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Abstract-LAGER is an integrated computer-aided design (CAD) 
system for algorithm-specific h c g r a c d  circuit(1C) design, targeted at 
applications such as speech processing, image processing, telecommu- 
nications, and robot control. LAGER provides user interfaces at be- 
havioral, structural, and physical levels and allows easy integration of 
new CAD tools. LAGER consists of a behavioral mapper and a silicon 
assembler. The behavioral mapper maps the behavior onto a parame- 
terized structure to produce microcode and parameter values. The sil- 
icon assembler then translates the filled-out structural description into 
a physical layout and with the aid of simulation tools, the user can fine 
tune the data path by iterating this process. The silicon assembler can 
also be used without the behavioral mapper for high sample rate ap- 
plications. A number of algorithm-specific IC’s designed with LAGER 
have been fabricated and tested, and as examples, a robot arm con- 
troller chip and a real-time image segmentation chip will be described. 

I. INTRODUCTION 
ODERN integrated circuits (IC’s) fall into two groups: M commodity IC’s and application-spec@c IC’s (ASIC’s). 

The turn-around time of ASIC’s is often more important than 
the area, emphasizing the need for computer-aided design 
(CAD) tools. Due to their application-specific nature, each de- 
sign can exploit the special conditions in the particular appli- 
cation to create an efficient implementation. This paper focuses 
on ASIC’s that implement real-time computational algorithms 
called algorithm-speciJlic IC’s. Typical application areas for 
real-time algorithm-specific IC’s include speech processing, 
image processing, robot control, computer vision, digital au- 
dio, and telecommunications. From experience with a number 
of such IC designs, we find that diverse algorithms can often 
be implemented with a single, well-designed set of hardware 
modules and the re-use of these hardware modules greatly re- 
duces design time. 

Two types of architectures are used in designing algorithm- 
specific IC’s: hardwired architectures and programmable ar- 
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chitectures. In a hardwired architecture, a dedicated hardware 
module is allocated for each operation in the data-flow graph of 
the algorithm; an adder for an add operation, for example. In 
this way, the abstract data flow in the algorithm is realized by 
the physical interconnection of the hardware modules. Al- 
though the data path may be complicated, the control unit is 
simple because there is no time multiplexing of hardware mod- 
ules. The speed of the circuit is limited by the speed of the 
slowest hardware module in the design, but the input of new 
data (sample rate) can be equal to this value. The main draw- 
back of hardwired architectures is that they have to be rede- 
signed for each new algorithm and become less efficient if com- 
plex decision making is required. 

A programmable architecture consists of a carefully chosen 
set of hardware modules that are time multiplexed under micro- 
code control according to the algorithm being implemented. The 
control unit for a programmable architecture is necessarily more 
complex than that for a hardwired architecture. The speed of 
the circuit depends on the total number of instruction cycles 
required to realize the algorithm. Hence, a programmable ar- 
chitecture can be used in a real-time application only if 

sample period 
circuit cycle time ’ 

total number of instruction cycles 5 

For example, if the circuit runs at 5 MHz and the sample fre- 
quency is 5 kHz, the number of cycles must be no greater than 
1000. Because a single programmable architecture can be used 
for many applications, it is a good choice when the sample rate 
permits. On the other hand, high sample rate applications re- 
quire hardwired architectures because only dedicated hardware 
modules can provide the required speed. 

There are three levels of design descriptions for algorithm- 
specific IC’s, namely, behavioral, structural, and physical. A 
behavioral representation specifies the algorithm that the chip 
implements, which may take the form of a program or a signal- 
flow graph. A structural representation specifies the chip archi- 
tecture in terms of hardware modules and their logical connec- 
tions. A physical representation specifies the chip layout. 

This paper describes LAGER, an integrated CAD system for 
automatic generation-from high-level (behavioral or struc- 
tural) user specifications-of chip layouts for hardwired or pro- 
grammable architectural implementations of algorithm-specific 
IC’s. In Section I1 we discuss design strategies of LAGER and 
compare them with previous work. In Sections 111 and IV we 
describe the two parts of LAGER: the behavioral mapper and 
the silicon assembler, respectively. We will show several de- 
sign examples in Section V. 
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11. DESIGN STRATEGIES FOR ALGORITHM-SPECIFIC IC’s 

In Section 11-2.1, we first review the development of some 
existing CAD tools for algorithm-specific IC’s, and motivate 
the need for a new design environment. In Section 11-2.2, we 
will describe the new problems that are solved, and the basic 
design methodology adopted in LAGER. 

2.1.  Background 

2. I .  I .  Behavioral Description: Many behavioral descrip- 
tions have been proposed for design capture at the behavioral 
level. A frequency-domain specification is used [l], which al- 
lows the users to specify filter parameters such as the passband 
ripple, stopband ripple, and stopband attenuation, etc. This ap- 
proach offers the highest level description; the user only spec- 
ifies what he needs rather than how to do it. However, the ap- 
plication of this approach is limited to digital filter circuits. 

Most algorithm-specific IC applications can be described by 
signal-$ow diagrams. Hence, an applicative programming lan- 
guage [2], [3] is a natural choice for algorithm specification. It 
is also inherently parallel, so the same applicative language pro- 
gram can serve both a uniprocessor or a multiprocessor reali- 
zation. On the other hand, procedural programming languages 
such as Pascal [4] or ISPS [5] have also been adopted, which 
provide a mechanism for describing the control flow of the al- 
gorithm. For high-level procedural languages, existing compi- 
lers can be exploited for algorithm simulation. Although inef- 
ficient for direct encoding of algorithms, ISPS is very useful for 
machine description for its low-level mechanisms such as bit 
operations and timing contol. In LAGER, both an applicative 
(Silage [2]) and a “C-like” procedural language (RL) are pro- 
vided. These languages will be described in Section 111. 

2.1.2.  Behavioral Synthesis: Behavioral synthesis [6], [7]- 
[ 1 11 attempts to generate a structural description from a behav- 
ioral description directly. Due to the vast amount of design al- 
ternatives inherent in the behavioral synthesis systems, some 
search pruning is mandatory. In most systems, high-level de- 
cisions-bus structure [7], pipelined versus nonpipelined archi- 
tectures [SI, lumped ALU versus distributed functional mod- 
ules [ l l ] ,  [12]-are predetermined to make the problem tract- 
able. These a priori design decisions, however, are usually too 
restrictive to deliver efficient designs. Also, because the end 
product of most behavioral synthesis research is a block dia- 
gram instead of a layout, its performance evaluation often lacks 
practical considerations. For example, it has been found [13] 
that the data-path partitioning has a significant impact on the 
final layout area. In algorithm-specific IC designs, there are 
many additional issues that are more important than the effi- 
ciency of the data-path logic. For instance, it was pointed out 
[ 141 that I/O compatibility between the raster-scan format of 
the camera and an image processing circuit is essential to 
achieve real-time image processing. It is an open question as 
how to incorporate these issues in the behavioral synthesis 
framework. 

For these reasons, LAGER supports user specification of the 
data paths and then generates the rest of the design from a be- 
havioral description. Support for behavioral synthesis with ap- 
propriate optimization criteria for our application focus is 
planned for the future [ 131. 

