
國  立  交  通  大  學 
 

電子工程學系 電子研究所碩士班 
 

碩  士  論  文 

 

 

多輸入多輸出系統之低複雜度偵測器研究  

 

 

A Study on Low-complexity Detectors in MIMO 

Systems 

 

研 究 生：方自民 

指導教授：簡鳳村 博士 

 

中 華 民 國 九 十 七 年 八 月 

 

 



 

 



多輸入多輸出系統之低複雜度偵測器研究 

 

 

A Study on Low-complexity Detectors in MIMO Systems 
 
 

研究生: 方自民 Student: Tzu-Min Fang
指導教授: 簡鳳村 Advisor: Dr. Feng-Tsun Chien

 

國 立 交 通 大 學 

電 子 工 程 學 系   電 子 研 究 所 碩 士 班 

碩 士 論 文 

 

 

A Thesis 

Submitted to Department of Electronics Engineering & Institute of Electronics 

College of Electrical and Computer Engineering 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of Master 

in 

Electronics Engineering 

 

August 2008 

 

HsinChu, Taiwan, Republic of China 

 

中華民國九十七年八月 

 



 i

多輸入多輸出系統之低複雜度偵測器研究 

 

研究生: 方自民 指導教授: 簡鳳村 博士

 

國立交通大學 

 

電子工程學系 電子研究所碩士班 

 

摘要 

在這篇論文我們學習B-Chase檢測器被應用在多輸入多輪出系統和多輸入多輪出正交分

頻多工系統。B-Chase 檢測演算法是一個廣義技術它能夠提供先前所提過的檢測器當作

一個特殊的實例它包含了最大概似檢測器和決策返迴檢測器。這 B-Chase 檢測器包含一

個列舉檢測器,它能夠被列舉長度 l 所參數化。介由改變長度,我們能夠處理系統效能和

複雜度。 此外, 這 B-Chase 檢測器提供兩個選擇演算法它們能夠執行一個工作去決定

那一個先進來被檢測。並且列舉長度能夠影響那一個信號被第一個被檢測。這兩個選擇

演算法所抉擇的信號根據兩個不同準則所決定。第一個方法是建立在接收信號的雜訊比

在那裡,信號被選擇在比較高的優先權如果它有比較高的雜訊比。這個方法使得列舉檢

測器的結果能夠更正確,因此下降錯誤傳送的風險。在其它方面,為了下降複雜度的需要

當介由第一選擇演算法,在第二個方法執行這個選擇在這個子檢測器,能以效能去交換

複雜度。最後,我們應用低複雜度 B-Chase 檢測演算法到多輸入多輪出正交分頻多工系

統。 
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Abstract 

We study the B-Chase detector applied to the MIMO and MIMO-OFDM systems in this 

thesis. B-Chase detection algorithm is a general technique that can accommodate previously 

reported detectors as special cases, including the maximum-likelihood and decision-feedback 

detectors. The B-Chase detector includes a list detector that is parameterized by the list length 

l. By changing the list length, we can manage the system performance and complexity. In 

addition, the B-Chase detector provides two selection algorithms that perform the task to 

decide which incoming symbol is firstly detected. And the list length can impact which 

symbol is firstly detected. The choice of two symbol selection algorithms is determined 

according to two different criteria. The first approach is based on the received SNR in which 

the symbol is selected in a higher priority if it has a higher SNR.  This way the result of the 

list detector is more likely to be correct, thereby reducing the risk of error propagation. On the 

other hand, in order to reduce the complexity entailed by the first selection algorithm,  the 

2nd approach performs the selection in the sub-detectors, with the performance traded to the 

complexity. Finally, we apply the low-complexity B-Chase algorithm to the MIMO-OFDM 

systems.  
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Chapter 1  

Introduction 

1.1 Significance 

For wireless communications applications, the major goal is to develop reliable, high 

data rate, and low complexity transmission systems. Therefore, future wireless communication 

systems are expected to provide those under all kind of channel environments, particularly 

with high mobility. We can realize broadband wireless systems will suffer detrimental effects 

of the frequency-selective fading, and many difficult engineering tasks remain to be resolved. 

Traditionally, getting more bandwidth is required for higher data rate transmission. However 

it is often impractical to increase bandwidth. Therefore, Orthogonal Frequency Division 

Multiplexing (OFDM) technique has received much attraction in wireless transmission 

applications for recent years due to the advantages to mitigate the detrimental effects of 

frequency-selective fading. From multiple input multiple output (MIMO) technology, we 

know that the rich-multipath wireless channels provide solutions to achieve spectral efficiency. 

In such cases, the channel between each transmit and receive antenna pair is considered flat 

and uncorrelated, thus Space Division Multiplexing (SDM) is a technique that can provide a 

significant improvement in data rate and bit error rate (BER) performance. When we employ 

multiple antennas at the receiver, these received data streams can be detected by SDM 

techniques such as Vertical–Bell Laboratories Layered Space-Time (V-BLAST) [2] [3] [8] 

[13]. These algorithms must require flat-fading channel information between each transmit 

and receive antenna pair. However, most practical channels are frequency-selective fading so 

that performances will be degraded. Therefore, we employ OFDM systems in which 

frequency-selective fading can be equivalently transformed into flat-fading in each subcarrier. 

In addition, it is effective when combined with SDM techniques. That is known that the SDM 

techniques have a performance gap for the optimal ML detectors. Hence, the goal of this 

research is to reduce this gap and provide new solutions to managing the inherent 

performance-complexity trade-off in MIMO and MIMO-OFDM detection. 
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1.2 Motivation 

In multiple input multiple output (MIMO) technology know that the rich-multipath 

wireless channels between each transmit and receive antenna pair is flat and uncorrelated, thus 

Space Division Multiplexing (SDM) is a technique that can provide a significant improvement 

in data rate and bit error rate (BER) performance. Due to the SDM techniques have a 

performance gap for the optimal ML detectors, therefore [13] provides a total solution for 

managing the inherent performance-complexity trade-off in MIMO detection. The work in [13] 

considered flat fading channels. However, practically the channels are more likely to be 

frequency-selective fading. Therefore, we consider using MIMO-OFDM to tackle the problem. 

We aim at providing a new technique combined SDM with OFDM so that SNR as well as data 

rates performances can be improved. 

1.3 Contribution  

In this thesis, we will combine SDM and OFDM technique that can improve SNR 

performances as well as data rates for the practical channels are frequency-selective fading. 

That is shown in the chapter 4. From that we understand the system architecture is robust in 

the frequency-selective fading channel. 
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Chapter 2  

MIMO Systems 

The material in this Chapter is largely taken from [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], 

[11], [12], [13], and [17]. 

2.1 Introduction to MIMO Systems 

In wireless communication demand high data rate and high link quality access, hence 

we employ the multiple-input-multiple-output (MIMO) systems architectures to obtain that. 

We can employ different space-time code in the MIMO systems architectures to obtain high 

data rate and high link quality access. The high spectral efficiency due to spatial multiplex 

(SM), which transmit multiple data streams simultaneously by multiple antennas, and the high 

link quality access due to space diversity, which transmit the same multiple data streams 

simultaneously by multiple antennas, both at the transmitter and receiver. MIMO systems 

provide the ability to turn multipath propagation, which is traditionally the impairment 

because it can causes signal fading in the wireless transmission, into a benefit but the channel 

state is not correlative. Since MIMO systems effectively take advantage of random fading and 

multipath delay spread, the signals transmitted from each transmit antenna appear highly 

uncorrelated at each receive antenna and the signals travel through different spatial channels. 

Then the receiver can exploit these different spatial channels and separate the signals 

transmitted from different antennas at the same frequency band simultaneously. 

MIMO is a promising technology that is suite for high-speed broadband wireless 

communications. Through space division multiplexing, MIMO technology can transmit 

multiple data streams in independent parallel spatial channels, thereby increasing total system 

transmission rate. Considering an arbitrary wireless communication system, a link is 

considered for that the transmitter is equipped with Nt transmit antennas and the receiver is 

equipped with Nr receive antennas. Such a setup is illustrated in Figure. 2.1. considered at 

some assumptions. 
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Consider this system some important assumptions are made first: 

 

1. Channels are constant during the transmission of a packet. It means the communication is 

carried out in the some packets period that are shorter than the coherence time of the 

channels. The channel state is assumed that is time invariance. 

2. Channels are memoryless. It means that an independent channel realization is drawn for 

each use of the channels. 

3. The channel is flat fading. It means that constant fading over the bandwidth is desired in the 

case of narrowband transmissions. It also indicates that the channel gains can be described  

by complex numbers. 

4. The received signal is corrupted by additive white Gaussian noise (AWGN). 

5. At all time the receiver can perfectly know the channel matrix which is also known as the 

channel state information (CSI) and the CSI can be obtained by channel estimation based 

on the transmission of a training sequence. 

 

With these assumptions, it is common to represent the input/output relations of a 

narrowband, single-user MIMO link by the complex baseband vector notation and transmit 

signal vector is transmitted at each instant time. 

