the decoder is in the additional wrap-around for
the forward and backward recursion of the MAP decoder. Since the wrap-around length can

be kept small, the additional complexity is quite small [10].
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Table 2.5: Circulation State Look-Up Table (S¢q and Seo)

Nmod7 SOn_1

o 1 2 3 4 5 6 7
1 o 6 4 2 7 1 3 5
2 o 3 7 4 5 6 2 1
3 0O 5 3 6 2 7 1 4
4 o 4 1 5 6 2 7 3
5 0o 2 5 7 1 3 4 6
6 o 7 6 1 3 4 5 2

Determination of CTC Circulation States [1]

The state of the encoder is denoted#S' (00 < 8"< 7) with S = 45 + 255 + S3, as shown in

Fig. 2.8. The circulation statess.Sg1-and Sge-are.determinedsby the following operations:

e Initialize the encoder Wwith state 0.

e Encode the sequence in the naturalsorder for the determination of S¢; or in the in-
terleaved order for detérmination-of Sga.-Let the final state in each case be denoted

SOn_1.

e According to the length N of the sequence, use Table 2.5 to find S and Ses.

2.3.4 Subpacket Generation (Channel Interleaver or Interleaver
and Puncturing) [1]

The proposed FEC structure punctures the mother codeword to generate a subpacket with

various coding rates. The framework consists of the following:

e bit separation,
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e subblock interleaving,
e bit grouping, and

e bit selection.

The subpacket is also used in HARQ packet transmission. Figure 2.7 shows the block
diagram of subpacket generation. A rate-1/3 CTC encoded codeword goes through inter-
leaving and the puncturing. Figure 2.13 shows the block diagram of the interleaving block.
The puncturing is performed to select a consecutive interleaved bit sequence that starts at

some point of whole codeword.

For the first transmission, the subpacket fis'generated to select the consecutive interleaved
bit sequence that starts from the first bit of the systemati¢'part of the mother codeword. The
length of the subpacket is chosen according to the needed coding rate reflecting the channel
condition. The first subpacket can.also be used as.a codeword=with the needed coding rate

for a burst where HARQ is not applied.

Bit Separation

All of the encoded bits can be demultipléxed-into six subblocks denoted A, B, Y1, Y2, W1,
and W2. The encoder output bits are sequentially distributed into the six subblocks with
the first NV bits going to the A subblock, the second N to the B subblock, the third N to
the Y'1 subblock, the fourth N to the Y2 subblock, the fifth N to the W1 subblock, and the
sixth NV to the W2 subblock.

Subblock Interleaving

The six subblocks can be interleaved separately. The interleaving is performed in unit of

bits. The sequence of interleaver output bits for each subblock can be generated by the
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procedure described below. The entire subblock of bits to be interleaved is written into an
array at addresses from 0 to the number of the bits minus one (N — 1), and the interleaved
bits are read out in a permuted order with the ith bit being read from the address AD;

(t=0,...,N—1), as follows:

1. Determine the subblock interleaver parameters, m and J. Table 2.6 gives these para-

meters.
2. Initialize 7 and k to 0.

3. Form a tentative output address 7}, according to
Ty, = 2"(kmod J) + BRO,,(|k/J]) (2.16)
where BRO,,(y) indicates the bit-reversed mi-bit value of y (e.g.,BRO5(6) = 3).

4. If Ty is less than N, AD; =T}, and increment » and k¥ by 1. Otherwise, discard T}, and

increment k only.

5. Repeat steps 3 and 4 until all N'interleaver-output addresses are obtained.

Bit Grouping

The channel interleaver output sequence can consist of the interleaved A and B subblock
sequences, followed by a bit-by-bit multiplexed sequence of the interleaved Y1 and Y2 sub-
block sequences, followed by a bit-by-bit multiplexed sequence of the interleaved W1 and

W2 subblock sequences.

The bit-by-bit multiplexed sequence of interleaved Y1 and Y2 subblock sequences can
consist of the first output bit from the Y1 subblock interleaver, the first output bit from

the Y2 subblock interleaver, the second output bit from the Y1 subblock interleaver, the
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Table 2.6: Parameters for the Subblock Interleavers

Subblock interleaver

Block size
48 24 3 3
72 36 4 3
96 48 4 3
144 72 5 3
192 96 5 3
216 108 5 4
240 120 6 2
288 144 6 3
360 180 6 3
384 192 6 3
432 <+ RIGLRE N 5. 4
480747240 o 2
" — a ’
i ; ! I :.l -

A subblock B subblock b subbleck T, subblack Wy subhlock W suliblack

¥ v ¥ 3 ¥
subblock subblock ‘subblock subblock subblock subblack
wierleavar niferlaaver interleavar mierleaver imterleaver wferleaver

..........

y ¥y
==y ==

Figure 2.13: Block diagram of CTC channel interleaving scheme (from [1]).
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second output bit from the Y2 subblock interleaver, etc. The bit-by-bit multiplexed sequence
of interleaved W1 and W2 subblock sequences can consist of the first output bit from the
W1 subblock interleaver, the first output bit from the W2 subblock interleaver, the second
output bit from the W1 subblock interleaver, the second output bit from the W2 subblock
interleaver, etc. Figure 2.13 shows the interleaving scheme. The order of bit grouping

sequence is as follows:

/ I ! I / /
A(]’Al’"" N—17B07Bl7”'7BN—17
l ! l ! l ! ! !
Yl,07Y2,07Yl,1 7Y271 7Yl727Y272""7Y1,N717Y2,N717
/ / / ! ! / / !
W1’07W2’0,W1’1,W271,W1727W2,2,...7W17N_1,W27N_1.

Bit Selection

Lastly, bit selection is performiéd to generate the subpacket. The puncturing block is referred
as bits selection in the viewpoint of subpacket generation.. The mother code is transmitted
with one of the subpackets. The bits'in a subpacket are formed by selecting specific sequences
of bits from the interleaved GTC encoder output-sequence. The resulting subpacket sequence
is a binary sequence of bits for the modulator. The patameéters for bit selection are listed

below:

e k: the subpacket index when IR HARQ is enabled.

— When IR HARQ is not used, k=0 (for the first transmission and increases by one

for the next subpacket).

— When there are more than one FEC block in a burst, the subpacket index for

each FEC block shall be the same.

e Npp: the number of bits in the encoder packet (before encoding).
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e Nscpr: the number of concatenated slots for the subpacket, as defined in [1, Table

569] for the non-HARQ and Chase HARQ CTC schemes.

e my: the modulation order for the kth subpacket (m;=2 for QPSK, 4 for 16-QAM, 6
for 64QAM).

e SPIDy: the subpacket ID for the kth subpacket (for the first subpacket, SPIDy—o=0).

Also, let the scrambled and selected bits be numbered from zero with the Oth bit being

the first bit in the sequence. Then, the index of the ith bit for the kth subpacket shall be
Sk,i = (Fk + z)mod(?) . NEP) (2.17)

where 1 = 0, R ,Lk—l, Lk = 48-N50Hk~mk, and Fk = (SPIDkLk)mOd(?)NEP> The NEP,
Nscnk, mi , and SPID values are determined by the.base station (BS) and can be inferred
by the subscriber station (SS) through the allocation size in the DL-MAP and UL-MAP.

The above bit selection makes the following pessible.

e The first transmission includes the systematic part of the mother code. Thus it can
be used as the codeword for @ burst where the HARQ is not applied or when Chase
HARQ is applied.

e The location of the subpacket can be determined by the SPID without the knowledge

of previous subpacket. This is a very important property for IR HARQ retransmission.

Note that the optional IR HARQ is not considered in our research, so we bypass a detailed

introduction of the IR HARQ mechanism.
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Figure 2.14: Block diagram of a turbo decoder (from [11]).

2.4 Decoding of CTC

2.4.1 The Turbo Decoding Algorithm [11]

A key in turbo codes is the iterative.decoding algorithm. In iterative decoding, the decoders

for the constituent encoders take turns operating on the received data.

Each decoder produces an estimate of the probabilities of the transmitted symbols; there-
fore, the decoders are soft output decoders. .Probabilities of the symbols from one decoder,
known as extrinsic probabilities, are.interleaved=and=passed to the other decoder, where
they are used as prior probabilities for“the other decoder. .The decoder thus passes proba-
bilities back and forth between the decoders,with each decoder combining the evidence it
receives from the incoming prior probabilities with the parity information provided by the
code. After some number of iterations, hopefully the decoder converges to an estimate of
the transmitted codeword. Since the output of one decoder is fed to the input of the next
decoder, the decoding algorithm is called a turbo decoder, for it is reminiscent of turbo
charging an automobile engine using engine-heated air at the air intake. Thus it is not really
the code which is “turbo,” but rather the decoding algorithm which is “turbo.” The general

operation of the turbo decoding algorithm is shown in Fig. 2.14.
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The MAP Decoding Algorithm [11], [13]

One maximum a posteriori (MAP) decoding algorithm particularly suitable for estimating bit
and/or state probabilities for a finite-state Markov system is the BCJR algorithm, named
after Bahl, Cock, Jelinek, and Raviv who proposed it originally in 1974 [12]. While this
algorithm has been known for some time, it was not extensively used for the decoding of
convolutional codes because of the availability of a lower complexity Viterbi algorithm (for

maximum-likelihood decoding of convolutional codes).

In many respects, the BCJR algorithm is similar to the Viterbi algorithm. However,
the conventional Viterbi algorithm computes hard decisions by outputting a single overall
decision of the entire sequence of bitsy(ér codéwerd) at the end, without providing the
reliability of the decoder decisions'on individual bits. Furthermore, the branch metric is based
upon log likelihood values; no prior information is incorporated into the decoding process.
The BCJR algorithm, on the other hand; computeés soft,outputs in the form of posterior
probabilities for each message bit.” While the Viterbi algorithm produces the maximum
likelihood message sequence™(or codeword)ythesBEIRs algorithm produces the a posteriori
most likely sequence of message bits, where the sequenge of bits may not correspond to a
continuous path through the trellis: The BCJR-algorithm is a soft-input soft-output decoder
that can be used directly in turbo decoding whereas the conventional Viterbi algorithm
cannot without some modification to yield the required soft output. The BCJR algorithm

for MAP decoding of convolutional codes consists of the following steps:

e Compute branch metric .
e Compute forward state metric a.

e Compute backward state metric [.
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Figure 2.15: CTC trellis structure of duo-binary convolutional code with feedback encoder
(from [14]).

e Compute extrinsic log likelihood ratio=L..

A more detailed understanding can be gained from [11].

2.4.2 Decoding Rule for CRSC Codes with Non-binary Trellis [14]

The trellis of a double-binary feedback convolutional encoder has the structure shown in Fig.

2.15. The goal of the MAP algorithm is to provide us with
P,[d), = i|Observation]
P,[d), = 0|Observation]
Sk_1,8
1y St (S, S )
Sk—1,9 ’
Zékkzo k) p(Sk—b Sk‘: {yk})

where y; is the received sample at time k. The index pair (S_1, Sk) determines the informa-

Lidy) = In

i=1,2,3, (2.18)

tion symbol (bit couple) dj, and the coded symbol x; from time k—1 to time k where d, is in
GF(2%) with elements {0,1,2,3}. The sum of the joint probabilities p(Sy_1, Sk, {yx}) in the

numerator or in the denominator of (2.18) is taken over all labeled with dj, = 4,7 =0,1,2,3,
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where we have used decimal notation for dj, instead of binary for convenience. With a mem-
oryless transmission channel, the joint probability p(Sk_1, Sk, {yx}) can be written as the

product of three independent probabilities

P(Sk=1, % {ye}) = P(Sk—1,Yj<k) - P(Sk, Y| Sk-1) - P(Yj>ks Sk)

—1(Sk-1) * Y(Sk—1, Sk)  Br(Sk) (2.19)

where y; denotes the sequence of received symbols y; from the beginning of the trellis up
to time £ — 1 and y;~, is the corresponding sequence from time & + 1 up to the end of the

trellis. The forward recursion of the MAP algorithm yields

Oék(Sk) = Z Oék_l(Sk_l) . ’Yk(Sk—la Sk) (220)

Sk—1

The backward recursion yields

BrtlSk—1 f = Z%(Sk—hsk)'ﬁk(sk)- (2.21)

Sk

When a transition between"Sg. and Sy exists, the branch transition probability is given by

Y (SkE08k) = DSk, UklSk1)
=Skl Sk=1)" DY | Sk—1, Sk)
= P(dy) - p(yldr)- (2.22)
Let the natural logarithm of the branch transition probability metric be
Fk<Sk_1, Sk) = In '7k<Sk—17 Sk) (2.23)

and the natural logarithms of ay(Sk) and Gk (Sk) be

— In Z eAk—l(Sk—l)'f'Fk(Sk—lek)’ (2.24)
Sk—1
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Bk—l(Sk—l) = 1ﬂﬁk—1(5k—1)
— In Z oLk (Sk—1,5K)+Bxk(Sk) (2.25)
Sk
Then the log-likelihood ratios (2.18) for i = 1,2, 3 are given by
Zg:k_il’sk) P(Sk—1, Sk, {yr})
Zngk_ol’sk) (Sk—15 Sk, {yr})
dek 9 g 1 (Sko1) - Y (Sket, Sk) - Br(Sk)

Zdik o1 5 Qg — I(Sk—l) -WB(Sk_l, Sk) : ﬁk(Sk)
(Sk—1,5k) Ak—l(Sk—l)+F2(Sk—1ysk)+3k(8k)
Y= . (2.26)

ZdSk 01 k) Ak—l(sk—1)+F2(Sk—hsk)-i—Bk(Sk)
k

Li(dy) =

2.4.3 Simplified Max-Log-MAP Algorithm for Double-Binary CTC
[14]

Implementing (2.26) in hardware is difficult and e¢omplex. It is also relatively complicated
to implement it in DSP software. We consider the suboptimal.max-log-MAP algorithm for

double binary convolutionalturbo codes. First, from (2.22) and (2.23),

I%(Sk—1, SE) =i yp(Semm, Sk)
= In[p(yx|di)s Pl )]. (2.27)

The distribution of the received symbols is given by, for i=0,1,2,3,

plyrldr = 1) = p(yglzi(i)) - pyplog (i, Sk—1, Sk))

R S (e O S sl O)
T NO

1 6—%;[(yk’1 el (0,8-1,5%)) 2+ () O =22 (1,54 - 1,5k))?]
T NO

= O - 05 Lol O oL Pl (Sko1 S0+ Y O 681150 (9.98)

where g and y” represent the received systematic and parity symbols, respectively, y9', y5?,
yi’l, and ny represent the received bit values transmitted through the I and @ channels, re-

spectively, L. = 4 - (fading factor) - (code rate) - ff—g represent the channel reliability, and
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Cp = (i )2e™ Ry HE O HaR D+ @)D L 6,51 SO+ 6 Sk-0,50)%]

7 No

Hence,

U4 (Sk-1,Sk) = In[p(yx|dy) - P(dy)]

= 0.5 Lo-[yp" 2" (1) + yp - a9 @) + it - o (0 Seea, )

+ P9 a9, Sy, Sp) + In P(dy) + K

(2.29)

where the constant K includes the constants and common terms that are cancelled in com-

parisons at later stages. Note that

Ak<Sk) = lnzeAk71(5k71)+Fk(sk,1,sk)
Sk—1

=~ IglaX[Ak_l(Sk_l) + Fk(Skfla Sk)]

By_1(Sk1) = In Z el Skt k) BR(Sk)
Sk

~ II}gaX[Fk(Sk_l, Sk) —+ Bk(Sk)]
k
The above can be derived by the Jacobian logarithm [11], i.e.,
In(el! Fe). £ max(lydighIn(LHe L1120

If the correction term (i.e., the second-RHS term) is.omitted and only the
retained, we obtain the above max-function (max-log-MAP) approximation.

decoding of circular trellis, tail-biting gives

Ao(So) — AN(SN) VS(],

BN(SN) = Bo(So) VSN
As a result, the log-likelihood ratios (2.26) reduce to

— max [Ak,l(Sk,l) + Fg(Sk,l, Sk) + Bk(Sk)]
(Sk-1,Sk)
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We omit the detailed mathematical derivation for separating the log-likelihood ratios into
intrinsic (prior information), systematic and extrinsic information. The interested reader

may refer to [14]. It turns out that the extrinsic information can be expressed as

