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摘要 

選擇權定價是當代財務科學最重要也最引人入勝的的課題之一，各種複雜的價

格模型與演算方法均可能派上用場，讓不同背景但同樣精於計量方法的學者在此

一展身手。 

在實務上，定價也是多種套利交易策略的核心技術。為求精確的定價，通常需

要使用較複雜且具有結構的模型，其中之一就是連續時間隨機波動率模型。然

而，這類模型中重要的狀態變數-波動率實際上是不可觀察的，同時整個系統的

概率函數也無法以解析形式表達。 

這一系列論文探討利用隨機波動率模型進行選擇權定價相關的統計問題，特別

將波動率不可觀察這一問題納入考量。基於 GARCH模型會收斂到隨機波動率模型

這一性質，只要建構一個僅可部分觀察的GARCH模型，其概率函數可運用蒙地卡

羅馬可夫鍊方法計算，且為原有模型之良好近似，因此可用於相關的統計推論，

包括估計與定價。在此脈絡下，既有做法的一些不足與缺失均可獲得改善。 

最後針對選擇權定價中的損失函數也作一討論。簡言之，雖然定價理論並未對

選擇損失函數設下絕對標準，但損失函數必須基於足以表現選擇權價格資訊內涵

的統計量(如隱含波動率)，而由於定價均基於均衡的論述，由模型獲得的該統計

量僅需作為實繼價格獲得的統計量進行均數回歸的目標，而非價格的絕對參照。 
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ABSTRACT 

Option pricing may be one of the most important and fascinating topics in modern 
finance. Complex models and algorithms can be applied here so that researchers and 
practitioners may bring their quantitative skills into full play. 

In practice, pricing is also the core of different types of arbitrage strategies. For 
more precise pricing, structural models are generally necessary where continuous time 
stochastic volatility model can be one of the candidates. However, volatility, the most 
important state variable, is in fact unobservable and the likelihood cannot be available 
in close form for the stochastic volatility models. 

The sets of articles explore related statistical issues about option pricing with 
stochastic volatility models. Especially, the unobservability of volatilities is taken into 
considerations. By the fact that a GARCH model would converge weakly to the 
corresponding stochastic volatility model, statistical inference including estimation 
and pricing can be made based on a specially designed partially observed GARCH 
model whose likelihood will be obtained through MCMC methods. In this context, 
some drawbacks from the current practices can be improved. 

Finally, an investigation on the loss functions for option pricing is also made. 
Although the pricing theory does not restrict to any specific loss functions, the 
statistics that correspond to the information contents, for example implied volatilities, 
should be used as a basis for the construction of loss functions. Furthermore, due to 
the fact that pricing is generally based on some equilibrium conditions, the model 
implied statistics would just play as the target of mean reversion of the real price 
implied process, instead of an absolute reference of prices. 
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1. Introduction 

Since the epochal work of Black and Scholes (1973) and Merton (1973), financial 
derivative markets grew up rapidly and quantitative methods were widely used in 
finance. To lax the assumptions of the Black-Scholes model, large amounts of 
complex structural models were introduced for option pricing, including the so called 
continuous time stochastic volatility models. 

These types of models have been widely utilized in industries and academia. However, 
some features and difficulties make the currently popular practices about these models 
desultory. First, the likelihood functions for such systems are seldom available and 
thus some indirect methods such as EMM and indirect inference shall be applied. But 
to the extent searches, the effectiveness and efficiency for these methods applied to 
the stochastic volatility models are not formally concluded. 

Next, as the volatility processes are in fact never observable, an “estimate” for 
volatility at each point in time should be filtered with the prices. However, if this 
approach really makes sense, why not just use GARCH-type models? Third, an 
exogenous loss function is generally required for the determinations of some subset of 
parameters, especially risk premium of volatility. What matters is that almost no 
commonly used loss functions are provided with significant economic interpretation 
and statistical properties. 

This dissertation is engaged in the problems mentioned above. By introducing a 
partially observed GARCH model and utilizing MCMC method, the likelihood 
function for the stochastic volatility model can be properly approximated numerically. 
The byproduct of simulated likelihood would be a large amount of paths that 
connecting the observations, which can be used as a basis for further inferences such 
as predicting or pricing. 

As for loss functions, since the option prices may range widely, commonly used error 
sum of squares or similar measures cannot be an adequate candidate. In fact, the 
pricing theory tells no specific loss functions. But there are at least two questions to 
be answered for the choice of loss functions. First, what are the information contents 
of option prices? Second, what characteristics will be represented by the information 
contents? The answers clearly lead to a reasonable choice of loss functions. 

In Chapter 2 the estimation method for the stochastic volatility models is discussed. 
Following the context above, calculations for option prices become trivial. Some 
interesting results are thus documented in Chapter 3. Beyond the apparent prejudice 
about “losses” for pricing options, outlines for choosing proper loss functions are 
drawn in Chapter 4. These investigations and discussions complete a schema for 
statistical inference about option pricing. 
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2. Estimating the continuous time stochastic volatility models with 
partially observed GARCH models 

2.1 Introduction 

In the last decade, Continuous time stochastic volatility models have been proposed in 
finance area, especially option pricing. These models generally consist of two 
stochastic differential equations, 

 tttXttXt dWVtXdttVXdX ,1),(),,( ⋅⋅+= σμ  ,     (2.1) 

 ttVtVt dWtVdttVVd ,2),(),()( σμφ += ,        (2.2) 

The first equation involves the dynamics of Xt, the logarithm of the prices St, and the 

second the volatilities tV . Here ( tW ,1 , tW ,2 ) is assumed to be a correlated 

two-dimensional Brownian motion and θ œΗ Œ Rd is the unknown parameter. This 
class of models covers a large range of applications in literatures concerning equity 
prices and interest rates, for example, Heston (1993) and Anderson and Lund (1997). 

Like most practical applications of diffusion models, observations for continuous time 
stochastic volatility models are taken at discrete time and generally neither explicit 
forms of the transition probability functions nor the likelihood functions are available. 
Furthermore, the volatilities are in fact unobservable here and thus there are always 
missing values at least as many as the observations. Therefore, likelihood inference 
for these models turns out to be much more complicated. 

In this chapter, a procedure is proposed for approximating the likelihood functions of 
continuous time stochastic volatility models in which the two driving processes are 
correlated. The major idea here is to fit the discretely observed data drawn from a 
bivariate diffusion process with a partially observed GARCH process whose 
frequency of construction is much higher. The approximated density functions will 
converge to the joint density function of the model (2.1) and (2.2) under certain 
conditions and thus can be used as a basis for statistical inference. However, such 
practice will induce large amounts of missing values between observations. With 
Markov Chain Monte Carlo (MCMC) techniques, paths conditional on the 
observations can be sampled to compute the approximate likelihood function based on 
the GARCH model. Then the EM algorithm can be applied to get the MLE’s. 

Among literatures estimators based on the generalized method of moments (GMM, 
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Hansen, 1982) are often used in estimating parameters of the stochastic volatility 
models. Especially, there are a large number of literatures with the efficient methods 
of the moments (EMM, Gallant and Tauchen, 1996) as a major tool for inferences. For 
example, Anderson and Lund (1997) discussed a stochastic volatility model for 
interest rates and EMM with a semi-nonparametric (SNP) density, based on GARCH 
score generators, is used to estimate the continuous time model. Indirect inference 
proposed by Gourieroux et al. (1994) provides another approach, and a practical 
application can be referred to Fiorentini et al. (2002). Besides, under the assumptions 
that the two Brownian motions driving the price and the volatility processes are 
independent, in Genon-Catalot et al. (1999) the return is treated as a subordinated 
process with which the moment conditions can be derived. 

Estimating functions provide another approach to this estimation problem, for 
example, Kessler (2000) and Sørensen (1999). Also there are authors who drew 
inferences via a Bayesian method based on Euler approximations to diffusions, for 
example, Eraker (1998). 

On the side of likelihood inference, simulated likelihood method for diffusion models 
with discrete observed data is first proposed in Pedersen (1995). Likelihood functions 
can be numerically approximated through simulating paths between observed points 
under the Euler scheme. Importance sampling techniques play important role in 
implementing the idea, and various strategies for generating paths have been 
suggested, for example, Kessler (1997), Elerian (1998) and Elerian et al. (2001). 

When the two processes are assumed to be uncorrelated the returns are still normally 
distributed. With this property, the likelihood functions can be approximated by 
simulated paths of volatilities, for example Sørensen (2003). But unfortunately this 

method is also not applicable when the two driving processes ( tW ,1 , tW ,2 ) are assumed 

correlated and the resulting distributions for the returns are not available. 

On the other hand, since Bollerslov (1986) GARCH models provide as alternative 
models that describe heteroskedasticity in financial time series. It has been shown in 
Nelson (1990) that a GARCH model will converge weakly to some bivariate diffusion 
model as time interval becomes infinitesimal. A family of augmented GARCH(1,1) 
processes and their limiting diffusion processes are proposed by Duan (1997). 
Another family of CEV-ARCH models and their limiting processes can be found in 
Fornari and Mele (2004).  

From the viewpoint of statistical inference, Wang (2002) showed asymptotic 
non-equivalence of GARCH and continuous time stochastic volatility models at the 
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basic frequency of construction. On the other hand, similar to Pedersen(1995) on 
approximating diffusions with Euler expansion, Brown, Wang and Zhao (2003) 
suggested that these two models are asymptotically equivalent at frequencies lower 
than the square root of the basic frequency of construction. 

These results point out alternative access to approximate of the likelihood function for 
the continuous time stochastic volatility model beyond the traditional Euler and 
Milstein schemes. In short, to inference about a stochastic volatility model is 
equivalent to inference about a GARCH model constructed at a higher frequency. 

The rest of the chapter is organized as follows. In section 2.2, background knowledge 
about the model is reviewed. Major results will be stated in section 2.3. Numerical 
illustrations are given in section 1.4 and then in section 2.5 are conclusions. 

2.2 The model and likelihood inference about diffusions 

The stochastic volatility models have been presented in the introduction. Generally, 
equation (2.1) just corresponds to the commonly used geometric Brownian motion or 
the CKLS model with coefficient of volatility replaced by the square root of a positive 
random variable Vt. Since in documented literatures, for example Engle and Patton 
(2001), it is suggested that volatilities possess the property of mean reversion, 

equation (2.2) is usually specified with a term like )(),( ξκμ −−= ttV VtV , in which κ 

represents the speed of mean reversion and ξ is the long-term equilibrium level of 
volatility.  

For further discussions, the following conditions are assumed. 

Assumption 1. ),,( tVX ttXμ , ),( tX tXσ , ),( tVtVμ  and ),( tVtVσ  are functions 
which satisfy regularity conditions such that there exists a unique strong solution (X t, 
Vt ) of the systems (2.1) and (2.2).  

Assumption 2. The process Vt is stationary and ergodic with a distribution π. 

With these conditions, the stationary distribution for V0 and the transition probability 
density function for X t, Vt| X t-1, Vt-1 exist. Then the likelihood function can be 
expressed in a proper form. 

2.2.1 Likelihood function 

Data for this problem consist of discrete-time observations TXXX ,,, 10 ⋅⋅⋅  only, 
while the process Vt remains completely unobservable. With the Markovian property 
of the diffusion process, the likelihood function can be expressed as 
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 ∫ ∏
=

−−= )1(

1
110

)1( ~);,|,()()~;( VdVXVXpVXL
T

t
tttt ηπη ,      

   ∫= 0
)1(

0 );~()( dVXpV ηπ          (2.3) 

where η denotes the vector of parameters, ),,(~
0

)1(
TXXX ⋅⋅⋅= , ),,(~

0
)1(

TVVV ⋅⋅⋅= , 

p(X t, Vt| X t-1, Vt-1;η ) the transition probability density function, );~( )1( ηXp  the joint 

density function of )1(~X  and π(V0) the stationary distribution for V0.. Taking 
expectation in (2.3) is due to that )1(~V  is not observable. Note that in general the 
transition density functions are quite complicated so the integral cannot be 
decomposed into factors concerning pivotal quantities such as Xt - Xt-1. This means 

that, when )1(~V  is not observable, Xt will be dependent on ),,( 10 −⋅⋅⋅ tXX rather than 

only on Xt-1. 

Explicit forms of transition probabilities have been identified only for some specific 
univariate processes, for example the Ornstein-Uhlenbeck process and the 
Cox-Ingersoll-Ross process. However, it is almost infeasible to find explicit form of 
transition densities for the whole system (2.1) and (2.2) even when W1,t and W2,t are 
not correlated. 

