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在感知無線電網路中支分散式合作頻譜偵測 

 

研究生: 游衛川 指導教授: 簡鳳村 博士

 

國立交通大學 

 

電子工程學系 電子研究所碩士班 

 

摘要 

    感知無線電網路藉由動態頻譜存取而擁有更高的頻譜效率。因此，它將會成為未來

無線通訊系統最常使用來減輕頻譜缺乏問題的技術。在感知無線電網路中頻譜偵測是主

要且棘手的任務。然而，由於遮蔽、干擾、和無線通道的時變性質的影響，造成各別的

感知無線電無法可靠和迅速地檢測出主要訊號是否存在、在本論文中，我們提出一簡單

但有效率的合作式頻譜偵測且基於能量檢測。我們在次要的使用者與聯合中心之間考慮

了兩個案例。一是只考慮通道雜訊，另外是考慮通道雜訊和干擾。最後，我們對修改的

反射係數作最佳化，來找出最佳線性組合係數。藉由電腦模擬，我們觀察到所提出的合

作式方法有較好的成果，而且藉由增加次要使用者的數目來改善偵測可靠性。 
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Abstract 

Cognitive radio network enables much higher spectrum efficiency by dynamic spectrum 

access. Therefore, it will be a popular technique for future wireless communications to 

mitigate the spectrum scarcity issue. Spectrum sensing is a main and tough task in cognitive 

radio networks. However, due to the effect of shadowing, fading, and time-varying nature of 

wireless channels, the individual cognitive radio may not be able to reliably and quickly 

detect the existence of a primary signal. In this thesis, we propose a simple yet efficient 

cooperation spectrum sensing based on energy detection, and consider the channel between 

the secondary user and fusion center in two cases. First, we consider only the channel noise 

between the secondary user and the fusion center (i.e., constant AWGN channel), and then we 

extend to consider both the perturbation noise and channel fading between the secondary user 

and the fusion center (i.e., fading channel). Our objective is to improve the detection 

performance while considering a realistic system environment. Finally, we optimize a 

modified deflection coefficient to find the optimal linear combining weights. From the 

simulations, we can observe that the proposed cooperation method has the better detection 

performance than the other methods, and the sensing reliability improves as the number of 

secondary users increase.  
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Chapter 1  

Introduction 

 

1.1 Significance 

Wireless communication systems have been used widely for a long time. We know 

that spectrum plays an important role of the wireless communication. Without 

spectrum, no wireless communications would be possible. However, radio spectrum is 

a precious and limited resource, so we must use the limited spectrum efficiently. In 

order to improve the spectrum efficiency, cognitive radio networks is proposed to 

dynamically use the idle spectrum in a smart way [1].  According to the Federal 

Communications Commission (FCC) [2], cognitive radio (CR) is defined as the radio 

system that continuously performs spectrum sensing, dynamically identify unused 

spectrum, and then operate in those spectrum holes where the licensed (primary) radio 

systems are idle and use the spectrum only if communication does not interfere with 

the primary user. Therefore, the cognitive radio enables much higher spectrum 

efficiency by dynamic spectrum access, [3], [4]. And it is a potential technique for 

future wireless communications to mitigate the spectrum lack problem. This new 

communication system is referred to as neXt Generation (XG) or Dynamic Spectrum 

Access (DSA) network.      

  Spectrum sensing is an important task in the cognitive radio networks, and it needs 

to reliably and quickly detect the primary signal. Spectrum sensing should also 

monitor the activation of primary user in order for the secondary users to vacate the 

occupied spectrum. However, spectrum sensing is a difficult task because of the 
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hostile nature of the wireless channel, such as shadowing, fading, and time-varying of 

wireless channels. To tackle that problem, recent research studies of spectrum sensing 

have focused on the detection of primary transmissions by cognitive radio devices.  

  Generally, the energy detector has been applied widely among these existing 

spectrum sensing techniques. This is because that it does not require any a priori 

knowledge of the primary signals and has much lower complexity than other detectors. 

In other words, if the secondary user has limited information about the primary 

signals, then the energy detector is optimal [5]. In chapter 3, we assume that the 

primary signal is unknown and we adopt energy detector.   

 

1.2 Motivation 

Cognitive radio is a potential technique for future wireless communications. 

However, the detection performance of spectrum sensing is usually dependent on 

destructive channel fading, since it is difficult to detect the primary signals in 

environments with deep fades. In order to improve the reliability of spectrum sensing, 

cooperative spectrum sensing exploiting the spatial diversity among secondary users 

has been proposed recently [3], [6]. A cooperation cognitive radio network would 

have a better detection performance by combining multiple sensing information from 

possibly correlated secondary users. In other words, cooperative spectrum sensing 

exploits the spatial diversity to have a better detection performance. Thus, it could 

reduce the probability of interfering with primary users. 

Although the distributed detection has been studied since early 90’s (e.g. [8], [9]), 

but the result might not be directly applied to cognitive radios, and the research of 

cooperative spectrum sensing is very limited. In [10], the voting rule is one of the 

simplest suboptimal solutions. It counts the number of cognitive radio nodes that 
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decide for the presence of the signal and compares it with a given threshold. In [11], 

the fusion rule with OR logic operation was used to combine decisions from several 

secondary users. In [12], the hard decision with the AND operation and soft decision 

using the Neyman-Pearson criteria was proposed. It was shown that the soft decision 

combination of spectrum sensing outperforms hard decision combination. In [13], 

they exploited the fact that summing signals from two secondary users can increase 

the signal-to-noise ratio (SNR) as well as the detection reliability if the signals are 

correlated. In [14], they proposed the cooperation spectrum sensing method, and they 

assumed perfect control channel. In other words, they did not consider that channel 

fading and channel noise between the secondary user and fusion center. In practice, it 

is not realistic in the actual situation. Therefore, in this thesis, we propose the 

cooperation spectrum sensing and consider the channel in two cases. One is to 

consider only the channel noise between the secondary user and fusion center (i.e., 

constant AWGN channel), and the other is considered both of the channel noise and 

channel fading between the secondary user and fusion center (i.e., fading channel). 

