
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10, NO. 4, APRIL 1991 447

An Integrated CAD System for Algorithm-Specific
IC Design

C. Bernard Shung, Rajeev Jain, Member, IEEE, Ken Rimey, Edward Wang, Mani B. Srivastava,
Brian C. Richards, Erik Lettang, Member, IEEE, S. Khalid Azim, Member, IEEE,

Lars Thon, Student Member, IEEE, Paul N. Hilfinger, Jan M. Rabaey, Member, IEEE,
and Robert W. Brodersen, Fellow, IEEE

Abstract-LAGER is an integrated computer-aided design (CAD)
system for algorithm-specific h c g r a c d circuit(1C) design, targeted at
applications such as speech processing, image processing, telecommu-
nications, and robot control. LAGER provides user interfaces at be-
havioral, structural, and physical levels and allows easy integration of
new CAD tools. LAGER consists of a behavioral mapper and a silicon
assembler. The behavioral mapper maps the behavior onto a parame-
terized structure to produce microcode and parameter values. The sil-
icon assembler then translates the filled-out structural description into
a physical layout and with the aid of simulation tools, the user can fine
tune the data path by iterating this process. The silicon assembler can
also be used without the behavioral mapper for high sample rate ap-
plications. A number of algorithm-specific IC’s designed with LAGER
have been fabricated and tested, and as examples, a robot arm con-
troller chip and a real-time image segmentation chip will be described.

I. INTRODUCTION
ODERN integrated circuits (IC’s) fall into two groups: M commodity IC’s and application-spec@c IC’s (ASIC’s).

The turn-around time of ASIC’s is often more important than
the area, emphasizing the need for computer-aided design
(CAD) tools. Due to their application-specific nature, each de-
sign can exploit the special conditions in the particular appli-
cation to create an efficient implementation. This paper focuses
on ASIC’s that implement real-time computational algorithms
called algorithm-speciJlic IC’s. Typical application areas for
real-time algorithm-specific IC’s include speech processing,
image processing, robot control, computer vision, digital au-
dio, and telecommunications. From experience with a number
of such IC designs, we find that diverse algorithms can often
be implemented with a single, well-designed set of hardware
modules and the re-use of these hardware modules greatly re-
duces design time.

Two types of architectures are used in designing algorithm-
specific IC’s: hardwired architectures and programmable ar-

Manuscnpt received Apnl 19, 1989; revised January 18, 1990. This work
was supported by DARPA under Grant N00039-87-C-0182. This paper was
recommended by Editor M. R. Lightner.

C. B. Shung is with the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan, Republic of China.

R. Jain is with the Department of Electrical Engineering, University of
California at Los Angeles, Los Angeles, CA 90024.

K. Rimey is with the Department of Computer Science, Helsinki Uni-
versity of Technology, Helsinki, Finland.

E. Wang, M. B. Srivastava, B. C. Richards, L. Thon, P. N. Hilfinger,
J. M. Rabaey, and R. W. Brodersen are with the Department of Electrical
Engineering and Computer Science, Electronics Research Laboratory,
University of California at Berkeley, Berkeley, CA 94720.

E. Lettang is with the Hewlett Packard Company, San Diego, CA.
S. K. Azim is with AT&T Bell Laboratories, Allentown, PA.
IEEE Log Number 9042087.

chitectures. In a hardwired architecture, a dedicated hardware
module is allocated for each operation in the data-flow graph of
the algorithm; an adder for an add operation, for example. In
this way, the abstract data flow in the algorithm is realized by
the physical interconnection of the hardware modules. Al-
though the data path may be complicated, the control unit is
simple because there is no time multiplexing of hardware mod-
ules. The speed of the circuit is limited by the speed of the
slowest hardware module in the design, but the input of new
data (sample rate) can be equal to this value. The main draw-
back of hardwired architectures is that they have to be rede-
signed for each new algorithm and become less efficient if com-
plex decision making is required.

A programmable architecture consists of a carefully chosen
set of hardware modules that are time multiplexed under micro-
code control according to the algorithm being implemented. The
control unit for a programmable architecture is necessarily more
complex than that for a hardwired architecture. The speed of
the circuit depends on the total number of instruction cycles
required to realize the algorithm. Hence, a programmable ar-
chitecture can be used in a real-time application only if

sample period
circuit cycle time ’

total number of instruction cycles 5

For example, if the circuit runs at 5 MHz and the sample fre-
quency is 5 kHz, the number of cycles must be no greater than
1000. Because a single programmable architecture can be used
for many applications, it is a good choice when the sample rate
permits. On the other hand, high sample rate applications re-
quire hardwired architectures because only dedicated hardware
modules can provide the required speed.

There are three levels of design descriptions for algorithm-
specific IC’s, namely, behavioral, structural, and physical. A
behavioral representation specifies the algorithm that the chip
implements, which may take the form of a program or a signal-
flow graph. A structural representation specifies the chip archi-
tecture in terms of hardware modules and their logical connec-
tions. A physical representation specifies the chip layout.

This paper describes LAGER, an integrated CAD system for
automatic generation-from high-level (behavioral or struc-
tural) user specifications-of chip layouts for hardwired or pro-
grammable architectural implementations of algorithm-specific
IC’s. In Section I1 we discuss design strategies of LAGER and
compare them with previous work. In Sections 111 and IV we
describe the two parts of LAGER: the behavioral mapper and
the silicon assembler, respectively. We will show several de-
sign examples in Section V.

0278-0070/91/0400-0447$01 .OO 0 1991 IEEE

448 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10, NO. 4, APRIL 1991

11. DESIGN STRATEGIES FOR ALGORITHM-SPECIFIC IC’s

In Section 11-2.1, we first review the development of some
existing CAD tools for algorithm-specific IC’s, and motivate
the need for a new design environment. In Section 11-2.2, we
will describe the new problems that are solved, and the basic
design methodology adopted in LAGER.

2.1. Background

2. I . I . Behavioral Description: Many behavioral descrip-
tions have been proposed for design capture at the behavioral
level. A frequency-domain specification is used [l], which al-
lows the users to specify filter parameters such as the passband
ripple, stopband ripple, and stopband attenuation, etc. This ap-
proach offers the highest level description; the user only spec-
ifies what he needs rather than how to do it. However, the ap-
plication of this approach is limited to digital filter circuits.

Most algorithm-specific IC applications can be described by
signal-$ow diagrams. Hence, an applicative programming lan-
guage [2], [3] is a natural choice for algorithm specification. It
is also inherently parallel, so the same applicative language pro-
gram can serve both a uniprocessor or a multiprocessor reali-
zation. On the other hand, procedural programming languages
such as Pascal [4] or ISPS [5] have also been adopted, which
provide a mechanism for describing the control flow of the al-
gorithm. For high-level procedural languages, existing compi-
lers can be exploited for algorithm simulation. Although inef-
ficient for direct encoding of algorithms, ISPS is very useful for
machine description for its low-level mechanisms such as bit
operations and timing contol. In LAGER, both an applicative
(Silage [2]) and a “C-like” procedural language (RL) are pro-
vided. These languages will be described in Section 111.

2.1.2. Behavioral Synthesis: Behavioral synthesis [6], [7]-
[1 11 attempts to generate a structural description from a behav-
ioral description directly. Due to the vast amount of design al-
ternatives inherent in the behavioral synthesis systems, some
search pruning is mandatory. In most systems, high-level de-
cisions-bus structure [7], pipelined versus nonpipelined archi-
tectures [SI, lumped ALU versus distributed functional mod-
ules [l l] , [12]-are predetermined to make the problem tract-
able. These a priori design decisions, however, are usually too
restrictive to deliver efficient designs. Also, because the end
product of most behavioral synthesis research is a block dia-
gram instead of a layout, its performance evaluation often lacks
practical considerations. For example, it has been found [13]
that the data-path partitioning has a significant impact on the
final layout area. In algorithm-specific IC designs, there are
many additional issues that are more important than the effi-
ciency of the data-path logic. For instance, it was pointed out
[141 that I/O compatibility between the raster-scan format of
the camera and an image processing circuit is essential to
achieve real-time image processing. It is an open question as
how to incorporate these issues in the behavioral synthesis
framework.

For these reasons, LAGER supports user specification of the
data paths and then generates the rest of the design from a be-
havioral description. Support for behavioral synthesis with ap-
propriate optimization criteria for our application focus is
planned for the future [131.

2.1.3. Silicon Compilation into A Fixed Architecture: There
have been a number of silicon compilers [I] , [121, [151-[20]
that can translate the high-level description to layout for a fixed

architecture. In [11, [15], [16], bit-serial architectures were
used, in which the throughput rate of the chip was limited by
the data wordlength in addition to the clock speed. The user
interface in FIRST [151 is at the structural level so that the user
has to translate the algorithm to a bit-serial architecture man-
ually. Moreover, a hardwired floorplan is used which can result
in a substantially larger chip area than that of a manual design.
The INPACT compiler [16] has a higher level interface that
allows the algorithm to be specified in a programming lan-
guage, and performs some optimization on the floorplan. Ca-
thedral-I [l] provides a high-level interface and performs sev-
eral optimizations at the algorithmic, architectural, and floorplan
level; however, the user interface and optimizations are pri-
marily applicable to digital filter algorithms.

A second class of compilers uses microprogrammed bit-par-
allel architectures. While the achievable throughput rate is usu-
ally similar to that of bit-serial architectures, they provide
greater flexibility in the algorithmic operations and the I/O in-
terfaces. Examples of these compilers are given in [12], [17]-
[20]. In [17], a register-transfer language is provided for de-
scribing the algorithm and a fixed floorplan strategy is used. In
[12], an interface to a high-level applicative language [2] is pro-
vided and symbolic layout techniques are employed for optim-
izing the chip area.

