BB R T = Bl ek

A Petit Trio on Option-Pricing

Boyoditas

—_—



B R R L 02 Rl e

B4y f g T e

k=)
|4
<k
=
A

LA FRPFEFT T LT

&
ERETR LG AMBPEERL LY BT A O Bhaidiz - 0 AT SR
BRI E S T R P SRR R R R R R

_REE

L%"ﬁ” s Z e ASEEAIE Rk enpro e L R @ ¥ 3

PR Z ) %T#'fﬁ’fs*fi'l v He o2 - fﬂr\é FREREP LS IR - &

) ’Letx‘ﬁfs—"'l“’ TLRERE-AFFIFTEL A TRERZD PEER D
FSfee EE RPN A E o

S AL %1*%%ﬁ% #mﬁﬁﬁﬁ%iww%m%?ﬂﬁwﬂﬂ

BB 52 FRRE- PR 0T E o 2 GARCHBCR] € frac|sg 8k & 5 #07)
w—ﬁ?’fﬁéﬁ*ﬁi?ﬂﬁﬁ?ﬂWMWﬂ’ﬁﬁi&&ﬂﬁw@b+
BET MG ETE 2 LR WAL AT BT v A s

PR GFE T o AP RE T MG GE - L R PLav ERd .

15 4 HER R ¢ el OB T i T 4 AR A
EEF A SBERT SR R A S BRF AT XA RERERRET AN &
AR (AeE 2 A B F )0 @ d 3 B A SRR o F §A) B F g st
EWFFLFREREF DA ZETORY ETF P R oA LRGSR -

-\

q\r



A Petit Trio on Option Pricing
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National Chiao Tung University

ABSTRACT

Option pricing may be one of the most important and fascinating topics in modern
finance. Complex models and algorithms can be applied here so that researchers and
practitioners may bring their quantitative skills into full play.

In practice, pricing is also the core of different types of arbitrage strategies. For
more precise pricing, structural models are generally necessary where continuous time
stochastic volatility model can be one of the candidates. However, volatility, the most
important state variable, is in fact unobservable and the likelihood cannot be available
in close form for the stochastic volatility models.

The sets of articles explore related statistical issues about option pricing with
stochastic volatility models. Especially, the unobservability of volatilities is taken into
considerations. By the fact that a GARCH model would converge weakly to the
corresponding stochastic volatility modél; statistical inference including estimation
and pricing can be made based on a specially designed partially observed GARCH
model whose likelihood will be“obtained throngh MCMC methods. In this context,
some drawbacks from the current practices can be improved.

Finally, an investigation on-the loss“functions for option pricing is also made.
Although the pricing theory does mot restrict to-any specific loss functions, the
statistics that correspond to the information contents, for example implied volatilities,
should be used as a basis for the construction of loss functions. Furthermore, due to
the fact that pricing is generally based on some equilibrium conditions, the model
implied statistics would just play as the target of mean reversion of the real price
implied process, instead of an absolute reference of prices.
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1. Introduction

Since the epochal work of Black and Scholes (1973) and Merton (1973), financial
derivative markets grew up rapidly and quantitative methods were widely used in
finance. To lax the assumptions of the Black-Scholes model, large amounts of
complex structural models were introduced for option pricing, including the so called
continuous time stochastic volatility models.

These types of models have been widely utilized in industries and academia. However,
some features and difficulties make the currently popular practices about these models
desultory. First, the likelihood functions for such systems are seldom available and
thus some indirect methods such as EMM and indirect inference shall be applied. But
to the extent searches, the effectiveness and efficiency for these methods applied to

the stochastic volatility models are not formally concluded.

Next, as the volatility processes are in fact never observable, an “estimate” for
volatility at each point in time should be filtered with the prices. However, if this
approach really makes sense, why not just use GARCH-type models? Third, an
exogenous loss function is generally required for the determinations of some subset of
parameters, especially risk premium of volatility. What matters is that almost no
commonly used loss functions are provided with significant economic interpretation
and statistical properties.