A practical means to compute the likelihood functions and find MLEs is through 
numerical methods. When equation (2.1) is set as a geometric Brownian motion for 
prices and W1,t and W2,t are assumed to be independent, each increment Xt - Xt-1 is 
normally distributed and the likelihood function can be obtained through simulating 
large number of paths of volatilities (Sørensen, 2003). 

2.2.2 Simulated maximum likelihood and MCMC methods for inferences about 
diffusions 

When observations for all processes are available, Pedersen (1995) shows the 
approximate likelihood under the Euler expansion converges to the true likelihood 
function in probability as the subdivision length between observations approaches 0. 
That is, to obtain a good approximation of the likelihood function data augmentation 
is necessary and different paths connecting two consecutive observations should be 
simulated. 

Consider the model consisting of equation (2.1) with Vt as a constant. The discretized 
version with subdivision length Δ=1/n would be 
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 ttXttXtt WtXtVXXX Δ+Δ+=Δ+ ),(),,( σμ ,       (2.4) 

where ΔWt is a normally distributed random variable with mean 0 and variance Δ. Let 

the observed data be ),,(~
0

)1(
TXXX ⋅⋅⋅=  and denote the augmented data as 

),,,~,(~
1

)(
1

*
0

)(*
T

nn XXXXX ⋅⋅⋅=  

),,,,,,(          11
**

0 TXXXXX ⋅⋅⋅⋅⋅⋅= Δ−Δ , 

where ),,(~ *
1

*)(*
Δ−Δ+− ⋅⋅⋅= tt

n
t XXX  is the n-1 augmented data points lying between Xt-1 

and Xt. 

The joint density function for )(* ~ nX  under the Euler Scheme is 

 ( )∏
=

=
T

t
t

n
tt

n XXXqXq
1

)(*)(* ;|,);~( ηη  

 ∏
=

Δ

Δ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

nT

s
s

s

z
1

*

*
)(1                   φ

σ
, 

where 

 ( )
Δ−

Δ−Δ−Δ−Δ
Δ

Δ−−−
=

)1(
*

)1(
*

)1(
*

)1(
**

* ))1(,,(
s

ssSss
s

sVXXXz σ
μ , 

),(** tX sXs σσ = , 

and )(⋅φ is the density function of the standard normal distribution. 

Since )~,,~( )(*)(
1

* n
T

n XX ⋅⋅⋅  are auxiliary variables that are not observed, the likelihood 

function for )1(~X  would be 

( )∏
=

−∞→
=

T

t
tt

n

n
XXqXL

1
1

)()1( ;|lim)~|( ηη  

( ) )(*)(
1

*

1
1

)(* ~~;|~,lim                 n
T

n
T

t
t

n
ttn

XdXdXXXq ⋅⋅⋅= ∫∏
=

−∞→
η  

in which the expectation is taken over )~,,~( )(*)(
1

* n
T

n XX ⋅⋅⋅ . 

Generally numerical procedures such importance sampling shall be used for the 
calculation of the likelihood function. For an importance sampler ϕ and L repetitions 
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of paths, the likelihood function maybe approximated as 

 ( )
( )∑∏

= =

−
L

1i 1
)1()(*

1
)(*

;|~
;|~,

L
1 

T

t
n

ti

t
n

tit

XX
XXXq

ηπ
η . 

The original suggestion of Pedersen is quite simple. The required augmented data can 
be simply generated with the Euler expansion (2.4), that is, an importance sampler 
like 

 ( ) ( )∏
−

=
Δ−+−Δ+−− =

1

1
)1(1

*
1

*
1

)(* ;|;|~ n

s
ststt

n
t XXqXX ηηϕ . 

Clearly, a major drawback about this method is that it tends to lead to large jumps 
between the last augmented points and the consecutive observed data point.  

Based on the Brownian bridge, Pedersen’s approach can be modified with the 
following scheme 

 ΔΔ−+−Δ−+Δ+− Δ+Δ−+= sstXttstst WtXxxXX ),()( )1(1)1(1 σ , 

where (xt - xt-1) represents an estimate for the drift speed from time t-1 to t. 

Elerian et al. (2001) proposed alternative importance sampler for the problem. The 
advantage of the approach is drawing paths at one shot and eliminating huge jumps. 
The augmented data between Xt-1 and Xt can be sampled from a multivariate normal 
distribution N(μ*, Σ*) where 

 ( )tt
n

t
X

XXXq
n

t

,|logmaxarg 1
)(**

)(* −=μ , 

 ( )
1

1
)(*

')(*)(*

2
* ,|log

−

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂

∂
−=Σ tt

n
tn

t
n

t

XXXq
XX

, 

and ( )tt
n

t XXXq ,| 1
)(*

−  denote the conditional density of )(* n
tX  under the Euler 

expansion (2.4). 

More bias correction and variance reduction methods and a summary discussion may 
be found in Durham and Gallant (2001). Most of the methods mentioned may be 
applied to the stochastic volatility models, especially when the two driving Brownian 
motions are uncorrelated. 

2.2.3 Asymptotic equivalence of stochastic volatility models and GARCH models 
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Since Engle(1982) and Bollerslov (1986), GARCH models have been widely used for 
modeling financial time series with stochastic volatilities. Nelson (1990) first 
investigated the convergence of GARCH processes to bivariate diffusions as the 
length of time intervals between observations goes to zero. Up to now diffusion limits 
for a variety of GARCH type processes have been found, for example, Duan (1997) 
and Fornari and Mele (2004). The relation between the two categories of models 
becomes very elaborate, especially when they both are essentially one-dimensional 
processes. 

But even though the GARCH processes converge to their diffusion limits in 
distribution, it is not trivial that inferences through the two processes are equivalent. A 
major distinction between the two types of models is observability of volatility 
processes. Thus, once by subtle arrangement a GARCH model may maintain its 
availability of likelihood but its volatility process unobservable, it may work well to 
approximate the continuous counterpart. In fact, some recent researches have shown 
that the equivalence of the two types of models depends on the sampling frequency 
and the basic frequency of construction of the processes. 

As set in the previous section, let ),,,(~
0

)(
Tn

n XXXX ΔΔ ⋅⋅⋅=  be observations from the 

stochastic model and ),,,(~
0

)(
Tn

n YYYY ΔΔ ⋅⋅⋅=  from the corresponding GARCH model 

at the basic frequency of construction. With the notation D(X, Y) for L1 distance of the 
joint density functions of the two processes X and Y, Wang (2002) showed 

)~,~( )()( nn YXD  does not converge to 0 as n→∞. In other words, the likelihood 

processes have different asymptotic distributions and consequently the two types of 
models are not asymptotically equivalent. 

However, as the frequency of observations become much lower than that of 
construction, the result goes quite different. Specifically speaking, let observations be 

),,,(~
*2

)(
Δ⋅ΔΔ

+ ⋅⋅⋅=
lNl

n XXXX  and ),,,(~
*2

)(
Δ⋅ΔΔ

+ ⋅⋅⋅=
lNll

n YYYY ,where l represents the 

period between observations and N* is the largest integer not larger than nT/l. Brown, 
Wang and Zhao (2003) illustrated the asymptotic equivalence of the MGARCH model 
and its diffusion limit with the dataset as n→∞ and ∞→2/1/ nl . 

These seemingly contradicting results in fact sketch the relation between the 
stochastic volatility model and its GARCH counterpart elaborately. Even though the 
GARCH process converges to the stochastic volatility model, the GARCH process is 



 9

still composed of normally distributed innovations and determined volatilities. 
Augmentation of data deprives the GARCH process of these properties so that it may 
look like generated by a stochastic volatility model. 

In other words, the implications are very similar to those among Lo (1988) and 
Pedersen (1995) on the univariate processes or multivariate process that are 
completely observable. In short, even though the GARCH models provide as good 
approximations to stochastic volatility models, likelihood functions for the stochastic 
volatility models cannot be obtained through the corresponding GARCH model at the 
frequency of observation, 1/T. However, by the GARCH processes constructed at 
higher frequencies, the approximate likelihood function can be calculated with 
simulating all missing values. 

2.3 Simulated likelihood for stochastic volatility models 

Although Brown et al. (2002) had only investigated and proved the asymptotic 
equivalence of the MGARCH model and its diffusion limit, it may be well expected  
to extend the result to general cases with finite samples. In practice, it is reasonable to 
expect that the data considered from a stochastic volatility model would look as 
generated from some specified GARCH process whose frequency of construction is 
much higher, say n, but observations are taken every n period. Obviously there will be 
a large number of missing values between the original observations, but the MCMC 
techniques used in Elerian et al. (2001) can easily help solve this problem. 

2.3.1 Approximations with partially observed GARCH 

Let ( ))1()1( ~,~ VX  be drawn from equations (2.1) and (2.2) and ( ))1()1( ~,~ hY  from the 

corresponding GARCH with length of construction interval Δ. Note that the observed 
data is indeed )1(~X , or, equivalently, )1(~Y . The following assumption is essentially 
necessay. 

Assumption 3. The GARCH processes converge to its diffusion counterpart in 

distribution. That is, the conditional distribution ),|,( 11
)(

−− tttt
n hyhyF  converges to 

),|,( 11 −− tttt vxvxF  uniformly as n→∞. 

Assumption 4. Each term of the sequence ),|,,,( 0021
)( hYYYYq T

n ⋅⋅⋅  exists and the 

sequence converges to a proper density function. 

It should be noted that Assumption 3 does not restrict the models under consideration 
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to a narrow extent. In fact, both the approximating augmented GARCH(1,1) process 
in Duan(1997) and the CEV-ARCH models in Fornari and Mele (2006) satisfy this 
condition. 

The likelihood function for )1(~X  has been shown in (3). With Assumption 4 that may 
be generally feasible for well defined GARCH models, the likelihood function for 

)1(~Y  can be written down in a similar form: 

 ∫ ⋅⋅⋅= 00021
)(

0
)1()( ),|,,,()()~;( dhhYYYYqhYL T

nn πη .     (2.5) 

Similar to Elerian et al. (2001) and as a direct result of Brown et al. (2003), equation 
(5) can be used as an approximation to the likelihood of the stochastic volatility model. 
For practical implementation, the convergence of the sequence of density functions 

),|,,,( 0021
)( hyyyyq T

n ⋅⋅⋅  would be the major consideration. However, in spite of the 

weak convergence of the processes, the convergence of the joint density function is 
not necessary under general conditions. Assumption 4 is thus necessary here. The 

convergence result of ),|,,,( 0021
)( hyyyyq T

n ⋅⋅⋅  to ),|,,,( 0021 hyyyyp T⋅⋅⋅  is then 

stated as follows. 

Theorem 2.3.1. With Assumptions 3 and 4, ),|,,,( 0021
)( hyyyyq T

n ⋅⋅⋅   converges to 

),|,,,( 0021 hyyyyp T⋅⋅⋅  uniformly as n→∞. 

The proof of the theorem is a direct application of Lemme A1. Convergence results 
can be also obtained for specific models, for example Brown et al. (2003). However, 
with Theorem 3.1, a proper approximation of the likelihood (2.3) can be obtained 
from (2.5). Generally the close form of the transition density q(n) in (2.5) is not 
available, but by the Markovian property of the GARCH process, there can be found 
alternative expression of (2.5) as  

 ∫= 00
)1()(

0
)1( );|~()()~;( dVVYpVYL n ηπη   

 ∫ ∏ ⋅⋅⋅⋅⋅⋅=
=

Δ−Δ 0
*

1
*

1
0)1(

*
0

**)(
0

~~);,,|()(                dVYdYdVYYYqV T

nT

s
ss

n ηπ   

 (2.6) 

where tY~*  are the augmented data between Yt and Yt-1.  

The problem becomes very similar to the simulated likelihood of Pedersen (1995). 
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However, due to the complex structure of the GARCH models, it would not 

necessarily so easy to find a sampler that mimics the conditional distribution of tY~*  

well. Thus, alternative approach is to generate paths from );,~|( 0
)1()(*)( ηVYYp nn  and 

apply EM algorithm to compute the MLE, though this may be computationally costly. 

With each simulated paths, the object function in the Maximization step is then 

 ∑ ∏
= =

Δ

Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅

L

i

nT

s

n
sin

si

i
h

h
1 1

)(*

)(*0 )(1)(log εφπ ,        (2.7) 

where )(* n
si Δε  and )(* n

si h Δ are innovations and variances at time sΔ on the i-th path. 