 

= +r Ha w  (2.1.1) 

 

where 1[ , ]TNta a=a  is the Nt×1 transmitted signal vector in Nt Ntor whose entries 

are chosen from some complex constellation A (e.g.16-QAM etc.), Nr∈r  is the received 

signal vector is the Nr×1 received vector, 1[ , ]Nt=H h h is Nr Nt×  the Rayleigh flat 

fading channel matrix whose ith column is ih , and where 1[ , ]TNrw w=w is Nr zero-mean 

complex Gaussian noise vector at some instant time. We assume that the columns of H  are 

linearly independent (e.g Nr ≧ Nt). We assume that the noise components are independent 

and identically distributed (i.i.d.) complex Gaussian random variable with 0[ ]HE N=ww I  
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that is additive white Gaussian noise (AWGN). We assume that the complex inputs are 

uncorrelated and chosen from the same unit-energy discrete alphabet, so that [ ]HE =aa I . All 

the coefficients hij comprise the channel matrix H and represent the complex gain of the 

channel between the jth transmit antenna and the ith receive antenna. The channel matrix can 

be written as 

 

 

1,1 1,2 1,

2 ,1 2 ,2 2 ,

,1 ,2 ,

Nt

Nt

Nr Nr Nr Nt

h h h
h h h

h h h

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

H  

(2.1.2) 

,
, , , , e i j

i j i j i j i jh j h φα β= + =  
(2.1.3) 

 

 

Those coefficients {hij} describe the unknown channel properties of the medium that is 

usually Rayleigh distributed in a rich scattering environment without line-of-sight (LOS) path. 

If αij and βij are independent and Gaussian distributed random variables, then |hij| is a Rayleigh 

distributed random variable. Actually, those coefficients {hij} are likely to be subject to 

varying degrees of fading and change over time. Therefore, determination of the channel 

matrix is an important and necessary aspect of MIMO techniques. If all these coefficients are 

known, there will be sufficient information for the receiver to eliminate interference from 

other transmitters operating at the same frequency band. Although the introduced MIMO 

transmission requires flat-fading channels, and it is limited to applications with narrowband 

transmissions, in real broadband transmission systems, channel conditions are often 

frequency-selective fading. In wireless transmission, we demand a technique to alleviate the 

severe effect of frequency-selective fading. Therefore the OFDM technique is a good solution 

for this purpose in wireless transmission owing to its advantages. 
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Figure 2-1 Model of MIMO systems 

2.2 Maximum Likelihood (ML) Detection Methods 

First, we will employ the Maximum Likelihood (ML) Detection for the MIMO systems 

and it is given by 

 

2ˆ arg min
Nt

ML
a A∈

= −a r Ha  (2.2.1) 

 

From the transmitted vector symbols, A is the complex-valued modulating constellation and 
NtA  is the entire set of the possible transmitted vector symbols. We know that find the entire 

set of the possible transmitted vector symbols so that the complexity is huge due to Nt and A. 

We know that Nt is the transmit antennas and A is the complex-valued modulating 

constellation, so Nt and A is huge such that spend much complexity to find the solution from 

(2.2.1). From the optimal Maximum Likelihood (ML) Detection in the MIMO systems know 

the complexity increases when Nt and A increases, so find the suboptimal detection for the 

MIMO systems.  
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2.3 The Linear Detector Methods 

We could employ these linear detectors for the MIMO systems. The received signal 

vector r is multiplied with a filter matrix G and then followed by a parallel decision on all 

layers. Zero-forcing means that the mutual interference between the layers shall be perfectly 

suppressed. This is accomplished by the Moore-Penrose pseudo-inverse (denoted by (·)+ ) of 

the channel matrix 

 

1( )H H
ZF

+ −= =G H H H H  (2.3.1) 

 

where we assume that H has full column rank. The decision step consists of mapping each 

element of the filter output vector 

 

1( )H H
ZF ZF

−= = +a G r a H H H w  (2.3.2) 

 

into an element of the symbol alphabet by a minimum distance quantization. The estimation 

errors of the different layers correspond to the main diagonal elements of the error covariance 

matrix 

 

2 1{( )( ) } ( )H H
ZF ZF ZFE σ −Φ = − − = wa a a a H H  (2.3.3) 

 

which equals the covariance matrix of the noise after the receive filter. It is obvious that small 

eigenvalues of HHH will lead to large errors due to noise amplification. This effect is 

especially observed in systems with the same number of transmit and receive antennas. We 

can use Linear MMSE detector to decrease the noise amplification. Minimizing the mean 

squared error (MSE) between the actually transmitted symbols and the output of a linear 

detector leads to the filter matrix 
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2 1( )H H
MMSE Ntσ −= + wG H H I H  (2.3.4) 

 

The resulting filter output is given by 

 

 

2 1( )H H
MMSE MMSE Ntσ −= = + wa G r H H I H r  (2.3.5) 

 

and, after some manipulations, the error covariance matrix is found to be 

 

2 2 1( )H
MMSE Ntσ σ −Φ = +w wH H I  (2.3.6) 

 

With the definition of a (Nt+Nr)×Nt extended channel matrix H  and a (Nt+Nr)×1 extended 

receive vector r  through 

 

,1NtNt
and

σ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦w

H r
H r

0I
 (2.3.7) 

 

We can write the output of the MMSE filter as 

 

1( )H H
MMSE

− += =a H H H r H r  (2.3.8) 

 

Furthermore, the error covariance matrix becomes 

 

2 1( )H
MMSE σ −Φ = w H H  (2.3.9) 

 

We compare that are the corresponding expression for zero-forcing that can find the only 

difference is that the channel matrix H has been replaced by H . We can use the QR 
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decomposition of the channel matrix for ZF or MMSE. For ZF, we can do the QR 

decomposition of the channel matrix H=QR that we can rewrite the a filter matrix as 

 

1 H
ZF

+ −= =G H R Q  (2.3.10) 

 

 

 

[ ]1 2

,

,

,

1 .
2 . , , ,
3 . 1, ...,
4 . | |
5 . /
6 . 1, ....,
7 . .

8 .
9 .

N t

i i i

i i i i

j j i j i

function

for i N t
r

r
for j i N t

r

end
end

=

=
=

=

= +
= −

H = Q R
R = 0, Q = q q q H

q
q q

q q q  

Figure 2-2 QR decomposition algorithm 

 

 

Table 2-1 Complexity of QR decomposition algorithm 

 No. Multiplication 

 

Nr=4, Nt=4 

 

4. Mult:2Nr 

 

8 
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7. Mult:3Nr 

 

12 

 

ZF  

total complex 

Mult:2*Nr+3*Nr*(Nt)2-3Nr*Nt 

 

152 

 

MMSE 

total complex 

 

Mult:3(Nt)3-3Nr(Nt)2-3(Nt)2 -3NrNt+2Nr+2Nt 304 

 

 

For MMSE, we can do the QR decomposition of the extended channel matrix that we can 

write as 

 

1 1

2 2Ntσ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦w

H Q Q R
H QR R

Q Q RI
 (2.3.11) 

 

where the (Nt+Nr)×Nt matrix Q  with orthonormal columns was partitioned into the Nr ×Nt 

matrix Q1 and the Nt ×Nt matrix Q2. From that equation we get the relation as 

 

1
2

1
σ

− =
w

R Q  (2.3.12) 

 

Furthermore, 

 

1 2
H H HH σ= + =wQ H Q Q R  (2.3.13) 

 

holds. The filtered receive vector becomes 

 

1 1
H H H Hσ −= = = − +wa Q r Q r Ra R a Q w  (2.3.14) 
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From the filtered receive vector we know that have the remaining interference that can not be 

removed in the detected procedure. 

2.4 BLAST Detection Methods 

For get high data rate and performance in the MIMO systems, therefore employ 

Vertical – Bell Laboratories Layered Space-Time (V-BLAST) Architecture to implement that. 

TX
 data 

Vector 
 
encoder 

MOD 

MOD

V-BLAST  
Signal 
processing 

R
X

 data 

H 

1a

2a

Nta

1r

2r

Nrr

1w

2w

Nrw

MOD 

 
Figure 2-3 Block diagram of V-BLAST structure 

 

Where the transmit antennas send a vector symbol of the size Nt over a rich-scattering 

wireless channel to the Nr receive antennas at each symbol time. At the transmitter, a single 

data stream is partitioned into Nt substreams, and each substream is encoded and sent through 

a different transmit antenna. During reception, each antenna receives signals transmitted from 

all the Nt transmit antennas. We are base on (V-BLAST) Architecture to find some detector. 

