Distributed Cooperative Spectrum Sensing in

Cognitive Radio Networks

> P . ‘ni’,/ﬁ_',
2 4 A

s o #L



Distributed Cooperative Spectrum Sensing in

Cognitive Radio Networks

ByA M Student: Wei-Chuan Yu
ERE: HhH Advisor: Dr. Feng-Tsun Chien

B oz 2 i + 7
I EF kT3 FEOMARL
G

A Thesis
Submitted to Department-of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National ‘Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in

Electronics Engineering

June 2008

HsinChu, Taiwan, Republic of China

PER R4 Lo ES



R sk HyH L

&

BATER ST i) 8RR E A S F RS o Bt T S AR
A AR TR Y RPEE AL R ire AR fFrm M T pR P Ap 3 p 0
BRI DI Ko o d MR T frR AL OB RETRE > 32 L ue
RARRTEEZT LAcQad B Rl 2 RN TF Fa bAhy Y APl - fH
fog rkeng (ERMER2 AN K BRP AP TR DR FHBET w2 B
1A BEG o - AR RAE RN T R R 4 o B AP
FouP TR R > R NE AR § B Jhd LRI AP REI TR S

SRS S LR TF FES AR £ SIS A FLE S



Distributed Cooperative Spectrum Sensing in

Cognitive Radio Networks

Student: Wei-Chuan Yu Advisor: Dr. Feng-Tsun Chien

Department of Electronic Engineering &
Institute of Electronics
National Chiao Tung University

Abstract

Cognitive radio network enables much”higher spectrum efficiency by dynamic spectrum
access. Therefore, it will be a popular technigue for future wireless communications to
mitigate the spectrum scarcity issue. Spectrum sensing is a main and tough task in cognitive
radio networks. However, due to the effect of shadowing, fading, and time-varying nature of
wireless channels, the individual cognitive radio may not be able to reliably and quickly
detect the existence of a primary signal. In this thesis, we propose a simple yet efficient
cooperation spectrum sensing based on energy detection, and consider the channel between
the secondary user and fusion center in two cases. First, we consider only the channel noise
between the secondary user and the fusion center (i.e., constant AWGN channel), and then we
extend to consider both the perturbation noise and channel fading between the secondary user
and the fusion center (i.e., fading channel). Our objective is to improve the detection
performance while considering a realistic system environment. Finally, we optimize a
modified deflection coefficient to find the optimal linear combining weights. From the
simulations, we can observe that the proposed cooperation method has the better detection
performance than the other methods, and the sensing reliability improves as the number of

secondary users increase.
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Chapter1
Introduction

1.1 Significance

Wireless communication systems have been used widely for a long time. We know
that spectrum plays an important role of the wireless communication. Without
spectrum, no wireless communications would be possible. However, radio spectrum is
a precious and limited resource, so we must use the limited spectrum efficiently. In
order to improve the spectrum efficiency, ‘cognitive radio networks is proposed to
dynamically use the idle spectfum in-a:Smart way.[1]. According to the Federal
Communications Commission (FCC) [2],-cognitive radio (CR) is defined as the radio
system that continuously performs:spectrum sensing, dynamically identify unused
spectrum, and then operate in those spectrum holes where the licensed (primary) radio
systems are idle and use the spectrum only if communication does not interfere with
the primary user. Therefore, the cognitive radio enables much higher spectrum
efficiency by dynamic spectrum access, [3], [4]. And it is a potential technique for
future wireless communications to mitigate the spectrum lack problem. This new
communication system is referred to as neXt Generation (XG) or Dynamic Spectrum
Access (DSA) network.

Spectrum sensing is an important task in the cognitive radio networks, and it needs
to reliably and quickly detect the primary signal. Spectrum sensing should also
monitor the activation of primary user in order for the secondary users to vacate the

occupied spectrum. However, spectrum sensing is a difficult task because of the



hostile nature of the wireless channel, such as shadowing, fading, and time-varying of
wireless channels. To tackle that problem, recent research studies of spectrum sensing
have focused on the detection of primary transmissions by cognitive radio devices.
Generally, the energy detector has been applied widely among these existing
spectrum sensing techniques. This is because that it does not require any a priori
knowledge of the primary signals and has much lower complexity than other detectors.
In other words, if the secondary user has limited information about the primary
signals, then the energy detector is optimal [5]. In chapter 3, we assume that the

primary signal is unknown and we adopt energy detector.

1.2 Motivation

Cognitive radio is a potential..technique: for. future wireless communications.
However, the detection performance.of-spectrum, sensing is usually dependent on
destructive channel fading, since’«tis. difficult to detect the primary signals in
environments with deep fades. In order to improve the reliability of spectrum sensing,
cooperative spectrum sensing exploiting the spatial diversity among secondary users
has been proposed recently [3], [6]. A cooperation cognitive radio network would
have a better detection performance by combining multiple sensing information from
possibly correlated secondary users. In other words, cooperative spectrum sensing
exploits the spatial diversity to have a better detection performance. Thus, it could
reduce the probability of interfering with primary users.

Although the distributed detection has been studied since early 90°s (e.g. [8], [9]),
but the result might not be directly applied to cognitive radios, and the research of
cooperative spectrum sensing is very limited. In [10], the voting rule is one of the

simplest suboptimal solutions. It counts the number of cognitive radio nodes that
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decide for the presence of the signal and compares it with a given threshold. In [11],
the fusion rule with OR logic operation was used to combine decisions from several
secondary users. In [12], the hard decision with the AND operation and soft decision
using the Neyman-Pearson criteria was proposed. It was shown that the soft decision
combination of spectrum sensing outperforms hard decision combination. In [13],
they exploited the fact that summing signals from two secondary users can increase
the signal-to-noise ratio (SNR) as well as the detection reliability if the signals are
correlated. In [14], they proposed the cooperation spectrum sensing method, and they
assumed perfect control channel. In other words, they did not consider that channel
fading and channel noise between the secondary user and fusion center. In practice, it
is not realistic in the actual situation. Therefore, in this thesis, we propose the
cooperation spectrum sensing and- consider the'.channel in two cases. One is to
consider only the channel noise between the-secondary user and fusion center (i.e.,
constant AWGN channel), and the other-is-considered both of the channel noise and

channel fading between the secondary:user and fusion center (i.e., fading channel).