The algorithm to compute MLE for η is then, 

1. Initialize V0 and )(* ~ nY ; 

2. Update 0hi  from Yh ~|*0 ; 

3. Update sequentially )(* ~ Δ
tY  from η;~,,~,~,,~,~|~ )(*)(

1
*)(

1
*)(

1
*)1()(* n

T
n

t
n

t
n

t YYYYYY ⋅⋅⋅⋅⋅⋅ +−
Δ ; 

4. Repeat step 2 and 3 and take L independent paths; 

5. Maximize (2.7) with respect to η; 

6. Repeat Steps 2 to 5 until convergence. 

MCMC methods play important roles in this approach. Since the conditional density 
in step 3 becomes complex and generally no well-established algorithm is available, 

Metrapolis- Hasting algorithm can be used for sampling )(* ~ n
tY . And the iterative 

sampling of η;,|~
1

)(*
tt

n
t XXX −  in Steps 2 and 3 is in fact a realization of Gibbs 

sampling. 

It should be pointed out here that the discretization error for the transition probability 
function is indeed a function of the number of subdivision n rather than solely a 
function of the time between observations. 

A major feature of this method is that the bivariate diffusion process with the second 
process unobservable is approximated by a univariate GARCH process. This method 
preserves the missing value problem from simulating the whole unobservable process 
to simulating paths connecting observations. In other words, any operations about the 
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volatilities can be avoided. Furthermore, the GARCH process provides analytical 
form of the likelihood functions. What is left concerns only implementation of the 
MCMC algorithm. 

There are three points to be emphasized. First, how equation (2.5) approaches the true 
likelihood function is in fact a matter of n, the number of subdivisions between 
observations, rather than the time between observations or values of )1(~X . This means 
that however small the observation time interval is, subdivision is always necessary. 
This can be seen from the fact that the GARCH model always provides normally 
distributed innovations while the leptokurtosis of the conditional distribution for the 
return under the stochastic volatility models denied the possibilities of the normal 
distribution. 

Second, this approach provides as another aspect to the continuous time stochastic 
volatility models. This class of models can be viewed as a partially observed GARCH 
process that has higher observation frequency and many missing values. On this point 
statistical inference for these continuous time models will be made feasible 
significantly. 

Third, unlike Sørensen (2003) in which only observations previous to time t are used 
in constructing the conditional density at t, the method here employs all observations 
in determining each segment of paths. Perhaps, at a first glance, this does not seem so 
natural. However, on seeing that all observations )1(~X  are correlated and thus each 
segment of the path provides information about those previous to or after it, this 
approach is indeed much more reasonable. 

2.3.2 Why not Euler expansion? 

It can be seen that the GARCH models cannot be the only class of models that satisfy 
theorem 2.3.1. In addition, as is acquainted with many researcher and practitioner in 
related fields, discretization through the Euler expansion provides another approach to 
approximate the stochastic volatility models. 

The approximate likelihood function herein then involves a functional form of the 
bivariate normal distributions. For the stochastic volatility models (2.1) and (2.2), 
denote the augmented data as ( )(* ~ nX , )(* ~ nV ). Since the process Vt is completely 
unobservable and there does not exist a similar form like (2.6) under the Euler scheme, 
the whole path of Vt must be treated as missing values and be simulated conditional 
on the observed price processes. Similar to (2.4) and (2.7), the likelihood function can 
be approximated by L independent paths as 
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 ∑ ∏
=

Δ

Δ=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ≈

L

i

n
si

n
si

n
si

Tn

s
i ZMNVXL

1

)(*)(*)(*
0

)1( ) , ;()()~;( μπη ,     (2.8) 

where 

 ( ))()(, *****
Δ−Δ−Δ− −−= sisisisisi VVXXZ φφ  

( )'**** ),(,),,( Δ⋅Δ⋅= sVsVX siVsisiXsi μμμ  

 ⎥
⎦

⎤
⎢
⎣

⎡

ΣΣ
ΣΣ

=Σ
)2,2()1,2(
)2,1()1,1(

**

**
*

sisi

sisi
si  

 ),()1,1( *2** sXV siXsisi σ⋅=Σ , 

 ),(),,()1,2()2,1( ****** sXsVXV siVsisiXsisisi σσρ ⋅⋅⋅=Σ=Σ , 

 ),()2,2( *2* sVsiVsi σ=Σ , 

and ) , ;( ⋅⋅⋅MN  represents the density function of the multivariate normal distribution. 

This approach may still work to obtain some values of the approximate likelihood 
function. However, the question apparent is: will this approximate likelihood function 
converge to the true one as the length of subdivision Δ tends to 0? The answer seems 
not so trivial. 

The above numerical procedure in fact approximates the following integral 

∫ ∏
=

−−−− VdVSSVpVSSpV
T

t
ttttttt

~);,,|();,|()(
1

11110 ηηπ . 

More precisely, these calculations involve the conditional expectations of volatilities 
given prices. Theoretically, what would go wrong may be that the conditional 
distribution under the Euler expansion will not necessarily converge to that of the 
original model. Some discussions and necessary conditions on the convergence of 
conditional expectations can be found in Goggin (1994) and Crimaldi and Pratelli 
(2005). And extra efforts are generally required to build artfully transformed 
processes to meet the required conditions. 

To illustrate the property of (2.8), consider the following model where the observable 
process Xt has no drift and the volatility process is the limit of the GARCH(1,1) 
model (Nelson, 1990): 

 ttt dWVdX ,1= ,            (2.9) 
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 tttt dWVdtVdV ,2)( ⋅+−−= σξκ .         (2.10) 

To avoid possible singularities by direct discretization for Vt, the following 
discretization scheme for Xt and log(Vt) by a transforma of Ito’s lemma is used:  

 tttttt ZVXX ,1Δ⋅+= Δ−Δ− ,          (2.11) 

 t
tt

ttt Zdt
V

VV ,2

2

)
2

()log()log( Δ⋅+−−+=
Δ−

Δ− σσκκξ ,     (2.12) 

where tZ ,1Δ  and tZ ,2Δ  are normally distributed random variables with mean 0, 

variance Δ and coefficient of correlation ρ. 

For t<s<t+1, the posterior distribution of *Vs given *~X  and other *Vs’s can be 
expressed as 
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As most of these terms involve the dynamics *Vs only, they can be assume to be less 
cariational. So note the terms that are related to data first, that is 

( )
Δ

−
+ +

s

ss
s V

XX
V *

2
1*log . 
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While Xt+1-Xt is viewed as data and thus fixed, this means that ss XX −+1  as one of 

the n segments is approximately as large as 1/n, which in term implies that sV*  is 

approximately of the scale n. That is, the simulated variance process under the Euler 
expansion may diverge as the number of subdivisions n approaches infinity! 

Table 2.1: Parameters used in the simulation study. 
  

parameter Value 
κ 0.06988 
ξ 0.7928 
σ 0.1772 
ρ -0.65 

Figure 2.1: Simulated paths of Vt conditional on X0=0, X1=1 and V0=0.8. 

Figure 2.1 illustrates this effect. The setting of parameters is the same as in the next 
section and shown in Table 2.1. Simulated paths of Vt between the period of 0 to 1 
given X0=0, Vt=0.8 and X1= 1 are generated. The three panels correspond respectively 
to the cases with subdivisions 5, 10, 15. In each simulation, linear interpolations for Xt 
at each time point and constant Vt equal to 0.8 are used as initial values. After 200 
burn-in iterations, paths of Vt are taken every two iteration from the next 200 
iterations. It can be seen that the level of the Vt paths go up significantly. This 
illustrates the inadequacy in estimating stochastic volatility models based on the Euler 
scheme. 

Figure 2.1. Simulated paths of Vt conditional on X0=0, X1=1 and V0=0.8. 
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2.4 Numerical illustrations 

With the model (2.9) and (2.10) for a numerical illustration of parameter estimation, 
ten datasets of length 500 and time between observations as 1 are generated according 
to the Euler approximation (2.11) and (2.12) with Δ=0.001. The initial value of Xt is 
X0=0 and V0 is generated from the stationary distribution of Vt: 

 tva
t

a

t ev
a

v
λ

λπ
−

−−

Γ
= 1

)(
)( , 

where 2/21 σκ+=a  and 2/2 σκξλ = . 

From the results shown in section 2.4, the approximating GARCH process 
corresponding to the model specified by (2.9) and (2.10) is 
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   )(*)( n
s

n
ksh φ= . 

An approximation for the transition density of this type of GARCH model can be 
found in Duan et al. (1999). Their result also implies that Assumption 5 is satisfied for 
this model. 

The parameters used in this simulation study are shown in Table 2.1. And this setting 
is compliant with the estimates for the NGARCH model with the NYSE composite 
index returns in Duan (1997). 

Summary statistics for each dataset are listed in Table 2.2. Figure 2.2 shows the trend 
chart for the simulated values of Xt-Xt-1 and Vt from the first 4 datasets. QQ-plots for 
the same 4 datasets are shown in Figure 2.3. The phenomena of volatility clustering 
can be easily observed. With the results of B-J tests, normality for Xt-Xt-1 is seen to be 
very different through datasets. Datasets 1, 6 and 10 are very close to being normally 
distributed, while others differ from normality significantly. On the other hand, the 
Ljung-Box test indicates that in principle the increments Xt-Xt-1 are statistically 
independent. 
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Table 2.2: Summary statistics for the increments Xt-Xt-1. 
dataset mean variance skewness kurtosis BJ stat p value Box- 

Ljung 

statistic 

p-value 

1 0.0075 0.7930 -0.0149 3.0649 0.11 0.948 2.3751 0.1233 

2 -0.0260 0.7256 -0.2144 3.5662 10.51 0.005 0.0115 0.9146 

3 0.0270 1.0351 -0.5145 6.5380 282.84 0 3.8780 0.0489 

4 -0.0158 0.8316 -0.3243 4.6880 68.13 0 0.0000 0.9993 

5 0.0236 0.7856 -0.0366 3.7860 12.98 0.002 0.1225 0.7263 

6 0.0152 0.7894 -0.0426 3.1772 0.81 0.669 0.1910 0.6621 

7 -0.0023 0.8312 -0.0689 3.6905 10.33 0.006 1.4088 0.2352 

8 -0.0705 1.0778 -0.6887 6.8981 356.10 0 0.7640 0.3821 

9 0.0421 0.8233 0.1272 5.3566 117.05 0 0.0659 0.7974 

10 0.0333 0.6941 0.0116 3.4174 3.64 0.162 0.8251 0.3637 

Figure 2.2: Trends of Xt-Xt-1of the first 4 datasets. 
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Figure 2.3: QQ-plots of Xt-Xt-1of the first 4 datasets. 

 

Parameter estimation based on (2.7) with these datasets proceeds with Δ=0.2. By the 
method in Raftery and Lewis (1992), a small size experiment is conducted for 
determining the iteration times required to achieve convergence in each step.  

For the Metropolis algorithm used in step 2, 150 burn-in iterations are exercised 

before taking one sample for each )(* ~ n
tX . Similarly, sample paths for )(* ~ n

tX  are taken 

every two iterations from the 200 iterations following 20 burn-in iterations. 
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Table 2.3: Parameter estimates. A comparison between the simulated likelihood, 
GARCH approximation and EMM. 

Method Parameter True Value Mean Median Max Min STD 

κ 0.0699 0.0637 0.0587 0.1287 0.0423  0.0241 

ξ 0.7928 0.8098 0.8063 0.9379 0.6994  0.0678 

σ 0.1772 0.1928 0.1863 0.2255 0.1685  0.0218 

Simulated 

Likelihood 

ρ -0.6500 -0.6955 -0.7079 -0.5164 -0.8524  0.0974 

κ 0.0699 0.1174 0.0732 0.6060 0.0160  0.1734 

ξ 0.7928 0.8321 0.8187 0.9587 0.7212  0.0801 

σ 0.1772 0.1500 0.1523 0.2505 0.0781  0.0502 

GARCH 

ρ -0.6500 -0.9213 -0.9661 -0.5747 -1.0000  0.1314 

κ 0.0699 0.0670 0.0557 0.1176 0.0161  0.0369 

ξ 0.7928 0.8364 0.8135 1.1231 0.6964  0.1274 

σ 0.1772 0.1899 0.1738 0.3357 0.0972  0.0853 

EMM 

ρ -0.6500 -0.7727 -0.7575 -0.6358 -0.9855  0.1237 

Table 2.4: Parameter estimates. Estimates with the likelihood function approximated 
through the Euler approximation and Vt assumed to be observed.  