We use successive interference cancellation (SIC) technique or ordered SIC (OSIC) based on 

zero-forcing criterion (ZF V-BLAST) that require the decision-feedback equalization (DFE) 

and detect sequentially transmitted signals with the smallest estimation error. On zero-forcing 

criterion find the filter matrix GZF. For get the smallest estimation error, so find the largest 

signal-to-noise ratio (SNR) and reduce noise enhancement. Find the row ZFg  of ZFG  that 

has the minimum norm and multiply the received signal. 
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  ˆ ( )i i
i ZF ZF i ia a η= = + = +g r g Ha w  (2.4.1) 

 

where i is the order index a signal is detected. ˆia is quantized to get estimate of ia and 

regenerate an estimate of signal then the received signal subtract the regenerate an estimate of 

signal to remove the interference of this signal. Sequential do Nulling and canceling process 

until all signals are detected. That is shown 

 

 

1

1
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Figure 2-4 ZF V-BLAST OSIC algorithm [2] 

 

where i
ZFg  means the ki-th row of i

ZFG ,
ikH means the ik -th column of H , and 

i

i
kH means the resulting matrix H  after nulling the ik -th column of iH . To find the 

ordering do the repeated computations of a channel matrix pseudoinverse and spend much 

complexity with 4( )O Nt , where Nt is the number of channel inputs. We find a low 

complexity algorithm to do the repeated computations of a channel matrix pseudoinverse and 

the ordering for the performance. We employ the decision-feedback (DF) detector that to do 
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nulling and canceling. We can know the risk of error propagation in the decision-feedback 

(DF) detector, so find out the best ordering to reduce the risk of error propagation. That is to 

find the max SNR at the first time which reduces the detection errors to do nulling and 

canceling. Find the low complexity algorithm or/and the best performance on the below when 

assume Nt =Nr =N. We will use the QR and the sorted QR decomposition in V-BLAST to 

reduce the complexity. Use the QR decomposition to decompose the H = QR  that Q is the 

N×N unitary matrix and R is the N×N upper triangular matrix and we know the amplitudes of 

the entries of the matrix R are χ-distributed. We use the feedforward filter matrix QH for the 

received signal. That is shown. 

 

 

( )H= + =r Q Ha w Ra + w  (2.4.2) 

 

1,1 1,2 1,1 1 1

2,2 2,2 2 2

,

0

0 0

N

N

N NN N N

r r rr a w
r rr a w

rr a w

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

Since Q is unitary, the statistical properties of the noise term H=w Q w  remain unchanged. 

First, we can use the last row to solve the last equation and that is shown. 

 

,

1 1, 1 1 1, 1 1

1 1,1 1 1, 1
2

ˆ
ˆ

ˆ ˆ

N N N N N N

N N N N N N N N N

N

j j N
j

r r a w get a
r r a r a w get a

r r a r a w get a

− − − − − − −

=

= + →

= + + →

= + + →∑

 

 

Form that we know the first time to solve the equation and it can affect the performance. If we 

can solve the equation at the first time is error then we can have much error at the second time. 

We call that is error propagation. So, we will use the sorted QR decomposition to choose 

which columns of H at the first time. That can get the optimum R to solve the equation. We 
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can use the complexity 2( / 2)O N  in the QR decomposition of permutations of H. We can 

use the sorted QR decomposition that use an extension of the modified Gram-Schmidt (MGS) 

algorithm by ordering the columns of H in each orthogonalisation step. That algorithm is 

shown. 

 

 

 

2
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,
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,
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2. 1, ...,
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r
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r
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=

=
=

=
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R = 0, Q = H, p

q

R, Q, p
q

q q

q q q

 

Figure 2-5 The Sorted-QR decomposition algorithm [6] 

 

Table 2-2 Complexity of the Sorted-QR decomposition algorithm 

 

 No. Multiplication 

 

Nr=Nt=N=4 

 

3. Mult:2Nr*Nt 

 

32 

 

5. 

 

Mult:2Nr 

 

8 
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8. 

 

Mult:3Nr 

 

12 

ZF 

total complex 

Mult:3.5*Nr*(Nt)2+0.5Nr*Nt 

 

232 

 

MMSE 

total complex 

 

Mult: 3.5*Nr*(Nt)2+3.5(Nt)3+0.5Nr*Nt+0.5(Nt)2 464 

 

 

We find the permutation vector p that store the used reordering of H that minimises each ,k kr  

with k running from 1 to N.. We consequently compute the diagonal elements that are 

calculated from r1,1to rN,N  and it would be optimal to maximise the ,k kr  in every decoding 

step, that means from rN,N to r1,1 .That can reduce the risk of error propagation beacause we 

have the huge SNR gain in the Nth subchannel. We will know the performance is limited by 

the Nth subchannel. The performance of V-BLAST is limited by the worst subchannel, i.e., 

subchannel N. Basically this is due to the error propagation which is inherent in a DFE, and 

the distribution of the upper triangular matrix R. The amplitudes of the entries of R have x 

distribution with different degrees of freedom, and furthermore, rN,N has the least degree of 

freedom. Therefore, the Nth subchannel has the worst statistics, and it is crucial to improve its 

statistics in order to improve the overall performance of the V-BLAST. So we propose to 

combine ML decoding with the DFE procedure. 

 

2.4.1 Combine ML and DFE Scheme  

On the below when assume Nt =Nr =N. For the worst p subchannels, we perform ML 

decoding and then use a DFE for the remaining subchannels. In order to do this, we do not 

completely triangularize the channel matrix H. That is shown. 
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0
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

a

b

R H
H Q

H
 (2.4.1.1) 

 

where R is an upper triangular matrix of size (N-p)×(N-p) and Hb is a square matrix of size p 

×p. To get the above decomposition, we follow the usual Gram-Schmidt orthogonalization 

procedure for ( )1 2, , , N p−h h h which yields 

 

( )1 2| , , ,N p N p N− + − += aH Q R h h h  (2.4.1.2) 

 

where jh is the jth column of H. Now we find an arbitrary bQ of size N×p such that 

H Hand= =
b b b a

Q Q I Q Q 0 .Thus ( )|=
a b

Q Q Q form an orthonormal basis. Then choose Ha 

and Hb such that 

 

( ) ( )1 2, , ,N p N p N− + − +

⎛ ⎞
=⎜ ⎟

⎝ ⎠a b

a

b

H
Q Q h h h

H
 (2.4.1.3) 

 

Since 
b

Q is independent of ( )1 2, , ,N p N p N− + − +h h h , the elements of Hb are i.i.d. complex 

Gaussian with zero mean and unit variance. Using this decomposition, we first detect 

( )1 2, , ,
T

N p N p Na a a− + − + jointly by ML decoding of size p, cancel the interferences caused by 

these symbols, and then detect ( )1 2, , ,
T

N pa a a −  by the usual DFE procedure. For the 

decomposition of H we use that for the received signal and show that. 

 
H=

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

a a aa

b b bb

r Q r

r a wR H
r a w0 H

 
(2.4.1.4) 
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We perform ML decoding with = +b b b br H a w  to jointly decode 

( )1 2, , ,
T

N p N p Na a a− + − +=ba and employ the DFE procedure using R to decode 

( )1 2, , ,
T

N pa a a −=aa . 

 

2.4.2 Parallel Detection (PD) Scheme 

We can propose a new parallel detection (PD) frame work which is a compromise 

between the low complexity schemes and the maximum likelihood estimation (MLE). The 

parallel detection (PD) frame empoly the optimally ordered decision feedback equalizer 

(OO-DFE) act as the subdetector. We will describe the optimally OO-DFE. The received 

signal in complex baseband representation can be then written as 

 

1−= =r HP Pa + w Ha + w  (2.4.2.1) 

 

where P is a permutated matrix representing the detection order and 1-H = HP , a = Pa  

represent the permutated channel matrix and the substream vector respectively. Substreams 

are detected recursively in the order from 1a  to Nta . The i-th detection on substream symbol 

ia  is explained in the following three steps: cancelling, nulling and ordering.For the 

cancelling considered : all the proceeding detected substream symbols 1 1ˆ ˆ, ia a −  are cancelled 

out from the received signal, 1 1 1 1i i− −′r = r - h a h a where ih  i represents the i-th column of the 

channel matrix 1[ , ]NtH = h , h .For the nulling considered: a nulling vector H
ig based on 

zero-forcing criteria, i.e. 

 

1
0 1, ,

H
i i

i i
i i Nt′

′ =⎧
= ⎨ ′ = +⎩

g h  

 

is calculated. As a result, H
ig is the first row of 1( )H H+ −=F F F F  where ,i NtF = [h , h ] . 

Then a hard decision on H
i ′g r  is made to obtain ia .For the ordering considered: we can 

choose the optimally ordered row from +F as the nulling vector and make a hard decision. If 
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the row with smallest norm provides the largest signal-to-noise power ratio (SNR), then it can 

make the most reliable hard decision. We discuss the block error rate (BLER) for OO-DFE , 

MLE, and zero-forcing equalizer at a given channel H .Firstly, we discuss the block error rate 

(BLER) for OO-DFE. Denote the BLER of OO-DFE algorithm by POO 

 

 

2

2exp
4

oo
oo

w

dp C
σ
−

≈  

(2.4.2.2) 

 

where 
2

2 minoo Hi
i i

d =
g g

. 

