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摘要 

 
IEEE 802.16e 無線通訊標準中，於系統的傳送端訂定了前向誤差改正編碼的機

制，藉此減低通訊頻道中雜訊失真的影響。通道編碼是本論文的重點。 
本篇論文前半部份重點在於，研究 IEEE 802.16e OFDMA 所訂定的迴旋編碼(咬

尾)系統並且實現在德州儀器公司所發展數位訊號處理器(DSP) TMS320C6416 上的維

特比解碼協處理器(VCP)並針對咬尾編碼的特性，中斷服務常式(ISR)以及增強型直接

記憶體存取(EDMA)進行研究。此外我們也利用 3L Diamond 的 EDMA 進行 VCP 在多

個 DSP 運算處理的應用。在論文中，我們利用 C 語言所模擬的迴旋碼在加成性白色

高斯通道下和利用 VCP 應用於迴旋碼進行效能及速度上的比較。在效能錯誤率上，

受限於實點數及 VCP 輸入位元數的硬體條件下，若以相同條件比較而言，兩者的效

能是接近的。而在速度方面，經過在 DSP 平台上最佳化我們的程式後，分別於 CCS 模
擬器和 3L 測量上，迴旋編碼的編碼器部份，可以到每秒 16,667K 和 3,764K 位元的處

理速度，而在 VCP 方面解碼器的部份可以達到每秒 7,897K 和 2,997K 位元的處理速

度，C 語言模擬方面則可以達到每秒 805K 和 632K 位元的處理速度。簡而說之，若

以解碼器觀點而言，VCP 提升了速度為 9.8 和 4.7 倍，分別針對 CCS 模擬器和 3L 
Diamond 測量而得到數據。 

本論文後半部份重點，研究 IEEE 802.16e OFDMA 所訂定的渦輪迴旋碼(CTC)系
統並且實現在數位訊號處理器。闡明渦輪迴旋碼的雙二位元循環遞迴系統迴旋

(duo-binary CRSC)編碼與最大對數事後機率(max-log MAP)解碼演算法。我們利用 C
語言驗證系統演算法上的正確性，並在加成性白色高斯通道下模擬了各種調變。接著

在 TI C6416 DSP 平台實現，於 3L Diamond 測量上方面，編碼器部份可以到每秒 8,223
位元的處理速度，而解碼器的部份僅可以達到每秒 30K 位元的處理速度。之後我們對

於解碼器做了一些最佳化的改善，使解碼器的速度增進約 10 倍，進而可以達到每秒

300K 位元的處理速度。 
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Abstract 
 

In the IEEE 802.16e wireless communication standard, a forward error correction (FEC) 
mechanism is presented at the transmitter side to reduce the noisy channel effect. The focus 
is on the channel coding. 

The focus of the fist part of this thesis is the research of the convolutional code (CC) 
with tail biting defined in IEEE 802.16e OFDMA standard and implement the project on 
Viterbi-decoder coprocessor (VCP) of the Texas Instruments (TI)’s TMS320C6416T digital 
signal processor (DSP) and also sturdy for tail-biting encoding property, interrupt service 
routine (ISR) and enhanced direct memory access (EDMA). Besides, we also employ the 
EDMA under 3L Diamond real-time operating system (RTOS) for the VCP applications of 
multi-DSP operation. We compare CC in AWGN channel on the C program to CC on the 
VCP applications for BER performance and processing rate. In BER performance, the 
simulation is limited to the hardware fixed-point and VCP branch metric input bit numbers; 
however, if we utilize the same condition to compare them, we can find their performance 
are close. In processing rate, after optimizing the programs on the DSP platform, encoder 
can achieve two data processing rates of 16,667 Kbps and 3,764 Kbps, the VCP decoder 
can achieve two processing rates of 7,897 Kbps and 2,997 Kbps and the C program decoder 
can achieve two processing rates of 805 Kbps and 632 Kbps, respectively on the C6416 
CCS simulator and 3L Diamond. In short, we utilize the CCS and 3L to measure, finding 
decoding processing rate can be improve significantly about 9.8 and 4.7 times, respectively. 

The focus of second part is the research of the convolutional turbo code (CTC) defined 
in IEEE 802.16e OFDMA and implement on the C6416 DSP. We explain the duo-binary 
circular recursive systematic convolutional encoding (duo-binary CRSC) and the max-log 
MAP decoding algorithm. We employ the C program to insure the correctness of our 



algorithm and simulate the CTC for different modulation in AWGN; then, we implement on 
TI C6416 DSP. The encoder can achieve a data processing rate of 8,223 Kbps and the 
decoder can achieve a processing rate of 30 Kbps on the 3L. Then we utilize some 
optimized techniques to improve the decoder's speed, which is approximately 10 times 
speeded up in decoding rate. Therefore, the decoder can achieve a further data processing 
rate of 300 Kbps.  
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Chapter 1

Introduction

1.1 Scope of the Work

Digital wireless transmission is a trend in the next generation of consumer electronics. Due to

this demand high data transmission rate and mobility are needed. The OFDM modulation

technique for wireless communication has been a main stream in recent years. IEEE has

completed several standards, including the IEEE 802.11 series for LANs (local area networks)

and IEEE 802.16 series for MANs (metropolitan area networks), based on OFDM technique.

Our study is based on the IEEE 802.16e standard, which specifies the air interface of mobile

broadband wireless multiple access systems providing multiple access.

In wireless communication, the transmitted signals are easily interfered and distorted by

variance things sources such as the crowd traffic, bad weather, the obstacle of buildings,

etc. Digital wireless transmission with multimedia contents such as audio and video is a

trend. These services often exhibit high data rates and require high quality reproduction.

To improve the robustness of the wireless communication against the noisy channel condition,

the FEC (forward-error-correcting coding) mechanism is a must in almost every commercial

communication standard, including the IEEE 802.16e.

CC (convolutional code) with tail-biting and CTCs (convolutional turbo codes) comprise
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the mandatory channel coding schemes in Mobile WiMAX. A growing number of research

studies are now available to shed some light on the convolution code and turbo code. A

number of studies have been conducted using viterbi algorithm as the convolution decoding

and BCJR algorithm as the turbo decoding. There have been numerous studies in the

literature dealing with different decoding algorithms.

However we need to reduce the complexity for actual DSP implementation. In convolu-

tion code, the TI C6416 is equipped with a Viterbi-decoder coprocessor (VCP) [19]. Using

this coprocessor can be helpful in raising the decoding speed. Furthermore, we also consider

runnig the VCP under 3L Diamond RTOS for more digital signal processors (DSPs) applica-

tions. In addition, We also discuss the CTC in IEEE 802.16e for OFDMA. It uses a double

binary circular recursive systematic convolutional (CRSC) code, which makes CTC efficient

for coding of data cells in blocks. Note that “circular” can be equated with tail-biting, which

means the initial state of the encoding start frame to be the same as the end state of the

encoding end frame.

In this thesis, my work can be summarized as following:

• Study IEEE 802.16e specifications.

• Study tail-biting CC.

– Study TI Viterbi-decoder coprocessor (VCP) and 3L Diamond EDMA.

– Design tail-biting CC with VCP.

• Study CTCs.

– Design rate-1/3 CTC floating-point and fixed-point versions.

– Compare the performance and complexity.

– Use optimization methods to implement CTC on DSP.
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1.2 Organization of This Thesis

This thesis is organized as follows.

• Chapter 2 introduces CC with tail-biting and the CTC (convolution turbo code) of

IEEE 802.16e specifications.

• Chapter 3 describes the DSP implementation environment, which is composed of the

VCP, TI EDMA, and 3L EDMA.

• Chapter 4 discusses simulation and the DSP implementation of the convolutional de-

code with VCP.

• Chapter 5 discusses simulation and the DSP implementation of the CTC encoder and

decoder.

• Chapter 6 contains the conclusion and points out some future work.
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Chapter 2

Overview of CC and CTCs in IEEE
802.16e OFDMA

Convolutional code with tail-biting and convolutional turbo codes comprise the mandatory

channel coding schemes in Mobile WiMAX. In this chapter, we introduce their specifications

in IEEE 802.16e and their decoding methods.

2.1 Tail-Biting Convolutional Code Specifications [1]

The contents of this section have been taken to a large extent from [2], [3].

The mandatory channel coding scheme used in IEEE 802.16e OFDMA is as shown in Fig.

2.1. The input data stream is processed by the randomizer to clean up the bit correlation,

and then each data block is encoded by the convolutional encoder with tail-biting, which

means the encoder starts in the same state as it ends up after encoding. The block-by-block

coding makes the convolutional code effectively a block code.

However, we do not implement the repetition block, which can be used to further increase

signal margin over the modulation and FEC mechanisms, for the channel coding procedures

in IEEE 802.16e. As the repetition block can be applied only to QPSK modulation, we

bypass it in the present study. The reader interested in the repetition block can refer to
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Figure 2.1: Structure of convolutional coding in transmitter (top path) and decoding in
receiver (bottom path).

relevant material in [1].

We note again that our study concerns convolutional code with tail-biting, because an

optional channel coding scheme of IEEE 802.16e is convolutional code with zero-tailing,

which means the encoder is forced to return to the all-zero state after encoding. The two

can be confused easily.

Between the convolutional encoder and the modulator is a bit interleaver, which protects

the convolutional code from severe impact of burst errors and increases overall coding per-

formance. This approach has been termed “bit-interleaved coded modulation (BICM)” in

the literature [4].

To make the system more flexibly adaptable to the channel condition, 19 coding-modulation

schemes are defined in IEEE 802.16e, as shown in Table 2.1. The different coding rates are

made by puncturing of the native convolutional code. The puncturing mechanism in convo-

lutional coding can provide variable code rates through one convolutional encoder.

2.1.1 Randomizer [1]

The randomizer is a pseudo random binary sequence (PRBS) generator defined by the poly-

nomial 1 + X14 + X15, as depicted in Fig. 2.2. Data randomization is performed on all data

transmitted on the downlike (DL) and uplink (UL), expect the frame control header (FCH).

The randomization is initialized on each FEC block.
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Table 2.1: Mandatory Channel Coding Schemes for Each Modulation Method

Modulation

Uncoded
Block Size

(bytes)

Overall Code
Rate

Coded Block
Size (bytes)

Number of
Used

Sub-channels

QPSK 6 1/2 12 1
QPSK 12 1/2 24 2
QPSK 18 1/2 36 3
QPSK 24 1/2 48 4
QPSK 30 1/2 60 5
QPSK 36 1/2 72 6
QPSK 9 3/4 12 1
QPSK 18 3/4 24 2
QPSK 27 3/4 36 3
QPSK 36 3/4 48 4
16QAM 12 1/2 24 1
16QAM 24 1/2 48 2
16QAM 36 1/2 72 3
16QAM 18 3/4 24 1
16QAM 36 3/4 48 2
64QAM 18 1/2 36 1
64QAM 36 1/2 72 2
64QAM 24 2/3 36 1
64QAM 27 3/4 36 1
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Figure 2.2: PRBS for data randomization (from [1]).

If the amount of data to transmit does not fit exactly the amount of data allocated,

padding of 0xFF (“1” only) shall be added to the end of the transmission block, up to the

amount of data allocated. Here, the amount of data allocated means the amount of data that

corresponds to the amount of slots bNs/Rc, where Ns is the number of the slots allocated

for the data burst and R is the repetition factor used.

Each data byte to be transmitted shall enter sequentially into randomizer, msb first, to

make the “0” and “1” bits in the input data streams well-distributed and hence improve the

coding performance. The randomization is applied only to information bits. Preambles are

not randomized. In both UL and DL, the randomizer is initialized with the vector

(LSB) 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1 (MSB).

As we do not implement the HARQ mechanism, we bypass it in the present study. Note

that the randomizer can be initialized with different vector for HARQ required, which can

refer to [1] in detail.

2.1.2 Convolutional Encoder [1]

Each block is encoded by a binary convolutional encoder, which has native rate 1/2 and

constraint length 7. The generator polynomials for the two output bits are 171OCT and

133OCT , respectively, as depicted in Fig. 2.3.
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Figure 2.3: Convolutional encoder of rate 1/2 (from [1]).

Table 2.2: The Convolutional Code with Puncturing Configuration

Code Rates
Rate 1/2 2/3 3/4
Dfree 10 6 5
X 1 10 101
Y 1 11 110

XY X1Y1 X1Y1Y2 X1Y1Y2X3

The coded bits may be punctured to allow different rates, which is known as rate-

compatible punctured convolutional coding (RCPC). Furthermore, tail-biting is performed,

by initializing the encoder’s memory with the last 6 data bits of the block.

Punctured Convolutional Code

Puncturing patterns and serialization order of the convolutional code in IEEE 802.16e are

as defined in Table 2.2. In this table, “1” means a transmitted bit and “0” a removed bit,

whereas X and Y are in reference to Fig. 2.3. Note that the Dfree after puncturing is lower

than that of the native convolutional code at rate 1/2, which is equal to 10 [8, Chapter 8].
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Tail-Biting

The CC in IEEE 802.16e is terminated in a block; it therefore becomes a block code. In

general, there are three methods to achieve code termination [5]. For ease of understanding,

we describe these methods in terms of a binary (n, k, m) CC (of rate k/n and register length

m) for an information sequence length of L bits.

• Direct truncation. The codeword is produced by inputting into the encoder (initialized

with all zeros) L information bits, so the codeword length is nL/k. However, this code

has the disadvantage that there is lower error protection ability afforded to the last

information bits.

• Zero tail. The codeword is produced by inputting into the encoder (initialized with

all zeros) L information bits followed by m zeros (tail bits), so the codeword length

is n(L + m)/k. This code has the disadvantage of rate loss of m/(L + m) since the

effective rate is (k/n)(L/(L + m)) = (k/n)(1−m/(L + m)).

• Tail biting. We first initialize the encoder with the last m information bits, and then

inputting into the encoder L information bits to produce codeword whose length is

nL/k. This code has the disadvantage of complex Viterbi decoding since the starting

and ending states of the trellis are unknown.

IEEE 802.16e uses the tail-biting approach, which has better performance compared with

direct-truncation CC and does not lose rate compared with zero-tail CC. Nevertheless, we

pay the price of a complex decoder. The optimal decoder of tail-biting convolutional code,

as suggested in [5], is to run M parallel Viterbi decoders, where M = 2m is the number of

states in the trellis. Each Viterbi decoder postulates a different starting and ending state.

The Viterbi decoder that produces the globally best metric gives the maximum likelihood
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Table 2.3: Bit Interleaved Block Sizes and Modulos

Modulation
Coded Bits per

Subcarrier (Ncpc)
Modulo used

(d)

QPSK 2 16
16QAM 4 16
64QAM 6 16

estimate of the transmitted bits. The obvious disadvantage of this method is the M times

complexity compared to decoding for the code with zero tail bits. Therefore, we consider

a suboptimal decoder which can reduce the complexity to less than 2 times the normal

Viterbi algorithm. This decoder combines the algorithms proposed in [6] and [7] and will be

introduced later.

2.1.3 Interleaver [1]

The encoded data bits are interleaved by a block interleaver with a block size corresponding

to the number of coded bits per the specified allocation, Ncbps (see Table 2.3). The inter-

leaver is defined by a two-step permutation. The first ensures that adjacent coded bits are

mapped onto non-adjacent carriers. The second insures that adjacent coded bits are mapped

alternately onto less or more significant bits of the constellation, thus avoiding long runs of

lowly reliable bits.

Let s = Ncpc/2, k be the index of the coded bit before the first permutation, m the

index after the first and before the second permutation and j the index after the second

permutation, just prior to modulation mapping. The first permutation is defined by

m = (
Ncbps

d
) · kmod(d) + floor(

k

d
), k = 0, 1, · · · , Ncbps − 1, (2.1)
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Figure 2.4: The second permutation of interleaver.

and the second permutation is defined by

j = s · floor(
m

s
) + (m + Ncbps − floor(

d ·m
Ncbps

))mod(s), m = 0, 1, · · · , Ncbps − 1. (2.2)

The first permutation is a block interleaving. And in Fig. 2.4, we show the second permuta-

tion after the block interleaving.