Li(dy) = Li(d) = 0.5- [y - a3 () + @ - 239 (0)]
P[dk =1
P[d;, = 0]

+ 05 [yt 2 (0) + 4P 229(0)] — In (2.36)

The extrinsic information of the next decoder is computed from the prior information of

previous decoder as

P[dk Z]
Li(d,) = 1 2.37
£(de) @ = (2:37)
where 7 = 0,1, 2, 3. Since
Pld, = 01] = et . P[d,, = 00],"Pld), = 10}.=.€% (%) - Pldjs= 00],

Pldy = 11] = eL4(). P[d, =00], and Pldy =200} + Pldy = 01]+ P[dy, = 10]+ Pld, = 11] = 1,

we have
_ _ 1 "l - Li(dr)

Pld, = 00] = PERRA{Ca NN O i 2 LT R Pld, =01] = IS AICTIN 7 ST
_ _ L5 (di) it i- L3 (dy)

P[dk - 10] T el TR L8 (dy) g gy P[dk = 11] TS () (B (dy) y LG (dy) -

Using max-function approximation yields

In P[dk = 00] = — max[(), L%(dk), Lg(dk

~
/\
QU
5
~—

In P[d;, = 01] = L%(d},) — max|0, L%(dy), L3 (dk), Lg(dy)],
In P[d), = 10] = L4(d},) — max|[0, L¢(dy), L&(dy), L&(dy)],
In Pldy, = 11] = Lg(dy) — max|0, L¢(dy), Lg(d), L4(dy)]

Assuming equally likely symbols initially, we have

Ao(Sy) = 0 VS, (2.38)
By(Sy) = 0 VSy, (2.39)
Ldy) = 0 Vi,dj. (2.40)



After sufficient decoding iterations, the decisions are made according to

dj, = (2.41)

( i
2 10, = if L( k) = Lg(dk) and Lg(dk) >0,
( 5
00, = else,
where L(dy,) = max[L%(dy), L%(dy), L%(dy)).
This above algorithm have been known as the max-log-MAP algorithm which only uses
the max functions to compute log-likelihood ratios. But coming with the approximation to

reducing log-likelihood ratios is some performance degradation. We will see the effect later

in the simulation results.
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Chapter 3

DSP Implementation Environment

In our implementation, we employ the DSP baseboard SMT395 made by the Sundance
company, which have a Texas Instruments (TI)» TMS320C6416T DSP chip and a Xilinx
Virtex-II Pro FPGA. In this chapter, we discuss the DSP system development environment,
especially the VCP (Viterbi decodericoprécessor) and its features. The TI’s Code Composer
Studio (CCS) EDMA and the 3L.Diamond EDMAsare also' introduced.

3.1 The DSP Baseboard

The DSP card used in our implémentation is Sundance’s SMT395 shown in Fig. 3.1. It
houses a 1 GHz 64-bit TMS320C6416T 'DSP of T1. The SMT395 is supported by TI's Code
Composer Studio and the 3L Diamond real-time operating system (RTOS) to enable multi-

DSP system implementation with minimum effort by the programmer.

Features of the SMT395 board include:

e 1 GHz TMS320C6416T fixed-point DSP processor with L1 and L2 cache that has 8000
MIPS peak DSP performance.

e Xilinx Virtex II Pro FPGA XC2VP30-6 in FF896 package.
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Figure 3.1: Sundance’s SMT395 module (from [18]).

256 Mbytes of SDRAM at 133"MHz.

Eight 2 Gbit/sec RocketiSerial Links?RSI;) forintenodule communication.

= R 1

Two Sundance High-Speed Bus (50MHz, 1OOMHZ or QOOMHZ) ports at 32 bits width.

e 8 Mbytes flash ROM .fpr nconﬁguﬁatiég and booting.

- -l

L n - j =

3.2 The Viterbi-Decoder Coprocessor (VCP) [19]

The Viterbi-decoder coprocessor (VCP) is on some of the number of the TMS320C6000
DSP family, including C6416, C6418, and C6455. It has been designed to perform Viterbi
decoding for IS2000 and 3GPP wireless standards. We can also use it for other convolutional

decoding applications, including WiMAX.

3.2.1 Overview of VCP [19], [21], [22]

The VCP should be accessed using the EDMA (Enhanced Direct Memory Access) for mostly,

but the CPU must first configure the VCP control values. There are also a number of
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Figure 3.2: VCP‘bbck diagram (fn"odiﬁed from [19]).

functions available to the CPU fo monitér the VCP status and access decision and output

H i |

parameter data. Sl s
- |

The DSP controls the operation of the VCP using memorymmapped registers and data
buffers. The DSP typically~ sends and recelves da,ta using synchronized EDMA transfer
through the 64-bit EDMA bus’ The VCP sends two synchronization events to the EDMA:
a receiver event (VCPREVT) and a transmit_event ‘(\L/CPXEVT), as shown in Fig. 3.2.
The VCP is composed of VCP Control, EDMA I/F unit, memory block, processing unit,
CPU interrupt generator, and REVT/XEVT generator. Fig. 3.2 shows two VCP external
communication mechanisms, in one of which DSP (CPU) accesses VCP Control through the
32-bit peripheral bus and in the other EDMA I/F unit through the 64-bit EDMA bus. In the
latter case, EDMA channel 28 (RX) is for VCP transmission to DSP and EDMA channel
29 (TX) is for DSP transmission to VCP.

Fig. 3.3 and Fig. 3.4 show the DSP chip architecture and chip die photo, where the
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Figure 3.4: DSP chip die (from [20]).
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position of the VCP is indicated. The VCP input data are the branch metrics and the
output data are the hard or soft decisions. The VCP provides the following features and

capabilities:

e Variable constraint length, K = 5, 6, 7, or 9.

e User-supplied code coefficients.

e Code rate (1/2, 1/3, or 1/4).

e Configurable trace back settings (convergence distance, frame structure).

e Branch metrics calculation and depuncturing is done in software by the DSP.
e Frees up DSP resources for‘other processing.

e Communication between the DSP and the VCP is performed through a high perfor-

mance DMA engine.

e VCP uses its own optimized working memories.

The VCP is able to decode"only.a subset of the.convolutional codes known as single
register, nonrecursive convolutional codes (an example is shown in Fig. 3.5). Important

parameters for this type of codes are:

e The constraint length K (K = the number of linear finite-state registers + 1).

e The rate R is given by R = k/n, where k is the number of information bits needed to

produce n output bits known as the codeword.

e The generator polynomials Gn describe how the outputs are generated from the inputs.
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Figure 3.5: Convolutional encoder example, whére X = 3, R = 1/3, GO = (100)s, G1 =
(101)s, G2 = (111)g (from [19]).

From the parameters, wercan derive a trellis diagram providing a useful representation
of the code whose complexity grows exponentially with the constraint length K. Fig. 3.6

shows the trellis diagram of*the code of Fig:3:5.

As a maximum-likelihoodsequenge estimation (MLSE) decoder, the Viterbi decoder iden-
tifies the code sequence with the highest probability of matching the transmitted sequence
based on the received sequence. The Viterhi algorithm is composed of a metric update and
a traceback routine. The metric update performs a forward recursion in the trellis over a
finite number of symbol periods where probabilities are accumulated (the VCP accumulates
on 12 bits) for each individual state based on the current input symbol (branch metric in-
formation). Once a path through the trellis is identified, the traceback routine performs a

backward recursion in the trellis and outputs hard or soft decisions.

To facilitate the decoding process, the initial state of delay elements is all zero. In

addition, by appending (K — 1) zero tail bits at the end of the F-bit input sequence, it is
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1/101
Time t Time t+T

Note: K=3, R=kin=1/3, Gg = (100)g, Gy = (101)g, Go = (111)g
0/000 means input is 0, output is 0, output2 is 0, output3 is 0.
There are 2(-") states and 2¥ incoming branches per state

Figure 3.6: Cénvolutiondl code trellis'example (from [19]).

also ensured that the final staté is the all-zero state, which is ¢alled zero tail. For example,
in Fig. 3.7 the decoded sequence is u.q =0,1;1,1 and the last feur zeros in the path are tail
bits and not part of the informationframe (F')- As IEEE 802.16e CC adopts tail-biting, we

used to modify the basic way of*using: VCP to handle.it.

3.2.2 VCP Inputs (Brach Metrics and VCP Input Configuration)
[19], [22]

BM (Branch Metrics) are calculated by the DSP and stored in the DSP memory subsystem
as T-bit signed values. For rate 1/n codes, a total of 2"~! branch metrics need to be computed

per symbol period and passed to the VCP.

Consider BPSK modulated bits (0 — 1,1 — —1), for example. Let the rate be 1/2.

Then there are 2 branch metrics per symbol period. We have BMy(t) = ro(t) + r1(t),
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Figure 3.7: Example of survivor path and associated decoded sequence (from [21]).

Table 3.1: Branch Metrics for Rate-1/2 Code

Address (hex) MSB LSB
Base BM1<t = T) BMo(t = T) 1( ) BMo(t = O)
Base + 4h BM;(t = 3T), #BMy(t = 31) BMl(t 2T) BM,(t =2T)
Base +8h | ...

BM,(t) = ro(t) —r1(t), where r(¢) is the received codeword at time t. Note that if we utilize
the VCP to decode CC, wesmust note the definition of the VOP modulation. We find that

it may reverse the index of the constellation coordinate for three different modulations.

The data should be sent tofthe VCP as described iniTable 3.1 for rate-1/2 coding (the
base address must be double-word aligned).. For rate-1/3 and 1/4 coding, the interested
reader may refer to [19] for details. The branch metrics can be saved in the DSP memory
subsystem in either their native format or packed in words by the user. By default, the
VCP works in the little-endian mode, but it can also work in the big-endian, whose detailed

settings are discussed in [19].

VCP Input FIFO (Brach Metrics)

The FIFO is used in a double-buffering fashion as shown in Fig. 3.8. The VCP generates

a VCPXEVT synchronization event each time the top half or bottom half of the buffier is
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Figure 3.8; ¥CP input FIFO (modified from [19]).

empty. The SYMX bits are in VCPIC5 and define the buffer length as well as the VCPXEVT
event rate. However the SYMX can be automatically determined by parameters such as F',

K, and R.
VCP Input Configuration

The VCP contains several memory-mapped registers accessible by the CPU load and store
instructions, the QDMA (quick direct memory access), and EDMA. A peripheral-bus access
is faster than an EDMA-bus access for isolated accesses (typically when accessing control
registers), as shown in Fig. 3.2. EDMA-bus accesses are intended to be used for EDMA
transfer and are meant to provide maximum throughput to/from the VCP. The memory
map is as shown in Fig. 3.9. Note that the branch metric memory contents are not accessible
and the memory can be regarded as FIFOs by the DSP, meaning no need to perform any

indexing on the addresses.
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Start Address (hex)

EDMA bus Peripheral Bus Acronym Regizster Name Section
‘ 5000 0000 01B8 0000 VCPRICO VCP input configuration register O ‘ 6.1
5000 0004 0188 0004 VCPIC1 VCP input configuration register 1 8.2
‘ 5000 0008 01B8 0008 VCPIC2 VCP input configuration register 2 ‘ 6.3
5000 000C 0188 000C VCPIC3 VCP input configuration register 3 6.4
5000 0010 01B8 0010 VCPIC4 VCP input configuration register 4 8.5
5000 0014 0188 0014 VCPICS VCP input configuration register 5 6.6
5000 0048 01B8 0048 VCPOUTO VCP output register 0 8.7
5000 004C 0188 004C VCPOUT1 VCP output register 1 6.8
5000 o080 - VCPWBM VCP branch metrics write register -
5000 o088 - VCPRDECS  VCP decisions read register -
- 0168 0018 VCPEXE VCP execution register 6.9
- 01B8 0020 VCPEND VCP endian mode register 6.10
- 0168 0040 VCPSTATO VCP status register 0 6.1
- 0188 0044 VCPSTAT1 VCP status register 1 6.12
- 0188 0050 VCPERR VCP error register 6.13

To utilize the VCP, we mﬁst first Conﬁ-glgeith','q cen‘t:rol Vé.ll.le's, or IC (input configuration)
value, which will be sent ViE.l.mt_}.le‘EDMA to p_I;ogD'r'afE its gperatmi.lbn. For this, we may set up
the VCP_Params structure;_an_d pass i _to_n'VC’P_z'cCQnﬁg( ). Liet VCP_Params contain all
the channel characteristics lzéqqired"go _QQ&WCR:“W(% create the object and pass
it to the VCP_genParams() fu:n“cti(')n v;}ilich return the VEC‘rT-’,Pamms structure. The input

configuration function VCP_icConfig() returns a;,poinfer to the IC values which are to be

B
-
g =

Figure 3.9: VCP registeirs (modiﬁ-éd-__from [19]).

il | s o

sent using the EDMA. The flow chart shown in Fig. 3.10 explains the working.

3.2.3 VCP Output (Decisions) [19]

The VCP can be configured to send either hard decisions (a bit) or soft decisions (a 16-bit

value, 12-bit sign-extended) to the DSP after the decoding.

The decisions buffer start address must be double-word aligned and the buffer size must

contain an even number of 32-bit words. The memory map is as shown in Fig. 3.9. Note

46



VCP_BaseParams vepBaseParam = { Structure typede struct |
3. /* Rate */ VCP_Rate rate;
9, /*Constraint Length (K=5,6,7,8, OR 9)*/ m ‘;‘:‘;"-“
81, /*Prame Length (FL) */ Um32  polyl;
0, /*Yamamoto Threshold (YAMT)*/ U'W pely2.
Q, /*Stat Index to set to IMAXS (IMAXI) */ Uinta2 ;:'fm
a, /*0Output Hard Decision Type *y Uint32  framelen;
0 /*0utput Parameters Read Flai */ Unis2  relLen;
. P . g Q Uint32  convDist;
h : - Uint32  maxSm;
s :::::> Uinig2  minSm;
VCP_genParams (cvepBaseParam®, &vepParam() m :::mn
Uint32  decBufiLen:
Uim32  traceBack;
Structure typedef struct { > Uin32  readFiag;
Uint32 ic0; Uint32  decision;
Uint32 ie1; Uint32  numBranchMetrics;
Uint32 ic2; Uint32  numDecisions;
Uintag ic3: | VCP_Params;
Uint32 ic4,;
Uint32 ie5;
} VCP_Configlc,

VCP_genlc (params,

conflig);

Cenpur ! O rDecisions Ca

+—— (4 Lits ————»

I
Cec Dec
Dec
5 TOIF HALF
Ef---- - —————— WCPREVT
o
- BOTTOM HALF
A R I - WCPREVT
L
L, = 8 SYMR bytas SYMR e = 16

Figure 3.11: VCP output FIFO (modified from [19]).
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that the decisions memory contents are not accessible and the memory can be regarded as

FIFOs by the DSP, meaning no need to perform any indexing on the addresses.

The FIFO works in a double-buffering manner as depicted in Fig. 3.11, where a “Dec”
represents a decisions word (32 bits) in reverse order. The VCP generates a VCPREVT
synchronization event each time the top half or bottom half of the buffier is full. The
SYMR bits are in VCPIC5 and define the buffer length as well as the VCPREVT event rate.

However, the SYMR can be automatically determined by parameters such as F, K, and R.

3.2.4 Sliding Windows Processing [19]

The hard-decision memory can store up to 32,768 traceback bits and there are 25~ bits
stored at each trellis stage. Therefore, the hard-decision memory can store decisions of
32,768/25~1 symbols. The soft-decision mémory can store ip to 8,192 traceback soft values

and, therefore, contain up t6°8,192 soft deciSions of 8,192/25~1 symbols.

Assume a terminated frame of length F(excluding tail bits) and a constraint length
K, which determine whether all de¢isions.can.be.stored in'the traceback memories. If all
decisions do not fit, then the tyaceback’mode should be set to mixed and the original frame
segmented into sliding windows (SW); etherwise; the traceback mode can be set to tailed

and no segmentation is required.

In case of a non-terminated frame or if one wants to start decoding without waiting for
the end of the frame, the traceback mode should be set to convergent and the frame might
have to be segmented into sliding windows depending on whether the decisions will fit in the
traceback memories. We only introduce the tailed traceback mode because the our frame

length can fit into the VCP memory.
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SM computation

v

TB computation

Only output F decisions

Figure 3.12: VCP tailed traceback mode (from [19]).