 Parameter True Value Mean Median Max Min STD 

κ 0.0699 0.0632 0.0601 0.0927 0.0379  0.0164 

ξ 0.7928 0.8065 0.7924 0.9047 0.7236  0.0678 

σ 0.1772 0.1696 0.1689 0.1735 0.1656  0.0026 

Δ=1 

ρ -0.6500 -0.6507 -0.6507 -0.6165 -0.6812  0.0182 

κ 0.0699 0.0659 0.0622 0.1031 0.0421  0.0181 

ξ 0.7928 0.8121 0.8011 0.8996 0.7318  0.0676 

σ 0.1772 0.1767 0.1769 0.1786 0.1726  0.0017 

Δ =0.2 

ρ -0.6500 -0.6504 -0.6508 -0.6365 -0.6600  0.0070 

Estimates via NGARCH approximations and EMM methods for each dataset are also 
calculated for comparisons. The AR-NGARCH and AR-EGARCH processes are 
considered as the score generator for the EMM method. As in Anderson and Lund 
(1997), each dataset is first fitted with the two classes of processes. By the AIC 
criterion the model that fits better is selected. It is found that AR terms in the mean are 
generally not necessary, and the EGARCH process fits 6 of 10 datasets better than the 
NGARCH process although the latter has this diffusion models (2.9) and (2.10) as its 
limit. 

The SNP densities are then set with KX=0 and KZ=1 and thus have the form 



 21

 
( )

( )∫ +

+
=

ttt

tt
tK

dzzz
zz

Sf
)(1
)(1

)|(
2

1

2
1

φα
φα

η . 

On computing the expectation of the score, a sequence of length 100,000 is simulated 
under the Euler scheme in which Δ=0.04. 

Figure 2.4: Box plots for estimates from different methods. The dash lines indicate the 
true values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The summary of estimation results is listed in Table 2.3 and graphically 
represented by box plots in Figure 2.4. The estimates for ξ, σ, and ρ from the 
approximate likelihood are concentrated around the true value. However, κ seems to 
be systematically underestimated. This may be explained as follows. First it should be 
noted that the GARCH processes only provide as an approximation but not an exact 
distribution. Since κ is related to mean reversion, estimating κ precisely requires more 
information about the “events” of mean reversion. However, taking discrete 
observations implies that those very quick mean reverse events will be dropped. In 
other words, the sampled “events” for estimating κ is biased under the discrete time 
scheme. An indirect evidence is shown in Table 2.4. The estimates are obtained 
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through maximizing the likelihood of all Xt and Vt under the Euler scheme for Δ =1 
and 0.2 respectively. It is seen that κ also tends to be underestimated, and estimates 
for κ with Δ=1 is even lower than those with Δ=0.2. 

It can be seen that estimates from NGARCH approximations are much poorer than the 
estimates from the simulated likelihood. In fact, there is almost at least one parameter 
wildly estimated for each dataset. This result conforms to Wang (2002) and should not 
be too surprising since NGARCH approximations are indeed based on normally 
distributed innovations, while the bivariate diffusion models generate much more 
complicated distributions. 

The EMM method provides more reasonable estimates than those from the NGARCH 
approximations. However, the EMM estimator is seen to be less efficient than that 
from the simulated likelihood. This result is conformable to the nature of EMM 
estimators discussed in Gallant and Tauchen (1996), since the diffusion models (2.9) 
and (2.10) is not embedded in either the NGARCH model or the EGARCH model. 

2.5 Conclusions and extensions 

In this chapter, a method to approximate the likelihood functions of the continuous 
time stochastic volatility models is proposed. Although this method requires some 
knowledge about GARCH approximation process, it is in fact easy in coding and 
practical implementations. Furthermore, it serves as a basis for statistical inference for 
this class of models. Commonly used methods and criteria including likelihood ratio, 
AIC and BIC can be conducted through this approach. 

In addition to the continuous time stochastic volatility models, the method proposed 
here may also be applied to the estimation of jump-diffusion models. Duan et al. 
(2005) propose a family of GARCH-Jump models whose limits are just 
jump-diffusion models. It is reasonable to expect that the same procedures can also be 
applied to the estimation of this richer class of processes. 

Furthermore, this approach on estimation problems gives alternative access to the 
understanding of the stochastic volatility models. Since, as emphasized in the 
introduction of the model, the volatilities are never observed, any operations such as 

calculating option prices should not be conditional on the filtration ( ))1()1( ~,~ VSσ , and 

in fact ( ))1(~Sσ  is obviously a more reasonable candidate. More specifically, 

calculating derivative prices should be based on the conditional distribution 

)~|( )1(SSP T τ+  instead of )ˆ,|( TTT VSSP τ+ , where TV̂  is filtered by )1(~S . Clearly, the 
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partially observed GARCH process approach provides as a solution, although there 
are technical details to be solved. 

For example, the partially observed GARCH process may be also used as a filter that 
produces the conditional distributions of the unobserved variances. The properties of 
the filter obviously need more investigations. 

Finally, the introduction of the partially observed GARCH process may largely widen 
the uses of continuous time stochastic volatility models in financial time series 
modeling. In fact, the type of GARCH models elaborately bridges the two clusters of 
models, and possesses the advantages of the two ends. An alternative may be the 
discrete time stochastic volatility models, which are asymptotically equivalent to the 
continuous time stochastic volatility models. Clearly, inferences about the two types 
of discrete time models involve computational costly simulations to integrate out 
latent variables. Some kind of unification and the extents these models are feasible 
may be interesting for future studies. 



 24

2.6 Appendix 

2.6.1 Convergence of a sequence of derivatives 

Let {fn} be a sequence of integrable functions in an open set E⊂Rd and ∫= μdfF nn , 

where μ is the Lebesque measure in Rd.  

Lemma 2.6.1. Suppose that there exists functions g and ∫= μfdF  such that fn 

converges uniformly to g and Fn converges uniformly to F. Then f=g a.e. 

Proof. Assume that c∊E. Define a sequence {gn}as follows: 
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Convergence of {gn(c)} comes from the fact that {fn(c)} converges. For x≠c, {gn(x)} 
also converges since {Fn} converges. Thus {gn} converges uniformly and denote 

)(lim)( xgxG nn ∞→
= . 

As fn exists and is integrable, )()(lim cgxg nncx
=

→
. So each gn is continuous at c. Since 

gn converges uniformly to G, G is also continuous at c. Thus 

 )(lim)( xGcG
cx→

= . 

But for x≠c, 

 ∫∫ ===
∞→∞→ BBB nBnnn

fddfxgxG μμ μμ )(
1

)(
1lim)(lim)( . 

Thus the derivative f(c) is equal to G(c). But 

 )()(lim)(lim)( cgcgcgcG nnnn
===

∞→∞→
, 

hence f(c)=g(c). Since c is arbitrary, this finishes the proof. 

2.6.2 Augmented GARCH process 

Duan (1997) proposed a family of parametric GARCH models and identified their 
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limits. For s=1, 2, ···, nT, the approximating augmented GARCH(1,1) process is 
defined as 
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where ω0 and ω1 are Borel measurable functions, εsΔ, s= s=1, 2, ···, nT, are i.i.d. 
standard normal random variables, 

 δε cZ ss −= ΔΔ
)2( , 

 δε ),0max()3(
ΔΔ −= ss cZ , 

));,0(max()|;(| 43
)4( δεαδεα ΔΔΔ −+−= sss cfcfZ , 

][ )(i
si ZEq Δ= , i=1, 2, 3, 

and 
δδ δ /)1();( −= zzf  for 0≥z . 

 
For Δ=1 and various values of parameters λ, c, α0, α1, α2, α3 and α4, the model 
corresponds to different named GARCH models. The major result can be summarized 
in the following theorem. 
 
Theorem 2.6.2 As ∞→n , the distribution function converges uniformly to that of 
the limiting stochastic volatility models 
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where 
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and tB ,1  and tB ,2  are two independent Wiener processes. 

 
Note that the convergence holds for 0≦t<∞, not merely for some fixed time T. And 
weak convergence of the processes implies the joint distributions of 

( )),( ,),,( ),,( )(
1

)(
1

)(
1

)(
1

)(
0

)(
0

nnnnnn hYhYhY ⋅⋅⋅  converge to that of 

( )),( , ),,( ),,( 1100 TT VXVXVX ⋅⋅⋅ . 
 

Corollary.2.6.3 The joint distributions ),,,( )()(
1

)(
0

n
T

nn YYYP ⋅⋅⋅  converge weakly to 

),,,( 10 TXXXP ⋅⋅⋅ . 

Similar results for modeling interest rate related processes can be found in Fornari and 
Mele (2006). A model of GARCH class that approximates stochastic volatility CEV 
diffusions has been developed. And it is seen that approximating GARCH processes 
for major stochastic volatility models discussed in literatures have been well 
established. 

2.6.2 Efficient Method of Moment 

Based on the GMM principle (Hansen, 1982), Gallant and Tauchen (1997) propose 
the EMM method for estimating complicated models. They show that if the score 
generator encompasses the maintained model, then EMM is as efficient as maximum 
likelihood. Results of Tauchen (1997) suggest that the EMM estimator will be nearly 
as efficient as maximum likelihood when the score generator is a good statistical 
approximation to the observed process. Gallant and Long (1997) support this 
conjecture by showing that if the score generator is the SNP density, then efficiency of 
the EMM estimator can be made arbitrarily close to that of maximum likelihood. An 
empirical illustration for EMM can be found in Anderson and Lund (1997). 
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As implementing the method, an auxiliary model which closely approximates the 
conditional returns distribution must be selected first. For stochastic volatility models, 
GARCH type models are naturally the candidates. The SNP densities are then used to 
make high-order approximations. 

The SNP densities, proposed by Gallant and Nychka (1987), is an approximation 
based upon a Hermite series expansion: 
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And φ(·) is the density function of the standard normal distribution, μt and ht follow 
the specification of the auxiliary GARCH model. 

Let ξ denote the parameters in the auxiliary model. An estimate ξ̂  can be easily 

obtained through maximizing the likelihood function of the auxiliary model. So is the 

estimate of the inverse asymptotic variance matrix of the score function, NŴ ,. 

The EMM estimator is obtained by minimizing the moment condition: 

 )(
1

)(
'

)( NTNTNT mVm − , 

where mT(N) is the expectation of the score function, evaluated at ξ̂  with a sample of 

length T(N) under the stochastic volatility model by Monte Carlo simulation. 
 



3. Computing option prices under stochastic volatility models 

3.1 Introduction 

This chapter proposes a new approach to calculate option prices under stochastic 
volatility models. A partially observed GARCH model is employed to approximate 
the joint distribution of the series of prices, so the calculation proceeds without 
estimating the volatility process. Through simulation experiments there are also more 
fascinating properties found for the nature of the type of models. 

Stochastic volatility models arose for the relief of the constant volatility assumption of 
the Black-Scholes formula. Varieties of specifications can be found in documented 
literatures, such as Hull and White (1987) and Heston (1993). Empirical studies also 
piled up since the last years of 1990’s, for example, Bakshi, Cao and Chen(1997) and 
Bates(2000). 

Generally, two stochastic processes are used for describing the dynamics of the asset 
prices. However, one important issue which is seldom mentioned or emphasized in 
literatures is that volatilities are in fact unobserved. This means that inference with a 
stochastic volatility model is in nature a missing value problem. 

Typical statistical approach to deal with these missing values is taking expectations 
conditional on the observed values – the prices. However, in all the literatures 
reviewed, the basic idea for pricing options under the stochastic volatility models is 
originated from the Markovian property of the model, so the following formula is 
generally used, 

EQ[e-r(T-t)g(ST)|St, Vt].           (3.1) 

where g(ST) is the payoff at maturity. It should be noted that the formula above in fact 
leads to a function of the random variable Vt, so it is obviously a random variable and 
possesses specific distribution. Then, besides the structural parameters of the asset 
prices, the risk premium of volatility and especially the unobserved volatilities need to 
be estimated with the observed prices. 

Thus, the formula becomes 

[ ]ttT
tTrQ VSSgeE ˆ,|)()( −− ,  

where  is the estimate of VtV̂ t. Generally a two-stage strategy is usually taken. First 

the structural parameters are estimated through GMM/EMM methods or other 
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approaches. Then a loss function or some moment conditions are used for the 
determination of the risk premium of volatility and the instantaneous volatilities at 
each time. It follows that the estimation of the unobserved volatilities will depend on 
the choice of loss functions. Unfortunately, almost all commonly used loss functions 
are in lack of economic interpretations or even do not satisfy certain fundamental 
statistical requirements, so it can be asserted that the properties of the estimated 
volatilities are suspicious, not to mention the resulting option prices. 

Some authors use the Kalman filter or other nonlinear filter as proxies for volatilities 
as the structural parameters are obtained. These estimates may have certain 
asymptotic properties with very high sampling frequencies, but arbitrary biases exist 
for observations from finite sampling frequencies. 