2.1.4 Modulation [1]

After bit interleaving, the data bits are entered serially to the constellation mapper. Gray-

mapped QPSK and 16-QAM are supported, whereas the support of 64-QAM is optional.

The constellations as shown in Fig. 2.5 shall be normalized by multiplying the constellation

points with the indicated factor c to achieve equal average power. The constellation-mapped

data shall be subsequently modulated onto the allocated data carriers.

2.2 Decoding of CC

In this section, we introduce the decoding method for CC. As there is a bit interleaver

between the convolutional encoder and the modulator in the transmitter, the decoder should

be based on the super-trellis combining the convolutional code, the interleaver, and the QAM
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Figure 2.5: QPSK, 16-QAM, and 64-QAM constellations (from [1]).

modulator. So we mainly introduce the demodulation for bit-interleaved modulation in the

section. For decoding of CC with tail-biting, we discuss it in chapter 3 along with the VCP

and discuss how to do tail-biting with the VCP in chapter 4.

2.2.1 Demodulation for Bit-Interleaved Coded Modulation [9]

Let a[i] = aI [i] + jaQ[i] denote the QAM symbol transmitted in the ith sub-carrier of

OFDMA symbol and {bI,1, · · · , bI,k, · · · , bI,t, bQ,1, · · · , bQ,k, · · · , bQ,t} be the corresponding

bit sequence. Assuming that the ISI (inter–OFDMA symbol interference) and ICI (inter–

channel interference) are completely eliminated, we can write the received signal of the

sub-carrier as

r[i] = Gch[i] · a[i] + w[i], (2.3)

where Gch[i] is the complex channel frequency response at the ith sub-carrier and w[i] is

the complex additive white Gaussian noise (AWGN) with variance σ2 = N0. If the channel
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estimate is error free, the output of the one-tap equalizer is given by

y[i] = a[i] + w[i]/Gch[i] = a[i] + w′[i], (2.4)

where w′[i] is still complex AWGN noise with variance σ′2(i) = σ2/|Gch[i]|2.

According to the MAPSE (maximum a posterior sequence estimation) criterion, the

following maximization should be performed to estimate the encoded bit sequence b:

b̂ = arg max
b

P [b|r], (2.5)

where r is the received sequence of QAM signals. Assume that the transmitted symbols

are equally distributed. Then the MAPSE criterion can be replaced by the ML (maximum

likelihood) criterion as:

b̂ = arg max
b

P [r|b]. (2.6)

We further assume that Gch[i] is known to the receiver and that the transmitted bits are

independent and identically distributed (i.i.d.).

For each in-phase or quadrature bit (i.e., bI,k or bQ,k), two metrics can be derived cor-

responding to the two possible values 0 and 1, respectively. For bit bI,k, first the QAM

constellation is split into two partitions of complex symbols, namely S
(0)
I,k comprising the

symbols with a “0” in position (I, k) and S
(1)
I,k, which is complementary. Then the two

metrics are obtained by

m′
c(bI,k) =

∑

α∈S
(c)
I,k

log p(r[i]|a[i] = α) ≈ max
α∈S

(c)
I,k

log p(r[i]|a[i] = α), c = 0, 1. (2.7)

Since the conditional pdf of r[i] is complex Gaussian as

p(r[i]|a[i] = α) =
1√
2πσ

exp{−1

2

|r[i]−Gch[i]α|2
σ2

} (2.8)

and r[i] = Gch[i] · y[i], the metrics defined in (2.35) are equivalent to

mc(bI,k) = |Gch[i]|2 · min
α∈S

(c)
I,k

|y[i]− α|2. (2.9)
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Table 2.4: Bit Metric for Method-ML and Method-LLR

Method-ML Method-LLR
Bit metric (decided “0”) m0 [1

4
(m0 −m1) + 1)]2

Bit metric (decided “1”) m1 [1
4
(m0 −m1)− 1)]2

Finally, these metrics are de-interleaved, i.e., each couple (m0,m1) is assigned to the bit

position in the decoded sequence according to the de-interleaver map, and fed to the Viterbi

decoder which selects the binary sequence with the smallest cumulative sum of metrics. We

name this method Method-ML in the following discussion.

From the concept of log-likelihood ratio (LLR), a method named Method-LLR is proposed

in [9] to reduce the complexity of Method-ML. It defines LLR(bI,k) as

LLR(bI,k) , |Gch[i]|2
4

{ min
α∈S

(0)
I,k

|y[i]− α|2 − min
α∈S

(1)
I,k

|y[i]− α|2}

, (m0(bI,k)−m1(bI,k))/4

, |Gch[i]|2 ·DI,k. (2.10)

The quadrature part is similarly defined. The metrics sent to the Viterbi decoder in the

two methods are defined in Table 2.4. Note that the difference between the bit metrics for

the decided “0” and “1” is the same for the two methods, namely ±(m0 −m1). Thus the

decoded bit sequence will be the same for the two methods.

In Method-LLR, only (m0−m1)/4 is sent to the de-interleaver while in Method-ML, both

m0 and m1 are sent. Besides, we can reduce (m0 −m1)/4 = |Gch[i]|2 ·DI,k to a simple form

constituting of yI [i] itself because Gray coding is used in the constellation map of M -ary

QAM modulation in IEEE 802.16e.

Figure 2.6 shows the partitions of (S
(0)
I,k, S

(1)
I,k) for the generic bit bI,k in the case of 16-QAM.
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I
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BI,1 BI,2

Q Q

I

Figure 2.6: Metric partitions of the 16-QAM constellation (from [9]).

As a consequence,

DI,k =
1

4
{ min

α∈S
(0)
I,k

|y[i]− α|2 − min
α∈S

(1)
I,k

|y[i]− α|2}

can be simplified as follows.

DI,1 =




−yI [i], |yI(i)| ≤ 2
−2(yI [i]− 1), yI(i) > 2
−2(yI [i] + 1), yI(i) < 2





∼= −yI [i], (2.11)

DI,2 = |yI [i]| − 2. (2.12)

The same observation holds for QPSK and 64-QAM constellations. For QPSK, DI = −yI [i].

For 64-QAM,

DI,1 =





−yI [i], |yI [i]| ≤ 2
−2(yI [i]− 1), 2 < yI [i] ≤ 4
−3(yI [i]− 2), 4 < yI [i] ≤ 6
−4(yI [i]− 3), yI [i] > 6
−2(yI [i] + 1), −4 ≤ yI [i] < −2
−3(yI [i] + 2), −6 ≤ yI [i] < −4
−4(yI [i] + 3), yI [i] < −6





∼= −yI [i], (2.13)

DI,2 =





2(|yI [i]| − 3), |yI [i]| ≤ 2
−4 + |yI [i]|, 2 < |yI [i]| ≤ 6
2(|yI [i]| − 5), |yI [i]| > 6





∼= −4 + |yI [i]|, (2.14)

DI,3 =

{ −|yI [i]|+ 2, |yI [i]| ≤ 4
|yI [i]| − 6, |yI [i]| > 4

}
= ||yI [i]| − 4| − 2. (2.15)
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Figure 2.7: CTCs coding block diagram (from [1]).

2.3 Convolutional Turbo Codes Specifications [1]

The convolution turbo codes (CTCs) defined in IEEE 802.16e OFDMA is shown in Fig. 2.7.

The input data are first encoded by the CTC encoder. Then, they are interleaved by the

interleaving block and followed by puncturing. Likewise, there are three different modulation

types. Note that the interleaving and the puncturing are also called subpacket generation.

CTC is not only defined in IEEE 802.16e OFDMA but also in IEEE 802.16e OFDM. They

are differentiated by their puncturing mechanism and subpacket generation.

Overview of CTC

Turbo code is first presented for error correction coding in 1993, which has provided for very

long codewords with only modest decoding complexity.

In later years, researchers have shown that non-binary circular Turbo codes can offer many

advantages in comparison to the classical single binary Turbo codes. Hence they have been

used as one of FEC options in some recent satellite and mobile communication standards,

in particular, DVB-RCS (Digital Video Broadcasting—Return Channel via Satellite) and

WiMAX (IEEE 802.16e).
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The Double-Binary Code Advantages [17]

• Better convergence: The advantage is well marked when replacing binary codes by

double-binary code. The gain is less noticeable for inputs > 2.

• Larger minimum distance.

• Less sensitivity to puncturing patterns.

• Reduced latency.

– As data are processed using symbols of 2 bits and ignoring the side effects, latency

is divided by 2, from both coding and decoding viewpoints.

– The trellis contains half as many states as a binary code of identical constraint

length and the decoding hardware can be clocked at half the rate as a binary code

[16, Chapter 12].

• Robustness of the decoder.

• Better performance for max-log-MAP algorithm: The duo-binary code can be decoded

with max-log-MAP algorithm, which loses only about 0.1–0.2 dB relative to the optimal

log-MAP algorithm. This is in contrast to binary codes, which lose about 0.3–0.4 dB

when decoded with the max-log-MAP algorithm [16, Chapter 12].

A more detailed understanding of this relationship can be gained form [17].

2.3.1 CTC Encoder in IEEE 802.16e OFDMA [1]

The CTC encoder, including its constituent encoder, is shown in Figure 2.8. It uses a double

binary circular recursive systematic convolutional (CRSC) code. The bits of the data to be

encoded are alternately fed to A and B, starting with the MSB of the first byte being fed to

17



Figure 2.8: CTC encoder (modified from [1]).

A. The encoder is fed by blocks of k bits or N couples (k = 2×N bits). For all the frame

sizes, k is a multiple of 8 and N is a multiple of 4. Further, N is limited to 8 ≤ N/4 ≤ 1024.

The polynomials defining the connections are described in octal and symbol notations as

follows:

• For the feedback branch: 0xB, equivalently 1 + D + D3.

• For the Y parity bit: 0xD, equivalently 1 + D2 + D3.

• For the W parity bit: 0x9, equivalently 1 + D3.

First, the encoder (after initialization by the circulation state SC1) is fed the sequence in the

natural order (position 1) with the incremental address i = 0, . . . , N − 1, which is called C1

encoding. Second, the encoder (after initialization by the circulation state SC2) is fed the

sequence in the natural order (position 2) with the incremental address j = 0, . . . , N − 1,
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Figure 2.9: CTC rate 1/3 encoder flow chart.

which is called C2 encoding. The order in which the encoded bits are fed into the subpacket

generation block is A, B, Y1, Y2, W1, W2 =

A0, A1, ..., AN−1, B0, B1, ..., BN−1,

Y1,0, Y1,1, ..., Y1,N−1, Y2,0, Y2,1, ..., Y2,N−1,

W1,0,W1,1, ..., W1,N−1,W2,0,W2,1, ...,W2,N−1.

However, we can represent the above rule with the flow chart shown as Fig. 2.9. Note that

CSLT express the circulation state look-up table, as shown in Table2.5.

The encoding block size shall depend on the number of slots allocated and the modulation

specified for the current transmission. Concatenation of a number of slots can be performed

in order to make larger blocks of coding where it is possible, with the limitation of not

exceeding the largest supported block size for the applied modulation and coding.

There are 32 different block sizes as shown in Fig. 2.10. The specification for QPSK-1/2

may be in error, which should be 9 rather than 10. The concatenation rule shall not be used
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Figure 2.10: CTC encoding slot concatenation for different rate (modified from [1]).

when using IR HARQ (incremental redundancy hybrid automatic repeat request).

2.3.2 CTC Interleaver [1]

The interleaver requires the parameters P0, P1, P2, and P3 shown in Fig. 2.11, which gives

the block sizes, code rates, channel efficiency, and code parameters for different modulation

and coding schemes.

The two-step interleaver can be performed as shown in Fig. 2.12, where two possible

errors in the draft standard is indicated.

2.3.3 CTC Tail-Biting [1], [10]

For recursive encoders, tail-biting is not as easy as it is for non-recursive encoders. To ensure

that the starting state is the same as the ending state, which is called circulation state, for

recursive encoders an initial encoding of the whole sequence has to be performed [10].

The initial encoding is started in the all-zero state and depending on the information

sequence it ends up in a special state, Send. Based on this ending state, the circulation state
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Figure 2.11: CTC channel coding per modulation (modified from [1]).
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Figure 2.12: CTC interleaver in two steps (modified from [1]).

can be computed using linear algebra methods based on the state space description of the

encoder. In order to eliminate this linear algebra computation, the IEEE 802.16 provides a

so-called circulation state look-up table, where the correspondence between the final state

Send of the initial encoding process and the circulation state as a function of the information

sequence length is listed in Table 2.5.

Afterwards, the real encoding can be started, whereby the encoder state is initialized

now with the circulation state. Hence, a tail-biting encoder needs two complete encoding

processes, which adds complexity to the encoder. Complexity is also added to the decoder

of the constituent code. The complexity added to the decoder compared to the case where

the starting and ending state is known to the decoder is in the additional wrap-around for

the forward and backward recursion of the MAP decoder. Since the wrap-around length can

be kept small, the additional complexity is quite small [10].
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Table 2.5: Circulation State Look-Up Table (SC1 and SC2)

Nmod7 S0N−1

0 1 2 3 4 5 6 7

1 0 6 4 2 7 1 3 5
2 0 3 7 4 5 6 2 1
3 0 5 3 6 2 7 1 4
4 0 4 1 5 6 2 7 3
5 0 2 5 7 1 3 4 6
6 0 7 6 1 3 4 5 2

Determination of CTC Circulation States [1]

The state of the encoder is denoted S (0 ≤ S ≤ 7) with S = 4S1 + 2S2 + S3, as shown in

Fig. 2.8. The circulation states SC1 and SC2 are determined by the following operations:

• Initialize the encoder with state 0.

• Encode the sequence in the natural order for the determination of SC1 or in the in-

terleaved order for determination of SC2. Let the final state in each case be denoted

S0N−1.

• According to the length N of the sequence, use Table 2.5 to find SC1 and SC2.

2.3.4 Subpacket Generation (Channel Interleaver or Interleaver
and Puncturing) [1]

The proposed FEC structure punctures the mother codeword to generate a subpacket with

various coding rates. The framework consists of the following:

• bit separation,
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• subblock interleaving,

• bit grouping, and

• bit selection.

The subpacket is also used in HARQ packet transmission. Figure 2.7 shows the block

diagram of subpacket generation. A rate-1/3 CTC encoded codeword goes through inter-

leaving and the puncturing. Figure 2.13 shows the block diagram of the interleaving block.

The puncturing is performed to select a consecutive interleaved bit sequence that starts at

some point of whole codeword.

For the first transmission, the subpacket is generated to select the consecutive interleaved

bit sequence that starts from the first bit of the systematic part of the mother codeword. The

length of the subpacket is chosen according to the needed coding rate reflecting the channel

condition. The first subpacket can also be used as a codeword with the needed coding rate

for a burst where HARQ is not applied.

Bit Separation

All of the encoded bits can be demultiplexed into six subblocks denoted A, B, Y 1, Y 2, W1,

and W2. The encoder output bits are sequentially distributed into the six subblocks with

the first N bits going to the A subblock, the second N to the B subblock, the third N to

the Y 1 subblock, the fourth N to the Y 2 subblock, the fifth N to the W1 subblock, and the

sixth N to the W2 subblock.

Subblock Interleaving

The six subblocks can be interleaved separately. The interleaving is performed in unit of

bits. The sequence of interleaver output bits for each subblock can be generated by the
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procedure described below. The entire subblock of bits to be interleaved is written into an

array at addresses from 0 to the number of the bits minus one (N − 1), and the interleaved

bits are read out in a permuted order with the ith bit being read from the address ADi

(i = 0, . . . , N − 1), as follows:

1. Determine the subblock interleaver parameters, m and J . Table 2.6 gives these para-

meters.