Tailed Traceback Mode

This mode is utilized when a full frame can reside within the coprocessor’s traceback memory;,
as shown in Fig. 3.12. The state metuics (SM) are computed over F'+ K — 1 symbols, and the
traceback (TB) is initialized with the tail state and executéd over F'+ K — 1 symbol. Only
F' decisions are output, reversed order. Fof more information about the mixed traceback

mode and convergent traceback mode, refer to [19].
Limitations on F, R, and.C

Given a frame of length F' (length prior to convolutional encoding with no tail bit informa-
tion accounted), there are some limitations on the R and C' values that one must follow.
Unpredictable behavior will occur if these constraints are not observed. The limitations are
summarized in Fig. 3.13. Note that we set F' to 378 in tailed traceback mode with constraint

length equal to 7. The reason will be explained in the next chapter.

3.3 VCP Programming [19], [21]

This section outlines steps required to decode a single frame of data using the VCP. The

VCP requires setting up the following context per user channel:
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Traceback Mode

Hard Deciziona Soft Decisions
‘Tailed |— Mixed/Convergent’ Tailed Mixed/Convergent’
R.C=3(K-1) R.C=6(K-1)

K Fmax R+C Possible C values Fmax  (non-punctured code) (punctured code)

9 120 124 3,6,9.12,15 x(K-1) 24 R=4, C=24 not allowed

8 217 217 3,6,9,12,15,18 < (K- 1) 49 R=23, C=21 R=7, C=42
372 3,6,0,12,15,18 % (K- 1) 20 R=-60, C-18 R=54, C=36

(4] B3b 605 3.6,9,12,15,18x (K- 1) 155 H=60, C=15 H=60, C=30

5 2044 1020 3,6,9,12,15,18 < (K- 1) 508 R=60, C=12 R=60, C=24

| Mixed mode is not allowed for frame sizes that can be handled in tailed mode

Figure 3.13: VCP frame, reliability, and convergence length limitations(modified from [19]).

Table 3.2: VCP Required EDMA Links Per User Channel

Direction Data Usage Req/Opt
Transmit [C parameters Send. the input configuration parameters Required
Transmit Branch metrics Send branch metrics Required
Receive  Decisions Read decisions Required
Receive  Output parameters  Read output parameters Optional

e 3 to 4 EDMA parameters transfers (see Table'3.2).

e The input configurations parameters.

Several user channels can be programmed prior to starting the VCP. A suggested imple-
mentation is to use the EDMA interrupt generation capabilities and program the EDMA

to generate an interrupt after the last VCPREVT synchronized EDMA transfer of the user

channel has completed.
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3.3.1 Prepare Input Configuration, Initialize Input Buffers, and
Allocate Output Buffers [21]

Prepare Input Configuration

For each frame, the VCP input configuration register VCPICO-VCPIC5 are programmed
as described before [19]. The register configuration is first prepared in the DSP memory
(internal or external). It is transferred to the VCP via EDMA once the VCP is started.
The DSP memory address of the beginning of the prepared input configuration is denoted

as &input_config|0].
Initialize Input Buffers

The user computes branch metrics.and store them in DSP internal or external memory.
For terminated frame with F information bits and’code withyconstraint length K, the total
number of symbols is N = FF+ K — 1. For non-terminated frame, i.e., no tail bits, the total

number of input symbol is IV = F.

For rate r and constraintlength K codesthereswillsbe N x2(1/7)~1 7_bit branch metrics.
The DSP memory address of the beginning of the pre-cemputed branch metrics array will
be referred to as &bm[0]. The beginning of the-branch metric array should be aligned on a

64-bit boundary.
Allocate Output Buffers

Hard decisions are transferred from the VCP in 64-bit words, stored in a bit-packed manner.
Therefore, for a frame with F' information bits, the size of the allocated output buffer should

be [F/64] x 8 bytes. For soft-decision decodign, refer to [21].

If the output parameter read flag is set (OUTF = 1), two additional 64-bit words should

be allocated for the output parameter word. The DSP memory address of the beginning
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of the allocated buffers for VCP decisions and output parameter will be referred to as
&hard_decision[0] and &output_parameter[0], respectively. All buffers should be aligned

on an 64-bit boundary.

3.3.2 EDMA Resource [19]

Within the available 64 EDMA channel event sources, two are assigned to the VCP: event
28 (RX) and event 29 (TX). Event 28 is associated to the VCP receive event (VCPREVT)
and is used as the synchronization event for EDMA transfers for the VCP to the DSP
(receive). Event 29 is associated to the VCP transmit event (VCPXEVT) and is used as the

synchronization event for EDMA transfers for the DSP to the VCP (transmit).

The EDMA parameters compri§e six words as shown in Fig. 3.14. All EDMA transfers,
in the context of the VCP, must be done using 32-bit. word elements, must contain an even

number of words, and must have sources and destination addresses double-word aligned.

The element count for the VCP-EDMA transfer must be a multiple of 2. Single-word
transfers that are not double-word aligned.-cause-unexpectederrors in VCP memory. For
more information about EDMA ‘input configuration parameter transfer, branch metrics

transfer, and hard-decisions mode,‘refer to.the good tutorial in [19].

3.3.3 VCP Procedure [21]

Start EDMA

The EDMA channels corresponding to VCPREVT and VCPXEVT are enabled in the EDMA
Event Enable Register (EER), and these channels are also allowed to generate CPU interrupts
by setting appropriate bits in the Channel Interrupt Enable Register (CIER). The EDMA

control registers are described in detail in [23].
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(@) EDMA Registers

31 0 EDMA parameter
Word 0 EDMA Channel Options Parameter (OPT) OPT
Word 1 EDMA Channel Source Address (SRC) SRC
Word 2 Array/frame count (FRMCNT) Element count (ELECNT) CNT
Word 3 EDMA Channel Destination Address (DST) DST
Word 4 Array/frame index (FRMIDX) Element index (ELEIDX) IDX
Word 5 Element count reload (ELERLD) Link address (LINK) RLD

(b) EDMA Channel Options Parameter (OFT)

31 29 28 27 26 25 24 23 22 21 20 19 16
PRI | EsizE [ 2ps [ suMm [ 20D | DUM [TCINT | TCC |

15 14 13 12 110 5 4 3 2 1 0

— [Ttcem Jataint [ — ] ATCC | — [eors]eomo Nk [ Fs ]

Figure 3.14: VCP EDMA_patameters structure (from [19]).

Start VCP

CPU writes a “START” command into the execution word register VCPEXE of the VCP.
This causes the VCP to generate the first VCPXEVT expecting input control. This in
turn triggers the the EDMA.transfetswhichi is programnmed inte the Event PaRAM location
corresponding to VCPXEVT.

Service EDMA Interrupt from VCP Channel at the End of Decoding

The EDMA link associated with the last VCPREVT is configured to generate a CPU in-
terrupt. In the CPU interrupt service routine, the output decision buffer for the completed

frame can be processed and decoding of next frame can be initiated.
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3.4 EDMA under the Code Composer Studio (CCS)
23]

To utilize the VCP, we must understand how to use the EDMA. Under the CCS, we utilize
the CSL (Chip Support Library) functions provided by TI CCS to help use of EDMA. For

convenience, we name it CCS EDMA. The following text is mainly taken from [23].

The EDMA controller handles all data transfers between the level-two (L2) cache/memory
controller and the device peripherals on the C621x/C671x/C64x. These data transfers in-
clude cache servicing, non-cacheable memory accesses, user-programmed data transfers, and

host accesses.

The EDMA controller comprises:

event and interrupt processing registers,

event encoder,

parameter RAM, and

address generation hardware.

A block diagram of the EDMA controller is shown in Fig. 3.15.

EDMA events are captured in the event register. An event is a synchronization signal
that triggers an EDMA channel to start a transfer. If events occur simultaneously, they are
resolved by way of the event encoder. The transfer parameters corresponding to this event
are stored in the EDMA parameter RAM, and passed onto the address generation hardware,
which address the EMIF (External Memory Interface) and/or peripherals to perform the

necessary read and write transactions.

In the following subsections, the CCS EDMA is introduced in six parts: EDMA control
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gene:tgi‘sn'_' to EMIF/perpherals
/internal memory

EDMA parameter RAM T
Channel 0 params L] g
Channel 1 params FSM i §
]
|—' 8=
Channel N params Event E.§
encoder ? E
TE
Pt
Sui
Reload channel 0 o<
params
Reload channel 1
params

Reload channel N
params

Unused
(scratch area)

Figure 3.15: ;EDMA control (from [23]).

registers, parameter RAM (PaRAM), EDMAtransfér paramieter entry, initiating an EDMA

transfer, linking EDMA transfers, and-EDMA interrupt generation.

3.4.1 EDMA Control Registers {23]

Each of the 64 channels (C64x) or 16 channels (C621x/C671x) in the EDMA has a specific
synchronization event associated withit. These events trigger the data transfer associated
with that channel. The list of control registers that perform various processing of events is

shown in Table 3.3. We introduce the most important registers for our work below.

Event Registers (ER, ERL, ERH)

All events are captured in the event register (ER), even when the events are disabled. The
C621x/C671x has only one event register (ER). The C64x has two event registers, event low
register (ERL) and event high register (ERH) for the 64 channels.
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Table 3.3: EDMA Control Registers (Modified from [23])

Byte Address

Acronym Register Name

01A0 FF9Ch
01A0 FFA4h
01A0 FFA8h
01A0 FFACh
01A0 FFBOh
01A0 FFB4h
01A0 FFB8h
01A0 FFBCh
01A0 FFCOh
01A0 FFC4h
01A0 FFC8h
01A0 FFCCh
01A0 FFDCh
01A0 FFEOh
01A0 FFE4h

01A0 FFES8h

01A0 FFECh

01A0 FFFOh

01A0 FFF4h

01A0 FFF8h

01A0 FFFCh

EPRH
CTPRH
CIERH
CCERH
ERH
EERH
ECRH
ESRH
PQARO
PQARI
PQAR2
PQARS3
EPRL
PQSR
CIPR
CIPRL
CIER
CTERT
CCER
CCERL
ER
ERL
EER
EERL
ECR
ECRL
ESR
ESRL

Event polarity high register (C64x only)

Channel interrupt pending high register(C64x only)
Channel interrupt enable high register(C64x only)
Channel chain enable high register (C64x only)
Event high register (C64x only)

Event enable high register (C64x only)

Event clear high register (C64x only)

Event set high register (C64x only)

Priority queue allocation register 0 (C64x only)
Priority queue allocation register 1 (C64x only)
Priority queue allocationregister 2 (C64x only)
Priorityrquene allocation register 3 (C64x only)
Event-polarity: low register (C64x only)

Priority queue status register

Channel interrupt pending register (C621x/C671x)
Channel interrupt pending low register(C64x)
Channel.interrupt.enable register (C621x/C671x)
Channel interrupt.enablelow register (C64x)
Channiel chain enable register (C621x/C671x)
Chanuel chain enable low register (C64x)

Event register, (C621x/C671x)

Event low register (C64x)

Event enable register (C621x/C671x)

Event enable low register (C64x)

Event clear register (C621x/C671x)

Event clear low register (C64x)

Event set register (C621x/C671x)

Event set low register (C64x)

26



Event Enable Registers (EER, EERL, EERH)

In addition to the event register, the EDMA controller also provides the user the option of
enabling/disabling events. Any of the event bits in the event enable register can be set to
“1” to enable that event. The C621x/C671x has only one event enable register (EER). The
C64x has two event enable registers, event enable low register (EERL) and event enable high

register (EERH) for the 64 channels.

All events that are captured by the EDMA are latched in the ER even if that event is
disabled. This is analogous to an interrupt enable and interrupt-pending register for interrupt
processing. This ensures that no events are dropped by the EDMA. Thus, re-enabling an
event with a pending event signaled in #he ER forees the EDMA controller to process that
event according to its priority. Writing a “0” to the corresponding bit in the EER disables

an event.
Event Clear Registers (ECR; ECRL, ECRH)

Once an event has been posted in the ER; therevent: can be cleared in two ways. If the
event is enabled in the event enable register (EER), the gorresponding event bit in the ER is
cleared as soon as the EDMA submits a transfer request for that event. Alternatively, if the
event is disabled in the EER, the CPU can clear the event by way of the event clear register
(ECR). This feature allows the CPU to release a lock-up or error condition. Therefore, once
an event bit is set in the ER, it remains set until the EDMA submits a transfer request for

that event or the CPU clears the event by setting the relevant bit in the ECR.

Event Set Registers (ESR, ESRL, ESRH)

The CPU can also set events by way of the event set register (ESR). Writing a “1” to one of

the event bits causes the corresponding bit to be set in the event register. The event does
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not have to be enabled in this case. This provides a good debugging tool and also allows
the CPU to submit EDMA requests in the system. Note that such CPU-initiated EDMA
transfers are basically unsynchronized transfers. In other words, an EDMA transfer occurs

when the relevant ESR bit is set and is not triggered by the associated event.

3.4.2 Parameter RAM (PaRAM) [23]

Unlike the C620x/C670x DMA controller, which is a register-based architecture, the EDMA
controller is a RAM-based architecture. EDMA channels are configured in a parameter
table. The table is a 2-Kbyte block of internal parameter RAM (PaRAM) located within
the EDMA. The table consists of six-word parameter sets (entries), for a total of 85 entries.

The contents of the 2-Kbyte PaRAM; shown in Fig: 3:16, comprises:

e For C621x/C671x thergare 16/transfer.parameter entries.for the 16 EDMA events. For
C64x, there are 64 transfer parameter entries for the 64 EDMA events. Each entry is

six words or 24 bytes.

e Remaining transfer parameter 'sets, are used for linking:transfers. Each set or entry is

24 bytes.

e 8 bytes of unused RAM can be used as scratch pad area. Note that a part or entire
EDMA RAM can be used as a scratch pad RAM provided the event(s) this area
corresponds to is/are disabled. It is the user’s responsibility to provide the transfer

parameters when the event is eventually enabled.

Once an event is captured, its parameters are read from one of the top 64 entries (C64x)
or 16 entries (C621x/C671x) in the PaRAM. These parameters are then sent to the address

generation hardware.
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185

A Address

Parameters

01A0 0000h to D1AD DD17h

Parameters for event 0 (€ words)

01A0 0018h to D1AD DO2ZFh

Parameters for event 1 (8 words)

01A0 0030h to D1AD 0D47h

Parameters for event 2 (6 words)

01A0 0048h to 01AD DOSFh

Parameters for event 3 (8 words)

01A0 0D0O60h to 01AD 0O077h

Parameters for event 4 (6 words)

01A0 0078h to 01AD DOSFh

Parameters for event 5 (€ words)

01AD 0090h to D1AD DDATH

Parameters for event 6 (6 words)

D01A0 00ABH to 01A0 00BFh

Parameters for event 7 (6 words)

D01AD0 00OCOh to D1AD 0ODTh

Parameters for event 8 (6 words)

01A0 00D8h to 01AD O0EFHh

Parameters for event 9 (6 words)

|64 01A0 00FOh to 01AD 0107h

Parameters for event 10 (6 words)

01A0 0108h to 01AD D11Fh

Parameters for event 11 (6 words)

D1A0 0120h to 01AD 0137h

Parameters for event 12 (6 words)

D1A0 0138h to 01AD D14Fh

Parameters for event 13 (6 words)

01A0 0150h to 01AD 0167h

Parameters for event 14 (6 words)

01A0 0168h to 01AD D17Fh

Parameters for event 15 (6 words)

01A0 0180h to 014D 0197h

Parameters for event 167 (6 words)

01A0 0198h to 01AD D1AFh

Parameters for event 177 (6 words)

— 28829

0140 0SD0ON to 01A0 OSE7Nh

Parameters for event 627 (6 words)

D01AD0 D5EBh to 01.A0 O5FFh

Parameters for event 637 (6 words)

0140 ODE00N to 014D O617hH
01A0 D618h to D1AD DB2ZFh

Reload/link parameters for event N (E words)

Reload/link parameters for event M (6 words)

0140 O7EON to D1AQ O7F7h
01A0 O7F8h to 01ADO7FFh

Reload parameters for event Z (6 words)

Scratch pad area (2 words)

T The Co4x devices support up o 84 synchronization events. For the CE21x/CE7 1x device, these PARAM locations (01AD
0180h — 01A0 O05FFh) can be used for reload/link parameters.
T s

Figure 3.16: EDMA parameter RAM contents (modified from [23]).
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As defined for..
Offset Address

(bytes) Parameter 1-D transfer 2D transfer
o] Options Transfer configuration options
4 Source address The address from which data is transferred.
i) Element count The number of elements  The number of elements
per frame. per array.
10 Frame count (1D}, The number of frames The number of arrays
Array count (2D) per block minus one per frame minus one.
12 Destination address ~ The address to which data is transferred
16 Element index The address offset of —
elements within a frame.
18 Frame index (1D), The address offset of The address offset of
Array index (20) frames within a block arrays within a frame
20 Link address The PaRAM address containing the parameter set
to be linked.
22 Element count reload  The count value to be _—

loaded at the end of
each frame.