This dissertation is engaged in the preblems mentioned above. By introducing a
partially observed GARCH model‘and utilizing MCMC method, the likelihood
function for the stochastic volatility model can be properly approximated numerically.
The byproduct of simulated likelihood would be a large amount of paths that
connecting the observations, which can be used as a basis for further inferences such
as predicting or pricing.

As for loss functions, since the option prices may-range widely, commonly used error
sum of squares or similar measures cannot be an adequate candidate. In fact, the
pricing theory tells no specific loss functions. But there are at least two questions to
be answered for the choice of loss functions. First, what are the information contents
of option prices? Second, what characteristics will be represented by the information
contents? The answers clearly lead to a reasonable choice of loss functions.

In Chapter 2 the estimation method for the stochastic volatility models is discussed.
Following the context above, calculations for option prices become trivial. Some
interesting results are thus documented in Chapter 3. Beyond the apparent prejudice
about “losses” for pricing options, outlines for choosing proper loss functions are
drawn in Chapter 4. These investigations and discussions complete a schema for
statistical inference about option pricing.



2. Estimating the continuous time stochastic volatility models with
partially observed GARCH models

2.1 Introduction

In the last decade, Continuous time stochastic volatility models have been proposed in
finance area, especially option pricing. These models generally consist of two

stochastic differential equations,

dX, =1UX(Xt’Vt’t)dt+O-X(Xt’t)"\/vt'dwl,t ) (2.1)

dg(V,) = w, V., O)dt + o, (V,, AW, (2.2)

The first equation involves the dynamics of X, the logarithm of the prices S, and the

second the volatilities V, . Here (W, ,W, ) is assumed to be a correlated

two-dimensional Brownian motion and!@€Hc R is the unknown parameter. This
class of models covers a large range of applieations-in literatures concerning equity

prices and interest rates, for example, Heston (1993) and Anderson and Lund (1997).

Like most practical applications-of diffusion models, observations for continuous time
stochastic volatility models are taken*at-diserete time and generally neither explicit
forms of the transition probability functions.not the likelihood functions are available.
Furthermore, the volatilities are in fact unobservable here and thus there are always
missing values at least as many as the observations. Therefore, likelihood inference

for these models turns out to be much more complicated.

In this chapter, a procedure is proposed for approximating the likelihood functions of
continuous time stochastic volatility models in which the two driving processes are
correlated. The major idea here is to fit the discretely observed data drawn from a
bivariate diffusion process with a partially observed GARCH process whose
frequency of construction is much higher. The approximated density functions will
converge to the joint density function of the model (2.1) and (2.2) under certain
conditions and thus can be used as a basis for statistical inference. However, such
practice will induce large amounts of missing values between observations. With
Markov Chain Monte Carlo (MCMC) techniques, paths conditional on the
observations can be sampled to compute the approximate likelihood function based on
the GARCH model. Then the EM algorithm can be applied to get the MLE’s.

Among literatures estimators based on the generalized method of moments (GMM,



Hansen, 1982) are often used in estimating parameters of the stochastic volatility
models. Especially, there are a large number of literatures with the efficient methods
of the moments (EMM, Gallant and Tauchen, 1996) as a major tool for inferences. For
example, Anderson and Lund (1997) discussed a stochastic volatility model for
interest rates and EMM with a semi-nonparametric (SNP) density, based on GARCH
score generators, is used to estimate the continuous time model. Indirect inference
proposed by Gourieroux et al. (1994) provides another approach, and a practical
application can be referred to Fiorentini et al. (2002). Besides, under the assumptions
that the two Brownian motions driving the price and the volatility processes are
independent, in Genon-Catalot et al. (1999) the return is treated as a subordinated

process with which the moment conditions can be derived.