1.3 Contribution

In this thesis, we develop a simple yet efficient cooperation for spectrum sensing
and consider the channel fading effects between the secondary user and fusion center
in two cases. The global decision is based on simple energy detection over a linear
combination of the local statistics from individual secondary user. The approach does
not find optimal thresholds for individual nodes. Instead, we transmit the local test
statistics through fading channel to the fusion center. Thus, the optimal threshold at
the fusion center can be simply and jointly determined with the optimal linear

combining weights. We derive the closed-form expressions of probabilities of
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detection and false alarm, and we can use the close-form expressions to make quick
adaptations when some parameters change during the operation. Finally, we optimize
a modified deflection coefficient to find the optimal linear combining weights and
improve the detection performance. From the simulations, we can observe that the
proposed cooperation method have the better detection performance then other
methods, and the sensing reliability improves as the number of secondary users

increase.



Chapter 2
Background Review

2.1 Cognitive Radio Networks

The material in this section is largely taken from [3].

2.1.1 Introduction to Cognitive Radio

The radio spectrum is a precious natural and limited resource, the use of which by
transmitters and receivers is licensed by governments. Spectrum plays an important
role of the wireless communication. Without spectrum, no wireless
telecommunications or wireless internet services would be possible. Now, the
telecommunication industry is a 1:Trillion (10%) dollar per year industry. And the
wireless part is growing very rapidly, while the wired telecommunication services are
experiencing a relatively flat business.-1n-2006, the wired and wireless businesses
were nearly equal in revenue. Spectrum..is required to support these wireless
communications. In the United States, the increase in cellular telephony demand is
supported by increasing density of cellular infrastructure. But, in some region, the
cellular infrastructure is at the peak capacity and increased infrastructure density is
not feasible. In order to continue serving the market demand, we develop the
cognitive radio networks that enable continued growth.

In November 2002, the Federal Communications Commission (FCC) published a
report prepared by the Spectrum —Policy Task Force in the United States. Their
objective is that manage this precious spectrum efficiently. The Task Force was a tem
of FCC staff, and the team was high-level, multidisciplinary and professional. It was
included economists, engineers, and attorneys from across the commission’s bureaus

and offices. Among the Task Force major findings and recommendations, we can find
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that as follows in this report:

“In many bands, spectrum access is a more significant problem than physical
scarcity of spectrum, in large part due to legacy command-and-control regulation
that limits the ability of potential spectrum users to obtain such access.”

Indeed, if we scan portions of the radio spectrum in urban areas, we would observe
that:

1) some frequency bands in the spectrum are largely unoccupied most of the time;

2) some other frequency bands are only partially occupied;

3) the remaining frequency bands are heavily used.

The unused spectrum of primary user was called spectrum holes, and we define as
follows:

A spectrum hole is a band of .frequencies assigned to a primary user, but, at a
particular time and specific geographic locatien, the band is not being utilized by that
user.

Spectrum utilization can be improved.significantly while a secondary user to access
a spectrum hole unoccupied by the primary user at the right location and the time in
question. Cognitive radio has been proposed to promote the efficient use of the
spectrum by exploiting the unused spectrum holes.

What is the cognitive radio? Cognitive radio’s objective is to improve utilization of
the radio spectrum, we offer the following definition for cognitive radio.

Cognitive radio is an intelligent wireless communication system. It is aware of its
surrounding environment (outside world), and wuses the methodology of
understanding-by-building to learn from the environment and adapt its internal states
to statistical variations in the incoming RF stimuli by making corresponding changes
in certain operating parameters (e.g., transmit-power, carrier frequency, and

modulation strategy) in real-time, with two primary objectives in mind:
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® highly reliable communication whenever and wherever needed,;
® efficient utilization of the radio spectrum.

Now, we can say that cognitive radio can be represented by the six key steps as
follows:

® awareness
® intelligence
® learning

® adaptivity
® reliability
® cfficiency

Implementation of the six steps of combination is indeed feasible today, thank to
the rapid advances in digital signal processing, networking , machine learning,
computer software, and computer hardware.

In additional to the cognitive- capabilities-just mentioned, a cognitive radio is also
endowed with re-configurability. Now;.we see the re-configurability which provides
the basis as follows:

® Adaptation of the radio interface so as to accommodate variations in the
development of new interface standards.

® Incorporation of new applications and services as they emerge.

® Incorporation of updates in software technology.

® Exploitation of flexible heterogeneous services provided by radio
networks.

This latter capability is provided by a platform known as Software-defined radio,
upon which a cognitive radio is built. Software-defined radio (SDR) is a practical
reality today, thank to the convergence of two key technologies: digital radio, and

computer software.



2.1.2 Cognitive Task

For the re-configurability, a cognitive radio looks naturally to software-defined
radio to perform this task. For other tasks of a cognitive kind, the cognitive radio
looks to signal-processing and machine-learning procedures for their implementation.
The cognitive process starts with the input stimuli and culminates with action.

In this section, we discuss the three cognitive radio tasks:

(1) Radio-scene analysis, which includes the following:

® estimation of interference temperature of the radio environment;
® detection of the spectrum holes.

(2) Channel identification, which includes the following:

® estimation of channel-state, information (CSI);
® prediction of channel capacity for.use'by the transmitter.

(3) Transmit-power control and dynamic spectrum management.

Tasks (1) and (2) are performed .in'the-receiver, and (3) is performed in the
transmitter. Through interaction with" the RF*environment, these three tasks form a
cognitive cycle, which is illustrated in Fig. 2-1.

From this brief discuss, it is showed that the cognitive radio’s module in the
transmitter must work in a harmonious manner with the cognitive radio’s modules in
the receiver. In order to maintain this harmony between the cognitive radio’s
transmitter and receiver at all time, we need a feedback channel connecting the
receiver to the transmitter. Through the feedback channel, the receiver can be enabled
to convey information on the performance of the forward link to the transmitter.
Therefore, the cognitive radio system is necessarily an example of a feedback
communication system.

One other comment is in order. A broadly defined cognitive radio technology



accommodates a scale of differing degree of cognitive. At one end of the scale, the
user may simply pick a spectrum hole and build its cognitive cycle around that
spectrum hole. At the other end of scale, the user may employ multiple
implementation technologies to build its cognitive cycle around a wideband spectrum
hole or set of narrowband spectrum holes to provide the best expected performance by

spectrum management and transmit -power control, and do so in the most highly

secure manner possible.

Radio
CNYIrGnIment

(Chotside waorld)

Action:
transmitted
sianal .
= Spectrum holes
Moise-floor statistics
Traffic statistics

Fadio-
el Sl [
analysis

Transmit-powe
control, and
specinum
MANAZeent

Interference
temperature

Channel-state
astimation, and

predictive
modeling

Cuantized
channel capacity

Transmitter Receiver

Fig. 2-1 Basic cognitive cycle.(The figure focuses on three fundamental cognitive tasks.) From [3]



2.1.3 Historical Notes

The history of cognitive radio was started in December 1901 by Guglielmo
Marconi. And at that time the development of cognitive radio is still at a conceptual
stage. But, as we looks to the future, we see that cognitive radio has the potential for
making a significant difference to the way in which the radio spectrum can be
accessed with improved utilization of the spectrum as a primary objective. Indeed,
given its potential, cognitive radio can be described as a “disruptive, but unobtrusive
technology.”