Figure 3.17: EDMA channel parameters (from [23]).

3.4.3 EDMA Transfer Parameter. Entry [23]

Each parameter entry of an EDMA event is organizedsin six 32-bit words or 24 bytes as shown
in Fig. 3.14. Access to the EDMA parameter RAM is provided only via the peripheral bus.

These parameters are shownsin' Fig. 3.17. For mere‘information, see [23].

3.4.4 Initiating an EDM A Transfer-{23]

There are two ways to initiate data transfer using the/EDMA. One is CPU-initiated EDMA
and the other is an event-triggered EDMA. Thée latter is a more typical usage of the EDMA.
This allows the submission of transfer requests to occur automatically based on system
events, without any intervention by the CPU. CPU-initiated transfer is included in the design
for added control and robustness. Each EDMA channel can be started independently. The

CPU can also disable an EDMA channel by disabling the event associated with that channel.

e CPU-initiated EDMA or unsynchronized EDMA: The CPU can write to the event set
register, ESR, in order to start an EDMA transfer. Writing a “1” to the corresponding

event in the ESR triggers an EDMA event. Just as with a normal event, the transfer
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parameters in the EDMA parameter RAM corresponding to this event are passed to
the address generation hardware, which performs the requested access of the EMIF,
L2 memory or peripherals, as appropriate. CPU-initiated EDMA transfers are unsyn-
chronized data transfers. The events enable bit does not have to be set in the EER for
CPU-initiated EDMA transfers. This is because a CPU write to the ESR is treated as

a real-time event.

Event-triggered EDMA: An event that is latched in the event register, ER, via the
event encoder causes its transfer parameters to be passed on to the address generation
hardware, which performs the requested accesses. Although the event causes this
transfer, it is very important that the event itself be enabled by the CPU. Writing
a“1” to the corresponding bitinEER enables an évent. Alternatively, an event is still
latched in the ER even if its corresponding enable bit in EER is “0” (disabled). The
EDMA transfer related*to this event occurs as soonas it is enabled in EER. In addition
to event enable via EER, the completion of-a transfer cansalso trigger another EDMA

transfer through chaining and the €CER.

For more information about syn¢hronization of EDMA transfers, see [23].

3.4.5 Linking EDMA Transfers [23]

The EDMA controller provides linking, a feature especially useful for complex sorting, cir-

cular buffering type of applications. If LINK = 1, upon completion of a transfer, the EDMA

link feature reloads the current transfer parameters with the parameter pointed to by the

16-bit link address. The entire EDMA parameter RAM is located in the 01AQ xxxxh area.

Therefore the 16-bit link address, which corresponds to the lower 16-bit physical address, is

sufficient to specify the location of the next transfer entry. The link address must be aligned

on a 24-byte boundary. An example of a linked EDMA transfer is shown in Fig. 3.18. Note
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Reload Event N parameters

Event N parameters with parameters located at 0140 0180
Options (LINK=1) — Options (LINK=1)
Source (SRC) address Source (SRC) address
Array/Frame count Element count Array/Frame count Element count
Destination (DST) address Destination (DST) address
Array/Frame index Element index Array/Frame index Element index
Elementary count reload | Link address = 0180h u| Element count reload | Link address = 01B0h
Reload Event N parameters —‘
with null parameters located at 01A0 o1sot
0000 0000h

0000 0000h

0000 0000h

0000 0000h

0000 0000h

0000 0000h

Figure 3.18: Example of linked EDMA transfers (from [23]).

that the last transfer parameter entry should have its LINK = 0 so that the linked transfer
stops after the last transfer. That is the lastlentry should be linked to a NULL parameter

set.

3.4.6 EDMA Interrupt Generation [23], [24]

The EDMA control is resposible for generating transfer-completion interrupts to the CPU.
The EDMA generates a single intertupt (EDMA_INT) to'the CPU on behalf of all 16 channel
(C621x/C671x) or 64 channel (C64x). The various control and bit fields facilitate EDMA

interrupt generation.

When TCINT bit options entry is set to “1” for an EDMA channel and a specific transfer
complete code is provided, the EDMA controller sets a bit in the channel interrupt pending
register (CIPR). Lastly, the important action is to generate the EDMA_INT to the CPU. To
do this, the corresponding interrupt enable bit should be set in the channel interrupt enable
register (CIER). To configure the EDMA for any channel (or QDMA request) to interrupt
the CPU:
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e Set CIEn to “1” in the CIER.
e Set TCINT to “1” in channel options.

e Set Transfer Complete Code to n in channel options.

Note that if the CIER bit is disabled, the channel completion event is still registered in
the CIPR if its TCINT = 1. Once the CIER bit is enabled, the corresponding channel
interrupt is sent to the CPU. If the CPU interrupt (defaults to CPU_INTS) is enabled, its
ISR (Interrupt Service Routines) is executed. More than one QDMA/EDMA channel can
use the same TCC value, and the TCC value is not required to be equal to the channel

number [24].

In the C621x/C671x, the tramsfer complete code is'specified in the TCC field, with
values between 0000b to 1111b. In the C64x, which has a'total of 64 channels, the transfer
complete code is expanded o a 6-bit value that aeccomodates:the 64 channels. The 6-bit
transfer complete code of the C64x"is comprised of the, new TCCM bits (most significant

bits of the transfer completercode), in.addition-te-the-TCC field in the options parameter.
EDMA Interrupt Servicing by the CPU

Since the EDMA controller is aware of when the EDMA channel transfer is complete, it sets
the appropriate bit in the CIPR as per the transfer complete code specified by the user. The
CPU ISR should read the CIPR and determine what, if any events/channels have completed
and perform the operations necessary. The ISR should clear the bit in CIPR upon servicing
the interrupt, therefore enabling recognition of further interrupts. Writing a “1” to the
relevant bit can clear CIPR bits, writing a “0” has no effect. By the time one interrupt
is serviced, many others could have occurred and relevant bits set in CIPR. Each of these

bits in CIPR would probably need different types of service. The ISR should check for all
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pending interrupts and continue until all the posted interupts are serviced.

3.5 EDMA under the 3L Diamond Real-Time Operat-
ing System

In this section, we describe the operation of EDMA under the 3L Diamond because our
VCP implementation is part of an implementation that uses one or more DSPs running on
3L Diamond. For convenience, we call it 3L. EDMA to distinguish it from CCS EDMA.
Notice that 3L EDMA is functionally equivalent to CCS EDMA. They are different only in

called libraries and header files.

3.5.1 Introduction to 3L -Diamond

Diamond is 3L company’s system for-multiprocessor software design and implementation.
Diamond uses the communigating. sequential processes (CSP)model to give a simple but
powerful way of developing.applications that‘make use of one or more processors [25]. The
3L Ltd has been working closely withsSundaneesaiming to provide simple-to-use, reliable

and flexible development envirénment for the Sundance hardware.

The way to build and run applications using Diamond differs substantially from the more
traditional techniques used in other environments, particularly the CCS. The CCS has been
designed to produce applications for single processor systems; multiprocessor systems are
seen as several separate applications that happen to be executed at the same time. Diamond

takes the opposite view and considers multiprocessor systems as an integrated whole [26].

3.5.2 SC6xEDMA [26]

The Diamond kernel manages the available EDMA channels and dynamically allocates them

to concurrently active inter-processor <chan.h> and <link.h> calls. User code that wants
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to make direct use of the channels must claim that from the kernel, complete the DMA
operation, and return the channels to the kernel. Holding on to EDMA channels can seriously

affect the performance of other transfers, in particular, link operations.

There is an example about using EDMA to copy “Frames” (blocks of 8 32-bit words) from
a device FIFO to memory at “Buffer” in [26]. The example is not complete, too simple, and
cannot be directly used, but it can help one to understand 3L, EDMA better. The interested

reader is referred to [26].

There are several things to notice about 3L EDMA (modified from [26]):

e <edma.h> declares the kernel functions used in the rest of the code and creates a
reference, _kernel, to kernel daga structures.. It also contains a typedef for a structure
type, EDMA_REG, which"¢an be used to access the EDMA transfer parameters, plus
macros for accessing the various fields within the. EDMA registers. EDMA_CTRL is
also defined to be a peinter to the hardwares block of EDMA control registers. They
may be used as follows:

#include <edma.h>, and

struct EDmaControl *C ==EDMA_CTRL; // EDMA*control registers.
e Edmal = SC6xKernel_LocateInter face(kernel, SIID_SC6xEDMA );

— It would not call SC6xKernel_Locatelnter face for every transfer.

— It would initiate the interface pointers once on program startup.
e dma = SC6xEDM A _Claim(Edmal, 4, &channel);

— It returns a pointer to the corresponding EDMA transfer parameters, or NULL
if the requested EDMA engine cannot be allocated (because it is already claimed

by another thread or by the kernel for an inter-processor link communication).
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— If SC6xEDM A_Claim succeeds, it returns an SC6xE DM AChannel pointer via
its final argument. This pointer refers to a software structure in the kernel that

describes the allocated EDMA channel.
o SC6xEDM AChannel _StartW ait(channel); // do the transfer

— SC6xEDM AChannel_StartW ait is one of the functions that can be applied to
such an EDMA channel pointer. It sets up the various EDMA control registers
needed to control the transfer and then suspends the calling thread until the

EDMA channel interrupts at the end of the block.

— While the thread is suspended and the EDMA operation is executing, other
threads can continue to execute on the CRU. The kernel will catch the EDMA
completion interrupt; resume the suspended thread and return control to the

caller.
o SC6xE DM AChannel-Release(channel);

— SC6xEDM AChannel _Release informs the kernel that a previously claimed EDMA
channel is no longer Tequired and can be returned to the kernels pool of free chan-

nels.

There is no obligation to use SC6xE DM AChannel _StartW ait, which is provided to make
handling EDMA interrupts easier, but one is free to wait for EDMA completion either by
polling (not recommended) or waiting for the interrupt with SC6x E DM AChannel _AwaitIn
terrupt. The only mandatory step is to claim the EDMA channel before attempting to touch

the corresponding hardware [26].
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3.5.3 EDMA Channel Availability [26]

Different C6x processors provide different numbers of EDMA channels: the C64 has 64
while other processors have 16. As it is highly unlikely that many applications will require
large numbers of EDMA channels, Diamond usually arranges for the first 16 to be made
available. This minimizes the amount of memory needed to support EDMA and has proved
to be adequate for the kernel and the most users. However, if one does need more than 16
channels, one can request 32, 48, or the full 64. This is done by defining a new processor
type and using the “MAP=" qualifier to identify the appropriate EDMA handler module.
For example, to create a variant of an existing processor type “MyProc” with 64 EDMA

channels one could define a new processor, typesas follows:
Proctype MyProc64 MyProe MAP = DMA:EDMAG4
The definition should be defined-in-the configuration file (xxx.¢fg).

3.5.4 SC6xEDMAChannel Fuanctions*{26]

These functions all operate ongone. of the SC6xEDMAChannel pointers returned by the
“claim” functions described above. Functions dealing with external devices do not set the
various device enables that are necessary to allow EDMA synchronization or CPU inter-
rupts. One needs to refer to the C6000 modules hardware documentation for a description
of enabling events and interrupts for particular devices. EDMA termination interrupts are

automatically managed. The SC6xEDMAChannel functions include the following:

o SC6xEDMAChannel_Release.

o SC6xEDMAChannel_Reset Event.
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e SC6xEDMAChannel _AwaitInterrupt: Each SC6xDMAChannel has an EVENT syn-
chronisation object associated with it. The kernel catches interrupts from the under-
lying hardware EDMA channel (EDM A_INT') and arranges for the appropriate event
to be signalled. This function suspends the calling thread until that event is signalled.
One should clear the event SC6xE DM AChannel_Reset Event before setting up the

transfer and waiting for the interrupt.

e SC6xEDM AChannel_Start: This function starts an EDMA transfer by setting the

appropriate bit in ESR.

o SC6xEDMAChannel_StartW ait: This function assumes that the actual transfer will
be initiated by the synchronisation”event &ssociated with the EDMA channel being
used. One should call SC6xEDNM AChannel _KickW.ait when one wants the transfer

to start immediately. It encapsulates the following sequence:

SC6xEDMAChannel_Reset Event(channel);

— Set the bits in CIER and EER corresponding to the given channel;

SC6xE DM AChannelzAwaitInterrupt(channel);

— Clear the bits in CIER and EER-corresponding to the given channel.

e SC6xEDMAChannel_KickW ait: This function is provided for the common case
where the EDMA channel does not need to wait for a synchronisation signal before

initiating a transfer. It encapsulates the sequence:

— SC6xEDM AChannel _Reset Event(channel);

Set the bits in CIER and EER corresponding to the given channel;

Set the bit in ESR corresponding to the given channel to start the transfer;
— SC6xEDM AChannel _AwaitInterrupt(channel);
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— Clear the bits in CIER and EER corresponding to the given channel.

Note that SC6xE DM AChannel _KickW ait is different from SC6x E DM AChannel _StartW ait

by setting of ESR. For more information, see [26].
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Chapter 4

DSP Implementation of Convolutional
Encoder and Decoder

In this chapter, we consider DSP implémentation of the convolutional encoder and decoder,
especially that employing the VEP. The simulation result§ provide information concerning
proper choices of certain design parametersy such as-F. (frame) and the amount of circular
shift in the tail-biting CC decoder. We discuss hew-to use the-VCP, and we compare them

with the fixed-point C program computation results with and without using the VCP.

For the purpose of overall transmission system . integration, we also consider running
the VCP under the 3L RTOS. We present the BER performance obtained using TI's Code
Composer Studio (CCS) tool set and the data rate results under CCS and under 3L. Fig. 4.1
shows the overall encoder and decoder structure with CC decoding executed on VCP. Our
implementation is based on modification of the code of Wu [3] for IEEE 802.16e OFDMA

convolutional coding and decoding.

4.1 VCP Parameter Setting

In this section, we introduce how to set the VCP’s important parameter for WiMAX CC

with tail-biting. Since the VCP control and data transmission must be done through EDMA,
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Figure 4.1: CC encoding and decoding with VCP.

we have introduced the EDMA in chapter 3.

4.1.1 Generator Polynomials

The VCP has been designed for 152000 and" 3GPP. wireless applications. We has find that
the generator polynomials (k71par, 1330cr) for.the'CC in IEEE 802.16e to be the same as

in the 3GPP standard, IEEE 802.11, and DV B standard.

In VCP, the generator polynomial (Gn) can be-set by specifying the constraint length
(K) and code rate (R). For IEEE 802.16e, we can seti. = 7 and R = 1/2 for its CC. Note
that same codes may define the two generator polynomials in reverse order relative to that
of the 3GPP. The user has to pay attention to this situation. But in IEEE 802.16e, the order

is the same.

4.1.2 EDMA Setting

Fig. 4.2 shows the EDMA transfer parameters for VCP.