Estimating functions provide another approach to this estimation problem, for
example, Kessler (2000) and Sgrensen (1999). Also there are authors who drew
inferences via a Bayesian method based on Euler approximations to diffusions, for
example, Eraker (1998).

On the side of likelihood inference, simulatéddikelihood method for diffusion models
with discrete observed data is first’proposed.in-Pedersen (1995). Likelihood functions
can be numerically approximated through:simulating paths between observed points
under the Euler scheme. Importance sampling techniques play important role in
implementing the idea, and various stratégies-for generating paths have been
suggested, for example, Kessler (1997), Elerian (1998) and Elerian et al. (2001).

When the two processes are assumed to be uncorrelated the returns are still normally
distributed. With this property, the likelihood functions can be approximated by
simulated paths of volatilities, for example Sgrensen (2003). But unfortunately this

method is also not applicable when the two driving processes (W, ,W, ) are assumed

correlated and the resulting distributions for the returns are not available.

On the other hand, since Bollerslov (1986) GARCH models provide as alternative
models that describe heteroskedasticity in financial time series. It has been shown in
Nelson (1990) that a GARCH model will converge weakly to some bivariate diffusion
model as time interval becomes infinitesimal. A family of augmented GARCH(1,1)
processes and their limiting diffusion processes are proposed by Duan (1997).
Another family of CEV-ARCH models and their limiting processes can be found in
Fornari and Mele (2004).

From the viewpoint of statistical inference, Wang (2002) showed asymptotic

non-equivalence of GARCH and continuous time stochastic volatility models at the

3



basic frequency of construction. On the other hand, similar to Pedersen(1995) on
approximating diffusions with Euler expansion, Brown, Wang and Zhao (2003)
suggested that these two models are asymptotically equivalent at frequencies lower

than the square root of the basic frequency of construction.

These results point out alternative access to approximate of the likelihood function for
the continuous time stochastic volatility model beyond the traditional Euler and
Milstein schemes. In short, to inference about a stochastic volatility model is

equivalent to inference about a GARCH model constructed at a higher frequency.

The rest of the chapter is organized as follows. In section 2.2, background knowledge
about the model is reviewed. Major results will be stated in section 2.3. Numerical

illustrations are given in section 1.4 and then in section 2.5 are conclusions.
2.2 The model and likelihood inference about diffusions

The stochastic volatility models have been presented in the introduction. Generally,
equation (2.1) just corresponds to the commonly used geometric Brownian motion or
the CKLS model with coefficient of yelatility replaced by the square root of a positive
random variable V;. Since in documented literatures, for example Engle and Patton

(2001), it is suggested that volatilities possess the:property of mean reversion,

equation (2.2) is usually specified with aterm like g (V,,t) = —«(V, — &), in which x

represents the speed of mean reversion and ¢ is.the long-term equilibrium level of
volatility.

For further discussions, the following conditions are assumed.

Assumption 1. u, (X,,V,,1), o, (X.,t), u,(V,,t) and o, (V,,1) are functions

which satisfy regularity conditions such that there exists a unique strong solution (X4,
Vi) of the systems (2.1) and (2.2).

Assumption 2. The process V; is stationary and ergodic with a distribution 7.

With these conditions, the stationary distribution for Vj and the transition probability
density function for X, Vi| X1, Vi1 exist. Then the likelihood function can be

expressed in a proper form.

2.2.1 Likelihood function

Data for this problem consist of discrete-time observations X, X,,---, X; only,
while the process Vi remains completely unobservable. With the Markovian property

of the diffusion process, the likelihood function can be expressed as



i
Loz X)) = [ 2V T XV | XV smdV ©
t=1

= [V p(X V)V, (2.3)

where 7 denotes the vector of parameters, X = (X -~ X;), V' =(V,,--V;),

P(X+, Vi X t1, Ver;77) the transition probability density function, p(X;n) the joint

density function of X and (Vo) the stationary distribution for Vj.. Taking
expectation in (2.3) is due to that V@ is not observable. Note that in general the
transition density functions are quite complicated so the integral cannot be

decomposed into factors concerning pivotal quantities such as X;- Xt.1. This means
that, when V' is not observable, X; will be dependent on (X ,---, X,_,) rather than
only on X.1.