 

For a given H, 2
ood  is different if the different ordered P is used. The optimal order gives the 

largest 2
ood . The free distance for a maximum likelihood estimation (MLE) detector where its 

BLER is 

 

2

2exp
4

free
MLE

w

d
p C

σ
−

≈  

(2.4.2.3) 

 

and 2 min( (H H
freed

′≠
′ ′=

a a
a - a ) H H a - a ) . Similarly, we can define for a zero-forcing equalizer, 

2
2

1
( , )

min
[ ]ZF Hi

i i

d −

Δ
=

H H
 where subscript (i,i) represents the diagonal element in the i-th row and 

the i-th column. Intuitively, the relationship between performances of MLE, OO-DFE and 

zero-forcing is PMLE ≦ Poo ≦ PZF, which suggests 2 2 2
free oo ZFd d d≥ ≥ . We will use the 

OO-DFE act as subdetector in parallel detector and show that. 
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Figure 2-6 Parallel detection 

 

 

We can understand when the receiver antennas Nr > the transmiter antennas Nt, OO-DFE 

can perform quite well. However, in the case Nr =Nt, its performance is quite far from that of 

the MLE. An explanation is given in this section. 

 

The nulling vectors { }1, , Ntg g  defined in the zero-forcing based OO-DFE algorithm 

are orthogonal to each other. 

This can be shown easily in the following. Since the nulling vector 1
Hg is the first row of the 

pseudo-inverse matrix 1, , Nt
+

⎡ ⎤⎣ ⎦h h , thus g1 must be orthogonal to 2, , Nth h  .Again 

since H
ig  is the first row of , ,i Nt

+
⎡ ⎤⎣ ⎦h h , gi must be a linear combination of vectors 

, ,i Nth h . Therefore, g1 must be orthogonal to 2, , Ntg g . Similarly, g2 is orthogonal to  

3, , Ntg g  as well as g1, etc. Therefore we can conclude that the nulling vectors gi are 

subdetector 

subdetector 

{ }1 1,x b

subdetector 

r

{ },
c cM Mx b

2

1r - Ha

2

2r - Ha

2

cMr - Ha

Compare and 
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{ }2 2,x b
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â



 20

orthogonal to each other. The algorithm of OO-DFE is actually a process of the constructing 

an orthogonal set { }1, , Ntg g  with Nt basis vectors in an Nr-dimensional space for the 

given channel H . these vectors ( ), 1, ,i i Nt=h  are then projected onto gi. It is not difficult 

to see that doo  is only the shortest projection timed by Δ.Therefore, a channel H  is a poor 

channel for OO-DFE algorithm if there exits a column whose projection is small. We show an 

example of H  with three columns, where 

 

2 1 0
2 0 1

0.1 0 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

H  

 

Since the three ih  vectors are almost co-planar, the shortest projection is also small. In other 

words, since 1
Hg  is a row of matrix ( ) 1H H−

F F F , its norm certainly becomes large when 

matrix F is near singular. We propose a new algorithm which makes the square channel 

matrix into a tall matrix by making hypotheses on a substream and apply the low complexity 

detectors on the tall channel matrix to improve the overall performance. We make hypotheses 

on 1a  and assume it is correctly subtracted from the received signal. The remaining 

submatrix (2:3) 1 2⎡ ⎤= ⎣ ⎦H h h  becomes a better channel where ( )( ) ( )( )2 2 2
2;3 2;3oo freed d= = ΔH H . 

We make all Mc hypotheses on the first substream 1a  and leave the remaining Nt-1 

substreams to be detected by using Mc subdetectors. Therefore, the PD algorithm consists of 

Mc branches each with a subdetector. In the qth branch, hypothesis 1a = xq is made where xq 

represents the q-th point in the signal constellation. After subtracting 1 qxh from the received 

signal, the q-th subdetector makes a hard decision bq on (2: )Nta . For these Mc branches in the 

PD algorithm, each branch outputs a different hard-decision { , }q qx b  on a . Finally, a final 

decision â  is made by selecting the branch with the smallest error (2: ) 1Nt q qx−r - H b h . Since 

the subdetectors are now functioning on a Nr-by-(Nt-1) matrix, the diversity is higher and they 

are expected to perform better. Additionally, we can further improve the performance by 

properly selecting the substream 1a on which hypotheses are made. We analyze the BLER 

performance of the PD algorithm that employ OO-DFE as its subdetectors and illustrate the 
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method to select the optimal 1a . The BLER of the PD algorithm can be written as 

 

 

2

2exp
4

PD
PD

w

dp C
σ

−
≈  

(2.4.2.4) 

 

 

where 2 2 2
(2: )min( , ( ))PD free oo Ntd d d= H .So, we find a method to choose the optimal substream on 

which the PD algorithm makes hypotheses. We chose 1a  which gives the largest 2
(2: )( )oo Ntd H  

that select the best submatrix of the channel to be detected by the subdetectors. 

 

2.5 Chase Detector 

We already know the large gap in both performance and complexity between the 

maximum-likelihood (ML) and the other existed detectors, which are linear detectors or 

BLAST-ordered decision-feedback (BODF) [15] detectors, hence we have the motivated 

search for find out a favorable performance-complexity trade-off and a unified framework 

which is the chase family of detection. In the chase family of detection, there is an important 

class of reduced-complexity detectors called list-based detectors that adopt a two-step 

approach of first creating a list of candidate decision vectors, and second choosing the best 

candidate as its final decision. For the example, the parallel detector [8] generates its list by 

implementing a separate low-complexity detector for each possible value of the first symbol. 

Numerical results suggest that if the first symbol detected is chosen so as to approximately 

minimize the probability of error for the remaining symbols, then the parallel detector 

achieves full receive diversity. This section proposes a family of Chase detectors, which 

includes as special cases the BODF [15], ML [5], parallel [8], PDF [16], B-CHASE [13]. Thus, 

the Chase family provides a unified framework for comparing a variety of existing detectors. 

Furthermore, we propose the B-Chase detector as a new special case that performs well on 

fading channels. We will demonstrate that the B-Chase detector can approach ML 

performance with less complexity than previously reported detectors. The B-Chase detector 
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distinguishes itself from previous list-based detectors in the unique way it builds its list. We 

will see that the B-Chase detector achieves better performance with significantly smaller 

candidate lists, leading to a favorable performance-complexity trade-off. We introduce the 

Chase detector, a general detection strategy for MIMO channels that reduces to a variety of 

previously reported detectors as special cases. The Chase detector defines a simple framework 

for not only comparing existing MIMO detection algorithms but also proposing new ones. The 

Chase detector is described use five steps and that is shown. 

 

 

 

Figure 2-7 Block diagram of the Chase detector [13] 

 

 

Step 1) Selecting {1, }i Nt∈ that the index of the first symbol to be detected. 

Step 2) Generate a sorted list L of candidate values for the ith symbol, defined as the l 

elements of the alphabet nearest to iy ,  

 

2 1( )H Hα −= + =y H H I H r Fr  (2.5.1) 

 

where y is the output of either the zero-forcing (ZF) ( 0)α = or MMSE 2
0( )Nα =  linear 

filter. 

Step 3) Generate a set of l residual vectors {r1,…rl }by cancelling the contribution to r from 

the ith symbol, assuming each candidate from the list is, in turn, correct: 
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j i js= −r r h  

Step 4) Apply each of {r1,…rl } to its own independent subdetector, which makes decisions 

about the remaining Nt-1symbols (all but the ith symbol). Together with sj, the jth subdetector 
defines a candidate hard decision ˆ ja  regarding the input a. 

Step 5) Choose as the final hard decision â  the candidate hard decision 1ˆ ˆ{ , }a al that best 

represents the observation r in a minimum mean-squared-error sense: 

 

 

           
1

2

ˆ ˆ{ , }
ˆ arg min

∈
= −

a a a
a r Ha

l

 

(2.5.2) 

 

From these steps know that have four parameters be specified: 

 

Parameter 1:select i algorithm that affact the system performance and complexity. 

Parameter 2:set the list length l that affact the system performance and complexity. 

Parameter 3:find the weighted filter ZF or MMSE. 

Parameter 4:employ the subdetector algorithm to detect the received signal. 

 

 

 

Table 2-3 Special cases of the Chase detector [13] 

Detector First-Symbol 

index i 

List Length l Filter type,α Subdetector 

 

ML[14] any |A| ZF ML 

BODF[15] ♦BLAST1 1 ZF or MMSE BODF 

PDF[16] ♦BLAST1 1 ZF or MMSE Linear 

Parallel[8] using Selection 

algorithm 1  

|A| ZF any 

B-Chase[13] using Selection 1 ≤ l ≤ |A| ZF or MMSE BODF 
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algorithm 1 or 

Selection 

algorithm 2 

♦The index BLAST1 signifies the first index of the BLAST ordering [15] 

 

 

Above that, the list length is maximal such that subdetector is likely ML detectors and 

the choice of which symbol to detect first is not critical to performance. The list length is one 

such that subdetector is likely BLAST-ordered decision-feedback (BODF) detectors and the 

choice of which symbol to detect first is critical to performance. The parallel detector is 

another Chase detector whose performance is highly sensitive to the choice of which symbol 

to detect first. 
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Chapter 3  

B-Chase Detector 

3.1 Introduce B-Chase Detector  

We introduce the example for the B-Chase detector which is defined as a Chase detector 

that uses BODF as a subdetector and an SNR gain of a list detector that demonstrate the 

probability of error. We will see that the B-Chase detector achieves better performance with 

significantly smaller candidate lists, leading to a favorable performance-complexity trade-off. 