2.1.3. Silicon Compilation into A Fixed Architecture: There 
have been a number of silicon compilers [I] ,  [ 121, [ 151-[20] 
that can translate the high-level description to layout for a fixed 

architecture. In [ 11,  [15], [16], bit-serial architectures were 
used, in which the throughput rate of the chip was limited by 
the data wordlength in addition to the clock speed. The user 
interface in FIRST [ 151 is at the structural level so that the user 
has to translate the algorithm to a bit-serial architecture man- 
ually. Moreover, a hardwired floorplan is used which can result 
in a substantially larger chip area than that of a manual design. 
The INPACT compiler [16] has a higher level interface that 
allows the algorithm to be specified in a programming lan- 
guage, and performs some optimization on the floorplan. Ca- 
thedral-I [l]  provides a high-level interface and performs sev- 
eral optimizations at the algorithmic, architectural, and floorplan 
level; however, the user interface and optimizations are pri- 
marily applicable to digital filter algorithms. 

A second class of compilers uses microprogrammed bit-par- 
allel architectures. While the achievable throughput rate is usu- 
ally similar to that of bit-serial architectures, they provide 
greater flexibility in the algorithmic operations and the I/O in- 
terfaces. Examples of these compilers are given in [12], [17]- 
[20]. In [17], a register-transfer language is provided for de- 
scribing the algorithm and a fixed floorplan strategy is used. In 
[12], an interface to a high-level applicative language [2] is pro- 
vided and symbolic layout techniques are employed for optim- 
izing the chip area. 

The drawbacks with these compilers are that the target ar- 
chitecture uses a predefined data path and architectural modifi- 
cation by the user is very difficult. Furthermore, the layout gen- 
eration techniques are fixed and cannot be influenced by the 
user. The fixed target architecture and predefined floorplanning 
limit the application of the above compilers to low throughput 
rate applications, typically with data rates below 1 MHz. In 
addition, the algorithmic operations that can be handled are lim- 
ited by the predefined hardware modules that the compiler can 
handle. 

2.2.  Overview of LAGER 

2.2.1. Motivation: To expand the kind of algorithms that can 
be handled, as well as to attack applications with high data rates 
(10 MHz and above), LAGER allows the user to modify or 
even completely specify the target architecture. In contrast to 
the ‘ ‘fixed-architecture silicon compiler” approach, a structural 
interface is established in LAGER. The user can use or modify 
predefined architectures in the library, or design a new target 
architecture through the structural interface. 

To provide this flexibility, the LAGER environment is built 
from two distinct subsystems: 1 )  a behavioral mapper and 2 )  a 
silicon assembler. In contrast to the “behavioral synthesis” ap- 
proach which attempts to synthesize the optimum architecture 
from a behavioral description, the LAGER behavioral mapper 
maps the behavioral description into a user-defined architec- 
ture. This approach allows the user to fine tune the target ar- 
chitecture by iteration to achieve desired performance with ac- 
ceptable chip area. 

The separation of the behavioral mapper and the silicon as- 
sembler has two more advantages. First, for high-speed appli- 
cations in which hardwired architectures are often more appro- 
priate, the silicon assembler can be used independently to 
generate a layout from a user-defined hardwired architecture. 
Second, the LAGER silicon assembler can be a backend of the 
emerging behavioral synthesis programs (as in [ 131) to provide 
a means for automatic layout generation as well as feedback for 
performance and chip area evaluation. 
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Fig. 1. Block diagram of LAGER. 
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2.2.2. Behavioral Mapper and Silicon Assembler: LAGER 
consists of a behavioral mapper and a silicon assembler, a block 
diagram of which is shown in Fig. 1. The structural description 
in LAGER is parameterized to facilitate the reuse of hardware 
modules or architectures. The silicon assembler requires both a 
structural description and associated parameter values to gen- 
erate the layout. Examples of parameters are: the wordlength 
of the data path and the contents of the microcode PLA. The 
behavioral mapper maps a behavioral description onto a user- 
specified structural design by generating the appropriate param- 
eter values. 

The task of the behavioral mapper is similar to that of a high- 
level language compiler that generates microcode. This micro- 
code is essentially one of the parameter values of the program- 
mable architecture. The behavioral mapper can be retargeted to 
different structural descriptions. This is essential to the design 
cycle in which the architecture is tailored to the application: 
first, the algorithm is mapped to an existing architecture. Then, 
if the result is unsatisfactory, the architecture is modified and 
the algorithm is mapped to the new architecture. This process 
is iterated until a satisfactory architecture is obtained. The usual 
cause of dissatisfaction with an architecture is that frequently 
used instructions are not directly implemented. This situation is 
easily recognized from a histogram of instruction usage. 

The LAGER silicon assembler integrates a number of layout 
generation and simulation tools under a user interface called the 
design manager. All communications among tools is through a 
common data base with procedural interfaces for data storage, 
retrieval, and modification. Integrating the tools is easy because 
they follow an agreed upon data base policy. The design man- 
ager builds the data base from the structural description. There 
are extensive cell libraries (of leaf cells and parameterized mod- 
ules) which can accommodate various layout styles in the same 
chip design. New modules are added to the library by providing 
structural descriptions; new cells are added by providing sim- 
ulation models and layouts. 

111. BEHAVIORAL MAPPING 

LAGER can work from a behavioral (architecture indepen- 
dent) description of the algorithm. This description is mapped 
into parameter values, which completes the parameterized 
structural description, and in turn becomes the input to the sil- 
icon assembler. 

parameter values 

Fig. 2. Block diagram of the behavioral mapper. The user can use any of 
the three languages: Silage, RL, and Sass to encode the algorithm. Trans- 
lators are also provided. Some require data path or control unit information 
for retargetable translation. 

Fig. 2 shows a block diagram of the behavioral mapper. We 
employ three independent input languages. Silage is a data-flow 
language with very high-level constructs suited to the intended 
ASIC applications. RL is a variant of C, a procedural language 
with comparatively primitive features. Sass is an assembly lan- 
guage. The system supports all three languages equally; the user 
has the freedom to choose the input style most suited to his 
needs. Fig. 3 shows a simple infinite impulse response (IIR) 
filter, defined by the recurrence 

3 1 
' 4  4 x. = -xi-, + - ini 

described in the three languages. Each language has an accom- 
panying translator that maps a program into the next lower level. 
The languages and their translators are described in Sections 

Section 111-3.1 describes the Kappa model of processor ar- 
chitectures. RL and Sass can be used for any architectures that 
fit the Kappa model. Silage is designed to be free of architec- 
tural bias, but the current Silage to RL translator is tailored to 
the RL compiler, and therefore, to the Kappa model. 

111-3.2-111-3.4. 

