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Abstract

We study the B-Chase detector appliedstosthe MIMO and MIMO-OFDM systems in this
thesis. B-Chase detection algorithm 1s a_general technique that can accommodate previously
reported detectors as special cases,including the maximum-likelihood and decision-feedback
detectors. The B-Chase detector includes‘a‘list detector that is parameterized by the list length
{. By changing the list length, wé.can manage the:-'system performance and complexity. In
addition, the B-Chase detector provides two selection algorithms that perform the task to
decide which incoming symbol is firstly detected. And the list length can impact which
symbol is firstly detected. The choice of two symbol selection algorithms is determined
according to two different criteria. The first approach is based on the received SNR in which
the symbol is selected in a higher priority if it has a higher SNR.  This way the result of the
list detector is more likely to be correct, thereby reducing the risk of error propagation. On the
other hand, in order to reduce the complexity entailed by the first selection algorithm, the
2" approach performs the selection in the sub-detectors, with the performance traded to the
complexity. Finally, we apply the low-complexity B-Chase algorithm to the MIMO-OFDM

systems.
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Chapter1

Introduction

1.1 Significance

For wireless communications applications, the major goal is to develop reliable, high
data rate, and low complexity transmission systems. Therefore, future wireless communication
systems are expected to provide those under all kind of channel environments, particularly
with high mobility. We can realize broadband wireless systems will suffer detrimental effects
of the frequency-selective fading, and many difficult engineering tasks remain to be resolved.
Traditionally, getting more bandwidth is required for higher data rate transmission. However
it is often impractical to increase bandwidth. Therefore, Orthogonal Frequency Division
Multiplexing (OFDM) technique® has received much attraction in wireless transmission
applications for recent years due to the advantages-to mitigate the detrimental effects of
frequency-selective fading. From multiple input multiple output (MIMO) technology, we
know that the rich-multipath wireless channels provide solutions to achieve spectral efficiency.
In such cases, the channel between each transmit and receive antenna pair is considered flat
and uncorrelated, thus Space Division Multiplexing (SDM) is a technique that can provide a
significant improvement in data rate and bit error rate (BER) performance. When we employ
multiple antennas at the receiver, these received data streams can be detected by SDM
techniques such as Vertical-Bell Laboratories Layered Space-Time (V-BLAST) [2] [3] [8]
[13]. These algorithms must require flat-fading channel information between each transmit
and receive antenna pair. However, most practical channels are frequency-selective fading so
that performances will be degraded. Therefore, we employ OFDM systems in which
frequency-selective fading can be equivalently transformed into flat-fading in each subcarrier.
In addition, it is effective when combined with SDM techniques. That is known that the SDM
techniques have a performance gap for the optimal ML detectors. Hence, the goal of this
research is to reduce this gap and provide new solutions to managing the inherent

performance-complexity trade-off in MIMO and MIMO-OFDM detection.



1.2 Motivation

In multiple input multiple output (MIMO) technology know that the rich-multipath
wireless channels between each transmit and receive antenna pair is flat and uncorrelated, thus
Space Division Multiplexing (SDM) is a technique that can provide a significant improvement
in data rate and bit error rate (BER) performance. Due to the SDM techniques have a
performance gap for the optimal ML detectors, therefore [13] provides a total solution for
managing the inherent performance-complexity trade-off in MIMO detection. The work in [13]
considered flat fading channels. However, practically the channels are more likely to be
frequency-selective fading. Therefore, we consider using MIMO-OFDM to tackle the problem.
We aim at providing a new technique combined SDM with OFDM so that SNR as well as data

rates performances can be improved.

1.3 Contribution

In this thesis, we will combine SDM- and OFEDM technique that can improve SNR
performances as well as data rates for the practical channels are frequency-selective fading.
That is shown in the chapter 4. From that we understand the system architecture is robust in

the frequency-selective fading channel.



Chapter 2
MIMO Systems

The material in this Chapter is largely taken from [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],

[11],[12], [13], and [17].

2.1 Introduction to MIMO Systems

In wireless communication demand high data rate and high link quality access, hence
we employ the multiple-input-multiple-output (MIMO) systems architectures to obtain that.
We can employ different space-time code in the MIMO systems architectures to obtain high
data rate and high link quality access. Thé high spectral efficiency due to spatial multiplex
(SM), which transmit multiple data streams)simultaneously by multiple antennas, and the high
link quality access due to space diversity, which' transmit the same multiple data streams
simultaneously by multiple anténnasy both_at_the transmitter and receiver. MIMO systems
provide the ability to turn multipath propagation, which is traditionally the impairment
because it can causes signal fading in the wireless transmission, into a benefit but the channel
state is not correlative. Since MIMO systems effectively take advantage of random fading and
multipath delay spread, the signals transmitted from each transmit antenna appear highly
uncorrelated at each receive antenna and the signals travel through different spatial channels.
Then the receiver can exploit these different spatial channels and separate the signals
transmitted from different antennas at the same frequency band simultaneously.

MIMO is a promising technology that is suite for high-speed broadband wireless
communications. Through space division multiplexing, MIMO technology can transmit
multiple data streams in independent parallel spatial channels, thereby increasing total system
transmission rate. Considering an arbitrary wireless communication system, a link is
considered for that the transmitter is equipped with Nt transmit antennas and the receiver is
equipped with Nr receive antennas. Such a setup is illustrated in Figure. 2.1. considered at

some assumptions.



Consider this system some important assumptions are made first:

1. Channels are constant during the transmission of a packet. It means the communication is
carried out in the some packets period that are shorter than the coherence time of the
channels. The channel state is assumed that is time invariance.

2. Channels are memoryless. It means that an independent channel realization is drawn for

each use of the channels.

3. The channel is flat fading. It means that constant fading over the bandwidth is desired in the
case of narrowband transmissions. It also indicates that the channel gains can be described
by complex numbers.

4. The received signal is corrupted by additive white Gaussian noise (AWGN).

5. At all time the receiver can perfectly know the channel matrix which is also known as the
channel state information (CSI) and the CSI can be obtained by channel estimation based

on the transmission of a training sequence:

With these assumptions, -t is' common: to .represent the input/output relations of a
narrowband, single-user MIMO-+link by-the complex-baseband vector notation and transmit

signal vector is transmitted at each’instant time.

r=Ha+w (2.1.1)

where a=[aj,---ay; ]T is the Ntx1 transmitted signal vector in RN or M whose entries

are chosen from some complex constellation A (e.g.16-QAM etc.), re CN' s the received

signal vector is the Nrx1 received vector, H=[hy,---hy;]is cN™NU the Rayleigh flat

fading channel matrix whose ith column is h;, and where w =[w;,--- Wy, ]T is CN'zero-mean

complex Gaussian noise vector at some instant time. We assume that the columns of H are

linearly independent (e.g Nr = Nt). We assume that the noise components are independent

and identically distributed (i.i.d.) complex Gaussian random variable with E[wwH 1= Nyl

4



that is additive white Gaussian noise (AWGN). We assume that the complex inputs are
uncorrelated and chosen from the same unit-energy discrete alphabet, so that E[aaH 1=1.All
the coefficients hj comprise the channel matrix H and represent the complex gain of the
channel between the jth transmit antenna and the ith receive antenna. The channel matrix can

be written as

1,1 1,2 hl,Nt (2.1.2)
H = 2.1 22 - 2Nt
_th,l th,2 th,Nt_

|e¢"" (2.1.3)

Those coefficients {h;} describe the unknown channel properties of the medium that is
usually Rayleigh distributed in a-ich scattering environment without line-of-sight (LOS) path.
If ajjand Bjjare independent and Gaussian distributed random variables, then |hjj| is a Rayleigh
distributed random variable. Actually, those coefficients {h;} are likely to be subject to
varying degrees of fading and change over time. Therefore, determination of the channel
matrix is an important and necessary aspect of MIMO techniques. If all these coefficients are
known, there will be sufficient information for the receiver to eliminate interference from
other transmitters operating at the same frequency band. Although the introduced MIMO
transmission requires flat-fading channels, and it is limited to applications with narrowband
transmissions, in real broadband transmission systems, channel conditions are often
frequency-selective fading. In wireless transmission, we demand a technique to alleviate the
severe effect of frequency-selective fading. Therefore the OFDM technique is a good solution

for this purpose in wireless transmission owing to its advantages.
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Figure 2-1 Model of MIMO systems

2.2 Maximum Likelihood (ML) Detection Methods

First, we will employ the Maximum Likelihood (ML) Detection for the MIMO systems

and it is given by

Ayl = arg minje=Hal’ 2.1
aeA™

From the transmitted vector symbols, A is the complex-valued modulating constellation and
ANU s the entire set of the possible transmitted vector symbols. We know that find the entire
set of the possible transmitted vector symbols so that the complexity is huge due to Nt and A.
We know that Nt is the transmit antennas and A is the complex-valued modulating
constellation, so Nt and A is huge such that spend much complexity to find the solution from
(2.2.1). From the optimal Maximum Likelihood (ML) Detection in the MIMO systems know
the complexity increases when Nt and A increases, so find the suboptimal detection for the

MIMO systems.