The two terms “cognitive radio” and “software-defined radio” were coined by
Joseph Mitola. In an article published in 1999, Mitola described how a cognitive radio
could enhance the flexibility of personal ,wireless services through a new language
called the radio knowledge representation/language. (RKRL) [1]. The idea of RKRL
was further expanded in Mitola’s ‘'own doctoral dissertation, which was presented at
the Royal Institute of Technology, ~Sweden,~in May 2000 [18]. This dissertation
presents a conceptual overview of cognitive radio as an exciting multidisciplinary
subject.

As mentioned earlier, the FCC published a report in 2002, which was aimed at the
changes in technology and the significant impact that those changes would have on
spectrum policy [19]. That report set the stage for a workshop on cognitive radio,
which was held in Washington, DC, in May 2003. Those papers and reports that were
presented at that workshop are at the web site listed under [20]. This workshop was
followed by a conference on cognitive radio, which was held in Las Vegas > NV, in

March 2004 [21].
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2.2 Statistical Decision Theory

The material in this section is largely taken from [14].

The simplest detection problem is to decide whether a signal is present, which, as
always, is embedded in noise, or only noise is present. An example of this problem is
the detection of the primary signal based on cognitive radio network. Since we wish
to decide between two possible hypotheses, signal and noise present versus only noise
present, we call this the binary hypothesis testing problem. Our objective is to use the
received data as efficiently as possible in making our decision and to be correct most
of the time.

Now, assume that we observe.a realization of a random variable whose PDF is
either N(0,) or N(L1), where N(u,o>)-—-denotes a Gaussian PDF with mean
and variance o?. We must decide if .#=0 or =1 based on a single
observation x[0] . Each possible of & can be though of a hypothesis, and our

problem is to choose among two hypotheses. We can summarize as follows:

Binary Hypotheses Test

H, u=0 nullhypothesis
H :u=1 alternatie hypothesi:

2.1)

where H, is null hypothesis and H, is alternative hypothesis. The PDF under each
hypothesis is shown in figure 2-2. However, a reasonable approach is to decide H,

if x[0]>1/2. This is because if x[0]>1/2, it is more likely if H, is true. Then,

11



our detector compares the observed sample with the threshold value (1/2). Now, we

define two type errors. If we decide H, but H, istrue, we call the Type | error. On

the other hand, if we decide H, but H, is true, we call the Type Il error. These two

errors are shown in figure 2-2. The P(H,;H ;) is represented as that the probability
of deciding H, when H, istrue.(e.g., P(H,;H,)=Prx[0]>1/2;H,)).

From figure 2-3, we find that these two errors are unavoidable to some extent but
can tradeoff by each other. Obviously, when the Type | error probability (P(H,;H,))
is decreased by changing the threshold, the Type Il error probability (P(H,;H,)) is
then increased. As the threshold changes, one error probability increases, while the
other decreases. It is not possible to reduce both error probabilities simultaneously.

Now, we have the signal detection-problem as follows:

H, : x{0] =w(] nullhypothesis
H, : 0] = s[0]+w[0] alternatie hypothesi

(2.2)

where s[0]=1 and w{0] ~ N(0,1) . We can define three probabilities. Deciding H,

when H, is true can be thought as the false alarm. The P(H,;H,) is the

probability of false alarm which is denoted by P,, and deciding H, when H, is

true can be thought as the detection. The P(H,;H,) is the probability of detection

which is denoted by P,. However, the other error P(H,;H,)=1-P(H,;H,) can

be thought of the probability of miss detection which is denoted by P, . The P, is

usually a small value, and we often design the optimal detector to minimize the

probability of miss detection (P,) or maximize the probability of detection (P,).

Finally, we will summarize these probabilities in the table 2-1.

12



Table 2-1 Summary of probabilities.

False Alarm Miss Detection Detection
Pf Pm Pd
Type | error Type |1 error P,=1-P,

plz[0]; H;)

P{IIE}-I Hi :I -

S )
-4 -3
Type Il error, P{Hy H,) Type lerror, P(M,; Hy)

Fig. 2-2 Possible hypothesis testing error and their probability. From [14]
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plx{0]; Hy)

p(=[0]: Hy)

; : z[0]
-4 -3
new threshold
£
z|0]
5
~-— Decide Hy—t— Decide M, ——
(Rﬂ.] f EHI}

Fig. 2-4 Decision region and probabilities. From [14]
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As the figure 2-4 illustrated, we can express the probability of false alarm and the

probability of detection as follows:

Pf :P(Hl;Ho) (2:3)
=Pr(x[0] > y; H,)

1

o 1 >
—LEQ dt
=0(7)

where y is the threshold value, and Q(.) is the calculation of the tail probability

of the zero mean and unit variance Gaussian random variable.

P, = P(Hj; Hy)

(2.4)
= Pr(x[0] >y  H,)
ol g S
=| ——e dt
L&g‘
=0(y-1)

From (2.3) and (2.4), by changing the threshold we can trade off P, and P,. Now,

we further consider the particularly useful hypothesis testing problem, and we call the
mean-shifted Gauss-Gauss problem. We observe the value of a test statistic 7 and

decide H, if T>y or H, if T<y.ThePDFof T isassumed as follows:

T~{Nww05 Hy (&5
N(uy,0%) H,

where g, > u,. Hence, we wish to decide between the two hypotheses that differ by

15



a shift in the mean of 7. For this type of detector, the detection performance is

totally characterized by the deflection coefficient (d¢?), and it is defined as follows:

o (B@TH) ~ (T H,)) 26
Var(T;H,)
_ (t _/uo)2
O_2

In the definition, we know that a larger value of < leads to a larger probability of

detection (P,). This is because that when the distance between g, and 4, is

larger, it would result in more accurate inference. In the case when g, =0,

2
d? = ﬂ—lz may be interpreted as a signal-to-noise ratio (SNR). To find the dependence
(@2

of detection performance on d” . we haveithat

P, =Pr(T:> yiH,) @.7)
=0("—)
O
P, =PK(T >y, H,) 2.8)
- (X"
(o2

_ Q(/Jo +GQ_G(PFA)_/J].)