3. I .  The Kappa Architecture Model 

Kappa [21] is a processor architecture model that has served 
well as a prototype for customization. A more detailed descrip- 
tion of Kappa is given in Section V-5.1. The Kappa model con- 
tains a control unit and a number of data paths. The control unit 
generates micro-instructions to control the data paths, and the 
data paths feed the status signals (e.g., sign bits) back to the 
control unit, which are used as input for state transition in the 
control unit. The control unit can provide all control functions 
independent of the data paths. Some unique control mechanisms 
are also incorporated, as it has been found [21] that an ineffi- 
cient control unit is the speed bottleneck in some applications. 
For example, for looping and more complex decision making, 
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fnnc main(in: fix<8>): fix<8> = 
begin 

end ; 
return = (3/4) * return01 + (1/4) * in; 

(a) 

fix y; 

m a i n 0  I 
y = (3/4) * y + (1/4) * (fix) in(); 
out (y)  i 

1 

(b) 

(ram y) 
(cfsm (0 0 nil (goto 0))) 
(dp-word-size 8 )  
(rom (0 ((addr y) (mor=mem) (r*=rbus 0) (rbus=ioport) (ioport=sxtport 0)) 

((acc=abus) (abus=mor)) 
((abus=mor) (nosat) (acc=sum) (bbus=acc>r 1) )  
((acc=bbus) (bbus=acc>* 1)) 
((acc=bbus) (bbus=mbus) (mbus=r* 0) (rr=rbus 0) (rbus=acc)) 
((acc=bbus) (mor=nbus) (mbus=rr 0) (bbus-acc>* 2 ) )  
((bbus=acc>* 0) (abus=mor) (acc=sum)) 
((mbus=acc) (ioport=mbubus) (axtport=ioport 0 )  (addr y)  (mem=mbus)))) 

(c) 

Fig. 3 .  (a) The IIR filter described in Silage. (b) The IIR filter described 
in RL. (c) The IIR filter described in Sass. 

the Kappa control unit provides a multiway jump/call/return ca- 
pability. 

An example of a processor data path that fits the Kappa model 
is shown in Fig. 4. A pipeline delay of one instruction cycle is 
associated with every register (mor, acc and coef) and register 
bank in the figure; these delays include those of the functional 
units. If the individual functional units are understood, the dia- 
gram completely defines how they work together-every appar- 
ent, meaningful combination of actions is possible when the 
instruction word is fully horizontal. A horizontal instruction 
word is just a vector of control signals with little or no restric- 
tive encoding. 

Kappa is irregular, meaning that its data path topology can 
be chosen to suit the usage in a particular program (e.g., a robot 
arm controller) rather than to conform to the expectations of 
modem compilers. The alternative would be exemplified by an 
architecture in which all intermediate results are stored in a 
large, multiported register bank. An irregular data path is 
smaller, faster, more tunable, and hence, more appropriate for 
inclusion in an ASIC. The problems that irregularity poses for 
retargetable compilers are minimized by the use of a fully hor- 
izontal instruction word. 

The behavioral mapper generates horizontal microcode for 
the user-defined data path from a behavioral description. The 
three languages used in the behavioral mapping part of LAGER, 
Silage, RL, and Sass are described in the following sections. 

3.2. Silage 

Silage is a high-level language optimized for specifying “sig- 
nal processing like” algorithms. As such, its design emphasizes 
expressiveness over details of implementation, by providing the 
programmer with convenient data types and operations and hid- 
ing from him quirks of the actual hardware. We will give an 
overview of the language and its compiler in this section. More 
detailed descriptions can be found elsewhere [2], [22]. The 
‘‘Silage Reference Manual” [23] specifies the language in full. 

3.2.1. The Silage Language: Silage is a data-flow language 
that operates on streams of values. As in all data-flow lan- 

lobus reg[l . .z]  P 
4- ~~ 

coef 

Ibus 

address 

reg11 ..3] 

4 (takes one cycle) 

effective 
address 

Fig. 4. A data-path example that fits the Kappa model. 

guages, a Silage program corresponds to a data-flow graph-a 
directed graph with operations performed by vertices and values 
carried on edges. A subtraction node, for example, combines 
two streams of numbers to produce a difference stream. A pro- 
gram graph accepts input streams, combines and alters them as 
they flow through the graph, to produce the output streams. This 
model of computation is natural for our intended applications. 
For example, real-time control typically takes time-sampled in- 
put streams from sensors to produce control signals. Digital sig- 
nal processing (DSP) operates on streams of digitized signal 
samples, and a form of dataflow graph is already commonly 
used to express DSP algorithms. In addition to the usual arith- 
metic functions, Silage provides some common DSP opera- 
tions: delaying a stream (Z-’  ), taking a substream (decima- 
tion), and taking the union of streams (interpolation). 

The textual Silage program is a set of equations that defines 
output variables in terms of input variables. Each equation de- 
fines a single variable to be an expression on other variables. 
Each variable is defined exactly once, following the single as- 
signment rule of most dataflow languages. Thus the right-hand 
side of each definition corresponds to an expression tree; con- 
necting the trees by linking variable definitions to uses produces 
the program graph. 

Variables can be subscripted in the usual way. The iterated 
dejinition provides a general way to operate on subscripted 
variables. The iterator can specify both parallel and sequential 
computation. The only difference is in the dependence (or lack 
of dependence) between iterations. The example in Fig. 3(a) 
computes an output stream xi  (called return in the code), which 
equals 3 /4  times the previous sample (return @1, using the 
delay operator @ )  plus 1 /4 times the current value of in. 

Structural preferences can be expressed by the pragma direc- 
tives [2]. For example, in the case when the number of parallel 
processing elements is less than the number of independent 
expressions that can be computed simultaneously, we can use 

pragma Processor (K, Expr); 
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to indicate that the expression Expr should be computed on pro- 
cessor element K. 

3.2 .2 .  The Silage Compiler: The current Silage compiler 
translates Silage programs into RL to run on a single micro- 
coded processor. The main difficulties are in converting the 
unique features of Silage into the conventional operations sup- 
ported by RL. These include modeling data-flow semantics in 
a procedural language and building the data structures for 
streams in terms of primitive data types. Central to a good im- 
plementation is the conversion of repetition in the data-flow 
graph into efficient program loops. We call this loop folding. 

Repetition can come from iterated definitions, delay queue 
operations, and interpolated data streams. The loop folder pro- 
cesses the input program in data-flow graph form, converting 
repetitive connected subgraphs into loops. The algorithm first 
finds candidate loops by graph traversal, then creates loop bod- 
ies that are graph fragments parameterized on the loop indexes. 

Loop folding typically consumes half of the total compilation 
time, but because it operates on the iterator-expanded graph, its 
running time can be exponential on the size of the input pro- 
gram. It is, however, both simpler and more powerful than the 
alternative approach that infers iteration dependency on the 
original iterated definitions by analyzing variable index expres- 
sions. The basic loop folder is general enough to handle all three 
sources of repetition. In particular, the copy operation needed 
to implement delay queues without special hardware support 
can often be merged into other program loops. 

3.3. RL 
The task of the RL compiler is to generate a control program 

for a processor of specified structure. The compiler must meet 
a pair of conflicting goals. On the one hand, it must be easy to 
retarget. The user should be able to evaluate a proposed change 
in processor structure by retargeting the compiler and then re- 
compiling the program. On the other hand, the compiler must 
generate good code for diverse, irregular architectures. 

We only give a brief overview of the RL compiler here. Ri- 
mey and Hilfinger describe, in more detail, the overall compiler 
[24] and the original code-generation techniques that it uses 

3.3.1.  n e  RL Language: The inputs to the RL compiler are 
a source program, written in the RL language, and a machine 
description. Both are provided by the user, although he will 
usually use or modify previously specified machine descrip- 
tions. 

The RL language is an approximate subset of C. It incorpo- 
rates two major extensions: fixed-point types and register 
classes. Fixed-point types provide the programmer with con- 
venient notation for fixed-point constants and arithmetic. Reg- 
ister classes, which generalize C register declarations, enable 
the programmer to suggest storage locations for critical vari- 
ables. 