2.3 The Linear Detector Methods

We could employ these linear detectors for the MIMO systems. The received signal
vector r is multiplied with a filter matrix G and then followed by a parallel decision on all
layers. Zero-forcing means that the mutual interference between the layers shall be perfectly
suppressed. This is accomplished by the Moore-Penrose pseudo-inverse (denoted by (-)+ ) of

the channel matrix

where we assume that H has full column rank. The decision step consists of mapping each

element of the filter output vector

azp :GZFr:a+(HHH)_1HHw (2.3.2)

into an element of the symbol alphabet by a minimum distance quantization. The estimation
errors of the different layers correspond to the main diagonal elements of the error covariance

matrix

gr =E{(@z -a)az -a)j=oqmm? G

which equals the covariance matrix of the noise after the receive filter. It is obvious that small
eigenvalues of H'H will lead to large errors due to noise amplification. This effect is
especially observed in systems with the same number of transmit and receive antennas. We
can use Linear MMSE detector to decrease the noise amplification. Minimizing the mean
squared error (MSE) between the actually transmitted symbols and the output of a linear

detector leads to the filter matrix



Gymse = HTH+ o021y 'H" 2.3.4)

The resulting filter output is given by

— H 2 —14H 2.3.5
apmse =Gummser =(H 'H+oyIy) H''r (2.3.5)

and, after some manipulations, the error covariance matrix is found to be

2 xyH 2 -1 2.3.6
Opvse = ow(H H+ oy Ing) ( )

With the definition of a (Nt+Nr)xXNt extended.channel matrix H and a (Nt+Nr)x1 extended

receive vector r through

H
H= and bor = L (2.3.7)
UWI Nt ONt,l

We can write the output of the MMSE filter as

AMMSE = (H" 1_1)_11_1"'5 =H'r (2.3.8)

Furthermore, the error covariance matrix becomes

_ 2.3.9
Dymse = oo (HTH)™! (2.3.9)

We compare that are the corresponding expression for zero-forcing that can find the only

difference is that the channel matrix H has been replaced by H. We can use the QR

8



decomposition of the channel matrix for ZF or MMSE. For ZF, we can do the QR

decomposition of the channel matrix H=QR that we can rewrite the a filter matrix as

G, =H =R'Q" (2.3.10)

1.function H = QR

2R =0,Q= [qqua'” ant]: H
3.fori=1,...,Nt

4.r; =lq;|

5.4, =q; /4

6.for j=i+1,..., Nt
Tq;=9q; =1 ;.9q;

g.end

9.end

Figure 2-2 QR decomposition algorithm

Table 2-1 Complexity of QR decomposition algorithm

No. Multiplication Nr=4, Nt=4

4, Mult:2Nr 8




7. Mult:3Nr 12

ZF Mult:2*Nr+3*Nr*(Nt)*-3Nr*Nt 152

total complex

MMSE Mult:3(Nt)*-3Nr(Nt)%-3(Nt)? -3NrNt+2Nr+2Nt | 304

total complex

For MMSE, we can do the QR decomposition of the extended channel matrix that we can

write as

He| :QBZ[QI}B:[QIB} (2.3.11)

where the (Nt+Nr)xNt matrix Q  with erthonormal columns was partitioned into the Nr xNt

matrix Q; and the Nt XNt matrix Q,. From that equation we get the relation as

R'-Loq, (2.3.12)
O,

w

Furthermore,

Q"H=Q"H+0,0," =R (2.3.13)

holds. The filtered receive vector becomes

5=QH£=Q1H1‘=Ba—aw13_Ha+Q1Hw (2.3.14)

10




From the filtered receive vector we know that have the remaining interference that can not be

removed in the detected procedure.

2.4 BLAST Detection Methods

For get high data rate and performance in the MIMO systems, therefore employ
Vertical — Bell Laboratories Layered Space-Time (V-BLAST) Architecture to implement that.

a n W
1
MOD ! an T /# V-BLAST
Vector 2 12 U ‘
W, Signal
MOD ! WT\ processing
encoder R AN R
—> : H : —>
> Pane e §
o w o
: v o a
< <
MOD ! \/

Figure 2-3 Block diagram.of V-BLAST structure

Where the transmit antennas send a vector symbol of the size Nt over a rich-scattering
wireless channel to the Nr receive antennas at each symbol time. At the transmitter, a single
data stream is partitioned into Nt substreams, and each substream is encoded and sent through
a different transmit antenna. During reception, each antenna receives signals transmitted from
all the Nt transmit antennas. We are base on (V-BLAST) Architecture to find some detector.
We use successive interference cancellation (SIC) technique or ordered SIC (OSIC) based on
zero-forcing criterion (ZF V-BLAST) that require the decision-feedback equalization (DFE)
and detect sequentially transmitted signals with the smallest estimation error. On zero-forcing
criterion find the filter matrix Gzp, For get the smallest estimation error, so find the largest

signal-to-noise ratio (SNR) and reduce noise enhancement. Find the row gz of Gz that

has the minimum norm and multiply the received signal.

11



i i 241
& =gzrr =gzr (Ha+w) =3 +7} &40

where i is the order index a signal is detected. &jis quantized to get estimate of @;and
regenerate an estimate of signal then the received signal subtract the regenerate an estimate of

signal to remove the interference of this signal. Sequential do Nulling and canceling process

until all signals are detected. That is shown

Begin
H! = H
I'IZI'

for (i=1;i<= Nt,i+ +)
G =(mhH?
ki:argjminH(GiZF)jH
g F :(GiZF)ki
di = ghgr
&k =quantize(4,)
N1 = i — ag HYy
Hi+1=HL_

end

Figure 2-4 ZF V-BLAST OSIC algorithm [2]

where giZF means the kj-th row of GiZF , Hy means the Kkj-th column of H, and

H L means the resulting matrix H after nulling the kj-th column of H'. To find the

ordering do the repeated computations of a channel matrix pseudoinverse and spend much

complexity with O(Nt4) , where Nt is the number of channel inputs. We find a low
complexity algorithm to do the repeated computations of a channel matrix pseudoinverse and

the ordering for the performance. We employ the decision-feedback (DF) detector that to do

12



nulling and canceling. We can know the risk of error propagation in the decision-feedback
(DF) detector, so find out the best ordering to reduce the risk of error propagation. That is to
find the max SNR at the first time which reduces the detection errors to do nulling and
canceling. Find the low complexity algorithm or/and the best performance on the below when
assume Nt =Nr =N. We will use the QR and the sorted QR decomposition in V-BLAST to
reduce the complexity. Use the QR decomposition to decompose the H = QR that Q is the
NxN unitary matrix and R is the NxN upper triangular matrix and we know the amplitudes of
the entries of the matrix R are y-distributed. We use the feedforward filter matrix Q" for the

received signal. That is shown.

f=Q" (Ha+w)=Ra+w (2.4.2)
r1 h, h, r1,N a, Wl
I’;’2 — 0 r2 2 rZ:N 2 + WQ
I’;‘N 0 0 rN,N aN WN

Since Q is unitary, the statistical properties of the noise term W =Q"w remain unchanged.