The drawbacks with these compilers are that the target ar-
chitecture uses a predefined data path and architectural modifi-
cation by the user is very difficult. Furthermore, the layout gen-
eration techniques are fixed and cannot be influenced by the
user. The fixed target architecture and predefined floorplanning
limit the application of the above compilers to low throughput
rate applications, typically with data rates below 1 MHz. In
addition, the algorithmic operations that can be handled are lim-
ited by the predefined hardware modules that the compiler can
handle.

2.2. Overview of LAGER

2.2.1. Motivation: To expand the kind of algorithms that can
be handled, as well as to attack applications with high data rates
(10 MHz and above), LAGER allows the user to modify or
even completely specify the target architecture. In contrast to
the ‘ ‘fixed-architecture silicon compiler” approach, a structural
interface is established in LAGER. The user can use or modify
predefined architectures in the library, or design a new target
architecture through the structural interface.

To provide this flexibility, the LAGER environment is built
from two distinct subsystems: 1) a behavioral mapper and 2) a
silicon assembler. In contrast to the “behavioral synthesis” ap-
proach which attempts to synthesize the optimum architecture
from a behavioral description, the LAGER behavioral mapper
maps the behavioral description into a user-defined architec-
ture. This approach allows the user to fine tune the target ar-
chitecture by iteration to achieve desired performance with ac-
ceptable chip area.

The separation of the behavioral mapper and the silicon as-
sembler has two more advantages. First, for high-speed appli-
cations in which hardwired architectures are often more appro-
priate, the silicon assembler can be used independently to
generate a layout from a user-defined hardwired architecture.
Second, the LAGER silicon assembler can be a backend of the
emerging behavioral synthesis programs (as in [131) to provide
a means for automatic layout generation as well as feedback for
performance and chip area evaluation.

SHUNG et al.: CAD SYSTEM FOR IC DESIGN 449

behavioral
description I Silage

behavioral
mapping

structural
description parameter

physical
description

Fig. 1. Block diagram of LAGER.

Silage
compiler

I RL

datapath
information

compiler

control unit
information

assembler

2.2.2. Behavioral Mapper and Silicon Assembler: LAGER
consists of a behavioral mapper and a silicon assembler, a block
diagram of which is shown in Fig. 1. The structural description
in LAGER is parameterized to facilitate the reuse of hardware
modules or architectures. The silicon assembler requires both a
structural description and associated parameter values to gen-
erate the layout. Examples of parameters are: the wordlength
of the data path and the contents of the microcode PLA. The
behavioral mapper maps a behavioral description onto a user-
specified structural design by generating the appropriate param-
eter values.

The task of the behavioral mapper is similar to that of a high-
level language compiler that generates microcode. This micro-
code is essentially one of the parameter values of the program-
mable architecture. The behavioral mapper can be retargeted to
different structural descriptions. This is essential to the design
cycle in which the architecture is tailored to the application:
first, the algorithm is mapped to an existing architecture. Then,
if the result is unsatisfactory, the architecture is modified and
the algorithm is mapped to the new architecture. This process
is iterated until a satisfactory architecture is obtained. The usual
cause of dissatisfaction with an architecture is that frequently
used instructions are not directly implemented. This situation is
easily recognized from a histogram of instruction usage.

The LAGER silicon assembler integrates a number of layout
generation and simulation tools under a user interface called the
design manager. All communications among tools is through a
common data base with procedural interfaces for data storage,
retrieval, and modification. Integrating the tools is easy because
they follow an agreed upon data base policy. The design man-
ager builds the data base from the structural description. There
are extensive cell libraries (of leaf cells and parameterized mod-
ules) which can accommodate various layout styles in the same
chip design. New modules are added to the library by providing
structural descriptions; new cells are added by providing sim-
ulation models and layouts.

111. BEHAVIORAL MAPPING

LAGER can work from a behavioral (architecture indepen-
dent) description of the algorithm. This description is mapped
into parameter values, which completes the parameterized
structural description, and in turn becomes the input to the sil-
icon assembler.

parameter values

Fig. 2. Block diagram of the behavioral mapper. The user can use any of
the three languages: Silage, RL, and Sass to encode the algorithm. Trans-
lators are also provided. Some require data path or control unit information
for retargetable translation.

Fig. 2 shows a block diagram of the behavioral mapper. We
employ three independent input languages. Silage is a data-flow
language with very high-level constructs suited to the intended
ASIC applications. RL is a variant of C, a procedural language
with comparatively primitive features. Sass is an assembly lan-
guage. The system supports all three languages equally; the user
has the freedom to choose the input style most suited to his
needs. Fig. 3 shows a simple infinite impulse response (IIR)
filter, defined by the recurrence

3 1
' 4 4 x. = -xi-, + - ini

described in the three languages. Each language has an accom-
panying translator that maps a program into the next lower level.
The languages and their translators are described in Sections

Section 111-3.1 describes the Kappa model of processor ar-
chitectures. RL and Sass can be used for any architectures that
fit the Kappa model. Silage is designed to be free of architec-
tural bias, but the current Silage to RL translator is tailored to
the RL compiler, and therefore, to the Kappa model.

111-3.2-111-3.4.

3. I . The Kappa Architecture Model

Kappa [21] is a processor architecture model that has served
well as a prototype for customization. A more detailed descrip-
tion of Kappa is given in Section V-5.1. The Kappa model con-
tains a control unit and a number of data paths. The control unit
generates micro-instructions to control the data paths, and the
data paths feed the status signals (e.g., sign bits) back to the
control unit, which are used as input for state transition in the
control unit. The control unit can provide all control functions
independent of the data paths. Some unique control mechanisms
are also incorporated, as it has been found [21] that an ineffi-
cient control unit is the speed bottleneck in some applications.
For example, for looping and more complex decision making,

450 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. IO, NO. 4, APRIL 1991

fnnc main(in: fix<8>): fix<8> =
begin

end ;
return = (3/4) * return01 + (1/4) * in;

(a)

fix y;

m a i n 0 I
y = (3/4) * y + (1/4) * (fix) in();
out (y) i

1

(b)

(ram y)
(cfsm (0 0 nil (goto 0)))
(dp-word-size 8)
(rom (0 ((addr y) (mor=mem) (r*=rbus 0) (rbus=ioport) (ioport=sxtport 0))

((acc=abus) (abus=mor))
((abus=mor) (nosat) (acc=sum) (bbus=acc>r 1))
((acc=bbus) (bbus=acc>* 1))
((acc=bbus) (bbus=mbus) (mbus=r* 0) (rr=rbus 0) (rbus=acc))
((acc=bbus) (mor=nbus) (mbus=rr 0) (bbus-acc>* 2))
((bbus=acc>* 0) (abus=mor) (acc=sum))
((mbus=acc) (ioport=mbubus) (axtport=ioport 0) (addr y) (mem=mbus))))

(c)

Fig. 3 . (a) The IIR filter described in Silage. (b) The IIR filter described
in RL. (c) The IIR filter described in Sass.

the Kappa control unit provides a multiway jump/call/return ca-
pability.

An example of a processor data path that fits the Kappa model
is shown in Fig. 4. A pipeline delay of one instruction cycle is
associated with every register (mor, acc and coef) and register
bank in the figure; these delays include those of the functional
units. If the individual functional units are understood, the dia-
gram completely defines how they work together-every appar-
ent, meaningful combination of actions is possible when the
instruction word is fully horizontal. A horizontal instruction
word is just a vector of control signals with little or no restric-
tive encoding.

Kappa is irregular, meaning that its data path topology can
be chosen to suit the usage in a particular program (e.g., a robot
arm controller) rather than to conform to the expectations of
modem compilers. The alternative would be exemplified by an
architecture in which all intermediate results are stored in a
large, multiported register bank. An irregular data path is
smaller, faster, more tunable, and hence, more appropriate for
inclusion in an ASIC. The problems that irregularity poses for
retargetable compilers are minimized by the use of a fully hor-
izontal instruction word.

The behavioral mapper generates horizontal microcode for
the user-defined data path from a behavioral description. The
three languages used in the behavioral mapping part of LAGER,
Silage, RL, and Sass are described in the following sections.

3.2. Silage

Silage is a high-level language optimized for specifying “sig-
nal processing like” algorithms. As such, its design emphasizes
expressiveness over details of implementation, by providing the
programmer with convenient data types and operations and hid-
ing from him quirks of the actual hardware. We will give an
overview of the language and its compiler in this section. More
detailed descriptions can be found elsewhere [2], [22]. The
‘‘Silage Reference Manual” [23] specifies the language in full.

3.2.1. The Silage Language: Silage is a data-flow language
that operates on streams of values. As in all data-flow lan-

lobus reg[l . .z] P
4- ~~

coef

Ibus

address

reg11 ..3]

4 (takes one cycle)

effective
address

Fig. 4. A data-path example that fits the Kappa model.

guages, a Silage program corresponds to a data-flow graph-a
directed graph with operations performed by vertices and values
carried on edges. A subtraction node, for example, combines
two streams of numbers to produce a difference stream. A pro-
gram graph accepts input streams, combines and alters them as
they flow through the graph, to produce the output streams. This
model of computation is natural for our intended applications.
For example, real-time control typically takes time-sampled in-
put streams from sensors to produce control signals. Digital sig-
nal processing (DSP) operates on streams of digitized signal
samples, and a form of dataflow graph is already commonly
used to express DSP algorithms. In addition to the usual arith-
metic functions, Silage provides some common DSP opera-
tions: delaying a stream (Z-’), taking a substream (decima-
tion), and taking the union of streams (interpolation).

