
國立交通大學 

 

電子工程學系  電子研究所碩士班 

 

碩 士 論 文 

 

 

 

適用於 3GPP-LTE 規格的可重組渦輪解碼器之研究 

 

Research on Reconfigurable Turbo Decoder  

for 3GPP-LTE Applications  

 

 

 

學生：李永裕 

 指導教授：張錫嘉 教授 

 

中華民國九十七年十月 



 

適用於 3GPP-LTE 規格的可重組渦輪解碼器之研究 

 Research on Reconfigurable Turbo Decoder 

for 3GPP-LTE Applications 

 

研 究 生：李永裕   Student：Yung-Yu Lee 

指導教授：張錫嘉教授  Advisor：Hsie-Chia Chang 

 

國 立 交 通 大 學 

電子工程學系 電子研究所 碩士班 

碩 士 論 文 

 

A Thesis 
Submitted to Department of Electronics Engineering & Institute Electronics 

College of Electrical and Computer Engineering 
National Chiao Tung University 

In Partial Fulfillment of the Requirements 
for the Degree of 
Master of Science 

in 
 

Electronics Engineering 
October 2008 

Hsinchu, Taiwan, Republic of China 
 

中華民國九十七年十月 



適用於 3GPP-LTE 規格的可重組渦輪解碼器之研究 

 

學生：李永裕    指導教授：張錫嘉 教授  

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘   要 

 

本論文提出了一個支援全模式且可重組的渦輪解碼器。我們提出的解碼器可

以支援所有定義在 3GPP-LTE 規格裡的編碼長度。而為了提高傳輸速度，遞迴解

碼的平行架構更是受到關注。具有 contention-free 特性的二次多項式交錯器也被

應用在渦輪解碼器的平行架構中。Max-Log MAP 演算法也被採用，可使在極小

的效能損失下有效的減低硬體複雜度。此外，可重組的 1/2/4/8-MAP 解碼器設計

也被提出，此設計可使在解碼過程中，根據所需的效能或傳輸速度，提供一個解

碼器可重組的功能。而依據二次多項式交錯器的特性，一個稱為 residue-only 

interleaver 的方法可被用來減少記憶體的使用量。 

根據在 90nm製程下的實驗結果，在 8 次迴圈的解碼模式下可以達到 130Mb/s

的傳輸速度，晶片面積是 2.10mm2。此外，在 0.9V的供應電壓，277MHz的操作

頻率且編碼長度 6144 下，功率消耗經量測過後為 149.03mW。 
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Abstract 

 

 In this thesis, a fully compliant and reconfigurable turbo decoder is presented to 

support all block lengths specified in 3GPP-LTE system. The contention-free 

quadratic permutation polynomial (QPP) interleaver is also introduced for parallel 

architecture of turbo codes. The parallel processing of iterative decoding is of interest 

for throughput increasing. The Max-Log MAP algorithm is used to reduce the 

hardware complexity with the minimized performance loss. Moreover, the 

reconfigurable 1/2/4/8-MAP decoders is proposed to decode the received codewords 

based on performance or throughput expected in different conditions. Based on QPP 

characteristic, the residue-only interleaver is adopted to reduce the memory storage. 

After implementation in a 90-nm 1P9M technology, the 130Mb/s data rate with 8 

decoding iterations can be achieved in the 2.10 mm2 core area containing 602K gates. 

According to the post-layout simulation, the power consumption is 149.03mW 

worked at supply voltage 0.9V and clock rate 277MHz with block length 6144. 
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Chapter 1

Introduction

1.1 Background

The fourth-generation (4G) is a term used to describe the next complete evolution in

wireless communications. Several communication applications in the future may demand

for a higher speed channel coding scheme. The approaching 4G wireless systems are

projected to achieve 100 Mbps to 1Gbps data rate by 2010. The high throughput turbo

codes are required in many 4G communication systems. The two significant examples

are 3GPP Long Term Evolution (LTE) and IEEE 802.16e WiMax. Some 4G systems use

different types of turbo coding schemes. That is, binary codes is used in 3GPP-LTE and

duo-binary codes is utilized in WiMax. Although the 4G is now still in formative stages.

They may become commercially in the following years.

1.2 Motivation

The fundamental block diagram of traditional digital communication system is il-

lustrated in Fig. 1.1. The communication system conveys a information source to a

destination through a channel. Generally, the system consists of transmitter and receiver

via a channel. The transmitter includes source encoder, channel encoder and modulator,

is to transform the information into a form that can withstand the effect of noise over the

transmission media. Furthermore, the receiver will reverse the signal transformation by

demodulator, channel decoder and source decoder. Since the channel impairments such as

1



noise, interference and distortion may cause the error in the received signal, the channel

encoder is incorporated in the system to add certain structural redundancy to the source

codeword to minimize the transmission errors. These redundant bits can be used for error

detecting and correcting. The channel coding eliminate the effects of noise disturbances

and can improve the performance, compared with an uncoded system.

Turbo code is one of the most popular channel coding technique for modern digital

communication systems. It is impressive by its excellent error correction ability based

on the soft iterative decoding. In the Third Generation Partnership Projects 3GPP and

3GPP2 defined detail standard, they both adopt turbo codes as their channel coding

scheme and provide the maximum data rate of about 2 Mb/s and 3 Mb/s, respectively.

However, the applications in the future may require higher data rate. Therefore, how to

increase the throughput and reduce decoding latency may become obstacles for the turbo

code in the hardware implementation.

Information

Source

Source

Encoder

Channel

Encoder
Modulator

Information

destination

Source

Decoder

Channel

Decoder
Demodulator

Channel

Figure 1.1: Block diagram of digital communication system.

In this thesis, our work is motivated to design a turbo decoder for 3GPP-LTE ap-

plications. We attempt to achieve two targets : The first one is to support all block

lengths in the standard. The other is to achieve the throughput requirement of 3GPP-

LTE specification. Therefore, we employ a contention-free interleaver that fits for parallel

decoding architecture to reduce the latency and increase the throughput. Finally, we pro-

pose a reconfigurable turbo decoder that fits for whole code lengths and present a practical

2



hardware architecture for the complete turbo decoder with the modest hardware cost.

1.3 Thesis Organization

This thesis consists of 6 chapters. In chapter 2, the concept of turbo principle and

iterative decoding algorithm of turbo codes will be introduced. The turbo codes applied

in 3GPP-LTE system, which includes encoding, interleaver and decoding procedure are

presented in chapter 3. Furthermore, the simulation analysis and parameter decision are

also described. Chapter 4 introduces the design of reconfigurable 3GPP-LTE turbo de-

coder, including the hardware architecture and the characteristic of proposed decoder. In

chapter 5, the chip implementation result will be shown in detail. Finally, the conclu-

sion is given in chapter 6. The parameters used in 3GPP-LTE internal interleaver are

illustrated in Appendix A.
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Chapter 2

Turbo Code

The parallel concatenated convolutional code (PCCC), named turbo code, was first

proposed by C. Berrou, A. Glavieux, and P. Thitimajshima in 1993. It has been proved

to have a performance near Shannon limit with simple constituent codes concatenated

by an interleaver. Turbo code is adopted in 3GPP, 3GPP2 and WiMAX standards due

to its excellent error correction ability. In this chapter, both turbo encoding and turbo

decoding methods will be described. The error floor effect in turbo decoding and some

decoding techniques will also be interpreted.

2.1 Turbo principle

2.1.1 Turbo encoding

The turbo encoder is composed of two recursive systematic convolutional (RSC) en-

coders, which are connected in parallel but separated by an interleaver. The block diagram

of the turbo encoder is illustrated in Fig. 2.1. In the first encoder, the information symbols

are encoded to the systematic part c0(D) and the parity c1(D); thus, c0(D) = x(D). The

second encoder encodes x̃(D), the information sequence x(D) after interleaving. However,

the systematic part which is also x̃(D) will be discarded during transmission because x0

has carried the information sequence. If the code rates of encoder 1 and encoder 2 are R1

and R2 respectively, the overall code rate R in Fig. 2.1 will satisfy

1

R
=

1

R1

+
1

R2

− 1. (2.1)
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Encoder 1

Encoder 2

Interleaver

( )Dx

)(~Dx

( )Dc0

( )Dc1

( )Dc2

Figure 2.1: Turbo encoder.

In 3GPP2 standard [1], each input bit is encoded as one systematic bit and two parity-

check bits for each RSC encoder. Thus, the code rate of each component encoder is 1/3.