We can demonstrate that the B-Chase detector can approach ML performance with less 

complexity than previously reported detectors. We show block diagram of the B-Chase 

detector. 
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Figure 3-1 Overall block diagram for the B-Chase detector 
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3.1.1 The SNR Gain of a List Detector for the B-Chase Detector 

We say that a list detector makes an error when the actual transmitted symbol does not 

appear somewhere on the list. With this definition, when we increase the length of the list that 

leads to a decrease in the probability of error. Therefore, we can employ the 4-QAM alphabet 

to describe the list detector. For the 4-QAM alphabet 
3

4 4{ , }
j j

e e
π π

± ±
 have a ZF front end and 

the transmitted symbol is 4
j

a e
π

= . For the ith symbol iy a n= +  consider it as the input of the 

list detector and 2
1

[ ]
iSNR

E n
= . Show the correct decision regions for lists lengths {1,2,3}∈l  

in the fig.3-2. Define the Pl  as the list-error probability and the list length is l. Find that 

 

 

2 2 21 2 ( ) ( ) 2
i i

i

SNR SNR
SNR

i iP Q SNR Q SNR e e e
− −−= − ≈ − ≈  

(3.1.1.1) 

 

 

2 ( 2 ) iSNR
iP Q SNR e−= ≈  (3.1.1.2) 

 

 

2
3 ( ) iSNR

iP Q SNR e−= ≈  (3.1.1.3) 
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Figure 3-2 Decision regions for 4j
a e

π
=  and different list lengths: (a) l = 1; (b) l = 2; and (c) l = 3. The 

decision list contains a whenever the input to the list detector falls within the shaded region. Also indicated is the 

minimum distance d l  to the boundary [13] 

 

In the high SNR case, we can approximate the list detector SNR gain and define the 

d ( A )l  as the minimum distance from any element in A to the corresponding decision region 

boundary of the list detector with list length l, so define the SNR gain 2γ l  with a list length l 

in that 

 
2

2
2
1

( )
( )

d A
d A

γ = l
l  (3.1.1.4) 

 

Show the extreme case that is the maximal list length = Al  and that have an infinite SNR 

gain 2
Aγ = ∞  because the actual transmitted symbol is on the list with d ( A ) = ∞l . 
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3.1.2 The SNR of the B-Chase Detector 

We will define the SNR for each symbol of the B-Chase detector and employ that to 

select which symbol is detected first .For describe that by doing the QR decomposition. Do 

the QR decomposition of the extended channel matrix and show that 

 

 

Ntα
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

H
H QL

I
 (3.1.2.1) 
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Figure 3-3 QR decomposition algorithm 

 

 

Total complex of the QR decomposition algorithm is 3(Nt)3-3Nr(Nt)2-3(Nt)2 

-3NrNt+2Nr+2Nt in the MMSE case. Where the matrix H  are ( )Nr Nt Nt+ × , and where 

the columns of the matrix Q  are orthonormal, and where L is a lower triangular Nt Nt×  

matrix with positive and real diagonal elements. Define the bottom rows of Q  are the 
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matrix 1α −L  such that 1α α− =L L I .Due to (3.1.2.1) write (2.5.1) as  
 

 

H H=y U Q r  (3.1.2.2) 

 

where the matrix  Q is defined as the top Nr rows of Q ,and where 1H −U = L . Use 

= +r Ha w  to reduce that 

 

2 H Hα= − + = +y a U Ua UQ w a n  (3.1.2.3) 

 

where use 2H αQ H = L - U  and define 2H H Hw α−n = U Q U Ua .Due to (3.1.2.3) that we 

can define the SNR and know 2 2
0{0, }H H H and Nα α= + ∈Q Q Q Q UU = I , therefore we 

can know the noise variance of the ith output of the forward filter is 2 2
0i iE n N⎡ ⎤ =⎢ ⎥⎣ ⎦

u , 

where iu is the ith column of U.  Define the SNR for the first symbol detected 

 
2

( )
1 2

0

i

i
SNR

N

γ
=

u
l  (3.1.2.4) 

 

and then define the next symbol detected. That is defined by the QR decomposition of the 

extended channel matrix H  whose columns are permuted, when employ the ( )iΠ in the H ,  
according to the detection order. Find the ordering and that shown. 

 

( ) ( ) ( )i i i=HΠ Q L  (3.1.2.5) 

 

 

Where the columns of the ( )Nr Nt Nt+ ×  matrix ( )iQ are orthonormal, and where ( )iL  is a 

lower triangular Nt Nt×  matrix with positive and real diagonal elements. For the case 
( )i =Q Q and ( )i =L L when ( )i =Π I .We can know that the ( )iΠ is an Nt Nt×  permutation 
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matrix that arranges the columns of H such that the ith column comes first, and the remaining 

columns are arranged according to the BLAST ordering. Use the QR decomposition ideal to 

construct SNR for B-Chase detector. First, show the SNR for the first symbol detected is 

 
( )2 2
1,1( )

1
0

*( )i
i l

SNR
N

γ
=

l  (3.1.2.6) 

 

For the first symbol detected can provide list-detection gain in the B-Chase detector. 

Where ( )
,
i

k kl  is the kth diagonal of ( )iL  and the SNR of the final symbols can be shown. 

 

     

( ) 2
,( )

0

( )
, 2, , .

i
k ki

k
l

SNR k Nt
N

= =  (3.1.2.7) 

 

That ( ) , 2, ,i
kSNR k Nt= do not provide any list-detection gain in the B-Chase detector. 

3.1.3 The B-Chase Selection 

In the B-Chase detector provide the selection algorithm that get two opposing goals. Now 

we argue that the choice of i must balance two opposing goals: (1) the SNR of the first symbol 

( )
1

iSNR  is high that the list detector is likely to be correct, the actual transmitted symbol be on 

the list, that reduce the risk of error propagation, and (2) that the subsequent subdetectors can 

perform well. If our only concern is to ensure that the actual transmitted symbol can be on the 

list, we will choose i such that the SNR of the first symbol ( )
1

iSNR  is high. For that choose i 

so that hi is the column of H  that is most orthogonal to the remaining columns which do not 

include hi in the remaining columns of H . On the other hand, if our only concern is to ensure 

that the subdetectors perform well when we make decisions about the remaining Nt–1 

symbols, we will choose i so that the effective MIMO channel, we remove the hi in the 

column of H , seen by the subdetectors is as orthogonal as possible that we will get the 
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distance is likely the dfree [8]. So, we will choose i so that hi is the column of H  that is least 

orthogonal to the remaining columns in the submatrix channel, that reduce the most co-planar 

vectors in the submatrix channel, which is precisely the i that corresponds to the SNR of the 

first symbol ( )
1

iSNR  is low. Therefore, to balance the two opposing goals, we should choose i 

so that the SNR of the first symbol ( )
1

iSNR  is small, but not so small that the list does not 

contain the actual transmitted symbol. In other words, we should choose i so that the effective 

SNR of the list detector is neither too small nor too large. 

 

That selection algorithm are shown 

 

Selection Algorithm 1: 

 

 

     ( ) ( ) ( )
,1,1 2,2

{1,2, }
arg max min { * , , , }k k k

Nt Nt
k Nt

i l l lγ
∈

= l  (3.1.3.1) 

 

 

That maximizes the minimum SNR of the symbols. To implement the selection algorithm 1 

can spend the complexity is 4( )O Nt computations when l >1. From the QR decomposition 

their complexity is 3( )O Nt computations, therefore the selection algorithm 1 implement Nt 

times. Due to the selection algorithm 1 complexity is high, so find the low-complexity to 

implement the selection algorithm. That will be shown the selection algorithm 2 which can 

reduce the complexity but can has the bad performance. Since the smallest SNR inside the 

subdetector is ( )
2
iSNR  when 1 A< <l , select the symbol which maximizes the minimum of 

( )
1

iSNR  and ( )
2
iSNR . ( )

2
iSNR  is shown. 
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( )
2 2 2

0 ,

1

min { }

i

j i j j i

SNR
N g≠

=
−u

 (3.1.3.2) 

 

where ,

H
j i

j i
i

g =
u u

u
 

 

Selection algorithm 2 is shown: 

 

 
2

{1,2, , }

2

2 2 2
{1,2, , } ,

arg max

1arg max min , , .
min { }

k
k Nt

k Nt k j i j j i

A

i
else

g

γ

∈

∈ ≠

⎧ =⎪
⎪
⎪
⎪

= ⎧ ⎫⎨
⎪ ⎪⎪ ⎨ ⎬⎪ ⎪ ⎪−⎪ ⎩ ⎭

⎪
⎩

u

u u
l

l

 