 

1.3 Contribution  

In this thesis, we develop a simple yet efficient cooperation for spectrum sensing 

and consider the channel fading effects between the secondary user and fusion center 

in two cases. The global decision is based on simple energy detection over a linear 

combination of the local statistics from individual secondary user. The approach does 

not find optimal thresholds for individual nodes. Instead, we transmit the local test 

statistics through fading channel to the fusion center. Thus, the optimal threshold at 

the fusion center can be simply and jointly determined with the optimal linear 

combining weights. We derive the closed-form expressions of probabilities of 
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detection and false alarm, and we can use the close-form expressions to make quick 

adaptations when some parameters change during the operation. Finally, we optimize 

a modified deflection coefficient to find the optimal linear combining weights and 

improve the detection performance. From the simulations, we can observe that the 

proposed cooperation method have the better detection performance then other 

methods, and the sensing reliability improves as the number of secondary users 

increase.  
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Chapter 2  
Background Review 

2.1 Cognitive Radio Networks 

 The material in this section is largely taken from [3].  

2.1.1 Introduction to Cognitive Radio  

  The radio spectrum is a precious natural and limited resource, the use of which by 

transmitters and receivers is licensed by governments. Spectrum plays an important 

role of the wireless communication. Without spectrum, no wireless 

telecommunications or wireless internet services would be possible. Now, the 

telecommunication industry is a 1 Trillion ( 1210 ) dollar per year industry. And the 

wireless part is growing very rapidly, while the wired telecommunication services are 

experiencing a relatively flat business. In 2006, the wired and wireless businesses 

were nearly equal in revenue. Spectrum is required to support these wireless 

communications. In the United States, the increase in cellular telephony demand is 

supported by increasing density of cellular infrastructure. But, in some region, the 

cellular infrastructure is at the peak capacity and increased infrastructure density is 

not feasible. In order to continue serving the market demand, we develop the 

cognitive radio networks that enable continued growth.      

  In November 2002, the Federal Communications Commission (FCC) published a 

report prepared by the Spectrum –Policy Task Force in the United States. Their 

objective is that manage this precious spectrum efficiently. The Task Force was a tem 

of FCC staff, and the team was high-level, multidisciplinary and professional. It was 

included economists, engineers, and attorneys from across the commission’s bureaus 

and offices. Among the Task Force major findings and recommendations, we can find 
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that as follows in this report: 

“In many bands, spectrum access is a more significant problem than physical 

scarcity of spectrum, in large part due to legacy command-and-control regulation 

that limits the ability of potential spectrum users to obtain such access.”              

Indeed, if we scan portions of the radio spectrum in urban areas, we would observe 

that: 

1) some frequency bands in the spectrum are largely unoccupied most of the time; 

2) some other frequency bands are only partially occupied; 

3) the remaining frequency bands are heavily used. 

The unused spectrum of primary user was called spectrum holes, and we define as 

follows: 

  A spectrum hole is a band of frequencies assigned to a primary user, but, at a 

particular time and specific geographic location, the band is not being utilized by that 

user.   

  Spectrum utilization can be improved significantly while a secondary user to access 

a spectrum hole unoccupied by the primary user at the right location and the time in 

question. Cognitive radio has been proposed to promote the efficient use of the 

spectrum by exploiting the unused spectrum holes. 

What is the cognitive radio? Cognitive radio’s objective is to improve utilization of 

the radio spectrum, we offer the following definition for cognitive radio. 

 Cognitive radio is an intelligent wireless communication system. It is aware of its 

surrounding environment (outside world), and uses the methodology of 

understanding-by-building to learn from the environment and adapt its internal states 

to statistical variations in the incoming RF stimuli by making corresponding changes 

in certain operating parameters (e.g., transmit-power, carrier frequency, and 

modulation strategy) in real-time, with two primary objectives in mind: 
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    highly reliable communication whenever and wherever needed; 

 efficient utilization of the radio spectrum. 

  Now, we can say that cognitive radio can be represented by the six key steps as 

follows: 

 awareness 

 intelligence 

 learning 

 adaptivity 

 reliability  

 efficiency 

  Implementation of the six steps of combination is indeed feasible today, thank to 

the rapid advances in digital signal processing, networking , machine learning, 

computer software, and computer hardware. 

  In additional to the cognitive capabilities just mentioned, a cognitive radio is also 

endowed with re-configurability. Now, we see the re-configurability which provides 

the basis as follows: 

  Adaptation of the radio interface so as to accommodate variations in the 

development of new interface standards. 

  Incorporation of new applications and services as they emerge. 

  Incorporation of updates in software technology. 

  Exploitation of flexible heterogeneous services provided by radio 

networks. 

 This latter capability is provided by a platform known as Software-defined radio, 

upon which a cognitive radio is built. Software-defined radio (SDR) is a practical 

reality today, thank to the convergence of two key technologies: digital radio, and 

computer software. 
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2.1.2 Cognitive Task 

For the re-configurability, a cognitive radio looks naturally to software-defined 

radio to perform this task. For other tasks of a cognitive kind, the cognitive radio 

looks to signal-processing and machine-learning procedures for their implementation. 

The cognitive process starts with the input stimuli and culminates with action. 

In this section, we discuss the three cognitive radio tasks: 

(1) Radio-scene analysis, which includes the following: 

 estimation of interference temperature of the radio environment; 

 detection of  the spectrum holes. 

   (2)  Channel identification, which includes the following: 

 estimation of channel-state information (CSI); 

 prediction of channel capacity for use by the transmitter. 

   (3)  Transmit-power control and dynamic spectrum management. 

   Tasks (1) and (2) are performed in the receiver, and (3) is performed in the 

transmitter. Through interaction with the RF environment, these three tasks form a 

cognitive cycle, which is illustrated in Fig. 2-1. 