The third row in the table gives the address in the PAaRAM. Link 0 of both VCPXEVT and
VCPREVT have to be set to fixed locations in the PaRAM denoted as ADDR_-VCPXEVT
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VCPXEVT Links VCPREVT Links

Link 0 Link 1 Link 0 Link 1 (optional)
paRAM address = paRAM address = paRAM address = paRAM address =
[ADDR_VCPXEVT | [RELOAD1 | [ADDR_VCPREVT | RELOAD? |
OPT: SUM=DUM=INC fopT- SUM=INC, OPT: SUM=FIXED, rOPT SUM=DUM=INC
DUM=FIXED DUM=INC (TB=mixed), TCINT=1,
DUM=DEC(TB=tailed) TCC = VCPREVT
‘ SRC= &inpul_config[D]| ‘ SRC= &bm[0] | SRC=VCPDECS SRC=VCPOUTO

FRMCNT=0 ELECNT=6 | FRMCNT ELECNT FRMCNT ELECNT FRMCNT=0 ELECNT=2
DST=VCPICO DST=VCPWBM DST= &sdhd[] DST= &output_p[0]
FRMIDX=  ELEIDX= FRMIDX=  ELEIDX = FRMIDX=  ELEIDX= | FRMIDX=  ELEIDX =
N/A N/A N/A N/A N/A N/A N/A N/A
ELERLD= [ LINK ELERLD LINK ELERLD=  [LINK ELERLD LINK=
N/A =RELOAD1| =N/A = NUL N/A =RELOAD2| =N/A NULL

(OUTF=1)

=NULL
(OUTF=0)

Figure 4.2: VCP parameter setting (modified from [21]).

and ADDR_VCPREVT, respectively.« Other links can point to anywhere in the PaRAM.
These additional locations in rtﬁe PaRAM ‘aré denoted RELOADl, RELOAD2. The LINK
entry in each parameter set éives the PaRAM éddreés of themext linked transfer. Setting
LINK = NULL indicates that: t‘he next transfer, tﬁa; is, the EDIQIA transferred is terminated

21].

4.1.3 Tail-Biting

Because the CC in IEEE 802.16e is a taﬂ—biting one whereas the VCP does tailed traceback,
we need to modify the basic Viterbi decoding flow of the the VCP to accommodate this situ-
ation. As a result of the VCP frame (F) limitations with K and the tail-biting relationship,
we choose the frame maximum value 378 (= 288 + 90) as F', as shown in Fig. 3.13. Base
on [2], [3], we shift some bits at the end of the decoded sequence to replace the bits at the
beginning of the sequence which are more prone to error due to tail-biting. The suitable
member of such circularly shifted bits (CSB) has been determined by experiments as 51 to

58. A sketch of how the above works is shown in Fig. 4.3.
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analyze the convolutional cod; bl b 5'5 rence to compare simulation results

with. Coding gains are usually : 1: zﬁl for AWGN_ channel. In AWGN channel, let the

transmitted symbol energy F, =

variance o2 is given by

) (4.1)

where

e F,/Nj is sometimes called SNR,
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e N, gives number of bits per symbol, which for QPSK, 16QAM, and 64QAM is 2, 4,

and 6, respectively,

o .= ]Iff—b is energy per code bit,

o )= % is energy per information bit, and

R, is the code rate.

Crucial reference point is BER = 1075, at which the IEEE 802.16e specifies the performance

requirement.

We investigate coding gains through several different views. First, we find the Shannon
bounds on coding gain at the differentucode rates, specified in IEEE 802.16e. This helps
us understand the limit in performance channel coding ¢an provide. Then we estimate the

coding gains of the convolutignal codes based on minimum codeword distances.

The Shannon-Hartley law for the capacity of an AWGN channel is given by
E,CR,

0

CR,. = logs(1 +

) (4.2)

where C'is bit rate per Hz on and R, 18 the code rate. As-a'result, the lower bound on E, /Ny

is given by
Eb QCRC 2
— 4.3
Ny = CR, (4:3)
The upper-bound coding gain is the difference between the Shannon bound and the
Ey/Ny at BER = 107° for uncoded transmission with coherent demodulation. We list the

coding gain upper bounds of the seven coding-modulation schemes in IEEE 802.16e in Table

4.1.

With BPSK or QPSK modulation, a rough estimate of the convolutional coding gain in
AWGN is
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Table 4.1: Coding Gain Upper Bounds in AWGN at BER = 107

Channel Bit B/ No for Coding
Uncoded .
Rate Under | Shannon . Gain
Code Minimum Bound Transmission Upper
Modulation ; i
Rate Bandwidth (dB) with Cohergnt Bound
Design (C) Demodulation (dB)
(dB)
QPSK 1/2 2 0 10.5 10.5
QPSK 3/4 2 0.86 10.5 9.64
16QAM 1/2 4 1.76 14.5 12.74
16QAM 3/4 4 3.68 14.5 10.82
64QAM 1/2 6 3.68 19.0 15.32
64QAM 2/3 6 5.74 19.0 13.26
64QAM 3/4 0 6.82 19.0 12.18

where R. is the code rate and dj,q is the=free distance.’ This coding gain also assumes
soft-decision decoding. Forjhard-decision decoding,-the coding-gain should be smaller by 2
to 3 dB. We conjecture that, for 16-QAM.and 64-QAM with Gray-coded bit mapping, the
coding gain will depend on how.the coded bits:-are mapped to the different symbols. With
sufficiently random interleavingg the estimate based on(4.4) may still apply. In Table 4.2,
we list the coding gain estimates based on (4.4) for the seven convolutional coding schemes

in IEEE 802.16e.

4.3 Comparison of Performance in AWGN of VCP and
Wu’s Viterbi Decoder

In this section, we present the simulated performance of convolutional decoding performance
in AWGN based on the system structure shown in Fig. 4.1 that uses VCP. We also compare

Wu’s fixed-point Viterbi decoder without using the VCP [3].
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Table 4.2: Approximate Coding Gains Based on Analysis of Minimum Codeword Distance

Soft-Decision
Modulation CC Code Rate A free CC Coding
Gain (dB)

QPSK 1/2 10 6.99
QPSK 3/4 5 5.74
16QAM 1/2 10 6.99
16QAM 3/4 5 574
64QAM 1/2 10 6.99
64QAM 2/3 6 6.02
64QAM 3/4 5 5.74

In order to implement the VCP, we'need to have the input data in the fixed-point format.
Since the BM are calculated by.the DSP and.stored.in the DSP memory subsystem as 7-bit
signed values, we must do necessary rounding or truncation of the decoder input to make

them 7-bit signed values.

Our simulations considered different placements-of the binary point in the 7 bit BM
values. We also simulate Wu'stdesignswithout using the VCP. swhich quantizes decoder input
to 16 bits. In the case of Wu’s dec¢oder, two placements of the binary points are considered,
namely, S9.6 and S11.4, where Sa.b means there are a integer bits and b fractional bits, plus

a sign bit.

An interesting thing is that our BM array must be declared “unsigned char” but not
“char” for the VCP to operate correctly. From Figs. 4.4,— 4.6, we see that VCP with S3.4
or 52.5 as the BM input format can achieve a performance close to Wu’s decoder with S9.6
input in all cases except 64QAM with rate-3/4 coding. For 64QAM with rate-3/4 coding,
S3.4 under VCP becomes worse. We need to use S2.5 or S1.6 to express BM input to achieve

a performance closely to Wu with S9.6 or S7.8 input in this case. Therefore, we use the S2.5
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Table 4.3: Comparison of Soft-Decision Decoding Performance, in AWGN at BER = 107°

Theoretic C.C Cod.mg Gain frgm CC Coding Gain from
CC .. Simulation Employing ) ) )
Soft-Decision s . Simulation Employing
Modulation | €ode | ¢ Goding (\jzv ns ilxte.d'Poélg VCP (dB) (S2.5,
Rate | Gain (aB) Omplzsz'l(),o)“ (dB) CSB=51)
QPSK 1/2 6.99 5.62 5.12
QPSK 3/4 5.74 4.72 4.11
16QAM 1/2 6.99 6.62 6.73
16QAM 3/4 5.74 4.23 3.11 (S1.6)
64QAM 1/2 6.99 6.62 6.91
64QAM 2/3 6.02 5.91 5.02
64QAM 3/4 5.74 4,55 3.45 (CSB=58)

as the BM data format in the.DSP implementation.

Table 4.3 compares thesfixed-point coding gain obtained by Wu [3], the coding gain
obtained by employing VCP,.and the theoreti¢ coding gain obtained previously. We see that
the convolutional coding gain employing the VCP: is lower,than Wu’s decoder by about 0.5

to 1.1 dB. It is less than theoretic value about 0.1 to-2:6 dB.

The CSB Effect

In Figs. 4.7,— 4.9, we can see the performance is almost close, when choosing the CSB as 45
to 68 in rate-1/2 QPSK and 16QAM. Besides, we can find that the performance of CSB =
45 51, 55, or 58 is better than CSB = 59, 62, 65, or 68 in rate-3/4 QPSK and 16QAM. But
in 64QAM, we can see that performance of CSB = 45 is very worse, especially in rate-3/4.
Furthermore, see that the performance of CSB = 58 is better than CSB = 51 or 58 by
approximately 1 dB or more in rate-3/4 64QAM. In fact, the CSB can vary from 51 to 58

without affecting the BER performance much in all conditions. In the DSP implementation,
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Figure 4.4: VCP decoding performance in AWGN with different BM truncation precisions
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Figure 4.7: Effect of CSB values in VCP-based decoding in AWGN at different coding-

modulation settings (1/3).
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Figure 4.8: Effect of CSB values in VCP-based decoding in AWGN at different coding-
modulation settings (2/3).
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Figure 4.9: Effect of CSB values in VCP-based decoding in AWGN at different coding-
modulation settings (3/3).
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Figure 4.10: How VCP operates under 3. Diamond and TT CCS.

we chose the CSB = 58.

4.4 VCP Operation Under; 3L Diémond

In this section, we consider use: of VCP in a multiple DSPs environment which uses the 3L

Diamond RTOS.

In chapter 3, we have described how*EDMA-function calls.differ under 3L Diamond than
TI CCS. The 3L RTOS helps tHe user in performing interrupts and, as a result, we do not

have to use its vector table and the ISR (Interrupt Service Routines) in xxx.asm or xxx.c

files. Fig. 4.10 illustrates how VCP operates under 3L and CCS.

For the 3L, we must prepare two EDMA channel parameter settings for VCPXEVT and
VCPREVT. Then we set up EER (Event Enable Register) and CIER (Channel Interrupt
Enable Register) and call the AwaitInterrupt() function. When VCP_start() is executed,
it enables the ic_config and bm transfer parameters of VCPXEVT and the dec transfer para-
meter of VCPREVT. Then it wait for a interrupt of the finished work by AwaitInterrupt().

Finally, it finishes the operation of the VCP. In Fig. 4.10, we can also see that the in EDMA

84



Table 4.4: Speed of Overall Decoder from 3L-Measured Execution Time

QPSK | QPSK [16QAM |16QAM|64QAM [64QAM |64QAM
Speed rate 1/2|rate 3/4|rate 1/2|rate 3/4|rate 1/2|rate 2/3|rate 3/4
36 bytes|36 bytes|36 bytes|36 bytes|36 bytes|24 bytes|27 bytes

'Wu Executive Time (ms) 0.4631 | 0.4349 | 0.4606 | 0.4321 | 0.4613 | 0.3222 | 0.3454
‘Wu Information Data Rate (Kbps) | 622 662 625 667 624 296 625
VCP Executive Time (ms) 0.1102 | 0.0839 | 0.1075 | 0.0816 | 0.1062 | 0.068 | 0.0678

VCP Channel Data Rate (Kbps) 5226 | 4577 5358 | 4705 | 5424 4236 4248

VCP Information Data Rate (Kbps) 2616 | 3433 2679 | 3529 | 2712 2824 3186

VCP Speed up (times over Wu) 4.2 5.2 4.3 5.3 4.3 4.7 5.1

start operation is different under 3L_and CCS.

We now present the execution speed of-the.-CG encoder and decoder under different
conditions, including Wu’s decoder without using"VCP and. VCP-based decodin. When
operating under 3L, the speed data are obtained using the 3L’S timer, and when operating

under CCS, they are obtained using the profiling functionality:of the CCS.

Table 4.4 shows the execution speed: of the“overall decoder consisting of demodulator,
deinterleaver, tail-biting CC decoder, ‘and derandomizer.. We see that there is almost 4 to 5
times improvement in execution time by using the VCP. Moreover, if we do not consider the
peripheral functions including demodulator, deinterleaver, and derandomizer then the VCP

is 8 to 10 times higher in speed than the Viterbi decoder of Wu without using VCP.

We also utilize CCS’s profiling functionality to estimate the executive cycles of different
functions blocks. The results are shown in Table 4.5. Similarly, we utilize the 3L’s timer to

measure the executive times for different function blocks, with the result show in Table 4.6.

Table 4.7 shows the information data processing rate of different CC coding and mod-

ulation modes calculated from the CCS profile. The encoder, we can approach data rates

85



Table 4.5: CCS Profile of CC Coding and Decoding with VCP (Cycles)

QPSK QPSK 16QAM | 16QAM | 64QAM | 64QAM | 64QAM

Fucntion | rate 1/2 | rate 3/4 | rate 1/2 | rate 3/4 | rate 1/2 | rate 2/3 | rate 3/4

36 bytes | 36 bytes | 36 bytes | 36 bytes | 36 bytes | 24 bytes | 27 bytes

Randomizer 4358 4358 4358 4358 4358 2918 3278
Encoder 1617 4070 1617 4070 1617 2914 3062
Interleaver 787 531 3493 2340 37574 18500 18500
Modulator 7451 4979 925 637 837 453 453
TX total 14213 13938 10393 11405 44386 24767 25293
De-modulator 676 460 745 4358 4358 422 422
De-interleaver 2327 1559 3484 2332 5228 2636 2636
VCP 24860 24987 24860 24987 24860 24908 24891
De-randomizer 4358 4358 4358 4358 4358 2918 3278
RX total 32221 31364 33447 36035 38804 30884 31227

between 7.8 and 20.7 Mbps whereas the decoder between:6.2 and 9.2 Mbps, with VCP. This

may be computed with thesdecoding processing rates between: 732 and 835 Kbps without
using the VCP in [3].

Table 4.8 shows the corresponding estimates of processing rates calculated from the 3L-
measured execution times. We can approach data rates between 3.4 and 4.1 Mbps for the
encoder and between 2.6 and 3.5 Mbps for the decoder with the VCP. In comparison, Wu'’s

decoding data rates without using VCP are between 596 and 667 Kbps in Table 4.4.

One peculiar point exists between Tables 4.8 and 4.7, that is, the encoder processing
rates measured by CCS and 3L are highly incompatible. It is very strange that the encoder
processing rate under 3L is just about 3 Mbps, which is on the same order of magnitude
with the decoder processing rate. One explanation for this is that the 3L may have much

overhead in some aspects, such as 10 processing and others. Future work will hopefully

clarify this situation better.
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Table 4.6: 3L-Measured Execution Time of CC Coding and Decoding with VCP (ms)

QPSK | QPSK | 16QAM | 16QAM | 64QAM | 64QAM | 64QAM
Fucntion | rate 1/2 | rate 3/4 | rate 1/2 | rate 3/4 | rate 1/2 | rate 2/3 | rate 3/4

36 bytes | 36 bytes | 36 bytes | 36 bytes | 36 bytes | 24 bytes | 27 bytes

Randomizer 0.0042 0.0055 0.0038 0.0048 0.0043 0.0028 0.0029
Encoder 0.0186 0.0260 0.0165 0.0280 0.0150 0.0120 0.0210
Interleaver 0.0600 0.0400 0.0590 0.0400 0.0590 0.0029 0.0290
Modulator 0.0086 0.0050 0.0026 0.0014 0.0027 0.0020 0.0025
TX total 0.0914 0.0765 0.0819 0.0742 0.0810 0.0458 0.0554
De-modulator 0.0045 0.0034 0.0032 0.0019 0.0022 0.0011 0.0012
De-interleaver 0.0690 0.0460 0.0680 0.0477 0.0714 0.0340 0.0341
VCP 0.0314 00300 0.0315 0.0274 0.0325 0.0300 0.0290
De-randomizer 0.0044 0.0055 0.0045 0.0057 0.0054 0.0030 0.0028
RX total 0.1093 0.0849 0.1072 0.0827 0.1115 0.0681 0.0671

Table 4.7: Information Data Processing Rate Calculated from CCS Profile of CC with VCP

Processing

o QPSK  QPSK  16QAM 16QAM 64QAM G64QAM  G4QAM

(KEpZ) rate 1/2 rate 3/4 rate 1/2 rate 3/4 rate 1/2 rate 2/3 rate 3/4
Encoder 20,263 20,663 27,711 25,252 6,488 7,752 8,540
Decoder 8,938 9,183 8,611 7,992 7,422 6,217 6,917
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Table 4.8: Information Data Processing Rate Calculated from 3L-Measure Execution Time

of CC with VCP

Pr(}ggizmg QPSK  QPSK  16QAM 16QAM 64QAM 64QAM  64QAM
rate 1/2 rate 3/4 rate 1/2 rate 3/4 rate 1/2 rate 2/3 rate 3/4

(Kbps)
Encoder 3,412 3,840 3,047 4,000 3,429 4,042 4,075
Decoder 2,616 3,433 2,679 3,529 2,712 2,824 3,186

However, under CCS and 3L, as the measurements indicate the decoder processing rates
are improved significantly by about 9.8 and 4.7 times, respectively, with use of VCP. Nev-
ertheless there is still a very big gap between the;processing rates in encoding and decoding

under the CCS.