In order to increase the code rate of turbo code, the systematic bits of the second RSC

encoder are not transmitted. Therefore, the output should be {X,Y0, Y1, Y
′

0 , Y
′

1}, and the

overall code rate is 1/5. It will be shown in Fig. 2.2.

After encoding all information sequence, several tail bits have to be generated to set

both component encoders back to zero state. However, it’s impossible for a RSC encoder

to return zero state by inserting dummy zeros into the encoder directly. Thus, a solution

is provided in Fig. 2.3. While encoding input information, the switch is set to position

”A”. When whole block are encoded, the position of switch is changed to ”B” for three

additional cycles. This will force all registers back to zero state.

2.1.2 Turbo interleaver

The interleaver is a critical component for channel coding performance of turbo codes.

First of all, a proper coding gain can be achieved with small memory RSC encoders since

the interleaver scramble a long block message. Besides, the interleaver de-correlates the

input of two RSC encoders so that iterative decoding algorithm can be applied between

two component decoders. Theoretically, the block size of interleaver is one of the major

factors to lower the upper-bound on bit error probability of the turbo code system. The

performance upper-bound of turbo code corresponding to a uniform random interleaver

5



Figure 2.2: Turbo encoder for 3GPP2 standard.

has been evaluated in [2]. The bit-error-probability upper bound of turbo code is approx-

imately proportional to 1/N, where N is the interleaver size. The factor 1/N is also called

the interleaver gain.

2.1.3 Turbo decoding

A general idea for iterative turbo decoding is illustrated in Fig. 2.4, where rs is the

received systematic information, rp1
is the received parity information generated by the

first RSC encoder, and rp2 is the received parity information generated by the second

RSC encoder. The iterative turbo decoding consists of two constituent SISO (soft in/soft

out) decoders, which are concatenated serially via the interleaver and de-interleaver. An

additional interleaver is used to interleave the input systematic information and then

provides the interleaved data to the second SISO decoder. During iterative decoding

process, each constituent decoder delivers the extrinsic information Lex which is taken

as a priori information Lin for the other constituent decoder after the interleaver and

de-interleaver process. That is, L1
in = L2

ex and L2
in = L1

ex. As the number of iteration

6



Figure 2.3: Trellis termination.

increases, better coding gain is expected. However, there is no significant performance

improvement if a threshold of the iteration numbers has be reached.

MAP 

Decoder 

1

MAP 

Decoder 

2

Interleaver

rs rp1

Interleaver

Lex
2

Deinterleaver

Deinterleaver

rp2

Lex
1

Lin
2

Lin
1

Figure 2.4: Conventional Turbo decoder.

2.1.4 Error floor effect

Although turbo coding provides an excellent performance, the bit-error-rate (BER)

certainly decrease quite slowly at high signal-to-noise ratio (SNR). This phenomenon is

due to relative small free distance of turbo codes, and is called an error floor [3]. Consider

the relation of minimum free distance and the bit error probability in turbo coding, which

can be expressed by

Pb ∝ Q

(

√

2dfreeR
Eb

N0

)

, (2.2)

where dfree is the minimum free distance, R is the code rate, and Eb/N0 is the SNR. At

low SNR, the major part of errors can be corrected by iterative decoding since systematic

7



information and parity information can be regarded as highly independent events. How-

ever, as the channel provides a reliable transmission, the dependency of the systematic

and parity information grows up and the interleaver does little contribution on iterative

decoding. To overcome this issue, the interleaver size should be enlarged to lower the

error floor.

2.2 Decoding algorithm

The turbo code is composed of two SISO constituent codes that communicate itera-

tively through an interleaver. The maximum a posteriori probability (MAP) [4] algorithm

and soft-output Viterbi algorithm (SOVA) [5] are commonly employed for the SISO de-

coders. Unlike the SOVA which exploits maximum likelihood (ML) algorithm to minimize

the word error probability, the MAP algorithm minimizes the symbol (or bit) error prob-

ability. In this section, we will focus on introducing the turbo decoding based on MAP

algorithm, because it has been proved that the MAP algorithm is the optimal decoding

method for turbo codes while comparing with SOVA [6]. Furthermore, the Log MAP and

Max-Log MAP algorithms will also be introduced, which reduce the hardware complexity

and are widely used for implementation.

2.2.1 The MAP algorithm

The MAP decoding algorithm, termed as BCJR algorithm, is developed by Bahl,

Cocke, Jelinek, and Raviv [4] in 1974. For each transmitted information bit ut, the

MAP algorithm estimates the a posteriori probabilities (APP) based on the received code

sequence r over a discrete memoryless channel (DMC). It computes the log-likelihood ratio

(LLR)

L(ut) = log
P (ut = +1|r)

P (ut = −1|r)
, (2.3)

for 1 ≤ t ≤ N , where N is the received sequence length, and compares this value to a

zero threshold to determine the hard estimate ut as

ut =







+1, if L(ût) ≥ 0

−1, otherwise
(2.4)

8



u

00 01

10 11

1/11

1/10

1/10

1/11

0/00

0/00

0/01

0/01

DD
Information

Figure 2.5: A (2,1,2) RSC encoder and its state transition diagram.

As an example, a rate 1/2 memory order 2 RSC encoder and its state transition are

illustrated in Fig. 2.5. Note that the solid lines represent the state transitions correspond-

ing to an information bit ut of −1, while the dotted lines represent the state transitions

corresponding to an information bit ut of +1. Its decoding trellis diagram is shown in Fig.

2.6. In Fig. 2.6, the APP’s in (2.3) can be computed by the summation of state transition

probabilities. Therefore, the equation can be further expressed as

L(ût) = log
P (ut = +1|r)

P (ut = −1|r)

= log

∑

(m′,m)∈B
+1
t

P (St−1 = m′, St = m|r)
∑

(m′,m)∈B
−1
t

P (St−1 = m′, St = m|r)

= log

∑

(m′,m)∈B
+1
t

P (St−1 = m′, St = m, r)
∑

(m′,m)∈B
−1
t

P (St−1 = m′, St = m, r)
, (2.5)

where P (St−1 = m′, St = m, r) represents the joint probability for the existing transition

from St−1 at time t to St at time t + 1. B+1
t and B−1

t is the sets of (m′,m), denoted the

state transitions which are due to input bit ut = +1 and ut = −1 respectively.

In order to compute joint probability required for calculation of L(ut) in (2.5), we

define the following metrics:

λt(m
′,m) = P (St−1 = m′, St = m, r) (2.6)

αt(m) = P{St = m, rt
0} (2.7)

βt(m) = P{rN−1
t+1 |St = m} (2.8)

γt(m
′,m) = P{St = m, rt|St−1 = m′} (2.9)
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Figure 2.6: The decoding trellis diagram of the (2,1,2) RSC encoder.

Since we assume the code sequence after encoding is transmitted through discrete

memoryless channel, the joint probability can be expressed as

λt(m
′,m) = P (St−1 = m′, St = m, rt−1

0 , rt, r
N−1
t+1 )

= P (rN−1
t+1 |St−1 = m′, St = m, rt−1

0 , rt)

· P (St = m, rt|St−1 = m′, rt−1
0 )

· P (St−1 = m′, rt−1
0 )

= P (rN−1
t+1 |St = m) · P (St = m, rt|St−1 = m′) · P (St−1 = m′, rt−1

0 ).

(2.10)

Here rt−1
0 represents the received code sequence from time instance 0 to t − 1, while

rN−1
t+1 is from time instance t + 1 to the end of sequence. Note that the second equation

of (2.10) comes from Bayes’ rule, and the third equation is due to the Markov process in

the state transitions. Therefore, compared with the definition of (2.7), (2.8) and (2.9),

the joint probability defined in (2.6) can be rewritten as

λt(m
′,m) = αt−1(m

′) · γt(m
′,m) · βt(m). (2.11)

10



Now we will derive the equations (2.7), (2.8) and (2.9) as follow:

αt(m) = P (St = m, rt−1
0 )

=
∑

m′∈S

P (St−1 = m′, St = m, rt−1
0 )

=
∑

m′∈S

P (St = m, rt−1|St−1 = m′, rt−2
0 ) · P (St−1 = m′, rt−2

0 )

=
∑

m′∈S

P (St = m, rt−1|St−1 = m′) · P (St−1 = m′, rt−2
0 )

=
∑

m′∈S

αt−1(m
′) · γt(m

′,m).