  From this brief discuss, it is showed that the cognitive radio’s module in the 

transmitter must work in a harmonious manner with the cognitive radio’s modules in 

the receiver. In order to maintain this harmony between the cognitive radio’s 

transmitter and receiver at all time, we need a feedback channel connecting the 

receiver to the transmitter. Through the feedback channel, the receiver can be enabled 

to convey information on the performance of the forward link to the transmitter. 

Therefore, the cognitive radio system is necessarily an example of a feedback 

communication system.  

One other comment is in order. A broadly defined cognitive radio technology 
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accommodates a scale of differing degree of cognitive. At one end of the scale, the 

user may simply pick a spectrum hole and build its cognitive cycle around that 

spectrum hole. At the other end of scale, the user may employ multiple 

implementation technologies to build its cognitive cycle around a wideband spectrum 

hole or set of narrowband spectrum holes to provide the best expected performance by 

spectrum management and transmit -power control, and do so in the most highly 

secure manner possible. 

       

 

 

Fig. 2-1 Basic cognitive cycle.(The figure focuses on three fundamental cognitive tasks.) From [3] 
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2.1.3 Historical Notes 

  The history of cognitive radio was started in December 1901 by Guglielmo 

Marconi. And at that time the development of cognitive radio is still at a conceptual 

stage. But, as we looks to the future, we see that cognitive radio has the potential for 

making a significant difference to the way in which the radio spectrum can be 

accessed with improved utilization of the spectrum as a primary objective. Indeed, 

given its potential, cognitive radio can be described as a “disruptive, but unobtrusive 

technology.”  

  The two terms “cognitive radio” and “software-defined radio” were coined by 

Joseph Mitola. In an article published in 1999, Mitola described how a cognitive radio 

could enhance the flexibility of personal wireless services through a new language 

called the radio knowledge representation language (RKRL) [1]. The idea of RKRL 

was further expanded in Mitola’s own doctoral dissertation, which was presented at 

the Royal Institute of Technology, Sweden, in May 2000 [18]. This dissertation 

presents a conceptual overview of cognitive radio as an exciting multidisciplinary 

subject. 

  As mentioned earlier, the FCC published a report in 2002, which was aimed at the 

changes in technology and the significant impact that those changes would have on 

spectrum policy [19]. That report set the stage for a workshop on cognitive radio, 

which was held in Washington, DC, in May 2003. Those papers and reports that were 

presented at that workshop are at the web site listed under [20]. This workshop was 

followed by a conference on cognitive radio, which was held in Las Vegas，NV, in 

March 2004 [21].     
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2.2 Statistical Decision Theory 

The material in this section is largely taken from [14]. 

 

The simplest detection problem is to decide whether a signal is present, which, as 

always, is embedded in noise, or only noise is present. An example of this problem is 

the detection of the primary signal based on cognitive radio network. Since we wish 

to decide between two possible hypotheses, signal and noise present versus only noise 

present, we call this the binary hypothesis testing problem. Our objective is to use the 

received data as efficiently as possible in making our decision and to be correct most 

of the time.    

   Now, assume that we observe a realization of a random variable whose PDF is 

either )1,0(N  or )1,1(N , where ),( 2σµN  denotes a Gaussian PDF with mean µ  

and variance 2σ . We must decide if 0=µ  or 1=µ  based on a single 

observation ]0[x . Each possible of µ  can be though of a hypothesis, and our 

problem is to choose among two hypotheses. We can summarize as follows: 

 

Binary Hypotheses Test 

 

 

where 0H  is null hypothesis and 1H  is alternative hypothesis. The PDF under each 

hypothesis is shown in figure 2-2. However, a reasonable approach is to decide 1H  

if 2/1]0[ >x . This is because if 2/1]0[ >x , it is more likely if 1H  is true. Then, 

hypothesis  ealternativ                 1:
hypothesis null                 0:

1

0

=
=

µ
µ

H
H

 (2.1) 
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our detector compares the observed sample with the threshold value (1/2). Now, we 

define two type errors. If we decide 1H  but 0H  is true, we call the Type I error. On 

the other hand, if we decide 0H  but 1H  is true, we call the Type II error. These two 

errors are shown in figure 2-2. The );( ji HHP  is represented as that the probability 

of deciding iH  when jH  is true. (e.g., );H/(xHHP 001 21]0[Pr);( >= ).  

From figure 2-3, we find that these two errors are unavoidable to some extent but 

can tradeoff by each other. Obviously, when the Type I error probability ( );( 01 HHP ) 

is decreased by changing the threshold, the Type II error probability ( );( 10 HHP ) is 

then increased. As the threshold changes, one error probability increases, while the 

other decreases. It is not possible to reduce both error probabilities simultaneously.    

  Now, we have the signal detection problem as follows: 

 

 

where 1]0[ =s  and )1,0(~]0[ Nw . We can define three probabilities. Deciding 1H  

when 0H  is true can be thought as the false alarm. The );( 01 HHP  is the 

probability of false alarm which is denoted by fP , and deciding 1H  when 1H  is 

true can be thought as the detection. The );( 11 HHP  is the probability of detection 

which is denoted by dP . However, the other error );(1);( 1110 HHPHHP −=  can 

be thought of the probability of miss detection which is denoted by mP . The fP  is 

usually a small value, and we often design the optimal detector to minimize the 

probability of miss detection ( mP ) or maximize the probability of detection ( dP ). 

Finally, we will summarize these probabilities in the table 2-1. 

hypothesi ealternativ                 ]0[]0[]0[:
hypothesis null                          ]0[]0[:

1

0

wsxH
wxH

+=
=

 (2.2) 
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Table 2-1 Summary of probabilities. 