= {0} (P,,) - (F2=F0)}
O

Finally, we can obtain as follows:

P, = Q{07 (P,)~Vd’} @9

16



The detection performance is therefore monotonic with the deflection coefficient.

And we can summarize the detection performance by plotting P, versus P,. This
type of performance summary is called the receiver operating characteristic (ROC).
From figure 2-5, we can observe that as y increases, P, decreases and so does P, .
On the other hand, as y decreases, P, increases and so does P, . The ROC always

be above the 45° line. And when we increase the value of d?for a fixed value of

P, , the value of P, also increases. In other words, a larger value of d* leads to a
larger probability of detection(P,). For d — oo, the idea ROC is attained (P, =1

forany P, ).

Probability of detection

“ 0 L L 1 i - i U S A T—

iy 01 062 03 04 05 06 07 08 09

T

Probahility of false alarm

Fig. 2-5 Family of receiver operating characteristics. From [14]
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2.3 Energy Detection

The material in this Chapter is largely taken from [15] and [16].

2.3.1 Introduction to Energy Detection

In many wireless communications, it is of great interest to check the presence and
availability of an active communication link. What kind of detector do we adopt in the
detection of a signal in the presence of the noise? The answer to the question is
depended upon the knowledge of the transmitted signal characteristics and of the
noise. When we has known that the transmitted signal has a known form and the noise
is Gaussian, even with unknown parameters, the appropriate detector is chosen as the
matched filter or its correlator equivalent. WWhen the transmitted signal has an
unknown form, it is sometimes appropriate to'consider the signal as a sample function
of a random process. When the transmitted signal statistics are known, we can often
use this knowledge to design suitable detectors.

In the situation which is considered here, we have so little knowledge of the
transmitted signal form, and we may make unreasonable assumptions about it.
However, we consider that the transmitted signal is deterministic, although unknown
in detail. And the spectral region is considered to be known. The noise is assumed to
be additive white Gaussian noise with zero mean; the assumption of a deterministic
signal represents that the input with the signal present is Gaussian but not zero mean.

If we have limited knowledge of the transmitted signal, it may seem appropriate to
use an energy detector to detect the presence of the signal. The energy detector
measures the energy in the input wave over a time interval. Due to only the signal
energy matters (not its form), we can apply this result to any deterministic signal.

It is assumed here that the noise has a flat band-limited power density spectrum.

18



When the transmitted signal is absent, by means of a sampling theory, the energy in a
finite time sample of the noise can be approximated by the sum of squares of
statistically independent random variables which has zero means and equal variances.
We can derive that this sum is a central chi-square distribution with the number of
degrees freedom equal to twice the time-bandwidth product of the input. When the
transmitted signal is present, by means of the sampling theory, the energy in a finite
time sample of the transmitted signal and noise can be approximately by the sum of
squares of random variables, where the sum has a non-central chi-square distribution
with the same number of degrees freedom and a non-centrality parameter A equal to

the ratio of signal energy to two-sided noise spectral density.

2.3.2 Energy Detection in White Noise

The energy detector consists of a noise pre-filter, a square law device followed by a
finite time integrator that is shown in figure 2-2. The output of the integrator at any
time is the energy of the input to the squaring device over the interval 7 in the past.
The noise pre-filter limits the noise bandwidth; the noise at the input to the squaring
device has a band-limited, flat spectral density.

The detection is a binary hypothesis as follows:

H,: r(t) = n(z)
H,: r(t) = s(t) +n(t)

(2.10)

where r(¢): the received signal.
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s(¢) : the transmitted signal.
n(t) : the noise which is zero-mean white Gaussian random process.

As figure 2-2, the received signal is first pre-filtered by an idea bandpass filter with

transfer function

2 - (2.11)
H(f)={Ns .
0, |f = f|>w

where N, : one-sided noise power spectral density.
f.. . carrier frequency.
W : one-sided bandwidth'(Hz).
to limit the average noise power-and normalize the noise variance. Than, the output of
the per-filter is squared and integrated.over-a-time interval 7. Finally, we produce a

measure of the energy of the received waveform. The output of the integrator denoted

by Y will be the test statistic to test the two hypotheses H, and H,.

mouate
Device Integrator
i . ¥
rit) Moise 32 1 -
— > {\\J. o — | dt | —»
Fre-filter : r -

Fig. 2-6 Energy detection
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According to the sample theorem, the noise process can be expressed as follows

[22]:

n(r) = i n,sinc(2Wt —i) (2.12)

i=—0

in(7x)

. S i
where sin = and n, = n(—
c(x) n, n(ZW)

We can easily find that

n, ~ N(O,N W), for all.i (2.13)
Over the time interval (0, 7"), the noise energy can be approximated as follows [16]:

0

ITnZ(t)d, :iinz (2.14)
2w =

where u = TW : time-bandwidth product.
We assume that 77 and W are chosento let « to be integer value. If we defined

as follows:

" (2.15)
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Then, the test statistic Y can be expressed as follows:
2u 2
Y = an (2.16)
i=1

Y can be seen as the sum of squares of 2u standard Gaussian variables with zero
mean and unit variance. So Y is a central chi-square distribution with 2u degrees of
freedom.

The same approach is applied when the signal s(z) is present. We replace each =,

by n,+s, (where s, =s(ﬁ)). And then, the test statistic Y is a non-central

chi-square distribution with 2u ‘degrees:of freedom and a non-centrality parameter

2y . (7/:%: signal to noise ratio; Es =j0Ts(t)dt: signal energy.). Finally, we can
0

express the test statistic as follows:

. {Zzi H, (2.17)
Xou (2y) Hy

The probability density function (PDF) of the test statistic Y can be expressed as

1 7y (2.18)
yu—le 2 , HO
2" I'(u)

fy(y) -

u-1 2y+y

l “=
E(zlyﬂe 2 1 a(\2p) H,
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where T'(-) is the gamma function which defined as I'(u) = J':t“‘le‘tdt, and 7,(-)

isthe v—th order modified Bessel function of the first kind, and it defined as

1., (2.19)
(E u) .
I,(u)=—5——[ e"*’sin® 0do
1.
Jar(v+ E)
Now, we can obtain their mean and variance as follows:
2u H, (2.20)
E[Y]=
2u+2y T
4y ~Fi (2.21)
Var[Y]=
4u + 8y , Hy

Therefore, we can compute that the probability of detection and false alarm as

follows:

P, =Pr(Y > A|H,) (222)

P, =Pr(Y > A|H,) (2.23)

where A is the decision threshold.
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In chapter 3, for simplicity, we apply the central limit theory to the test statistic Y,

and the probability distribution function of test statistic Y may be approximated as

Gaussian distribution. This makes us easy to deal with P, and P,.