To find the key to these problems the identification of the filtration up to time t, Ωt, 
must be made first. As mentioned earlier, the volatilities are indeed unobservable, so 
there’s no doubt that Ωt should be σ{S0,…,St} instead of σ{(S0, V0)′,…,(St, Vt) ′}. More 
specifically, pricing options should rely on the conditional distribution 

. ( )tT
Q SSSp ,...,| 0

Based on the above arguments, a method is proposed to compute option prices under 
the stochastic volatility models without plugging in estimates of volatilities. Brown et 
al. (2003) suggest the statistical equivalence of GARCH and stochastic volatility 
models (under certain conditions). With the simulated likelihood approach in chapter 
2, paths connecting observations can be generated with a partially observed GARCH 
model and MCMC algorithm. Then future asset prices can be simulated by extending 
these paths using general Monte Carlo methods. Since the method is based on the 
sequence of prices only, it is not necessary to estimate volatilities and there exists 
one-to-one relation between the price and the premium. 

Furthermore, numerical results also suggest some interesting and inspiring properties 
of the method. For example, for a lower and intermediate level of the true variance, 
tendency toward a positive bias exists on the conditional distribution of variance 
given past path of prices and thus the implied option prices. And for ascent and 
descent paths with very close level of the true variances, the method also suggests 
distinct option values. These properties meet the facts in most of the markets but 
cannot be achieved with the traditional approach. 

This chapter is organized as follows. A brief discussion on the current practice is in 
Section 3.2. Careful investigation on the proper formulation of the option prices is 
included in Section 3.3. In Section 3.4 the proposed algorithm is presented and 
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illustrated with examples. In Section 3.5 discussion and further extension are drawn. 

3.2 A quick review on the current practice for computing option prices 

Among all related literatures, Heston’s pricing model with a closed form solution 
might be the most frequently referred. Heston (1993) extends the Black-Scholes 
model with a stochastic factor: 

 ttttt dWSVdtSdS ,1+= μ , 

 tttt dWVdtVdV ,2)( σθκ +−−= , 

where St and Vt are the asset price and instantaneous volatility at time t respectively, 
and W1,t and W2,t are standard Brownian motions with coefficient of correlation ρ. 
The solution for a call option is then of the form 

 ( ) ( )ληλη ,,,;,),(,,,;, 21 KtTVSPTtPKKtTVSPS ttttt −⋅⋅−−⋅  

where K is the strike price, T is maturity, η is the parameter vector (κ, θ, σ, ρ)′, λ is 
the risk premium of volatilities and P, P1, P2 are appropriate functions. 

It is noted that there are parameters, η and λ, and random variables Vt’s to be 
estimated for the implementation the formula. The structural parameters η can be 
estimated with the price series of the underlying asset. As the likelihood function for 
this type of system is not available, GMM/EMM or similar methods are the common 
choices. The risk premium λ is in principle disassociated to the price dynamics 
directly, so the information for estimating it generally should include option prices. 
Intuitively the instantaneous variance Vt’s could be estimated with a filter on the series 
of the asset prices, however, by minimizing a loss function for the option prices also 
seems to be common. 

3.2.1 Loss functions in option pricing 

Loss functions play important roles in option pricing. As the two-stage estimation 
procedure is generally required, loss functions are usually the objective function for 
the estimation of the risk premium and even the unobserved volatilities at each time 
period, for example Bakshi et al (1997). This means that the role of the loss functions 
is far beyond the evaluation of the pricing models.  

However, the choice of the loss functions is an annoying problem in practical exercise 
pricing options, just as in Bakshi et al (1997): 
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“The objective function in equation (17) is defined as the sum of squared dollar 
pricing errors, ···.An alternative could be to minimize the sum of squared percentage 
pricing errors ···. Based on this and other considerations, we choose to adopt the 
object function in equation (17)” 

Clearly there does not exist a loss function that satisfies fundamental requirements 
and applies to all categories of option contracts. It is unfortunate that the standard 
option valuation theory implies a unique option price, but mentions nothing about 
how to specify the error term (Renault, 1997). However, there are two points about 
the loss functions to be emphasized. First, consistency of the choice of loss functions 
in the two stage of exercises is essentially necessary (Christoffersen and Jacobs, 2004). 
Next, the choice of loss function implicitly defines the model under consideration, see 
Engle (1993). 

Christoffersen and Jacobs (2004) shows that the estimates of parameters and 
volatilities will depend on the choice of the loss function. They also suggest that the 
choice of the loss function may depend on the purpose of the empirical exercise. This 
does not matter from the view of practical purposes as long as the users may actually 
benefit from it. However, from an academic view, is it acceptable that the volatility 
process for one specific asset should be different for a speculator and a hedger? 

Moreover, the commonly used loss functions are also commonly in lack of any 
economic interpretations or any supports of statistical properties. For example, the 
mean squared dollar errors that is most frequently used in most literatures, 

 ( )∑
=

−
N

i
ii CC

N 1

2ˆ1 , 

implicitly assume homogeneity of variance in the pricing errors. This seemingly 
means that the errors may only come from those factors providing constant impact, 
such as transaction costs, etc. Thus this would also raise questions like: does the 
pricing error of one dollar have the same implications for options of one dollar and 
1000 dollar? Other popular loss functions obviously have similar difficulties or 
violate their statistical assumptions, see chapter 4. 

In other words, forecasting the unobserved volatilities based on the loss functions can 
lead to logical and theoretical contradictions. These random variables should be 
forecasted or filtered with other properly established methods. 

3.2.2 Filtering the volatilities with asset prices 

There can be found some methods to filter variance estimates under the stochastic 
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volatility model using the information of the prices only, for example Nelson and 
Foster (1994). 

Let Xt denote the logarithm of St. Then for the Heston model the filter of Nelson and 
Foster can be derived as below: 
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where Δ is the sampling period and ξt is the normalized innovation, that is, 

 ( )( )ttttt XXEXX −−−
Δ

= +++ 111
1ξ . 

This filter is indeed an UMVUE. That is, its bias for estimating Vt is 0. And note that 
filters derived from the Euler expansion of the differential equation need not to 
provide as an unbiased or even consistent estimator, see Goggin (1994) and Crimaldi 
and Pratelli (2005). 

To illustrate how the estimation errors would impact the pricing of options, a 
simulation experiment is conducted with the Heston model and the following setting 
of parameters. 

Table 3.1: Parameters used in the simulation study. 
parameter Value 

r 0.02 
κ 2 
θ 0.01 
σ 0.1 
ρ -0.65 

A sequence of (Xt, Vt) of length 25000 and time between observations as 0.004 are 
generated according to the Euler approximation with Δt=0.0004. Estimates of 
variances at every time point are then calculated with respect to the above filters. 
Figures 3.1 displays the scatter plot of the estimated and true variances. 

 32



Figure 3.1:. Scatter plot of the estimated and true variances. 

 

Option prices with Vt estimated by the Nelson and Foster filter and the corresponding 
standard deviations for different levels of volatilities are listed in Table 3.2. The 
estimation error at the equilibrium of the variance, 0.01, is roughly distributed with a 
standard deviation 2.75×10-3, which in term implies a standard deviation of 0.249 for 
the price 2.793. In fact, the ratios of the standard deviation to the price for the series 
of option contracts are around 9%. Obviously this is not acceptable in practice.  

Table 3.2: Call option prices for different levels of volatilities. 

Vt Standard deviation of 

estimates of Vt

Call price Standard deviation of 

estimated call prices 

0.005 0.00202 2.301 0.217 

0.0075 0.00288 2.558 0.281 

0.01 0.00275 2.793 0.249 

0.0125 0.00333 3.009 0.278 

0.015 0.00392 3.212 0.310 

0.0175 0.00144 3.403 0.331 

0.02 0.00489 3.585 0.345 
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These results just show that pricing options with estimated variances indeed ignore 
the uncertainties of the estimates and can lead to unacceptable errors. Intuitively, a 
stochastic volatility model is necessary only when the volatilities change over time 
considerably. Under such circumstances, it is generally difficult to estimate the level 
of volatilities with the prices. On the other hand, when the volatilities can be 
successfully filtered with the prices, the volatilities would be locally constant or at 
least changing slowly. Thus plugging in the formula with estimated volatilities indeed 
involves logical inconsistencies. 

All the above conflicts come from improper formulation of option prices. In the next 
section, the point will be discussed rigorously. Clearly, the filtration up to the current 
time t, Ωt, plays an important role, and all the inference including option pricing 
should be based on the joint distribution of (S0, ···, St). 

3.3 Which prices for options? 

In the previous section, it is pointed out that filtering volatilities makes it arduous for 
pricing options under the stochastic volatilities. In this section, a proper formulation 
of the option prices will be carefully investigated to overcome the difficulties 
mentioned above. Based on a new scheme for estimation of the stochastic models in 
chapter 2, pricing options may proceed without plugging in estimates of variances. 
The algorithm will be presented in the next section. 

From the very start, the school of mathematical finance accustomed themselves to 
diffusion-type models. The Morkovian properties of the models naturally lead to the 
formulation for the prices of options as (3.1). Since Vt is in fact an unobservable 
random variable, it is necessary to take expectations over it. That is, the formula, 

 ( )[ ]ttT
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,|)()( −− ,          (3.3) 

would be a more reasonable choice and so the commonly used one, (3.2) should be 
viewed as an approximation for (3.3). But unfortunately, the estimation error can be 
unacceptable for practical purposes as shown in the previous section. 

To overcome this problem, it should be made clear that the information up to time t is 
in fact no more than the observed asset prices. So the correct formulation of the option 
prices ought to be 
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tTrQ

S SSSgeE
t

,,|)( 0
)( ⋅⋅⋅−− . 

This idea may be not so institutional. However, taking into consideration that 

 34



volatilities are unobservable and thus (S0, ···, St) are correlated and contain 
information about Vt, the formula is indeed trivial and more reasonable. 

A further implication is that the option prices will depend on the past paths. In other 
words, two price processes may lead to different option prices even though they 
indeed have the same level of volatility at time t. Such property also cannot be 
deduced from the approach based on the Markovian property, especially when an 
unbiased estimator for Vt is used. However, the asymmetry for the upturn and down 
turn of the markets does exist in the real world. 

Figure 3.2 shows the level of S&P 500 index, 20-day volatilities, implied volatilities 
of near-the-money calls and puts in 2007. It is clear that the levels of 20-day 
volatilities are very close around the bottom of March and the middle of September, 
but the levels of implied volatilities (for call and put options) actually differ a lot. 

Figure 3.2: S&P 500 index in 2007: level of index, 20-day volatilities, implied 
volatilities for call and put options. 
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To sum up, calculating option prices, from the view of statistical inference, is then 
based on the joint distribution of (S0, ···, St). As it is not available, an approximation 
scheme using partially observed GARCH models will be presented next. 

3.4 Pricing options with the filtration consisting of prices 

In this section, a new scheme for inference and pricing under the stochastic volatility 
models is proposed. The above two subtle difficulties may be overcome with this 
approach. 

3.4.1 An algorithm for ML estimation of parameters and option pricing 

In contrast to the stochastic volatility models, GARCH models provide as a tool that 
are feasible in practical operations. There are some facts about the two types of 
models to be pointed out. 

1. For specific sequence of observations, the joint distributions of GARCH models 
are analytical, while generally the stochastic volatility models are not. 

2. As the period of observations approaches 0, the GARCH models converge to 
stochastic volatility models in distribution, see Nelson (1990), Duan (1997) and 
Fornari and Mele (2004). 

The first point implies that likelihood inference with the stochastic volatility models is 
generally infeasible. However, in light of the second argument, approximating 
stochastic volatility models with some specially designed GARCH is possible. 

For this point, Brown et al. (2003) show the asymptotic equivalence of GARCH and 
stochastic volatility models. And the partially observed GARCH with MCMC 
methods for statistical inference is proposed in chapter 2. 

Let ( ))1()1( ~,~ VX  be drawn from the stochastic volatility model and ( ))1()1( ~,~ hY  from 

the corresponding GARCH with length of construction interval Δ. Denote 

( Δ−Δ+− ⋅⋅⋅= ttt YYY ,, )~
1

*  as the augmented data between Yt and Yt-1 . Note that the 

observed data is indeed )1(~X , or equivalently )1(~Y .  

Past paths Y~*  conditional on the observed data )1(~Y  can be generated with the 
following algorithm. 

1. Initialize V0 and )(* ~ ΔY . 

2. Update  from 0hi Yh ~|*0 . 
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3. Update sequentially )(* ~ Δ
tY  from η;~,,~,~,,~,~|~ )(*)(

1
*)(

1
*)(

1
*)1()(* ΔΔ

+
Δ

−
ΔΔ ⋅⋅⋅⋅⋅⋅ Tttt YYYYYY . 