 

False Alarm Miss Detection Detection 

fP  mP  dP  

);( 01 HHP  );( 10 HHP  );( 11 HHP  

Type I error Type II error dP =1- mP  

 

 

 

 

 

Fig. 2-2 Possible hypothesis testing error and their probability. From [14] 
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Fig. 2-3 Tradeoff errors by adjusting threshold. From [14] 

 

 

 

Fig. 2-4 Decision region and probabilities. From [14] 
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  As the figure 2-4 illustrated, we can express the probability of false alarm and the 

probability of detection as follows: 

 

 

where γ  is the threshold value, and (.)Q  is the calculation of the tail probability 

of the zero mean and unit variance Gaussian random variable. 

 

 

From (2.3) and (2.4), by changing the threshold we can trade off dP  and fP . Now, 

we further consider the particularly useful hypothesis testing problem, and we call the 

mean-shifted Gauss-Gauss problem. We observe the value of a test statistic T  and 

decide 1H  if γ>T  or 0H  if γ<T . The PDF of T  is assumed as follows: 

 

 

where 01 µµ > . Hence, we wish to decide between the two hypotheses that differ by 

)(       
2
1       

);]0[Pr(       

);(

2

2
1

0

01

γ
π

γ

γ

Q

dte
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t

f

=
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a shift in the mean of T . For this type of detector, the detection performance is 

totally characterized by the deflection coefficient ( 2d ), and it is defined as follows:   

 

 

In the definition, we know that a larger value of 2d  leads to a larger probability of 

detection ( dP ). This is because that when the distance between 0µ  and  1µ  is 

larger, it would result in more accurate inference. In the case when 00 =µ , 

2

2
12

σ
µ

=d  may be interpreted as a signal-to-noise ratio (SNR). To find the dependence 

of detection performance on 2d  we have that 

 

 

 

  Finally, we can obtain as follows: 
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 The detection performance is therefore monotonic with the deflection coefficient. 

And we can summarize the detection performance by plotting dP  versus fP . This 

type of performance summary is called the receiver operating characteristic (ROC). 

From figure 2-5, we can observe that as γ  increases, fP  decreases and so does dP . 

On the other hand, as γ  decreases, fP  increases and so does dP . The ROC always 

be above the o45  line. And when we increase the value of 2d for a fixed value of 

fP , the value of dP  also increases. In other words, a larger value of 2d  leads to a 

larger probability of detection( dP ). For ∞→d , the idea ROC is attained ( 1=dP  

for any fP  ). 

 

Fig. 2-5 Family of receiver operating characteristics. From [14] 
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2.3 Energy Detection 

The material in this Chapter is largely taken from [15] and [16]. 

2.3.1 Introduction to Energy Detection 

 

  In many wireless communications, it is of great interest to check the presence and 

availability of an active communication link. What kind of detector do we adopt in the 

detection of a signal in the presence of the noise? The answer to the question is 

depended upon the knowledge of the transmitted signal characteristics and of the 

noise. When we has known that the transmitted signal has a known form and the noise 

is Gaussian, even with unknown parameters, the appropriate detector is chosen as the 

matched filter or its correlator equivalent. When the transmitted signal has an 

unknown form, it is sometimes appropriate to consider the signal as a sample function 

of a random process. When the transmitted signal statistics are known, we can often 

use this knowledge to design suitable detectors. 

  In the situation which is considered here, we have so little knowledge of the 

transmitted signal form, and we may make unreasonable assumptions about it. 

However, we consider that the transmitted signal is deterministic, although unknown 

in detail. And the spectral region is considered to be known. The noise is assumed to 

be additive white Gaussian noise with zero mean; the assumption of a deterministic 

signal represents that the input with the signal present is Gaussian but not zero mean. 

  If we have limited knowledge of the transmitted signal, it may seem appropriate to 

use an energy detector to detect the presence of the signal. The energy detector 

measures the energy in the input wave over a time interval. Due to only the signal 

energy matters (not its form), we can apply this result to any deterministic signal. 

  It is assumed here that the noise has a flat band-limited power density spectrum. 
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When the transmitted signal is absent, by means of a sampling theory, the energy in a 

finite time sample of the noise can be approximated by the sum of squares of 

statistically independent random variables which has zero means and equal variances. 

We can derive that this sum is a central chi-square distribution with the number of 

degrees freedom equal to twice the time-bandwidth product of the input. When the 

transmitted signal is present, by means of the sampling theory, the energy in a finite 

time sample of the transmitted signal and noise can be approximately by the sum of 

squares of random variables, where the sum has a non-central chi-square distribution 

with the same number of degrees freedom and a non-centrality parameter λ  equal to 

the ratio of signal energy to two-sided noise spectral density. 

 

            

2.3.2  Energy Detection in White Noise              

 

  The energy detector consists of a noise pre-filter, a square law device followed by a 

finite time integrator that is shown in figure 2-2. The output of the integrator at any 

time is the energy of the input to the squaring device over the interval T  in the past. 

The noise pre-filter limits the noise bandwidth; the noise at the input to the squaring 

device has a band-limited, flat spectral density.  

  The detection is a binary hypothesis as follows: 

 

   

  where )(tr : the received signal. 

)()()(         :
)()(         :

1

0

tntstrH
tntrH
+=

=
 (2.10) 
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        )(ts : the transmitted signal. 

        )(tn : the noise which is zero-mean white Gaussian random process. 

  As figure 2-2, the received signal is first pre-filtered by an idea bandpass filter with 

transfer function   

 

 

  where 0N : one-sided noise power spectral density. 

        cf : carrier frequency. 

        W : one-sided bandwidth (Hz). 

to limit the average noise power and normalize the noise variance. Than, the output of 

the per-filter is squared and integrated over a time interval T . Finally, we produce a 

measure of the energy of the received waveform. The output of the integrator denoted 

by Y will be the test statistic to test the two hypotheses 0H  and 1H . 

 

 

 

Fig. 2-6 Energy detection 
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  According to the sample theorem, the noise process can be expressed as follows 

[22]: 

 

 

where 
x

xxc
π
π )sin()(sin =  and )

2
(

W
inni =  

  We can easily find that  

 

 

  Over the time interval (0,T ), the noise energy can be approximated as follows [16]: 

 

 

where TWu = : time-bandwidth product. 