2. Initialize i and k to 0.

3. Form a tentative output address Tk according to

Tk = 2m(k mod J) + BROm(bk/Jc) (2.16)

where BROm(y) indicates the bit-reversed m-bit value of y (e.g.,BRO3(6) = 3).

4. If Tk is less than N , ADi = Tk and increment i and k by 1. Otherwise, discard Tk and

increment k only.

5. Repeat steps 3 and 4 until all N interleaver output addresses are obtained.

Bit Grouping

The channel interleaver output sequence can consist of the interleaved A and B subblock

sequences, followed by a bit-by-bit multiplexed sequence of the interleaved Y 1 and Y 2 sub-

block sequences, followed by a bit-by-bit multiplexed sequence of the interleaved W1 and

W2 subblock sequences.

The bit-by-bit multiplexed sequence of interleaved Y 1 and Y 2 subblock sequences can

consist of the first output bit from the Y 1 subblock interleaver, the first output bit from

the Y 2 subblock interleaver, the second output bit from the Y 1 subblock interleaver, the
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Table 2.6: Parameters for the Subblock Interleavers

Subblock interleaver
Block size
(bits) NEP N m J

48 24 3 3
72 36 4 3
96 48 4 3
144 72 5 3
192 96 5 3
216 108 5 4
240 120 6 2
288 144 6 3
360 180 6 3
384 192 6 3
432 216 6 4
480 240 7 2

Figure 2.13: Block diagram of CTC channel interleaving scheme (from [1]).
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second output bit from the Y 2 subblock interleaver, etc. The bit-by-bit multiplexed sequence

of interleaved W1 and W2 subblock sequences can consist of the first output bit from the

W1 subblock interleaver, the first output bit from the W2 subblock interleaver, the second

output bit from the W1 subblock interleaver, the second output bit from the W2 subblock

interleaver, etc. Figure 2.13 shows the interleaving scheme. The order of bit grouping

sequence is as follows:

A′
0,A

′
1,...,A

′
N−1,B

′
0,B

′
1,...,B

′
N−1,

Y ′
1,0,Y

′
2,0,Y

′
1,1,Y

′
2,1,Y

′
1,2,Y

′
2,2,...,Y

′
1,N−1,Y

′
2,N−1,

W ′
1,0,W

′
2,0,W

′
1,1,W

′
2,1,W

′
1,2,W

′
2,2,...,W

′
1,N−1,W

′
2,N−1.

Bit Selection

Lastly, bit selection is performed to generate the subpacket. The puncturing block is referred

as bits selection in the viewpoint of subpacket generation. The mother code is transmitted

with one of the subpackets. The bits in a subpacket are formed by selecting specific sequences

of bits from the interleaved CTC encoder output sequence. The resulting subpacket sequence

is a binary sequence of bits for the modulator. The parameters for bit selection are listed

below:

• k: the subpacket index when IR HARQ is enabled.

– When IR HARQ is not used, k=0 (for the first transmission and increases by one

for the next subpacket).

– When there are more than one FEC block in a burst, the subpacket index for

each FEC block shall be the same.

• NEP : the number of bits in the encoder packet (before encoding).

27



• NSCHk: the number of concatenated slots for the subpacket, as defined in [1, Table

569] for the non-HARQ and Chase HARQ CTC schemes.

• mk: the modulation order for the kth subpacket (mk=2 for QPSK, 4 for 16-QAM, 6

for 64QAM).

• SPIDk: the subpacket ID for the kth subpacket (for the first subpacket, SPIDk=0=0).

Also, let the scrambled and selected bits be numbered from zero with the 0th bit being

the first bit in the sequence. Then, the index of the ith bit for the kth subpacket shall be

Sk,i = (Fk + i)mod(3 ·NEP ) (2.17)

where i = 0, . . . , Lk−1, Lk = 48 ·NSCHk ·mk, and Fk = (SPIDk ·Lk)mod(3·NEP ). The NEP ,

NSCHk, mk , and SPID values are determined by the base station (BS) and can be inferred

by the subscriber station (SS) through the allocation size in the DL-MAP and UL-MAP.

The above bit selection makes the following possible.

• The first transmission includes the systematic part of the mother code. Thus it can

be used as the codeword for a burst where the HARQ is not applied or when Chase

HARQ is applied.

• The location of the subpacket can be determined by the SPID without the knowledge

of previous subpacket. This is a very important property for IR HARQ retransmission.

Note that the optional IR HARQ is not considered in our research, so we bypass a detailed

introduction of the IR HARQ mechanism.
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Figure 2.14: Block diagram of a turbo decoder (from [11]).

2.4 Decoding of CTC

2.4.1 The Turbo Decoding Algorithm [11]

A key in turbo codes is the iterative decoding algorithm. In iterative decoding, the decoders

for the constituent encoders take turns operating on the received data.

Each decoder produces an estimate of the probabilities of the transmitted symbols; there-

fore, the decoders are soft output decoders. Probabilities of the symbols from one decoder,

known as extrinsic probabilities, are interleaved and passed to the other decoder, where

they are used as prior probabilities for the other decoder. The decoder thus passes proba-

bilities back and forth between the decoders, with each decoder combining the evidence it

receives from the incoming prior probabilities with the parity information provided by the

code. After some number of iterations, hopefully the decoder converges to an estimate of

the transmitted codeword. Since the output of one decoder is fed to the input of the next

decoder, the decoding algorithm is called a turbo decoder, for it is reminiscent of turbo

charging an automobile engine using engine-heated air at the air intake. Thus it is not really

the code which is “turbo,” but rather the decoding algorithm which is “turbo.” The general

operation of the turbo decoding algorithm is shown in Fig. 2.14.

29



The MAP Decoding Algorithm [11], [13]

One maximum a posteriori (MAP) decoding algorithm particularly suitable for estimating bit

and/or state probabilities for a finite-state Markov system is the BCJR algorithm, named

after Bahl, Cock, Jelinek, and Raviv who proposed it originally in 1974 [12]. While this

algorithm has been known for some time, it was not extensively used for the decoding of

convolutional codes because of the availability of a lower complexity Viterbi algorithm (for

maximum-likelihood decoding of convolutional codes).

In many respects, the BCJR algorithm is similar to the Viterbi algorithm. However,

the conventional Viterbi algorithm computes hard decisions by outputting a single overall

decision of the entire sequence of bits (or codeword) at the end, without providing the

reliability of the decoder decisions on individual bits. Furthermore, the branch metric is based

upon log likelihood values; no prior information is incorporated into the decoding process.

The BCJR algorithm, on the other hand, computes soft outputs in the form of posterior

probabilities for each message bit. While the Viterbi algorithm produces the maximum

likelihood message sequence (or codeword), the BCJR algorithm produces the a posteriori

most likely sequence of message bits, where the sequence of bits may not correspond to a

continuous path through the trellis. The BCJR algorithm is a soft-input soft-output decoder

that can be used directly in turbo decoding whereas the conventional Viterbi algorithm

cannot without some modification to yield the required soft output. The BCJR algorithm

for MAP decoding of convolutional codes consists of the following steps:

• Compute branch metric γ.

• Compute forward state metric α.

• Compute backward state metric β.
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Figure 2.15: CTC trellis structure of duo-binary convolutional code with feedback encoder
(from [14]).

• Compute extrinsic log likelihood ratio Le.

A more detailed understanding can be gained from [11].

2.4.2 Decoding Rule for CRSC Codes with Non-binary Trellis [14]

The trellis of a double-binary feedback convolutional encoder has the structure shown in Fig.

2.15. The goal of the MAP algorithm is to provide us with

Li(dk) = ln
Pr[dk = i|Observation]

Pr[dk = 0|Observation]

= ln

∑(Sk−1,Sk)
dk=i p(Sk−1, Sk, {yk})∑(Sk−1,Sk)
dk=0 p(Sk−1, Sk, {yk})

, i = 1, 2, 3, (2.18)

where yk is the received sample at time k. The index pair (Sk−1, Sk) determines the informa-

tion symbol (bit couple) dk and the coded symbol xk from time k−1 to time k where dk is in

GF(22) with elements {0,1,2,3}. The sum of the joint probabilities p(Sk−1, Sk, {yk}) in the

numerator or in the denominator of (2.18) is taken over all labeled with dk = i, i = 0, 1, 2, 3,
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where we have used decimal notation for dk instead of binary for convenience. With a mem-

oryless transmission channel, the joint probability p(Sk−1, Sk, {yk}) can be written as the

product of three independent probabilities

p(Sk−1, Sk, {yk}) = p(Sk−1, yj<k) · p(Sk, yk|Sk−1) · p(yj>k, Sk)

, αk−1(Sk−1) · γk(Sk−1, Sk) · βk(Sk) (2.19)

where yj<k denotes the sequence of received symbols yj from the beginning of the trellis up

to time k − 1 and yj>k is the corresponding sequence from time k + 1 up to the end of the

trellis. The forward recursion of the MAP algorithm yields

αk(Sk) =
∑
Sk−1

αk−1(Sk−1) · γk(Sk−1, Sk). (2.20)

The backward recursion yields

βk−1(Sk−1) =
∑
Sk

γk(Sk−1, Sk) · βk(Sk). (2.21)

When a transition between Sk−1 and Sk exists, the branch transition probability is given by

γk(Sk−1, Sk) = p(Sk, yk|Sk−1)

= p(Sk|Sk−1) · p(yk|Sk−1, Sk)

= P (dk) · p(yk|dk). (2.22)

Let the natural logarithm of the branch transition probability metric be

Γk(Sk−1, Sk) = ln γk(Sk−1, Sk) (2.23)

and the natural logarithms of αk(Sk) and βk(Sk) be

Ak(Sk) = ln αk(Sk)

= ln
∑
Sk−1

eAk−1(Sk−1)+Γk(Sk−1,Sk), (2.24)
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Bk−1(Sk−1) = ln βk−1(Sk−1)

= ln
∑
Sk

eΓk(Sk−1,Sk)+Bk(Sk). (2.25)

Then the log-likelihood ratios (2.18) for i = 1, 2, 3 are given by

Li(dk) = ln

∑(Sk−1,Sk)
dk=i p(Sk−1, Sk, {yk})∑(Sk−1,Sk)
dk=0 p(Sk−1, Sk, {yk})

= ln

∑(Sk−1,Sk)
dk=i αk−1(Sk−1) · γi

k(Sk−1, Sk) · βk(Sk)∑(Sk−1,Sk)
dk=0 αk−1(Sk−1) · γ0

k(Sk−1, Sk) · βk(Sk)

= ln

∑(Sk−1,Sk)
dk=i eAk−1(Sk−1)+Γi

k(Sk−1,Sk)+Bk(Sk)

∑(Sk−1,Sk)
dk=0 eAk−1(Sk−1)+Γ0

k(Sk−1,Sk)+Bk(Sk)
. (2.26)

2.4.3 Simplified Max-Log-MAP Algorithm for Double-Binary CTC
[14]

Implementing (2.26) in hardware is difficult and complex. It is also relatively complicated

to implement it in DSP software. We consider the suboptimal max-log-MAP algorithm for

double binary convolutional turbo codes. First, from (2.22) and (2.23),

Γk(Sk−1, Sk) = ln γk(Sk−1, Sk)

= ln[p(yk|dk) · P (dk)]. (2.27)

The distribution of the received symbols is given by, for i=0,1,2,3,

p(yk|dk = i) = p(ys
k|xs

k(i)) · p(yp
k|xp

k(i, Sk−1, Sk))

=
1

π ·N0

e
−Es

N0
[(ys,I

k −xs,I
k (i))2+(ys,Q

k −xs,Q
k (i))2]

· 1

π ·N0

e
−Es

N0
[(yp,I

k −xp,I
k (i,Sk−1,Sk))2+(yp,Q

k −xp,Q
k (i,Sk−1,Sk))2]

= Ck · e0.5·Lc·[ys,I
k ·xs,I

k (i)+ys,Q
k ·xs,Q

k (i)+yp,I
k ·xp,I

k (i,Sk−1,Sk)+yp,Q
k ·xp,Q

k (i,Sk−1,Sk)](2.28)

where ys
k and yp

k represent the received systematic and parity symbols, respectively, ys,I
k , ys,Q

k ,

yp,I
k , and yp,Q

k represent the received bit values transmitted through the I and Q channels, re-

spectively, Lc = 4 · (fading factor) · (code rate) · Eb

N0
represent the channel reliability, and
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Ck = ( 1
π·N0

)2e
−Es

N0
[(ys,I

k )2+(xs,I
k (i))2+(ys,Q

k )2+(xs,Q
k (i))2+(yp,I

k )2+(xp,I
k (i,Sk−1,Sk))2+(yp,Q

k )2+(xp,Q
k (i,Sk−1,Sk))2]

.

Hence,

Γk(Sk−1, Sk) = ln[p(yk|dk) · P (dk)]

= 0.5 · Lc · [ys,I
k · xs,I

k (i) + ys,Q
k · xs,Q

k (i) + yp,I
k · xp,I

k (i, Sk−1, Sk)

+ yp,Q
k · xp,Q

k (i, Sk−1, Sk)] + ln P (dk) + K (2.29)

where the constant K includes the constants and common terms that are cancelled in com-

parisons at later stages. Note that

Ak(Sk) = ln
∑
Sk−1

eAk−1(Sk−1)+Γk(Sk−1,Sk)

≈ max
Sk−1

[Ak−1(Sk−1) + Γk(Sk−1, Sk)] (2.30)

Bk−1(Sk−1) = ln
∑
Sk

eΓk(Sk−1,Sk)+Bk(Sk)

≈ max
Sk

[Γk(Sk−1, Sk) + Bk(Sk)] (2.31)

The above can be derived by the Jacobian logarithm [11], i.e.,

ln(eL1 + eL2) = max(L1, L2) + ln(1 + e−|L1−L2|) (2.32)

If the correction term (i.e., the second RHS term) is omitted and only the max term is

retained, we obtain the above max-function (max-log-MAP) approximation. For iterative

decoding of circular trellis, tail-biting gives

A0(S0) = AN(SN) ∀S0, (2.33)

BN(SN) = B0(S0) ∀SN . (2.34)

As a result, the log-likelihood ratios (2.26) reduce to

Li(dk) ≈ max
(Sk−1,Sk)

[Ak−1(Sk−1) + Γi
k(Sk−1, Sk) + Bk(Sk)]

− max
(Sk−1,Sk)

[Ak−1(Sk−1) + Γ0
k(Sk−1, Sk) + Bk(Sk)]. (2.35)
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We omit the detailed mathematical derivation for separating the log-likelihood ratios into

intrinsic (prior information), systematic and extrinsic information. The interested reader

may refer to [14]. It turns out that the extrinsic information can be expressed as

Le
i (d̂k) = Li(d̂k)− 0.5 · [ys,I

k · xs,I
k (i) + ys,Q

k · xs,Q
k (i)]

+ 0.5 · [ys,I
k · xs,I

k (0) + ys,Q
k · xs,Q

k (0)]− ln
P [dk = i]

P [dk = 0]
. (2.36)

The extrinsic information of the next decoder is computed from the prior information of

previous decoder as

La
i (dk) = ln

P [dk = i]

P [dk = 0]
(2.37)

where i = 0, 1, 2, 3. Since

P [dk = 01] = eLa
1(dk) · P [dk = 00], P [dk = 10] = eLa

2(dk) · P [dk = 00],

P [dk = 11] = eLa
3(dk) ·P [dk = 00], and P [dk = 00]+P [dk = 01]+P [dk = 10]+P [dk = 11] = 1,

we have

P [dk = 00] = 1

1+eLa
1(dk)+eLa

2(dk)+eLa
3(dk) , P [dk = 01] =

La
1(dk)

1+eLa
1(dk)+eLa

2(dk)+eLa
3(dk) ,

P [dk = 10] =
La

2(dk)

1+eLa
1(dk)+eLa

2(dk)+eLa
3(dk) , P [dk = 11] =

La
3(dk)

1+eLa
1(dk)+eLa

2(dk)+eLa
3(dk) .