(3.1.3.3) 

 

 

The Nt(Nt-1) squared-magnitudes { }2
, |1 ,1 ,j ig j Nt i Nt j i< < < < ≠  are computed in 

selection algorithm 2. The each squared-magnitude is need to compute the complexity is 5Nt. 
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Table 3-1 Complexity of the selection algorithm 1 and the selection algorithm 2 

 total complex  Nr=Nt=N=4 

 

The selection algorithm 1 3.5*Nr*(Nt)3+3.5(Nt)4+0.5Nr*(Nt)2+ 

0.5(Nt)3 

 

1856 

The selection algorithm 2 3.5*Nr*(Nt)2+3.5(Nt)3+0.5Nr*Nt+0.5(Nt)2

+5(Nt)3-5(Nt)2 

 

704 

 

 

3.1.4 Implementing the B-Chase Detector 

We will implement the B-Chase detector and show the block diagram in the fig.3-1, and 

the pseudocode in the fig.3-4, and fig.3-5. For the B-Chase detector use the selection 

algorithm 1 or the selection algorithm 2. Now it use the selection algorithm 1 to implement in 

the B-Chase detector. For the selection algorithm 1 we must compute the QR decomposition 

to get ( )iL such that use the selection algorithm 1 to decide which symbol to detect but we do 
not compute directly that. We use another method to compute the QR decomposition to get 

( )iL . 

From the ( )iΠ definition we know permute the columns of H  by ( )iΠ  that is similar to 

permute the the rows of H HC = U Q by ( )i HΠ . So we define the sorted-QR decomposition of 
HC and that is shown. 

 

( ) ( ) ( )H i i i=C Π Q U  (3.1.4.1) 
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We can use the relation ( ) ( ) 1( )i i H −=U L to get ( )iL .From the ( )iΠ definition is the ith 

column of HC  comes first, so modify the sorted-QR decomposition. We can use the 
algorithm of the sorted-QR decomposition to compute the sorted-QR decomposition after 

modify this such that the ith column of HC  firstly comes. Form the (3.1.4.1) equation we 
can modify that 

 

( ) ( ) ( ) ( ) ( )H i i i i H i= =C Π QUΠ QΘ Θ UΠ  (3.1.4.2) 

 

where ( )iΘ is a unitary matrix such that the ( ) ( ) ( )i i H i=U Θ UΠ  is an upper triangular matrix 
with real and positive diagonals and form (3.1.4.2) and (3.1.4.1) equations we can define the 

relation ( ) ( )i i=Q QΘ .We can define the U sorted-QR decomposition and show 

 

( ) ( ) ( )i i i=UΠ Θ U  (3.1.4.3) 

 

Form the 2 1( )H Hα −= + =y H H I H r Fr  equation we can define the front-end filter F as that 

 

1 ( ) 1 ( )i H i H H− −=F = D Q D Θ Q  (3.1.4.4) 

 

where D is a diagonal matrix with ( )
, ,

i
j j j jd l= . Form the =y Fr  and = +r Ha w  equations 

we can reduce that as  

 

=y Mb + n  (3.1.4.5) 

 

where 1 ( )i−M = D L is an Nt Nt×  lower-triangular matrix with ones along the diagonal, 

where ( )i Hb = Π a  is a permuted version of the channel input, and the effective noise is 
2 1 ( )iα −n = Fw - D U b . From the B-Chase preprocessing function we can get some parameters 

( ) 2 2
1,1 ,, { , }i

Nt Ntand d dF,M,Π . Use these parameters in the B-Chase detector to implement 

that. We employ the list detector to generate an ordered list 1[ , ]s sl  of the l elements of A 
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that are nearest to 1y  which is 1th element of y. For the ordered list 1[ , ]s sl , is  is in the 

ordered list and it is the ith closest element of A that is nearest to 1y . From the list detector 

generate an l elements ordered list and then use y and the ordered list as inputs of the l DF 

detectors whose first symbol decisions are hard-wired to decide first outputs of DF detectors 

and then compute the first cost .The next steps use a decision-feedback process to decide other 

symbols and update the cost. For show that the lth subdetector cancels the intersymbol 

interference from the kth element of as follows: 

 
1

, , ,
1

ˆ
k

k l k k j j l
j

x y m b
−

=
= − ∑  (3.1.4.6) 

 

Where , ,{ }j l j lb dec x=  is the decision that regard that as the jth element of ˆ lb  which is the 

decision vector of the l th subdetector, and where dec{x} quantizes x to the nearest element of 

A. From the outputs of subdetectors, B-Chase detector choose the minimum cost of the 

outputs of subdetectors as the decision vector. To express the cost of the l th decision vector as  

2( ) ˆi
l lc = r - HΠ b , which reduces to  

 

2ˆ( )l lc = D y - Mb  (3.1.4.7) 
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Figure 3-4 Computationally efficient implementation of the B-Chase detector [13] 

 



 37

 

 

( ) 2 2
1,1 ,

1

2
,{1, , }

( )

: ,

: , ,{ , , }

1.[ ] ( )

2.

3. 1 , ,

4. 1 ,

5. ,

i
Nt Nt

H

j k jk j

k

FUNCTION BCHASEP REPROCESSING
INPUTS

OUTPUTS d d

QRdecomposition

for j to Nt e u end

for k to Nt

−

∈

====================================

=

= =

=

∑

H

F,M Π

Q,L H

U = (L )

Θ U

l

{ }

{ }

( ) ( )( ) ( ) 2 2
,1,1

( ) ( ) ( )( ) 2 2 2
,1,1 2,2

( )

1, ,

1 ( )

1 ( )

1 ( ) (

, ,{( ) , ,( ) } ( , )

6. min ( * ) ,( ) , ,( )

7.

8.

9. ( )

10.

11.

12.

arg max

k kk i
Nt Nt

k k kk
Nt Nt

k

k Nt

i

i H H

i H i

l l sortedQR k

S l l l

end

i S

diag

first Nr rows of

∈

−

−

−

⎡ ⎤ =
⎣ ⎦

= ϒ

=

=

=

=

=

Π U,e

D U

Q Q

F D Θ Q

M D Θ LΠ

l

)

( )2 2
, ,13. 1 , ( )k

j j j jfor j to Nt d l end= =

 

Figure 3-5 Preprocessing pseudocode for the proposed implementation of the B-Chase detector that uses 

selection algorithm 1 [13] 
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 We can have two crucial thing that reduce the complexity. 

 From compute the sorted-QR decomposition algorithm of U and the QR 

decomposition algorithm of H that we know the , 1k km = element of the M matrix. 

And then we can combine the equation (3.1.4.6) and the equation (3.1.4.7) that let 

we can rewrite the cost expression as 

 

22
, , ,

1

ˆ
Nt

l k k k l k l
k

c d x b
=

= −∑  (3.1.4.8) 

 

From that we reduce computations in the cost equation (3.1.4.8) in the subdetector. 

We can use the ( )O Nt computations. 

 We can use a pruning and threshold-tightening strategy that can reduce the 

computations. A cost threshold can be established with the cost c1 of the first 

subdetector’s decision. In subsequent subdetectors, we can abort both the cost 

calculation (3.1.4.8) as well as the decision feedback process (3.1.4.7) whenever this 

threshold is exceeded the cost threshold. Furthermore, the threshold can be reduced 

each time a lower cost is found. 

 

We will get the performance and complexity well .From the B-Chase detector know the 

channel parameters that Rayleigh-fading gain, and know 0N . We can use B-Chase*(l) to 

denote the B-Chase detector with list length l , 2
0Nα = , and use selection algorithm (3.1.3.1). 

We can use B-Chase(l ) to denote the B-Chase detector with list length l , 2
0Nα = ,and use 

selection algorithm (3.1.3.3).We use input is 4 with 16-QAM and output is 4. And show figure 

the performance versus the number of antennas, where the SNR per bit is 
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2

2 2
2 2

[ ] [ ]
( [ ]*log ) ( [ ]*log )

H HE E
E A E A

=
Ha a H Ha

w w
. 