  We assume that T  and W  are chosen to let u  to be integer value. If we defined 

as follows: 
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 Then, the test statistic Y can be expressed as follows:  

 

 

Y  can be seen as the sum of squares of u2 standard Gaussian variables with zero 

mean and unit variance. So Y  is a central chi-square distribution with u2 degrees of 

freedom. 

  The same approach is applied when the signal )(ts  is present. We replace each in  

by ii sn +  (where )
2

(
W
issi = ). And then, the test statistic Y  is a non-central 

chi-square distribution with u2  degrees of freedom and a non-centrality parameter 

γ2 . (
0N

Es
=γ : signal to noise ratio; ∫=

T
dttsEs

0
)( : signal energy.). Finally, we can 

express the test statistic as follows: 

  

 

  The probability density function (PDF) of the test statistic Y  can be expressed as 
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where )(⋅Γ  is the gamma function which defined as ∫
∞ −−=Γ

0

1)( dtetu tu , and )(⋅vI  

is the thv −  order modified Bessel function of the first kind, and it defined as  

 

 

Now, we can obtain their mean and variance as follows: 

 

 

 

  Therefore, we can compute that the probability of detection and false alarm as 

follows: 

 

 

 

where λ  is the decision threshold. 
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  In chapter 3, for simplicity, we apply the central limit theory to the test statistic Y , 

and the probability distribution function of test statistic Y may be approximated as  

Gaussian distribution. This makes us easy to deal with dP  and fP . 

 

2.4 SNR Wall Reduction   

The material in this Chapter is largely taken from [17]. 

 

  When we use the energy detector, a significant problem is that it is suffers from an 

SNR wall when the noise power uncertainty is present [5],[23]. Caused by the noise 

uncertainty, the SNR wall is defined as an SNR threshold below which energy 

detection is absolutely impossible no matter how many samples are used. Now, we 

consider that there exists x dB uncertainty in noise power estimation, and then the 

actual noise power may take any value within ( 2
2

, n
n ασ
α
σ

), where 1010
x

=α  and 2
nσ  

is the estimated noise power. If the primary signal power is smaller then (
α
σ

ασ
2

2 n
n − ), 

then the energy detection will always fail. In other words, the SNR wall of energy 

detection is defined as follows: 

 

 

where wγ  is SNR wall. Here we assume that the channels of the cognitive radio 

users experience block fading, and the block length is long enough so that errorless 

detection can be guaranteed if only the instantaneous SNR is greater then the SNR 

wall ( wγ ). While the number of the secondary users increases, the probability that the 

)
1

(log10)(log10 1010 α
αγ −== wwallSNR  (2.24) 
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instantaneous SNR on one of these users is greater then SNR wall increases. Once this 

probability exceeds the target overall probability of detection of the cognitive radio 

network, energy detection will work well. Therefore, cooperation equivalently 

decreases the SNR wall with a certain target probability of detection. Now, we will 

derive the equivalently SNR wall reduction achieved by cooperation among 

independently cognitive radio users. 

     Let Mγ  be the minimum average SNR that meets the target overall probability 

of detection ( TARdP _ ), when M independent secondary users are cooperating. In other 

words, Mγ  is equivalent the SNR wall of a M-secondary users network with the 

target overall probability of detection ( TARdP _ ). Miss detection will happen if and only 

if the instantaneous SNR of all cognitive radio users are below wγ , so we can 

obtained as follows: 

 

 

Here we use the Nakagami channel [24]. In this case, the CDF of the instantaneous 

SNR (γ ) is obtained as follows: 

 

 

where m  is the Nakagami parameter, and ∫ −−

Γ
=

x mt dtte
m

xmP
0

1

)(
1),(  is the 

normalized lower incomplete gamma function, and )(mΓ  is the gamma function. 

M
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  Now, we can obtain the equivalent SNR wall of a M-secondary users cooperative 

network as 

 

 

where ),(1 ymP −  is the inverse normalized lower incomplete function. Finally, we 

can obtain the equivalent SNR wall reduction relative to the single user as follows: 

 

 

  According to (2.28), we observe that the SNR wall reduction increases with the 

number of secondary user ( M ), independent of wγ . For fixed m  and TARmP , , 

 

 

which means that the equivalent SNR wall of the cognitive radio network can be 

reduced to any arbitrarily low level as long as a sufficient number of the cooperating 

secondary users. Therefore, we use this result to improve the detection performance in 

chapter 3, the simulation can be shown that as the number of the cooperating 

secondary users increase, the detection performance becomes better. 
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Chapter 3              

Distributed Cooperative Spectrum Sensing for 

Two Cases 

In this chapter, we propose an optimal linear cooperative structure for spectrum 

sensing in order to accurately detect the primary signal. In this structure, spectrum 

sensing is based on the linear combination of local statistics from individual cognitive 

radio, and we control the combining weights to combat the effect of channel fading. 

Our objective is to minimize the interference to the primary user while the secondary 

users access the licensed band. So we optimize the modified deflection coefficient at 

the fusion center in order to improve the detection performance. 

 

 

3.1 System Model 

 We consider a cognitive radio networks with M secondary users. The binary 

hypothesis test for spectrum sensing at the k -th time instant is expressed as follows: 

 

 

where )(ks  is the signal transmitted by the primary user and )(kyi  is the 

received signal by the i -th secondary user. The channel gain, ih  between each 

secondary user and the target primary user, is assumed to be fixed during a detection 

interval, and )(kvi denotes the zero-mean additive white Gaussian noise (AWGN), i.e. 

MikvkshkyH
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),0(~)( 2
vi CNkv σ . Without loss of generality, )(kvi , )(ks  and ih  are assumed to 

be independent of each other. 