2.4 SNR Wall Reduction

The material in this Chapter is largely taken from [17].

When we use the energy detector, a significant problem is that it is suffers from an
SNR wall when the noise power uncertainty is present [5],[23]. Caused by the noise
uncertainty, the SNR wall is defined ,as.an SNR threshold below which energy
detection is absolutely impossible no matter-how many samples are used. Now, we

consider that there exists x dB:uncertainty in noise“power estimation, and then the

o’ al

actual noise power may take any-value within (=% ac?), where o =10 and o’
a

2
is the estimated noise power. If the primary signal power is smaller then (ao’ — 2’ ),

then the energy detection will always fail. In other words, the SNR wall of energy

detection is defined as follows:
1
SNR,,,, =10log,,(7,) =10log,, (& - ;) (2.24)

where y, is SNR wall. Here we assume that the channels of the cognitive radio

users experience block fading, and the block length is long enough so that errorless
detection can be guaranteed if only the instantaneous SNR is greater then the SNR
wall (). While the number of the secondary users increases, the probability that the
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instantaneous SNR on one of these users is greater then SNR wall increases. Once this
probability exceeds the target overall probability of detection of the cognitive radio
network, energy detection will work well. Therefore, cooperation equivalently
decreases the SNR wall with a certain target probability of detection. Now, we will
derive the equivalently SNR wall reduction achieved by cooperation among

independently cognitive radio users.

Let 7_/M be the minimum average SNR that meets the target overall probability

of detection (P, ,,,), when M independent secondary users are cooperating. In other

words, }_/M is equivalent the SNR wall of a M-secondary users network with the

target overall probability of detection (P, ,,.). Miss detection will happen if and only

if the instantaneous SNR of all: cognitive-radio‘users are below y, , so we can

obtained as follows:

P, i :1_Pd_TAR =(Pr(y < 7w))M (2.25)

m

Here we use the Nakagami channel [24]. In this case, the CDF of the instantaneous

SNR () is obtained as follows:

Pr(y < 7,) = P(m, L) (2.26)
Vv
where m is the Nakagami parameter, and P(m,x)z%;e"tm_ldt is the
m

normalized lower incomplete gamma function, and T'(m) is the gamma function.
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Now, we can obtain the equivalent SNR wall of a M-secondary users cooperative

network as

— my., (2.27)
Yu = L v
P~ (m,P iMTAR)

m

where P*(m,y) is the inverse normalized lower incomplete function. Finally, we

can obtain the equivalent SNR wall reduction relative to the single user as follows:

=10 Ioglo (—]/_l) 229

Yom

P ,P%”
— 1010, —1(m m_TAR))
Lk P _TAR)

m

SNR

wall _red

According to (2.28), we observe that the.SNR wall reduction increases with the

number of secondary user (M ), independent of . Forfixed m and P, .,

1 (2.29)
Ilm SNRwall red — 10 IoglO ( _1P (m’l) ) = 10
M —+x - P (m,Pm_TAR)

which means that the equivalent SNR wall of the cognitive radio network can be
reduced to any arbitrarily low level as long as a sufficient number of the cooperating
secondary users. Therefore, we use this result to improve the detection performance in
chapter 3, the simulation can be shown that as the number of the cooperating

secondary users increase, the detection performance becomes better.
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Chapter 3

Distributed Cooperative Spectrum Sensing for

Two Cases

In this chapter, we propose an optimal linear cooperative structure for spectrum
sensing in order to accurately detect the primary signal. In this structure, spectrum
sensing is based on the linear combination of local statistics from individual cognitive
radio, and we control the combining weights to combat the effect of channel fading.
Our objective is to minimize the interference to the primary user while the secondary
users access the licensed band. So we optimize the modified deflection coefficient at

the fusion center in order to improve the detection performance.

3.1 System Model

We consider a cognitive radio networks with M secondary users. The binary

hypothesis test for spectrum sensing at the £ -th time instant is expressed as follows:

Ho:yi(k):vi(k) i=12,.... M
H,:y,(k)=hs(k)+v,(k) i=12,..M

(3.1)

where s(k) is the signal transmitted by the primary user and y,(k) is the
received signal by the i-th secondary user. The channel gain, %, between each

secondary user and the target primary user, is assumed to be fixed during a detection

interval, and v, (k) denotes the zero-mean additive white Gaussian noise (AWGN), i.e.
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v.(k) ~ CN(0,52) . Without loss of generality,v,(k), s(k) and &, are assumed to
be independent of each other.

As illustrated in Fig. 3-1, we use the energy detection, since it doesn’t require any a
priori knowledge of primary signals and has much lower complexity then other
detectors. Each secondary user computes its summary statistic «, over a detection
interval of 2n samples. i.e.

2n-1 2

u; = |y, (k) i=12,..M (3.2)

The summary statistic {«,} are then transmitted to the fusion center through a
fading channel and are corrupted by the zero-mean additive white Gaussian noise

(AWGN), we can express as follows:

ro=gu, +n, i =12, M (3.3
or
n 8:U, n (3'4)
.”2 _ .gzuz + .”2
Ty EmlUy 1y

where the channel gain { g, } between secondary users and fusion center are

additive white Gaussian noise with zero-mean and variance o2, and they are

g!
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assumed to be fixed during a detection interval, and the channel noise {»,} are also

additive white Gaussian noise with zero-mean and variance o’

ie.g, ~N(,02),n ~N(0,0}). Finally, the fusion center computes the global test

statistics, ».as in (3.18), from the outputs { }of the individual secondary users in a

linear combination manner, and then 7, is used to make a global decision.

1

CR, y1(k); 11 - |: i@_@i.(%_,
- =i

k r
CRQ .P'z( :] < , Ly 2
Zoall 2
g2 2 My =
: a [
£
2 . .
z Decizsion Device
wlk u r

CR,,

v
!

4

&

Fig. 3-1 A schematic representation of weighting cooperation for spectrum sensing in cognitive radio

networks.

3.2 Cooperative Spectrum Sensing

In this section, we propose a optimal strategy for cooperative spectrum sensing.
Because we do not know the prior knowledge of the primary signals (i.e. the
secondary user has limited information of the primary signals), the energy detection is

optimal and the simplest, so we adopt energy detection as the local sensing rule,

29



which will be discussed as follows.