First, we can use the last row to solve the last equation and that is shown.

v = Munay + Wy — get  a,

erl =Tyona@yo i@y +WN—1 —>get a
N

f :rl,lal"‘zrl,jaj + Wy —get a,

Form that we know the first time to solve the equation and it can affect the performance. If we
can solve the equation at the first time is error then we can have much error at the second time.
We call that is error propagation. So, we will use the sorted QR decomposition to choose

which columns of H at the first time. That can get the optimum R to solve the equation. We

13



can use the complexity O(N’/2) in the QR decomposition of permutations of H. We can

use the sorted QR decomposition that use an extension of the modified Gram-Schmidt (MGS)

algorithm by ordering the columns of H in each orthogonalisation step. That algorithm is

shown.

ILR=0,Q=H,p=(,...,N)
2.fori=1,....N
3.kj =argmin |q;

j=1,...,N

| 2

4. exchange columnsiand k; in R,Q,p

S‘ri,i =|q; |
6.q,=q;/ Fis

7.for j=141,....,N

8-‘1; =q; — 6,9

9.end

Figure 2-5 The Sorted-QR decomposition algorithm [6]

Table 2-2 Complexity of the Sorted-QR decomposition algorithm

No. Multiplication Nr=Nt=N=4
3. Mult:2Nr*Nt 32
5. Mult:2Nr 8

14




8. Mult:3Nr 12

ZF Mult:3.5*Nr*(Nt)>+0.5Nr*Nt 232

total complex

MMSE Mult: 3.5*¥Nr*(Nt)*+3.5(Nt)’+0.5Nr*Nt+0.5(Nt)> | 464

total complex

We find the permutation vector p that store the used reordering of H that minimises each ‘rk,k‘

with K running from 1 to N.. We consequently compute the diagonal elements that are

calculated from rj jto ryn and it would be optimal to maximise the ‘rkyk‘ in every decoding

step, that means from ryx to ) 3. That can reduce the, risk of error propagation beacause we
have the huge SNR gain in the Nth subchannel- We will know the performance is limited by
the Nth subchannel. The performance of V-BLAST is limited by the worst subchannel, i.e.,
subchannel N. Basically this is due to the error propagation which is inherent in a DFE, and
the distribution of the upper triangular matrix R. The amplitudes of the entries of R have X
distribution with different degrees of freedom, and furthermore, rxx has the least degree of
freedom. Therefore, the Nth subchannel has the worst statistics, and it is crucial to improve its
statistics in order to improve the overall performance of the V-BLAST. So we propose to

combine ML decoding with the DFE procedure.

2.4.1 Combine ML and DFE Scheme

On the below when assume Nt =Nr =N. For the worst p subchannels, we perform ML
decoding and then use a DFE for the remaining subchannels. In order to do this, we do not

completely triangularize the channel matrix H. That is shown.

15




(R H
_ a (2.4.1.1)
i QLO Hb]

where R s an upper triangular matrix of size (N-p)x(N-p) and Hy, is a square matrix of size p

xp. To get the above decomposition, we follow the usual Gram-Schmidt orthogonalization

procedure for (l_ll,hz,-“,l_lep )which yields

H:(Qali|l_1N—p+lal_1N_p+2:"'ol_lN) (2412)

where h; is the jth column of H. Now we find an arbitrary Qb of size Nxp such that

QbHQb =T and QbHQ =0.Thus Q:(Qa |(~)b) form an orthonormal basis. Then choose H,

and Hj, such that

(Qaéb)(EaJ=(hN—p+l’hN—p+29”',l_1N) (2413)

Since Q., is independent of (l_lepH,l_lepw---,hN), the elements of Hj, are i.i.d. complex

Gaussian with zero mean and unit variance. Using this decomposition, we first detect

(aN,pH,aN,pﬂ,“-,aN )T jointly by ML decoding of size p, cancel the interferences caused by

these symbols, and then detect (al,az,“',apr)T by the usual DFE procedure. For the

decomposition of H we use that for the received signal and show that.

(2.4.1.4)
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We  perform ML  decoding with r, =H,a +w, to  jointly  decode

ah:(aprH,aprm---,aN )T and employ the DFE procedure using R to decode

a :(al,az,---,apr)T.

2.4.2 Parallel Detection (PD) Scheme

We can propose a new parallel detection (PD) frame work which is a compromise
between the low complexity schemes and the maximum likelihood estimation (MLE). The
parallel detection (PD) frame empoly the optimally ordered decision feedback equalizer
(OO-DFE) act as the subdetector. We will describe the optimally OO-DFE. The received

signal in complex baseband representation can be then written as
r=HP 'Pa+w=Ha+w (2.4.2.1)

where P is a permutated matrix’.representing the detection order and H=HP',a=Pa
represent the permutated channel matrix ‘and’ the substream vector respectively. Substreams

are detected recursively in the order from & to 4&,,. The i-th detection on substream symbol

a is explained in the following three steps: cancelling, nulling and ordering.For the

cancelling considered : all the proceeding detected substream symbolsd,,---d _, are cancelled

i-1

out from the received signal,r’ =r-h,a, ---h, a_, where h, irepresents the i-th column of the

channel matrix I:I=[l~11,---,l~1Nt].For the nulling considered: a nulling vector g based on

zero-forcing criteria, i.e.

is calculated. As a result, gis the first row of F"=(F"F)"'F" whereF=[h,,---,h].

!

Then a hard decision on g'r’ is made to obtain & .For the ordering considered: we can
choose the optimally ordered row from F as the nulling vector and make a hard decision. If
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the row with smallest norm provides the largest signal-to-noise power ratio (SNR), then it can
make the most reliable hard decision. We discuss the block error rate (BLER) for OO-DFE ,
MLE, and zero-forcing equalizer at a given channel H .Firstly, we discuss the block error rate

(BLER) for OO-DFE. Denote the BLER of OO-DFE algorithm by Poo

_d>2 (2.4.2.2)
Py = Cexp

2
. A
where dJ =min——.
i
gi &

For a given H, d_ is different if the different ordered P is used. The optimal order gives the

largest d_ . The free distance for @imaximum likelihood estimation (MLE) detector where its

BLER is
=d? (2.4.2.3)
~ C free
Pue =& exXp B
4o,
and di,=min(a-a")" H"H(a-a'). Similarly, we can define for a zero-forcing equalizer,
2

d,. =min ——— where subscript (i,i) represents the diagonal element in the i-th row and

(i.i)
the i-th column. Intuitively, the relationship between performances of MLE, OO-DFE and

zero-forcing is Pyig = Poo = Pzr, which suggests d;. >d; >d>. . We will use the

OO-DFE act as subdetector in parallel detector and show that.
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Figure!2-6 Parallel detection

We can understand when the receiver antennas Nr > the transmiter antennas Nt, OO-DFE
can perform quite well. However, in the case Nr =Nt, its performance is quite far from that of

the MLE. An explanation is given in this section.

The nulling vectors {gl,---,gNt} defined in the zero-forcing based OO-DFE algorithm

are orthogonal to each other.