The textual Silage program is a set of equations that defines
output variables in terms of input variables. Each equation de-
fines a single variable to be an expression on other variables.
Each variable is defined exactly once, following the single as-
signment rule of most dataflow languages. Thus the right-hand
side of each definition corresponds to an expression tree; con-
necting the trees by linking variable definitions to uses produces
the program graph.

Variables can be subscripted in the usual way. The iterated
dejinition provides a general way to operate on subscripted
variables. The iterator can specify both parallel and sequential
computation. The only difference is in the dependence (or lack
of dependence) between iterations. The example in Fig. 3(a)
computes an output stream xi (called return in the code), which
equals 3 /4 times the previous sample (return @1, using the
delay operator @) plus 1 /4 times the current value of in.

Structural preferences can be expressed by the pragma direc-
tives [2]. For example, in the case when the number of parallel
processing elements is less than the number of independent
expressions that can be computed simultaneously, we can use

pragma Processor (K, Expr);

SHUNG et al . : CAD SYSTEM FOR IC DESIGN 45 I

to indicate that the expression Expr should be computed on pro-
cessor element K.

3.2 .2 . The Silage Compiler: The current Silage compiler
translates Silage programs into RL to run on a single micro-
coded processor. The main difficulties are in converting the
unique features of Silage into the conventional operations sup-
ported by RL. These include modeling data-flow semantics in
a procedural language and building the data structures for
streams in terms of primitive data types. Central to a good im-
plementation is the conversion of repetition in the data-flow
graph into efficient program loops. We call this loop folding.

Repetition can come from iterated definitions, delay queue
operations, and interpolated data streams. The loop folder pro-
cesses the input program in data-flow graph form, converting
repetitive connected subgraphs into loops. The algorithm first
finds candidate loops by graph traversal, then creates loop bod-
ies that are graph fragments parameterized on the loop indexes.

Loop folding typically consumes half of the total compilation
time, but because it operates on the iterator-expanded graph, its
running time can be exponential on the size of the input pro-
gram. It is, however, both simpler and more powerful than the
alternative approach that infers iteration dependency on the
original iterated definitions by analyzing variable index expres-
sions. The basic loop folder is general enough to handle all three
sources of repetition. In particular, the copy operation needed
to implement delay queues without special hardware support
can often be merged into other program loops.

3.3. RL
The task of the RL compiler is to generate a control program

for a processor of specified structure. The compiler must meet
a pair of conflicting goals. On the one hand, it must be easy to
retarget. The user should be able to evaluate a proposed change
in processor structure by retargeting the compiler and then re-
compiling the program. On the other hand, the compiler must
generate good code for diverse, irregular architectures.

We only give a brief overview of the RL compiler here. Ri-
mey and Hilfinger describe, in more detail, the overall compiler
[24] and the original code-generation techniques that it uses

3.3.1. n e RL Language: The inputs to the RL compiler are
a source program, written in the RL language, and a machine
description. Both are provided by the user, although he will
usually use or modify previously specified machine descrip-
tions.

The RL language is an approximate subset of C. It incorpo-
rates two major extensions: fixed-point types and register
classes. Fixed-point types provide the programmer with con-
venient notation for fixed-point constants and arithmetic. Reg-
ister classes, which generalize C register declarations, enable
the programmer to suggest storage locations for critical vari-
ables.

3.3.2. The Machine Description: A machine description
consists of

r251.

declarations of buses, latches, registers, and register banks;
a list of simple register-transfers (e.g., abus --* Q C C) de-
fining the topology of the data path;
a list of functional register-transfers (e.g., abus + bbus
--t a c c) representing capabilities of the functional units.

The compiler automatically uses simple transfers to chain to-
gether functional transfers. It selects from instances of a func-

tional unit when there is more than one. It allows the user to
declare register-transfers to be incompatible, as is necessary
when the incompatibility is not apparent from a conflict in bus
usage.

3.3.3. The RL Compiler: The compiler consists of two parts.
The front end translates the program into successive straight-
line segments of code, expressed in an intermediate language.
Then, for each straightline segment, the backend selects regis-
ter-transfers and packs them into instruction words.

In addition to routine tasks and simple optimizations, the front
end performs two optimizations that are particularly important
for Kappa model architectures. First, when no parallel multi-
plier is provided, it reduces multiplications by constants into
minimal sequences of shifts, adds, and subtracts. Second, it co-
alesces branches to utilize Kappa’s multiway jump/call/retum.

Most of the effort in developing the RL compiler has gone
into the algorithms in the backend. The usual approach to gen-
erating horizontal code is to first generate loose sequences of
register-transfers and then pack these tightly into a small num-
ber of instructions through compaction [26]. Our approach is to
integrate register-transfer selection and local compaction into
local scheduling. This creates the opportunity to perform a lazy
routing of intermediate results between functional units, choos-
ing appropriate sequences of simple register-transfers late in
the scheduling process when more of the schedule is known.
For Kappa model architectures, scheduling with lazy data rout-
ing is profitable, but also difficult. The compiler must take care
that all feasible routes for a live result are not by chance closed
off. A network flow algorithm that performs this test efficiently
has been developed [25].

The RL compiler is written in Lisp and compiles approxi-
mately one line per second. It has been used to compile pro-
grams several hundred lines in length. Making modifications to
the machine description has proven to be easy; for evaluating
their impact on performance, the compiler has proven to be more
reliable than intuition.

3.4. sass

Sass is an assembly-level language. A Sass program consists
of symbolic microcode and definitions of the other parameters
for a Kappa processor. The body of a Sass program has two
parts: straightline code blocks and control flow information. A
straightline code block is a sequence of micro-instructions, un-
interrupted by branches. Each micro-instruction consists of a
number of micro-operations, which perform arithmetic, logic,
and addressing functions. Sass programs also define additional
parameter values of the processor. For example, the width of
the data path is ordinarily specified this way.

In Fig. 3(c), we show a Sass program for a IIR filter. It con-
sist of a number of Lisp s-expressions. The expression (ram y)
describes that one local variable, y , is stored in RAM. The
expression (cfsm . . a) declares the control flow among the
straightline code blocks. In this case there is only one code
block. The expression (dp-word-size 8) indicates the width of
the data path is 8. Finally the expression (rom - *) defines all
the straightline code blocks. In Fig. 3(c) the code block consists
of 8 micro-instructions, which have 6, 2, 4, 2, 5, 4, 3, 5 mi-
cro-operations, respectively.

The Sass assembler passes some of the parameter values to
the output unmodified; it uses the rest to generate the control
unit, which is its main task. Since the Kappa architecture can
be customized, a machine description is also needed as input

(Fig. 2). The machine description specifies the control signals
and hardware resources used by each micro-operation. The Sass
assembler uses it to assemble data-path instructions into binary
microcode, and to check for resource conflict errors between
micro-operations .

The Sass assembler's main task is to output a specification
(in the form of parameter values) for a Kappa control unit. The
control unit includes a read-only control store containing the
assembled microcode blocks and a state machine that controls
transitions between the blocks. The specification also contains
parameter values such as the width of the program counter and
the depth of the stack. Some components are not always nec-
essary. For example, setting the depth to zero discards the stack
in the resultant silicon implementation.

The sample rate of the application that can be achieved using
the behavioral mapper depends on the resulting number of in-
struction cycles, assuming a fixed circuit speed. The user has
the freedom to modify the data path and iterate the process for
speed optimization. After this is done? the parameter values and
control unit specification generated by the behavioral mapper
are sent to the silicon assembler for layout generation.

IV. THE SILICON ASSEMBLER
The task of the silicon assembler is to generate the chip lay-

out starting from a parameterized description of the chip archi-
tecture. Separating the silicon assembler from the behavior
mapper allows the user to change the architecture directly and,
furthermore, allows the silicon assembly tools to be used in
conjunction with other high-level architecture synthesis aids.

A major goal in developing the silicon assembler was to han-
dle arbitrary architectures and to create an environment for quick
iteration on different architectural alternatives. A second goal
was to allow the re-use of parameterized cells so that a mini-
mum effort is required to design new cells. Thirdly, based on
circuit design expertise, it was found that it was essential to
allow different layout styles to be combined to achieve higher
design quality.

To achieve these goals a design management tool [27] was
developed. The task of this tool is to automate the layout gen-
eration procedure for any architectural description and serve as
the user-interface to the silicon assembler. This also shortens
the learning curve for the designer to use the silicon assembler
since only one tool is seen by the user. The design manager tool
in LAGER called DMoct is described in Section IV-4.1. Sec-
tions IV-4.2-IV-4.3 describe the layout generation tools cur-
rently interfaced to DMoct.

4. I . The Design Manager: DMoct
Fig. 5 illustrates the design methodology followed by DMoct.

The input to DMoct is a parameterized hierarchial description
of the chip architkcture. For a given set of parameter values,
DMoct generates the chip layout. DMoct uses the OCT data-
base system [28] to store all design data, which has the advan-
tages that it provides a procedural interface for CAD tools and
the data representation can be defined by the application. Three
OCT representations have been defined for the silicon assem-
bler: a) structure-master view; b) structure-instance view; c)
physical view. Details of these views are given in the follow-
ing.

The structural description at a given level of the hierarchy
can be described textually using structural description language
(SDL), which is illustrated in Fig. 6, or graphically using a

I Y
. _.