4. Repeat step 2 and 3 until convergence and take L independent paths. 

The likelihood function can be approximated as 
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By maximizing the above function, maximum likelihood estimator for the parameters 
can be obtained. Option prices then can be calculated based on the estimated 
parameters and the L independent paths. 

5. Extending the L paths using general Monte Carlo methods with the 
risk-neutral measure under the GARCH model to get L samples of YT and 
thus the option prices. 

This method converts the bivariate diffusion process with the second process 
unobservable into a partially observed univariate GARCH process. So it does provide 
an approximation for the formulation of the option prices (3.3), without requiring the 
estimation of the current variance, Vt or ht. It is also applicable to various types of 
derivatives as long as the payoff function at maturity involves the prices only.  

Furthermore an important implication is that the option prices at time t may depend on 
(S0, ···, St) in a much more complicated manner, instead of the estimated volatilities 
only. This important characteristic provides a way to distinct valuations of options 
conditional on different patterns of past paths. Next, a simple numerical experiment 
will be conducted for further studies. 

3.4.2 Empirical performance of the algorithm 

First, 12 disjoint paths whose variances at terminal ranges from 0.004 to 0.026 are 
selected. Both the Nelson and Foster filter and the partially observed GARCH 
methods are applied to estimate the variances. For the partially observed GARCH 
method, each observation period of 0.004 is divided into 5 subdivisions. 
Metropolis-Hasting algorithm is applied to each segment with 200 iterations of 
burn-in. After 100 iterations for the whole path, 1200 samples of paths are taken every 
two iterations. 

Since there exists a monotone relation between the options prices, it suffices to 
compare the estimated variances at time t. From Figure 3.3, it can be seen that the 
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Nelson and Foster filter actually provides as an asymptotic unbiased estimator, 
although it tends to have larger variance. In contrast, the partially observed GARCH 
estimates seem to be less volatile but biased upward at lower and intermediate level of 
the true variance at terminal point. 

Figure 3.3: Comparison between the filters. 
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Figure 3.4: Conditional distribution of Vt given (S0,···, St)′ for the path with terminal 
point having level of variance about 0.012. 
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The observed unbiasedness means that the option prices obtained with the Nelson and 
Foster filter essentially match the prices by assuming that the true variances are 
known. On the other hand, the option prices from the partially observed GARCH tend 
to be higher compared to the “true” prices as the level of the true variance at terminal 
is under or near the long term equilibrium level of the variance process. The source of 
the bias may be partly due to the discretization error. But more probable, it may 
indicate that the conditional distribution of Vt given (S0,···, St)’ is positively biased as 
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in Figure 3.3. The property coincides with the phenomenon that the implied 
volatilities are generally higher than the historical volatilities or most of 
model-implied volatilities. Of course, more details are worth further investigations. 

Next, from the very long simulated path, 10 ascent and 10 descent disjoint paths of 
length 100 are selected according to the conditions below: 

1. The variance at the last point is between 0.0097 and 0.013. 

2. The absolute change rate through the 100 periods is the largest. 

Figure 3.5: Ascent and descent paths. 
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These paths are shown in Figure 3.5. And in Figure 3.6, the true volatilities, the 
Nelson and Foster filter and partially GARCH, implied volatilities are plotted together. 
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Again, the unbiasedness of the Nelson and Foster filter is revealed, indifferent to 
ascent or descent paths. However, in addition to the positive bias, the partially 
observed GARCH implied volatilities are definitely dependent on the past paths. 
There clearly exist significant differences between the volatilities from ascent paths 
and descent paths. This property certainly may help to explain the asymmetry of the 
markets shown in Figure 3.2. 

Figure 3.6: Variance estimates for ascent and descent paths. 
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In addition to the consistency in theory and integration in practical operation, the 
results summarized above show that the partially observed GARCH approach 
provides huge potential to rationalize the behavior of the participants in the option 
markets, while the traditional method does not. A major key is of course the fact that 
volatilities are unobservable and should not simply be estimated. Furthermore, the 
method leads to a one-to-one relation between the risk premium of volatilities and 
option prices. As recently many researches are focused on the dynamics of implied 
volatility surfaces, alternative choice such as premium surface can be explored to 
further understanding of the behavior of the financial markets. 

3.5. Conclusions 

This study provides as an application of the partially observed GARCH for the 
inference about the stochastic volatility models. As emphasized in documented 
literatures, volatility could be the most important latent variable in modeling the 
financial time series. But as it is not observed, the prices are in fact correlated and 
inferences generally become much more complex. 

Currently, the common approach to obtain these unobserved volatilities is by 
minimizing some loss functions or by filtering with prices. Such practices by intuition 
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evidently lead into logical difficulties or contradictions with the reality. Moreover, this 
even casts away the advantages of the elegant modeling as shown in 4.2. Fortunately, 
it is illustrated here that inferences about the (option) prices without estimating the 
volatility processes may proceed well. 

Off with absurd loss functions and piece-together calibration procedures, pricing 
derivatives can be more scientific and systematic. The results of simulations also 
suggest that there can be found more fantastic properties that really meet the 
real-world markets. What come next would be further studies about the premium 
surface, which is reasonably expected to reflect the psychological response of the 
market participants. 

To sum up, the study proposes and demonstrates a totally new scheme for pricing 
options under the stochastic volatility models. Further studies should be conducted for 
the properties of the partially observed GARCH model. For example, the possible 
biases for filtering volatilities should be well explored since it may have significant 
implications as stated in 4.2. Combining the advantages of GARCH and diffusion 
types of models, alternative approach for modeling financial time series may be 
initiated. 
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3.6 Appendix  

2.5.1 CEV GARCH family and their limiting processes 

Fornari and Mele (2004) considered the following processes for short-term rate with 
its volatility having a constant elasticity of variance process, 

 )1() ( ttttt dWrdtrdr σξμ +−= , 

 . )2()( tttt dWdtd δηδδ ψσϕσωσ +−=

The model can be modified to the Heston’ model by setting the price process as the 
geometric Brownian motion and (δ, η)=(2,1/2) in the volatility process. 

The discrete time counterpart with length of construction Δ is then 

 Δ+ΔΔ+ΔΔΔΔΔ+ +−+= )1()1()1( kkkkkk urrrr σξμ  
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where ΔΔ /ku is general error distributed with shape parameter v and sk is the sign 

of ΔΔ /ku . 
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4. Which Loss Functions for Option Pricing? 

4.1 Introduction 

Since Black-Scholes (1973, henceforth BS) and Merton (1973) originally constructed 
their option pricing formulas, a number of different new models have been developed 
for option valuation. Each of these models relaxes some of the restrictive BS 
assumptions for the unrealistic assumptions of the BS world. For instance, an 
important class of models specifies the heteroskedasticity of the price returns (see, 
e.g., the stochastic volatility models of Hull and White (1987), Scott (1987), Stein and 
Stein (1991) and Heston (1993), the stochastic volatility jump diffusion models of 
Bates (1996) and Scott (1997) and discrete-time GARCH model of Duan (1995) and 
Heston and Nandi (2000)). In most of these articles it is emphasized that their model 
is more practical and that the corresponding model-implied option prices can fit the 
market-observed option prices better. However, a solid foundation for model 
valuations does not seem to exist. In this chapter, some commonly used loss functions 
are investigated and a procedure to construct reasonable loss function is proposed. 

It is well accepted in the literatures that the choice of loss function is important for 
parameter estimation and model evaluation. First of all, consistency in the two stage is 
essentially necessary (Christoffersen and Jacobs, 2004). Next, Engle (1993) already 
argued that the choice of loss function implicitly defines the model under 
consideration. However, it is unfortunate that the standard option valuation theory 
implies a unique option price, but mentions nothing about how to specify the error 
term (Renault, 1997). The choice of loss function is a vital step in model estimation 
and evaluation as it implicitly assumes some specific error structures. For example, 
using loss function such as sums of squares of pricing errors implies the assumption 
of white noise errors. 

There are many loss functions commonly used for model comparison such as root 
mean squared dollar errors ($RMSE), root mean squared relative errors (%RMSE), 
mean absolute dollar errors ($MAE) and mean absolute relative errors (%MAE). 
These criteria consist mainly of differences between model-implied prices and market 

prices. That is, ( ). marketel CC −mod
ˆ

A quickly and easily seen conflict for this class of loss functions is that the option 
price or the pricing error does not contain any information about the market. More 
specifically, two different option contracts can have the same price and even pricing 
error under some models, but they in fact reflect very different market scenarios. That 
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is, only when accompanied with its specification and prices of underlying asset, the 
price of an option contract can be informative. In fact, when considering the 
information contents of option prices, implied volatilities play an important role in all 
major aspects. 

So there appear in recent years new performance criteria such as implied volatility 
root mean squared error (IVRMSE). Clearly, such criteria can be viewed as designed 
specifically for option model. In fact, many authors in the literature felt inadequate 
using only dollar based performance criteria for model selection so that they 
supplemented with the implied volatility graphs to help them evaluate models. 
Rubinstein (1985) and Bakshi, Cao and Chen (1997) diagnosed the relative model 
misspecification by comparing the implied-volatility patterns of each model across 
both moneyness and maturity. Besides, Canina and Figlewski (1993) pointed out that 
if a model is to provide a plausible explanation of market price, then it needs to be 
consistent with the observed “smile” across strike prices in the BS model. These 
arguments all support the use of implied volatility loss function for model evaluation 
instead of dollar based loss functions. Pan (2002) used IVMSE to measure model 
performance instead of dollar based loss function. He thinks that this avoids placing 
undue weight on expensive options, generally those are options deep-in the-money 
with longer time to maturity. Duan (1996) used IVMSE not only to evaluate models 
but also to estimate option models. 

In this chapter all the commonly used performance criteria mentioned above are 
carefully investigated. Statistical properties are examined using the ad-hoc 
Black-Scholes model and GARCH pricing models applied to TAIEX options. All 
evidences show that there exist significant violations to the fundamental assumptions 
for the loss functions. 

On the other hand, once it is reached the consensus that the loss function should be 
based on the implied volatilities, some well known properties may be used to 
construct the required loss function. Among all of them, mean reversion would be the 
first choice as it can be quantitatively characterized. Furthermore, since all structural 
pricing models are based on some equilibrium conditions, the role of the implied 
volatilities induced by the model prices would be just the target of mean reversion for 
the real implied volatilities naturally. Then the speed of mean reversion is meaningful 
and can be used as the loss function for model evaluation. 

The remainder of this chapter is organized as follows. Section 4.2 introduces these 
common performance criteria. Section 4.3 briefly provides a description of the 
TAIEX option data, then demonstrates that the performance criteria of loss functions 
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based on pricing errors have heteroskedastic pattern. Section 4.4 is a discussion on 
how to build a reasonable loss function. Finally, concluding remarks are offered in 
Section 4.5. 

4.2 Commonly used loss functions and their characteristics 

In this section some commonly used loss functions are introduced. They can be 
divided into two major classes based on pricing errors and implied volatility errors. 

The first class of loss functions for model evaluation can be divided into two 
subclasses further, which are the dollar loss functions relate only to the pricing 

error , , and the relative error loss functions to the relative error, 

. 

marketel CC −mod
ˆ

marketmarketel CCC /)ˆ( mod −

Within the first subclass, one frequently used loss functions is the root mean squared 
dollar errors ($RMSE) given by 

∑
=
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i
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n
RMSE
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2)ˆ(1$          (4.1) 

where ,  and n are the model-implied option price, market-observed option 

price and the number of option contracts used. An immediate alternative is the mean 
absolute dollar errors ($MAE) defined by 

iĈ iC
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ˆ1$ .           (4.2)  

The error structure for the dollar loss functions can be written as 

    .             (4.3) 

where 

$
ˆ ε+= CC

$ε  is a white noise. It is seen that the dollar loss functions are advantageous 
in being easily interpreted. However, it is expected that the relatively wide range of 
option prices across moneyness and maturities would raise the problem of 
heteroskedasticity. In-the-money and long-term contracts usually have higher option 
prices and thus tend to correspond to higher pricing errors, so dollar loss functions 
implicitly assign more weight to this group of contracts and thus would tend to choose 
the model which is outstanding in high value option contracts.  
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To overcome this problem some researchers prefer using loss functions based on 
relative errors. Examples include the root mean squared relative errors (%MRAE), 
defined as   

    ∑
=

−≡
n

i
iii CCC

n
RMSE

1

2)/)ˆ((1% ,        (4.4) 

whereas the mean absolute relative errors (%MAE), given by 

∑
=
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1
/)ˆ(1%          (4.5) 

And the error structure of relative error loss functions is then 

     .            (4.6) %
ˆ εCCC +=

The relative error loss functions are also easy to understand and comparatively 
conform to common sense if all market participants have their portfolios completely 
constructed by options. Then $1 error on a $10 option is more serious than $1 error on 
a $100 option, isn’t it? However, since options behave very differently from the spots, 
the error structure (4.6) could overcorrect in practice, and the out-of-the money and 
short term options with value very low will implicitly be assigned too much weight.  