This can be shown easily in the following. Since the nulling vector ng is the first row of the
pseudo-inverse matrix [ﬁla"'aﬁNtT , thus g; must be orthogonal to h,,---,hy; .Again

. . ~ =t . o
since giH is the first row of I:hi’.”’hNt:' , g must be a linear combination of vectors

flia"'aﬁNt . Therefore, g; must be orthogonal to g,,---,g\¢ - Similarly, g, is orthogonal to

g3,--,gNt as well as g, etc. Therefore we can conclude that the nulling vectors g; are
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orthogonal to each other. The algorithm of OO-DFE is actually a process of the constructing

an orthogonal set {gl,---,gNt} with Nt basis vectors in an Nr-dimensional space for the
given channel H. these vectors fli ,(i =1, Nt) are then projected onto g;. It is not difficult
to see that doo is only the shortest projection timed by A .Therefore, a channel H is a poor
channel for OO-DFE algorithm if there exits a column whose projection is small. We show an

example of H with three columns, where

Since the three fli vectors are almost co-planar, the shortest projection is also small. In other

-1
words, since g{-l is a row of matrix (FHF) FH , its norm certainly becomes large when

matrix F is near singular. We propose a;new. algorithm which makes the square channel
matrix into a tall matrix by making hypotheses on a substream and apply the low complexity
detectors on the tall channel matrix to. improve the overall performance. We make hypotheses

on § and assume it is correctly. subtracted from the received signal. The remaining
submatrix 1:1(2:3) :[ﬁl ﬁz} becomes a better channel where dgo (ﬁ( 2.3)) =d %ree (fl( 2.3)) =AZ,

We make all M. hypotheses on the first substream &, and leave the remaining Nt-1
substreams to be detected by using M, subdetectors. Therefore, the PD algorithm consists of
M, branches each with a subdetector. In the qth branch, hypothesis &;= x4is made where x4
represents the g-th point in the signal constellation. After subtracting ﬁlxq from the received
signal, the g-th subdetector makes a hard decision bq on a,, . For these M, branches in the

PD algorithm, each branch outputs a different hard-decision {x,,b,} on a. Finally, a final
decision a is made by selecting the branch with the smallest error ‘r - IZI(ZNt)bq —fIIXq . Since

the subdetectors are now functioning on a Nr-by-(Nt-1) matrix, the diversity is higher and they
are expected to perform better. Additionally, we can further improve the performance by

properly selecting the substream & on which hypotheses are made. We analyze the BLER

performance of the PD algorithm that employ OO-DFE as its subdetectors and illustrate the
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method to select the optimal &, . The BLER of the PD algorithm can be written as

2
—d2 (2.4.2.4)

2
4o,

Pep = Cexp

where d2, =min(d;,,,d., (I:I(ZNI))) .So, we find a method to choose the optimal substream on

which the PD algorithm makes hypotheses. We chose & which gives the largest d2) (I:I(Zth))

that select the best submatrix of the channel to be detected by the subdetectors.

2.5 Chase Detector

We already know the large gap in|both performance and complexity between the
maximum-likelihood (ML) and-the other existed detectors, which are linear detectors or
BLAST-ordered decision-feedback (BODF) [15] detectors, hence we have the motivated
search for find out a favorable performance-complexity trade-off and a unified framework
which is the chase family of detection. In the chase family of detection, there is an important
class of reduced-complexity detectors called list-based detectors that adopt a two-step
approach of first creating a list of candidate decision vectors, and second choosing the best
candidate as its final decision. For the example, the parallel detector [8] generates its list by
implementing a separate low-complexity detector for each possible value of the first symbol.
Numerical results suggest that if the first symbol detected is chosen so as to approximately
minimize the probability of error for the remaining symbols, then the parallel detector
achieves full receive diversity. This section proposes a family of Chase detectors, which
includes as special cases the BODF [15], ML [5], parallel [8], PDF [16], B-CHASE [13]. Thus,
the Chase family provides a unified framework for comparing a variety of existing detectors.
Furthermore, we propose the B-Chase detector as a new special case that performs well on
fading channels. We will demonstrate that the B-Chase detector can approach ML

performance with less complexity than previously reported detectors. The B-Chase detector
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distinguishes itself from previous list-based detectors in the unique way it builds its list. We
will see that the B-Chase detector achieves better performance with significantly smaller
candidate lists, leading to a favorable performance-complexity trade-off. We introduce the
Chase detector, a general detection strategy for MIMO channels that reduces to a variety of
previously reported detectors as special cases. The Chase detector defines a simple framework
for not only comparing existing MIMO detection algorithms but also proposing new ones. The

Chase detector is described use five steps and that is shown.

e N Y 7 Y N Na N
S by ) "y SUBDETECTOR, H——|>
= LIST Y ;
Al v by ——+) " SUBDETECTOR, > | la
(SN DETECTOR i : arg min || r—Ha | —3»
w . : .
| FOR . . .
w y L] . .
i SYMBOL i v :
Sy b +)+"-p{ SUBDETECTOR, [+
| STEP1 |  STEP2 STEP3 STEP4 | STEPS
- AN AN AN S

Figure 2-7 Block diagram of the Chase detector [13]

Step 1) Selecting i € {l,--- Nt} that the index of the first symbol to be detected.
Step 2) Generate a sorted list £ of candidate values for the ith symbol, defined as the ¢

elements of the alphabet nearest to y;,

y=H"H+*D) "H r =Fr (2.5.1)

where y is the output of either the zero-forcing (ZF) (a =0)or MMSE (a2 =Ngy) linear

filter.
Step 3) Generate a set of 1 residual vectors {r;...r, }by cancelling the contribution to r from

the ith symbol, assuming each candidate from the list is, in turn, correct:
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r i= r— hi S j
Step 4) Apply each of {r;...r, } to its own independent subdetector, which makes decisions

about the remaining Nt-1symbols (all but the ith symbol). Together with s;, the jth subdetector

defines a candidate hard decision ﬁj regarding the input a.

Step 5) Choose as the final hard decision a the candidate hard decision {ﬁl,---ﬁf} that best

represents the observation r in a minimum mean-squared-error sense:

(2.5.2)

O
Il

arg minHr —HaH2
ac{a, ,--a}

From these steps know that have four parameters be specified:

Parameter 1:select i algorithm that.affact the.system performance and complexity.
Parameter 2:set the list length { that affact the system performance and complexity.
Parameter 3:find the weighted filter ZF lor MMSE.

Parameter 4:employ the subdetector algorithm to detect the received signal.

Table 2-3 Special cases of the Chase detector [13]

Detector First-Symbol List Length ¢ Filter type, a Subdetector
index i

ML[14] any |A] ZF ML

BODF[15] ¢BLAST, 1 ZF or MMSE BODF

PDF[16] ¢BLAST, 1 ZF or MMSE Linear

Parallel[8] using Selection | |A| ZF any
algorithm 1

B-Chase[13] using Selection | 1 <(<|A] ZF or MMSE BODF
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algorithm 1 or

Selection

algorithm 2

#The index BLAST] signifies the first index of the BLAST ordering [15]

Above that, the list length is maximal such that subdetector is likely ML detectors and
the choice of which symbol to detect first is not critical to performance. The list length is one
such that subdetector is likely BLAST-ordered decision-feedback (BODF) detectors and the
choice of which symbol to detect first is critical to performance. The parallel detector is
another Chase detector whose performance is highly sensitive to the choice of which symbol

to detect first.
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Chapter 3
B-Chase Detector

3.1 Introduce B-Chase Detector

We introduce the example for the B-Chase detector which is defined as a Chase detector
that uses BODF as a subdetector and an SNR gain of a list detector that demonstrate the
probability of error. We will see that the B-Chase detector achieves better performance with
significantly smaller candidate lists, leading to a favorable performance-complexity trade-off.
We can demonstrate that the B-Chase detector can approach ML performance with less

complexity than previously reported detectors. We show block diagram of the B-Chase

detector.
r y
L F
A 4
i T )
Yi S b
v 1
1 | CHOOSE
LIST > DF [>
% DETECTOR ] | BEST
= C1 | CANDIDATE
g FOR l; a
= SYMBOL i 52 2| VECTOR
a 3 DF [ UL
: Co
S/ B/
C,
STEP1 STEP2 STEP3 & 4 STEPS

Figure 3-1 Overall block diagram for the B-Chase detector
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3.1.1 The SNR Gain of a List Detector for the B-Chase Detector

We say that a list detector makes an error when the actual transmitted symbol does not
appear somewhere on the list. With this definition, when we increase the length of the list that
leads to a decrease in the probability of error. Therefore, we can employ the 4-QAM alphabet