(2.12)

Similarly, we have

βt(m) = P (rN−1
t+1 |St = m)

=
∑

m′∈S

P (St+1 = m′, rN−1
t+1 |St = m)

=
∑

m′∈S

P (St+1 = m′, rt+1, r
N−1
t+2 , St = m) / P (St = m)

=
∑

m′∈S

P (rN−1
t+2 |St+1 = m′, rt+1, St = m) · P (St+1 = m′, rt+1|St = m)

=
∑

m′∈S

P (rN−1
t+2 |St+1 = m′) · P (St+1 = m′, rt+1|St = m)

=
∑

m′∈S

γt+1(m,m′) · βt+1(m
′),

(2.13)

where S represent the set of all states. Note that the forward metric α in (2.12) and the

backward metric β in (2.13) are computed recursively in opposite direction. If the trellis

of encoding diverges from zero state at t = 0 and converges to zero state at t = N − 1, as

shown in Fig. 2.6, the following initial conditions are satisfied:

α0(0) = 1, α0(m) = 0 for m 6= 0

βN(0) = 1, βN(m) = 0 for m 6= 0
(2.14)

Furthermore, for any existing transitions from state m′ to m, the branch transition prob-

11



ability γt(m
′,m) can be decomposed as

γt(m
′,m) = P (St = m, rt|St−1 = m′)

=
P (St−1 = m′, St = m, rt)

P (St−1 = m′)

=
P (St−1 = m′, St = m)

P (St−1 = m′)
·
P (St−1 = m′, St = m, rt)

P (St−1 = m′, St = m)

= P (St = m|St−1 = m′) · P (rt|St−1 = m′, St = m)

= P (ut) · P (rt|vt),

(2.15)

where P (uk) is well-known as a prior probability of uk and vt is the codeword associated

with the transition St−1 = m′ to St = m corresponding to encoder input ut.

As a summary of the MAP algorithm, with computation of γt(m
′,m) in (2.15), we can

derive α and β for each state at different time instances. As a result, the joint probability

in (2.11) is also available for t = 0, 1, · · · , N − 1. The log-likelihood ratio L(ut) can be

calculated by

L(ut) = log

∑

(m′,m)∈B
+1
t

αt−1(m
′) · γt(m

′,m) · βt(m)
∑

(m′,m)∈B
−1
t

αt−1(m′) · γt(m′,m) · βt(m)
. (2.16)

2.2.2 The Log-MAP algorithm

The MAP algorithm requires large memory and a large number of operations involving

exponentiations and multiplications. The hardware realization of MAP decoder will be

quite complex and difficult. Therefore, the Log-MAP algorithm is proposed to solve this

problem. First, we transfer the branch metrics defined in the MAP algorithm to the

logarithmic domain; that is

γ̄t(m
′,m) = log γt(m

′,m). (2.17)

Referring to (2.12) and (2.13), the forward path metric ᾱt can be expressed as

ᾱt(m) = log αt(m)

= log
∑

m′∈S

eᾱt−1(m′)+γ̄t(m′,m),
(2.18)

and the backward path metric β̄t can be expressed as

β̄t(m) = log βt(m)

= log
∑

m′∈S

eγ̄t+1(m,m′)+β̄t+1(m′).
(2.19)

12



Note that the initial conditions of path metrics also have changed, since all computations

work with the logarithm domain.

ᾱ0(0) = 0, ᾱ0(m) = −∞ for m 6= 0

β̄N(0) = 0, β̄N(m) = −∞ for m 6= 0
(2.20)

After substituting (2.17), (2.18) and (2.19), the APP information L(ût) in (2.16) can be

rewritten as

L(ut) = log

∑

(m′,m)∈B
+1
t

eᾱt−1(m′)+γ̄t(m′,m)+β̄t(m)

∑

(m′,m)∈B
−1
t

eᾱt−1(m′)+γ̄t(m′,m)+β̄t(m)
. (2.21)

Considering the following Jocobian algorithm [7]

log(eδ1 + eδ2) = max(δ1, δ2) + log(1 + e−|e
δ2−eδ1|)

= max(δ1, δ2) + fc(|δ2 − δ1|),
(2.22)

where fc(·) is a compensation function and thus the performance can be improved. By a

recursive procedure of (2.22), the expression log(eδ1 + eδ2 + · · · + eδn) can be computed

exactly, as follows

log(eδ1 + eδ2 + · · · + eδn) = log(∆ + eδn), ∆ = eδ1 + · · · + eδn−1 = eδ

= max(log ∆, δn) + fc(|log ∆ − δn|)

= max(δ, δn) + fc(|δ − δn|).

(2.23)

Now we can use (2.22) to represent forward metrics in (2.18) and backward metrics in

(2.19) as

ᾱt(m) = max
m′∈S

∗{ᾱt−1(m
′) + γ̄t(m

′,m)}, (2.24)

and

β̄t(m) = max
m′∈S

∗{γ̄t+1(m,m′) + β̄t+1(m
′)}, (2.25)

where the max∗(·) operation is defined as

max∗(·) = max(δ1, δ2) + fc(|δ2 − δ1|). (2.26)

Therefore, the (2.29) can be expressed as

L(ût) = max
(m′,m)∈B

+1
t

∗{ᾱt−1(m
′) + γ̄t(m

′,m) + β̄t(m)}

− max
(m′,m)∈B

−1
t

∗{ᾱt−1(m
′) + γ̄t(m

′,m) + β̄t(m)}.
(2.27)
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The performance of the Log-MAP algorithm is equivalent to the performance of the

MAP algorithm but the complexity has been reduced considerately. However, some dif-

ficulty for hardware implementation still exists since computing fc(·) also involves expo-

nentiations and multiplications. For simplified the computation of correction function, it

is usually stored in a pre-computed table. This table is only one dimensional due to the

correction only depends on |δ2 − δ1|. Thus, the Log-MAP algorithm can be implemented

with max function as well as a lookup table.

2.2.3 The Max-Log-MAP algorithm

In order to further simplify the complexity, another approximation of MAP algorithm

termed Max-Log-MAP algorithm is derived. Considering the following approximation

formula max function

log(eδ1 + eδ2 + · · · + eδn) ≈ max
i∈{1,2,·,n}

δi. (2.28)

Note that the term fc(·) is ignored in comparison with (2.23). Then we can simplify the

equation (2.21) as follows:

L(ut) = max
(m′,m)∈B

+1
t

{ᾱt−1(m
′) + γ̄t(m

′,m) + β̄t(m)}

− max
(m′,m)∈B

−1
t

{ᾱt−1(m
′) + γ̄t(m

′,m) + β̄t(m)}.
(2.29)

Similarly, the forward recursive and backward recursive metrics in (2.18) and (2.19) can

be individually expressed as

ᾱt(m) = max
m′∈S

{ᾱt−1(m
′) + γ̄t(m

′,m)}, (2.30)

and

β̄t(m) = max
m′∈S

{γ̄t+1(m,m′) + β̄t+1(m
′)}. (2.31)

The computations of ᾱ and β̄ are reduced to simple add-compare-select (ACS) opera-

tions, which are equivalent to the path metric updating of Viterbi algorithm. Therefore,

compared with the MAP algorithm, the Max-Log-MAP algorithm utilizes additions to

replace the multiplications and avoids the complicated exponentiations. However, the

performance would degrade because of the information loss in (2.28).
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2.3 Sliding window approach

In the conventional MAP-series decoding algorithm(including MAP algorithm, Max-

Log MAP algorithm and Log-MAP algorithm), the LLR computation requires the path

metric values generated by the forward and backward processes. Furthermore, since the

backward recursive computation initials from the end of decoding trellis, as shown in Fig.

2.6, the decoding process can be started after the entire block message to be received.

If the sequence length is large, it will lead to long output latency and huge memory

requirement for hardware implementation. For example, the maximum block length of

3GPP standard is 5114, which means 5114 LLR values and path metrics should be stored.

It is the main disadvantage of turbo code for real applications.