Using max-function approximation yields

ln P [dk = 00] = −max[0, La
1(dk), L

a
2(dk), L

a
3(dk)],

ln P [dk = 01] = La
1(dk)−max[0, La

1(dk), L
a
2(dk), L

a
3(dk)],

ln P [dk = 10] = La
2(dk)−max[0, La

1(dk), L
a
2(dk), L

a
3(dk)],

ln P [dk = 11] = La
3(dk)−max[0, La

1(dk), L
a
2(dk), L

a
3(dk)].

Assuming equally likely symbols initially, we have

A0(S0) = 0 ∀S0, (2.38)

BN(SN) = 0 ∀SN , (2.39)

La
i (dk) = 0 ∀i, dk. (2.40)
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After sufficient decoding iterations, the decisions are made according to

d̂k =





01, = if L(d̂k) = La
1(dk) and La

1(dk) > 0,

10, = if L(d̂k) = La
2(dk) and La

2(dk) > 0,

11, = if L(d̂k) = La
3(dk) and La

3(dk) > 0,
00, = else,

(2.41)

where L(d̂k) = max[La
1(dk), L

a
2(dk), L

a
3(dk)].

This above algorithm have been known as the max-log-MAP algorithm which only uses

the max functions to compute log-likelihood ratios. But coming with the approximation to

reducing log-likelihood ratios is some performance degradation. We will see the effect later

in the simulation results.
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Chapter 3

DSP Implementation Environment

In our implementation, we employ the DSP baseboard SMT395 made by the Sundance

company, which have a Texas Instruments (TI) TMS320C6416T DSP chip and a Xilinx

Virtex-II Pro FPGA. In this chapter, we discuss the DSP system development environment,

especially the VCP (Viterbi decoder coprocessor) and its features. The TI’s Code Composer

Studio (CCS) EDMA and the 3L Diamond EDMA are also introduced.

3.1 The DSP Baseboard

The DSP card used in our implementation is Sundance’s SMT395 shown in Fig. 3.1. It

houses a 1 GHz 64-bit TMS320C6416T DSP of TI. The SMT395 is supported by TI’s Code

Composer Studio and the 3L Diamond real-time operating system (RTOS) to enable multi-

DSP system implementation with minimum effort by the programmer.

Features of the SMT395 board include:

• 1 GHz TMS320C6416T fixed-point DSP processor with L1 and L2 cache that has 8000

MIPS peak DSP performance.

• Xilinx Virtex II Pro FPGA XC2VP30-6 in FF896 package.
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Figure 3.1: Sundance’s SMT395 module (from [18]).

• 256 Mbytes of SDRAM at 133 MHz.

• Eight 2 Gbit/sec Rocket Serial Links (RSL) for inter module communication.

• Two Sundance High-Speed Bus (50MHz, 100MHz or 200MHz) ports at 32 bits width.

• 8 Mbytes flash ROM for configuration and booting.

3.2 The Viterbi-Decoder Coprocessor (VCP) [19]

The Viterbi-decoder coprocessor (VCP) is on some of the number of the TMS320C6000

DSP family, including C6416, C6418, and C6455. It has been designed to perform Viterbi

decoding for IS2000 and 3GPP wireless standards. We can also use it for other convolutional

decoding applications, including WiMAX.

3.2.1 Overview of VCP [19], [21], [22]

The VCP should be accessed using the EDMA (Enhanced Direct Memory Access) for mostly,

but the CPU must first configure the VCP control values. There are also a number of
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Figure 3.2: VCP block diagram (modified from [19]).

functions available to the CPU to monitor the VCP status and access decision and output

parameter data.

The DSP controls the operation of the VCP using memory-mapped registers and data

buffers. The DSP typically sends and receives data using synchronized EDMA transfer

through the 64-bit EDMA bus. The VCP sends two synchronization events to the EDMA:

a receiver event (VCPREVT) and a transmit event (VCPXEVT), as shown in Fig. 3.2.

The VCP is composed of VCP Control, EDMA I/F unit, memory block, processing unit,

CPU interrupt generator, and REVT/XEVT generator. Fig. 3.2 shows two VCP external

communication mechanisms, in one of which DSP (CPU) accesses VCP Control through the

32-bit peripheral bus and in the other EDMA I/F unit through the 64-bit EDMA bus. In the

latter case, EDMA channel 28 (RX) is for V CP transmission to DSP and EDMA channel

29 (TX) is for DSP transmission to V CP .

Fig. 3.3 and Fig. 3.4 show the DSP chip architecture and chip die photo, where the
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Figure 3.3: DSP chip architecture (from [20]).

Figure 3.4: DSP chip die (from [20]).
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position of the VCP is indicated. The VCP input data are the branch metrics and the

output data are the hard or soft decisions. The VCP provides the following features and

capabilities:

• Variable constraint length, K = 5, 6, 7, or 9.

• User-supplied code coefficients.

• Code rate (1/2, 1/3, or 1/4).

• Configurable trace back settings (convergence distance, frame structure).

• Branch metrics calculation and depuncturing is done in software by the DSP.

• Frees up DSP resources for other processing.

• Communication between the DSP and the VCP is performed through a high perfor-

mance DMA engine.

• VCP uses its own optimized working memories.

The VCP is able to decode only a subset of the convolutional codes known as single

register, nonrecursive convolutional codes (an example is shown in Fig. 3.5). Important

parameters for this type of codes are:

• The constraint length K (K = the number of linear finite-state registers + 1).

• The rate R is given by R = k/n, where k is the number of information bits needed to

produce n output bits known as the codeword.

• The generator polynomials Gn describe how the outputs are generated from the inputs.
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Figure 3.5: Convolutional encoder example, where K = 3, R = 1/3, G0 = (100)8, G1 =
(101)8, G2 = (111)8 (from [19]).

From the parameters, we can derive a trellis diagram providing a useful representation

of the code whose complexity grows exponentially with the constraint length K. Fig. 3.6

shows the trellis diagram of the code of Fig. 3.5.

As a maximum-likelihood sequence estimation (MLSE) decoder, the Viterbi decoder iden-

tifies the code sequence with the highest probability of matching the transmitted sequence

based on the received sequence. The Viterbi algorithm is composed of a metric update and

a traceback routine. The metric update performs a forward recursion in the trellis over a

finite number of symbol periods where probabilities are accumulated (the VCP accumulates

on 12 bits) for each individual state based on the current input symbol (branch metric in-

formation). Once a path through the trellis is identified, the traceback routine performs a

backward recursion in the trellis and outputs hard or soft decisions.

To facilitate the decoding process, the initial state of delay elements is all zero. In

addition, by appending (K − 1) zero tail bits at the end of the F -bit input sequence, it is
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Figure 3.6: Convolutional code trellis example (from [19]).

also ensured that the final state is the all-zero state, which is called zero tail. For example,

in Fig. 3.7 the decoded sequence is uest = 0,1,1,1 and the last four zeros in the path are tail

bits and not part of the information frame (F ). As IEEE 802.16e CC adopts tail-biting, we

used to modify the basic way of using VCP to handle it.

3.2.2 VCP Inputs (Brach Metrics and VCP Input Configuration)
[19], [22]

BM (Branch Metrics) are calculated by the DSP and stored in the DSP memory subsystem

as 7-bit signed values. For rate 1/n codes, a total of 2n−1 branch metrics need to be computed

per symbol period and passed to the VCP.

Consider BPSK modulated bits (0 → 1, 1 → −1), for example. Let the rate be 1/2.

Then there are 2 branch metrics per symbol period. We have BM0(t) = r0(t) + r1(t),
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Figure 3.7: Example of survivor path and associated decoded sequence (from [21]).

Table 3.1: Branch Metrics for Rate-1/2 Code

Address (hex) MSB LSB

Base BM1(t = T ) BM0(t = T ) BM1(t = 0) BM0(t = 0)
Base + 4h BM1(t = 3T ) BM0(t = 3T ) BM1(t = 2T ) BM0(t = 2T )
Base + 8h ..........

BM1(t) = r0(t)− r1(t), where r(t) is the received codeword at time t. Note that if we utilize

the VCP to decode CC, we must note the definition of the VCP modulation. We find that

it may reverse the index of the constellation coordinate for three different modulations.

The data should be sent to the VCP as described in Table 3.1 for rate-1/2 coding (the

base address must be double-word aligned). For rate-1/3 and 1/4 coding, the interested

reader may refer to [19] for details. The branch metrics can be saved in the DSP memory

subsystem in either their native format or packed in words by the user. By default, the

VCP works in the little-endian mode, but it can also work in the big-endian, whose detailed

settings are discussed in [19].

VCP Input FIFO (Brach Metrics)

The FIFO is used in a double-buffering fashion as shown in Fig. 3.8. The VCP generates

a VCPXEVT synchronization event each time the top half or bottom half of the buffier is
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Figure 3.8: VCP input FIFO (modified from [19]).

empty. The SYMX bits are in VCPIC5 and define the buffer length as well as the VCPXEVT

event rate. However the SYMX can be automatically determined by parameters such as F ,

K, and R.

VCP Input Configuration

The VCP contains several memory-mapped registers accessible by the CPU load and store

instructions, the QDMA (quick direct memory access), and EDMA. A peripheral-bus access

is faster than an EDMA-bus access for isolated accesses (typically when accessing control

registers), as shown in Fig. 3.2. EDMA-bus accesses are intended to be used for EDMA

transfer and are meant to provide maximum throughput to/from the VCP. The memory

map is as shown in Fig. 3.9. Note that the branch metric memory contents are not accessible

and the memory can be regarded as FIFOs by the DSP, meaning no need to perform any

indexing on the addresses.
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Figure 3.9: VCP registers (modified from [19]).

To utilize the VCP, we must first configure the control values, or IC (input configuration)

value, which will be sent via the EDMA to program its operation. For this, we may set up

the VCP Params structure and pass it to VCP icConfig(). Let VCP Params contain all

the channel characteristics required to configure the VCP. We create the object and pass

it to the VCP genParams() function which return the VCP Params structure. The input

configuration function VCP icConfig() returns a pointer to the IC values which are to be

sent using the EDMA. The flow chart shown in Fig. 3.10 explains the working.

3.2.3 VCP Output (Decisions) [19]

The VCP can be configured to send either hard decisions (a bit) or soft decisions (a 16-bit

value, 12-bit sign-extended) to the DSP after the decoding.

The decisions buffer start address must be double-word aligned and the buffer size must

contain an even number of 32-bit words. The memory map is as shown in Fig. 3.9. Note
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Figure 3.10: VCP configuration structure (modified from [22]).

Figure 3.11: VCP output FIFO (modified from [19]).
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that the decisions memory contents are not accessible and the memory can be regarded as

FIFOs by the DSP, meaning no need to perform any indexing on the addresses.

The FIFO works in a double-buffering manner as depicted in Fig. 3.11, where a “Dec”

represents a decisions word (32 bits) in reverse order. The VCP generates a VCPREVT

synchronization event each time the top half or bottom half of the buffier is full. The

SYMR bits are in VCPIC5 and define the buffer length as well as the VCPREVT event rate.

However, the SYMR can be automatically determined by parameters such as F , K, and R.

3.2.4 Sliding Windows Processing [19]

The hard-decision memory can store up to 32,768 traceback bits and there are 2K−1 bits

stored at each trellis stage. Therefore, the hard-decision memory can store decisions of

32,768/2K−1 symbols. The soft-decision memory can store up to 8,192 traceback soft values

and, therefore, contain up to 8,192 soft decisions of 8,192/2K−1 symbols.

Assume a terminated frame of length F (excluding tail bits) and a constraint length

K, which determine whether all decisions can be stored in the traceback memories. If all

decisions do not fit, then the traceback mode should be set to mixed and the original frame

segmented into sliding windows (SW); otherwise, the traceback mode can be set to tailed

and no segmentation is required.

In case of a non-terminated frame or if one wants to start decoding without waiting for

the end of the frame, the traceback mode should be set to convergent and the frame might

have to be segmented into sliding windows depending on whether the decisions will fit in the

traceback memories. We only introduce the tailed traceback mode because the our frame

length can fit into the VCP memory.
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Figure 3.12: VCP tailed traceback mode (from [19]).

Tailed Traceback Mode

This mode is utilized when a full frame can reside within the coprocessor’s traceback memory,

as shown in Fig. 3.12. The state metrics (SM) are computed over F +K−1 symbols, and the

traceback (TB) is initialized with the tail state and executed over F + K − 1 symbol. Only

F decisions are output, reversed order. For more information about the mixed traceback

mode and convergent traceback mode, refer to [19].

Limitations on F , R, and C

Given a frame of length F (length prior to convolutional encoding with no tail bit informa-

tion accounted), there are some limitations on the R and C values that one must follow.

Unpredictable behavior will occur if these constraints are not observed. The limitations are

summarized in Fig. 3.13. Note that we set F to 378 in tailed traceback mode with constraint

length equal to 7. The reason will be explained in the next chapter.

3.3 VCP Programming [19], [21]

This section outlines steps required to decode a single frame of data using the VCP. The

VCP requires setting up the following context per user channel:
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Figure 3.13: VCP frame, reliability, and convergence length limitations(modified from [19]).

Table 3.2: VCP Required EDMA Links Per User Channel

Direction Data Usage Req/Opt

Transmit IC parameters Send the input configuration parameters Required
Transmit Branch metrics Send branch metrics Required
Receive Decisions Read decisions Required
Receive Output parameters Read output parameters Optional

• 3 to 4 EDMA parameters transfers (see Table 3.2).

• The input configurations parameters.

Several user channels can be programmed prior to starting the VCP. A suggested imple-

mentation is to use the EDMA interrupt generation capabilities and program the EDMA

to generate an interrupt after the last VCPREVT synchronized EDMA transfer of the user

channel has completed.
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3.3.1 Prepare Input Configuration, Initialize Input Buffers, and
Allocate Output Buffers [21]

Prepare Input Configuration

For each frame, the VCP input configuration register VCPIC0–VCPIC5 are programmed

as described before [19]. The register configuration is first prepared in the DSP memory

(internal or external). It is transferred to the VCP via EDMA once the VCP is started.

The DSP memory address of the beginning of the prepared input configuration is denoted

as &input config[0].

Initialize Input Buffers

The user computes branch metrics and store them in DSP internal or external memory.

For terminated frame with F information bits and code with constraint length K, the total

number of symbols is N = F + K − 1. For non-terminated frame, i.e., no tail bits, the total

number of input symbol is N = F .

For rate r and constraint length K code, there will be N × 2(1/r)−1 7-bit branch metrics.

The DSP memory address of the beginning of the pre-computed branch metrics array will

be referred to as &bm[0]. The beginning of the branch metric array should be aligned on a

64-bit boundary.

Allocate Output Buffers

Hard decisions are transferred from the VCP in 64-bit words, stored in a bit-packed manner.

Therefore, for a frame with F information bits, the size of the allocated output buffer should

be dF/64e × 8 bytes. For soft-decision decodign, refer to [21].

If the output parameter read flag is set (OUTF = 1), two additional 64-bit words should

be allocated for the output parameter word. The DSP memory address of the beginning
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of the allocated buffers for VCP decisions and output parameter will be referred to as

&hard decision[0] and &output parameter[0], respectively. All buffers should be aligned

on an 64-bit boundary.

3.3.2 EDMA Resource [19]

Within the available 64 EDMA channel event sources, two are assigned to the VCP: event

28 (RX) and event 29 (TX). Event 28 is associated to the VCP receive event (VCPREVT)

and is used as the synchronization event for EDMA transfers for the VCP to the DSP

(receive). Event 29 is associated to the VCP transmit event (VCPXEVT) and is used as the

synchronization event for EDMA transfers for the DSP to the VCP (transmit).