3.3.2.  The Machine Description: A machine description 
consists of 

r251. 

declarations of buses, latches, registers, and register banks; 
a list of simple register-transfers (e.g., abus --* Q C C )  de- 
fining the topology of the data path; 
a list of functional register-transfers (e.g., abus + bbus 
--t a c c )  representing capabilities of the functional units. 

The compiler automatically uses simple transfers to chain to- 
gether functional transfers. It selects from instances of a func- 

tional unit when there is more than one. It allows the user to 
declare register-transfers to be incompatible, as is necessary 
when the incompatibility is not apparent from a conflict in bus 
usage. 

3.3.3.  The RL Compiler: The compiler consists of two parts. 
The front end translates the program into successive straight- 
line segments of code, expressed in an intermediate language. 
Then, for each straightline segment, the backend selects regis- 
ter-transfers and packs them into instruction words. 

In addition to routine tasks and simple optimizations, the front 
end performs two optimizations that are particularly important 
for Kappa model architectures. First, when no parallel multi- 
plier is provided, it reduces multiplications by constants into 
minimal sequences of shifts, adds, and subtracts. Second, it co- 
alesces branches to utilize Kappa’s multiway jump/call/retum. 

Most of the effort in developing the RL compiler has gone 
into the algorithms in the backend. The usual approach to gen- 
erating horizontal code is to first generate loose sequences of 
register-transfers and then pack these tightly into a small num- 
ber of instructions through compaction [26]. Our approach is to 
integrate register-transfer selection and local compaction into 
local scheduling. This creates the opportunity to perform a lazy 
routing of intermediate results between functional units, choos- 
ing appropriate sequences of simple register-transfers late in 
the scheduling process when more of the schedule is known. 
For Kappa model architectures, scheduling with lazy data rout- 
ing is profitable, but also difficult. The compiler must take care 
that all feasible routes for a live result are not by chance closed 
off. A network flow algorithm that performs this test efficiently 
has been developed [25]. 

The RL compiler is written in Lisp and compiles approxi- 
mately one line per second. It has been used to compile pro- 
grams several hundred lines in length. Making modifications to 
the machine description has proven to be easy; for evaluating 
their impact on performance, the compiler has proven to be more 
reliable than intuition. 

3.4. sass 

Sass is an assembly-level language. A Sass program consists 
of symbolic microcode and definitions of the other parameters 
for a Kappa processor. The body of a Sass program has two 
parts: straightline code blocks and control flow information. A 
straightline code block is a sequence of micro-instructions, un- 
interrupted by branches. Each micro-instruction consists of a 
number of micro-operations, which perform arithmetic, logic, 
and addressing functions. Sass programs also define additional 
parameter values of the processor. For example, the width of 
the data path is ordinarily specified this way. 

In Fig. 3(c), we show a Sass program for a IIR filter. It con- 
sist of a number of Lisp s-expressions. The expression (ram y )  
describes that one local variable, y ,  is stored in RAM. The 
expression (cfsm . . a )  declares the control flow among the 
straightline code blocks. In this case there is only one code 
block. The expression (dp-word-size 8 )  indicates the width of 
the data path is 8. Finally the expression (rom - * ) defines all 
the straightline code blocks. In Fig. 3(c) the code block consists 
of 8 micro-instructions, which have 6, 2, 4,  2,  5, 4, 3, 5 mi- 
cro-operations, respectively. 

The Sass assembler passes some of the parameter values to 
the output unmodified; it uses the rest to generate the control 
unit, which is its main task. Since the Kappa architecture can 
be customized, a machine description is also needed as input 



(Fig. 2). The machine description specifies the control signals 
and hardware resources used by each micro-operation. The Sass 
assembler uses it to assemble data-path instructions into binary 
microcode, and to check for resource conflict errors between 
micro-operations . 

The Sass assembler's main task is to output a specification 
(in the form of parameter values) for a Kappa control unit. The 
control unit includes a read-only control store containing the 
assembled microcode blocks and a state machine that controls 
transitions between the blocks. The specification also contains 
parameter values such as the width of the program counter and 
the depth of the stack. Some components are not always nec- 
essary. For example, setting the depth to zero discards the stack 
in the resultant silicon implementation. 

The sample rate of the application that can be achieved using 
the behavioral mapper depends on the resulting number of in- 
struction cycles, assuming a fixed circuit speed. The user has 
the freedom to modify the data path and iterate the process for 
speed optimization. After this is done? the parameter values and 
control unit specification generated by the behavioral mapper 
are sent to the silicon assembler for layout generation. 

IV. THE SILICON ASSEMBLER 
The task of the silicon assembler is to generate the chip lay- 

out starting from a parameterized description of the chip archi- 
tecture. Separating the silicon assembler from the behavior 
mapper allows the user to change the architecture directly and, 
furthermore, allows the silicon assembly tools to be used in 
conjunction with other high-level architecture synthesis aids. 

A major goal in developing the silicon assembler was to han- 
dle arbitrary architectures and to create an environment for quick 
iteration on different architectural alternatives. A second goal 
was to allow the re-use of parameterized cells so that a mini- 
mum effort is required to design new cells. Thirdly, based on 
circuit design expertise, it was found that it was essential to 
allow different layout styles to be combined to achieve higher 
design quality. 

To achieve these goals a design management tool [27] was 
developed. The task of this tool is to automate the layout gen- 
eration procedure for any architectural description and serve as 
the user-interface to the silicon assembler. This also shortens 
the learning curve for the designer to use the silicon assembler 
since only one tool is seen by the user. The design manager tool 
in LAGER called DMoct is described in Section IV-4.1. Sec- 
tions IV-4.2-IV-4.3 describe the layout generation tools cur- 
rently interfaced to DMoct. 

4. I .  The Design Manager: DMoct 
Fig. 5 illustrates the design methodology followed by DMoct. 

The input to DMoct is a parameterized hierarchial description 
of the chip architkcture. For a given set of parameter values, 
DMoct generates the chip layout. DMoct uses the OCT data- 
base system [28] to store all design data, which has the advan- 
tages that it provides a procedural interface for CAD tools and 
the data representation can be defined by the application. Three 
OCT representations have been defined for the silicon assem- 
bler: a) structure-master view; b) structure-instance view; c) 
physical view. Details of these views are given in the follow- 
ing. 

The structural description at a given level of the hierarchy 
can be described textually using structural description language 
(SDL), which is illustrated in Fig. 6, or graphically using a 
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Fig. 5 .  Design methodology of the LAGER silicon assembler. Items in 
ellipse are tools. Items in box are files. Numbers in circle correspond to 
the 8 design steps. 

schematic entry by VEM [28]. In addition to nets, subcells and 
terminals declared in conventional netlist and hardware descrip- 
tions, unique features of SDL are: 1) for each cell the tools 
required to generate the layout are declared; 2) all nets can be 
parameterized; and 3) each cell in the hierarchy can inherit pa- 
rameter values from its parent. Thus all cell and net parameter 
values can be declared as arbitrary functions of a unique set of 
parameters for the chip (the root cell), typically the algorithm 
parameters. This allows the user to quickly generate different 
versions of the chip for different algorithm parameter values 
without having to change the architectural description. 

The operations of DMoct and its associated utilities are de- 
scribed below. 