The main problem is that long block length can not be divided into several short

sub-block immediately, since the unknown initial condition of backward recursive metrics

computations will damage the performance of turbo codes. Therefore, the sliding window

approach was proposed [8] to overcome it. This algorithm utilizes the fact that the

backward metrics can be highly reliable even without the initial condition if the backward

recursion goes long enough. Fig. 2.7 shows the process of the sliding window algorithm

and will be further illustrated as follows. First, the received codeword sequence is divided

i i+1 i+2 i+3

L(ut)

L(ut)

L(ut)

t1

t2

t3

t4

W

α 1
β

2
β

1
β

1
β

2
β

1
β

2
β

α2
β

α

α

Figure 2.7: The process diagram of sliding window algorithm.

into several sub-blocks of length of W . W is called the convergence length, which normally

is set to be five times the constraint length of component encoder in turbo code to ensure

the reliable initialization. In the sliding window approach, the end of sub-block is the

initial of next sub-block whether the forward or backward recursive operation. Thus, the
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initial metric values are inherited from the last metrics calculated in the previous sub-

block. Note that the dummy backward recursion β1 is employed to establish the initial

condition for the true backward recursion β2. Although the initial condition for the β1

is unknown except the last sub-block, we utilize the equally likely condition for the β1

values at time instance (i + 1) · W :

β1(m) =
1

M
, for all m ∈ S (2.32)

where S represents all possible states and M is equal to the total state number. During the

forward recursion α proceeds in the i-th sub-block and stores these values into memory, the

dummy backward recursion β1 is performed in the i + 1 sub-block concurrently. As soon

as the β1 computation is finished, the initial metrics in the i-th sub-block are available for

the β2 recursion. And L(ût) can be calculated based on the α metrics in the memory, the

β2 metrics in computation, and the corresponding branches metrics in the i-th sub-block.
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Chapter 3

Turbo Code in 3GPP-LTE system

The 3rd Generation Partnership Project (3GPP) is a collaboration between groups

of telecommunications associations, to make a globally applicable third generation (3G)

mobile phone system specification within the scope of the International Mobile Telecom-

munications 2000 project of the International Telecommunication Union (ITU). 3GPP

specifications are based on evolved Global System for Mobile Communications (GSM)

specifications. The project was established in December 1998.

3GPP-LTE (Long Term Evolution) is the name given to a project within the 3GPP to

improve the Universal Mobile Telecommunications System (UMTS) mobile phone stan-

dard to cope with future technology evolutions. Furthermore, the channel coding Turbo

Code with an interesting Quadratic Permutation Polynomial (QPP) interleaver is applied

in 3GPP-LTE system [9]. In this chapter, the 3GPP-LTE encoder, interleaver and decod-

ing algorithm used in our design will be introduced in detail. The simulation result will

also be shown later.

3.1 Encoding procedure

In 3GPP-LTE specification, the scheme of turbo encoder is a Parallel Concatenated

Convolutional Code (PCCC) with 8-state constituent encoders and one internal inter-

leaver. The coding rate of turbo encoder is 1/3. The structure of turbo encoder is

illustrated in Fig. 3.1
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Figure 3.1: Turbo encoder for 3GPP-LTE.

The transfer function of the 8-state constituent code for the PCCC is

G(D) =

[

1,
1 + D + D3

1 + D2 + D3

]

. (3.1)

The bit sequence input for a given code block to channel coding by c0, c1, c2, c3, ...,

cK−1, where K is the number of bits to encode. After encoding, the bits are denoted by

d
(i)
0 , d

(i)
1 , d

(i)
2 , d

(i)
3 , ..., d

(i)
D−1, where D is the number of encoded bits per output stream and

i indexes the encoder output stream.

The initial value of the shift registers of the 8-state constituent encoders shall be all

zeros when starting to encode the input bits. The output from the turbo encoder is

d
(0)
k = xk, d

(1)
k = zk, d

(2)
k = z

′

k for k = 0, 1, 2, ..., K − 1. The bits input to the turbo

encoder are denoted by c0, c1, c2, c3, ..., cK−1, and the bits output from the first and

second 8-state constituent encoders are denoted by z0, z1, z2, z3,..., zK−1 and z
′

0, z
′

1, z
′

2,

z
′

3, ..., z
′

K−1, respectively. The bits output from the turbo code internal interleaver are

denoted by c
′

0, c
′

1, c
′

2, c
′

3, ..., c
′

K−1, and these bits are to be the input to the second encoder.

Moreover, trellis termination is performed by taking the tail bits from the shift register

feedback after all information bits are encoded. Tail bits are padded after the encoding

of information bits. The transmitted bits for trellis termination shall be:
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d
(0)
K = xK , d

(0)
K+1 = zK+1, d

(0)
K+2 = x

′

K , d
(0)
K+3 = z

′

K+1

d
(1)
K = zK , d

(1)
K+1 = xK+2, d

(1)
K+2 = z

′

K , d
(1)
K+3 = x

′

K+2

d
(2)
K = xK+1, d

(2)
K+1 = zK+2, d

(2)
K+2 = x

′

K+1, d
(2)
K+3 = z

′

K+2

3.2 QPP interleaver

Interleavers for turbo codes have been extensively investigated. In particular, quadratic

polynomials were emphasized. The algebraic approach was shown to admit analytical de-

sign of an interleaver matched to the constituent codes. The interleaver used in 3GPP-LTE

standard is quadratic permutation polynomial (QPP) interleaver [2] [10]. Moreover, the

performance using QPP interleaver was shown to be better than S-random interleavers [11]

for short-to-medium block lengths. The formula of this interleaver is

π(x) = f1x + f2x
2(modN), (3.2)

where N is the block length and the f1, f2, are the non-negative integers of the QPP

interleaver of different block length. The interleaver parameter f1, f2, will be shown in

detail in Appendix A. Besides, x is the original address and π(x) is the address after

interleaving. The algebraic construction can make a contention-free condition.

In recent years, the parallel processing of iterative decoding of turbo codes is of interest

for high-speed decoders. Contention-free interleavers have recently been shown to be

suitable for parallel decoding of turbo codes. Furthermore, in [12] it was shown that all

quadratic permutation polynomials generate maximum contention-free interleavers, i.e.,

every factor of the interleaver length becomes a possible degree of parallel processing of

the decoder. Thus, this class of interleaver is very interesting from an implementation

point of view. That is, when multiple MAP decoders try to access multiple memories

concurrently, there are no hazards happened.

3.2.1 Contention-free interleaver

To increase throughput, a MAP decoder is parallelized by dividing a size-N trellis

into M size-W windows (N=MW) and employing M synchronous MAP-based decoders
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with M separate memory banks. Interleavering latency is eliminated by writing the M

values generated each clock cycle directly to their interleaved position. However, if the

interleaver is not designed well, two or more MAP-based decoders may require access to

the same memory bank on a given clock cycle, resulting in a memory contention.

Several interleaving algorithms with contention-free properties [13] have been pub-

lished, and the QPP interleaver has the contention-free property. Fig.3.2 shows an exam-

ple of memory contention problem in a parallel decoding structure. A codeword sequence

is stored in order in four different memory banks. It is obvious that it is a contention-free

access at all different timing with pre-permutation order. But it will have the mem-

ory contention problem if we apply post-permutations. The post-permutation 1 is a

contention-free interleaver design. Because every time we access four symbols, they come

from different memory banks. The interleaver design of post-permutation 2 suffers two

access collisions at time T0 and T2. Due to the good property mentioned above, the QPP

interleaver is suitable for parallel decoding of turbo code.

3.2.2 Performance comparison

The design of the interleaver is critical to the performance of the Turbo Code. Inter-

leavers can in general be separated into two classes: random interleavers and deterministic

interleavers. The basic random interleavers permute the information bits in a pseudoran-

dom manner. It was demonstrated in [14] that near Shannon limit performance can be

achieved with these interleavers for large frame sizes. The S-random interleaver proposed

in [15] is an improvement to the random interleaver. The S-random interleaver is a pseudo-

random interleaver with the restriction that any two input positions within distance S

cannot be permuted to two output positions within distance S.

QPP interleaver is a class of deterministic interleavers based on a quadratic congruence

in (3.2). The interleaver depends on permutation polynomials over the ring of integers

modulo N . By carefully selecting the coefficients of the polynomial, we can achieve a

performance close to, or in some case, even better than S-random interleavers. The

performance result is illustrated in Fig. 3.3.
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Figure 3.2: Example of a contention-free permutation.

3.3 Decoding procedure

According to the iterative decoding algorithm of turbo codes in section 2.2, we realize

that the goal of the MAP algorithm is to derive the LLR and extrinsic values. Therefore,

for the input signal ut, the LLR can be represented as

L(ût) = log
P (ut = +1|r)

P (ut = −1|r)
, (3.3)

where ut is defined as the collection of input symbols (u0,t,u1,t) from time (t − 1) to time

t, and r is the received symbol after BPSK mapping. The decomposition of the equation
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Figure 3.3: Performance comparison.