The EDMA parameters comprise six words as shown in Fig. 3.14. All EDMA transfers,

in the context of the VCP, must be done using 32-bit word elements, must contain an even

number of words, and must have sources and destination addresses double-word aligned.

The element count for the VCP EDMA transfer must be a multiple of 2. Single-word

transfers that are not double-word aligned cause unexpected errors in VCP memory. For

more information about EDMA input configuration parameter transfer, branch metrics

transfer, and hard-decisions mode, refer to the good tutorial in [19].

3.3.3 VCP Procedure [21]

Start EDMA

The EDMA channels corresponding to VCPREVT and VCPXEVT are enabled in the EDMA

Event Enable Register (EER), and these channels are also allowed to generate CPU interrupts

by setting appropriate bits in the Channel Interrupt Enable Register (CIER). The EDMA

control registers are described in detail in [23].
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Figure 3.14: VCP EDMA parameters structure (from [19]).

Start VCP

CPU writes a “START” command into the execution word register VCPEXE of the VCP.

This causes the VCP to generate the first VCPXEVT expecting input control. This in

turn triggers the the EDMA transfer which is programmed into the Event PaRAM location

corresponding to VCPXEVT.

Service EDMA Interrupt from VCP Channel at the End of Decoding

The EDMA link associated with the last VCPREVT is configured to generate a CPU in-

terrupt. In the CPU interrupt service routine, the output decision buffer for the completed

frame can be processed and decoding of next frame can be initiated.
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3.4 EDMA under the Code Composer Studio (CCS)

[23]

To utilize the VCP, we must understand how to use the EDMA. Under the CCS, we utilize

the CSL (Chip Support Library) functions provided by TI CCS to help use of EDMA. For

convenience, we name it CCS EDMA. The following text is mainly taken from [23].

The EDMA controller handles all data transfers between the level-two (L2) cache/memory

controller and the device peripherals on the C621x/C671x/C64x. These data transfers in-

clude cache servicing, non-cacheable memory accesses, user-programmed data transfers, and

host accesses.

The EDMA controller comprises:

• event and interrupt processing registers,

• event encoder,

• parameter RAM, and

• address generation hardware.

A block diagram of the EDMA controller is shown in Fig. 3.15.

EDMA events are captured in the event register. An event is a synchronization signal

that triggers an EDMA channel to start a transfer. If events occur simultaneously, they are

resolved by way of the event encoder. The transfer parameters corresponding to this event

are stored in the EDMA parameter RAM, and passed onto the address generation hardware,

which address the EMIF (External Memory Interface) and/or peripherals to perform the

necessary read and write transactions.

In the following subsections, the CCS EDMA is introduced in six parts: EDMA control
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Figure 3.15: EDMA control (from [23]).

registers, parameter RAM (PaRAM), EDMA transfer parameter entry, initiating an EDMA

transfer, linking EDMA transfers, and EDMA interrupt generation.

3.4.1 EDMA Control Registers [23]

Each of the 64 channels (C64x) or 16 channels (C621x/C671x) in the EDMA has a specific

synchronization event associated with it. These events trigger the data transfer associated

with that channel. The list of control registers that perform various processing of events is

shown in Table 3.3. We introduce the most important registers for our work below.

Event Registers (ER, ERL, ERH)

All events are captured in the event register (ER), even when the events are disabled. The

C621x/C671x has only one event register (ER). The C64x has two event registers, event low

register (ERL) and event high register (ERH) for the 64 channels.
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Table 3.3: EDMA Control Registers (Modified from [23])

Byte Address Acronym Register Name

01A0 FF9Ch EPRH Event polarity high register (C64x only)
01A0 FFA4h CIPRH Channel interrupt pending high register(C64x only)
01A0 FFA8h CIERH Channel interrupt enable high register(C64x only)
01A0 FFACh CCERH Channel chain enable high register (C64x only)
01A0 FFB0h ERH Event high register (C64x only)
01A0 FFB4h EERH Event enable high register (C64x only)
01A0 FFB8h ECRH Event clear high register (C64x only)
01A0 FFBCh ESRH Event set high register (C64x only)
01A0 FFC0h PQAR0 Priority queue allocation register 0 (C64x only)
01A0 FFC4h PQAR1 Priority queue allocation register 1 (C64x only)
01A0 FFC8h PQAR2 Priority queue allocation register 2 (C64x only)
01A0 FFCCh PQAR3 Priority queue allocation register 3 (C64x only)
01A0 FFDCh EPRL Event polarity low register (C64x only)
01A0 FFE0h PQSR Priority queue status register
01A0 FFE4h CIPR Channel interrupt pending register (C621x/C671x)

CIPRL Channel interrupt pending low register(C64x)
01A0 FFE8h CIER Channel interrupt enable register (C621x/C671x)

CIERL Channel interrupt enable low register (C64x)
01A0 FFECh CCER Channel chain enable register (C621x/C671x)

CCERL Channel chain enable low register (C64x)
01A0 FFF0h ER Event register (C621x/C671x)

ERL Event low register (C64x)
01A0 FFF4h EER Event enable register (C621x/C671x)

EERL Event enable low register (C64x)
01A0 FFF8h ECR Event clear register (C621x/C671x)

ECRL Event clear low register (C64x)
01A0 FFFCh ESR Event set register (C621x/C671x)

ESRL Event set low register (C64x)
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Event Enable Registers (EER, EERL, EERH)

In addition to the event register, the EDMA controller also provides the user the option of

enabling/disabling events. Any of the event bits in the event enable register can be set to

“1” to enable that event. The C621x/C671x has only one event enable register (EER). The

C64x has two event enable registers, event enable low register (EERL) and event enable high

register (EERH) for the 64 channels.

All events that are captured by the EDMA are latched in the ER even if that event is

disabled. This is analogous to an interrupt enable and interrupt-pending register for interrupt

processing. This ensures that no events are dropped by the EDMA. Thus, re-enabling an

event with a pending event signaled in the ER forces the EDMA controller to process that

event according to its priority. Writing a “0” to the corresponding bit in the EER disables

an event.

Event Clear Registers (ECR, ECRL, ECRH)

Once an event has been posted in the ER, the event can be cleared in two ways. If the

event is enabled in the event enable register (EER), the corresponding event bit in the ER is

cleared as soon as the EDMA submits a transfer request for that event. Alternatively, if the

event is disabled in the EER, the CPU can clear the event by way of the event clear register

(ECR). This feature allows the CPU to release a lock-up or error condition. Therefore, once

an event bit is set in the ER, it remains set until the EDMA submits a transfer request for

that event or the CPU clears the event by setting the relevant bit in the ECR.

Event Set Registers (ESR, ESRL, ESRH)

The CPU can also set events by way of the event set register (ESR). Writing a “1” to one of

the event bits causes the corresponding bit to be set in the event register. The event does
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not have to be enabled in this case. This provides a good debugging tool and also allows

the CPU to submit EDMA requests in the system. Note that such CPU-initiated EDMA

transfers are basically unsynchronized transfers. In other words, an EDMA transfer occurs

when the relevant ESR bit is set and is not triggered by the associated event.

3.4.2 Parameter RAM (PaRAM) [23]

Unlike the C620x/C670x DMA controller, which is a register-based architecture, the EDMA

controller is a RAM-based architecture. EDMA channels are configured in a parameter

table. The table is a 2-Kbyte block of internal parameter RAM (PaRAM) located within

the EDMA. The table consists of six-word parameter sets (entries), for a total of 85 entries.

The contents of the 2-Kbyte PaRAM, shown in Fig. 3.16, comprises:

• For C621x/C671x there are 16 transfer parameter entries for the 16 EDMA events. For

C64x, there are 64 transfer parameter entries for the 64 EDMA events. Each entry is

six words or 24 bytes.

• Remaining transfer parameter sets are used for linking transfers. Each set or entry is

24 bytes.

• 8 bytes of unused RAM can be used as scratch pad area. Note that a part or entire

EDMA RAM can be used as a scratch pad RAM provided the event(s) this area

corresponds to is/are disabled. It is the user’s responsibility to provide the transfer

parameters when the event is eventually enabled.

Once an event is captured, its parameters are read from one of the top 64 entries (C64x)

or 16 entries (C621x/C671x) in the PaRAM. These parameters are then sent to the address

generation hardware.
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Figure 3.16: EDMA parameter RAM contents (modified from [23]).
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Figure 3.17: EDMA channel parameters (from [23]).

3.4.3 EDMA Transfer Parameter Entry [23]

Each parameter entry of an EDMA event is organized in six 32-bit words or 24 bytes as shown

in Fig. 3.14. Access to the EDMA parameter RAM is provided only via the peripheral bus.

These parameters are shown in Fig. 3.17. For more information, see [23].

3.4.4 Initiating an EDMA Transfer [23]

There are two ways to initiate data transfer using the EDMA. One is CPU-initiated EDMA

and the other is an event-triggered EDMA. The latter is a more typical usage of the EDMA.

This allows the submission of transfer requests to occur automatically based on system

events, without any intervention by the CPU. CPU-initiated transfer is included in the design

for added control and robustness. Each EDMA channel can be started independently. The

CPU can also disable an EDMA channel by disabling the event associated with that channel.

• CPU-initiated EDMA or unsynchronized EDMA: The CPU can write to the event set

register, ESR, in order to start an EDMA transfer. Writing a “1” to the corresponding

event in the ESR triggers an EDMA event. Just as with a normal event, the transfer
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parameters in the EDMA parameter RAM corresponding to this event are passed to

the address generation hardware, which performs the requested access of the EMIF,

L2 memory or peripherals, as appropriate. CPU-initiated EDMA transfers are unsyn-

chronized data transfers. The events enable bit does not have to be set in the EER for

CPU-initiated EDMA transfers. This is because a CPU write to the ESR is treated as

a real-time event.

• Event-triggered EDMA: An event that is latched in the event register, ER, via the

event encoder causes its transfer parameters to be passed on to the address generation

hardware, which performs the requested accesses. Although the event causes this

transfer, it is very important that the event itself be enabled by the CPU. Writing

a“1” to the corresponding bit in EER enables an event. Alternatively, an event is still

latched in the ER even if its corresponding enable bit in EER is “0” (disabled). The

EDMA transfer related to this event occurs as soon as it is enabled in EER. In addition

to event enable via EER, the completion of a transfer can also trigger another EDMA

transfer through chaining and the CCER.

For more information about synchronization of EDMA transfers, see [23].

3.4.5 Linking EDMA Transfers [23]

The EDMA controller provides linking, a feature especially useful for complex sorting, cir-

cular buffering type of applications. If LINK = 1, upon completion of a transfer, the EDMA

link feature reloads the current transfer parameters with the parameter pointed to by the

16-bit link address. The entire EDMA parameter RAM is located in the 01A0 xxxxh area.

Therefore the 16-bit link address, which corresponds to the lower 16-bit physical address, is

sufficient to specify the location of the next transfer entry. The link address must be aligned

on a 24-byte boundary. An example of a linked EDMA transfer is shown in Fig. 3.18. Note
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Figure 3.18: Example of linked EDMA transfers (from [23]).

that the last transfer parameter entry should have its LINK = 0 so that the linked transfer

stops after the last transfer. That is the last entry should be linked to a NULL parameter

set.

3.4.6 EDMA Interrupt Generation [23], [24]

The EDMA control is resposible for generating transfer-completion interrupts to the CPU.

The EDMA generates a single interrupt (EDMA INT) to the CPU on behalf of all 16 channel

(C621x/C671x) or 64 channel (C64x). The various control and bit fields facilitate EDMA

interrupt generation.

When TCINT bit options entry is set to “1” for an EDMA channel and a specific transfer

complete code is provided, the EDMA controller sets a bit in the channel interrupt pending

register (CIPR). Lastly, the important action is to generate the EDMA INT to the CPU. To

do this, the corresponding interrupt enable bit should be set in the channel interrupt enable

register (CIER). To configure the EDMA for any channel (or QDMA request) to interrupt

the CPU:
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• Set CIEn to “1” in the CIER.

• Set TCINT to “1” in channel options.

• Set Transfer Complete Code to n in channel options.

Note that if the CIER bit is disabled, the channel completion event is still registered in

the CIPR if its TCINT = 1. Once the CIER bit is enabled, the corresponding channel

interrupt is sent to the CPU. If the CPU interrupt (defaults to CPU INT8) is enabled, its

ISR (Interrupt Service Routines) is executed. More than one QDMA/EDMA channel can

use the same TCC value, and the TCC value is not required to be equal to the channel

number [24].

In the C621x/C671x, the transfer complete code is specified in the TCC field, with

values between 0000b to 1111b. In the C64x, which has a total of 64 channels, the transfer

complete code is expanded to a 6-bit value that accomodates the 64 channels. The 6-bit

transfer complete code of the C64x is comprised of the new TCCM bits (most significant

bits of the transfer complete code), in addition to the TCC field in the options parameter.

EDMA Interrupt Servicing by the CPU

Since the EDMA controller is aware of when the EDMA channel transfer is complete, it sets

the appropriate bit in the CIPR as per the transfer complete code specified by the user. The

CPU ISR should read the CIPR and determine what, if any events/channels have completed

and perform the operations necessary. The ISR should clear the bit in CIPR upon servicing

the interrupt, therefore enabling recognition of further interrupts. Writing a “1” to the

relevant bit can clear CIPR bits, writing a “0” has no effect. By the time one interrupt

is serviced, many others could have occurred and relevant bits set in CIPR. Each of these

bits in CIPR would probably need different types of service. The ISR should check for all
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pending interrupts and continue until all the posted interupts are serviced.

3.5 EDMA under the 3L Diamond Real-Time Operat-

ing System

In this section, we describe the operation of EDMA under the 3L Diamond because our

VCP implementation is part of an implementation that uses one or more DSPs running on

3L Diamond. For convenience, we call it 3L EDMA to distinguish it from CCS EDMA.

Notice that 3L EDMA is functionally equivalent to CCS EDMA. They are different only in

called libraries and header files.

3.5.1 Introduction to 3L Diamond

Diamond is 3L company’s system for multiprocessor software design and implementation.

Diamond uses the communicating sequential processes (CSP) model to give a simple but

powerful way of developing applications that make use of one or more processors [25]. The

3L Ltd has been working closely with Sundance, aiming to provide simple-to-use, reliable

and flexible development environment for the Sundance hardware.

The way to build and run applications using Diamond differs substantially from the more

traditional techniques used in other environments, particularly the CCS. The CCS has been

designed to produce applications for single processor systems; multiprocessor systems are

seen as several separate applications that happen to be executed at the same time. Diamond

takes the opposite view and considers multiprocessor systems as an integrated whole [26].

3.5.2 SC6xEDMA [26]

The Diamond kernel manages the available EDMA channels and dynamically allocates them

to concurrently active inter-processor <chan.h> and <link.h> calls. User code that wants
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to make direct use of the channels must claim that from the kernel, complete the DMA

operation, and return the channels to the kernel. Holding on to EDMA channels can seriously

affect the performance of other transfers, in particular, link operations.

There is an example about using EDMA to copy “Frames” (blocks of 8 32-bit words) from

a device FIFO to memory at “Buffer” in [26]. The example is not complete, too simple, and

cannot be directly used, but it can help one to understand 3L EDMA better. The interested

reader is referred to [26].

There are several things to notice about 3L EDMA (modified from [26]):

• <edma.h> declares the kernel functions used in the rest of the code and creates a

reference, kernel, to kernel data structures. It also contains a typedef for a structure

type, EDMA REG, which can be used to access the EDMA transfer parameters, plus

macros for accessing the various fields within the EDMA registers. EDMA CTRL is

also defined to be a pointer to the hardwares block of EDMA control registers. They

may be used as follows:

#include <edma.h>, and

struct EDmaControl *C = EDMA CTRL; // EDMA control registers.

• EdmaI = SC6xKernel LocateInterface( kernel, SIID SC6xEDMA);

– It would not call SC6xKernel LocateInterface for every transfer.

– It would initiate the interface pointers once on program startup.