  As illustrated in Fig. 3-1, we use the energy detection, since it doesn’t require any a 

priori knowledge of primary signals and has much lower complexity then other 

detectors. Each secondary user computes its summary statistic iu  over a detection 

interval of 2n samples. i.e. 
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The summary statistic { iu } are then transmitted to the fusion center through a 

fading channel and are corrupted by the zero-mean additive white Gaussian noise 

(AWGN), we can express as follows: 

 

 

or 

 

 

where the channel gain { ig } between secondary users and fusion center are 

additive white Gaussian noise with zero-mean and variance 2
gσ , and they are 
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assumed to be fixed during a detection interval, and  the channel noise { in } are also 

additive white Gaussian noise with zero-mean and variance 2
nσ , 

i.e. ),0(~),,0(~ 22
nigi NnNg σσ . Finally, the fusion center computes the global test 

statistics, cr as in (3.18), from the outputs { ir }of the individual secondary users in a 

linear combination manner, and then cr  is used to make a global decision. 

 

 

Fig. 3-1 A schematic representation of weighting cooperation for spectrum sensing in cognitive radio 

networks.  

 

 

3.2 Cooperative Spectrum Sensing  

  In this section, we propose a optimal strategy for cooperative spectrum sensing. 

Because we do not know the prior knowledge of the primary signals (i.e. the 

secondary user has limited information of the primary signals), the energy detection is 

optimal and the simplest, so we adopt energy detection as the local sensing rule, 
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which will be discussed as follows. 

 

3.2.1  Local Sensing 

  

  We first consider local spectrum sensing at individual secondary users, and then we 

find out the local test statistics at each node. For the sequence of 2 n  samples over 

each detection interval, we define 

  

 

which denotes the transmitted signal energy. The local test statistics of the i -th 

secondary user using energy detector are expressed as follows: 

  

 

Since iu  is the sum of the squares of 2 n  Gaussian random variables, so we can 

show that 2/ viu σ  is a central chi-square 2χ  distribution with 2 n  degrees of 

freedom if 0H  is true; otherwise, the 2/ viu σ  would be a non-central chi-square 

2χ ( iη ) distribution with 2 n  degrees of freedom and iη  is a non- centrality 

parameter. We can express as follows: 
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  where  

 

 

  is the local SNR (signal to noise ratio) at i -th secondary user. According to CLT 

(central limit theorem), if the number of samples is large enough, the test statistics iu  

can be asymptotically normally distributed with mean 

 

 

and variance  

 

 

We can express simply as follows: 
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  for 2 n  is large enough. Now, for a single-CR spectrum sensing scheme, the 

decision rule at each secondary user is given by  

 

 

 where iγ  is the corresponding decision threshold. Therefore, secondary user i  

will have the probabilities of detection and false alarm, and we can express as the 

following Q-function: 

 

 

  and 
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higher spectrum efficiency. This is because based on the assumption that if no primary 

signals are detected, the secondary users use the channel (such that interference is 

generated in case of miss-detection); if a primary signals is detected (possibly a false 

alarm), the secondary users are restrained to use the channel (such that spectrum is 

wasted in case of false alarm).  

 

 

3.2.2 Global Detection 

 

  As illustrated in Fig. 3-1, we transmit the local test statistic { iu } to the fusion 

center via a channel and the zero-mean additive white Gaussian noise (AWGN),and 

then are multiplied by weights in a linear combination manner. Now, we consider the 

channel with two conditions. First, for simplification, we assume that the channel can 

be treated as constant AWGN channels which channel gains are constant one 

(i.e. 1=ig ).  Second, we further consider that the channels are fading channels 

which channel gains are generated according to a normal distribution and assumed to 

be fixed during a detection interval. 

 

I. Constant AWGN Cannel between Secondary User and Fusion Center 

    

   From (3.3) or (3.4), we assume that the channel gains are constant one (i.e. 1=ig ), 

then we can express as follows: 
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According to (3.11), since ))(],[(~ iii uVaruENu , ),0(~ 2
ni Nn σ , so the received 

statistics { ir } are normally distributed with mean 

 

 

and variance 

 

 

   Once the fusion center receives { ir }, a global test statistic cr  is calculated 

linearly as follows: 
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the received vector. Since the received statistics { ir } are Gaussian random variables, 

so their linear combination is also Gaussian. Then, cr  is normally distributed with 

mean 

 

 

  where 1 is a column vector that are all ones, and T
M ),...,,( 21 ηηηη =  is the SNR 

vector ,and variance 

 

 

Therefore, the variances for different hypothesis are given by  
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where I  denotes the identity matrix, and (.)diag  is square diagonal matrix with 

the elements of a given vector on the diagonal. Therefore, we can express simply as 

follows: 

  

 

Finally, to make decision on the presence of the primary signal, the global test 

statistics cr  is compared with a threshold cT . 

 

 And then, the probabilities of detection and false alarm at the fusion center can be 

expressed as       
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generated according to a normal distribution and assumed to be fixed during a 

detection interval.  

 

 

 

 

II. Fading Cannel between Secondary User and Fusion Center  

 

  From (3.3) or (3.4), the channel gain { ig } between secondary users and fusion 

center are additive white Gaussian noise with zero-mean and variance 2
gσ , and they 

are assumed to be fixed during a detection interval, and  the channel noise { in } are 

also additive white Gaussian noise with zero-mean and variance 2
nσ ,  

i.e. ),0(~),,0(~ 22
nigi NnNg σσ . And ))(],[(~ iii uVaruENu . Without loss of 

generality, we assume that { ig }, { in }, and { iu } are independent of each other. 

Therefore, at the fusion center receives { ir }, a global test statistic cr  is calculated 

linearly as follows: 

  

 

  Once again, according to CLT (central limit theorem), if the number of secondary 

users ( M ) is large enough, the global test statistics cr , can be asymptotically normally 
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where { ig } are assumed to be fixed during detection interval, and ),0(~ 2
ni Nn σ   

, iu  can be asymptotically normally distributed  

 

 

So we can derive the mean as follows: 
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where ]])[])([[( TrErrErEK −−=  is covariance matrix. 