Step I: Master creation: DMoct parses the SDL files and 
stores the architecture as a structure-master view in OCT, which 
can also be created graphically with a schematic entry. This 
view is an OCT representation of the information shown in Fig. 
6. 

Step 2: Instance generation: DMoct traverses the design hi- 
erarchy in a top-down depth-first manner and generates the ac- 
tual instances. At each level it evaluates the child cell param- 
eters from the parent cell parameter values. This parameter 
evaluation mechanism allows a more powerful parameterization 
compared to pop-up forms used in some commercial CAD sys- 
tems. The instances are stored in the OCT database as a struc- 
ture-instance view. The structure-instance view is used as the 
common input to all the layout generation tools. 

Step 3: Structure processing: Prior to layout generation, 
DMoct allows the structure-instance view to be modified by a 
special class of programs called structure-processors. An ex- 
ample of a structure-processor is a bit-slice data path processor 
(Section IV-4.2) that modifies the cell and net information in 
the structure-instance view to allow a more optimal routing by 
the layout generation tools. 
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parametername > 

k7zGl7, me, parameter, parameter value’ 

parameter value - constant OR function of 
of subcell, net, terminal - parent cell parameters 

Fig. 6 .  Syntax diagram of the structural descriptional language (SDL). 

Step 4: Functional simulation: Assuming that parameter- 
ized simulation models exist for the leaf cells in the hierarchy 
(which are usually the library cells). A utility called DMpost is 
then used to generate a simulation input for the entire design 
for the simulator THOR [29]. Based on simulation results, the 
designer can modify the SDL files or parameter values and re- 
run the simulation. When simulation results are satisfactory, 
layout generation can proceed. 

Step 5: Layout generation: In this step, DMoct traverses the 
cell hierarchy in the structure-instance view in a top-down 
depth-first manner. When DMoct reaches a leaf node, it re- 
curses back up the hierarchy and executes the layout generator 
program specified for each cell. By policy each layout generator 
reads its input information about the cell from the structure- 
instance view and stores the information about the layout as a 
physical view. If the physical view exists for a cell and is more 
recent than the corresponding structure-instance view, the lay- 
out is not generated. This avoids regeneration of cells that are 
not affected by design iteration. 

Step 6: VerBcation: A verification tool DMverify is pro- 
vided to check for isomorphism between the schematic repre- 
sented in the structure-instance view and the hierarchial sche- 
matic extracted from the physical view. In contrast to 
conventional netlist verification tools, this program compares 
the cell hierarchy and connectivity (not transistor or gate level). 
The inherent assumption here is that at the lowest level, the 
cells were designed by hand and have been fully debugged using 
circuit simulation and test chips. The uniform policy imposed 
on all tools by the structure-instance and physical views takes 
the guesswork out of the netlist verification so that time con- 
suming signature analysis and logic extraction procedures can 
be avoided. 

Step 7: Performance estimation: The chip performance de- 
pends on the performance of the cell library. Currently, a 
MOSIS rev-6 scalable CMOS library is integrated, allowing 
clock rates in the region of 20-25 MHz in a 2-pm process. The 
library provides various data and clock buffering cells so that 
performance is relatively independent of the place and route 

tools if appropriate buffer cells are used. The choice of buffer 
cells is not yet automated. The chip performance can be esti- 
mated based on SPICE characterization of the library cells and 
an estimation of the critical path. Alternatively, the simulator 
IRISM [30] can be used in the linear mode to obtain perfor- 
mance estimations. 

Step 8: Maskfile generation: When the final layout is ac- 
ceptable, mask files can be generated from the OCT physical 
view. 

It is important to note that to perform all the above steps the 
user only interacts with DMoct and its associated utilities. The 
designer can rapidly iterate on the design and explore different 
architectural alternatives by simply changing the schematics and 
parameter values and rerunning DMoct. The design times for 
silicon assembly with DMoct are application dependent; some 
data are given in Section V-5.3. 

The LAGER silicon assembler is cell based. The cell library 
contains parameterized modules and leaf cells. New modules 
can be added to the library by providing structural descriptions; 
new leaf cells can be added to the library by providing simu- 
lation models and layouts. Re-using parameterized modules and 
leaf cells has proven to be an important factor in improving the 
productivity. 

A new layout generator, structure processor or simulator can 
be integrated in the silicon assembler by following the policy 
defined by DMoct. This involves writing procedures to read, 
write or modify the three OCT views. For information the reader 
is referred to [28], [31]. Integrating a new tool or cell does not 
require any modification of the user interface provided by 
DMoct or of the interface between DMoct and the OCT data- 
base. This capability is an important feature in creating an open 
framework for tool integration. 

A prototype of the design manager was previously developed 
using the Flavors package in FranzLisp to implement the data 
base [32]. This was motivated by the facilities of parameter 
declaration and evaluation, and the ease of prototyping offered 
by Lisp, and the advantage of object-oriented paradigm for tool 
integration offered by Flavors. However, this version was too 
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slow to permit efficient design iteration and was less portable 
than the C-based OCT data base. Also, unlike OCT, which 
maintains the structure-master, structure-instance, and physical 
views as disk files, the Flavors-based implementation keeps all 
design information in the process memory, which limits the de- 
sign size. 

4.2. Layout Generation Tools 

While the CAD framework supported by DMoct allows any 
tool to be integrated so long as it fits the methodology described 
above, currently, a set of four layout generators are interfaced 
to the framework which support various design styles required 
in algorithm-specific IC's. These are described in the follow- 
ing. 

4.2.  I .  Tiler for Macrocell Layout Generation: TimLager: 
TimLager is a general purpose macrocell layout generator that 
is used for bit-sliced modules such as adders, registers, multi- 
plexers as well as array-based modules such as RAMS'S, PLA's, 
and ROM's. It assembles the layout for the macrocell from hand 
designed leafcells by abutment. This requires the leafcells to be 
pitch-matched and avoids the use of routing in macrocell gen- 
eration. 

For each macrocell, TimLager requires a set of leafcell lay- 
outs, and a tiling procedure that describes how the marocell is 
constructed from the leafcells as a function of the macrocell 
parameters. The procedure is written using the C language. To 
allow rapid creation of tiling procedures for new macrocells 
TimLager provides two tiling functions Addright ( ) and 
Addup( ) (Fig. 7). The full capability of C can be exploited 
for parameterizing the layout. Hierarchical tiling can be per- 
formed using subroutines. This allows greater flexibility than 
the personality matrix approach traditionally used in tiling. 

Each tiling function has a set of 20 optional arguments that 
allows geometric transformation on the cell to be placed. The 
arguments also allow several bookkeeping operations to be au- 
tomated, such as the naming of terminals. Thus the cell termi- 
nals as defined in the library can be changed arbitrarily to names 
more pertinent to a given design. The optional argliments also 
provide a stretching mechanism that can be used to pitch-match 
one macrocell to another as well as a mechanism for adding 
metal feedthrough lines in between cells. These options can be 
exploited for optimization of a higher level cell (e.g., a data 
path) constructed from several macrocells generated by Tim- 
Lager. 

The tiling procedure for each macrocell is compiled and stored 
in the library along with associated leafcell layouts. At runtime 
TimLager dynamically links the required procedure and exe- 
cutes it. The parameter values are read from the structure-in- 
stance view and a physical view is generated for the macrocell 
layout. 