(3.3) will be

L(ût) = log

∑

(m′,m)∈B
+1
t

P (St−1 = m′, St = m|r)
∑

(m′,m)∈B
−1
t

P (St−1 = m′, St = m|r)

= log

∑

(m′,m)∈B
+1
t

P (St−1 = m′, St = m, r)
∑

(m′,m)∈B
−1
t

P (St−1 = m′, St = m, r)

= log

∑

(m′,m)∈B
+1
t

αt−1(m
′) · γt(m

′,m) · βt(m)
∑

(m′,m)∈B
−1
t

αt−1(m′) · γt(m′,m) · βt(m)
, (3.4)

where B+1
t is the set of (m′,m) that indicate the state transitions which are caused by

ut = +1, and B−1
t , the set of (m′,m), denoted the state transitions are due to ut = −1.

Applying the Log-MAP algorithm to the (3.4), the LLR can be rewritten to

L(ût) = log

∑

(m′,m)∈B
+1
t

eᾱt−1(m′)+γ̄t(m′,m)+β̄t(m)

∑

(m′,m)∈B
−1
t

eᾱt−1(m′)+γ̄t(m′,m)+β̄t(m)

= max
(m′,m)∈B

+1
t

∗{ᾱt−1(m
′) + γ̄t(m

′,m) + β̄t(m)}

− max
(m′,m)∈B

−1
t

∗{ᾱt−1(m
′) + γ̄t(m

′,m) + β̄t(m)}, (3.5)
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and the Max-Log MAP approximation will become

L(ût) = max
(m′,m)∈B

+1
t

{ᾱt−1(m
′) + γ̄t(m

′,m) + β̄t(m)}

− max
(m′,m)∈B

−1
t

{ᾱt−1(m
′) + γ̄t(m

′,m) + β̄t(m)}.
(3.6)

Furthermore, the initial condition of branch metrics become

ᾱ0(0) = 0, ᾱ0(m) = −∞ for m 6= 0

β̄N(0) = 0, β̄N(m) = −∞ for m 6= 0
(3.7)

For a rate 1/n RSC encoder, each codeword frame consists of one systematic bit and

(n − 1) parity bits. In the receiver, the received codeword has the systematic symbol

r
(0)
t abd parity symbols r

(1)
t ∼ r

(n−1)
t . Moreover, in order to reduce the computational

complexity, we could further simplify the path metrics into

γ̄t(m
′,m) =

1

2
(utLa(ut) + Lcutr

(0)
t +

n−1
∑

i=1

Lcr
(i)
t vt

(i)), (3.8)

where the value of vt
(i) ∈ {+1,−1} depends on the encoding generator matrix after

BPSK mapping. Lc is the channel reliability value for the AWGN channel. The a priori

information in (3.8) is represented by

La(ut)
∆
= log

P (ut = +1)

P (ut = −1)
. (3.9)

From the decoding flow shown in Fig. 2.4, the extrinsic information corresponding to

the information bit ut for the next stage can be calculated as

Le(ut) = L(ut) − Lc r0,t − La(ut). (3.10)

Computer symbol probabilities for the next decoder from previous decoder as

La(ut) = Le(ũt) = log
P (ut = +1)

P (ut = −1)
. (3.11)

Assume the information symbols are equal probability, so the a priori information can

be initialized for the first iteration:






log P (ut = +1) = 0

log P (ut = −1) = 0
(3.12)
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The turbo decoding proceeds iteratively with the extrinsic information passing between

the two SISO decoders. When the stopping criteria is reached, which may be the maximum

iteration number or a correctly decoded codeword, the final decisions after de-BPSK are

ut =







0, if L(ut) ≥ 0

1, otherwise
(3.13)

3.4 Design parameter analysis

In this section, we will present the simulation results and some parameters setting for

implementation. All the simulation results are signal-to-noise (SNR) versus BER under

BPSK modulation and AWGN channel.

In order to determine appropriate design parameters such as the bit widths of the

input symbol, the branch metric, and the path metric, the performance evaluation through

simulations are necessary. The iteration number and the sliding window size will directly

influence not only the performance of turbo coding but also the hardware cost of the

design. The BER curves of the floating point decoders under BPSK modulation and

AWGN channel with block length of 2048 are presented in Fig. 3.4. In Fig. 3.4, there is

a 0.05dB loss between the sliding window size of 16 and 32 at the BER=10−5 under the

fixed 8 iterations. Therefore, we choose the window size 16 in our design.

However, the Max-Log MAP decoding algorithm can reduce the decoding complexity,

it causes the performance loss due to the approximation of max function. The scaling

factor approach [16] is applied as compensation for the performance loss due to the Max-

Log-MAP algorithm. That is, a scaling factor to scale down the extrinsic information is

introduced. Therefore, the intrinsic information La(ut) can be formulated as :

La(ut) = β × Le(ũt), (3.14)

where β is the scaling factor. We choose the scaling factor β=0.75 in our design for

performance compensation. This approach not only improves the performance but also

cost a little gate counts.

The fixed point representation of the internal variable in the SISO decoder is deter-

mined from the received symbol quantization. Fig. 3.5 shows the simulation result with

different input symbol quantization under BPSK modulation and AWGN channel, and we
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Figure 3.4: Comparison of window size.

choose block length 2048, window size 16, and iteration number 8. Note that a.b in the

figure denotes the quantization scheme where a is the integer part, and b is the fractional

part. Furthermore, the primary specifications of MAP decoder are given in Table 3.1,

where the code polynomial is follow 3GPP-LTE system.

Table 3.1: MAP Decoder Specification

generator matrix [ 1 1+D+D3

1+D2+D3 ]

code rate 1/3

sliding window size 16

We can observe that the quantized format 6 bits (3.3) is suitable scheme for our design.

In addition, the width of extrinsic information, branch metric, and path metric can be

derived and we summarize the fixed representations in Table 3.2.

In 3GPP-LTE specification, there are 188 different block lengths based on particular

QPP parameters. The shortest size and the longest one are 40 and 6144, respectively. The
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Figure 3.5: Fixed point comparison.

performance of different size is apparently distinct during simulation and is illustrated in

Fig. 3.6. The parameters of simulation is under 8 iterations and sliding window size 16.

In Fig. 3.6, we can see that the worst case (N=40) can achieve BER=10−5 at SNR about

4.5 ∼ 5.0 dB and the best one (N=6144) can reach the same BER under 1.0 dB.

Table 3.2: Summary of fixed representation in MAP decoder

quantities Input Extrinsic Branch Path LLR

symbols information metrics metrics values

width 6 6 9 9 10
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Chapter 4

Reconfigurable 3GPP-LTE Turbo

Decoder

The turbo codes have found applications in several standards listed in Table 4.1 due

to its outstanding error correction ability. However, several communication application

in the future may demand for a higher speed channel coding scheme. It may become a

obstacle for turbo codes in hardware implementations.

To meet the future applications, we proposed a parallel architecture of turbo decoder

for improving the throughput. In this chapter, not only the proposed turbo decoder but

also the MAP decoder utilized in our architecture will be described in detail. Moreover,

since the block length ranges from 40 to 6144, the memory requirement is also a great

issue. A residue-only interleaver is adopted to reduce storage memory. Furthermore,

reconfigurable property of our decoder designed for applying in various situation will also

Table 4.1: Standard specifications for turbo coding

Standard Application Iterative Code Max. Throughput

3GPP UMTS Wireless cellular Parallel conc. of 2 Mb/s

8-state conv. codes

3GPP2 Wireless cellular Parallel conc. of 3.09 Mb/s

CDMA2000 8-state conv. codes

IEEE 802.16e Wireless networking Double binary 30 Mb/s

(WiMAN) conv. turbo code
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be introduced later. Finally, how to compute the throughput in our parallel architecture

will be interpreted clearly.

4.1 Architecture overview

According to the turbo decoding flow shown in Fig. 4.1, each iteration computes the

extrinsic information which is an a priori value estimation for the next iteration. The

next iteration remains idle until the interleaving step reorders all decoding results. The

latency and the performance are determined by the iteration number and the block size.

In the conventional turbo decoder, lower error rate can be achieved with large block size,

but it also requires more decoding time. Hence, the application of turbo code provides a

trade-off between performance and speed.