"Ct -
generator prqram) w

Fig. 5 . Design methodology of the LAGER silicon assembler. Items in
ellipse are tools. Items in box are files. Numbers in circle correspond to
the 8 design steps.

schematic entry by VEM [28]. In addition to nets, subcells and
terminals declared in conventional netlist and hardware descrip-
tions, unique features of SDL are: 1) for each cell the tools
required to generate the layout are declared; 2) all nets can be
parameterized; and 3) each cell in the hierarchy can inherit pa-
rameter values from its parent. Thus all cell and net parameter
values can be declared as arbitrary functions of a unique set of
parameters for the chip (the root cell), typically the algorithm
parameters. This allows the user to quickly generate different
versions of the chip for different algorithm parameter values
without having to change the architectural description.

The operations of DMoct and its associated utilities are de-
scribed below.

Step I: Master creation: DMoct parses the SDL files and
stores the architecture as a structure-master view in OCT, which
can also be created graphically with a schematic entry. This
view is an OCT representation of the information shown in Fig.
6.

Step 2: Instance generation: DMoct traverses the design hi-
erarchy in a top-down depth-first manner and generates the ac-
tual instances. At each level it evaluates the child cell param-
eters from the parent cell parameter values. This parameter
evaluation mechanism allows a more powerful parameterization
compared to pop-up forms used in some commercial CAD sys-
tems. The instances are stored in the OCT database as a struc-
ture-instance view. The structure-instance view is used as the
common input to all the layout generation tools.

Step 3: Structure processing: Prior to layout generation,
DMoct allows the structure-instance view to be modified by a
special class of programs called structure-processors. An ex-
ample of a structure-processor is a bit-slice data path processor
(Section IV-4.2) that modifies the cell and net information in
the structure-instance view to allow a more optimal routing by
the layout generation tools.

SHUNG et al.: CAD SYSTEM FOR IC DESIGN 453

parametername >

k7zGl7, me, parameter, parameter value’

parameter value - constant OR function of
of subcell, net, terminal - parent cell parameters

Fig. 6 . Syntax diagram of the structural descriptional language (SDL).

Step 4: Functional simulation: Assuming that parameter-
ized simulation models exist for the leaf cells in the hierarchy
(which are usually the library cells). A utility called DMpost is
then used to generate a simulation input for the entire design
for the simulator THOR [29]. Based on simulation results, the
designer can modify the SDL files or parameter values and re-
run the simulation. When simulation results are satisfactory,
layout generation can proceed.

Step 5: Layout generation: In this step, DMoct traverses the
cell hierarchy in the structure-instance view in a top-down
depth-first manner. When DMoct reaches a leaf node, it re-
curses back up the hierarchy and executes the layout generator
program specified for each cell. By policy each layout generator
reads its input information about the cell from the structure-
instance view and stores the information about the layout as a
physical view. If the physical view exists for a cell and is more
recent than the corresponding structure-instance view, the lay-
out is not generated. This avoids regeneration of cells that are
not affected by design iteration.

Step 6: VerBcation: A verification tool DMverify is pro-
vided to check for isomorphism between the schematic repre-
sented in the structure-instance view and the hierarchial sche-
matic extracted from the physical view. In contrast to
conventional netlist verification tools, this program compares
the cell hierarchy and connectivity (not transistor or gate level).
The inherent assumption here is that at the lowest level, the
cells were designed by hand and have been fully debugged using
circuit simulation and test chips. The uniform policy imposed
on all tools by the structure-instance and physical views takes
the guesswork out of the netlist verification so that time con-
suming signature analysis and logic extraction procedures can
be avoided.

Step 7: Performance estimation: The chip performance de-
pends on the performance of the cell library. Currently, a
MOSIS rev-6 scalable CMOS library is integrated, allowing
clock rates in the region of 20-25 MHz in a 2-pm process. The
library provides various data and clock buffering cells so that
performance is relatively independent of the place and route

tools if appropriate buffer cells are used. The choice of buffer
cells is not yet automated. The chip performance can be esti-
mated based on SPICE characterization of the library cells and
an estimation of the critical path. Alternatively, the simulator
IRISM [30] can be used in the linear mode to obtain perfor-
mance estimations.

Step 8: Maskfile generation: When the final layout is ac-
ceptable, mask files can be generated from the OCT physical
view.

It is important to note that to perform all the above steps the
user only interacts with DMoct and its associated utilities. The
designer can rapidly iterate on the design and explore different
architectural alternatives by simply changing the schematics and
parameter values and rerunning DMoct. The design times for
silicon assembly with DMoct are application dependent; some
data are given in Section V-5.3.

The LAGER silicon assembler is cell based. The cell library
contains parameterized modules and leaf cells. New modules
can be added to the library by providing structural descriptions;
new leaf cells can be added to the library by providing simu-
lation models and layouts. Re-using parameterized modules and
leaf cells has proven to be an important factor in improving the
productivity.

A new layout generator, structure processor or simulator can
be integrated in the silicon assembler by following the policy
defined by DMoct. This involves writing procedures to read,
write or modify the three OCT views. For information the reader
is referred to [28], [31]. Integrating a new tool or cell does not
require any modification of the user interface provided by
DMoct or of the interface between DMoct and the OCT data-
base. This capability is an important feature in creating an open
framework for tool integration.

A prototype of the design manager was previously developed
using the Flavors package in FranzLisp to implement the data
base [32]. This was motivated by the facilities of parameter
declaration and evaluation, and the ease of prototyping offered
by Lisp, and the advantage of object-oriented paradigm for tool
integration offered by Flavors. However, this version was too

454 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10, NO. 4, APRIL 1991

slow to permit efficient design iteration and was less portable
than the C-based OCT data base. Also, unlike OCT, which
maintains the structure-master, structure-instance, and physical
views as disk files, the Flavors-based implementation keeps all
design information in the process memory, which limits the de-
sign size.

4.2. Layout Generation Tools

While the CAD framework supported by DMoct allows any
tool to be integrated so long as it fits the methodology described
above, currently, a set of four layout generators are interfaced
to the framework which support various design styles required
in algorithm-specific IC's. These are described in the follow-
ing.

4.2. I . Tiler for Macrocell Layout Generation: TimLager:
TimLager is a general purpose macrocell layout generator that
is used for bit-sliced modules such as adders, registers, multi-
plexers as well as array-based modules such as RAMS'S, PLA's,
and ROM's. It assembles the layout for the macrocell from hand
designed leafcells by abutment. This requires the leafcells to be
pitch-matched and avoids the use of routing in macrocell gen-
eration.

For each macrocell, TimLager requires a set of leafcell lay-
outs, and a tiling procedure that describes how the marocell is
constructed from the leafcells as a function of the macrocell
parameters. The procedure is written using the C language. To
allow rapid creation of tiling procedures for new macrocells
TimLager provides two tiling functions Addright () and
Addup() (Fig. 7). The full capability of C can be exploited
for parameterizing the layout. Hierarchical tiling can be per-
formed using subroutines. This allows greater flexibility than
the personality matrix approach traditionally used in tiling.

Each tiling function has a set of 20 optional arguments that
allows geometric transformation on the cell to be placed. The
arguments also allow several bookkeeping operations to be au-
tomated, such as the naming of terminals. Thus the cell termi-
nals as defined in the library can be changed arbitrarily to names
more pertinent to a given design. The optional argliments also
provide a stretching mechanism that can be used to pitch-match
one macrocell to another as well as a mechanism for adding
metal feedthrough lines in between cells. These options can be
exploited for optimization of a higher level cell (e.g., a data
path) constructed from several macrocells generated by Tim-
Lager.

The tiling procedure for each macrocell is compiled and stored
in the library along with associated leafcell layouts. At runtime
TimLager dynamically links the required procedure and exe-
cutes it. The parameter values are read from the structure-in-
stance view and a physical view is generated for the macrocell
layout.

4.2.2. Random Logic Macrocells Using Standard Cells:
Stdcell: Stdcell provides an interface to a standard cell place
and route tool, Wove [28], to generate standard cell modules
for a given logic schematic. Wolfe in turn uses the Timber-
WolfsC [33] standard cell placement program and the YACR
[34] channel router. The standard cell modules can also be gen-
erated from a high-level logic description (see Section
IV-4.3.3). Stdcell directly reads the structure-instance view to
obtain the logic schematic and generates a physical view for the
layout.

4.2.3. Macrocell Place and Route Tool: Flint: Higher level
cells can be constructed with Flint [35] from the macrocells
generated by TimLager or Stdcell (or any other macrocell gen-

IPARAMETERS I 1 LAYOUT I
I I 1

fw lJ=l;]<.words;]+1)
Addrlght("reg");

Fig. 7. Tiling procedure used in TimLager. In this example, leafcell reg-
cell is abutted vertically by addup() calls to form reg, which is abutted
horizontally by addright() calls to form the module. The module has 2
parameters: bits and words.

erator that produces OCT physical views). Flint supports three
floorplan definition alternatives: 1) interactive-graphical (Fig.
8), 2) interactive-textual using a floorplan description language
(FDL), or 3) automatic. An automatically generated floorplan
can be further refined using the interactive modes. A floorplan
definition contains the relative placement of the macrocells, the
definition of the channel areas, and the specification of the
global routes for signal, power, ground, and clock nets. In order
to make the global routing process tractable in an interactive
mode, Flint clusters groups of nets in so called cables (Fig. 8).
A cable is a set of nets which have identical sources and desti-
nations.

The automatic mode is based on min-cut and slicing. This
technique has the advantage that a realizable channel structure
is automatically obtained. The placement is then further refined
using a modification of Stockmeyer's algorithm [36], an effi-
cient tree-traversal method which determines the optimal ori-
entation of each macrocell. The global routing is based on Dijk-
stra's [37] shortest path algorithm. The use of the cable concept
mentioned above increases the efficiency of this phase of the
floorplanning process. Finally, the global routes of power and
clock nets are determined using an approximation technique for
the Steiner tree problem [38]. Flint does not build the power
and ground network as a single tree, but rather as a "forest of
trees." In fact, it is not necessary to have a connected power
network at every level of the chip hierarchy. All the above rou-
tines are extremely efficient and complete in less than a minute
CPU time for complex examples (up to 20 macrocells and 1000
nets) on a SUN 3/60.