The programs will require. multiple DSPs.to run in parallel.to handle the data rate under
a 10 MHz transmission bandwidth: Acknowledgedly, further 6ptimization of the programs
may be possible. For our VCP, implementation, we utilize to idle the DSP when the VCP
is operated. For example, if we can parallelize theexecution of the peripheral functions and

the VCP, we may get approach*an information data rateofiabout 6 Mbps in decoding under

3L.
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Chapter 5

Simulation and DSP Implementation
of CTC Encoder and Decoder

In this chapter, we present some simulation results for the CTC in IEEE 802.16e. We only
implement rate-1/3 CTC encodér and decoder, which do siot contain subpacket generation.

This chapter considers floating-point and fixed-point simulations and DSP implementation.

5.1 Performance in AWGN - Channel with Floating-Point
Processing

The iteration number is a most important factor in the turbo decoding algorithm. This
number affects the decoding accuracy and system complexity. A larger iteration number
usually leads to better performance, but the complexity and latency are increased. The

most frequently used numbers are 4 to 8 iterations.

Fig. 5.1 compares the performance for iteration numbers between 1 and 10 for max-log-
MAP decoding at 480 information bits under three different modulations. We can see that
if the iteration number is more than 2, the BER curves are very close. To limit the decoding
complexity and maintain a reasonable performance, therefore, we choose 4 to be the iteration

number in other simulations and DSP implementation.
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Figure 5.1: Performance of CTC at different iteration counts under different modulations.
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Figure 5.2: CTC decoding performance with different modulations employing floating-point
computation at 4 iterations.

Fig. 5.2 compares the performance of the same three modulations at 4 decoding iterations,
where the data are the same-as those shown in Fig: 5/1. The coding gains of QPSK, 16QAM,
and 64QAM at BER = 107% are 8.01, 10.15, and 12.55 dB, respectively.

In Table 5.1, we compare the coding, gains-of CTC and convolutional codes. Note that
CC with tail-biting at rate 1/2 and CTC at rate 1/3 cannot be compared directly since they
are different in code rate. So the comparison must be treated with caution. CTC is known

to be better and close to the Shannon limit [10].

5.2 Performance in AWGN Channel with Fixed-Point
Processing

We convert the floating-point value to the fixed-point value by multiplying the original
floating-point value by 1000 and truncating the result to integer. Note that we only change

the number of bits in the decoder input, Extrinsics loop and GAM M A function. The aim
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Table 5.1: Comparison of Coding Gains of CTC and Tail-biting CC in AWGN at BER =
1076

Rate-1/2 Tail-biting

Modulation Type ]
CC With the VCP

Rate-1/3 CTC

QPSK 5.12 8.01
16QAM 6.73 10.15
64QAM 6.91 12.55

of truncation in the Eztrinsics loop and GAM M A function is to avoid the overflows at

high SNR.

In Fig. 5.3 and 5.4, we list that the trundationtparameters, which consist of “ChaReliab,”
“Scal,” “Scal_E,” and “Scal_g,”.standing for truncation ‘of bits in the channel reliability,
decoder input, Extrinsics loop and -GAM M A function, respectively. We also show how

these parameters are used insthe functions of our G*program.

In Fig. 5.5, we compare the performanceswhien the number of fractional bits in decoder is
between 0 to 9 (S15.0 to S6.9) for max-leg-MAP, decoding at rate-1/3, 480 information bits
and three different modulations.sWhen we use S12.3 t0:56.9:, the BER curves are almost the
same for QPSK, 16QAM and 64QAM. The BER curve for QPSK is in our acceptable limit
when we use S12.3. But for 16QAM and 64QAM, S11.4 is the limit that we can accept. We
can see that S10.5 to S6.9 cause have the overflows at high SNR. Hence, we employ “Scal E”

and “Scal_g” to avoid the overflows.

In Fig. 5.6, we show the performance with “Scal E” and “Scal_g.” We see that the overflow
at high SNR disappears, but the performance is degraded at low SNR. Fortunately, no
overflow occurs at high SNR for QPSK with S12.3, 16QAM with S11.4, and 64 QAM with

S11.4. Consequently, we employ S12.3 and S11.4 for DSP implementation for the three
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Figure 5.4: CTC fixed-point truncation parameters flow chart.
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Figure 5.5: CTC at different bit numbers with different modulations.
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Figure 5.6: Performance with scaling of various quantities in CTC decoding to avoid overflow

at high SNR.
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Table 5.2: Coding Gain Performance
Floating-Point and Fixed-Point Computation

. Floating-Point Fixed-Point Coding
Modulation Coding Gain (dB) Gain (dB)
QPSK 7.54 7.34
16QAM 9.41 9.08
64QAM 11.92 11.42
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different modulations.

Table 5.2 shows the coding gains obtained with floating-point computation and that with

fixed-point computation. And Fig. 5.7 depicts the BER results.

5.2.1 Speed Performance of the DSP Code

In this section, we show the CCS profile of our DSP code that includes the 1/3 CTC encoder,

modulator, demodulator, and decoder. We also measure the speed in 3L.
Compiler Optimization Options

CCS compiler offers high-level language support by transforming C/C++ code into more
efficient assembly language source‘¢ode. The compiler options can be used to optimize the

code size and the executing performance.

The major compiler optiens we utilize are -63, -pm -0p2, ne -ms.

e -pm -op2. In the CCS,ecompiler optien; =pm and -op2 arescombined into one option:

— -pm: Give the compiler. global access to the whole program or module and allows

it to be more aggressiveiin ruling out dependencies.

— -op2: Specifies that the module contains no functions or variables that are called
or modified from outside the source code provided to the compiler. This improves

variable analysis and allowed assumptions.

e no -ms. Speed most critical.

Rate-1/3 CTC Encoder

First of all, we optimize our code and obtain the profile using CCS. We also utilize 3L’s

timer to measure the executive times and data rates of CTC encoder with three different
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Table 5.3: CTC Rate-1/3 Encoder Execution Times Measured under 3L and the Corre-
sponding Data Rate with 480-Bit Information Data Blocks

. Execution Information Data Channel Data
Modulation|  Time (ms) Rate (Kbps) Rate (Kbps)
QPSK 0.062 7,742 23,226
16QAM 0.053 9,057 27,170
64QAM 0.061 7,869 23,607

Table 5.4: Profile of C'T'C_Encoder with QPSK Modulation for One Data Block

Function Times Called CPU Cycles Percentage (%)
DBCRSCC_Encoder 2 9,906 38
CTC Interleaver 1 15,969 62

modulations, whose results“are shown in Table:5.3. The information data rates are about

7.7 to 9.1 Mbps.

In Table 5.4, we see that 38% and '62%of the'éxéctition time are spent in CT'C_Interleaver

and DBCRSCC _Encoder, respectively. The DBCRSCC _Encoder is called twice for pro-

ducing the parity bits, i.e., Y1, W1, Y2, and"W?2. But the two permutations performed by

CTC Interleaver requires more computational cycles.

Rate-1/3 CTC Decoder

Table 5.5 lists execution times measured over ten iterations for the three different modula-

tions. We find that the three modulations are not significantly different in execution times.

In addition, the executive time averages to about 4 ms per iteration.

Table 5.6 shows the equivalent processing rates of our CTC decoder on DSP for two iter-
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Table 5.5: CTC Rate-1/3 Decoder Executive Times for 480 Information Bits Measured under
3L

Interation Number

Modulation 10 9 8 7 6 5 4 3 2 1

QPSK (ms) 39.02 35.13 31.23 27.37 2348 19.56 15.68 11.80 7.92 4.03

16QAM (ms) 39.01 35.16 31.23 27.35 2347 19.59 15.67 11.83 7.92 4.03

64QAM (ms) 39.00 35.11 31.24 27.34 2346 19.56 15.68 11.84 7.93 4.04

ations and four iterations. Note that although the processing data rates with two iterations

are two times that with four iterations, its performance is degraded by about 1 dB.

Table 5.7 dissects a C'I'C_Decoder into constituent functions and the corresponding com-
plexity. The results show that about90% execution timefis.spent on the Duo_Binnary_ C RSC
_Decoder function, which is used for the,double binary max-log-MAP decoding algorithm.
Two points are worth making about Table 5.7.-The first is that the Duo_Binnary CRSC
_Decoder function is called=2 times for decoding two constituent codings in one iteration.
The second point is that the max4 function'is called 2537 times for estimating the decoding

output bits and it takes 9% of the CPU cycles:

A more detailed understanding of the Puo-Binnary_C RSC_Decoder function relation-
ship can be gained from Table 5.8, where we show that it consists of GAM M A function,
Alpha loop, Beta loop, Extrinsics loop, and other parts. As the maxz8 and max4 functions

are called by these functions and loops many times in the last two rows.

In Duo_Binnary_C' RSC _Decoder function, the maz4 function is called 8 times to do the
comparisons each of the Alpha (forward) and Beta (backward) computation in each symbol.
Since the number of symbols N = 240, the max4 function is called (8 4+ 8) x 240 = 3840

times.
In the same way, as the max8 function is called 4, 1, and 1 times in Extrinsic, Alpha, and
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Table 5.6: Corresponding Processing Rates of CTC Rate-1/3 Decoder Based on 3L-Measured
Execution Times for One Information Data Block of 480 Bits

Number of _ Execution Channel Data I]r;f;r;ng:f;l
Tterations | Modulation |  Time (ms) Rate (Kbps) (Kbps)
2 QPSK 7.92 181.81 60.61
16QAM 7.92 181.81 60.61
64QAM 7.93 181.59 60.53
4 QPSK 15.68 91.84 30.61
16QAM 15.67 91.90 30.63
64QAM 15.68 91.84 30.61

Table 5.7: Profile of C'T'C_Decoderiwith QPSK Modulation for One Data Block in One
[teration

Function Times Called CPU Cycles Percentage (%)
De_multiplex 1 9571 0.18
Duo_Binnary_ CRSC_Decoder 2 4749690 89.99
Permutation 1 10028 0.19
MAP _Interleaver_Decoder 1 10168 0.19
MAP _Interleaver_Inverse 2 13136 0.25
max4 2537 487104 9.2

Table 5.8: Profile of Duo_Binnary-C RSC_Decoder

Function/Loop  Times Called ~ CPU Cycles  Percentage (%) Cycles/Access

GAMMA (F) 1 645148 26.9 645148
Alpha (L) 240 610442 25.9 2581
Beta (L) 240 647011 7.1 2696

Extrinsics (L) 240 478205 20.1 1993
max4 (F) 3840 737280 NJA 192
max8 (F) 1440 624960 NJA 134
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Table 5.9: Rate-1/3 CTC Processing Rate with 4 iterations in Decoding

Modulation type

Processing Rate
(Kbps) QPSK 16QAM 64QAM
Encoder with Modulation 7742 9057 7869
Decoder with Demodulation 30.61 30.63 30.61

Beta computations, respectively, in each symbol. Hence it is called (4 + 14 1) x 240 = 1440

times.

Table 5.9 shows the processing rate in different modulation modes for encoder and de-
coder. As the decoder requires a large amount of eomputation in operations like Alpha,

Beta, and GAM M A computations, we can only achieve about 30 Kbps of decoding speed.

5.2.2 Improving CTC Decoding Speed

As the CTC decoding data zate is low}, we'consider some methods to improve the decoding

speed as following;:

Use the software pipeline information-frem the DSP’s C compiler output to see the

degree of parallelism of our assembly code.

Use the DSP intrinsic function _maz2(), which is a special function that maps directly

to inline C64x instructions, to replace our max4 and max8 functions.

Use the DSP intrinsic _sadd2() to perform parallel addition operations.

Do loop unrolling to improve the parallelizability of our C program.

Avoid using the malloc() function to allocate memory arrays.
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Table 5.10: Profile of Improved Duo_Binnary C' RSC _Decoder

Function /Loop Original Improved Reduction in
(Cycles) (Cycles) Complexity (%)
GAMMA (F) 645148 17830 07.23
Alpha (L) 619442 9084 98.53
Beta (L) 647011 8128 08.74
Extrinsics (L) 478205 13440 97.19

e Avoid using the switch-case programming. We can modify it to a table lookup. This

is because if a loop contains conditional break, it is not software pipelined.

e Utilizing shift operations as much pessible as.to replace multiplications and divisions.

We take the GAM M A funétion as an exampleto show'its assembly code and software
pipeline information. For space reason; we omit!/the assembly: code of the other functions.
For additional information on software pipelininig; we refer to [27]. The improved code of
GAM M A function is shown' in Figs. 5.8;°519, and 5.10. Note that we use the same loop
unrolling technique in GAM M A array, yielding a-total of 16:loops for 32 branch states, as
shown in Figs. 5.9 and Fig. 5.10.

In Figs. 5.11,— 5.16, we show the assembly code that computes the branch metrics from
received systematic and parity bits. We can see from the software pipeline information in
Fig. 5.14 and 5.16 that it achieved a certain degree of parallelism. Note that we have only

shown a small part of the assembly code for the GAM M A function.

Table 5.10 shows the improvement in speed of GAM M A function, Alpha loop, Beta
loop, and Extrinsics loop. They account for 36.8, 18.7, 16.8 and 27.7%, respectively, of the

complexity of the improved Duo_Binnary C RSC_Decoder.
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wold GAMMA(=short *gamma,short *aprior,short *& short *B short #Y,short *#W.int length)
{
#ifdgf _no_cvcle

it 1;

int OUT[4];

#end1f

nt 1,k;

#ifdef Malloc_Memorw_Bug

short **p *plata; Sfp[4][block_length]
#end1f

#ifdef _Mormal_Memory
zhort p[d][960];
#endif
#ifdef _cwvcle
POutput lookup table for TH Trellis (0--=1 1---2-1)3:BPSK hardware®S
int OutTable[32][4]={

£ LB
1.//0000
1.Afn1n
108011
1./81100
1.fonon
1.A4f0111
108011
1.0
1. /0010
1,//0101
1./41001
1.A1n
}.//0010
1.//0101
.40t
1.Af11n
1,//0011
1.4/0100
1. /1000
1
)
I
1
)
I
1
1
1
I,
IR
1.
h

frztate 0%/

Mztate 1%/

]
2
H]
]
2
2
H]

Hztate 2%/

2

Hztate 3/

RISEEN!
L4400l
440100
441000
RSN
440001
SO0
L4100
S0l
/10001
/10110
/11010
11101

frztate 5%/

Mztate 5/

{ 1
{ 1
- -1
- 1
{ 1
{ -1
1 -1
{ 1
{ 1
1 -1
- -1
- 1
1 1
{ -l
{ -1
{- , 1
frotate 460 | 1
{ 1
{- 1
- -1
{ -1
{ 1
- 1
- -1
{ -1
{ 1
- 1
{ -1
fHztate T -1
1 1
{ 1
{ -1

i

#endif

#1fdef _Malloc_Memorw_Bug

FHvaid memory fragment for malloc */

p=(short **malloc{4*sizeof (short * +d4*length*sizeof (short));

for{i=0,plata={=zhort *J{p+dl; i=d; i++, platat+=length)
pli]=plata;