 

 

Therefore, we can find the element of the covariance matrix for different hypothesis 

as follows: 
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and 

 

 

However, we can observe that the covariance matrix is diagonal matrix which 

non-diagonal element are all zeros. Then, we can derive the variance    
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Finally, we can express that the global test statistics cr  are asymptotically normally 

distributed when M  is large enough. 

 

 

Then, to make decision on the presence of the primary signal, the global test 

statistics cr  is compared with a threshold cT . 
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The probabilities of detection and false alarm at the fusion center can be expressed 

as  

 

 

and 

 

 

We see that the sensing performance of the linear detector depends largely on the 

weighting coefficient and the decision threshold. We next show how to design the 

optimal weight vector w  in order to maximize the modified deflection coefficient. 
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3.3 Performance Optimization 

  For cognitive radio networks, the probabilities of detection and false alarm have 

unique relationship. Specifically, 1- )(c
dP  represents the probability of interference 

from secondary users on the primary users. On the other hand, )(c
fP  determines the 

upper bound on the spectrum efficiency, where a large )(c
fP  usually results in low 

spectrum utilization. This is based on a typical assumption that if primary signals are 

detected, the secondary users do not use the licensed band, and if no primary signals 

are detected, the secondary users use the licensed band. In this section, we maximize 

the modified deflection coefficient in order to improve the detection performance. 

  From the mean and variance of cr , we observe that the weight vector w  plays an 

important role in controlling the PDF of the global test statistics cr . To measure the 

effect of the PDF on the detection performance, we define a modified deflection 

coefficient as follows: 

 

 

  Now, we would like to maximize 2
md  under the unit norm constraint to find the 

optimization of weight vector, i.e. 
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Where 
2
⋅  denotes the Euclidean norm. And then we consider two cases to find 

the weight coefficient. First, we consider that the channels are the constant AWGN 

channel, and we can obtain the follows from (3.41): 

 

We solve the problem as follows. Since we have 0)]([4 24 fIdiagnI nv σησ ++ , 

so we can know its square root can be expressed as  
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maximum eigenvalue. Therefore, we find the optimal solution of (3.42) is 

 

 

which maximizes the modified deflection coefficient.  

  Now, we further consider that the channel are fading channel which channel gains 

are generated according to a normal distribution and assumed to be fixed during a 

detection interval. With the same step, we would like to maximize 2
md  under the unit 

norm constraint to find the optimization of weight vector, and then we can obtain the 

follows from (3.41) 
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Applying the linear transformation wDq =  gives 

 

 

  Where )(max ⋅λ  denotes the maximum eigenvalue of the matrix. Note that (a) 

follows the Rayleigh Ritz inequality and the equality is achieved if oqq = , which is 

the eigenvector of the positive definite matrix 11 −− DD T

gg
ηη  corresponding to the 

maximum eigenvalue. Therefore, we find the optimal solution of (3.42) as the same 

step is 

 

 

which maximizes the modified deflection coefficient. we can prove by the 

simulation results below, a larger value of 2
md  leads to a larger probability of 

detection.  
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3.4 Simulation Result 

In this section, the proposed approach is simulated numerically and compare with 

some other existing approaches. Firstly, we consider three or ten secondary users 

(M=3 or M=10) in the cognitive radio networks, and the secondary users sense the 

frequency spectrum independently. The channel gain between each secondary user 

and the target primary user is generated by a complex normal distribution 

(i.e., )1,0(~ CNhi ) and the channel noise between each secondary user and the target 

primary user are AWGN with zero mean and variance 12 =vσ . For simplicity, we 

assume the channel gain { ig } between secondary users and fusion center are constant 

AWGN ( 1=ig ), and the channel noise { in } between secondary users and fusion 

center are AWGN with zero mean and variance 12 =nσ . The transmitted primary 

signal has unit power 1)( 2 =ks  and the detection interval is n2  samples. The 

proposed cooperation schemes are compared with selection combining method (SC 

i.e., selecting the user with maximum SNR), equal gain combination method (EGC 

i.e., Mi
M

wi ,...,2,1,    1
== ) and single cognitive radio. 

 Secondly, we further consider the channel gain { ig } between secondary users and 

fusion center are generated by a normal distribution with zero mean and unit variance, 

and they are assumed to be fixed during the detection interval. We assume that the 

channel noise between each secondary user to the target primary user and secondary 

users to fusion center are, respectively, AWGN with zero mean and variance 22 =vσ  

and 22 =nσ . Under the condition, we observe the effect of different number of 

secondary user ( M ) and different variance of channel noise between each secondary 

user to the target primary user or secondary users to fusion center.    
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Fig. 3-2 The probability distribution function of the test statistics (u) under different hypotheses, with 

constant AWGN channel ( 1=ig ) ,M=3, n=50, 12 =vσ , and 12 =nσ . The result is the average of 

100 simulations.  

 

   

Fig. 3-3 The probability distribution function of the test statistics (u) under different hypotheses, with 

constant AWGN channel ( 1=ig ) ,M=10, n=50, 12 =vσ , and 12 =nσ . The result is the average of 

100 simulations.  
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From figure 3-2 and figure 3-3, we show that the probability distribution functions 

of the test statistics under different hypotheses. We compare the distribution of 

optimization of modified reflection coefficient with the distribution of single 

cognitive radio SC. We can observe that the distance between 0,. HPDFoptu  and  

1,. HPDFoptu  is larger than the distance between 0,Hscu  and 1,Hscu . Also, we can find 

that the spread of 
1,. HPDFoptu  is narrower than that of 

1,Hscu . On the other word, the 

variance of 
1,. HPDFoptu  is smaller than the variance of 

1,Hscu . Further, when the 

numbers of secondary user are increased, we can observe that the distance between 

0,. HPDFoptu  and  1,. HPDFoptu  become large. 