Given the floorplan, Flint carries out all other steps automat-
ically including channel routing, power/ground/clock routing,
absolute placement, and creation of terminals on the top level
cell (interface for the next higher level in the hierarchy). De-
tailed routing in Flint is performed by a completely gridless
channel router. Although the router is a variant of the classical
left-right router, it has some features which distinguish it from
other routers. First, it routes signal, power, and ground nets
together using a priority scheme, which gives special priority
to more sensitive nets such as power and ground. Secondly, it
automatically sizes the power and ground nets, using terminal
current information if it is available, or else it is based on a
saturating weighted sum of the connecting terminal widths. Fi-
nally, it supports three layer routing, which is essential when
high density routing is necessary as in the case of bit-sliced data
paths.

4.2.4. Pad frame generation and routing: Padroute: The
creation of a pad frame and routing of signals from the core of

the chip to the pad frame is done bb a specialized tool called
Pndrourr [391. If the terminals on one side of the core connect
only to pads on the same side of the pad frame. a simple channel
router can be used. However , in practice. this is often not the
case and hence. a special ring router is necessary.

Thc ring routing algorithm is a modified channel routing al-
gorithm. which allows Podroute to route a channel that docs not
have left and right ends. Padroute creates radial and circumfer-
ential constraint graphs (F ig . 9). The radial constraint graphs
serves the same purposc a s ;I vertical conmain t graph in a reg-
ular channel routcr. It shows the re1atiL.e positions of the tracks
the nets must occupy. A track in Padroute runs thc cntire cir-
cumference of the ring-shaped routing region. The circunifcr-
entia1 constraint graph represents net? that inay be placed in the
same track. Padroute continues hb checking for cycles in the
radial constraint graph. It' a cyclc is detected. 21 clog-leg is added
to one of the nets involved in the

Once the radial constraint graph is cyclc free. nets are as-
signed to tracks. The first pass simply assigns one net per track.
The second pass tries to combine nets onto single tracks as much
as possible to reduce the space occupied by the routing. After
track assignment. Padroute verifies that the routing will fit into
the initial pad frame. If the routing cannot fit. the pad frame is
enlarged.

4.3. Structure Proceytor Toolc

This section describes structure processor tools that are used
to preprocess the user-specified structural description before ac-

routing track

padframe module

Fig 9. Radial and circumferential constraints in Padroute

tual layout generation is performed. It should be remembered
these are tools called by DMoct and are. therefore, hidden from
the user.

4.3.1. Data-Path Processor: dpp: The bit-slice data-path
generation tool, dpp 1401. is perhaps the most important utility
for algorithm-specific IC's. Much of the processing power of
such circuits conies from the ability to dedicate the data-path
architecture to the exact needs of the algorithm. With LAGER
the designer can very quickly reconfigure a data path and iterate
on several designs while evaluating their area and performance.
Given the schematic of a bit-slice data path, dpp doe5 the place-
ment. channel definition, and global routing of the data path

456 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL 10, NO 4, APRIL 1991

Vied Macmcelb (TimLager) Control, SIaIus and Clocks

power rail (mefal2)

Vertical routing channel

I -c- I r--

J

L

A

A

C

A
N "
E
I

T

n

I around rail (melala)

I
HoNontal routing channels

Fig. 10. Bit-slice data path by dpp. Each cell in the block consists of a
leafcell (dark), a feedrhrough (grey) and an optional stretching (white).
Horizontal channels are used to route data signals between blocks. Global
and local channels are used to route control, status, and clock signals. Each
block is generated by TimLager. Routing of blocks is done by Flint.

and produces a floorplan (a FDL file) for Flint to route the in-
dividual channels and generate the actual layout. It also back-
annotates the structure-instance view of individual macrocells
in the data path with geometric constraints and feedthrough in-
formation for TimLager.

Bit-sliced data paths (Fig. 10) are viewed by dpp to consist
of macrocells that are tiled in the vertical direction and placed
linearly along the horizontal direction with the bottom edges of
the macrocells being co-linear. Horizontal routing channels
separate adjacent macrocells. Local vertical channels are placed
along the top edge of each macrocell in order to equalize the
heights of each macrocell. Finally, global vertical channels
spanning the entire width of the data path are placed at the top
and the bottom of the data path.

The control, status, clock, and supply nets run vertically.
Within a macrocell they are routed implicitly by the abutment
of leafcell terminals during the tiling process. The global rout-
ing of these nets between macrocells and to the outside is done
by dpp using the global vertical channels. The data buses flow
in the horizontal direction and are routed explicitly using the
horizontal routing channels between the adjacent macrocells.
Data buses connecting nonadjacent macrocells are routed
through the intervening macrocells. This is done by back-an-
notation of the structure-instance view of the macrocells with
information for TimLager to generate enough feedthroughs for
data buses going across the macrocell. Feedthroughs already
provided by the leafcell designer are used first before extra
feedthroughs are generated.

The process of guiding the lower level layout generation ac-
cording to the requirements of the upper level layout generator
is a key feature of dpp. It makes the macrocells appear porous

Data busses

/
I
I

MS8 Slice

4
1

Bit 1 Slice

T
I

LS8 Slice

to Flint and saves the area wasted by the macrocell place-and-
route approach in routing around the opaque macrocells. As
shown by the example in Fig. l l (a) and (b), this results in a
24% reduction in area. A problem with our approach is that
there may be a mismatch between the heights of adjacent ma-
crocells resulting in a staircase effect or congestion in the hor-
izontal routing channels. Back-annotation is again used here to
force TimLager to stretch the heights of the leafcells used in
each bit position in all the macrocells to a uniform value. This
equalizes the macrocell heights resulting in much better routing
channels. A further 32% reduction in area is obtained in the
same example (Fig. 4.7(c)). It can be shown that the percent
area penalty due to the staircase and the macrocell opacity effect
increases with the number of bits. Consequently, the percent
area reduction obtained by making the macrocells porous and
stretchable also increases as the number of bits increases. For
example, a 24-b version of the same data path shows a 63%
reduction in area.

The other crucial step in dpp is placement. The goal is to find
a suitable ordering of the macrocells so as to minimize the area.
With our approach of through-the-macrocell routing of global
buses and equalization of the macrocell heights, the problem
can be quite accurately modeled as minimization of the height
of the tallest macrocell taking the extra feedthroughs required
into account. Dpp directly calls TimLager in an estimation mode
to obtain informqtion about the physical characteristics of the
macrocells. This information is then used by the placement pro-
cedure which is based on the Kemighan and Lin's min-cut
placement algorithm [41], but tries to minimize the height of
the tallest macrocell taking the extra feedthroughs required into
account, instead of the number of nets crossing a partition.

SHUNG ef al.: CAD SYSTEM FOR IC DESIGN 451

Fig. 11. (a) Data-path layout with Flint; area = 4.2 x IO‘X’. (b) Data-
path layout with Flint after processing with dpp to add feedthroughs; area
= 3 X 10%’. (c) Data-path layout with Flint after processing with dpp to
add feedthroughs and stretching of cells; area = 2.18 x 10‘X’.

4.3.2. Logic Synthesis: Bds2stdcell: The logic synthesis
tools BDSYN [42] and mis-I1 [43] are used by Bds2stdcell to
translate a combinational logic description for a module in the
BDS language to a logic schematic using a standard cell library.
The standard cell layout can then be generated using Stdcell.
Bds2stdcell reads the logic description and external terminal in-
formation from the structure-instance view of the logic module.
After executing BDSYN and mis-I1 it back-annotates the struc-
ture-instance view with the actual schematic (nets and sub-
cells). Thus the designer can define the logic module as part of
the input architecture description and connect it to other mod-
ules in the chip without having to provide the detailed sche-
matic.

4.3.3. PLA Optimization: Plagen: The plagen structure-
processor reads the BDS logic description for a PLA from the
structure-instance view and back-annotates it with the input-
plane and output-plane bit patterns for the PLA. After being
minimized by espresso [44], the PLA layout can then be gen-
erated by a PLA generator using TimLager.

In summary, we see that structure-processor tools can be used
to back-annotate the structure-instance view with information
for the layout generation tools. This back-annotation may con-
sist of defining parameter values required by the macrocell gen-
eration (as in plagen and dpp) or defining the schematic itself
(as in bds2stdcell). This allows the designer to exploit high-
level tools on individual cells in the architecture while retaining
a common input structural description.

V . DESIGN EXAMPLES
Application-specific IC’s for a variety of applications have

been designing using the LAGER system. They include a low-
level trajectory controller for a two-joint robot arm 1451, a chip
set for real-time emulation of communication channels in com-

puter networks [46], a chip set for continuous speech recogni-
tion using hidden Markov models [47], [48], a real-time image
segmentation chip [49], and an image processing chip for Ra-
don transformation [50], etc. Still under development are chips
for digital mobile radio, machine vision, and robotics.

Some of the above chips use only the silicon assembler por-
tion of the LAGER system. These chips use hardwired archi-
tectures because programmable architectures are not suitable due
to either higher computation requirements, as in image pro-
cessing applications, or specialized U0 requirements, as in the
chips for the network channel emulator. Use of a hardwired
architecture precludes the use of the behavioral mapper. How-
ever, the design of these chips is facilitated by the silicon as-
sembler, which enables fast, automatic generation of layout
from a netlist description.