 

Where [ ]H
NtE Nr=H H I , 0[ ]HE NrN=w w , and [ ] [ ]H HE NtE a a=a a . We can reduce that as 

 

0 2

[ ]
log

HNtE a aSNR
N A

=  

 

 

For define the unit that is real multiplies (RMs) per bit to describe the complexity. We define 

the squared absolute value of a complex number is counted as two RM, and the complex 

multiplications are counted as three RMs. Now we define the preprocessing complexity that 

need to compute the computations that are required only once per channel estimation. And 

define the core-processing complexity need to compute the computations that must be 

implemented during every symbol period. In the B-Chase detector show the core-processing 

complexity when l =1 show their core-processing complexity is 3NrNt RM and when 1≠l  

show their core-processing complexity is 3(Nr+l)Nt RM. The overall complexity includes both 

core-processing complexity and preprocessing complexity. We assume that the channel 

estimate is updated in T symbol periods. That unit is real multiples per bit. We can show that 

as: 

 

2

/
log

core preC C T
complexity

Nt A
+

=  (3.1.4.9) 

 

From preprocessing complexity we can know the state of the channel to compute complexity 

in the B-Chase detector. If the state of the channel changes quickly, then we can estimate the 

state of the channel is quick in the small symbol periods. That can affect the preprocessing 

complexity. If we have the small preprocessing complexity, then that reduce the complexity in 

the state of the channel changes quickly.  
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Table 3-2 System parameters 

Transmit antenna 4 

Receive antenna 4 

Channel is updated in T symbol periods 8 

Rayleigh-fading Mean=0,Varance=1 

Channel order 0 

Selection algorithm  1  

List length l 1 ,2 ,and 16 
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Figure 3-6 The bit error rate versus SNR for the B-Chase detector* ( l ) with l =1, 2, 16 , 

T=8,and 16 QAM 
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From figure we can know when increase the length of the list that leads to a decrease in the 

probability of error. In other word shrink this gap and provide new solutions for managing the 

inherent performance-complexity trade-off in MIMO detection. We can find that shrink this 

gap quickly in the low the length of the list. 

 

 

 

Table 3-3 System parameters 

Transmit antenna 4 

Receive antenna 4 

Channel is updated in T symbol periods 

 

8 

Rayleigh-fading 

 

Mean=0,Varance=1 

Channel order 0 

Selection algorithm  

 

1  and  2 

List length l 

 

1 ,and 2 
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Figure 3-7 Bit error rate versus SNR for the B-Chase detector* ( l ) and the B-Chase detector 

( l ) with l =1,2 , T=8,and 16 QAM 

 

 

From figure we can know selection algorithm 1 and selection algorithm 2 that have almost the 

same performance. 
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Table 3-4 System parameters 

Transmit antenna 4 

Receive antenna 4 

Channel is updated in T symbol periods 8 

Rayleigh-fading Mean=0,Varance=1 

Channel order 0 

Selection algorithm  1   

List length l 

 

1 ,and 2 
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Figure 3-8 Bit error rate versus SNR for the B-Chase detector* ( l ) with l =1,2 ,and the ML 

detector T=8,and BPSK 
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From figure we can know the B-Chase detector is nearly ML detector. 

 

 

 

Table 3-5 Complexity for B-Chase Detector and ML Detector 

 

 

Function B-Chase 

Preprocessing 

complexity      

 

 

 

Function 

B-Chase 

detector 

complexity 

 

Channel is 

updated in 

T symbol 

periods 

 

Total 

complexity 

Nr=Nt=4

, 

QPSK(A

=4) 

,T=8 

, l =4 

 

B-Chase

*(l) 

detector 

 

3.5(Nt)4+ 

3.5Nr(Nt)3+6.5(Nt)

3-2.5Nr(Nt)2+0.5(N

t)2+2Nr+11Nt 

 

3NtNr+3Nt+2

l+2.5l 

(Nt)2-0.5 l Nt 

 [3.5(Nt)4+ 

3.5Nr(Nt)3

+6.5(Nt)3-

2.5Nr(Nt)2

+0.5(Nt)2+

2Nr+11Nt]

+T 

[3NtNr+3

Nt+2l+2.5l 

(Nt)2-0.5 l 

Nt] 

 

3868 

 

ML 

detector 

 

   [3NrNt+2

Nr] ANt 

 

 

114688 
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3.1.5 The B-Chase Detector for Channel Estimation Errors 

In previous sections, we always assumed that we have perfect the channel state 

information (CSI) at the receiver, which allows us to compare the performance. However, the 

channel information is typically not perfect. A channel estimator extracts from the received 

signal approximate channel coefficients during the transmission symbol. One method to 

accomplish this is to transmit the training signal prior to the transmission symbol. That are 

used as preamble at the start of each frame. Another way to estimate the channel fading 

coefficients is to embed the pilot bits, that is called pilot signal, inside the signal.  

 

The impact from the channel estimation errors will degrade the performance of the 

system. To study the impact of the channel estimation errors on the B-CHASE detector 

algorithm, we introduce the error model at the receiver. 

 

′H = H +ΔH  (3.1.5.1) 

 

where H represent the true channel matrix and ΔH denotes the channel estimation error. The 

elements ofΔH are assumed to be zero mean, variance is 0.01 and complex Gaussian. The 

B-CHASE*(16) is a measurement based on that we can accurately obtain the channel 

estimation. The B-CHASEer*(16) is a measurement based on that we can not accurately 

obtain the channel estimation. As shown in Figure, the channel estimation errors with The 

B-CHASEer*(16) given the B-CHASE decoding algorithm. It is clear from the figure, the 

B-CHASEer*(16) decoding algorithm starts to perform poorly. This poor performance is 

caused by inter-symbol interference (ISI).When we obtain the error channel matrix, find out 

the error outputs, ′ ′F M etc., in the B-Chase preprocessing. From that obtain the error ′ ′y = F r  

produce the ISI. This cause a ISI problem since channel estimation error is the biggest 

contributor of the errors in the simulation at the high SNR region. 
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Table 3-6 System parameters  

Modulation 16-QAM 

 

Transmit antenna 

 

4 

Receive antenna 

 

4 

Channel is updated in T symbol periods 

 

8 

Rayleigh-fading 

 

Mean=0,Varance=1 

Error of the Rayleigh-fading 

 

Mean=0,Varance=0.01 

Channel order 0 

Selection algorithm  

 

1   

List length l 

 

16 
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Figure 3-9 Bit error rate with channel estimation error and without channel estimation error 

 

 

From figure we can know the channel estimation error demonstrate the error in the high SNR. 
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Chapter 4  

B-Chase Detector of MIMO-OFDM Systems 

The material in this Chapter is largely taken from [9], [10], [11], and [12]. 

4.1 OFDM System Models 

We understand the single carrier (SC) that has the poor spectral efficiency in our 

communication system and when we have multipath so that have frequency selective fading 

and inter-symbol interference (ISI). So, we will employ the principle of multi carrier(MC) 

system that can combat them because only some subcarriers is fail to communication. We use 

orthogonal frequency division multiplexing (OFDM) that is to divide the available spectrum 

into several subchannels (subcarriers) and the frequency response of the subchannels are 

overlapping and orthogonal. That get the channel is flat fading per subcarrier and decrease ISI. 

In the MC system the transmitter separate the data stream into several parallel ones and each 

modulated by a specific subcarrier that can use Inverse discrete Fourier Transform (IDFT) to 

implemt that in the baseband modulation. In the receive each demodulated by a specific 

subcarrier that can use discrete Fourier Transform (DFT) to implement that in the baseband 

demodulation. 

    When OFDM symbols pass through a time-dispersive channel, inter-symbol interference 

(ISI) and inter-carrier interference (ICI) usually occur in the receiver and cyclic prefix (CP) is 

introduced to combat ISI and ICI. Cyclic prefix, shown in Figure 4.1, is a copy of the tail part 

of a OFDM symbol is attached to its front. As long as the cyclic prefix length is longer than its 

experiencing time-dispersive channel length, ISI can be avoided. At the same time, the cyclic 

prefix along with its OFDM symbol makes a periodic OFDM signal and maintains the 

properties of circular convolution and subcarrier orthogonality that prevents the ICI effect. 

For this system we employ the following assumptions: 
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 The channel impulse response is shorter than the cyclic prefix. 

 Transmitter and receiver are perfectly synchronized.  

 The fading is slow enough for the channel to be considered constant during one 

OFDM symbol interval.  

 Channel noise is additive, white, and complex Gaussian. 

 

 

Figure 4-1 Cyclic prefix of an OFDM symbol [10] 

 

4.1.1 Continuous-Time Model 

In this chapter, a continuous-time model is used to introduce the whole OFDM baseband 

system including the transmitter and receiver. In the transmitter, the transmitted data is split 

into multiple subchannels with overlapping frequency bands. The spectrum of OFDM signal is 

shown in Figure 3.2. It is clear that the spectrum of each subchannel is spreading to all the 

others, but is zero at all the other subcarrier frequencies, because of the sinc function property, 

which is the key feature of the orthogonality. 

Assumeing an OFDM system with N  subcariers, a bandwidth of W Hz and a symbol length 

of T  seconds, of which gT  seconds is the length of the cyclic prefix, the transmitter uses the 

following waveforms 
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( )
( ) [ ]

21  if 0,

0,                              otherwise

g
Wj k t T
N

gk

e t T
T Tt

π −⎧
∈⎪

−Φ =⎨
⎪
⎩

 

(4.1.1.1) 

 

Where gT N W T= + . Note that ( ) ( )k kt t N WΦ = Φ +  when t  is within the cyclic prefix 

0, gT⎡ ⎤⎣ ⎦ . Since ( )k tΦ  is a rectangular pulse modulated on the carrier frequency kW N , the 

common interpretation of OFDM is that it uses N  subcarriers, each carrying a low bit-rate. 