.37
4} have a ZF front end and

VA
tj= o+
to describe the list detector. For the 4-QAM alphabet {& 4 .e

T

: . I : Sy .
the transmitted symbol isa =€ 4. For the ith symbol y; =a+n consider it as the input of the

list detector and SNR; = ———

| |2 . Show the correct decision regions for lists lengths ¢ € {1,2,3}
Efjn["]

in the fig.3-2. Define the P, as the list-error probability and the list length is f. Find that

e SR G.1.11)
P, = Q(/25NR; ) = e—>NR (3.1.1.2)
P, = Q%(/SNR;) ~ e SNR (3.1.1.3)
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i
Figure 3-2 Decision regions for a = eJ A and different list lengths: (a) ¢= 1; (b) t=2; and (c) ¢ = 3. The

decision list contains a whenever the input'to the list detector falls within the shaded region. Also indicated is the

minimum distance d; to the boundary-[13]

In the high SNR case, we can approximate the list detector SNR gain and define the

d,(A) as the minimum distance from any element in A to the corresponding decision region

boundary of the list detector with list length ¢, so define the SNR gain )/% with a list length ¢

in that

dZ(A
V2= ’;( ) (3.1.1.4)
di"(A)

Show the extreme case that is the maximal list length 7= |A| and that have an infinite SNR

gain 7\2A\ = because the actual transmitted symbol is on the list with d;(A)=o0.
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3.1.2 The SNR of the B-Chase Detector

We will define the SNR for each symbol of the B-Chase detector and employ that to
select which symbol is detected first .For describe that by doing the QR decomposition. Do

the QR decomposition of the extended channel matrix and show that

ﬁ{ H }:QL (3.12.1)

AN (]
= =
[l \
:Q =0
sl Ny -

8.end

Figure 3-3 QR decomposition algorithm

Total complex of the QR decomposition algorithm is 3(Nt)*-3Nr(Nt)*-3(Nt)’
-3NrNt+2Nr+2Nt in the MMSE case. Where the matrix H are (Nr+Nt)xNt, and where
the columns of the matrix Q are orthonormal, and where L is a lower triangular Nt x Nt

matrix with positive and real diagonal elements. Define the bottom rows of Q are the
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matrix oL~ such that oL~ 'L = ol .Due to (3.1.2.1) write (2.5.1) as

y=U"Q"r (3.1.2.2)

where the matrix Q is defined as the top Nr rows of Q ,and where vl =11, Use

r =Ha+w toreduce that

y=a-a’UNUa+UQ"w=a+n (3.1.2.3)

where use QHH=L-a2U and define n=UHQHW—a2UHUa .Due to (3.1.2.3) that we

can define the SNR and know QHQ=QHQ+0¢2UUH =Tand &? e {0,Ng}, therefore we

2

2

can know the noise variance of-the [ithloutput of the forward filter is E[|ni|2} = N0||ui

where ujis the ith column of U.= Define'the SNR for-the first symbol detected

. 2
SNR( = 22 (3.1.2.4)
No Jui[

and then define the next symbol detected. That is defined by the QR decomposition of the

extended channel matrix H whose columns are permuted, when employ the " in the H ,

according to the detection order. Find the ordering and that shown.

an® = Q™ (3.1.2.5)

Where the columns of the (Nr+ Nt)x Nt matrix Q(i)are orthonormal, and where LV isa

lower triangular Ntx Nt matrix with positive and real diagonal elements. For the case

Q(i) =Qand LY = L when TV =T .We can know that the TIVis an Ntx Nt permutation
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matrix that arranges the columns of H such that the ith column comes first, and the remaining
columns are arranged according to the BLAST ordering. Use the QR decomposition ideal to

construct SNR for B-Chase detector. First, show the SNR for the first symbol detected is

2 %102
SNRl(i) e CNe) (3.1.2.6)

No

For the first symbol detected can provide list-detection gain in the B-Chase detector.
Where IS?( is the kth diagonal of L and the SNR of the final symbols can be shown.

i
snR0 =K o e (3.12.7)
Ny

0

That SN ngi), k =2,---, Nt do not provide any: list=detection gain in the B-Chase detector.

3.1.3 The B-Chase Selection

In the B-Chase detector provide the selection algorithm that get two opposing goals. Now

we argue that the choice of | must balance two opposing goals: (1) the SNR of the first symbol
SN Rl(i) is high that the list detector is likely to be correct, the actual transmitted symbol be on

the list, that reduce the risk of error propagation, and (2) that the subsequent subdetectors can

perform well. If our only concern is to ensure that the actual transmitted symbol can be on the
list, we will choose i such that the SNR of the first symbol SNRl(i) is high. For that choose i

so that h; is the column of H that is most orthogonal to the remaining columns which do not
include h; in the remaining columns of H. On the other hand, if our only concern is to ensure
that the subdetectors perform well when we make decisions about the remaining Nt-—1
symbols, we will choose i so that the effective MIMO channel, we remove the h; in the

column of H, seen by the subdetectors is as orthogonal as possible that we will get the
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distance is likely the dgee [8]. So, we will choose i so that h; is the column of H that is least
orthogonal to the remaining columns in the submatrix channel, that reduce the most co-planar

vectors in the submatrix channel, which is precisely the i that corresponds to the SNR of the

first symbol SN Rl(i) is low. Therefore, to balance the two opposing goals, we should choose i

so that the SNR of the first symbol SNRl(i) is small, but not so small that the list does not

contain the actual transmitted symbol. In other words, we should choose i so that the effective

SNR of the list detector is neither too small nor too large.
That selection algorithm are shown

Selection Algorithm 1:

| =arg max min {¥, *Il(’lf),lg’(z),---,l(th?Nt} (3.1.3.1)

ke{l,2, Nt}

That maximizes the minimum SNR of the symbols. To implement the selection algorithm 1
can spend the complexity is O(Nt4)computations when ¢ >1. From the QR decomposition
their complexity is O(Nt3 ) computations, therefore the selection algorithm 1 implement Nt
times. Due to the selection algorithm 1 complexity is high, so find the low-complexity to
implement the selection algorithm. That will be shown the selection algorithm 2 which can

reduce the complexity but can has the bad performance. Since the smallest SNR inside the

subdetector is SNRS) when 1</ <|A

, select the symbol which maximizes the minimum of

SNR" and SNR{. SNR{") is shown.
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1

SNR{" = 5 5 (3.1.3.2)
No minj;ti{H“jH _‘gj,i‘ }
where Qi —ﬁ
P il
Selection algorithm 2 is shown:
arg max ||uk||2 / =|A| (3.1.3.3)
ke{l,2,-,Nt}
i= 2
arg max  min Ve 5 ! 5 5 ,else
kef{l,2,---, Nt} ||llk|| minjii {Hul H _‘gj,i‘ }

2 ; . ..
The Nt(Nt-1) squared-magnitudes {‘gj,i‘ <] <Nt,1<i<Nt, j=I

are computed in

selection algorithm 2. The each squared-magnitude is need to compute the complexity is SNt.
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Table 3-1 Complexity of the selection algorithm 1 and the selection algorithm 2

total complex Nr=Nt=N=4
The selection algorithm 1 3.5%Nr*(Nt)*+3.5(Nt)*+0.5Nr*(Nt)+ 1856
0.5(Nt)’
The selection algorithm 2 | 3.5%¥Nr*(Nt)*+3.5(Nt)’+0.5Nr*Nt+0.5(Nt)* | 704

+5(Nt)*-5(Nt)?