• dma = SC6xEDMA Claim(EdmaI, 4, &channel);

– It returns a pointer to the corresponding EDMA transfer parameters, or NULL

if the requested EDMA engine cannot be allocated (because it is already claimed

by another thread or by the kernel for an inter-processor link communication).
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– If SC6xEDMA Claim succeeds, it returns an SC6xEDMAChannel pointer via

its final argument. This pointer refers to a software structure in the kernel that

describes the allocated EDMA channel.

• SC6xEDMAChannel StartWait(channel); // do the transfer

– SC6xEDMAChannel StartWait is one of the functions that can be applied to

such an EDMA channel pointer. It sets up the various EDMA control registers

needed to control the transfer and then suspends the calling thread until the

EDMA channel interrupts at the end of the block.

– While the thread is suspended and the EDMA operation is executing, other

threads can continue to execute on the CPU. The kernel will catch the EDMA

completion interrupt, resume the suspended thread and return control to the

caller.

• SC6xEDMAChannel Release(channel);

– SC6xEDMAChannel Release informs the kernel that a previously claimed EDMA

channel is no longer required and can be returned to the kernels pool of free chan-

nels.

There is no obligation to use SC6xEDMAChannel StartWait, which is provided to make

handling EDMA interrupts easier, but one is free to wait for EDMA completion either by

polling (not recommended) or waiting for the interrupt with SC6xEDMAChannel AwaitIn

terrupt. The only mandatory step is to claim the EDMA channel before attempting to touch

the corresponding hardware [26].
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3.5.3 EDMA Channel Availability [26]

Different C6x processors provide different numbers of EDMA channels: the C64 has 64

while other processors have 16. As it is highly unlikely that many applications will require

large numbers of EDMA channels, Diamond usually arranges for the first 16 to be made

available. This minimizes the amount of memory needed to support EDMA and has proved

to be adequate for the kernel and the most users. However, if one does need more than 16

channels, one can request 32, 48, or the full 64. This is done by defining a new processor

type and using the “MAP=” qualifier to identify the appropriate EDMA handler module.

For example, to create a variant of an existing processor type “MyProc” with 64 EDMA

channels one could define a new processor type as follows:

Proctype MyProc64 MyProc MAP = DMA:EDMA64

The definition should be defined in the configuration file (xxx.cfg).

3.5.4 SC6xEDMAChannel Functions [26]

These functions all operate on one of the SC6xEDMAChannel pointers returned by the

“claim” functions described above. Functions dealing with external devices do not set the

various device enables that are necessary to allow EDMA synchronization or CPU inter-

rupts. One needs to refer to the C6000 modules hardware documentation for a description

of enabling events and interrupts for particular devices. EDMA termination interrupts are

automatically managed. The SC6xEDMAChannel functions include the following:

• SC6xEDMAChannel Release.

• SC6xEDMAChannel ResetEvent.
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• SC6xEDMAChannel AwaitInterrupt: Each SC6xDMAChannel has an EVENT syn-

chronisation object associated with it. The kernel catches interrupts from the under-

lying hardware EDMA channel (EDMA INT ) and arranges for the appropriate event

to be signalled. This function suspends the calling thread until that event is signalled.

One should clear the event SC6xEDMAChannel ResetEvent before setting up the

transfer and waiting for the interrupt.

• SC6xEDMAChannel Start: This function starts an EDMA transfer by setting the

appropriate bit in ESR.

• SC6xEDMAChannel StartWait: This function assumes that the actual transfer will

be initiated by the synchronisation event associated with the EDMA channel being

used. One should call SC6xEDMAChannel KickWait when one wants the transfer

to start immediately. It encapsulates the following sequence:

– SC6xEDMAChannel ResetEvent(channel);

– Set the bits in CIER and EER corresponding to the given channel;

– SC6xEDMAChannel AwaitInterrupt(channel);

– Clear the bits in CIER and EER corresponding to the given channel.

• SC6xEDMAChannel KickWait: This function is provided for the common case

where the EDMA channel does not need to wait for a synchronisation signal before

initiating a transfer. It encapsulates the sequence:

– SC6xEDMAChannel ResetEvent(channel);

– Set the bits in CIER and EER corresponding to the given channel;

– Set the bit in ESR corresponding to the given channel to start the transfer;

– SC6xEDMAChannel AwaitInterrupt(channel);
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– Clear the bits in CIER and EER corresponding to the given channel.

Note that SC6xEDMAChannel KickWait is different from SC6xEDMAChannel StartWait

by setting of ESR. For more information, see [26].
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Chapter 4

DSP Implementation of Convolutional
Encoder and Decoder

In this chapter, we consider DSP implementation of the convolutional encoder and decoder,

especially that employing the VCP. The simulation results provide information concerning

proper choices of certain design parameters, such as F (frame) and the amount of circular

shift in the tail-biting CC decoder. We discuss how to use the VCP, and we compare them

with the fixed-point C program computation results with and without using the VCP.

For the purpose of overall transmission system integration, we also consider running

the VCP under the 3L RTOS. We present the BER performance obtained using TI’s Code

Composer Studio (CCS) tool set and the data rate results under CCS and under 3L. Fig. 4.1

shows the overall encoder and decoder structure with CC decoding executed on VCP. Our

implementation is based on modification of the code of Wu [3] for IEEE 802.16e OFDMA

convolutional coding and decoding.

4.1 VCP Parameter Setting

In this section, we introduce how to set the VCP’s important parameter for WiMAX CC

with tail-biting. Since the VCP control and data transmission must be done through EDMA,
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Figure 4.1: CC encoding and decoding with VCP.

we have introduced the EDMA in chapter 3.

4.1.1 Generator Polynomials

The VCP has been designed for IS2000 and 3GPP wireless applications. We has find that

the generator polynomials (171OCT , 133OCT ) for the CC in IEEE 802.16e to be the same as

in the 3GPP standard, IEEE 802.11, and DVB standard.

In VCP, the generator polynomial (Gn) can be set by specifying the constraint length

(K) and code rate (R). For IEEE 802.16e, we can set K = 7 and R = 1/2 for its CC. Note

that same codes may define the two generator polynomials in reverse order relative to that

of the 3GPP. The user has to pay attention to this situation. But in IEEE 802.16e, the order

is the same.

4.1.2 EDMA Setting

Fig. 4.2 shows the EDMA transfer parameters for VCP.

The third row in the table gives the address in the PaRAM. Link 0 of both VCPXEVT and

VCPREVT have to be set to fixed locations in the PaRAM denoted as ADDR VCPXEVT
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Figure 4.2: VCP parameter setting (modified from [21]).

and ADDR VCPREVT, respectively. Other links can point to anywhere in the PaRAM.

These additional locations in the PaRAM are denoted RELOAD1, RELOAD2. The LINK

entry in each parameter set gives the PaRAM address of the next linked transfer. Setting

LINK = NULL indicates that the next transfer, that is, the EDMA transferred is terminated

[21].

4.1.3 Tail-Biting

Because the CC in IEEE 802.16e is a tail-biting one whereas the VCP does tailed traceback,

we need to modify the basic Viterbi decoding flow of the the VCP to accommodate this situ-

ation. As a result of the VCP frame (F ) limitations with K and the tail-biting relationship,

we choose the frame maximum value 378 (= 288 + 90) as F , as shown in Fig. 3.13. Base

on [2], [3], we shift some bits at the end of the decoded sequence to replace the bits at the

beginning of the sequence which are more prone to error due to tail-biting. The suitable

member of such circularly shifted bits (CSB) has been determined by experiments as 51 to

58. A sketch of how the above works is shown in Fig. 4.3.
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Figure 4.3: Tail-biting CC decoding employing (modified from [3]).

4.2 Coding Gain Analysis [3]

The contents of this section have been taken to a large extent from [3]. In this section, we

analyze the convolutional coding gains to obtain a reference to compare simulation results

with. Coding gains are usually analyzed for AWGN channel. In AWGN channel, let the

transmitted symbol energy Es = 1. Then the relationship between Eb/N0 and the noise

variance σ2 is given by

σ2 = (
2 · Es

N0

)−1

= (
2 ·Nb · Ec

N0

)−1

= (
2 ·Nb ·Rc · Eb

N0

)−1 (4.1)

where

• Es/N0 is sometimes called SNR,
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• Nb gives number of bits per symbol, which for QPSK, 16QAM, and 64QAM is 2, 4,

and 6, respectively,

• Ec = Es

Nb
is energy per code bit,

• Eb = Ec

Rc
is energy per information bit, and

• Rc is the code rate.

Crucial reference point is BER = 10−6, at which the IEEE 802.16e specifies the performance

requirement.

We investigate coding gains through several different views. First, we find the Shannon

bounds on coding gain at the different code rates specified in IEEE 802.16e. This helps

us understand the limit in performance channel coding can provide. Then we estimate the

coding gains of the convolutional codes based on minimum codeword distances.

The Shannon-Hartley law for the capacity of an AWGN channel is given by

CRc = log2(1 +
EbCRc

N0

), (4.2)

where C is bit rate per Hz on and Rc is the code rate. As a result, the lower bound on Eb/N0

is given by

Eb

N0

≥ 2CRc − 1

CRc

. (4.3)

The upper-bound coding gain is the difference between the Shannon bound and the

Eb/N0 at BER = 10−6 for uncoded transmission with coherent demodulation. We list the

coding gain upper bounds of the seven coding-modulation schemes in IEEE 802.16e in Table

4.1.

With BPSK or QPSK modulation, a rough estimate of the convolutional coding gain in

AWGN is

10 log10(Rc · dfree) dB, (4.4)
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Table 4.1: Coding Gain Upper Bounds in AWGN at BER = 10−6

Modulation
Code
Rate

Channel Bit
Rate Under
Minimum
Bandwidth
Design (C)

Shannon
Bound
(dB)

Eb/N0 for
Uncoded

Transmission
with Coherent
Demodulation

(dB)

Coding
Gain

Upper-
Bound
(dB)

QPSK 1/2 2 0 10.5 10.5
QPSK 3/4 2 0.86 10.5 9.64
16QAM 1/2 4 1.76 14.5 12.74
16QAM 3/4 4 3.68 14.5 10.82
64QAM 1/2 6 3.68 19.0 15.32
64QAM 2/3 6 5.74 19.0 13.26
64QAM 3/4 6 6.82 19.0 12.18

where Rc is the code rate and dfree is the free distance. This coding gain also assumes

soft-decision decoding. For hard-decision decoding, the coding gain should be smaller by 2

to 3 dB. We conjecture that, for 16-QAM and 64-QAM with Gray-coded bit mapping, the

coding gain will depend on how the coded bits are mapped to the different symbols. With

sufficiently random interleaving, the estimate based on (4.4) may still apply. In Table 4.2,

we list the coding gain estimates based on (4.4) for the seven convolutional coding schemes

in IEEE 802.16e.

4.3 Comparison of Performance in AWGN of VCP and

Wu’s Viterbi Decoder

In this section, we present the simulated performance of convolutional decoding performance

in AWGN based on the system structure shown in Fig. 4.1 that uses VCP. We also compare

Wu’s fixed-point Viterbi decoder without using the VCP [3].
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Table 4.2: Approximate Coding Gains Based on Analysis of Minimum Codeword Distance

Modulation CC Code Rate dfree

Soft-Decision
CC Coding
Gain (dB)

QPSK 1/2 10 6.99
QPSK 3/4 5 5.74
16QAM 1/2 10 6.99
16QAM 3/4 5 5.74
64QAM 1/2 10 6.99
64QAM 2/3 6 6.02
64QAM 3/4 5 5.74

In order to implement the VCP, we need to have the input data in the fixed-point format.

Since the BM are calculated by the DSP and stored in the DSP memory subsystem as 7-bit

signed values, we must do necessary rounding or truncation of the decoder input to make

them 7-bit signed values.

Our simulations considered different placements of the binary point in the 7 bit BM

values. We also simulate Wu’s design without using the VCP, which quantizes decoder input

to 16 bits. In the case of Wu’s decoder, two placements of the binary points are considered,

namely, S9.6 and S11.4, where Sa.b means there are a integer bits and b fractional bits, plus

a sign bit.

An interesting thing is that our BM array must be declared “unsigned char” but not

“char” for the VCP to operate correctly. From Figs. 4.4,– 4.6, we see that VCP with S3.4

or S2.5 as the BM input format can achieve a performance close to Wu’s decoder with S9.6

input in all cases except 64QAM with rate-3/4 coding. For 64QAM with rate-3/4 coding,

S3.4 under VCP becomes worse. We need to use S2.5 or S1.6 to express BM input to achieve

a performance closely to Wu with S9.6 or S7.8 input in this case. Therefore, we use the S2.5
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Table 4.3: Comparison of Soft-Decision Decoding Performance, in AWGN at BER = 10−6

Modulation

CC
Code
Rate

Theoretic
Soft-Decision
CC Coding
Gain (dB)

CC Coding Gain from
Simulation Employing

Wu’s Fixed-Point
Computation (dB)

(S9.6)

CC Coding Gain from
Simulation Employing

VCP (dB) (S2.5,
CSB=51)

QPSK 1/2 6.99 5.62 5.12
QPSK 3/4 5.74 4.72 4.11
16QAM 1/2 6.99 6.62 6.73
16QAM 3/4 5.74 4.23 3.11 (S1.6)
64QAM 1/2 6.99 6.62 6.91
64QAM 2/3 6.02 5.91 5.02
64QAM 3/4 5.74 4.55 3.45 (CSB=58)

as the BM data format in the DSP implementation.

Table 4.3 compares the fixed-point coding gain obtained by Wu [3], the coding gain

obtained by employing VCP, and the theoretic coding gain obtained previously. We see that

the convolutional coding gain employing the VCP is lower than Wu’s decoder by about 0.5

to 1.1 dB. It is less than theoretic value about 0.1 to 2.6 dB.

The CSB Effect

In Figs. 4.7,– 4.9, we can see the performance is almost close, when choosing the CSB as 45

to 68 in rate-1/2 QPSK and 16QAM. Besides, we can find that the performance of CSB =

45 ,51, 55, or 58 is better than CSB = 59, 62, 65, or 68 in rate-3/4 QPSK and 16QAM. But

in 64QAM, we can see that performance of CSB = 45 is very worse, especially in rate-3/4.

Furthermore, see that the performance of CSB = 58 is better than CSB = 51 or 58 by

approximately 1 dB or more in rate-3/4 64QAM. In fact, the CSB can vary from 51 to 58

without affecting the BER performance much in all conditions. In the DSP implementation,
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Figure 4.4: VCP decoding performance in AWGN with different BM truncation precisions
(1/3).
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Figure 4.5: VCP decoding performance in AWGN with different BM truncation precisions
(2/3).
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Figure 4.6: VCP decoding performance in AWGN with different BM truncation precisions
(3/3).
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Figure 4.7: Effect of CSB values in VCP-based decoding in AWGN at different coding-
modulation settings (1/3).
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Figure 4.8: Effect of CSB values in VCP-based decoding in AWGN at different coding-
modulation settings (2/3).
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Figure 4.9: Effect of CSB values in VCP-based decoding in AWGN at different coding-
modulation settings (3/3).
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Figure 4.10: How VCP operates under 3L Diamond and TI CCS.

we chose the CSB = 58.

4.4 VCP Operation Under 3L Diamond

In this section, we consider use of VCP in a multiple DSPs environment which uses the 3L

Diamond RTOS.

In chapter 3, we have described how EDMA function calls differ under 3L Diamond than

TI CCS. The 3L RTOS helps the user in performing interrupts and, as a result, we do not

have to use its vector table and the ISR (Interrupt Service Routines) in xxx.asm or xxx.c

files. Fig. 4.10 illustrates how VCP operates under 3L and CCS.