Other chips, such as the robot arm controller, the adaptive
equalizer for digital mobile radio, and the inverse kinematics
processor for a six-joint robot arm, use algorithms that are bet-
ter suited to the programmable architectures such as the Kappa
model. They have been designed or are being designed using
both the behavioral mapper and the silicon assembler.

Section V-5.1 describes a robot arm controller chip, which
was designed using both the behavioral mapper and the silicon
assembler. Section V-5.2 describes a chip for real-time image
segmentation, which was designed with the silicon assembler.
In Section V-5.3 we present the design results of several other
algorithm-specific IC’s in hardwired architectures.

5.1. Robot Arm Controller Chip

The robot arm controller chip [45] is the heart of a robot-
control system that directs a two-joint, direct-drive robot arm
along a desired trajectory in real time. It uses a model-reference
adaptive control (MRAC) algorithm, which takes into account

458 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10, NO. 4, APRIL 1991

EXTERNAL TESTMOOE
CONDITIONS RESET EOB SCANOUT CLOCKIN TEST CLOCK

I I Unit

Fig. 12. Processor architecture of a Kappa example used in the robot arm
controller chip. The solid lines from the processor control unit (PCU) are
the control signals. The dotted lines from the data paths are the status sig-
nals.

I proc-chip.sdl I
I I

Fig. 13. The structural hierarchy of the robot arm controller chip. The six
blocks at the bottom correspond to the six components in Fig. 12.

the nonlinearities in the arm dynamics and adaptively deter-
mines the parameters of the arm at runtime.

On an IBM PC, the MRAC algorithm achieves a 7-ms sample
period. Implemented on a TMS32010-based board, it achieves
a sample period of 0.7 ms, but at a significant cost in hardware
and board area. For a higher speed, a more complex algorithm,
or a reduced amount of hardware, a custom chip is appropriate.
The custom robot arm controller chip not only achieves a higher
speed with a sample period of 0.04 ms, but also reduces the
required I/O hardware by customizing the chip I/O.

The chip was designed using the Kappa model architecture.
The robot-control algorithm, unlike many DSP algorithms, has
many conditional branches and loops. The Kappa control unit
provides hardware for efficient handling of these operations. The
chip consists of the following functional units, as shown in Fig.
12.

Processor Control Unit: This controls program execution
and provides support for branching, looping, and subroutines.
It consists of a finite state machine and a control store.

Arithmetic Unit: This is the main data path, used to perform
fixed-point arithmetic. It consists of a bit-slice data path and a
block of random logic for decoding control signals.

Logic Unit: This is a finite state machine implementing
Boolean operations.

Address Processing Unit: This is an auxiliary data path that
performs address computations. Like the arithmetic unit, it con-
sists of a bit-slice data path and a block of random logic for
decoding control signals.

Memory Unit: This is a random-access, read-write memory,
closely tied to the arithmetic unit.

Testing Module: This is an interface for an external tester.
It supports testing and debugging of the chip using the scanpath
technique.

The layout of the chip is generated from a parameterized
structural description. The chip is described hierarchically,
using SDL files as shown in Fig. 13. The components are gen-
erated using the tools best suited to their layout style; an appro-
priate layout generation tool is associated with each SDL file.

At the top-most level of the hierarchy, the chip consists of
four pad groups (one for each side) and a core section. The five
units are connected by Padroute. The pad groups are assembled
as linear tilings of pads using TimLager. The core section con-
sisting of the six functional units described above is generated
using Flint. The finite state machine PLA’s, the control store,

SHUNG et al . : CAD SYSTEM FOR IC DESIGN

and the memory are generated from parameterized descriptions
by TimLager. The bit-slice data paths are generated by the data-
path placement and routing program, dpc (which is the prede-
cessor of dpp). The random logic required for decoding control
words and generating local clock signals is generated by Stdcell.

Values for all of the parameters in the SDL description need
to be provided before layout can be generated. Some parame-
ters, such as the widths of the data paths, are provided in the
behavioral descriptions. Other parameters, such as the contents
of the control store and the finite state machine, are generated
by the behavioral mapper. The algorithm was coded in all three
input languages in the behavioral mapper. The hand-coded Sass
version was finally used in the chip, for its slightly better per-
formance than the compiled code. A die photograph of the robot
arm controller chip is shown in Fig. 14. The dimension of the
chip is 8.4 mm2 by 7.15 mm2 in the MOSIS 2-pm SCMOS tech-
nology. The chip is tested to operate at 15 MHz [21].

459

5.2. Real-Time Image Segmentation Chip

Low-level image segmentation reduces the image data rate
(usually from gray-level to a few classes) and thereby enables
more sophisticated image processing in the following stages.
Image segmentation using supervised pattern recognition [5 11
involves: 1) feature extraction and 2) classification. Feature ex-
traction extracts local (such as windowed MIN, MAX) and
global (such as the histogram) features that are of discrimina-
tory power. Classification attempts to associate, for each pixel,
one of the few predefined classes, based on the extracted fea-
tures.

Feature selection is highly application specific, and special
purpose VLSI chips were extensively used in feature extraction
[52]-[54]. Classification is usually done by evaluating a num-
ber of decision functions (one for each class), comparing their
results and selecting the one with the maximum value. In Fig.
15, XI, * . , X, are extracted features, DFE,, . . . , DFE, are
the C decision function evaluators (DFE’s) and COMP is the
comparator. The most popular decision functions are low-order
(first, second, or third) polynomials. For not too small number
of features, polynomial classifiers are not feasible for hardware
implementation because of the vast number of multipliers and
the wiring cost incurred by the crossterms in second- or third-
order polynomials.

A classical without crossterm is proposed [49] in which the
decision functions are of the form

K

DFE,(X,, . . . , X K) = gic(X;).
I = I

This classifier can easily be implemented by look-up tables (for
gic()) and adders. The impact of the no-crossterm classifier is
that the principle axes of the decision region for each class are
in parallel with the feature axes. However, simulation indicates
little classification inaccuracy results from this restriction.

A modular decision function evaluator (mDFE) and a mod-
ular comparator (mCOMP) architecture are developed which
enable a two-chip set to be used in cascade to realize any num-
ber of features and classes. The mDFE handles four features
and has a built-in partial sum chain for collecting contributions
from various mDFE’s. Because the features are extracted
simultaneously, a variable delay is inserted to align the timing
of various mDFE’s along the partial sum chain. The mDFE chip
architecture is shown in Fig. 16. An mCOMP in turn handles
four DFE results and generates as output both the class label

Fig. 14. The die photo of the robot arm controller chip

Threshold

g:
x , - U

Fig. 15. Decision analyzer overview.

Fig. 16. mDFE chip architecture

and the maximum DFE results, which may be used by the next
mCOMP for comparison when the number of classes is large.
An example of a classifier with 12 features and 7 classes is
shown in Fig. 17.

In Figure 18 the die photo of the mDFE chip is shown. The
dimension of the chip is 9.5 mm2 X 7.5 mm2 in the MOSIS
1.6-pm SCMOS technology. The four look-up tables are im-
plemented by static RAM’S, and are generated using TimLager.
Adders, latches, and a variable delay are all incorporated in a
bit-slice data path, generated by dpp. The Global control unit
is implemented with Stdcell and the placement and routing of
the whole chip is done with Flint. The mDFE chip has been
tested to operate at 20 MHz.

460 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. IO, NO. 4. APRIL 1991

x9. x12 TABLE I
DESIGN TIME A N D PREFORMANCE OF SEVERAL OTHER CHIPS

SDL Area
Chip Entry DMoct (mm‘) Transistors Speed

FIR 2 min 45 min 2.7 x 6 . 8 11.5 K 25 MHz
RT 10 h 10 h 7.2 x 7.2 120 K 17 MHz
SDSP 20h 16 h 8.5 x 6.5 20K 73-33011s
W P 10-15 h 200h 10 x 1 1 25K 20 MHz

simulation time. The SDL files of FIR is program generated
[S I . Therefore, its SDL entry time is very small.

The DMoct time is the accumulated runtime spent on silicon
assembly, including iterations due to SDL modifications (ex-
cept FIR, which indicates the silicon assembly time of one it-
eration), but not including the time spent in debugging the lay-
out using IRSIM. The SDL entry and DMoct times are based
on the runtime of a SUN 3/60 workstation.

All chips except RT are fabricated with the MOSIS 2-pm
SCMOS technology. RT uses the MOSIS 1.6-pm SCMOS tech-
nology. The cycle time of SDSP is variable because it is input
dependent.

Fig. 17. A decision analyzer with 12 features and 7 classes.

VI. CONCLUSION
Silicon compilation systems have shown progress in the past

few years, but significant breakthroughs are still required before
efficient architectures and layouts can be generated from behav-
ioral specifications. The LAGER system accomplishes this by
taking both a structural input and a behavioral input. The basic
design cycle involves the tuning of both of these inputs. The
LAGER silicon assembly system is implemented using an ob-
ject-oriented data base that makes the integration of new cells
and CAD tools easy.

LAGER has been applied to a number of algorithm-specific
IC designs. It initially was used mainly in research projects at
the University of California at Berkeley, and recently has been
applied at other academic and industrial institutions. Two de-
sign examples, a robot arm controller chip and a real-time im-
age segmentation chip, are shown in this paper.

Fig. 18. The die photo of the mDFE chip.

5.3. Other Design Examples
The design results of several other chips are tabulated in Ta-

ble I. These chips are designed with hardwired architectures;
hence, only the LAGER silicon assembler is used. They in-
clude:

(FIR) a predistortion FIR filter chip [55];
(RT) an image processing chip for Radon and inverse Ra-
don transformation [50];
(SDSP) a fully-asynchronous DSP chip using self-timed
circuits [56];
(WP) a word processor chip for large vocabularly contin-
uous speech recognition system [47].