3.1.4 Implementing the B-Chase Detector

We will implement the B-Chase detector and show the block diagram in the fig.3-1, and
the pseudocode in the fig.3-4, and fig.3-5. For the B-Chase detector use the selection
algorithm 1 or the selection algorithm 2. Now it use the selection algorithm 1 to implement in
the B-Chase detector. For the selection algorithm 1 we must compute the QR decomposition

to get L such that use the selection algorithm 1 to decide which symbol to detect but we do

not compute directly that. We use another method to compute the QR decomposition to get

1108

From the MY definition we know permute the columns of H by " that is similar to

permute the the rows of C= uH QH by M | So we define the sorted-QR decomposition of

CH and that is shown.

cHu® = ghy®
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We can use the relation U =(L(i)H )_1 to get LD From the TV definition is the ith

column of C" comes first, so modify the sorted-QR decomposition. We can use the

algorithm of the sorted-QR decomposition to compute the sorted-QR decomposition after

modify this such that the ith column of cH firstly comes. Form the (3.1.4.1) equation we
can modify that

cHn® = Qun® = QeVeHyn® (3.14.2)

where ®Wis a unitary matrix such that the v =" yn® isan upper triangular matrix

with real and positive diagonals and form (3.1.4.2) and (3.1.4.1) equations we can define the

relation Q(i) = Q@(i) .We can define the U sorted-QR decomposition and show
vn® = @y® (3.1.4.3)
Form the y= (HH H+ 0521)_1 H v =Fr equation-we can define the front-end filter F as that

F=D'Q"WH Zp-le"hHH (3.1.4.4)

where D is a diagonal matrix with d i, j:l?)j . Form the y=Fr and r =Ha+w equations

we can reduce that as

y=Mb+n (3.1.4.5)

where M=D 'L is an Ntx Nt lower-triangular matrix with ones along the diagonal,
where b=T1""a is a permuted version of the channel input, and the effective noise is

n=Fw-a?D 'UDb . From the B-Chase preprocessing function we can get some parameters
F,M, 11", and {dlz,ls"’dﬁt,Nt}- Use these parameters in the B-Chase detector to implement

that. We employ the list detector to generate an ordered list [S;,---S,] of the ¢ elements of A
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that are nearest toy; which is 1th element of y. For the ordered list[s,---S;], Sj 1is in the
ordered list and it is the ith closest element of A that is nearest to y;. From the list detector
generate an ( elements ordered list and then use y and the ordered list as inputs of the ¢ DF
detectors whose first symbol decisions are hard-wired to decide first outputs of DF detectors
and then compute the first cost .The next steps use a decision-feedback process to decide other
symbols and update the cost. For show that the Ith subdetector cancels the intersymbol

interference from the kth element of as follows:

k-1
j=1

Where BjJ = dec{x j,I} 1s the decision that regard that as the jth element of f)| which is the

decision vector of the | th subdetector, and where dec{X} quantizes X to the nearest element of
A. From the outputs of subdetectors, B-Chase deétector choose the minimum cost of the
outputs of subdetectors as the deeision vector. To express the cost of the | th decision vector as

2

= Hr - HH(i)f)| , which reduces to

¢ = [D(y-Mb, )H2 (3.1.4.7)
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FUNCTION BCHASE DETECTOR
INPUTS :H,/, A
OUTPUT :a

L{F,hl,ﬂf”,{dij}}z BChase Preprocessin g(H, /)
2y =Fr
3.[s1,+,s, ] = ListDetect(y; | A, 7),

so that s; is the i —th closest element of A to vy,

4.7 =

5.forl=1to 7,

6. by =5

2 2

7 ¢ =di|y; -5

8. for k = 2.to Nt,

9 if ¢ <z,
k=1

10. X=Yr— 2, Mg b
j=1

11. by | = dec{x}

12. c|:q+dﬁdx—@J2

13. end

14. end

15. if ¢y <7,

16. T =C

17. f =1

18. end

19.end

204 =1V

Figure 3-4 Computationally efficient implementation of the B-Chase detector [13]
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FUNCTION BCHASEP REPROCESSING
INPUTS : H, 7

OUTPUTS : F,M, 1Y), o7, -+, dfi )

1.[Q, L] = QRdecomposition(H)
2U=@L")"!

3.for j=1to Nt,e; =Zke{1__.
4.for k =1to Nt,

5 00,0, n0, (24 )} | = sortedQR(Use. k)

2
,end

6.s(k)=min{(Y,*|(k)) 159 - (|§,‘2Nt)2}
7.end

8i=arg max s
ke{l,: - Nt}

oD ! = diag(U(i))

10.Q = first Nr rows of Q
11F=D"'@MHqH
12M=p"'@MHLo®

13.for j=1to Nt, dij (I(k)) end

Figure 3-5 Preprocessing pseudocode for the proposed implementation of the B-Chase detector that uses

selection algorithm 1 [13]
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We can have two crucial thing that reduce the complexity.

® From compute the sorted-QR decomposition algorithm of U and the QR
decomposition algorithm of H that we know the m, =l element of the M matrix.
And then we can combine the equation (3.1.4.6) and the equation (3.1.4.7) that let

we can rewrite the cost expression as

N2 6P (3.1.4.8)
o = dick ‘Xk,l bk,l‘
k=1

From that we reduce computations in the, cost equation (3.1.4.8) in the subdetector.

We can use the O(Nt) computations.

® We can use a pruning and threshold-tightening strategy that can reduce the
computations. A cost thteshold can be-established with the cost c¢; of the first
subdetector’s decision. In subsequent subdetectors, we can abort both the cost
calculation (3.1.4.8) as well as the decision feedback process (3.1.4.7) whenever this
threshold is exceeded the cost threshold. Furthermore, the threshold can be reduced

each time a lower cost is found.

We will get the performance and complexity well .From the B-Chase detector know the
channel parameters that Rayleigh-fading gain, and know N,. We can use B-Chase*(f) to

denote the B-Chase detector with list length ¢, o’

=N, , and use selection algorithm (3.1.3.1).
We can use B-Chase(t ) to denote the B-Chase detector with list length ¢, &’ =N, ,and use
selection algorithm (3.1.3.3).We use input is 4 with 16-QAM and output is 4. And show figure

the performance versus the number of antennas, where the SNR per bit is

38



E[[Hal’] _ E[a"H"Ha
(E[|w["1*1og, |A)  (E[|W]'1*log,|A)

Where E[H"H]=Nrl,,, E[w"w]=NrN,,and E[a"a]= NtE[a"a]. We can reduce that as

NtE[a"a]

SNR=——=
N010g2|A|

For define the unit that is real multiplies (RMs) per bit to describe the complexity. We define
the squared absolute value of a complex number is counted as two RM, and the complex
multiplications are counted as three RMs. Now we define the preprocessing complexity that
need to compute the computations that are required only once per channel estimation. And
define the core-processing complexity. ,need.to compute the computations that must be
implemented during every symbol periods-In.the B-Chase detector show the core-processing
complexity when ¢ =1 show their core-processing.complexity is 3NrNt RM and when/ # 1
show their core-processing complexity 1S 3(Nr+f)Nt RM. The overall complexity includes both
core-processing complexity and “preprocessing complexity. We assume that the channel
estimate is updated in T symbol periods. That unit is real multiples per bit. We can show that

as:

Ceore +C,o /T
complexity = W (3.1.4.9)
2

From preprocessing complexity we can know the state of the channel to compute complexity
in the B-Chase detector. If the state of the channel changes quickly, then we can estimate the
state of the channel is quick in the small symbol periods. That can affect the preprocessing
complexity. If we have the small preprocessing complexity, then that reduce the complexity in

the state of the channel changes quickly.
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Table 3-2 System parameters

Transmit antenna 4

Receive antenna 4

Channel is updated in T symbol periods | 8

Rayleigh-fading Mean=0,Varance=1

Channel order 0

Selection algorithm 1

List length ¢ 1,2,and 16

—— B-CHASE*(1)

& B-CHASE*)
L

——+— B-CHASE*(16)

BER

Ll Al

5 10 15 20
SNR dB

by

Figure 3-6 The bit error rate versus SNR for the B-Chase detector* (¢) with =1, 2, 16,

T=8,and 16 QAM
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From figure we can know when increase the length of the list that leads to a decrease in the
probability of error. In other word shrink this gap and provide new solutions for managing the
inherent performance-complexity trade-off in MIMO detection. We can find that shrink this

gap quickly in the low the length of the list.