#endif

Figure 5.8: Function Gamma() (1/3).
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g#ifdef _cwcle
for{i=0;i<length;i++)
{
Frapprior 00 01 10 11%/ Flgamma 1063407 1065394
plO][1]=-_maxZ{_max2(0,aprior[1+{i<<2)]), max2iaprior[2+{i<<2)] aprior[3+(i<<2)]));
pll][i]=aprior [14{1<<2)]-_max2{_max2(0,aprior[l+{i=<2)] ), max2({aprior[2+{1«<2) ], aprior[3+{1<<2)]}};
pl2][i]=aprior [24{1<<2)]-_max2{_max2(0,aprior[1+(i<<2)] ), max2(aprior[24{i<<2) ] aprior[H4(i<<2)]));
pl3][1]=aprior [3+{1<<2)]-_max2{_max2(0 aprior[l+{i=<2)] ), max2(aprior[2+{1«<2) ] aprior[3+{1<<2)]});
1

fLoop Tnrolling*!
for{i=0;i<length;i++)
eices
=1445;
gammna [k+0=( (i [*0utTahle[0][0]+B[i [*0utTable[0] [11#¥[i *0utTable (0] [2]+# (i [*0utTable[0][3] #(p[0]]
ganma [k+1 [={ (4[1 [#0utTable 1] [01+B[1 1*0utTable[1][L]1+F[i [*0utTable [1][2]+W (i [*0utTable[1][3] Hip[1][

=

1]0e=(8cal_g);/fiB=00
110 8cal_g )/ FiB=01

1
for{i=0;1<length;i++)

i

k=1=<5;

o gamma [k+2 ]=( (A[1]*0utTable [2] [0 4B [i][*0utTable[2] [1]+Y[i [*0utTable [2] [2]+W]1 [*0utTable[2] [3] M{p[2]
| gamma [k+3 ]=( (A[1]*00tTable[2][0]+B[11*0utTable[3][1]1+Y[1 *0utTable [3] [2]4W[i [*0utTable [3][3]4(p 3]

[1]0)e=(8cal_g);//iB=10
[1]30==(8cal_gh;/fiB=11
|}

Cfor{i=0;i<length;ies)

i

k=i225;

ganma [k+4 [=( (A1 ]*0utTable[4 ][0 ]+B[1 | *0utTable [41[1]+Y i *0utTable [4] [2]40[1 |*0utTable[4][3] #{p[0
zanma [k+5]=((A[11%0utTable[ST[O]+B [1 [*0utTable [ST{1]+¥ 1 [*0utTable [5] [2]4W[1 [*¥0utTable[S][3] H{p[1

se(Scal_g )/ fAE=00
s=(Boal_g);/f8B=01

110
: 1im
for{i=0;i«<length;i++)

i

k=i=25;

gamma [k+6 ]=( (A1 1*0utTable[6][01+B[1]*0utTable[G][11+¥ [ *¥0utTable [G] [2]+W[ i [*0utTable[G ] [3] 4R 2] [1] ) )==(8al_g);//AE=10
gamma [k+7 ]=( (4[1]*¥00tTable[7][0]+B[1i]*¥0utTable[7]1[1 14Y[i [*¥0utTable [7] [2]4W]i [*0utTable[71[3] M{p[3][1]))>={Scal_g);/ iB=11

1

for{i=0;i<length;i++)

iy

k=i=25;

gamma [k+3 |={ (h[1]*¥00tTable[B][0]+B[1i]*0utTable[8][11+¥[i [*0utTable [B] [2]+W[i [*0utTable[8][3] M{p[0][1]})=={Scal_g);//aB=00
gamma [k+9 ]={ (4[1]*¥00tTable [ [0]+B[1]*¥0utTable[I][11+Y[i [*¥0utTable (] [2]4W[i [*0utTable[I][3] M{p[1][1]))=={Jcal_g);//4B=01

1

for{i=0;i<length;i++)

i ees

=<5

gamma [k+10]=((4[1]*0utTable[10] [0]+B[1]*0utTable[10][1]+4Y[i [*0utTable [10][2]+W[1]*0utTable[10] [3] M (p[2] [1] )= =(Seal _g); /FaB=10
gamma [k+11]=((A[1]*0utTable[11] [O]+B[1]*0utTable[11][11+Y[i [*0utTable (11 ][2 [+W [ ]*0utTable[11] [3] 4 (p[3]1[i]))s={Scal _g); /fhB=11

1
for{i=0;i<length;i++)

i
k=i=25;

gamma [k+12]=((4[1]*0utTable[12] [O]+B[1]*0utTable[12][114¥[i [*0utTable [12][2]+W[1]*0utTable[12] [3] M (p[0][1] )= =(Seal _g); /F0B=00
- ganma [k+13]=((A[1[*0utTable[13] [O]4B[i *0utTable[13][1 ]+ [1 *OutTable [13] [2 [+W[1 [ *0utTable[13] [3] 4(p[L1[1])==(Scal g);/fAB=01

1 }
for{i=0;i<length;i++)

i

k=i=<5;

ganma [k+14]=((A[1]*0utTable[14] [O]4B[1 ]*00tTable[14T[1]4Y [1 [*0utTable (14 J[2 401 |*0utTable [14] [2] H(p[2]
ganma [k+151=((A[1]*0utTable[15] [0]+B[1 [*00tTable[15][11+Y [1 [*0utTable (15 [2 401 |*0utTable [15] (2] H(p[3]
1

Jex(Beal gl A f0E=10

[11}
[i]3)=+(Bcal _g); /fiB=11

Figure 5.9: Function Gammal() (2/3).
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for{i=0;i<length;it+)

i

kei=<5;
gaéJ;[k+16]=((A[i]*DutTahle[lE][D]+B[i]*DutTable[lﬁ][1]+Y[i]*DutTahle[lE][2]+W[i]*DutTable[lE][3])+(p[D][i]))>>(Sca1_g);fIAB=DD
gamma [k+17]=((4[1 *0utTable[17][0]1+E[i [*0utTable [17][11+Y [1 *0utTable[17][2]+W[i *0utTable [17][3] #(p[11[i]))>=(Scal g ):/ fAB=01

for{i=0;i<length;i++)
{
k=i«<5;

gamma [k+18]=((A[1 J*0utTable[ 18] [0]1+B[i [*0utTable [18] [11+Y[1 1*0utTable[16][2]+W]i [*0utTable[18][3] H(p[2]
gamma [k+19]=( (4[1 *0utTahle[19][O]+B[i [*0utTable [19] [L1+¥ [ ]*0utTable[19][2]+W[i [*0utTable [19][3] Wip[3]

[1]3)s={Bcal g ):/ fAB=10
[1]3)s=(Bcal _g);/ fAB=11
i

for{i=0;i<length;i+t)

{

k=1225;

gamma [k+20]=( (4] 1 *0utTable[20][0]+B[1 [*0utTable [20] [11+¥ [1 [*0utTable[20][2]+W[1 *0utTable [20] [3] % (p[0][1] ) )==(Scal_g);//aE=00
gamma [k+21 ]=({A[1 [*¥0utTable[21 | [O]+B[1|*0utTable [21 ] [1]+¥[1 [*0utTable[21 [[2]+W[i [*0utTable [21 ] [3] M {p[1][1] ) )=={Scal_g};//aB=01

for{i=0;i<length;i++)
iy

k=i225;

gamma [k+22 |=( (A[1 [*¥0utTable [22 ] [O]+4B[1 [*¥0utTable [22] [1]+Y 1 ]*¥0utTable[22][2]+W[i [*0utTable [22] 31w {p[2][1]))>=(Scal g );//4B=10
gamma [k+23]=( (0] 1 ]*0utTable[231[0]+B[1 [*0utTable [23] (1 1+¥ [1 1*0utTable 23] [2]+W 1 *0utTable (23] (3] M {p (3] [1] ) =={Bcal_g);//0E=11
for{i=0;i<length;i++)

s

=1<=5;

ganma [k+24 |=((A[1 ]%0utTable[24 [ [O]+B[1 [*¥0utTable [24 ] [1]+Y [1 ]*¥0utTable[24 [ [2]4W[i [*¥0utTable [24] [3] M{p[0
ganma [k+25]=( (A1 ]*0utTable[25] [O]4+B[1 [*0utTable [25] [1]4Y [1 [*0utTable[25 ] [2]4W[1 [*0utTable [25] [3] M{p[1

11113 ==(8cal _g);/fiE=00
110 ==(Bcal_g):ffaB=01
}

for{i=0;i<length;isd)

i

k=1<25;
ga;ma[k+26]=((ﬂ[i]*DutTable[ZE][D]+B[i]*DutTable[26][1]+Y[i]*DutTahle[26][2]+W[i]*DutTable[26][3])+(p[2][i]))>>(Sca1_g);fIAB=ID
gamma [k+27 |=({A[1 [*¥0utTable [27 ] [O]+B[1 |*¥0utTable [27] [1 1+Y 1 [*¥0utTable [2T [ [2]4W[1 [*¥0utTable [27] [3]M{p[3][i]))==(3cal_g};//aB=11

for{i=0;i<length;i++)

beicss

=i<<h;

gamma [k+28 ]=( (A[1 [*0utTable[28 ] [O]+B[i [*¥0utTable [28] [1]+Y[1]*0utTable[28][2]+W[i [*0utTable [28] [3]p+{p[0][1] ) )==(Scal g );//aB=00
gamma [k+29]=( (A[1 [*0utTable[29] [O]+B[1 |*0utTable [29] [11+¥[1[*0utTable (20 [2]4W[1 [*0utTable [29] [3]M{p[1][i]))==(Scal_g};//aB=01
}

for{i=0;i<length;i++)

{

k=i<<5;

gamma [k+30]=((A[1 T*0utTable[30][0]1+B[1 [*0utTable [30] [11+Y[11%0u4Table[30][2]+0]i *0utTable[30] [3] Hip[2][i]))>=(Seal _g )z / AE=10
gamma [k+31 |=( {4 [1 *0utTable[21 [[O]+E[i [*0utTable [31 ] [L1+Y [ ]*0utTable[31 ] [2]+Wi *0utTable 31 ] [3] W {p[2] [i ]} )==(Scal g )-/ fAB=11

#Fendif

Figure 5.10: Function'Gamma() (3/3).

Table 5.11: Speed up in Decoding of One Data Block with QPSK Modulation for One
[teration

, Reduction in
Function Cycles Complexity (%)
Duo_Binnary CRSC_Decoder (Original) 4749690 N/A
Duo_Binnary CRSC_Decoder (Improved) 109816 97.68
CTC_Decoder (Original) 4932457 N/A
CTC_Decoder (Improved) 147116 97.01
DeModulation 1468 N/A
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void GAMMA (short *gamma.short *®aprior,short #*A,short =B.short *Y.short *W,int length)

{

nooo1s78 CAMMA, :

00001578 O7EFFOS3 ADDE .32
0000157C OFBCLFDE || OR.L1X
00001580 0S58808FE STW.D2T2
00001584 0S0B07FE STwW.D2T2
00001588 O018B0BFE STwW.D2T2
0000158C 067C4144 STDW . D1T1
00001590 0S7C6E144 STOW . D1T1
00001594 061B81FDE OR.L1X
00001598 05101FDBE OR.LZX
0000159C 05201FD9 || OR.L1X
00001540 0SA006A1 || OR.51
00001544 0R9808F1 || OR.D1
00001548 05900642 || OR.22
#ifdef no eycle

int j:

int OUT[4]:

#endifl

int i,k:

#ifdef _Malloc Memory Bug
short #==p,=plata; ip 4/ Elock Jengtd,;
#endif

#ifdef _Normal Memory
short p[4][Y60];
#endif

#ifdef _cyole

-8224,9P
0,8P,431
B11,*+3F[0x808]
B10,*+5F [0x807]
B3,*+5P [0xB06]
Al13:212,%-A31[0x2]
All:A10,%-A31[023]
0,B6,A12

0.44,510

0,B8,A10

0,A8,411

0,A6,413

0,B4,B11

CEO Rt loafuy table for FE Frediis fU--2F Fo--0-0) 0 BARK Sardware®.

int OutTable[32][4]={

00001SAC OO1EFS10 E.=1
000015E0 018D8428 MWE.31
00001564 018001EG MYWEH. 31
000015SE8 020F0428 MVE.S1
000015BC 0O1B8EO162 ADDEPC.22
00001520 0Z0C1FDE OR.LZX
000015C4 02309079 || ADD.LI1X
00001528 03010028 || MVE.3S1
nooo1sce RLZ6

000015CC OBFEL1FAB MYE .32
00o0o01sp0 oooooool | HOP
no0oo1sp4 oooooool | MOP
00001spa oooooooo || MOP
000015DC 02078528 MVE .32
00001SE0 OB7EZ028 || MVE.S1
000015E4 OBO1DFAR MVE .32
000015E8 0Z23CE07E || ADD.LZ
O0001SEC 0ZAC4943 || ADD.DZ

Figure 5.11: The assembly code of Gamma() function (1/6).

MEMCpy
Oz 1b08,A3
0x30000.A3
Oxleld, 24
RL26,B3.0
0,453,564

Ad,5F, R4

O0z0200,46

Ozfffffc3t,B23

0x0fDa,B4
Oefffffcdl AzZ2
Oz03kf,B22
BE4,3FP.B4
Bll.0=z2,BS
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O00015F0 OAB1EQDZE || MVE .51 O0x03c0, 21
T

PR R ) S I

N A

S I e

P

S R I S i

P L

1, -1}, dii

SESES TS TR,

SESES TS T

L1, 1), i
Lol 1}, s
o 1, =10, R
R DS B A S

SESES S T

1,1

1,-1

1, 1

1,-1

1, 1

1,-1

1, 1

1,-1

1, 1

1,-1

1, 1

1,-1,-1, 1}, 7ii
SESPS TS T 1, 1,-1, 1}, edidde

1.-1, 1,-1}, ~7iddi

T, 1, 1,13, »diiti

1.,-1,-1, 1}, -disd
RS S S % 1, 1,-1,-1%, =8
1,-1, 1, 1}, -?ddk
T, 1, 1. 1}, .wrradi
1.-1,-1,-1}, ~Ffis
RS S S 5% 1, 1,-1,-1%, =i
1,-1, 1, 1}, -?ddk
1, 1, 1, 1}, ~-dii
1,-1,-1,-1}, ~<FFii
1. 1, 1,-1}%, -~
1,-1,-1
1, 1,-1
1,-1, 1
1, 1, 1
1,-1,-1
1, 1,-1
1,-1

~ESLI LS A%
P S
PmLle 1}, diiid
» 1.1}, e d
s 1,=171, iR
P S
L L.-1, 1}, .diiii
-1,-1, 1,-1} »fFid

~ESESTE T

[ e e i el el e Tl l el L el T e T T T aet e e T T T T L L ]

Hendif

#ifdef _Malloc_Memory_Bug

cESvard mamory fragment for mesd oo %

p=ishort **)malloc(4*sizenf (short =*)+d*length*sizect (short)):

for{i=0,plata=(short *)(p+4); 1<4; 1++, pData+=length)
pli]=plata:

Hendif

#ifdet _ovele
for{i=0;1<{length:i++)

000013F4 0C3403EZ MWC .32 C3R,B25
000015FS 00003BAS MWE.S1 0z0077 A0
ODOD15FC 09939059 || SUB.L1X B4.,4,4149

Figure 5.12: The assembly code of Gamma() function (2/6).
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oooo1e00
oooo0le04
oooole0s
oooo0le0c
oooo0lel0
oooo0le14
oooolels
ooo0lel1c
oooolezo
oooo01ez0
oooo0lez4
oooo0leza
ooo0lezc
00001630
ooo0le34
oooo0le3a
o0o001e3c
oooo0le40
00001644
ooo0le4a
0000164C
oooo0lea0
oooo0les4
00001658
oooo0leac
00001660
oooole64
oo00le68
ooooleac
oooole?0
ooo0l1e74
oooole?a
o0001e7cC
oooo0leg0
00001654
ooo0lega
o0001eaC
oooole90
ooo0le94
o0o001e98
ooooleac
000016A0
ooo0lbAd
000016AS
0000 16AC
ooooleB0
o0o001eE4
ooo0leBES

Figure

0367CF3E
oog00040
0213805E
00950343
04141FD9Y
oos000ES
OABCE943
gsoooo4o

8314C0C7
0zDE4559
94004045
031410DB
gooooool
gooooool
gooooool
gooooooo
881500C7
82504045
gooooool
gooooooo
91008045
03205859
83545206
8514C0C7
83005044
HI94EQDCY
03C2485E
H3006044
O38CFE5E
O8a02247
038516C4
03141859
08CALGSE
041460C7
Ozbo4244
0zZ1CF5E1L
OC113858
015E4859
0914E0C7T
03511644
0942785E
081E4835%9
0814C0C7
OEDOE044
0948C5E3
0340E&5E
08C4EGS9

[1241]

[1241]