The SDL entry time is the accumulated engineering time spent
in entering the design, including modifications based on DMoct
results, but not including the initial architecture definition and

ACKNOWLEDGMENT
The authors are grateful to the following students of the Uni-

versity of California at Berkeley and Los Angeles who have
contributed to the development of LAGER and provided valu-
able feedback: A. Stolzle, G. Jacobs, W. Baringer, J . Sun, S.
Lee, M. Thaler, L. Svensson, P. Yang, P. Duncan, P. Tjahjadi,
and W. Jao. They thank Prof. W. Reese and his group at MSU
for their help in debugging and evaluating LAGER. They also
want to thank the reviewers for the many helpful and construc-
tive comments.

REFERENCES

[l] R. Jain, F. Catthoor, J. Vanhoof, B. D. Loore, G . Goossens, N .
Goncalvez, L. Claesen, J . V. Ginderdeuren, J . Vandewalle, and
H. De Man, “Custom design of a VLSI PCM-FDM transmulti-
plexer from system specification to circuit layout using a com-
puter-aided design system,’’ IEEE J . Solid-Stare Circuits. vol.
SC-21, pp. 73-85, Feb. 1986.

121 P. N . Hilfinger, “A high-level language and silicon compiler for
digital signal processing,” in Proc. Custom IC Conf., May 1985.

SHUNG er U [. : CAD SYSTEM FOR IC DESIGN 46 1

P.-LeGuernic, A. Benveniste, P. Bournai, and T. Gautier, “SIG-
NAL: A data flow oriented language for signal processing,” in
VLSI Signal Processing. New York: IEEE 1984, pp. 282-293.
H. Trickey, “Flamel: A high-level hardware compiler,” IEEE
Trans. Computer-Aided Design, vol. CAD-6, pp. 259-269, Mar.
1987.
M. Barbacci, “Instruction set specification (ISPS): The notation
and its applications,” IEEE Trans. Comput., vol. 30, Jan. 1981.
D. Thomas, C. Hitchcock 111, T. Kowalski, J . Rajan, and R.
Walker, “Automatic data path synthesis,” Comput., pp. 59-70,
Dec. 1983.
C. Tseng and D. P. Siewiorek, “Automatic synthesis of data paths
in digital systems,” IEEE Trans. Computer-Aided Design, vol.

N . Park and A. C . Parker, “Sehwa: A software package for syn-
thesis of pipelines from behavioral specifications,” IEEE Trans.
on Computer-Aided Design, vol. CAD-7, pp. 356-370, Mar.
1988.
P. G . Paulin and J . P. Knight, “Force-directed scheduling for
the behavioral synthesis of ASIC’s,’’ IEEE Trans. Computer-
Aided Design. vol. 8, pp. 661-679, June 1989.
S. Devadas and A. R. Newton, “Algorithms for hardware allo-
cation in data path synthesis,” IEEE Trans. Computer-Aided De-
sign, vol. 8, pp. 768-781, July 1989.
B. Haroun and M. Elmasry, “Architectural synthesis for dsp sil-
icon compilers,” IEEE Trans. Computer-Aided Designs, vol. 8,
pp. 431-447, Apr. 1989.
J. Rabaey, H. De Man, J. Vanhoof, G. Goossens, and F. Cat-
thoor, “Cathedral-11: A synthesis system for multiprocessor DSP
systems,” in Silicon Compilation. Reading, MA: Addison-
Wesley, 1988, pp. 311-360.
C . Chu, M. Potkonjak, M. Thaler, and J. Rabaey, “HYPER: An
interactive synthesis environment for high performance real time
applications,” in Proc. ICCD 89, Oct. 1989, pp. 432-435.
P. A. Ruetz, R. Jain, and R. W. Brodersen, “Comparison of
parallel architectures for real-time image processing ICs,” in
Proc. ISCAS, Dec. 1987.
N. Bergmann, “A case study of the F.1.R.S.T silicon compiler,”
in Proc. Third Caltech Conf. on VLSI, 1982.
J. R. Jassica, S. Noujaim, R. Hartley, and M. J . Hartman, “A
bit serial silicon compiler,” in Proc. ICCD 85, Oct. 1985.
J . Rabaey, S. Pope, and R. Brodersen, “An integrated automatic
layout generation system for dsp circuits,” IEEE Trans. Com-
puter-Aided Design, vol. CAD-4, pp. 285-296, July 1985.
J. Schuck, M. Glesner, and M. Lacken, “First results and design
experience with silicon compiler ALGIC,” in VLSI Signal Pro-
cessing. 11.
J. R. Southard, “Macpitts: An approach to silicon compilation,”
IEEE Comput. Mag., vol. 16, pp. 74-82, Dec. 1983.
G . Zimmermann, “The Mimola design system: A computer aided
digital processor design method,” in Proc. 16th Design Auto-
mation Conf., June 1979, pp. 53-58.
S. K. Azim, “Application of silicon compilation techniques to a
robot controller design,” Ph.D. dissertation, Univ. of California
at Berkeley, May 1988.
E. Wang, “A Compiler for Silage,” Master’s thesis, Univ. of
California at Berkeley, Dec. 1988.
P. N. Hilfinger, “Silage reference manual,” Internal rep.
K. Rimey and P. N. Hilfinger, “A compiler for application-spe-
cific signal processors,” in VLSI Signal Processing, I l l . New
York: IEEE, Nov. 1988, pp. 341-351.
- , “Lazy data routing and greedy scheduling for application-
specific signal procesors,” in Proc. 21th Ann. Workshop on Mi-
croprogramming, Nov. 1988, pp. l 11-1 15.
J . A. Fisher, D. Landskov, and B. D. Shriver, “Microcode com-
paction: Looking backward and looking forward,” in Proc. Nut.
Computer Conf., 1981, pp. 95-102.
P. Ruetz, R. Jain, C. Shung, J. Rabaey, G. Jacobs, and R. Brod-
ersen, “Automatic layout generation of real-time digital image
processing circuits,” in Proc. CICC, May 1986.
W. Baker, J . Burns, S. Chow, D. Harrison, M. Igusa, C . Kring,
T. Laidig, B. Lin, P. Moore, J . Reed, R. Rudell, C . Sechen, R.
Segal, R. Spickelmier, A. Wang, A. R. Newton, and A. San-
giovanni-Vincentelli, “OCT tools distribution 2.0,” Tech. Rep.,
Univ. of California at Berkeley, Electron. Res. Lab, Nov. 1987.
R. Alverson, T. Blank, K. Choi, A. Salz, L. Soule, and T. Rok-

CAD-5, pp. 379-395, July 1986.

New York: IEEE, Nov. 1986.

I

icki, “THOR user’s manual,” Tech. Rep. CSL-TR-88-348 and
349, Stanford Univ., Jan. 1988.
A. Salz and M. Horowitz, “IRISM: An incremental MOS switch-
level simulator,” in Proc. 26th ACMHEEE Design Automation
Conf., June 1989, pp. 173-178.
“LagerIV distribution 1 .O: silicon assembly system manual,”
Tech. Rep. Electron. Res. Lab., Univ. California Berkeley, June
1988.
C. Shung, “An integrated CAD system for algorithm-specific IC
design,” Ph.D. dissertation, Univ. of California at Berkeley, June
1988.
C. M. Sechen, “Placement and global routing of integrated cir-
cuits using simulated annealing,” Ph.D. dissertation, Univ. of
California at Berkeley, Dec. 1987.
J . Reed, “YACR: Yet another channel router,” Master’s thesis,
Univ. of California at Berkeley, Feb. 1985.
S. Lee, “Automatic floorplanning techniques for macrocell-based
layouts,” Master’s thesis, Univ. of California at Berkeley, 1989.
L. Stockmeyer, “Optimal orientation of cells in slicing floorplan
designs,” Inform. Contr., vol. 57, pp. 91-101, 1983.
E. W. Dijkstra, “A note on two problems in connection with
graphs,” Numer. Math, vol. 1, pp. 269-271, 1959.
L. Kou, G . Markowsky, and L. Berman, “A fast algorithm for
steiner trees,” Acta Inform., vol. 15, pp. 141-145, 1981.
E. R. Lettang, “Padroute: A tool for routing the bounding pads
of integrated circuits,” Master’s thesis, Univ. California at
Berkeley, May 1989.
M. B. Srivastava, “Automatic generation of CMOS data paths in
the LAGER framework,” Master’s thesis, Univ. California at
Berkeley, May 1987.
B. W. Kernighan and S. Lin, “An efficient heuristic procedure
for partitioning graphs,” Bell Syst. Tech. J . , vol. 49, pp. 291-
308, Feb. 1970.
R. Rudell and R. Segal, “BDSYN user’s manual,” Tech. Rep.
Berkeley CAD Tool Documentation, Univ. California at Berke-
ley, Jan. 1988.
R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.
R. Wang, “MIS: A multiple-level logic optimization system,”
IEEE Trans. Computer-Aided Design, vol. 6 , pp. 1062-1081,
Nov. 1987.
R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued
minimization for PLA optimization,” IEEE Trans. Computer-
Aided Design, vol. CAD-6, pp. 727-750, Sept. 1987.
S. K. Azim, C. Shung, and R. W. Brodersen, “Automatic gen-
eration of a custom digital signal processor for an adaptive robot
arm controller,” in Proc. ICASSP, Apr. 1988.
J. S. Sun, “Design and implementation of integrated circuits for
a real-time flexible emulator applying silicon assembly tools, ”
Master’s thesis, Univ. California at Berkeley, Mar. 1988.
A. Stolze, S. Narayanaswamy, K. Kornegay, J . Rabaey, and R.
Brodersen, “A VLSI word-processor subsystem for a real-time
large vocabulary continuous speech recognition system,” in Proc.
CICC, May 1989.
D. Chen, R. Yu, J. Rabaey, and R. Brodersen, “A VLSI imple-
mentation for the grammar processor subsystem for a real-time
large vocabulary continuous speech recognition system,” in Proc.
CICC, May 1990.
C. B. Shung, W. E. Blanz, and D. PetkoviC, “Real-time decision
analysis-algorithms, architecture and implementation,” Res.
Rep. RJ 6526 (63327), IBM, Nov. 1988.
W. Baringer, B. Richards, R. Brodersen, J . Sanz, and D. Pet-
kovic, “A VLSI implementation of PPPE for real-time image
processing in radon space-work in progress,” in Proc. I987
Workshop on Computer Architecture fo r Pattern Analysis and
Machine Intelligence, Oct. 1987, pp. 88-93.
J. Sklansky and G . Wassel, Pattern Classifiers and Trainable
Machines. New York: Springer-Verlag, 1981.
L. Palmier, M. P. Gayrard, and B. Zavidovique, “VLSI archi-
tecture of the “curve” function in image processing,” in Proc.
1985 IEEE Computer Society Workshop on Computer Architec-
ture for Pattern Analysis and Image Database Management, Los
Alamitos. CA. Nov. 1985. DO. 284-287. , I I