4.2.2.  Random Logic Macrocells Using Standard Cells: 
Stdcell: Stdcell provides an interface to a standard cell place 
and route tool, Wove [28], to generate standard cell modules 
for a given logic schematic. Wolfe in turn uses the Timber- 
WolfsC [33] standard cell placement program and the YACR 
[34] channel router. The standard cell modules can also be gen- 
erated from a high-level logic description (see Section 
IV-4.3.3). Stdcell directly reads the structure-instance view to 
obtain the logic schematic and generates a physical view for the 
layout. 

4.2.3.  Macrocell Place and Route Tool: Flint: Higher level 
cells can be constructed with Flint [35] from the macrocells 
generated by TimLager or Stdcell (or any other macrocell gen- 
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fw lJ=l;]<.words; ]+1) 
Addrlght("reg"); 

Fig. 7. Tiling procedure used in TimLager. In this example, leafcell reg- 
cell is abutted vertically by addup( ) calls to form reg, which is abutted 
horizontally by addright( ) calls to form the module. The module has 2 
parameters: bits and words. 

erator that produces OCT physical views). Flint supports three 
floorplan definition alternatives: 1) interactive-graphical (Fig. 
8), 2) interactive-textual using a floorplan description language 
(FDL), or 3) automatic. An automatically generated floorplan 
can be further refined using the interactive modes. A floorplan 
definition contains the relative placement of the macrocells, the 
definition of the channel areas, and the specification of the 
global routes for signal, power, ground, and clock nets. In order 
to make the global routing process tractable in an interactive 
mode, Flint clusters groups of nets in so called cables (Fig. 8). 
A cable is a set of nets which have identical sources and desti- 
nations. 

The automatic mode is based on min-cut and slicing. This 
technique has the advantage that a realizable channel structure 
is automatically obtained. The placement is then further refined 
using a modification of Stockmeyer's algorithm [36], an effi- 
cient tree-traversal method which determines the optimal ori- 
entation of each macrocell. The global routing is based on Dijk- 
stra's [37] shortest path algorithm. The use of the cable concept 
mentioned above increases the efficiency of this phase of the 
floorplanning process. Finally, the global routes of power and 
clock nets are determined using an approximation technique for 
the Steiner tree problem [38]. Flint does not build the power 
and ground network as a single tree, but rather as a "forest of 
trees." In fact, it is not necessary to have a connected power 
network at every level of the chip hierarchy. All the above rou- 
tines are extremely efficient and complete in less than a minute 
CPU time for complex examples (up to 20 macrocells and 1000 
nets) on a SUN 3/60. 

Given the floorplan, Flint carries out all other steps automat- 
ically including channel routing, power/ground/clock routing, 
absolute placement, and creation of terminals on the top level 
cell (interface for the next higher level in the hierarchy). De- 
tailed routing in Flint is performed by a completely gridless 
channel router. Although the router is a variant of the classical 
left-right router, it has some features which distinguish it from 
other routers. First, it routes signal, power, and ground nets 
together using a priority scheme, which gives special priority 
to more sensitive nets such as power and ground. Secondly, it 
automatically sizes the power and ground nets, using terminal 
current information if it is available, or else it is based on a 
saturating weighted sum of the connecting terminal widths. Fi- 
nally, it supports three layer routing, which is essential when 
high density routing is necessary as in the case of bit-sliced data 
paths. 

4.2.4. Pad frame generation and routing: Padroute: The 
creation of a pad frame and routing of signals from the core of 



the chip to  the pad frame is done bb a specialized tool called 
Pndrourr [391. If the terminals on one side of the core connect 
only to pads on the same side of the pad frame. a simple channel 
router can be used. However ,  in practice. this is often not the 
case and hence. a special ring router is necessary. 

Thc ring routing algorithm is a modified channel routing al- 
gorithm. which allows Podroute to route a channel that docs not 
have left and right ends.  Padroute creates radial and circumfer- 
ential constraint graphs (F ig .  9).  The radial constraint graphs 
serves the same purposc a s  ;I vertical conmain t  graph in  a reg- 
ular channel routcr. It shows the re1atiL.e positions of the tracks 
the nets must occupy. A track in Padroute runs thc cntire cir- 
cumference of the ring-shaped routing region. The circunifcr- 
entia1 constraint graph represents net? that inay be placed in the 
same track. Padroute continues hb checking for cycles in the 
radial constraint graph. It' a cyclc is detected.  21 clog-leg is added 
to one of the nets involved in the 

Once the radial constraint graph is cyclc free.  nets are as- 
signed to tracks.  The first pass simply assigns one net per track. 
The second pass tries to combine nets onto single tracks as  much 
as possible to reduce the space occupied by the routing. After 
track assignment. Padroute verifies that the routing will fit into 
the initial pad frame.  If the routing cannot fit. the pad frame is 
enlarged. 

4.3. Structure Proceytor Toolc 

This section describes structure processor tools that are used 
to preprocess the user-specified structural description before ac- 

routing track 
--- 

padframe module 

Fig 9. Radial and circumferential constraints in Padroute 

tual layout generation is performed. It should be remembered 
these are tools called by DMoct  and are.  therefore,  hidden from 
the user. 

4.3.1. Data-Path Processor: dpp: The bit-slice data-path 
generation tool,  dpp 1401. is perhaps the most important utility 
for  algorithm-specific IC's. Much of the processing power of 
such circuits conies from the ability to  dedicate the data-path 
architecture to the exact needs of the algorithm. With LAGER 
the designer can very quickly reconfigure a data path and iterate 
on several designs while evaluating their area and performance. 
Given the schematic of a bit-slice data path, dpp doe5 the place- 
ment.  channel definition, and global routing of the data path 
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Fig. 10. Bit-slice data path by dpp. Each cell in the block consists of a 
leafcell (dark), a feedrhrough (grey) and an optional stretching (white). 
Horizontal channels are used to route data signals between blocks. Global 
and local channels are used to route control, status, and clock signals. Each 
block is generated by TimLager. Routing of blocks is done by Flint. 

and produces a floorplan (a FDL file) for Flint to route the in- 
dividual channels and generate the actual layout. It also back- 
annotates the structure-instance view of individual macrocells 
in the data path with geometric constraints and feedthrough in- 
formation for TimLager. 

Bit-sliced data paths (Fig. 10) are viewed by dpp to consist 
of macrocells that are tiled in the vertical direction and placed 
linearly along the horizontal direction with the bottom edges of 
the macrocells being co-linear. Horizontal routing channels 
separate adjacent macrocells. Local vertical channels are placed 
along the top edge of each macrocell in order to equalize the 
heights of each macrocell. Finally, global vertical channels 
spanning the entire width of the data path are placed at the top 
and the bottom of the data path. 

The control, status, clock, and supply nets run vertically. 
Within a macrocell they are routed implicitly by the abutment 
of leafcell terminals during the tiling process. The global rout- 
ing of these nets between macrocells and to the outside is done 
by dpp using the global vertical channels. The data buses flow 
in the horizontal direction and are routed explicitly using the 
horizontal routing channels between the adjacent macrocells. 
Data buses connecting nonadjacent macrocells are routed 
through the intervening macrocells. This is done by back-an- 
notation of the structure-instance view of the macrocells with 
information for TimLager to generate enough feedthroughs for 
data buses going across the macrocell. Feedthroughs already 
provided by the leafcell designer are used first before extra 
feedthroughs are generated. 