YES

Output 

Decision 
Bits

NO

Iterative Decoding

LLR & Extrinsic 
Information 

Calculation

Stopping

Criterion

Interleaving / 
Deinterleaving

A Priori 

Probability 
Estimation

Initialization

Decoder

Figure 4.1: Iterative decoding flow of turbo decoder.

Fig. 4.2 shows the simple block diagram of proposed parallel decoder. There are 8

radix-2 MAP decoders and 8 memory banks connected with QPP network and parallel

network [17]. Each memory stores the required data for decoding, including the received

LLR values from channel and the extrinsic informations from MAP decoder. Each MAP

decoder computes the a priori probability which is used in the next decoding round and

makes decision for received symbols. The interleaver is implemented with the address

generators inside each memory and the global network controller, then the pseudo random

data will be fed into the MAP decoders. In addition, the decoder supports 188 kinds of

block length, 40 ∼ 6144, and all the QPP interleaver parameters f1 and f2. Iteration

numbers in this design also can be worked from 1 ∼ 8. The detail process and architecture

is explained in the following subsection.
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Figure 4.2: Block diagram of proposed turbo decoder.

4.2 MAP decoder

4.2.1 Decoding schedule

Fig. 4.3 presents the radix-2 MAP decoder, which consists of branch metric unit(BMU),

add-compare-select (ACS) unit, log-likelihood-ratio (LLR) unit and input buffers (IBUF).

The input buffers are used to store the input symbols. The BMUs calculate the branch

metrics for α-ACS, β-ACS, and βd-ACS units and each ACS unit according to the trellis

structure performs addition, comparison, and selection. The α-ACS unit carries out the

forward recursion and saves the result in the α-buffer. β-ACS unit begins the backward

recursion from the initial conditions determined by the βd-ACS unit calculation. More-

over, the α-buffer performs the Last-In/First-Out (LIFO) in order to reorder the α value

for LLR calculation. The LLR unit determines the LLR values L(ut) used to make deci-

sion and the extrinsic informations Le(ut) that store in the memory for the next decoding

round [18].
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Figure 4.3: Block diagram of MAP decoder.

To consider the sliding window approach shown in Fig. 2.7, the backward metric β

evaluation can be started until the required window of data have been stored. However,

if we reverse the order of input sequence within a sub-block, the input buffer of the βd

computation can be saved [19]. Fig. 4.4 is the decoding schedule of the MAP decoder. In

order to reduce the IBUF for βd-ACS, the input sequence order of decoding is from the

end of the sliding window to the beginning of the window. That is, the input sequences

are written into the input buffer in the reversed order. In Fig. 4.4, the βd computation

can be executed immediately at the first time interval since the reversed sequence. Then

the α recursion is performed on the previous stored data at the next time interval and the

second window data will be written into the other input buffer. Finally, the first window

data will be read at the third time interval for backward β calculation at the same and
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the third window data will be written into the input buffer simultaneously. When the

first window β starts to calculate, the LLR computation also calculates in a neglected

latency. As a result, the latency of MAP decoder is about two sliding window size.
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d
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β
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Figure 4.4: Decoding schedule of MAP decoder.

4.2.2 The circuit for LLR calculation

Our design adopts the modulo normalization to avoid overflow of path metric [20]. This

methods requires only one more bit in the ACS unit and a simple modification inside the

LLR unit. Only the differences between both forward path metric and backward path

metric are significant in modulo normalization, so the LLR unit has to use these differences

to calculate the log-likelihood value. We rearrange the computation order of log-likelihood

value from circuit in Fig. 4.5(a) to Fig. 4.5(b). Although the two circuits have the same

function, the original circuit may result in overflow due to the limited data width. The

modified circuit could guarantee the correctness and cause no extra path delay.

4.3 Proposed Turbo decoder design

Fig. 4.6. shows the block diagram of proposed decoder, which consists of 8 parallel

decoders and 8 memory sets. For an example of block length 1024, we separate a code-

word into 8 sub-blocks with length 128. Each sub-block is assigned to one decoder and
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Figure 4.5: The circuit for LLR unit.

decoded separately. These sub-blocks are connected by a well-designed QPP interleaver.

This method avoids the forward and backward recursion problem while using parallel

architecture. The decoding process is described as follows: each memory will collect a

128-bits sub-block from input buffer until the whole 1024-bits codeword is received. The

memory stores the received symbols and extrinsic information, and the 8 memories will

deliver the required data to the 8 MAP decoders through QPP network. The interleaver

is implemented with the address generators in each memory and the network controller.

The MAP decoders perform the primary decoding procedures, and each one decodes the

sub-blocks. After the required iterations, our design will output the decisions of current

block and start to decode next block.

As described in the previous section, the quadratic permutation polynomial interleaver

interchanges the information between each blocks to improve performance. In addition,

the quadratic permutation polynomials generate the contention-free interleavers. There-

fore, we can access the required data from different memory banks without memory con-

tention and decoding several blocks in parallel to reduce the large decoding latency. Each

MAP decoder is based on the Max-Log-MAP algorithm and adopted the radix-2 ACS

structure. The memory blocks are used for data storage, which store the input informa-

tion and extrinsic values generated by the MAP decoder. Note that the number of MAP

decoders and memory banks are the same, which is because that each decoder can access

data from memory in a one-to-one mapping condition at the same time. Eventually, the
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network is a permutation control unit which controls the interchange of both the input

symbols and extrinsic informations. In the following subsection, we will also introduce

the characteristic of our design and the throughput calculation in detail.
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Figure 4.6: Proposed turbo decoder architecture.

4.3.1 Residue-only interleaver

From the QPP interleaver formula, f(x) = f1x+ f2x
2(modN), the algebraic construc-

tion makes a contention-free condition. A mathematical description of contention-free

condition is now given. The exchange and processing of a sequence of N = MW symbols

between sub-blocks of the iterative decoder can be parallelized by M processors working

on window sizes of length W in each sub-block provided that the following condition holds

for the interleaver f(x), 0 ≤ x ≤ N :

⌊f(j + tW )/W ⌋ 6= ⌊f(j + vW )/W ⌋ , (4.1)
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where 0 ≤ j < W , 0 ≤ t < v < N/W , and π(·) is f(·). First, it verifies the equation (4.1)

for f(x). Let

Qt =

⌊

f(j + tW )

W

⌋

,Qv =

⌊

f(j + vW )

W

⌋

, (4.2)

then

f(j + tW ) = QtW + [f(j + tW )(modW )]

f(j + vW ) = QvW + [f(j + vW )(modW )] .
(4.3)

It must show that Qt 6= Qv for t − v 6= 0(modM) and any 0 ≤ j < W . Assume

Qt = Qv, then

Qt − Qv =
f(j + tW ) − [f(j + tW )(modW )] − f(j + vW ) − [f(j + vW )(modW )]

W
= 0.

(4.4)

Using the simple proposition below:

Proposition: Let M be an integer. Support that M |N and that x ≡ y (mod N).

Then x ≡ y (mod M).

Observing that

f(j + tW ) ≡ f1j + f2j
2(modW ), f(j + vW ) ≡ f1j + f2j

2(modW ). (4.5)

It can conclude that

[f(j + tW )(modW )] = [f(j + vW )(modW )] . (4.6)

Therefore, the absolute value of equation (4.4) can be simplified as

|Qt − Qv| =
[f(j + tW )]− [f(j + vW )]

W
= 0. (4.7)

By noting that (j + tW ) 6= (j + vW ) and that f(x) is a permutation polynomial,

concluding f(j + tW ) 6= f(j + vW ) and having a contradiction in (4.7).

From the equation (4.5) and (4.6), we know that the residue part of the address calcu-

lation will be the same. That is, when using QPP interleaver in the parallel construction,

the residue address of each memory bank is the same. It will be very helpful to our design.

Because the longest block length is 6144 and multiple memory banks, the memory costs

are too much. For this reason, we use the residue-only interleaver in our design, and the

residue address can be repeatedly used in different memory banks. Only the residue ad-

dress has to be saved instead of total address, leading to reduce the memory costs largely.
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Fig. 4.7 shows a 4 MAP decoders and 4 memory banks example, we can see that each

MAP decoder access data from the same address of each memory but different memory

bank. The residue address will be the same after calculation in the right of Fig.4.7.

x

)(xπ

MAP decoder

Memory bank

31 20

31 20

6 754
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Figure 4.7: Example of residue-only interleaver.