3.2.1 Local Sensing

We first consider local spectrum sensing at individual secondary users, and then we
find out the local test statistics at each node. For the sequence of 2» samples over

each detection interval, we define

2n-1

E = Z|s(k)|2 (3.5)

which denotes the transmitted:signal energy. The local test statistics of the i-th

secondary user using energy detector are.expressed as follows:
2n-1 2
u =3y, 0) i=12..,M (36
k=0

Since u, is the sum of the squares of 2n Gaussian random variables, so we can

show that u,/c? is a central chi-square > distribution with 2 degrees of
freedom if H, is true; otherwise, the u, /o’ would be a non-central chi-square

7% (n,) distribution with 2n degrees of freedom and 7, is a non- centrality

parameter. We can express as follows:
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u, {zf
ol \xhm)

where

3.7)

(3.8)

is the local SNR (signal to noise ratio) at i-th secondary user. According to CLT

(central limit theorem), if the number of samples is large enough, the test statistics u,

can be asymptotically normally distributed with.mean

2no?’ H
E [ui]: n v \ 0
(21’1 +77i)o-v Hl
and variance
4no? H,
Var(u,) =
4(7’1 +77i)0' Hl
We can express simply as follows:
N(2no? 4nc’) H,
u, ~
N((2n+77i)o-v2’4(n+77i)o-j) Hl
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for 2n is large enough. Now, for a single-CR spectrum sensing scheme, the

decision rule at each secondary user is given by

H, (3.12)
u,—y, i=12,...M

where y, is the corresponding decision threshold. Therefore, secondary user i

will have the probabilities of detection and false alarm, and we can express as the

following Q-function:

i 7o —Eu, ], . (3.13)
Pd():Pr(ui>7/iH1):Q( H)
Var(ui)’Hl
and
. 7, — Elw].y (3.14)
P =Pr(u, > y|H,) = O+ T
f ( i 7/1 O) Q( Val”(ui),HO )

0O(.) : Calculates the tail probability of the zero mean unit variance Gaussian
V2

random variable, i.e., O(x) 1 jexp(—tz 12)dt .
7[ X

In the cognitive radio networks, a larger probability of detection results in less

interference to the primary users and a smaller probability of false alarm results in
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higher spectrum efficiency. This is because based on the assumption that if no primary
signals are detected, the secondary users use the channel (such that interference is
generated in case of miss-detection); if a primary signals is detected (possibly a false
alarm), the secondary users are restrained to use the channel (such that spectrum is

wasted in case of false alarm).

3.2.2 Global Detection

As illustrated in Fig. 3-1, we transmit the local test statistic {«, } to the fusion
center via a channel and the zero-mean additive white Gaussian noise (AWGN),and
then are multiplied by weights in-a linear combination manner. Now, we consider the
channel with two conditions. First, for stmplification,.we assume that the channel can

be treated as constant AWGN channels which channel gains are constant one

(i.e.g, =1). Second, we further consider that the channels are fading channels
which channel gains are generated according to a normal distribution and assumed to

be fixed during a detection interval.

I. Constant AWGN Cannel between Secondary User and Fusion Center

From (3.3) or (3.4), we assume that the channel gains are constant one (i.e. g, =1),

then we can express as follows:

r=u i=12,.,M (3.15)
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According to (3.11), since u, ~ N(E[u,],Var(u,)), n, ~ N(0,c72), so the received

statistics { . } are normally distributed with mean

] 2110'v2 H, (3.16)
]/’, =
l (2n+ 771‘)0-\»2 H,
and variance
4no! +o? H, (3.17)
Var(r,) =
4(n+ 771.)6:1 + O',f H,

Once the fusion center receives{# }, a global test.statistic », is calculated

linearly as follows:

M
=S ="y (.19
i=1

where the weight vector w = (w;,,w,,..,w,,)" satisfies ||v_v||§ =1 and |-|, is the

Euclidean norm. The weight vector is used to control the global spectrum detector.
The combining weight for the signal from a particular user represents its contribution
to the global decision. For example, if a CR generates a high-SNR signal that may
lead to correct detection on its own, it should be assigned a larger weight coefficient.
For the secondary users passing deep fading or shadowing, their weights are

decreased in order to reduce their effect to the decision fusion. r = (7,,7,,...,7,,)" is
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the received vector. Since the received statistics {7, } are Gaussian random variables,
so their linear combination is also Gaussian. Then, 7. is normally distributed with

mean

2nl" wo? H, (3.19)
E[r.]= -

where 1 is a column vector that are all ones, and n= (17,,7,,-01,,)" isthe SNR

vector ,and variance

Var(r,) = E(r, —E[r.])° (3.20)
=w' El{r - Ele])e= Elr]) " Jw

Therefore, the variances for different'hypethesis-are given by

Var(r,),y, = w' E[(r - E[r],, ) — E[r],,) |HoIw (3.21)
=w' (4no) +0))Iw
=4no! + 0'3
and
Var(r,),y, = w' E[(r = E[r], )(r — E[r],, )" [H,Iw (3.22)

=w' (4o [nl +diag(n)]+ o 1)w
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where [ denotes the identity matrix, and diag(.) is square diagonal matrix with
the elements of a given vector on the diagonal. Therefore, we can express simply as

follows:

N@2nl" wo? dnc? +7) H, (3.23)
;-
© O IN(@nL+ ) wol w' (4o [l + diag(n)]+ o2 T)w) H,

Finally, to make decision on the presence of the primary signal, the global test

statistics 7, is compared with a threshold 7.

H, (3.24)

And then, the probabilities of detection-and-false-alarm at the fusion center can be

expressed as

, 3.25
PO —Pr(r 5T - E[r, ]Hl) (3.25)
V r(r.)m,
and
, 3.26
(C)—Pr(r >T — £l ]HO) (3:26)
V r(r.)m,

Next we will show that the channels are fading channels which channel gains are
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generated according to a normal distribution and assumed to be fixed during a

detection interval.

I1. Fading Cannel between Secondary User and Fusion Center

From (3.3) or (3.4), the channel gain {g,} between secondary users and fusion
center are additive white Gaussian noise with zero-mean and variance 05, and they
are assumed to be fixed during a detection .interval, and the channel noise {»,} are

also additive white Gaussian’ noise | with zero-mean and variance o’ ,

le. g, ~ N(0,0'gz),ni ~N(0,67) . And“u, ~N(E[u,]Var(u,)) . Without loss of

generality, we assume that {g,}, {n}, and{u, } are independent of each other.