Dollar loss functions and relative error loss functions are both widely used in the 
literatures and sometimes even both criteria are applied together. Chernov and 
Ghysels (2000) used $RMSE and %RMSE, Dumas, Fleming, and Whaley (DFW) 
(1998) used $RMSE and $MAE, Heston and Nandi (2000) used $RMSE, %RMSE 
and $MAE (only when the valuation error does not fall within the bid-ask spread), 
and Bakshi, Cao and Chen (1997) applied $MAE and %MAE to evaluate their option 
pricing model. Although these criteria appear in most of articles concerning empirical 
investigations on option pricing theories, the error structures (4.3) and (4.6) are 
seldom examined. 

On the other hand, for the nonlinearity of the payoffs of options, there are loss 
functions designed specifically for option valuation problems. With the convention of 
quoting option price in terms of volatility on the market, some researchers favor 
estimating option pricing models by minimizing the mean squared errors of the 
implied volatility of the BS formula. It is therefore the implied volatility root mean 
squared errors (IVRMSE) defined as 
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where the implied volatilities are 
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and  is the inverse of BS formula, , , S and r are time-to-maturity, strike 

price, the price of underlying asset and risk free-rate respectively. Similarly, the 
implied volatility mean absolute errors (IVMAE) is given by 
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And the error structure of implied volatility loss functions is then 

     IVεσσ +=ˆ             (4.9) 

or equivalently 

)(ˆ
IV

BSCC εσ += .           (4.10) 

It is noted that the option price becomes a nonlinear function of the implied volatility 
error term. This reflects the fact that option prices are expectation values of nonlinear 
functions of asset prices, and utilizing this class of loss functions also implies that 
prices do not contribute to information discovery directly. 

There can be also found some articles in which the implied volatility based loss 
functions are used, for example Duan (1996) and Pan (2002). 

4.3 Empirical investigation of the error structures 

To investigate empirically the error structures implied by the loss functions, a dataset 
from TAIFEX is analyzed with three pricing models, ad hoc BS, NGARCH and 
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EGARCH models. All the corresponding properties mentioned above will be 
investigated. 

4.3.1 Data description 

The sample contains reported prices of TAIEX options traded on the Taiwan Futures 
Exchange (TAIFEX) over the period July 2002 through June 2004. The underlying 
asset is the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). 
TAIEX options are European-style and expire at the open of the market on the trading 
day following the third Wednesday of the delivery month. More details about the 
specification of TAIEX options can be found at the website http://www.taifex.com.tw.  

The raw data is collected directly from the website of the exchange. Similar to Bakshi, 
Cao and Chen (1997) and Dumas, Fleming and Whaley (1998), several criteria are 
used to construct the dataset. First, quotes for call options from 1:15 p.m. to 1:25 p.m. 
in every trading day are collected. Although the same option may be quoted again in 
the time window (with the same or different index levels) on a given day, only the last 
record of that option is included in our sample. Second, option data with less than six 
days or more than one hundred days to expiration are eliminated to avoid the 
expiration-related price effects. Third, option data whose absolute “moneyness” 

( 1−
K
S  ) is greater than 10 percent are also eliminated. These options may induce 

liquidity-related biases because they are usually not actively traded in the market. 
Forth, the option contracts quoted less than 1 point are excluded because of the 
transaction cost effect. Finally, option quotes lower than their intrinsic values are 
excluded. 

These criteria yield a sample of 5957 observations. Table 4.1 describes the sample 
characteristics of the call option prices employed in this work. Average prices and the 
number of available calls are reported for each category. Moneyness is defined as the 
ratio of the spot price to the exercise price ( ). A call option is said to be deep 
out-of-the money if moneyness belongs to the interval (0.90, 0.97); out-of-the-money 
(OTM) if ; at-the-money (ATM) when ; 
in-the-money (ITM) when 

KS /

99.0/97.0 <≤ KS 01.1/99.0 <≤ KS
03.1/01.1 <≤ KS ; and deep-in-the-money if 

. In terms to maturity, option contacts can be classified as 
short-term (≤30 days), medium-term (30-60 days) and long-term (>60 days).  

10.1/03.1 <≤ KS

The annualized 1-Month Deposit Rates obtained from the Central Bank of China are 
used as the proxy of the risk-free interest rates in pricing these options. 
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Table 4.1: Sample characteristics of TAIEX index options 

S/K  T-t<=30 31<T-t<60 T-t>60 

N 1225  928  266  

Average Price 32.66  76.58  112.11  

Price STD 27.50  40.60  58.49  

Average IV 0.2796  0.2577  0.2232  

0.90-0.97 

IV STD 0.0563  0.0622  0.0521  

N 467  347  73  

Average Price 76.40  134.22  178.42  

Price STD 39.21  48.48  65.08  

Average IV 0.2580  0.2415  0.2178  

0.97-0.99 

IV STD 0.0597  0.0590  0.0463  

N 455  342  65  

Average Price 118.81  178.80  232.40  

Price STD 45.49  52.90  74.52  

Average IV 0.2529  0.2360  0.2192  

0.99-1.01 

IV STD 0.0613  0.0602  0.0517  

N 426  245  35  

Average Price 182.54  242.91  307.17  

Price STD 49.10  61.59  87.56  

Average IV 0.2544  0.2388  0.2293  

1.01-1.03 

IV STD 0.0627  0.0612  0.0516  

N 703  328  52  

Average Price 338.86  369.14  472.06  

Price STD 108.07  104.16  137.83  

Average IV 0.2906  0.2405  0.2578  

1.03-1.10 

IV STD 0.0912  0.0610  0.0696  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 Statistical properties of the errors 

As many authors, for example Bakshi, Cao and Chen (1997), point out, dollar-error 
based loss functions generally put more weights on certain groups of options. In fact, 
there actually exist obvious patterns of pricing errors and relative errors to option 
prices, which in nature induce different weights on each contract. The following 
investigations will demonstrate the phenomenon and thus lead to violations to the 
assumptions (3) and (6) for these criteria are not satisfied. 
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In fact, the investigations proceed just as stated in the elementary statistics textbooks, 
and all we have to do is simply see if there exist certain patterns in the scatter plots of 
pricing errors or relative pricing errors to prices. 

Following Christoffersen and Jacobs (2004) on using consistent loss function at both 
the estimation and evaluation stages, the parameters of the ad hoc Black-Scholes 
model are estimated daily by minimizing $RMSE, %RMSE and IVRMSE 
respectively. On each day parameters are estimated with data from the past five days. 
The residual plots with respect to the option prices under the ad hoc Black-Scholes 
model are presented in Figure 4.1. In Figure 4.1a, the heteroskedastic pattern of the 
pricing errors versus the observed option prices is obvious. When the call price is 
close to zero, the errors tend to be smaller. The amplitude of the errors increases as the 
call price increases until the call price reaches around $100, and then decreases 
slightly. Figure 4.1b also shows that the relative errors still have a significant 
heteroskedastic pattern. Especially, when the option prices are small, the relative 
pricing errors become terribly large. This means that using relative error measure tend 
to overcorrect. In Figure 1c, it can be seen that the residuals are distributed with 
seemingly larger variances while the option prices are large. These results reveal that 
all the above loss functions are not consistent with the homogeneity assumptions. 

Beside the simple model, it is expected that the same results can be obtained under the 
GARCH option pricing models. In applying GARCH models, the likelihood functions 
based on observations from asset prices can be expressed explicitly, so the MLE’s of 
the parameters (λ, α0, α1, β1, γ) are obtained by numerical methods and then applied 
to the pricing of options. No information from option prices will be used to determine 
any parameters so the inconsistency problem mentioned in Christoffersen and Jacobs 
(2004) shall not be confronted. 

The parameters are estimated month by month using the maximum likelihood method 
on the TAIEX daily closing prices in the past year and then volatilities are updated 
day by day. Residual plots of the GARCH option pricing models are presented in 
Figures 4.2 and 4.3. Similar patterns to those in Figure 4.1 can be easily found. And 
furthermore, the IV errors for higher option prices tend to be negative instead of 
concentrating around zero. 

Figure 4.4 shows the scatter plots of the IV errors versus the real implied volatilities 
for all the three models. Obvious patterns can be seen in all the three panels. In fact, 
due to the temporal structure of volatilities, there certainly exist autocorrelations 
among all these volatilities and the errors cannot be independent so as to exhibit 
patterns of correlations. 
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All the above results state that the commonly used loss functions may be in lack of 
solid statistical grounds, no mention economic interpretations. An important issue is 
the role of the pricing models to be expected – a good predictor or an equilibrium 
level under the assumption of reasonable behaviors. 

Figure 4.1: Residual plots of the ad hoc BS model versus call price. 
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Figure 4.2: Rresidual plots of the NGARCH model versus call price. 
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Figure 4.3: Residual plots of the EGARCH model versus call price. 
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Figure 4.4: Implied volatility residual plots. 

 

4.4 Aspects toward a rational loss function 

4.4.1 Inconsistency of dollar based loss functions in information revealing 

On investigating the performances of option pricing models, it should be noted that 
pricing errors or even the prices themselves are meaningless without incorporating 
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current prices of underlying assets and the specifications of the options such as the 
strike price and time to maturity. 

Consider the quotes for the two contracts listed in Table 4.2. The two contracts have 
the same price but very different implied volatilities. Suppose that a trader obtains his 
volatility as 20% and then his fair prices for the two contracts will be 5.64. Clearly all 
values of the dollar based loss functions for both contracts will be almost identical. 
However, pricing contract 2 with volatility 20% can lead to much larger loss (or gain) 
since the two values appear to be very different than those of contract 1.This example 
illustrates that loss functions such as $MSE, $MAE, %RMSE or %RMAE can be very 
insensitive to the parameters of the model. 

Table 4.2: Comparison of two call option contracts with different specification. 

 Contract 1 Contract 2 

Stock price 100 100 

Strike 100 95 

time to maturity 0.5 0.09 

Interest rate 0 0 

Actual price 5 5 

Implied volatility 17.75% 7.50% 

Price estimated with σ=20% 5.64 5.64 

The difficulty confronted here for $MSA etc is just that the information about the 
specification of each option contract is not well incorporated. More specifically, 
pricing an option contract with an error of 5% or 1 dollar, say, does not help judge 
how a model or method has satisfactory performance. 

In the real world, the price is not the only thing to be considered for the market. A 
basket of options can be traded as if people are trading volatilities. That is, volatility 
in some circumstances may be viewed as some kind of tradables. Therefore, options 
for them are not presented as the instruments to bet on or hedge against the direction 
of an underlying risk. Instead, options are motivated as the instrument of volatility. So 
volatility provides more information than option price. In practice, there are even 
option contracts quoted by BS implied volatilities instead of the prices. 

4.4.2 Information contents of option prices 
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By the arbitrage pricing theory, in a frictionless and dynamically complete market, 
options would be redundant securities. This means that option prices contain no more 
information than stock prices. However, interestingly, there are still piled amount of 
literatures for exploring the information contents of option prices. 

A major concern of these articles is the insider trading in the option market. It is noted 
that in this category of literatures the underlying asset and the corresponding option 
are usually considered as simultaneously traded securities. So the causality relation of 
the observed and option implied stock price changes would be put into comparisons. 
Typical examples via this approach include Stephan and Whaley (1990) and Chan, 
Chung and Johnson (1993). Chakravarty, Gulen and Mayhew (2004), with the 
information share of Hasbrouck (1995), measured relative contribution of each market 
to price discovery. 

It should be emphasized again that in all of the above studies the option price itself is 
never used as the proxy of information. What is taken into comparisons with the price 
of the underlying asset is the implied price through the implied volatilities! This 
implicitly points to the invalidity of the dollar loss functions. 

Another main theme considering the information content of option prices is if the 
implied volatility could provide a good forecast of the future volatility, for example 
Christensen and Prabhala (1998). From this context, a causality test is usually applied 
to detect the relation between the implied volatilities and future realized volatilities. 
The conclusions of these studies are very mixed. But what is important is that the 
implied volatilities play a major role in all of the above studies instead of the option 
prices. That is, even in documented academic literatures, implied volatilities have 
been viewed as the major characteristics of the option prices. 