4.3.2 Reconfigurable 1/2/4/8-MAP decoders

From the observation of the QPP parameter in Appendix A, the block length can be

classified as following:

N =































40 + 8a, 0 ≤ a ≤ 59

512 + 16b, 0 < b ≤ 32

1024 + 32c,0 < c ≤ 32

2048 + 64d,0 < d ≤ 64

(4.8)

There are all 188 modes, and each block size can be divided by 1, 2, 4, and 8 at most.

In this opinion, we design a reconfigurable MAP decoder numbers in our architecture.

Because of parallel decoding, a received codeword is partitioned into 8 memory banks.

Therefore, we can decode the received codeword by utilizing 1-SISO, 2-SISO, 4-SISO or

8-SISO respectively, based on the block length, performance or throughput expected. It

can be illustrated in Fig. 4.8.

In order to satisfy the 3GPP-LTE block length requirement, there are some compro-

mises between performance and area cost for all block size. Fig. 4.9 shows the perfor-

mance of the shortest size 40 with different MAP decoders. In Fig. 4.9, we can see that

the performance curve of using 8-SISO decoders even 4-SISO or 2-SISO is worse than

using 1-SISO. First, we would like to figure out how the performance degrades and then
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Figure 4.8: Decoding codeword with various processing elements.

we can find some approaches to improve it. The degradation of performance may be

formed by two factor: the first one is that the small section size cause the shorter trellis

structure. Therefore, the calculation of path metric α or β will be unreliable to make

the final decision. The second is the boundary initial value. In general, we often set the

initial value of each state to be zero in every boundary. Nevertheless, the performance

loss can not be obviously found on decoding long block size with multiple SISO decoders.

Because there are fewer such problems mentioned above for long block length.

The warm-up free method [21] is applied to improve performance degradation in our

design. In this method, a warm-up free parallel architecture is proposed by using the

α path metrics that were calculated in the previous iteration of the adjacent sub-block

to initialize the path metrics for each sub-block in the next iteration. That is, the α

path metrics of the last information bit in sub-block i were stored for initialization of the

forward path metrics of the sub-block (i + 1) in the next iteration. In the first iteration,

the initial values of α path metrics needed in the next iteration are not available, thus

the initial values will be set to zero.

After adoption of this method, the forward path metrics become more reliable. There-

fore, the performance can be improve with multiple SISO decoders for short block length.

Fig. 4.10 shows the final performance of our design of size 40. Comparing with Fig. 4.9,

the performance of using multiple SISO decoders is near the performance of utilizing 1-

SISO. Moreover, the performance of decoding long block size with different SISO decoder
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Figure 4.9: Short block length 40 of 1/2/4/8-SISO decoders without warm-up free method.

is almost close. It can be shown in Fig. 4.11 with a long size 6144.

In the following, we will also show some simulation results for the iteration consider-

ation. Because we depend on two reasons: the first one is that the all block lengths are

from 40 to 6144, and the needed iterations may be different at BER=10−5 under AWGN

channel. The second is about throughput computation. Fewer iteration numbers we use,

the higher throughput we achieve. For the iterative decoding process, increasing the iter-

ation numbers may cause the performance curve to converge eventually and the required

iterations can be obtained. The performance of different lengths and iterations are illus-

trated in Fig. 4.12 and 4.13. In Fig. 4.12 and 4.13, we can figure out that the shorter

lengths need fewer iterations to converge, but the longer ones require more. Finally, we

can derive the summary in Table 4.2.

Therefore, the numbers of iteration are so flexible for all block length in our design.

That is to say, our turbo decoder can support the iteration numbers from 1 ∼ 8.
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Figure 4.10: Performance comparison of size 40 of 1/2/4/8 decoders with warm-up free

method.

4.3.3 Throughput consideration

In this section, we will introduce how to computer the throughput. There are some

critical factors affecting the result. The throughput is defined as decoding how many bits

per second. In the parallel architecture, the function can be translated in equation (4.9).

Each factor will interpret as following: f is the operating frequency, which means the

inverse of the critical path of our design. Moreover, the critical path in general resides

in the ACS unit. For trellis-based 3GPP-LTE decoder, each state receives two branch

metrics and also sends two messages to other states. As a result, radix-2 ACS unit is

Table 4.2: Needed iterations of different size

Block length Needed iteration

40-512 3 or 4

512-2048 5 or 6

2048-6144 7 or 8
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Figure 4.11: Performance comparison of size 6144 of 1/2/4/8 decoders with warm-up free

method.

required to decode the trellis structure. In order to diminish the critical path ,only radix-

2 structure is considered in our design. It also means that the decoder can decode one

bit each time. That is, the Radixfactor in equation (4.9) is 1. Parallel is the number of

decoders which are used to decode. As we know, the more decoders, the higher throughput

can be derived. But the cost may be increased oppositely. The maximum decoders in

our architecture are 8. The significant factor effecting the throughput is the efficiency

of each MAP decoder. From the decoding schedule in Fig. 4.4, we realize that there are

about three sliding window size latency in each decoding round. The decoder actually

starts to decode in the third time interval. Thus the efficiency is formed in equation (4.10).

Decoding with 1-SISO, 2-SISO, 4-SISO, and 8-SISO , the efficiency of each SISO decoder

may be different. The efficiency in all case is shown in Table 5.1. The final factor is the

number of iterations. Based on MAP decoding algorithm, the decoding process through

pre-decoding round and post-decoding round is called one iteration. That is why the

denominator of equation (4.9) are two times of iterations. Based on all factors mentioned
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Figure 4.12: Performance of size 40 and 512 under various iterations.
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Figure 4.13: Performance of size 2048 and 6144 under various iterations.

above, the throughput can be evaluated eventually. The throughput of our design will

show in the next chapter in Table 5.2.

Throughput(bits/s) =
Block Length

Needed cycles
× clock rate

=
Block Length

decoding round# × cycle

decoding round#
× time

cycle

=
f × Block Length

cycle per decoding round

decoding round#

=
f × Radix factor×Parallel×real decoding cycle

cycle per decoding round

decoding round#

=
f × Radix factor × Parallel × efficiency

2 × iteration#
. (4.9)
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• f : Operation frequency

• Radix factor : Radix structure of ACS unit

• Parallel : Parallel decoder numbers

• efficiency : decoding efficiency of each MAP decoder

• iteration : number of iterations

efficiency =
real decoding cycle

cycle per decoding round
. (4.10)
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Chapter 5

Implementation Results

5.1 Chip characteristic

As described in section 4.3.3, the efficiency of each SISO decoder with 1/2/4/8-

decoders is different. It can be calculated from equation (4.10). Table 5.1 shows the

efficiency results in all case. In Table 5.1, we know that when block length becomes

longer, the efficiency also becomes larger. Moreover, the efficiency of decoding the long

block size with 1-SISO and 8-SISO decoders becomes close.

Based on the MAP efficiency results, we can use equation (4.9) to compute the through-

put. In our design, the operation frequency can reach 277MHz. The needed iteration num-

bers can estimate from the performance simulation. Therefore, the throughput summary

is shown in Table 5.2.

Based on the architectures described in chapter 4, we proposed a reconfigurable turbo

Table 5.1: Efficiency of each SISO decoder with 1/2/4/8-decoders

1/2/4/8-SISO decoders

Block length each decoder each decoder each decoder each decoder
of 1-SISO of 2-SISO of 4-SISO of 8-SISO

40 0.465 0.303 0.227 0.172

512 0.917 0.847 0.735 0.581

2048 0.978 0.957 0.917 0.847

6144 0.992 0.985 0.971 0.943
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Table 5.2: Throughput summary

Block Needed

length iteration

40 3

512 4

2048 6

6144 8

Parallel decoder numbers

1-SISO 2-SISO 4-SISO 8-SISO

21.5 28.0 41.9 63.5

31.8 58.7 101.8 160.9

22.5 44.2 84.7 156.4

17.2 34.1 67.2 130.6

∗ unit: Mb/s.

decoder with the quadratic permutation polynomial interleaver applied to 3GPP-LTE sys-

tem. The proposed decoder supports 188 different block length (40 to 6144). The smaller

sliding window size can reduce both the storage size of input buffer and α buffer. The

smaller iterations can increasing the decoding throughput. Therefore, we use sliding win-

dow size 16, flexible iteration numbers, and also utilize scaling factor 0.75 for performance

compensation.