The process of guiding the lower level layout generation ac- 
cording to the requirements of the upper level layout generator 
is a key feature of dpp. It makes the macrocells appear porous 
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to Flint and saves the area wasted by the macrocell place-and- 
route approach in routing around the opaque macrocells. As 
shown by the example in Fig. l l (a)  and (b), this results in a 
24% reduction in area. A problem with our approach is that 
there may be a mismatch between the heights of adjacent ma- 
crocells resulting in a staircase effect or congestion in the hor- 
izontal routing channels. Back-annotation is again used here to 
force TimLager to stretch the heights of the leafcells used in 
each bit position in all the macrocells to a uniform value. This 
equalizes the macrocell heights resulting in much better routing 
channels. A further 32% reduction in area is obtained in the 
same example (Fig. 4.7(c)). It can be shown that the percent 
area penalty due to the staircase and the macrocell opacity effect 
increases with the number of bits. Consequently, the percent 
area reduction obtained by making the macrocells porous and 
stretchable also increases as the number of bits increases. For 
example, a 24-b version of the same data path shows a 63% 
reduction in area. 

The other crucial step in dpp is placement. The goal is to find 
a suitable ordering of the macrocells so as to minimize the area. 
With our approach of through-the-macrocell routing of global 
buses and equalization of the macrocell heights, the problem 
can be quite accurately modeled as minimization of the height 
of the tallest macrocell taking the extra feedthroughs required 
into account. Dpp directly calls TimLager in an estimation mode 
to obtain informqtion about the physical characteristics of the 
macrocells. This information is then used by the placement pro- 
cedure which is based on the Kemighan and Lin's min-cut 
placement algorithm [41], but tries to minimize the height of 
the tallest macrocell taking the extra feedthroughs required into 
account, instead of the number of nets crossing a partition. 
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Fig. 11. (a) Data-path layout with Flint; area = 4.2 x IO‘X’. (b) Data- 
path layout with Flint after processing with dpp to add feedthroughs; area 
= 3 X 10%’. (c) Data-path layout with Flint after processing with dpp to 
add feedthroughs and stretching of cells; area = 2.18 x 10‘X’. 

4.3.2. Logic Synthesis: Bds2stdcell: The logic synthesis 
tools BDSYN [42] and mis-I1 [43] are used by Bds2stdcell to 
translate a combinational logic description for a module in the 
BDS language to a logic schematic using a standard cell library. 
The standard cell layout can then be generated using Stdcell. 
Bds2stdcell reads the logic description and external terminal in- 
formation from the structure-instance view of the logic module. 
After executing BDSYN and mis-I1 it back-annotates the struc- 
ture-instance view with the actual schematic (nets and sub- 
cells). Thus the designer can define the logic module as part of 
the input architecture description and connect it  to other mod- 
ules in the chip without having to provide the detailed sche- 
matic. 

4.3.3. PLA Optimization: Plagen: The plagen structure- 
processor reads the BDS logic description for a PLA from the 
structure-instance view and back-annotates it with the input- 
plane and output-plane bit patterns for the PLA. After being 
minimized by espresso [44], the PLA layout can then be gen- 
erated by a PLA generator using TimLager. 

In summary, we see that structure-processor tools can be used 
to back-annotate the structure-instance view with information 
for the layout generation tools. This back-annotation may con- 
sist of defining parameter values required by the macrocell gen- 
eration (as in plagen and dpp) or defining the schematic itself 
(as in bds2stdcell). This allows the designer to exploit high- 
level tools on individual cells in the architecture while retaining 
a common input structural description. 

V .  DESIGN EXAMPLES 
Application-specific IC’s for a variety of applications have 

been designing using the LAGER system. They include a low- 
level trajectory controller for a two-joint robot arm 1451, a chip 
set for real-time emulation of communication channels in com- 

puter networks [46], a chip set for continuous speech recogni- 
tion using hidden Markov models [47], [48], a real-time image 
segmentation chip [49], and an image processing chip for Ra- 
don transformation [50], etc. Still under development are chips 
for digital mobile radio, machine vision, and robotics. 

Some of the above chips use only the silicon assembler por- 
tion of the LAGER system. These chips use hardwired archi- 
tectures because programmable architectures are not suitable due 
to either higher computation requirements, as in image pro- 
cessing applications, or specialized U0 requirements, as in the 
chips for the network channel emulator. Use of a hardwired 
architecture precludes the use of the behavioral mapper. How- 
ever, the design of these chips is facilitated by the silicon as- 
sembler, which enables fast, automatic generation of layout 
from a netlist description. 

Other chips, such as the robot arm controller, the adaptive 
equalizer for digital mobile radio, and the inverse kinematics 
processor for a six-joint robot arm, use algorithms that are bet- 
ter suited to the programmable architectures such as the Kappa 
model. They have been designed or are being designed using 
both the behavioral mapper and the silicon assembler. 

Section V-5.1 describes a robot arm controller chip, which 
was designed using both the behavioral mapper and the silicon 
assembler. Section V-5.2 describes a chip for real-time image 
segmentation, which was designed with the silicon assembler. 
In Section V-5.3 we present the design results of several other 
algorithm-specific IC’s in hardwired architectures. 

5.1. Robot Arm Controller Chip 

The robot arm controller chip [45] is the heart of a robot- 
control system that directs a two-joint, direct-drive robot arm 
along a desired trajectory in real time. It uses a model-reference 
adaptive control (MRAC) algorithm, which takes into account 
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Fig. 12. Processor architecture of a Kappa example used in the robot arm 
controller chip. The solid lines from the processor control unit (PCU) are 
the control signals. The dotted lines from the data paths are the status sig- 
nals. 
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Fig. 13. The structural hierarchy of the robot arm controller chip. The six 
blocks at the bottom correspond to the six components in Fig. 12. 

the nonlinearities in the arm dynamics and adaptively deter- 
mines the parameters of the arm at runtime. 

On an IBM PC, the MRAC algorithm achieves a 7-ms sample 
period. Implemented on a TMS32010-based board, it achieves 
a sample period of 0.7 ms, but at a significant cost in hardware 
and board area. For a higher speed, a more complex algorithm, 
or a reduced amount of hardware, a custom chip is appropriate. 
The custom robot arm controller chip not only achieves a higher 
speed with a sample period of 0.04 ms, but also reduces the 
required I/O hardware by customizing the chip I/O. 

The chip was designed using the Kappa model architecture. 
The robot-control algorithm, unlike many DSP algorithms, has 
many conditional branches and loops. The Kappa control unit 
provides hardware for efficient handling of these operations. The 
chip consists of the following functional units, as shown in Fig. 
12. 

Processor Control Unit: This controls program execution 
and provides support for branching, looping, and subroutines. 
It consists of a finite state machine and a control store. 

Arithmetic Unit: This is the main data path, used to perform 
fixed-point arithmetic. It consists of a bit-slice data path and a 
block of random logic for decoding control signals. 

Logic Unit: This is a finite state machine implementing 
Boolean operations. 

Address Processing Unit: This is an auxiliary data path that 
performs address computations. Like the arithmetic unit, it con- 
sists of a bit-slice data path and a block of random logic for 
decoding control signals. 

Memory Unit: This is a random-access, read-write memory, 
closely tied to the arithmetic unit. 

Testing Module: This is an interface for an external tester. 
It supports testing and debugging of the chip using the scanpath 
technique. 