Therefore, at the fusion center receives {r,}, a global test statistic », is calculated

linearly as follows:

M M
T :zwiri :V_VTK:ZWi(gi”i"—ni) (3.:27)
i=1 i=1

Once again, according to CLT (central limit theorem), if the number of secondary

users (M ) is large enough, the global test statisticsz,, can be asymptotically normally

distributed with mean
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rl (3.28)
E[r,]= Ew' rl=w' [ = w'E| r,

m
&y + 1y
T | 82Uy T 1,
=w E .

gulhy T 1y

where { g, } are assumed to be fixed during detection interval, and », ~ N(0,57)

, u, can be asymptotically normally distributed

N(@2no?,4nc’) H, (3.29)
u, ~
N((2n+77i)0-v2’4(n+77i)o-j) Hl

So we can derive the mean as folows:

g E[u,]+ E[n, ] (3.30)
E[I"C]IV_VTE nglz:uz]"‘E[”z]
8y Eluy 1+ Elny, ]
2ng’ wo? H, (3.31)
Elr]=q — ro 2
(2ng+n ) wo; H,

where §=(g1,gz1---,gM)T, m, = (1817182 1w &) -

And variance

38




Var(r,) = E(r, — E[r.])° (3.32)
=w' E[(r - E[s])(r — E[r])" Iw

T
=w Kw

where K = E[(r — E[r])(r — E[r])"] is covariance matrix.

K= E[(Z—E[K])(Z—E[K])T] (3.33)
n Elr] n Elnr]
_E|( :’”2 _ :E[”z] ) :”2 _ :E[rz] )T
B _.E[rM] ;’M _‘E[rM]
n Elg,u, —n,] r Elgu, —n,]
_E|( :”2 _ E[gzbfz —n,] ) :’”2 2 E[gz’/:‘z —1,] )"
B | E[g,uy =n, 1] .rM Elgu,, —n,,]
n &1 n &1
= E(* |-2002| %7 (A S 2002 22T
v Eu v Eu

Therefore, we can find the element of the covariance matrix for different hypothesis

as follows:

_ 4ng’ct +o? = for B (3.34)
0 i °
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and

4o?(n+n)ot + o2 Q=]
a,»jz{ g; (n+mn)o, +o, i=] for H,

0 NEN

(3.35)

However, we can observe that the covariance matrix is diagonal matrix which

non-diagonal element are all zeros. Then, we can derive the variance

Var(r,) = w' Kw
w' [4noldiag(g”) + o2 ITw H,
- v_vT[4nafdiag[§2 (n+Q)]+af]]v_v H,

(3.36)

whereg® = (g7, g5....g5) g’ (m+m)=[gl (n+m). g5 (n+n,)... g5 (n+17,)1".

Finally, we can express that the glebal test statistics », are asymptotically normally

distributed when A s large enough.

N@2ng" wol,w' [4ncdiag(g”) + ol Ilw) H,
rc ~

N(@2ng+n ) wo?,w' [4nodiaglg’ (n+m)]+ollw) H,

(3.37)

Then, to make decision on the presence of the primary signal, the global test

statistics 7, is compared with a threshold 7.
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H, (3.38)

The probabilities of detection and false alarm at the fusion center can be expressed

as
T —El|r]|, 3.39
%C):Pr(rc>7;Hl):Q( c [c] Hl) ( )
Var(r,),,
and
T —Elr.], 3.40
‘ Var(r.), ,

We see that the sensing performance of the linear detector depends largely on the
weighting coefficient and the decision threshold. We next show how to design the

optimal weight vector w in order to maximize the modified deflection coefficient.
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3.3 Performance Optimization

For cognitive radio networks, the probabilities of detection and false alarm have

unique relationship. Specifically, 1- P{) represents the probability of interference
from secondary users on the primary users. On the other hand, P/(.c’ determines the

upper bound on the spectrum efficiency, where a large P}") usually results in low

spectrum utilization. This is based on a typical assumption that if primary signals are
detected, the secondary users do not use the licensed band, and if no primary signals
are detected, the secondary users use the licensed band. In this section, we maximize
the modified deflection coefficient in order to improve the detection performance.
From the mean and variance of r.:we observe that the weight vector w plays an
important role in controlling the-PDF of the global test statistics .. To measure the
effect of the PDF on the detection performance, we define a modified deflection

coefficient as follows:

r —E[r 2 3.41
dZ :(E[ c]’H1 E[ C]’Ho) ( )

" Var(r,), .

Now, we would like to maximize d? under the unit norm constraint to find the

optimization of weight vector, i.e.

maximize  d?(w) (3.42)

m

subjectto  [u]; =1
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Where |||| , denotes the Euclidean norm. And then we consider two cases to find

the weight coefficient. First, we consider that the channels are the constant AWGN

channel, and we can obtain the follows from (3.41):

) (" wol)? (3.43)
d,(W)=————" .
w (4o, [nl + diag(m)]+ o, 1w

We solve the problem as follows. Since we have 4c*[nl + diag(n)]+ o2l >0,

so we can know its square root can be expressed as

D = (40} [nl +diag(n)]+ o.1)"? (3.44)

Jac!(n+n)+o

\/40':'(n+772)+0'5

\/40'3(n+77M)+0'5_

Where is a diagonal matrix, Applying the linear transformation ¢ = Dw gives

d}(w) = 014 D7y D

T

BN

(3.45)

(a)
<c*) (D’lQQTD’l)

v 2 ¥max

Where A__ () denotes the maximum eigenvalue of the matrix. Note that (a)

max

follows the Rayleigh Ritz inequality and the equality is achieved if ¢ :Q”, which is

the eigenvector of the positive definite matrix D‘lggrD‘l corresponding to the
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maximum eigenvalue. Therefore, we find the optimal solution of (3.42) is

D¢ (3.46)

which maximizes the modified deflection coefficient.
Now, we further consider that the channel are fading channel which channel gains

are generated according to a normal distribution and assumed to be fixed during a

detection interval. With the same step, we would like to maximize d’ under the unit

norm constraint to find the optimization of weight vector, and then we can obtain the

follows from (3.41)

(7 wo )’ (3.47)

dri (w) = T ar 2 2
w (4o, [diag(g (n+ )+ o, )w

We solve the problem as the same, since we have 4o [diag(gz(n +m)]+ c2l>0,

so we can also know its square root can be expressed as

D = (40 [diag(g" (n+n)]+ o 1)"? (3.48)

\/4O'fg12(n+771)+0'5
\/40':'g22(n+772)+05

Jaotgl (ntn,)+o?
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Applying the linear transformation g = Dw gives

O'4qTD_177 n Tl)—lg (349)

Where A, () denotes the maximum eigenvalue of the matrix. Note that (a)

follows the Rayleigh Ritz inequality and the equality is achieved if ¢ :g”, which is

the eigenvector of the positive definite matrix D‘lggggTD‘l corresponding to the

maximum eigenvalue. Therefore, we find the optimal solution of (3.42) as the same

step is

D7g’ (3.50)