The waveforms ( )k tΦ  are used in the modulation and the transmitted baseband signal for 

OFDM symbol as  

 

1

0
( ) ( ) ( )

N

k
k

x t X k t
−

=

= Φ∑  (4.1.1.2) 

 

 

Where (1), (2),..., ( 1)X X X N − are complex numbers from a set of signal constellation points. 

Assume the given channel is quasi-static, i.e., constant during the transmission of an OFDM 

symbol, where the quasi-static impulse response is ( );h tτ  of the physical channel is 

restricted to the interval 0, gTτ ⎡ ⎤∈ ⎣ ⎦ , i.e., to the length of the cyclic prefix. The received signal 

becomes 

 

( )( ) ( ) ( )
0

( ) ; ( )
gT

y t h x t h t x t d n tτ τ τ= × = − +∫  (4.1.1.3) 
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where n  is additive, white, and complex Gaussian channel noise. 

The OFDM receiver consists of a filter bank, matched to the last part ,gT T⎡ ⎤⎣ ⎦  of the 

transmitter waveforms ( )k tΦ , i.e., 

 

( ) ( ) if 0, .

0,                        otherwise.
k g

k

T t t T T
tψ

∗⎧ ⎡ ⎤Φ − ∈ −⎪ ⎣ ⎦= ⎨
⎪⎩

 (4.1.1.4) 

 

Calculating the sampled output at the k_ th matched filter.  
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(4.1.1.5) 

 

 

 

Figure 4.3 shows a typical continuous-time OFDM baseband modulator, in which the 

transmitted data is split into multiple parallel streams which are modulated by different 

subcarriers and then transmitted simultaneously. At the receiver, the received signal is 

demodulated simultaneously by multiple matched filters and then the data on each subchannel 

is obtained by sampling the outputs of matched filters, as shown in Figure 4.4. 
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Figure 4-2 Spectrum of an OFDM signal [10] 

 

 

 

 

Figure 4-3 Continuous-time OFDM baseband modulator [10] 
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Figure 4-4 Continuous-time OFDM baseband demodulator [10] 

 

4.1.2 Discrete-Time Model 

To simultaneously transmit multiple data, the transmitter must modulate data with 

multiple subcarriers and the receiver must demodulate with multiple matched filters. In fact, 

the modulation and demodulation can be implemented efficiently by using digital IDFT/DFT 

operations, because they can be respectively represented as 
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which are the same as IDFT operation of the transmitted data X (k) and DFT operation of the 

received data y(i) , respectively. 

Figure 4-5 shows the discrete-time baseband OFDM model. The IDFT transforms the 

frequency-domain data into time-domain data which is delivered over the air and passed 

through a multi-path channel, denoted as h(n,m) n is the time index and m is the channel path 

delay. At the receiver, to recover the signal in frequency domain, DFT is adopted in the 

demodulator as a matched filter. Then the frequency-domain signal of each subchannel is 

obtained from its DFT output. 

 

 

 

Figure 4-5 Discrete-time OFDM system model [10] 

 

 

4.1.3 Effect of Cyclic Prefix 

Because of multipath channels, orthogonality as shown in Figure 4.2 will be destroyed by 

ISI and ICI. However, as long as the cyclic prefix length is longer than the channel order of 

h(n,m) , ISI effect can be avoided. It is known that circular convolution in time domain results 

in multiplication in frequency domain when the channel is stationary so that the received 

signal Y(k) in frequency domain is the product of transmitted data X(k) and channel response 

H(k) in the kth subcarrier . Thus, the orthogonality is maintained (if h(n,m) is fixed within the 

symbol length, then h(n,m)= h(m) is not about time) and data can be easily recovered by 
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one-tap channel equalizer, i.e., dividing Y(k) by the corresponding H(k).  

 

( ) ( )* ( ) ( )Y k H k X k N k= +  (4.1.3.1) 

 

Y(k), X(k), H(k),N(k) are the kth subcarrier after DFT according to y(i),x(i),h(i),n(i) .About 

that we can know the channel is flat fading at each subcarrier. 

 

4.2 MIMO-OFDM Architecture 

According to Section 4.1, OFDM technique turns frequency-selective fading channel into 

several flat-fading subchannels, and it solves the major problem in wideband transmission 

systems. We will employ V-BLAST technique to detect the transmitted signals on each 

subcarrier of a MIMO-OFDM systems. MIMO-OFDM transceiver and receiver architecturs 

are shown in Figures 4.5 and 4.6 respectively. Subchannels are orthogonal to each other in 

OFDM systems. Hence, in single-input-single-output (SISO) OFDM systems, the received 

signals are product of channel response and transmitted signal. In MIMO systems, signals 

transmitted from different antennas on a subcarrier simultaneously interfere each other, but 

signals at different subcarriers are independent. At each receiver antenna, a linear combination 

of the transmitted signal and channel response on each subcarrier is observed. That 

corresponds to assumptions of MIMO systems. On each subchannel, a space division 

multiplexing (SDM) is similar to V-BLAST is applied. That is, the task is to recover x from 

the received signal y and channel state information (CSI) H on each subcarrier. 
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Figure 4-6 Transmitter architecture of MIMO OFDM systems 
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Figure 4-7 Receiver architecture of MIMO OFDM systems 

 

 

 

4.3 B-Chase Detector in MIMO-OFDM Systems 

We will employ MIMO-OFDM systems to extend the B-Chase detector in the MIMO 

systems. Due to OFDM systems can turns frequency-selective fading channel into several 

flat-fading subchannels and get high spectral efficiency. When the channel state is multipath 



 58

and the cyclic prefix length is longer than the path delay, we can use flat fading MIMO case to 

handle it in each subcarrier which do not interfere other subcarriers. That is robust for the 

frequency-selective fading channel when we detect the receiveed signal in the B-Chase 

detector. We can say that the frequency-selective fading channel can get time delay diversity 

when we can handle the frequency-selective fading channel as the flat fading channel. For that 

we can employ OFDM to get that. The subsequent MIMO signal processing takes place on 

each subcarrier identically. In order to describe the flat fading MIMO systems observed at 

each subcarrier in the frequency domain. We let 1[ , ]
t

i i i T
Na a=a  denote the Nt × 1 transmit 

signal vector of subcarrier i, then the corresponding Nr ×1 receive signal vector 

1[ , ]
r

i i i T
Nr r=r  is given by 

 

i i i i= +r H a w  (4.3.1) 

 

The Nr ×1 dimensional vector 1[ , ]
r

i i i T
Nw w=w represents independent white Gaussian 

noise of variance 2( )i
nσ  observed at the Nr receive antennas while the average transmit 

power of each antenna is normalized to one, i.e. [( )( ) ]
t

i i H
NE =a a I and 

2[( )( ) ] ( )
r

i i H i
n NE σ=w w I . The Nr × Nt channel matrix Hi contains uncorrelated complex 

Gaussian fading gains with unit variance. We assume that the channel matrix Hi is constant 

over a frame and changes independently between frames (block fading channel).That in the 

following the algorithms are given on the base of subcarrier i assuming an outer loop over all 

subcarrier i=1,…, NFFT. The index i is therefore omitted to simplify matters giving r = ri, the 

received signal on subcarrier i, H =Hi , the channel matrix, a = ai, the transmit symbols on 
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subcarrier i and w = wi , the noise vector respectively. From that we detect the transmitted 

signals on each subcarrier of MIMO-OFDM systems by B-Chase detector. 

 

 

Table 4-1 System parameters 

FFT length  16 

Symbol period 16 samples 

Cyclic prefix 

 

4 samples 

Modulation 

 

16-QAM 

Transmit antenna 

 

4 

Receive antenna 

 

4 

Channel is updated in T symbol periods 

 

8 

Rayleigh-fading 

 

Mean=0,Varance=1 

Channel order 3 

List length l 

 

1 , 2, and 16 
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Figure 4-8 Bit error rate versus SNR in the B-Chase detector* ( l ) with l =1,2,16 for MIMO-OFDM Systems 
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Table 4-2 System parameters 

FFT length  16 

Symbol period 16 samples 

Cyclic prefix 

 

4 samples 

Modulation 

 

BPSK 

Transmit antenna 

 

4 

Receive antenna 

 

4 

Channel is updated in T symbol periods 

 

8 

Rayleigh-fading 

 

Mean=0,Varance=1 

Channel order 3 

List length l 

 

1 , 2 
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Figure 4-9 Bit error rate versus SNR in the B-Chase detector* ( l ) with l =1,2 for MIMO-OFDM Systems 
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Chapter 5  

Conclusion  

The B-Chase of detection algorithm is a combination of a list detector and a parallel bank of 

subdetectors. The B-Chase detector that can trade performance for reduced complexity by 

modifying the list length. When applying the B-Chase of detection algorithm in the 

MIMO-OFDM, we can improve performance in the frequency-selective fading channel. 
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