4.4.3 Black-Scholes formula as a self-fulfilling prophecy 

As discussed above, the BS implied volatilities are indeed the sole of the information 
content of the option prices in academic researches. The dominance of the BS model 
is reflected in the fact that the implied volatility becomes the standard method of 
quoting option prices in industry. 

Option traders routinely use the BS formula, although it is well known that the BS 
assumptions are not realistic. However, since there exists a one-to-one 
correspondence relation between the option price and the only parameter - volatility, 
the BS formula becomes easy to understand and remember. Thus practitioners would 
rather use the BS model instead of other complicated model. 
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The BS formula has become a standard among professionals and also in computer 
platforms. It provides a way to transform a volatility quote to a dollar value attached 
to this quote. This helps develop common platforms for hedging, risk managing, and 
trading volatility. Thus, once we accept that the use of the BS formula amounts to a 
convention, and that traders differ in the selection of the value of the parameter σ, the 
critical quantity is no longer the option price, but the volatility. This is also why for 
derivatives such as caps, floors, and swaptions the quote is just in term of volatility. 

What is left is then the question: if the prices of the underlying assets do not possess a 
lognormal distribution as the BS model implies, will the market prices of options 
satisfy the formula just because the participants believe and use it? In a complete 
market, the answer for the above question cannot be positive as there will certainly 
produce opportunities for arbitrage. 

However, in an incomplete market, the answer for the above question could be very 
different compared with in a complete market. Cherian and Jarrow (1998) 
demonstrated that the BS model can be a self-fulfilling prophecy. That is, in an 
incomplete market, even though the underlying asset’s objective distribution is not 
lognormal, as long as all participants believe it is, the BS formula is still the 
equilibrium eventually. Therefore, even from the academic viewpoint, it is reasonable 
to use the implied volatility of the BS model as the characteristics of option prices. 

4.4.4 Setting up a reasonable loss function 

As it is assured that a reasonable loss function must be built through the implied 
volatilities or other similar quantities, what is left would be which property can be 
used to construct a loss function. 

There are at least twenty years since the researchers in the finance and economics 
areas note the temporal structure of volatilities, see Engle and Patton (2001). Some 
major characteristics of volatilities have been well identified, for example persistence 
and mean reverting. The famous ARCH model by Engle and its variations are all 
addressing these properties. And furthermore the continuous time volatility models 
generally contain their drifting parts corresponding to the properties, especially mean 
reversion. These properties also explain the patterns of IV errors in Figure 4.4 since 
these observed and model projected volatilities would certainly be highly correlated. 

On the other hand, it is noted that all pricing models are based on some kind of 
equilibrium arguments but there are in fact lots of noises in reality that cannot be 
covered by these theories. Thus, the pricing models should not provide as an absolute 
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standard so that the real prices must be always close to the model projected. A more 
feasible approach is that the pricing models only reveal the equilibrium level at the 
specific moment. That is, the implied volatilities deduced from the structural model 
are viewed as the dynamic target of mean reversion for the observed implied 
volatilities. So a reasonable loss function from this context is just the speed of mean 
reversion. The parameters such as the risk premium can be obtained by maximization 
of the speed of mean reversion. 

The simplest formulation for this problem can be obtained by assuming that the 

logarithm of the implied volatilities  follows the 

Ornstein-Uhlenbeck process with a time varying target of mean reversion that is 
deduced from the structural model. More precisely, it may be assumed 
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The above equations (4.11) and (4.12) indicate that the observed implied volatilities 
will always tend to move toward the level of model implied volatility from its 
previous level. Thus, a model is said to have better performance when it corresponds 
to higher speed of mean reversion, and versa. So a natural loss function would be just 
the estimated speed of mean reversion κ̂ . 

Beyond constructing loss functions, an approach to examine if the model is effective 

can be also provided. By replacing  with a constant parameter, equation (4.12) 

just assumes simply an AR(1) structure for the implied volatility process . So 

M
tU

BS
tU
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what is left is just standard procedures for model selection. And obviously, the above 
simple modeling for the volatility can be replaced by another process that better 
describes that of volatilities, for example the square root process by Cox, Ingersol and 
Rubinstein(19??). However, more computation burden is of course necessary. 

4.4.5 Investigations on the loss function 

In practical implementation, a volatility index should be constructed first since the 
sample generally contains multiple contracts at each time period. The (old or new) 
CBOE volatility index would be the candidate to construct the necessary values of 

 and . )log( BS
tσ )log( M

tσ

For a numerical illustration, the index is constructed using the same dataset in the 
previous section. A weighted average for the volatilities of the near term contracts are 
calculated day by day with the reciprocal of absolute moneyness as the weights. 

Figure 4.5: Implied volatility index, real and by models. 
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Figure 4.5 shows the dynamics of the real volatility index and the model implied ones 
by the three pricing models. It is easily seen that the ad hoc BS implied index proceed 
with the real implied volatilities adaptively since much more information are utilized 
with this method. On the other hand, the index form the two GARCH models just 
duteously play as the target of mean reversion for the long term. Theses facts are also 
reflected in Figures 4.6.a, b and c. The speeds of mean reversion are estimated day by 
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day with a rolling window of 65 days. Clearly, the ad hoc BS has much larger speeds 
of mean reversion over the whole period. And the two GARCH models are averagely 
lower but comparable to each other. 

Figure 4.6a: Real and model implied volatility index and estimated speed of mean 
reversion with moving window by the ad hoc BS model. 
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Figure 4.6b: Real and model implied volatility index and estimated speed of mean 
reversion with moving window by the NGARCH model. 
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Figure 6c: Real and model implied volatility index and estimated speed of mean 
reversion with moving window by the EGARCH model. 
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Figure 4.7 represents residual series from a simple AR(1) model and the mean 
reversion model in (4.12) with the target provided by the above three methods. It is 
clearly seen that different levels of serial correlation and volatility cluster exist among 
all four charts, especially obvious for the two from NGARCH and EGARCH. These 
evidence imply that the loss function based on (4.13) could be still too simple and not 
satisfactory, but acceptable for practical implementation since the ad hoc BS, 
commonly believed well behaved, has insignificant serial correlation and roughly 
local homogeneity of variance. 
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Figure 4.7a: Residual series of volatility index with AR(1) model. 
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Figure 4.7b: Residual series of volatility index regressed with the ad hoc BS as the 
target of mean reversion. 
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Figure 4.7c: Residual series of volatility index regressed with the NGARCH as the 
target of mean reversion. 
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Figure 7d:Residual series of volatility index regressed with the EGARCH as the target 
of mean reversion. 
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4.5 Concluding Remarks 

In this chapter a procedure for choosing appropriate loss functions for evaluating 
option pricing models is sketched. Inappropriate loss function may cause bias for 
model selection. And it has been shown that the traditional loss functions that are 
currently widely used are generally inappropriate. They are in lack of economic 
interpretations at first. Furthermore, significant heteroskedastic patterns of residuals 
exist so as to violate fundamental statistical assumptions of the underlying model. 

There are two points to be emphasized. First, the loss functions composed of the 
option prices or pricing errors only are meaningless. As indicated in 4.1, the same 
prices and pricing errors can be easily made by options with different specifications. 
Implied volatilities, which in fact incorporate the information of prices and 
specifications, are the possible candidate for the construction of loss function. In fact, 
whether in industry or in academics, the Black-Scholes implied volatilities are 
commonly used as the advocates of option prices. In other words, the Black-Scholes 
may not be so “right”, but it actually provides as a platform to the investigation of 
options. 

Second, a pricing model need not provide the correct price, but the level of the 
characteristics of the information content should tend to be. As mentioned earlier, all 
pricing models are based on some kind of equilibrium arguments. However, there are 
indeed large amounts of noises in the financial markets. And more important, market 
participants who are really risk neutral are rarely seen. More or less, people tend to be 
risk averse or seeking so that patterns of mean reversion would always exists in the 
financial markets. Thus, it is natural that the loss functions are constructed by the 

 64



assumption that the models provide the level of mean reversion for the characteristics 
of information contents. 

Obviously, further investigations on the detailed properties of the real and model 
implied characteristics should be made. And more elaborate modeling for their 
relations would be necessary in the future. For example, multivariate approaches such 
as implied volatility surface, see Benko et al. (2007), certainly provide much richer 
contents and possibilities than volatility index. And it should not be expected that a 
perfect loss function could be obtained before the information contents of option 
prices are well clarified. 
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4.6 Appendix 

4.6.1 The ad hoc Black-Scholes model 

The BS model assumes that the volatility of the underlying asset return is constant, 
which is not realistic. However, in practical applications, analysts and traders always 
use the market price to extract the implied volatility based on the BS model. One way 
to adjust the classic BS model is to allow each option to have its own BS implied 
volatility depending on the strike price and time-to-maturity. Following Dumas, 
Fleming and Whaley (1998) and Derman (1999) with some modifications, the 
following functional form for the options implied volatility is considered: 
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where σ denotes the implied volatility, S is underlying asset price, K is strike price 
and T is time-to-maturity. For each contract with different exercise price and maturity 
the fitted value for volatility can be plugged back into the BS formula to obtain the 
model price. 

In the empirical analysis of Section 4.3.2, heteroskedasticity of the traditional loss 
function with respect to the option prices is illustrated using the ad hoc Black-Scholes 
model estimated daily, because this approach is simple and widely used as a 
benchmark in the existing literature. Furthermore, to make sure that the ad hoc 
Black-Scholes model is not a special case for heteroskedasticity of traditional loss 
function, the properties of loss functions under the GARCH models are also 
investigated. 

4.6.2 The GARCH pricing models 

Since Engle (1982) and Bollerslev (1986), GARCH models have become one of the 
standard method for modeling financial time series. For obtaining pricing measures 
under the GARCH models, Duan (1995) first proposed the criteria Local Risk-Neutral 
Valuation Relationship (LRNVR). In this chapter, two types of GARCH models, 
NGARCH and EGARCH, are taken into consideration as illustrations. Following 
Duan (1996b), the two GARCH models and the corresponding pricing measures can 
be well defined. 

The NGARCH model is defined as 
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where St and ht are the spot price and volatility at time t, r is the risk-free interest rate, 
λ, α0, α1, and β1 are nonnegative parameters, and εt’s are i.i.d. normally distributed 
innovations with variances ht. The corresponding pricing measure is then 
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where ξt is normally distributed with mean 0 and variance ht. 

Similarly, for the EGARCH model (4.6.3) is replaced by 

  ( ) )log()log( 111110 −−− ⋅+⋅++= tttt hh βεγεαα ,    (4.6.6) 

and (4.6.5) by 
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5. Conclusions and discussions 

This series of studies are focused on two important issues about option pricing. The first 
one concerns the implementation of continuous time stochastic volatility models, 
including procedures for estimation and pricing. The second is about the loss functions 
which are important both in parameter estimation and model evaluation for pricing 
options. 

For the estimation of stochastic volatility models, a partially observed GARCH model is 
proposed to approximate the likelihood function. Beyond the purpose of estimation, this 
type of models indeed bridges the gap between the continuous time stochastic volatility 
models and the discrete time GARCH models. Furthermore, inferences including 
estimation and pricing can be done under the same schema. 

The most fascinating is that the method provides an approach for pricing options based 
on an approximated conditional distribution of the future price given the prices up to now, 
instead of the current price and a “filtered” volatility. And this approach obviously leads 
to some interesting results, for example higher option prices accompanied by descent 
paths of prices and lower prices by ascent paths. 

Clearly the properties of the partially observed GARCH models shall be worth further 
investigations. It is not clear if the filtered variance via this method will be an (asymptotic) 
unbiased estimator of the true variance. If not, it may help explain partly why option 
prices are generally higher than that by the Black-Scholes formula with volatility 
estimated by past prices, which in turn is about the behaviors of market participants when 
they cannot observe some state variables such as volatilities. 

Loss functions are important and critical for option pricing, even though no theory can be 
found to formally address it. However, as pointed out in the third chapter, it is essential 
that the loss function should not be composed of option prices only since there are 
certainly much more other elements to constitute the information contents together. 

From a practical point of view, the Black-Scholes implied volatility or other 
nonparametric volatility index is certainly to provide as a basis for constructing loss 
functions. Then mean reversion as a major characteristic of volatilities should be 
quantified for the introduction of loss functions. That is, a precise definition of mean 
reversion may be the next step to a more compact and meaningful loss functions. 

Some elementary statistical concepts are incorporated into all of the studies. For example, 
error sum of squares used as loss functions should be based on homogeneity of variance, 
and taking expectations over unobserved random variables instead of just “estimating” it. 
For financial engineering as “engineering”, the introduction of these concepts may help 
increase the proportionality of science. 
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