I<
I

which maximizes the modified deflection coefficient. we can prove by the
simulation results below, a larger value of d’ leads to a larger probability of

detection.
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3.4 Simulation Result

In this section, the proposed approach is simulated numerically and compare with
some other existing approaches. Firstly, we consider three or ten secondary users
(M=3 or M=10) in the cognitive radio networks, and the secondary users sense the
frequency spectrum independently. The channel gain between each secondary user

and the target primary user is generated by a complex normal distribution

(i.e.,h; ~ CN(02)) and the channel noise between each secondary user and the target
primary user are AWGN with zero mean and variancec? =1. For simplicity, we

assume the channel gain { g, } between secondary users and fusion center are constant

AWGN (g, =1), and the channel noise {#,} between secondary users and fusion

center are AWGN with zero mean and. variancec’ =1. The transmitted primary

signal has unit power |s(k)|2 =1 and the detection interval is 2n samples. The
proposed cooperation schemes are compared with selection combining method (SC
i.e., selecting the user with maximum SNR), equal gain combination method (EGC

lLe.,w, = 1 ,i=12,..., M) and single cognitive radio.

NG

Secondly, we further consider the channel gain { g, } between secondary users and

fusion center are generated by a normal distribution with zero mean and unit variance,
and they are assumed to be fixed during the detection interval. We assume that the

channel noise between each secondary user to the target primary user and secondary
users to fusion center are, respectively, AWGN with zero mean and variance 5> = 2
and o2 =2. Under the condition, we observe the effect of different number of

secondary user (M ) and different variance of channel noise between each secondary

user to the target primary user or secondary users to fusion center.
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Fig. 3-2 The probability distribution function of the test statistics (u) under different hypotheses, with
constant AWGN channel (g, =1) ,M=3, n:50,0'f =1, and 0'5 =1. The result is the average of

100 simulations.
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constant AWGN channel (g, =1) ,M=10, n=50,0°> =1, and o =1. The result is the average of

100 simulations.
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From figure 3-2 and figure 3-3, we show that the probability distribution functions
of the test statistics under different hypotheses. We compare the distribution of

optimization of modified reflection coefficient with the distribution of single

cognitive radio SC. We can observe that the distance between ;opt.PDF,HO and

uope.rorm, 1S larger than the distance between wun, and wu.n, . Also, we can find

that the spread of u,, ., is narrower than that of u_ , . On the other word, the

variance of u,, .., 1S smaller than the variance of u, . Further, when the
numbers of secondary user are increased, we can observe that the distance between

U opt.PDF H, and U opt.PDF H, become Iarge.

According to above-mentioned,, we-obviously understand that the distribution of
optimization of modified reflection coefficient and increased the numbers of
secondary user would result in more accurate inference. These observations imply that
the PDF optimization cooperation.scheme outperforms any local spectrum sensing by

individual secondary users.
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From figure 3-4 and figure 3-5, we plot the probability of miss-detection (1-P,)

versus the probability of false alarm ( P,) under various approaches, such as

optimized modified reflection coefficient method, equal gain combination method

(EGC, the corresponding weight coefficient is expressed asw, = 1 i=12,...,.M),

JM

selection combining method (SC, selecting the user with maximum SNR), and single

cognitive radio. The probability of miss-detection (1—- P,) versus the probability of

false alarm (P, ) directly measures the interference level to the primary users for a

given P,. The simulation shows that the proposed optimized modified reflection

coefficient method (denoted as opt PDF) lead to much less interference (much higher
probability of detection) to the primary, user than single cognitive radio, selection
combining method, and equal gain combination method. Also, we can find that the
cooperation schemes (opt PDF,-EGC) outperform single cognitive radio schemes (SC,
single CR). The cooperation gain is-due to-control the combining weight coefficient
which sharp the probability distribution function. Further, we can observe that when

the numbers of secondary user are increased, the cooperation gain become large.
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From figure 3-6, we plot the probability of miss-detection (1-P,) versus the
probability of false alarm ( P,) under different numbers of secondary user. We further

consider the channel gain { g, } between secondary users and fusion center are
generated by a normal distribution with zero mean and unit variance, and they are
assumed to be fixed during the detection interval. And, we observe that when the
numbers of secondary user are increased, the performance become batter. In other
words, under the same condition, the sensing reliability improves as the number of

secondary users increase.

From figure 3-7, we plot the probability of miss-detection (1—P,) versus the
probability of false alarm (P,) under different noise condition. And we consider the

channel gain {g,} between secondary users:and fusion center are generated by a
normal distribution with zero mean and:unit variance, and they are assumed to be
fixed during the detection interval. As.we can observe, the detection performance
degrades as the noise conditions become bad. We can also find that the channel noise
between each secondary user to the target primary user is more sensitive to the

detection performance than that of secondary users to fusion center.

From figure 3-8, we plot the probability of miss-detection (1—P,) versus the
probability of false alarm (P,) under different cooperation schemes (opt PDF and

EGC) and various M with fading channel (g,are generated according to a normal
distribution). We can obviously see that the EGC method has a severe detection
performance in the fading channel between secondary user and fusion center, even if
we increase the number of secondary user. In other words, the EGC cooperation
scheme doesn’t work due to the fading channel in that environment. However, we
proposed cooperation scheme works well, and the sensing reliability improves as the

number of secondary users increase.
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Chapter4

Conclusion

Cognitive radio network enables much higher spectrum efficiency by dynamic
spectrum access. Therefore, it will be a popular technique for future wireless
communications to mitigate the spectrum scarcity issue. Spectrum sensing is a main
and tough task in cognitive radio networks. However, due to the effect of shadowing,
fading, and time-varying nature of wireless channels, the individual cognitive radios
may not be able to reliably and quickly detect the existence of a primary signal. In this
thesis, we propose a simple but efficient cooperation spectrum sensing based on
energy detection and consider the .channel between the secondary user and fusion
center with two cases. One iS considered only the channel noise between the
secondary user and fusion center (i.e.,-constant AWGN channel), and the other is
considered both of the channel noise and channel fading between the secondary user
and fusion center (i.e., fading channel). Our objective is to improve the detection
performance and to combat the channel fading effects. Finally, we optimize a
modified deflection coefficient to find the optimal linear combining weights.

From the simulations, we obviously understand that the distribution of
optimization of modified reflection coefficient and increased the numbers of
secondary user would result in more accurate inference. Also, we can observe that the
proposed cooperation method have the better detection performance then other
methods (i.e., single CR, SC, and EGC). We can also find that the channel noise
between each secondary user to the target primary user is more sensitive to the
detection performance than that of secondary users to fusion center. Finally, the

sensing reliability improves as the number of secondary users increase.
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