Table 3-3 System parameters

Transmit antenna 4

Receive antenna 4

Channel is updated in T symbol periods 8

Rayleigh-fading Mean=0,Varance=1
Channel order 0

Selection algorithm . and 2

List length ¢ 1 ,and 2
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Figure 3-7 Bit errortate yersus'SNR for the B-Chase detector* ( ¢) and the B-Chase detector

(1) with £=1,2, T=8,and 16 QAM

From figure we can know selection algorithm 1 and selection algorithm 2 that have almost the

same performance.
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Table 3-4 System parameters

Transmit antenna 4
Receive antenna 4
Channel is updated in T symbol periods 8
Rayleigh-fading Mean=0, Varance=1
Channel order 0
Selection algorithm 1
List length ¢ 1 ,and 2
10° ¢ ‘ .
: ——+— B-CHASEX(1) [
i % B-CHASE*®) |/
i ML |
107 -
E \\;::li;x\\ E
L T \:+\\\\ i
0 107 S E
@ : Sk N ]
i N ]
10°1 S~ Y
10_4 | | | | |
0] 2 4 6 8 10 12
SNR dB

Figure 3-8 Bit error rate versus SNR for the B-Chase detector* ( ¢) with ¢=1,2 ,and the ML

detector T=8,and BPSK
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From figure we can know the B-Chase detector is nearly ML detector.

Table 3-5 Complexity for B-Chase Detector and ML Detector

Function B-Chase Function Channel is | Total Nr=Nt=4
Preprocessing B-Chase updated in | complexity |,
complexity detector T symbol QPSK(A
complexity periods =4)
, =8
, =4
B-Chase | 3.5(Nt)*+ 3NNE+3NtH2 [3.5(Nt)*+ | 3868
*(0) 3.5Nr(Nt)*+6.5(Nt) | #2.5¢ 3.5Nr(Nt)’
detector | 3-2.5Nr(Nt)>+0.5(N 4 (Nt)*-0.5 ¢ Nt +6.5(Nt)’-
t)’+2Nr+11Nt 2.5Nr(Nt)
+0.5(Nt)*+
2Nr+11Nt]
+T
[3NtNr+3
Nt+2¢+2.5¢
(Nt)%-0.5 ¢
Nt]
ML [3NrNt+2
detector Nr] AN 114688
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3.1.5 The B-Chase Detector for Channel Estimation Errors

In previous sections, we always assumed that we have perfect the channel state
information (CSI) at the receiver, which allows us to compare the performance. However, the
channel information is typically not perfect. A channel estimator extracts from the received
signal approximate channel coefficients during the transmission symbol. One method to
accomplish this is to transmit the training signal prior to the transmission symbol. That are
used as preamble at the start of each frame. Another way to estimate the channel fading

coefficients is to embed the pilot bits, that is called pilot signal, inside the signal.

The impact from the channel estimation errors will degrade the performance of the
system. To study the impact of the channel estimation errors on the B-CHASE detector

algorithm, we introduce the error model at the receiver.

H =H+AH (3.1.5.1)

where H represent the true channel matrix and"A H 'denotes the channel estimation error. The
elements of AH are assumed to be ‘zero.mean; variance is 0.01 and complex Gaussian. The
B-CHASE*(16) is a measurement based on that we can accurately obtain the channel
estimation. The B-CHASEer*(16) is a measurement based on that we can not accurately
obtain the channel estimation. As shown in Figure, the channel estimation errors with The
B-CHASEer*(16) given the B-CHASE decoding algorithm. It is clear from the figure, the
B-CHASEer*(16) decoding algorithm starts to perform poorly. This poor performance is
caused by inter-symbol interference (ISI).When we obtain the error channel matrix, find out
the error outputs, F* M’ etc., in the B-Chase preprocessing. From that obtain the error y'=F'r
produce the ISI. This cause a ISI problem since channel estimation error is the biggest

contributor of the errors in the simulation at the high SNR region.
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Table 3-6 System parameters

Modulation 16-QAM

Transmit antenna 4

Receive antenna 4

Channel is updated in T symbol periods 8

Rayleigh-fading Mean=0, Varance=1
Error of the Rayleigh-fading Mean=0,Varance=0.01
Channel order 0

Selection algorithm 1

List length ¢ 16
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Figure 3-9 Bit error rate with channel estimation etror-and without channel estimation error

From figure we can know the channel estimation error demonstrate the error in the high SNR.
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Chapter 4
B-Chase Detector of MIMO-OFDM Systems

The material in this Chapter is largely taken from [9], [10], [11], and [12].

4.1 OFDM System Models

We understand the single carrier (SC) that has the poor spectral efficiency in our
communication system and when we have multipath so that have frequency selective fading
and inter-symbol interference (ISI). So, we will employ the principle of multi carrier(MC)
system that can combat them because only some subcarriers is fail to communication. We use
orthogonal frequency division multiplexing (OFDM) that is to divide the available spectrum
into several subchannels (subcarriefs) and the' frequency response of the subchannels are
overlapping and orthogonal. That'get the channel is flat fading per subcarrier and decrease ISI.
In the MC system the transmittér separate.the data stream into several parallel ones and each
modulated by a specific subcarriér that can use-Inverse discrete Fourier Transform (IDFT) to
implemt that in the baseband modulation:-In the receive each demodulated by a specific
subcarrier that can use discrete Fourier Transform (DFT) to implement that in the baseband
demodulation.

When OFDM symbols pass through a time-dispersive channel, inter-symbol interference
(IST) and inter-carrier interference (ICI) usually occur in the receiver and cyclic prefix (CP) is
introduced to combat ISI and ICI. Cyclic prefix, shown in Figure 4.1, is a copy of the tail part
of a OFDM symbol is attached to its front. As long as the cyclic prefix length is longer than its
experiencing time-dispersive channel length, ISI can be avoided. At the same time, the cyclic
prefix along with its OFDM symbol makes a periodic OFDM signal and maintains the
properties of circular convolution and subcarrier orthogonality that prevents the ICI effect.

For this system we employ the following assumptions:
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® The channel impulse response is shorter than the cyclic prefix.

® Transmitter and receiver are perfectly synchronized.

® The fading is slow enough for the channel to be considered constant during one
OFDM symbol interval.

® Channel noise is additive, white, and complex Gaussian.

—

Cyclic
prefix

<+ Tg P&—— Ts

Figure 4-1 Cyclic prefix of an OFDM symbol [10]

4.1.1 Continuous-Time Model

In this chapter, a continuous-time model is used to introduce the whole OFDM baseband
system including the transmitter and receiver. In the transmitter, the transmitted data is split
into multiple subchannels with overlapping frequency bands. The spectrum of OFDM signal is
shown in Figure 3.2. It is clear that the spectrum of each subchannel is spreading to all the
others, but is zero at all the other subcarrier frequencies, because of the sinc function property,
which is the key feature of the orthogonality.

Assumeing an OFDM system with N subcariers, a bandwidth of W Hz and a symbol length

of T seconds, of which T, seconds is the length of the cyclic prefix, the transmitter uses the

following waveforms
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1 ke, (4.1.1.1)

Q=T

0, otherwise

it o]

Where T =N/W +T, . Note that @, (t)=®, (t+N/W) when t is within the cyclic prefix
[O,Tg] . Since @, (t) is a rectangular pulse modulated on the carrier frequency kW/N, the

common interpretation of OFDM is that it uses N subcarriers, each carrying a low bit-rate.

The waveforms @, (t) are used in the modulation and the transmitted baseband signal for

OFDM symbol as

x(t) = E X (k)D, (t) (4.1.1.2)

Where X(1), X(2),..., X(N —1)are complex numbers from a set of signal constellation points.