The primary chip specification of the reconfigurable turbo decoder is given in Table

5.1, which is implemented through the cell-based design flow. A test chip has been

implemented in a 0.9V, 90nm 1P9M CMOS technology, and the layout view is shown

in Fig. 5.1. The chip size is 4.5mm2 (2.5mm*1.8mm) while the core occupies 2.10mm2

(1.84mm*1.14mm) in 90-nm process. The total gate count is 602K including memory

units and the chip core density is nearly 81%. After static timing analysis and post

layout simulation, the operating frequency can achieve up to 277MHz and the throughput

is 130Mb/s with block length 6144. Furthermore, the power consumption operated at

277MHz is 149.03mW with 0.9V supply voltage.

Besides, the power consumption estimated by the post-layout simulation is 149.03mW

and can be converted to energy efficiency. The energy efficiency is defined as the average

energy consumed per bit within each decoding iteration (nJ/bit/iter). For our decoder

with block length 6144 under 8 iterations, the energy efficiency can be calculated as

149.03mW

8 × 130.6Mb/s
= 0.142nJ/bit/iter.
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Table 5.3: 3GPP-LTE turbo decoder chip summary

Technology UMC 90-nm 1P9M CMOS

Block length 40 to 6144

Iteration 1 to 8

Sliding window 16

Scaling factor 0.75

Quantization 6 bits(3.3)

SISO decoder algorithm Max-Log MAP algorithm

Code polynomial [ 1 1+D+D3

1+D2+D3 ]

code rate 1/3

MAP radix-2 MAP

Core area 2.10mm2

Memory area 0.634mm2

Gate count 602K

Throughput 130.6Mb/s

Supply voltage 0.9V

Clock rate 277MHz

Power consumption 149.03mW (@0.9V and 277MHz)

Utilization 81%

nJ/bit/iter 0.142
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Figure 5.1: Layout photo of 3GPP-LTE turbo decoder.

5.2 Comparison

Table 5.2 lists the comparison of the proposed design with other published works. We

both find some architecture for using in 3G wireless communication standards [22] [23]

[24] and with parallel structure [22] [25] [24]. In Table 5.2, we can realize that higher

throughput can be derived by increasing parallelism. But the penalty is largely area

expense. In our proposed design, we utilize 8 parallel SISO decoder and get the modest

area cost. In addition, our throughput is about 2 times than [22] under approximate

parallelism and our energy efficiency is the smallest of the others.
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Table 5.4: Comparison of different turbo decoders

Proposed Ref. [22] Ref. [25] Ref. [23] Ref. [24]

Technology 90nm 0.18µm 0.13µm 0.13µm 65nm

Parallelism 8 SISO 6 SISO 64 SISO 1 SISO 32 SISO

Block length 6144 5114 5120 5114 6144

Word bit-width 6 N/A 7 5 6

Performance (dB) 0.73 N/A N/A 0.83 N/A
@BER=10−4 @BER=10−4

Iteration 8 6 6 6 6

Operating frequency(MHz) 277 166 256 246 200

Core area (mm2) 2.10 N/A 13 1.2 N/A

Gate count 602K 1299K N/A 44.1K 4.93M

Power consumption(mW) 149.03 525.67 573 57.8 N/A

Energy efficiency 0.14 1.47 0.76 0.7 N/A
(nJ/bit/iter)

Throughput(Mb/s) 130.6 59.6 758 18.6 711

Status APR Synthesis APR CHIP Synthesis
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Chapter 6

Conclusion and Discussion

6.1 Conclusion

In this thesis, we propose a reconfigurable turbo decoder using contention-free QPP

interleaver for the 3GPP-LTE applications. The proposed decoder support full 3GPP-LTE

block size range, that is, 188 different block sizes in the range 40-6144. The contention-

free interleaver makes the parallel architecture feasible. The modified Max-Log MAP

algorithm is used to reduce the hardware complexity and keep the performance close

to Log-MAP algorithm. In MAP decoder design, reversing the input sequence order

is utilized to eliminate the βd input buffer requirement. The decoder chip consists of

8 MAP decoders with its corresponding memory sets. The residue-only interleaver is

also adopted to reduce the memory storage. Besides, the reconfigurable 1/2/4/8-MAP

decoders is flexible and can be utilized in various conditions. Finally, the post-layout

simulation result shows that the decoder chip with 602K gate counts can achieve the

throughput 130Mb/s with length 6144 and the energy efficiency of this decoder is 0.142

nJ/b/iter.

6.2 Discussion

As described in previous chapters, our design consists of 8 parallel MAP decoders and

8 parallel memory sets. Our parallel architecture decodes one codeword by using multiple

processing elements. That is, we separate a codeword into 8 sub-codewords and each
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sub-codeword is decoded by one MAP decoder separately. For example, when decoding

with length 1024, each memory will collect a 128-bits sub-codeword from input buffer till

the whole 1024-bits codeword is received. This parallel decoding method is more suitable

for long block length to increase throughput efficiently.

In order to support all block lengths, from 40 to 6144, the hardware cost is depended

on the longest one. Thus the decoding process utilizing the parallel method mentioned

above becomes inefficient for short block size. It is because that each memory still has

some unused addresses. For improving this condition, we may decode multiple codewords

concurrently in parallel architecture. Fig. 6.1 shows an example of 8, 4, and 2 codewords

store in memories at length 40. Due to the limited memory storage, decoding multi-

ple codewords have the maximum block length restriction. As decoding 8 codewords,

the maximum block length support up to 768 and each received codeword stores with-

out partition. The maximum size can reach 1536 when decoding 4 codewords and each

codeword is separated into two part ”Code0-A” and ”Code0-B”. In the same way, the

maximum length of decoding two codewords is 3072 and per codeword must divide into

4 sub-codewords as shown in Fig. 6.1.

Fig. 6.2 shows the schedule of decoding 8 codewords in our architecture. We assume

the time of codeword stored in memory is within one decoding round and a whole codeword

is stored in one memory bank instead of dividing into several sub-codewords. In Fig. 6.2,

when the codeword ”Code0” is ready in memory ”MEM0”, then decoder ”MAP0” starts

to decode. The incoming ”Code1” still enters in ”MEM1” to be decoded at the second

time interval. The same process still runs until decoding the codeword ”Code8” at the

eighth interval. At this time, all 8 MAP decoders operate concurrently and it can improve

the original throughput about 8 times.

Fig. 6.3 and 6.4 are the time schedule of decoding 4 codewords and 2 codewords

respectively. In these two cases, the codewords stored in memory distinguish from decod-

ing 8 codewords. In Fig. 6.3, one received codeword is divided into two sub-codewords,

”Code0-A” and ”Code0-B”, which are stored in ”MEM0” and ”MEM1” and then are

decoded by ”MAP0” and ”MAP1” concurrently. At the same time, the ”MEM2” and

”MEM3” still collect coming codeword which also separates into two parts. The similar

procedure keeps on until decoding the fourth codeword. At the eighth time interval, the 8
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MAP decoders operate simultaneously and we can derive approximately 4 times through-

put than original one. Similarly, the received codeword is divided into 4 sub-codewords

and we can use at most 4 MAP decoders to decode per codeword as decoding 2 codewords.

It can be shown in Fig. 6.4.

Decoding multiple codewords in parallel architecture can improve the throughput.

But there are still two issues to be considered. Firstly, due to the limited memory area

in our design, decoding multiple codewords have the maximum block length restriction.

Secondly, the iteration numbers are at least 4 times in this decoding process. In Fig.

6.2, 6.3 and 6.4, we can realize that decoding multiple codewords need at least 8 decod-

ing rounds (4 iterations) to achieve the all MAP decoders working simultaneously. The

summary of decoding multiple codewords and some estimations are summarized in Table

6.1. We can derive the throughput of decoding multiple codewords within different block

lengths. When the block length is under 768, the estimated maximum throughput can

achieve 208Mb/s. Moreover, the size under 1536 and 3072 also can derive the maximum

throughput 174Mb/s and 208Mb/s, respectively.

Table 6.1: Summary of decoding multiple codewords

Multiple Max. SISO no. Max. block Needed Max.
codewords per codeword length iteration throughput

1 8 6144 8 130 Mb/s

2 4 6144/2=3072 7 149 Mb/s

4 2 6144/4=1536 6 174 Mb/s

8 1 6144/8=768 5 208 Mb/s
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Appendix A

QPP Interleaver Parameter

Figure A.1: QPP parameters
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Figure A.2: QPP parameters(Conti.)
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