For the 3L, we must prepare two EDMA channel parameter settings for VCPXEVT and

VCPREVT. Then we set up EER (Event Enable Register) and CIER (Channel Interrupt

Enable Register) and call the AwaitInterrupt() function. When V CP start() is executed,

it enables the ic config and bm transfer parameters of VCPXEVT and the dec transfer para-

meter of VCPREVT. Then it wait for a interrupt of the finished work by AwaitInterrupt().

Finally, it finishes the operation of the VCP. In Fig. 4.10, we can also see that the in EDMA
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Table 4.4: Speed of Overall Decoder from 3L-Measured Execution Time

Speed
QPSK

rate 1/2
36 bytes

QPSK
rate 3/4
36 bytes

16QAM
rate 1/2
36 bytes

16QAM
rate 3/4
36 bytes

64QAM
rate 1/2
36 bytes

64QAM
rate 2/3
24 bytes

64QAM
rate 3/4
27 bytes

Wu Executive Time (ms) 0.4631 0.4349 0.4606 0.4321 0.4613 0.3222 0.3454
Wu Information Data Rate (Kbps) 622 662 625 667 624 596 625
VCP Executive Time (ms) 0.1102 0.0839 0.1075 0.0816 0.1062 0.068 0.0678
VCP Channel Data Rate (Kbps) 5226 4577 5358 4705 5424 4236 4248
VCP Information Data Rate (Kbps) 2616 3433 2679 3529 2712 2824 3186
VCP Speed up (times over Wu) 4.2 5.2 4.3 5.3 4.3 4.7 5.1

start operation is different under 3L and CCS.

We now present the execution speed of the CC encoder and decoder under different

conditions, including Wu’s decoder without using VCP and VCP-based decodin. When

operating under 3L, the speed data are obtained using the 3L’s timer, and when operating

under CCS, they are obtained using the profiling functionality of the CCS.

Table 4.4 shows the execution speed of the overall decoder consisting of demodulator,

deinterleaver, tail-biting CC decoder, and derandomizer. We see that there is almost 4 to 5

times improvement in execution time by using the VCP. Moreover, if we do not consider the

peripheral functions including demodulator, deinterleaver, and derandomizer then the VCP

is 8 to 10 times higher in speed than the Viterbi decoder of Wu without using VCP.

We also utilize CCS’s profiling functionality to estimate the executive cycles of different

functions blocks. The results are shown in Table 4.5. Similarly, we utilize the 3L’s timer to

measure the executive times for different function blocks, with the result show in Table 4.6.

Table 4.7 shows the information data processing rate of different CC coding and mod-

ulation modes calculated from the CCS profile. The encoder, we can approach data rates
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Table 4.5: CCS Profile of CC Coding and Decoding with VCP (Cycles)

Fucntion

QPSK
rate 1/2
36 bytes

QPSK
rate 3/4
36 bytes

16QAM
rate 1/2
36 bytes

16QAM
rate 3/4
36 bytes

64QAM
rate 1/2
36 bytes

64QAM
rate 2/3
24 bytes

64QAM
rate 3/4
27 bytes

Randomizer 4358 4358 4358 4358 4358 2918 3278
Encoder 1617 4070 1617 4070 1617 2914 3062

Interleaver 787 531 3493 2340 37574 18500 18500
Modulator 7451 4979 925 637 837 453 453
TX total 14213 13938 10393 11405 44386 24767 25293

De-modulator 676 460 745 4358 4358 422 422
De-interleaver 2327 1559 3484 2332 5228 2636 2636

VCP 24860 24987 24860 24987 24860 24908 24891
De-randomizer 4358 4358 4358 4358 4358 2918 3278

RX total 32221 31364 33447 36035 38804 30884 31227

between 7.8 and 20.7 Mbps whereas the decoder between 6.2 and 9.2 Mbps, with VCP. This

may be computed with the decoding processing rates between 732 and 835 Kbps without

using the VCP in [3].

Table 4.8 shows the corresponding estimates of processing rates calculated from the 3L-

measured execution times. We can approach data rates between 3.4 and 4.1 Mbps for the

encoder and between 2.6 and 3.5 Mbps for the decoder with the VCP. In comparison, Wu’s

decoding data rates without using VCP are between 596 and 667 Kbps in Table 4.4.

One peculiar point exists between Tables 4.8 and 4.7, that is, the encoder processing

rates measured by CCS and 3L are highly incompatible. It is very strange that the encoder

processing rate under 3L is just about 3 Mbps, which is on the same order of magnitude

with the decoder processing rate. One explanation for this is that the 3L may have much

overhead in some aspects, such as IO processing and others. Future work will hopefully

clarify this situation better.
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Table 4.6: 3L-Measured Execution Time of CC Coding and Decoding with VCP (ms)

Fucntion

QPSK
rate 1/2
36 bytes

QPSK
rate 3/4
36 bytes

16QAM
rate 1/2
36 bytes

16QAM
rate 3/4
36 bytes

64QAM
rate 1/2
36 bytes

64QAM
rate 2/3
24 bytes

64QAM
rate 3/4
27 bytes

Randomizer 0.0042 0.0055 0.0038 0.0048 0.0043 0.0028 0.0029
Encoder 0.0186 0.0260 0.0165 0.0280 0.0150 0.0120 0.0210

Interleaver 0.0600 0.0400 0.0590 0.0400 0.0590 0.0029 0.0290
Modulator 0.0086 0.0050 0.0026 0.0014 0.0027 0.0020 0.0025
TX total 0.0914 0.0765 0.0819 0.0742 0.0810 0.0458 0.0554

De-modulator 0.0045 0.0034 0.0032 0.0019 0.0022 0.0011 0.0012
De-interleaver 0.0690 0.0460 0.0680 0.0477 0.0714 0.0340 0.0341

VCP 0.0314 0.0300 0.0315 0.0274 0.0325 0.0300 0.0290
De-randomizer 0.0044 0.0055 0.0045 0.0057 0.0054 0.0030 0.0028

RX total 0.1093 0.0849 0.1072 0.0827 0.1115 0.0681 0.0671

Table 4.7: Information Data Processing Rate Calculated from CCS Profile of CC with VCP

Processing
Rate

(Kbps)

QPSK
rate 1/2

QPSK
rate 3/4

16QAM
rate 1/2

16QAM
rate 3/4

64QAM
rate 1/2

64QAM
rate 2/3

64QAM
rate 3/4

Encoder 20, 263 20, 663 27, 711 25, 252 6, 488 7, 752 8, 540
Decoder 8, 938 9, 183 8, 611 7, 992 7, 422 6, 217 6, 917
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Table 4.8: Information Data Processing Rate Calculated from 3L-Measure Execution Time
of CC with VCP

Processing
Rate

(Kbps)

QPSK
rate 1/2

QPSK
rate 3/4

16QAM
rate 1/2

16QAM
rate 3/4

64QAM
rate 1/2

64QAM
rate 2/3

64QAM
rate 3/4

Encoder 3, 412 3, 840 3, 547 4, 000 3, 429 4, 042 4, 075
Decoder 2, 616 3, 433 2, 679 3, 529 2, 712 2, 824 3, 186

However, under CCS and 3L, as the measurements indicate the decoder processing rates

are improved significantly by about 9.8 and 4.7 times, respectively, with use of VCP. Nev-

ertheless there is still a very big gap between the processing rates in encoding and decoding

under the CCS.

The programs will require multiple DSPs to run in parallel to handle the data rate under

a 10 MHz transmission bandwidth. Acknowledgedly, further optimization of the programs

may be possible. For our VCP implementation, we utilize to idle the DSP when the VCP

is operated. For example, if we can parallelize the execution of the peripheral functions and

the VCP, we may get approach an information data rate of about 6 Mbps in decoding under

3L.
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Chapter 5

Simulation and DSP Implementation
of CTC Encoder and Decoder

In this chapter, we present some simulation results for the CTC in IEEE 802.16e. We only

implement rate-1/3 CTC encoder and decoder, which do not contain subpacket generation.

This chapter considers floating-point and fixed-point simulations and DSP implementation.

5.1 Performance in AWGN Channel with Floating-Point

Processing

The iteration number is a most important factor in the turbo decoding algorithm. This

number affects the decoding accuracy and system complexity. A larger iteration number

usually leads to better performance, but the complexity and latency are increased. The

most frequently used numbers are 4 to 8 iterations.

Fig. 5.1 compares the performance for iteration numbers between 1 and 10 for max-log-

MAP decoding at 480 information bits under three different modulations. We can see that

if the iteration number is more than 2, the BER curves are very close. To limit the decoding

complexity and maintain a reasonable performance, therefore, we choose 4 to be the iteration

number in other simulations and DSP implementation.
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Figure 5.1: Performance of CTC at different iteration counts under different modulations.
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Figure 5.2: CTC decoding performance with different modulations employing floating-point
computation at 4 iterations.

Fig. 5.2 compares the performance of the same three modulations at 4 decoding iterations,

where the data are the same as those shown in Fig. 5.1. The coding gains of QPSK, 16QAM,

and 64QAM at BER = 10−6 are 8.01, 10.15, and 12.55 dB, respectively.

In Table 5.1, we compare the coding gains of CTC and convolutional codes. Note that

CC with tail-biting at rate 1/2 and CTC at rate 1/3 cannot be compared directly since they

are different in code rate. So the comparison must be treated with caution. CTC is known

to be better and close to the Shannon limit [10].

5.2 Performance in AWGN Channel with Fixed-Point

Processing

We convert the floating-point value to the fixed-point value by multiplying the original

floating-point value by 1000 and truncating the result to integer. Note that we only change

the number of bits in the decoder input, Extrinsics loop and GAMMA function. The aim

91



Table 5.1: Comparison of Coding Gains of CTC and Tail-biting CC in AWGN at BER =
10−6

Modulation Type Rate-1/2 Tail-biting
CC With the VCP

Rate-1/3 CTC

QPSK 5.12 8.01
16QAM 6.73 10.15
64QAM 6.91 12.55

of truncation in the Extrinsics loop and GAMMA function is to avoid the overflows at

high SNR.

In Fig. 5.3 and 5.4, we list that the truncation parameters, which consist of “ChaReliab,”

“Scal,” “Scal E,” and “Scal g,” standing for truncation of bits in the channel reliability,

decoder input, Extrinsics loop and GAMMA function, respectively. We also show how

these parameters are used in the functions of our C program.

In Fig. 5.5, we compare the performance when the number of fractional bits in decoder is

between 0 to 9 (S15.0 to S6.9) for max-log-MAP decoding at rate-1/3, 480 information bits

and three different modulations. When we use S12.3 to S6.9 , the BER curves are almost the

same for QPSK, 16QAM and 64QAM. The BER curve for QPSK is in our acceptable limit

when we use S12.3. But for 16QAM and 64QAM, S11.4 is the limit that we can accept. We

can see that S10.5 to S6.9 cause have the overflows at high SNR. Hence, we employ “Scal E”

and “Scal g” to avoid the overflows.

In Fig. 5.6, we show the performance with “Scal E” and “Scal g.” We see that the overflow

at high SNR disappears, but the performance is degraded at low SNR. Fortunately, no

overflow occurs at high SNR for QPSK with S12.3, 16QAM with S11.4, and 64 QAM with

S11.4. Consequently, we employ S12.3 and S11.4 for DSP implementation for the three
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Figure 5.3: CTC fixed-point truncation parameters.

Figure 5.4: CTC fixed-point truncation parameters flow chart.
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Figure 5.5: CTC at different bit numbers with different modulations.
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Figure 5.6: Performance with scaling of various quantities in CTC decoding to avoid overflow
at high SNR.
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Figure 5.7: BER performance of CTC decoding with fixed-point computation vs. floating-
point computation.

Table 5.2: Coding Gain Performance of Rate-1/3 CTC in AWGN at BER = 10−5 with
Floating-Point and Fixed-Point Computation

Modulation
Floating-Point

Coding Gain (dB)
Fixed-Point Coding

Gain (dB)

QPSK 7.54 7.34
16QAM 9.41 9.08
64QAM 11.92 11.42
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different modulations.

Table 5.2 shows the coding gains obtained with floating-point computation and that with

fixed-point computation. And Fig. 5.7 depicts the BER results.

5.2.1 Speed Performance of the DSP Code

In this section, we show the CCS profile of our DSP code that includes the 1/3 CTC encoder,

modulator, demodulator, and decoder. We also measure the speed in 3L.

Compiler Optimization Options

CCS compiler offers high-level language support by transforming C/C++ code into more

efficient assembly language source code. The compiler options can be used to optimize the

code size and the executing performance.

The major compiler options we utilize are -o3, -pm -op2, no -ms.

• -pm -op2. In the CCS compiler option, -pm and -op2 are combined into one option:

– -pm: Give the compiler global access to the whole program or module and allows

it to be more aggressive in ruling out dependencies.

– -op2: Specifies that the module contains no functions or variables that are called

or modified from outside the source code provided to the compiler. This improves

variable analysis and allowed assumptions.

• no -ms. Speed most critical.

Rate-1/3 CTC Encoder

First of all, we optimize our code and obtain the profile using CCS. We also utilize 3L’s

timer to measure the executive times and data rates of CTC encoder with three different
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Table 5.3: CTC Rate-1/3 Encoder Execution Times Measured under 3L and the Corre-
sponding Data Rate with 480-Bit Information Data Blocks

Modulation
Execution
Time (ms)

Information Data
Rate (Kbps)

Channel Data
Rate (Kbps)

QPSK 0.062 7, 742 23, 226
16QAM 0.053 9, 057 27, 170
64QAM 0.061 7, 869 23, 607

Table 5.4: Profile of CTC Encoder with QPSK Modulation for One Data Block

Function Times Called CPU Cycles Percentage (%)

DBCRSCC Encoder 2 9, 906 38
CTC Interleaver 1 15, 969 62

modulations, whose results are shown in Table 5.3. The information data rates are about

7.7 to 9.1 Mbps.

In Table 5.4, we see that 38% and 62% of the execution time are spent in CTC Interleaver

and DBCRSCC Encoder, respectively. The DBCRSCC Encoder is called twice for pro-

ducing the parity bits, i.e., Y 1, W1, Y 2, and W2. But the two permutations performed by

CTC Interleaver requires more computational cycles.

Rate-1/3 CTC Decoder

Table 5.5 lists execution times measured over ten iterations for the three different modula-

tions. We find that the three modulations are not significantly different in execution times.

In addition, the executive time averages to about 4 ms per iteration.

Table 5.6 shows the equivalent processing rates of our CTC decoder on DSP for two iter-
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Table 5.5: CTC Rate-1/3 Decoder Executive Times for 480 Information Bits Measured under
3L

Interation Number

Modulation 10 9 8 7 6 5 4 3 2 1

QPSK (ms) 39.02 35.13 31.23 27.37 23.48 19.56 15.68 11.80 7.92 4.03
16QAM (ms) 39.01 35.16 31.23 27.35 23.47 19.59 15.67 11.83 7.92 4.03
64QAM (ms) 39.00 35.11 31.24 27.34 23.46 19.56 15.68 11.84 7.93 4.04

ations and four iterations. Note that although the processing data rates with two iterations

are two times that with four iterations, its performance is degraded by about 1 dB.

Table 5.7 dissects a CTC Decoder into constituent functions and the corresponding com-

plexity. The results show that about 90% execution time is spent on the Duo Binnary CRSC

Decoder function, which is used for the double binary max-log-MAP decoding algorithm.

Two points are worth making about Table 5.7. The first is that the Duo Binnary CRSC

Decoder function is called 2 times for decoding two constituent codings in one iteration.

The second point is that the max4 function is called 2537 times for estimating the decoding

output bits and it takes 9% of the CPU cycles.

A more detailed understanding of the Duo Binnary CRSC Decoder function relation-

ship can be gained from Table 5.8, where we show that it consists of GAMMA function,

Alpha loop, Beta loop, Extrinsics loop, and other parts. As the max8 and max4 functions

are called by these functions and loops many times in the last two rows.

In Duo Binnary CRSC Decoder function, the max4 function is called 8 times to do the

comparisons each of the Alpha (forward) and Beta (backward) computation in each symbol.