[53] M. Hatamian, “A real-time two-dimensional moment generating
algorithm and its single chip implementation, ” IEEE Trans.
Acoust., Speech, Signal Processing., vol. ASSP-34, pp. 546-552,
1986.

462 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. IO, NO. 4, APRIL 1991

P. A. Ruetz and P. Ang, “A 20 MHz chip-set for image pro-
cessing,” in Tech. Dig. 1988 Int. Solid-State Circuits Conf., San
Francisco, CA, Feb. 1988.
R. Jain, P. Yang, B. Chung, and C. Chien, “A CAD system for
automatic layout generation of high-performance FIR filters,” in
Proc. CICC, May 1990.
G . Jacobs and R. Brodersen, “A fully-asynchronous digital sig-
nal processor using self-timed circuits,” in Tech. Dig. 1989 h t .
Solid-state Circuits Conf., (San Francisco, CA), Feb. 1989.

Edward Wang is currently a graduate student
with the Department of Electrical Engineering
of California at Berkeley.

Mr. Wang is a member of the ACM.

reco

C. Bernard Shung received the B.S. degree
from the National Taiwan University in 1981,
and the M.S. and Ph.D. degrees from the Uni-
versitv of California. Berkelev in 1985 and
1988,- respectively, all in eleciricd engineer-
ing.

In 1988 he joined the IBM Research Divi-
sion, Almaden Research Center in San Jose,
CA, where he was involved in designing VLSI
chips for computer vision for process inspec-
tion and error-correction coding for magnetic

irding. Since 1990 he has been an Associate Professor with the
Department of Electronics Engineering, National Chiao Tung Univer-
sity in Hsinchu, Taiwan, Republic of China. His research interests in-
clude computer-aided design for VLSI circuits, and VLSI system and
architecture design for signal/image processing and communications.

icon assembly system.
versity of California at
computer-aided design

Rajeev Jain (S’83-M’84) received the B.
Tech. degree from the IIT Delhi and the Ph.D.
degree from the Katholieke Universiteit Leu-
ven.

He has worked at Siemens AG, Munich on
DSP design for an oversampled PCM CODEC.
He was a group leader at IMEC, Leuven, for
the ESPIRIT sponsored Cathedral silicon com-
piler project. During 1985-1988 he was on the
research staff at ERL, University of California
Berkeley where he developed the LagerIV sil-
Since 1988 he has been on the faculty at Uni-
Los Angeles where he has initiated research in
of high-performance DSP circuits.

Ken Rimey received the B.S. degree in physics
from the Stevens Institute of Technology, Ho-
boken, NJ, in 1981, and the M.A. degree in
physics and the Ph.D. degree in computer sci-
ence from the University of California, Berke-
ley, in 1983 and 1989, respectively.

He is currently an Acting Assistant Professor
in the Department of Computer Science at the
Helsinki University of Technology, Finland.
His research interests include compiler design,
Lisp systems, and computer algebra.

Mani B. Srivastava received. the B.Tech. de-
gree (summa cum laude) in electrical engineer-
ing from the Indian Institute of Technology at
Kanpur, India, in 1985 and the M.S. degree in
electrical engineering and computer sciences
from the University of California at Berkeley,
California in 1987. He is currently working to-
wards the Ph.D. degree at the University of
California at Berkeley.

His research interests include custom VLSI
and board-level hardware. architecture and

computer-aided design tools for real-time systems in digital signal pro-
cessing and robot control.

Brian C. Richards received the B. S . degree in
electrical engineering from the California In-
stitute of Technology in 1983, and the M.S.
degree in electrical engineering and computer
science from the University of California,
Berkeley in 1986.

In 1986, he joined the technical staff at the
University of California, Berkeley, where he is
currently maintaining and continuing the de-
velopment of several VLSI and system design
CAD tools.

Erik Lettang (S’86-M’88) received the B.S. degree and M.S. degree
in electrical engineering and computer science from the University of
California at Berkeley in 1986 and 1989, resepctively.

From 1986 to 1989 he worked as a research assistant at University
of California at Berkeley. He is currently employed at Hewlett-Pack-
ard’s San Diego Division.

Mr. Lettang is a member of Eta Kappa Nu, and Tau Beta Pi.

tional Semiconductor
Since 1988 he has be

S. Khalid Azim (M’88) received the B.Sc. de-
gree in electrical engineering from the Bang-
ladesh University of Engineering and Technol-
ogy, Dhaka, in 1976, the M.S.E.E. degree
from the University of Houston, Texas, in
1980, and the Ph.D. degree in electrical engi-
neering and computer science from the Univer-
sity of California, Berkeley, in 1988.

He was an engineer with IBM World Trade
Corp., Bangladesh, from 1977 to 1978 and
worked in the microprocessor group at Na-

’ Corporation, Santa Clara, CA from 1980 to 1983.
en a Member of the Technical Staff at AT&T Bell

SHUNG er al.: CAD SYSTEM FOR IC DESIGN 463

Laboratories in Allentown, PA. His technical interests are in the area
of design of VLSI subsystems for digital signal processing and com-
munications, CAD, and exploration of automated design techniques
for custom chips.

Dr. Azim is a member of Sigma Xi.

t

Lars Thon (S’87) received the B.Sc. degree in
electrical engineering from the Norwegian In-
stitute of Technology in 1984 and the M.Sc.
from the University of California at Berkeley
in 1987. He is currently working towards the
Ph.D. at University of California at Berkeley.

His research interests include high-level in-
tegrated circuit design systems, and architec-
ture and implementation of application specific
processors for numerical algorithms, with an
emphasis on robotic applications.

Paul N. Hilfinger received the A.B. degrees in
mathematics from Princeton University in 1973
and the Ph.D. degree from Carnegie Mellon
University in 1981.

He worked on the Ada language design in
1980, served as a member of the Ada Board
until 1987, and is presently a member of the
I S 0 working group on Ada. In 1982, he joined
the Department of Electrical Engineering and
Computer Service, University of California at
Berkeley, where he is currently an Associate

Professor. His research interests include languages and software sup-
port for scientific computation, parallel computation, program seman-
tics, compiler technology, and software engineering.

Dr. Hilfinger is a member of the ACM.

Jan M. Rabaey received the E.E. and Ph.D.
degrees in applied sciences from the Katho-
lieke Universiteit Leuven, Belgium, respec-
tively, in 1978 and 1983.

From 1983 to 1985, he was with the Univer-
sity of California, Berkeley as a Visiting Re-
search Engineer, where he developed an auto-
mated synthesis system for multiprocessor DSP
architectures. From 1985 to 1987, he was Head
of the Architectural and Algorithmic Strate-
gies’ Group in the VSDM (VLSI System De-

sign Methodologies) section of the IMEC Laboratory, Leuven, Bel-
gium. In 1987, he joined the faculty of the University of California,
Berkeley, where he is currently an Assoicate Professor. His main in-
terests are in the study of signal processing architectures and in com-
puter-aided analysis, and synthesis and design of digital signal pro-
cessing systems. He has authored or co-authored more than 50
publications.

Dr. Rabaey received the IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN Best Paper Award in 1986. In 1989, he received the Presiden-
tial Young Investigators Award.

Robert W. Brodersen (M’76-SM’81-F’82)
received the B.S. degrees in electrical engi-
neering and mathematics from the California
State Polytechnic University in 1966, and the
Eng., M.S., and Ph.D. degrees from the Mas-
sachusetts Institute of Technology in 1968 and
1972. respectively.

From 1972 to 1976, he was with the Central
Research Laboratory, Texas Instruments, Inc.,
Dallas, TX. In 1976, he joined the faculty of
the University of Califomia at Berkeley, where

he is currently a Professor. His research interests include the use of
MOS technology for signal processing applications.

Dr. Brodersen received the W . G . Baker Award for the Outstanding
Paper in IEEE Journals and Transactions. In 1986, he received the
IEEE Circuits and Systems Society’s Best Paper Award for the IEEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN. In 1987, he received the
Circuits and Systems Society Technical Achievement Award. He is a
member of the National Academy of Engineering.