The layout of the chip is generated from a parameterized 
structural description. The chip is described hierarchically, 
using SDL files as shown in Fig. 13. The components are gen- 
erated using the tools best suited to their layout style; an appro- 
priate layout generation tool is associated with each SDL file. 

At the top-most level of the hierarchy, the chip consists of 
four pad groups (one for each side) and a core section. The five 
units are connected by Padroute. The pad groups are assembled 
as linear tilings of pads using TimLager. The core section con- 
sisting of the six functional units described above is generated 
using Flint. The finite state machine PLA’s, the control store, 
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and the memory are generated from parameterized descriptions 
by TimLager. The bit-slice data paths are generated by the data- 
path placement and routing program, dpc (which is the prede- 
cessor of dpp). The random logic required for decoding control 
words and generating local clock signals is generated by Stdcell. 

Values for all of the parameters in the SDL description need 
to be provided before layout can be generated. Some parame- 
ters, such as the widths of the data paths, are provided in the 
behavioral descriptions. Other parameters, such as the contents 
of the control store and the finite state machine, are generated 
by the behavioral mapper. The algorithm was coded in all three 
input languages in the behavioral mapper. The hand-coded Sass 
version was finally used in the chip, for its slightly better per- 
formance than the compiled code. A die photograph of the robot 
arm controller chip is shown in Fig. 14. The dimension of the 
chip is 8.4 mm2 by 7.15 mm2 in the MOSIS 2-pm SCMOS tech- 
nology. The chip is tested to operate at 15 MHz [21]. 
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5.2. Real-Time Image Segmentation Chip 

Low-level image segmentation reduces the image data rate 
(usually from gray-level to a few classes) and thereby enables 
more sophisticated image processing in the following stages. 
Image segmentation using supervised pattern recognition [5 11 
involves: 1) feature extraction and 2) classification. Feature ex- 
traction extracts local (such as windowed MIN, MAX) and 
global (such as the histogram) features that are of discrimina- 
tory power. Classification attempts to associate, for each pixel, 
one of the few predefined classes, based on the extracted fea- 
tures. 

Feature selection is highly application specific, and special 
purpose VLSI chips were extensively used in feature extraction 
[52]-[54]. Classification is usually done by evaluating a num- 
ber of decision functions (one for each class), comparing their 
results and selecting the one with the maximum value. In Fig. 
15, XI,  * . , X, are extracted features, DFE,, . . . , DFE, are 
the C decision function evaluators (DFE’s) and COMP is the 
comparator. The most popular decision functions are low-order 
(first, second, or third) polynomials. For not too small number 
of features, polynomial classifiers are not feasible for hardware 
implementation because of the vast number of multipliers and 
the wiring cost incurred by the crossterms in second- or third- 
order polynomials. 

A classical without crossterm is proposed [49] in which the 
decision functions are of the form 

K 

DFE,(X,, . . . , X K )  = gic(X;).  
I =  I 

This classifier can easily be implemented by look-up tables (for 
gic( ) )  and adders. The impact of the no-crossterm classifier is 
that the principle axes of the decision region for each class are 
in parallel with the feature axes. However, simulation indicates 
little classification inaccuracy results from this restriction. 

A modular decision function evaluator (mDFE) and a mod- 
ular comparator (mCOMP) architecture are developed which 
enable a two-chip set to be used in cascade to realize any num- 
ber of features and classes. The mDFE handles four features 
and has a built-in partial sum chain for collecting contributions 
from various mDFE’s. Because the features are extracted 
simultaneously, a variable delay is inserted to align the timing 
of various mDFE’s along the partial sum chain. The mDFE chip 
architecture is shown in Fig. 16. An mCOMP in turn handles 
four DFE results and generates as output both the class label 

Fig. 14. The die photo of the robot arm controller chip 

Threshold 

g: 
x , - U  

Fig. 15. Decision analyzer overview. 

Fig. 16. mDFE chip architecture 

and the maximum DFE results, which may be used by the next 
mCOMP for comparison when the number of classes is large. 
An example of a classifier with 12 features and 7 classes is 
shown in Fig. 17. 

In Figure 18 the die photo of the mDFE chip is shown. The 
dimension of the chip is 9.5 mm2 X 7.5 mm2 in the MOSIS 
1.6-pm SCMOS technology. The four look-up tables are im- 
plemented by static RAM’S, and are generated using TimLager. 
Adders, latches, and a variable delay are all incorporated in a 
bit-slice data path, generated by dpp. The Global control unit 
is implemented with Stdcell and the placement and routing of 
the whole chip is done with Flint. The mDFE chip has been 
tested to operate at 20 MHz. 
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x9. x12 TABLE I 
DESIGN TIME A N D  PREFORMANCE OF SEVERAL OTHER CHIPS 

SDL Area 
Chip Entry DMoct (mm‘) Transistors Speed 

FIR 2 min 45 min 2.7 x 6 . 8  11.5 K 25 MHz 
RT 10 h 10 h 7.2 x 7.2 120 K 17 MHz 
SDSP 20h  16 h 8.5 x 6.5 20K 73-33011s 
W P  10-15 h 200h 10 x 1 1  25K 20 MHz 

simulation time. The SDL files of FIR is program generated 
[ S I .  Therefore, its SDL entry time is very small. 

The DMoct time is the accumulated runtime spent on silicon 
assembly, including iterations due to SDL modifications (ex- 
cept FIR, which indicates the silicon assembly time of one it- 
eration), but not including the time spent in debugging the lay- 
out using IRSIM. The SDL entry and DMoct times are based 
on the runtime of a SUN 3/60 workstation. 

All chips except RT are fabricated with the MOSIS 2-pm 
SCMOS technology. RT uses the MOSIS 1.6-pm SCMOS tech- 
nology. The cycle time of SDSP is variable because it is input 
dependent. 

Fig. 17. A decision analyzer with 12 features and 7 classes. 

VI. CONCLUSION 
Silicon compilation systems have shown progress in the past 

few years, but significant breakthroughs are still required before 
efficient architectures and layouts can be generated from behav- 
ioral specifications. The LAGER system accomplishes this by 
taking both a structural input and a behavioral input. The basic 
design cycle involves the tuning of both of these inputs. The 
LAGER silicon assembly system is implemented using an ob- 
ject-oriented data base that makes the integration of new cells 
and CAD tools easy. 

LAGER has been applied to a number of algorithm-specific 
IC designs. It initially was used mainly in research projects at 
the University of California at Berkeley, and recently has been 
applied at other academic and industrial institutions. Two de- 
sign examples, a robot arm controller chip and a real-time im- 
age segmentation chip, are shown in this paper. 

Fig. 18. The die photo of the mDFE chip. 

5.3. Other Design Examples 
The design results of several other chips are tabulated in Ta- 

ble I. These chips are designed with hardwired architectures; 
hence, only the LAGER silicon assembler is used. They in- 
clude: 

(FIR) a predistortion FIR filter chip [55]; 
(RT) an image processing chip for Radon and inverse Ra- 
don transformation [50]; 
(SDSP) a fully-asynchronous DSP chip using self-timed 
circuits [56]; 
(WP) a word processor chip for large vocabularly contin- 
uous speech recognition system [47]. 

The SDL entry time is the accumulated engineering time spent 
in entering the design, including modifications based on DMoct 
results, but not including the initial architecture definition and 
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