Explicit forms of transition probabilities have been identified only for some specific
univariate processes, for example the Ornstein-Uhlenbeck process and the
Cox-Ingersoll-Ross process. Howevér, it is almost infeasible to find explicit form of
transition densities for the whole system (2.1)-and (2.2) even when Wy and W, are

not correlated.

A practical means to compute the ltkelihood functions and find MLEs is through
numerical methods. When equation (2.1) is set as a geometric Brownian motion for
prices and W1 and Wy are assumed to be independent, each increment X; - X1 is
normally distributed and the likelihood function can be obtained through simulating
large number of paths of volatilities (Sgrensen, 2003).

2.2.2 Simulated maximum likelihood and MCMC methods for inferences about
diffusions

When observations for all processes are available, Pedersen (1995) shows the
approximate likelihood under the Euler expansion converges to the true likelihood
function in probability as the subdivision length between observations approaches 0.
That is, to obtain a good approximation of the likelihood function data augmentation
is necessary and different paths connecting two consecutive observations should be

simulated.

Consider the model consisting of equation (2.1) with V; as a constant. The discretized

version with subdivision length A=1/n would be



Xioa = X+ (X V L, DA+ 0y (X, DAW,, (2.4)
where AW, is a normally distributed random variable with mean 0 and variance A. Let

the observed data be X ) = (X,,---, X;) and denote the augmented data as

*)’(‘(ﬂ) :(Xoa* )?1(”)>X1a""xT)

* *

Z(Xoa XA)"'a Xl_Aaxla“"XT)a

where "X ™ =("X ..+~ X,_,) is the n-1 augmented data points lying between X1
and X;.

The joint density function for “X ™ under the Euler Scheme is

~ T * n
aC X5y =TTalX, X ™ | X:7)

t=1

nT

gl

* 7 = (*X sA _*X (s-na — Hs (*X<s_1)A ,*V(S_I)A ) (5 o= 1)A))/
O (s_1)a

"o, =0, (X,,1),

and ¢(:) is the density function of the standard normal distribution.

Since ("X m.. ' M) are auxiliary variables that are not observed, the likelihood

function for X would be

- T
L | XY =im[Ta™ (X, [ Xo5m)
t=1
_hmIHq( t)x(n)‘xtl’n)j*x(“) . X(n)

in which the expectation is taken over ("X ™ ,---,"X ™).

Generally numerical procedures such importance sampling shall be used for the

calculation of the likelihood function. For an importance sampler ¢ and L repetitions

6



of paths, the likelihood function maybe approximated as
lill[ q(xt ’:it(m | Xt—l;n)
L“

* g 1. .
i=l t=1 ”(ixt(n)|x()977)

The original suggestion of Pedersen is quite simple. The required augmented data can
be simply generated with the Euler expansion (2.4), that is, an importance sampler
like

n—

1
(/’( Xt(n) | Xt—1;77)= Hq( X sl Xt—1+(s—1)A;77)-
s=1
Clearly, a major drawback about this method is that it tends to lead to large jumps

between the last augmented points and the consecutive observed data point.

Based on the Brownian bridge, Pedersen’s approach can be modified with the

following scheme

Xt = Xt+(s—1)A + (X =X )A+ 0y (XH(S—I)A?t)AWsA >

where (X; - X.1) represents an estiimate for the drift speed from time t-1 to t.

Elerian et al. (2001) proposed alternative importance sampler for the problem. The
advantage of the approach is drawing pathsatione shot and eliminating huge jumps.
The augmented data between X;.; and X;can be sampled from a multivariate normal
distribution N(u*, >") where

Ho= argn;?gglogQ(*Xf”) [ X0 X,),

-1
2

0 *ys (n
Y =— #IOgQ( Xt( ) | XH,Xt) ’
XX

and q(*Xt(”) | Xy Xt) denote the conditional density of "X under the Euler

expansion (2.4).