Since the number of symbols N = 240, the max4 function is called (8 + 8) × 240 = 3840

times.

In the same way, as the max8 function is called 4, 1, and 1 times in Extrinsic, Alpha, and

99



Table 5.6: Corresponding Processing Rates of CTC Rate-1/3 Decoder Based on 3L-Measured
Execution Times for One Information Data Block of 480 Bits

Number of
Iterations Modulation

Execution
Time (ms)

Channel Data
Rate (Kbps)

Information
Data Rate

(Kbps)

2 QPSK 7.92 181.81 60.61
16QAM 7.92 181.81 60.61
64QAM 7.93 181.59 60.53

4 QPSK 15.68 91.84 30.61
16QAM 15.67 91.90 30.63
64QAM 15.68 91.84 30.61

Table 5.7: Profile of CTC Decoder with QPSK Modulation for One Data Block in One
Iteration

Function Times Called CPU Cycles Percentage (%)

De multiplex 1 9571 0.18
Duo Binnary CRSC Decoder 2 4749690 89.99

Permutation 1 10028 0.19
MAP Interleaver Decoder 1 10168 0.19
MAP Interleaver Inverse 2 13136 0.25

max4 2537 487104 9.2

Table 5.8: Profile of Duo Binnary CRSC Decoder

Function/Loop Times Called CPU Cycles Percentage (%) Cycles/Access

GAMMA (F) 1 645148 26.9 645148
Alpha (L) 240 619442 25.9 2581
Beta (L) 240 647011 27.1 2696

Extrinsics (L) 240 478205 20.1 1993
max4 (F) 3840 737280 N/A 192
max8 (F) 1440 624960 N/A 434
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Table 5.9: Rate-1/3 CTC Processing Rate with 4 iterations in Decoding

Modulation type

Processing Rate
(Kbps) QPSK 16QAM 64QAM

Encoder with Modulation 7742 9057 7869
Decoder with Demodulation 30.61 30.63 30.61

Beta computations, respectively, in each symbol. Hence it is called (4 + 1 + 1)× 240 = 1440

times.

Table 5.9 shows the processing rate in different modulation modes for encoder and de-

coder. As the decoder requires a large amount of computation in operations like Alpha,

Beta, and GAMMA computations, we can only achieve about 30 Kbps of decoding speed.

5.2.2 Improving CTC Decoding Speed

As the CTC decoding data rate is low, we consider some methods to improve the decoding

speed as following:

• Use the software pipeline information from the DSP’s C compiler output to see the

degree of parallelism of our assembly code.

• Use the DSP intrinsic function max2(), which is a special function that maps directly

to inline C64x instructions, to replace our max4 and max8 functions.

• Use the DSP intrinsic sadd2() to perform parallel addition operations.

• Do loop unrolling to improve the parallelizability of our C program.

• Avoid using the malloc() function to allocate memory arrays.
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Table 5.10: Profile of Improved Duo Binnary CRSC Decoder

Function/Loop
Original
(Cycles)

Improved
(Cycles)

Reduction in
Complexity (%)

GAMMA (F) 645148 17830 97.23
Alpha (L) 619442 9084 98.53
Beta (L) 647011 8128 98.74

Extrinsics (L) 478205 13440 97.19

• Avoid using the switch-case programming. We can modify it to a table lookup. This

is because if a loop contains conditional break, it is not software pipelined.

• Utilizing shift operations as much possible as to replace multiplications and divisions.

We take the GAMMA function as an example to show its assembly code and software

pipeline information. For space reason, we omit the assembly code of the other functions.

For additional information on software pipelining, we refer to [27]. The improved code of

GAMMA function is shown in Figs. 5.8, 5.9, and 5.10. Note that we use the same loop

unrolling technique in GAMMA array, yielding a total of 16 loops for 32 branch states, as

shown in Figs. 5.9 and Fig. 5.10.

In Figs. 5.11,– 5.16, we show the assembly code that computes the branch metrics from

received systematic and parity bits. We can see from the software pipeline information in

Fig. 5.14 and 5.16 that it achieved a certain degree of parallelism. Note that we have only

shown a small part of the assembly code for the GAMMA function.

Table 5.10 shows the improvement in speed of GAMMA function, Alpha loop, Beta

loop, and Extrinsics loop. They account for 36.8, 18.7, 16.8 and 27.7%, respectively, of the

complexity of the improved Duo Binnary CRSC Decoder.
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Figure 5.8: Function Gamma() (1/3).
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Figure 5.9: Function Gamma() (2/3).
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Figure 5.10: Function Gamma() (3/3).

Table 5.11: Speed up in Decoding of One Data Block with QPSK Modulation for One
Iteration

Function Cycles
Reduction in

Complexity (%)

Duo Binnary CRSC Decoder (Original) 4749690 N/A
Duo Binnary CRSC Decoder (Improved) 109816 97.68

CTC Decoder (Original) 4932457 N/A
CTC Decoder (Improved) 147116 97.01

DeModulation 1468 N/A
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Figure 5.11: The assembly code of Gamma() function (1/6).
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Figure 5.12: The assembly code of Gamma() function (2/6).
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Figure 5.13: The assembly code of Gamma() function (3/6).
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Figure 5.14: The assembly code of Gamma() function (4/6).
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Figure 5.15: The assembly code of Gamma() function (5/6).
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Figure 5.16: The assembly code of Gamma() function (6/6).
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Table 5.12: Improved CTC Decoding Speed Base on 3L-Measured Execution Times for One
Information Data Block of 480 Bits

Number of
Iterations Modulation

Execution
Time (ms)

Channel Data
Rate (Kbps)

Information
Data Rate

(Kbps)

2 QPSK 0.84 1714.29 571.43
16QAM 0.85 1694.13 564.71
64QAM 0.84 1714.29 571.43

4 QPSK 1.6 900 300
16QAM 1.59 905.66 301.89
64QAM 1.59 905.66 301.89

Table 5.13: CTC Code Sizes

Operation Original Code (bytes)
Improved Code

(bytes)
Percentage Increase

(%)

Encoder with Modulation 3104 3104 0
Decoder with Demodulation 20032 29024 44.89

Table 5.11 compares the original cycles to the improved cycles for Duo Binnary CR

SC Decoder function and CTC Decoder function. Note that CTC Decoder is used to

implement turbo decoding algorithm and Duo Binnary CRSC Decoder function is used to

implement BCJR algorithm.

Table 5.12 shows the decoding speed of our CTC decoder on chip for two iterations and

four iterations. Compared with Table 5.6, there is approximately a 10 times speed up in

decoding rate.

In Table 5.13, we show the code sizes of the original and the improved codes. As Seen,

we have improved the speed performance at the expense of an increased code size.
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To further improve the speed, one possible way is to examine every function and loop to

improve its software pipelinability.

5.3 Comparison of Speed of Current Codes

The major purpose of the section is to investigate processing rate in CTC and CC. Base on

the comparison of processing rate between CC and CTC, taken as the important reference

for improving our CTC decoding processing rate in the future. Beside, we also compare

the number of adders and multipliers between CC and CTC, and compare the decoder’s

processing rates for tail-biting CC, CTC, and LDPC on DSP.

5.3.1 The Views of Block Decoder for Processing Rate

Above all, we can get the executive times of rate 1/2 CC decoder and our rate 1/3 CTC

decoder are 0.3811 ms and 1.5914 ms in QPSK modulation, respectively. Their decoding

code length are 288 information bits and 480 information bits. Therefore, we can get their

decoding information processing rates which are 756 Kbps and 302 Kbps, respectively.

It is worth noting that the CC decoder is pure decoder without the VCP, and its is not

be included the external functions, like as de-randomizer, de-interleaver and de-modulator.

Besides, as to the CC decoder which we employ can be referred in [3]. Similarly, our CTC

decoder is not included de-modulator. However, the above-mentioned executive times which

are measured by the 3L timer.

Second, due to there are 4 iterations for our CTC decoder, the decoding processing rate

with one iteration is 302 · 4= 1208 Kbps. If the two constituent decoders of our CTC decoder

are independent and sequential operation, we can ideal suppose that the processing rate of

one constituent decoder is 1208 ÷ 2 = 604 Kbps.
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Third, if the CC decoder is not considered their tail-biting mechanism, we can ideal

suppose its decoding processing rate is 756·(288+[48·2])/288 = 1008 Kbps. To compare with

our supposed a CTC constituent decoder is better 1.67 times for decoding processing rate.

Finally, if our CTC constituent decoder can be improve, its processing rate may possibly

be achieved the same 1008 Kbps as the CC decoder. Therefore, the processing rate of the

CTC decoder can be achieved (1008·2)/4 = 504 Kbps. We do not deny the limitations of

this roughly inference, but this may possibly be refer to improve our CTC decoder in the

future.

5.3.2 Comparison of Tail-Biting CC and CTC for Adders and
Multipliers

We can evaluate roughly the number of adders and multipliers for CC in [3, Fig.4.8] and

CTC in Chapter 2 (equations 2.29, 2.30, 2.31, 2.35, 2.36), respectively.

For the parts of CC branch operation, we know the total adders are considered about 1

adder, 2 branches, 64 states, and 384 (288+96) loop bits, which are calculated 1·2·64·384 =

49152. Besides, we know the total multipliers are considered about 2 multipliers, 2 branches,

64 states, and 384 loop bits, which are calculated 2·2·64·384 = 98304.

For the parts of CTC branch operation, we see that the total adders are considered

about 4 adders, 4 branches, 8 states, and 240 loop bits, as can calculated 4·4·8·240 = 30720.

Besides, we see that the total multipliers are considered about 5 multipliers, 4 branches, 8

states, and 240 loop bits, which are calculated 5·4·8·240 = 38400. Note that we also use one

shifted operation for multiplying 0.5 in (2.29).

For the parts of CC decoder, we know the total adders are considered about 2 adders, 2

branches, 64 states, and 384 loop bits, which are calculated 2·2·64·384 = 98304. Besides, we

know the total multipliers are considered about 2 multipliers, 2 branches, 64 states, and 384
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Table 5.14: CC and CTC for Adder and Multiplier (Numbers)

Function Adders Multipliers

CC Branch 49,152 98,304
CTC Branch 30,720 38,400
CC Decoder 98,304 98,304

CTC Constituent Decoder(A) 65,760 41,280
CTC Decoder 4 Iterations (B) 526,080 330,240

CTC (A)/CC Complexity 0.67 0.42
CTC (B)/CC Complexity 5.35 3.36

loop bits, which are calculated 2·2·64·384 = 98304.

For the parts of CTC constituent decoder, we see that the adders of (2.29) are considered

about 4 adders, 4 branches, 8 states, and 240 loop bits. The adders of (2.30), and (2.31)

are considered about 2 adders, 4 branches, 8 states, and 240 loop bits. The adders of (2.35)

are considered about 2 adders, 4 branches, 8 states, 3 subtractions, and 240 loop bits. The

adders of (2.36) are considered about 3 adders, 2 subtractions, 3 branches, and 240 loop bits.

Hence, we estimate total adders as (4·4·8·240)+(2·4·8·240)+240·(2·4·8+3)+(5·3·240) =

30720 + 15360 + 16080 + 3600 = 65760.

Besides, we see that the multipliers of (2.29) are considered about 5 multipliers, 4

branches, 8 states, and 240 loop bits. The multipliers of (2.36) are considered about 4

multipliers, 3 branches, and 240 loop bits. Note that we also use two shifted operations

for multiplying 0.5. Hence, we estimate total multipliers as (5 · 4 · 8 · 240) + (4 · 3 · 240) =

38400 + 2880 = 41280.

However, for the sake of providing a visual picture of the numbers, consider the graphic

representation in Table 5.14.
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Table 5.15: Information Data Processing Rate Calculated from CCS for One Information
Data Block of 480 Bits

Number of
Iterations

QPSK
Demodulation

Cycles

CTC Decoder
Cycles

Overall Decoder
Cycles

Information
Data Rate

(Kbps)

2 1,468 294,232 295,700 1,623
4 1,468 588,664 590,132 813

Table 5.16: Comparison of Decoder Speed for Tail-Biting CC, CTC, and LDPC Calculated
from CCS

CC Information
Data Rate

Without using
VCP for

Rate-1/2 QPSK
(Kbps) [3]

CC Information
Data Rate With

VCP for
Rate-1/2 QPSK

(Kbps)

CTC
Information

Data Rate for
Rate-1/3 QPSK
with 4 Iterations

(Kbps)

LDPC
Information

Data Rate for
rate-1/2 QPSK

(Kbps) [3]

832 8,938 813 7.6

5.3.3 Comparison of Decoder Speed for Tail-Biting CC, CTC, and
LDPC

We can get information data processing rates in decoding for tail-biting CC and LDPC code

from [3]. Since we can use CCS’s profile to estimate the decoding processing rate for CTC,

comparing its decoding processing rate with LDPC’s.

Table 5.15 shows we use the cycles of Table 5.11 to estimate information data processing

rate. In Table 5.16, we show the decoder’s processing rates for rate-1/2 tail-biting CC without

using the VCP, rate-1/2 tail-biting CC with VCP, rate-1/3 CTC with 4 iterations and

rate-1/2 LDPC. Such processing rates underscore the importance of using DSP hardware’s
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acceleration.
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Chapter 6

Conclusion and Future Work

This primary research questions that contained two issues of IEEE 802.16e FEC in this thesis

were (a) the research in convolution code with tail-biting and implementation on the VCP

of TI’s C6416 for the WiMAX applications, and (b) the max-log-MAP decoding research of

the CTC and implementation on DSP.

In the first issue, we first analyzed and studied TI EDMA to employ the VCP based on

convolution code with tail-biting in AWGN. In our implementation, the convolution coding

gain in AWGN was less than theoretic value by 0.1 to 2.6 dB. When we converted the fixed-

point to the VCP application, the performance was almost the same and we could just use

S2.5 for BM truncation to implement the decoder. Finally, in our decoder with the VCP, we

can approach data rates between 6.2 and 9.2 Mbps for CCS profile. However, we can also

utilize the 3L timer to measure, approaching data rates about between 2.6 and 3.5 Mbps.

Therefore, under CCS and 3L, as the measurements indicate the decoder processing rates

are improved significantly by about 9.8 and 4.7 times, respectively, with use of VCP.

In the second issue, we first evaluated the performance of CTC and compared the results

with the numerical results. The coding gain of CTC was much better than convolution code.

Then we focused on max-log-MAP decoding algorithm. Then we converted the floating-point
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to fixed-point, and we could use S12.3 and S11.4 to implement the decoder for QPSK and

16QAM (64QAM), respectively. In conclusion, in the encoder, we can approach data rates

between 7.7 to 9.1 Mbps and in our decoder with 4 iterations, we can approach data rate

about 300K bps.

In the future work, further optimization of the programs may be possible. For example,

if we can parallelize the execution of the peripheral functions and the VCP, we may get

approach an information data rate of about 6 Mbps in decoding under 3L. However the

interested readers can refer to “Continuous Decoding” mechanism in [21] to study.

In CTC, there are three possible methods to enhance our DSP implementation. First, we

may rewrite our code in our CTC, there are too much dependence to execute for Alpha and

Beta loop. These execute too many cycles and cause software pipelined worse. However,

one possible way is to examine every function and loop to improve its software pipelinability.

Second, if we need further reducing complexity by max-log-MAP decoding algorithms, [28] is

one of the references. Third, we can examine the TI’s C6416 TCP (Turbo -decoder coproces-

sor) [15]. The TCP is a programmable peripheral for decoding IS2000/3GPP turbo code,

integrated in into C6416 DSP. The coprocessor operates two modes, standalone processing

mode and share processing mode, which are detailed discussed in [15]. It may be of inter-

est for using TCP to be helpful in raising the decoding speed, but how to process the IO

relationship for double-binary circular recursive systematic convolutional code on the TCP

application is a tough problem.
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