 According to above-mentioned, we obviously understand that the distribution of 

optimization of modified reflection coefficient and increased the numbers of 

secondary user would result in more accurate inference. These observations imply that 

the PDF optimization cooperation scheme outperforms any local spectrum sensing by 

individual secondary users.       

 

 

 



 49

 

Fig. 3-4 The probability of miss-detection ( dP−1 ) vs. the probability of false alarm ( fP ), with 

constant AWGN channel ( 1=ig ) ,M=3, n=50, 12 =vσ , and 12 =nσ . The result is the average of 

1000 simulations.  

 

 

Fig. 3-5 The probability of miss-detection ( dP−1 ) vs. the probability of false alarm ( fP ), with 

constant AWGN channel ( 1=ig ) ,M=10, n=50, 12 =vσ , and 12 =nσ . The result is the average of 

1000 simulations.  
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  From figure 3-4 and figure 3-5, we plot the probability of miss-detection ( dP−1 ) 

versus the probability of false alarm ( fP ) under various approaches, such as 

optimized modified reflection coefficient method, equal gain combination method 

(EGC, the corresponding weight coefficient is expressed as Mi
M

wi ,...,2,1,    1
== ), 

selection combining method (SC, selecting the user with maximum SNR), and single 

cognitive radio. The probability of miss-detection ( dP−1 ) versus the probability of 

false alarm ( fP ) directly measures the interference level to the primary users for a 

given fP . The simulation shows that the proposed optimized modified reflection 

coefficient method (denoted as opt PDF) lead to much less interference (much higher 

probability of detection) to the primary user than single cognitive radio, selection 

combining method, and equal gain combination method. Also, we can find that the 

cooperation schemes (opt PDF, EGC) outperform single cognitive radio schemes (SC, 

single CR). The cooperation gain is due to control the combining weight coefficient 

which sharp the probability distribution function. Further, we can observe that when 

the numbers of secondary user are increased, the cooperation gain become large.       
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Fig. 3-6 The probability of miss-detection ( dP−1 ) vs. the probability of false alarm ( fP ) under 

various M, with fading channel ( ig are generated according to a normal distribution and assumed to be 

fixed during a detection interval) , n=50, 22 =vσ , and 22 =nσ . The result is the average of 1000 

simulations.  

 

Fig. 3-7 The probability of miss-detection ( dP−1 ) vs. the probability of false alarm ( fP ) under 

various ( 22 , nv σσ ), with fading channel ( ig are generated according to a normal distribution ) ,M=5, 

n=50. The result is the average of 1000 simulations. 
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From figure 3-6, we plot the probability of miss-detection ( dP−1 ) versus the 

probability of false alarm ( fP ) under different numbers of secondary user. We further 

consider the channel gain { ig } between secondary users and fusion center are 

generated by a normal distribution with zero mean and unit variance, and they are 

assumed to be fixed during the detection interval. And, we observe that when the 

numbers of secondary user are increased, the performance become batter. In other 

words, under the same condition, the sensing reliability improves as the number of 

secondary users increase.  

  From figure 3-7, we plot the probability of miss-detection ( dP−1 ) versus the 

probability of false alarm ( fP ) under different noise condition. And we consider the 

channel gain { ig } between secondary users and fusion center are generated by a 

normal distribution with zero mean and unit variance, and they are assumed to be 

fixed during the detection interval. As we can observe, the detection performance 

degrades as the noise conditions become bad. We can also find that the channel noise 

between each secondary user to the target primary user is more sensitive to the 

detection performance than that of secondary users to fusion center.    

  From figure 3-8, we plot the probability of miss-detection ( dP−1 ) versus the 

probability of false alarm ( fP ) under different cooperation schemes (opt PDF and 

EGC) and various M with fading channel ( ig are generated according to a normal 

distribution). We can obviously see that the EGC method has a severe detection 

performance in the fading channel between secondary user and fusion center, even if 

we increase the number of secondary user. In other words, the EGC cooperation 

scheme doesn’t work due to the fading channel in that environment. However, we 

proposed cooperation scheme works well, and the sensing reliability improves as the 

number of secondary users increase.  
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Fig. 3-8 The probability of miss-detection ( dP−1 ) vs. the probability of false alarm ( fP ) under 

different cooperation schemes (opt PDF and EGC) and various M, with fading channel ( ig are 

generated according to a normal distribution), n=50, 22 =vσ , and 22 =nσ . The result is the average 

of 1000 simulations. 
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Chapter 4  

Conclusion  

Cognitive radio network enables much higher spectrum efficiency by dynamic 

spectrum access. Therefore, it will be a popular technique for future wireless 

communications to mitigate the spectrum scarcity issue. Spectrum sensing is a main 

and tough task in cognitive radio networks. However, due to the effect of shadowing, 

fading, and time-varying nature of wireless channels, the individual cognitive radios 

may not be able to reliably and quickly detect the existence of a primary signal. In this 

thesis, we propose a simple but efficient cooperation spectrum sensing based on 

energy detection and consider the channel between the secondary user and fusion 

center with two cases. One is considered only the channel noise between the 

secondary user and fusion center (i.e., constant AWGN channel), and the other is 

considered both of the channel noise and channel fading between the secondary user 

and fusion center (i.e., fading channel). Our objective is to improve the detection 

performance and to combat the channel fading effects. Finally, we optimize a 

modified deflection coefficient to find the optimal linear combining weights.    

 From the simulations, we obviously understand that the distribution of 

optimization of modified reflection coefficient and increased the numbers of 

secondary user would result in more accurate inference. Also, we can observe that the 

proposed cooperation method have the better detection performance then other 

methods (i.e., single CR, SC, and EGC). We can also find that the channel noise 

between each secondary user to the target primary user is more sensitive to the 

detection performance than that of secondary users to fusion center. Finally, the 

sensing reliability improves as the number of secondary users increase.  
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