Assume the given channel is quasi-static, i.e., constant during the transmission of an OFDM

symbol, where the quasi-static impulse response is h(r;t) of the physical channel is
restricted to the interval 7 e [O,TQJ , 1.e., to the length of the cyclic prefix. The received signal

becomes

y© = (hxx)(t)= [ h(z:tx(t-r)dr+n(d) (4.1.13)
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where n is additive, white, and complex Gaussian channel noise.
The OFDM receiver consists of a filter bank, matched to the last part [TQ,T] of the

transmitter waveforms @, (t), i.e.,

v, ()= o, (T-t) ifte[0.T-T,]. (4.1.1.4)
‘ 0, otherwise.

Calculating the sampled output at the kth matched filter.

Y () =(yxwi ) (1) s

—Ty (t)y, (T —t)dt

i
j

o t—g"

h(z;t [Z X (k") D )}dr}b’;(t)dt (4.1.1.5)

+ | n(T —t)D; (t)dt

Figure 4.3 shows a typical continuous-time OFDM baseband modulator, in which the
transmitted data is split into multiple parallel streams which are modulated by different
subcarriers and then transmitted simultaneously. At the receiver, the received signal is
demodulated simultaneously by multiple matched filters and then the data on each subchannel

is obtained by sampling the outputs of matched filters, as shown in Figure 4.4.
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Figure 4-2 Spectrum of an OFDM signal [10]
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Figure 4-3 Continuous-time OFDM baseband modulator [10]
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Figure 4-4 Continuotis-time OFDM baseband demodulator [10]

4.1.2 Discrete-Time Model

To simultaneously transmit multiple data, the transmitter must modulate data with
multiple subcarriers and the receiver must demodulate with multiple matched filters. In fact,
the modulation and demodulation can be implemented efficiently by using digital IDFT/DFT

operations, because they can be respectively represented as

xiy=3 x ke’ =3 x oo, () (4.1.2.1)
Y(k):i‘:y(i)e’j%ki zfy(i),/,k(i) (4.1.2.2)
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which are the same as IDFT operation of the transmitted data X (k) and DFT operation of the
received data y(i) , respectively.

Figure 4-5 shows the discrete-time baseband OFDM model. The IDFT transforms the
frequency-domain data into time-domain data which is delivered over the air and passed
through a multi-path channel, denoted as h(n,m) n is the time index and m is the channel path
delay. At the receiver, to recover the signal in frequency domain, DFT is adopted in the
demodulator as a matched filter. Then the frequency-domain signal of each subchannel is

obtained from its DFT output.

X ¥Q
i ol ~ »
X(2) il N 7(2)
Parallel j{v Serial &l
X(3) . | to h | to = Y3
. IDFT : Serial | (mm) D | Parallel " OFT ]
: %6) Converter Converter 6 ; :
AV : Y
— L 2 L —

Figure 4-5 Discrete-time OFDM system model [10]

4.1.3 Effect of Cyclic Prefix

Because of multipath channels, orthogonality as shown in Figure 4.2 will be destroyed by
ISI and ICI. However, as long as the cyclic prefix length is longer than the channel order of
h(n,m) , ISI effect can be avoided. It is known that circular convolution in time domain results
in multiplication in frequency domain when the channel is stationary so that the received
signal Y(k) in frequency domain is the product of transmitted data X(k) and channel response
H(K) in the kth subcarrier . Thus, the orthogonality is maintained (if h(n,m) is fixed within the

symbol length, then h(n,m)= h(m) is not about time) and data can be easily recovered by
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one-tap channel equalizer, i.e., dividing Y(K) by the corresponding H(K).

Y (k) =HK)* X (k)+ N(k) (4.1.3.1)

Y(k), X(k), H(k),N(k) are the kth subcarrier after DFT according to Yy(i),x(i),h(i),n(i) .About

that we can know the channel is flat fading at each subcarrier.

4.2 MIMO-OFDM Architecture

According to Section 4.1, OFDM technique turns frequency-selective fading channel into
several flat-fading subchannels, and it solves the major problem in wideband transmission
systems. We will employ V-BLAST technique to detect the transmitted signals on each
subcarrier of a MIMO-OFDM systems., MIMO-OFDM transceiver and receiver architecturs
are shown in Figures 4.5 and 4.6:respectively.s Subchannels are orthogonal to each other in
OFDM systems. Hence, in single-input-single-output (SISO) OFDM systems, the received
signals are product of channel response“and transmitted signal. In MIMO systems, signals
transmitted from different antennds on a subcarrier' simultaneously interfere each other, but
signals at different subcarriers are independent. At each receiver antenna, a linear combination
of the transmitted signal and channel response on each subcarrier is observed. That
corresponds to assumptions of MIMO systems. On each subchannel, a space division
multiplexing (SDM) is similar to V-BLAST is applied. That is, the task is to recover X from

the received signal y and channel state information (CSI) H on each subcarrier.
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Figure 4-6 Transmitter architecture of MIMO OFDM systems
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Figure 4-7 Receiver architecture of MIMO OFDM systems

4.3 B-Chase Detector in MIMO-OFDM Systems

We will employ MIMO-OFDM systems to extend the B-Chase detector in the MIMO
systems. Due to OFDM systems can turns frequency-selective fading channel into several

flat-fading subchannels and get high spectral efficiency. When the channel state is multipath

57



and the cyclic prefix length is longer than the path delay, we can use flat fading MIMO case to
handle it in each subcarrier which do not interfere other subcarriers. That is robust for the
frequency-selective fading channel when we detect the receiveed signal in the B-Chase
detector. We can say that the frequency-selective fading channel can get time delay diversity
when we can handle the frequency-selective fading channel as the flat fading channel. For that
we can employ OFDM to get that. The subsequent MIMO signal processing takes place on

each subcarrier identically. In order to describe the flat fading MIMO systems observed at

each subcarrier in the frequency domain. We let a' = [al',n-a;\l ]T denote the N; % 1 transmit
signal vector of subcarrier i, then the corresponding N, X1 receive signal vector
iyl iqT e
r=[n,ry ] is given by
r' =Ha" +w (4.3.1)

The N, x1 dimensional vector w' =[W{,~--W:\I ]T represents independent white Gaussian
noise of variance (o!)’ observed at the N, receive antennas while the average transmit

power of each antenna is normalized to one, i.e. E[(ai)(ai)'_i]:INt and

E[(wi)(wi)H]:(O',E)le . The N, x N; channel matrix H' contains uncorrelated complex

Gaussian fading gains with unit variance. We assume that the channel matrix H' is constant
over a frame and changes independently between frames (block fading channel).That in the
following the algorithms are given on the base of subcarrier i assuming an outer loop over all
subcarrier i=1,..., Ngpr. The index i is therefore omitted to simplify matters giving r = ri, the

received signal on subcarrier i, H =H' , the channel matrix, a = ai, the transmit symbols on
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subcarrier i and w = w' , the noise vector respectively. From that we detect the transmitted

signals on each subcarrier of MIMO-OFDM systems by B-Chase detector.

Table 4-1 System parameters

FFT length 16

Symbol period 16 samples

Cyclic prefix 4 samples
Modulation 16-QAM

Transmit antenna 4

Receive antenna 4

Channel is updated in T symbol periods 8

Rayleigh-fading Mean=0,Varance=1
Channel order 3

List length ¢ 1,2,and 16
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Figure 4-8 Bit error rate versus SNR=in the B-Chase detector* (¢ ) with (=1,2,16 for MIMO-OFDM Systems
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Table 4-2 System parameters

FFT length 16

Symbol period 16 samples
Cyclic prefix 4 samples
Modulation BPSK
Transmit antenna 4

Receive antenna 4

Channel is updated in T symbol periods 8

Rayleigh-fading

Mean=0,Varance=1

Channel order

List length ¢

B2
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Figure 4-9 Bit error rate versus SNR in.the B-Chase.detector® ( () with (=1,2 for MIMO-OFDM Systems
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Chapter 5

Conclusion

The B-Chase of detection algorithm is a combination of a list detector and a parallel bank of
subdetectors. The B-Chase detector that can trade performance for reduced complexity by
modifying the list length. When applying the B-Chase of detection algorithm in the

MIMO-OFDM, we can improve performance in the frequency-selective fading channel.
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