AMD.L2
MVE.D1
SUB.LZ2
MVC . 52
OR.L1X
MVEH.S1
ADD.Dz
MVE.D1

LDH.DZ2TZ
MaxZ L1
LDH.D1T1
MEG.LZX
HOP

HOF

HOP

HOF
LDH.DZTz
LDH.D1T1
HOF

HOP
LDH.D1T1
MAXZ . L1
=TH.DZTZ
LDH.DZTz
LDH.D1T1
LDH.DZTz
MAXZ L2
LDH.D1T1
MAXZ  L2X
LDH.D1TZ
LDH.DZ2T1
MAXZ . L1X
MAXZ  L2X
LDH.DZ2TZ
LDH.D1T1
SUB .51
Maxe  LZX
MAXZ . L1
LDH.DZTzZ
LDH.DIT1
MAXKZ  L2E
Maxe L1
LDH.D2TZ
LDH.D1T1
SUB.22
MAXZ . L2
MAxZ . L1

-2,.bB25.B68
0,a1
B4,4,B4
Be,CER
0,.B5.a20
O=10000,41
=P, 0x4.B21
0,a18

*-B5[0x6],B6
£18,423,A5
*-A20[0x2],49
A5,B6

*-B5[0x8],E16
x-A70[022],A4

*-320[0z4],43
A4,A8, 46
Bf,*++E21[022]
*-B5[0x6],E16
x_A70[0zd],A7
*-B5[0x7],B7
E15,E16,B7
*-320[023],47
E7,A3,E7
*+420[0z1],B16
*ES++ [0z8],A7
A16,B6,A16
E16,418,B17
=-B5[0xz3],B8
*+420[022],A45
A7,B7,44
BE9,24,B24
218,43 ,473
*-B5[0z7],E18
®120++[0z8],46
E19,416,B18
218,47 ,A16
*-B5[0z6],E16
*-320[0z4],423
E6,E18,E18
BE7,E16,E6
A7,A17 817

5.13: The assembly code of Gamma() function (3/6).
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SOFTHARE PIPELINE INFORMATIOM

Loop =source line - 1028
Loop opening brace source line  : 1029
Loop closing brace source line - 1035
Loop Mnroll Multiple T 2%
Enown Minimum Trip Count c 120
Enown Mazximum Trip Count - 120
Enown Max Trip Count Factor c 120
Loop Carried Dependency Bound({*) : 5
Tnpartitioned Resource Bound - 1e
Partitioned Resource Bound(*) S 1]

Rezource Partition:
b-zide B-zide
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B ounits 1 a

I units 16* 1a*

M ounits 1l a

¥ cross paths 3 a

T address paths 16# 16%

Long read paths 0 i

Long write paths ] 1]

Logical opz (.L3) 1 & (.Loor .8 unit)
fddition ops (.LED) 3 4 {.L or % or .Dunit)
Bound( L & _LE} 7 7

Bound( L & I L& _L3D) 11 12

Searching for software pipeline schedule at ...
11 = 16 Schedule found with 2 iterationz in parallel
Done

Epilog not remowved

Figure 5.14: The assembly code of Gamma() function (4/6).

Collapsed epilog stages Sl
Wed Jun 04 10:24:09 2008

Instruments Incorporated

PAGE

Collapsed prolog stages o1

Minimum required memory pad : 0 byies

For further improvement on this loop, try option -mhlé

Minimum safe trip count 1 {after unrolling)

; PIPED LOOF EERWEL
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[ A0]

[141]

[141]

[121]
[121]

[ Al]

[121]
[121]

[121]

LDH.DZTZ
LDH.D1T1
MaX2 LZ2X
MAXZ.L1
BDEC.Z51
LDH.DZTZ
LDH.D1T1
Maxz. L2
STH.DZTZ
SUE.51
MAXZ.L1
LDH.D1T1
MAXZ. L2
MEG.22
2TH.DZT1
SUB.51
LDH.D1TZ
MaXZ2 . L1X
MaxXe LZX
SUB.5Z2
=TH.D1T1
STH.DZTZ
MaXz.L1
MPYS . M1
SUB .52
STH.D1T1
STH.DZTZ2
MaX2 LZ2X
MaXz.L1
ADD .21
STH.D1TZ
ADD .22
LDH.DZT1
MAXZ . LZ2X
MAXZz.L1

Lz _GaMMAS4SE:

MVE.=1

MAXZ.L1
LDH.D1T1
HMEG. L2
LDH.DZTZ2
MVE .31

LDH.D1T1
LDH.DZTZ
MVE.21

MaXz.L1
STH.DZTZ2
LDH.D1T1

x-B5[0z4],E7
*-A20[022],417
ES,49,B19
45,417,249
L6S,AD
*-E5[0z8],B7
*-A20[022],A8
E20,B19,E19
E16,*+E4[E22]
A423,A9,40
A3,86,A3
*-A20[0z3],A4
E17,E6.B6
E19,E17
A4,*+B4[B23]
AB,A3,A7
*-A20[023],B9
A45,B16,44
B24,A16,B17
E7,B6,EB6

A3, *+A19[A21]
BE17,*+B21[0x1]
A1B,A6,A43
241,41
BE9,B17,E6

A9, *+A19[A22]
B6,*-B4[0x1]
E7,418,E20
43,44 ,A5
4,419,519
B6,*+A419[0x0]
4,B4,B4
*-E5[0z7],416
B7,418,B19
A18,A7,473

0x0042,431
A18,A23,A5
*-A20[022].A9
A5, BA
*-E5[0z6],E6
0z03c1,A28
*-A20[022],A4
*-B5[0z8],B16
Oz03c0,A29
44,48 ,A6
B6,*++B21[0x2]
*-A20[0z4],43

5.15: The assembly code of Gamma() function (5/6).
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Figure 5.16: The assembly code of Gamma() function (6/6).
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Table 5.12: Improved CTC Decoding Speed Base on 3L-Measured Execution Times for One
Information Data Block of 480 Bits

Number of ' Execution Channel Data I}r;fg‘;ng?:;
Tterations Modulation Time (IHS) Rate (Kbps) (Kbps)
2 QPSK 0.84 1714.29 571.43
16QAM 0.85 1694.13 564.71
64QAM 0.84 1714.29 571.43
4 QPSK 1.6 900 300
16QAM 1.59 905.66 301.89
64QAM 1.59 905.66 301.89
Table.5.13: CTC CoderSizes
. i Impreved Code Percentage Increase
Operation Original Code (bytes) Bocs) (%)
Encoder with Modulation: 3104 3104 0
Decoder with Demodulation 20032 29024 44.89

Table 5.11 compares the original ¢ycles to the improved cycles for Duo_Binnary C'R

SC _Decoder function and CTC_Decoder function.

Note that CTC_Decoder is used to

implement turbo decoding algorithm and Duo_Binnary_ C'RSC _Decoder function is used to

implement BCJR algorithm.

Table 5.12 shows the decoding speed of our CTC decoder on chip for two iterations and

four iterations. Compared with Table 5.6, there is approximately a 10 times speed up in

decoding rate.

In Table 5.13, we show the code sizes of the original and the improved codes. As Seen,

we have improved the speed performance at the expense of an increased code size.
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To further improve the speed, one possible way is to examine every function and loop to

improve its software pipelinability.

5.3 Comparison of Speed of Current Codes

The major purpose of the section is to investigate processing rate in C'TC and CC. Base on
the comparison of processing rate between CC and CTC, taken as the important reference
for improving our CTC decoding processing rate in the future. Beside, we also compare
the number of adders and multipliers between CC and CTC, and compare the decoder’s

processing rates for tail-biting CC, CTC, and LDPC on DSP.

5.3.1 The Views of BlockiDecoder for'Processing Rate

Above all, we can get the executive times of rate 1/2.CC decoder and our rate 1/3 CTC
decoder are 0.3811 ms and*1.5914-ms in QPSK- miodulation, Ffespectively. Their decoding
code length are 288 information bits and 480 information bitss Therefore, we can get their

decoding information processing rates-whichare; 756" Kbps and 302 Kbps, respectively.

It is worth noting that the GC decoder is pure decoderwithout the VCP, and its is not
be included the external functions, like as de-randomizer, de-interleaver and de-modulator.
Besides, as to the CC decoder which we employ can be referred in [3]. Similarly, our CTC
decoder is not included de-modulator. However, the above-mentioned executive times which

are measured by the 3L timer.

Second, due to there are 4 iterations for our CTC decoder, the decoding processing rate
with one iteration is 302 - 4= 1208 Kbps. If the two constituent decoders of our CTC decoder
are independent and sequential operation, we can ideal suppose that the processing rate of

one constituent decoder is 1208 + 2 = 604 Kbps.
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Third, if the CC decoder is not considered their tail-biting mechanism, we can ideal
suppose its decoding processing rate is 756-(2884-[48-2]) /288 = 1008 Kbps. To compare with

our supposed a CTC constituent decoder is better 1.67 times for decoding processing rate.

Finally, if our CTC constituent decoder can be improve, its processing rate may possibly
be achieved the same 1008 Kbps as the CC decoder. Therefore, the processing rate of the
CTC decoder can be achieved (1008-2)/4 = 504 Kbps. We do not deny the limitations of
this roughly inference, but this may possibly be refer to improve our CTC decoder in the

future.

5.3.2 Comparison of Tail-Biting CC and CTC for Adders and
Multipliers

We can evaluate roughly the number of adders-and, multipliers for CC in [3, Fig.4.8] and
CTC in Chapter 2 (equations 2.29, 2.30, 2.81,/2.35,.2.36), respectively.

For the parts of CC branch operation, we know the total adders are considered about 1
adder, 2 branches, 64 states; and 384 (288+96) loop bits, which are calculated 1-2-64-384 =
49152. Besides, we know the total multipliers are eonsidered about 2 multipliers, 2 branches,

64 states, and 384 loop bits, which are.calculated 2:2:64:384 = 98304.

For the parts of CTC branch operation, we see that the total adders are considered
about 4 adders, 4 branches, 8 states, and 240 loop bits, as can calculated 4-4-8-240 = 30720.
Besides, we see that the total multipliers are considered about 5 multipliers, 4 branches, 8
states, and 240 loop bits, which are calculated 5-4-8-240 = 38400. Note that we also use one

shifted operation for multiplying 0.5 in (2.29).

For the parts of CC decoder, we know the total adders are considered about 2 adders, 2
branches, 64 states, and 384 loop bits, which are calculated 2-2-64-384 = 98304. Besides, we

know the total multipliers are considered about 2 multipliers, 2 branches, 64 states, and 384
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Table 5.14: CC and CTC for Adder and Multiplier (Numbers)

Function Adders |Multipliers
CC Branch 49,152 98,304
CTC Branch 30,720 38,400
CC Decoder 98,304 98,304

CTC Constituent Decoder(A)| 65,760 41,280
CTC Decoder 4 Iterations (B)| 526,080 | 330,240
CTC (A)/CC Complexity 0.67 0.42
CTC (B)/CC Complexity 5.35 3.36

loop bits, which are calculated 2-2-64-384 = 98304.

For the parts of CTC constituent decoder, we see that the adders of (2.29) are considered
about 4 adders, 4 branches, 8%states, and 240 leop bits.. The adders of (2.30), and (2.31)
are considered about 2 adders, 4 branches; 8 states, and 240 loop bits. The adders of (2.35)
are considered about 2 adders, 4'branches, 8 states, 3 subtractions, and 240 loop bits. The
adders of (2.36) are considered about, 3ladders, 2 subtractions, 3'branches, and 240 loop bits.
Hence, we estimate total adders as.(4%4-8-240)=(2:4~8-240) +240-(2-4-84+3)+(5-3-240) =
30720 + 15360 + 16080 + 3600 = 65760.

Besides, we see that the multipliers of (2.29) are considered about 5 multipliers, 4
branches, 8 states, and 240 loop bits. The multipliers of (2.36) are considered about 4
multipliers, 3 branches, and 240 loop bits. Note that we also use two shifted operations
for multiplying 0.5. Hence, we estimate total multipliers as (5-4 -8 -240) + (4 - 3 - 240) =

38400 + 2880 = 41280.

However, for the sake of providing a visual picture of the numbers, consider the graphic

representation in Table 5.14.
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Table 5.15: Information Data Processing Rate Calculated from CCS for One Information
Data Block of 480 Bits

QPSK Information
Tumbgr of | Demodulation | CTC-Decoder Overaéll ]?ecoder Data Rate
terations Cycles Cycles yeles (Kbps)
2 1,468 294,232 295,700 1,623
4 1,468 588,664 290,132 813

Table 5.16: Comparison of Decoder Speed for Tail-Biting CC, CTC, and LDPC Calculated
from CCS

Information T
CC Informatio CC Information i C. LDPC
Data Rate - Information :
) . Data*Rate With Information
Without using Data Rate for
VCP for Data Rate for
VCP for Rate-1/3 QPSK
Rate-1/2 QPSKe| = : rate-1/2 QPSK
Rate-1/2 QPSK (Khps) with'4 Iterations (Kbps) [3]
(Kbps) [3] k (Kbps) P
| 832 \ 8,938 813 \ 7.6 |

5.3.3 Comparison of Decoder Speed for Tail-Biting CC, CTC, and
LDPC

We can get information data processing rates in decoding for tail-biting CC and LDPC code
from [3]. Since we can use CCS’s profile to estimate the decoding processing rate for CTC,

comparing its decoding processing rate with LDPC’s.

Table 5.15 shows we use the cycles of Table 5.11 to estimate information data processing
rate. In Table 5.16, we show the decoder’s processing rates for rate-1/2 tail-biting CC without
using the VCP, rate-1/2 tail-biting CC with VCP, rate-1/3 CTC with 4 iterations and

rate-1/2 LDPC. Such processing rates underscore the importance of using DSP hardware’s
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acceleration.
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Chapter 6

Conclusion and Future Work

This primary research questions that contained two issues of IEEE 802.16e FEC in this thesis
were (a) the research in convolution codepwith tail-biting and implementation on the VCP
of TT’s C6416 for the WiMAX applications, and (b) themax-log-MAP decoding research of

the CTC and implementation on DSP-

In the first issue, we first analyzed and studied FI EDMA to employ the VCP based on
convolution code with tail-biting in AWGN#In' our implementation, the convolution coding
gain in AWGN was less thanstheoretie value by 0.1 to 2.6 dB-When we converted the fixed-
point to the VCP application, the performance was almostithe same and we could just use
S52.5 for BM truncation to implement the decoder. Finally, in our decoder with the VCP, we
can approach data rates between 6.2 and 9.2 Mbps for CCS profile. However, we can also
utilize the 3L timer to measure, approaching data rates about between 2.6 and 3.5 Mbps.
Therefore, under CCS and 3L, as the measurements indicate the decoder processing rates

are improved significantly by about 9.8 and 4.7 times, respectively, with use of VCP.

In the second issue, we first evaluated the performance of CTC and compared the results
with the numerical results. The coding gain of CTC was much better than convolution code.

Then we focused on max-log-MAP decoding algorithm. Then we converted the floating-point
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to fixed-point, and we could use S12.3 and S11.4 to implement the decoder for QPSK and
16QAM (64QAM), respectively. In conclusion, in the encoder, we can approach data rates

between 7.7 to 9.1 Mbps and in our decoder with 4 iterations, we can approach data rate

about 300K bps.

In the future work, further optimization of the programs may be possible. For example,
if we can parallelize the execution of the peripheral functions and the VCP, we may get
approach an information data rate of about 6 Mbps in decoding under 3L. However the

interested readers can refer to “Continuous Decoding” mechanism in [21] to study.

In CTC, there are three possible methods to enhance our DSP implementation. First, we
may rewrite our code in our CTC, there are too much dependence to execute for Alpha and
Beta loop. These execute too matiy ¢ycles and cause Software pipelined worse. However,
one possible way is to examing.every function and loop to improve its software pipelinability.
Second, if we need further reducing complexity by max-log-MAP decoding algorithms, [28] is
one of the references. Thirdgwe can examine the TT's C6416 TCP (Turbo -decoder coproces-
sor) [15]. The TCP is a programmable-peripheral for decoding 1S2000/3GPP turbo code,
integrated in into C6416 DSP. The coprocessor operates two modes, standalone processing
mode and share processing mode; which are detailed discussed in [15]. It may be of inter-
est for using TCP to be helpful in raising the ‘decoding speed, but how to process the 10
relationship for double-binary circular recursive systematic convolutional code on the TCP

application is a tough problem.
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