More bias correction and variance reduction methods and a summary discussion may
be found in Durham and Gallant (2001). Most of the methods mentioned may be
applied to the stochastic volatility models, especially when the two driving Brownian

motions are uncorrelated.

2.2.3 Asymptotic equivalence of stochastic volatility models and GARCH models



Since Engle(1982) and Bollerslov (1986), GARCH models have been widely used for
modeling financial time series with stochastic volatilities. Nelson (1990) first
investigated the convergence of GARCH processes to bivariate diffusions as the
length of time intervals between observations goes to zero. Up to now diffusion limits
for a variety of GARCH type processes have been found, for example, Duan (1997)
and Fornari and Mele (2004). The relation between the two categories of models
becomes very elaborate, especially when they both are essentially one-dimensional

Processes.

But even though the GARCH processes converge to their diffusion limits in
distribution, it is not trivial that inferences through the two processes are equivalent. A
major distinction between the two types of models is observability of volatility
processes. Thus, once by subtle arrangement a GARCH model may maintain its
availability of likelihood but its volatility process unobservable, it may work well to
approximate the continuous counterpart. In fact, some recent researches have shown
that the equivalence of the two types of models depends on the sampling frequency

and the basic frequency of construction of the processes.
As set in the previous section, let: X ™= (X5 X, % X .+ ) be observations from the

stochastic model and Y ™ = (Y, 52 Y 5 oe s ¥aar ) from the corresponding GARCH model

at the basic frequency of construction. With the.notation D(X, Y) for L; distance of the
joint density functions of the two processes X and Y, Wang (2002) showed

D(X™,Y ™) does not converge to 0 as n—>co. In other words, the likelihood

processes have different asymptotic distributions and consequently the two types of

models are not asymptotically equivalent.

However, as the frequency of observations become much lower than that of

construction, the result goes quite different. Specifically speaking, let observations be

' = (X, Xy X o) and Yy m =(,,Yo.> %Y, ), Where | represents the

N"IA N"1A

period between observations and N* is the largest integer not larger than nT/l. Brown,
Wang and Zhao (2003) illustrated the asymptotic equivalence of the MGARCH model

and its diffusion limit with the dataset as n—><c and 1/n"? — o .

These seemingly contradicting results in fact sketch the relation between the
stochastic volatility model and its GARCH counterpart elaborately. Even though the
GARCH process converges to the stochastic volatility model, the GARCH process is



still composed of normally distributed innovations and determined volatilities.
Augmentation of data deprives the GARCH process of these properties so that it may

look like generated by a stochastic volatility model.

In other words, the implications are very similar to those among Lo (1988) and
Pedersen (1995) on the univariate processes or multivariate process that are
completely observable. In short, even though the GARCH models provide as good
approximations to stochastic volatility models, likelihood functions for the stochastic
volatility models cannot be obtained through the corresponding GARCH model at the
frequency of observation, 1/T. However, by the GARCH processes constructed at
higher frequencies, the approximate likelihood function can be calculated with

simulating all missing values.
2.3 Simulated likelihood for stochastic volatility models

Although Brown et al. (2002) had only investigated and proved the asymptotic
equivalence of the MGARCH model and its diffusion limit, it may be well expected
to extend the result to general cases with finite samples. In practice, it is reasonable to
expect that the data considered fromya stochastic volatility model would look as
generated from some specified GARCHiprocess.whose frequency of construction is
much higher, say n, but observations are taken every n period. Obviously there will be
a large number of missing values between the original observations, but the MCMC

techniques used in Elerian et al. (2001)'can easily help solve this problem.

2.3.1 Approximations with partially observed GARCH

Let ()? M ,\7“)) be drawn from equations (2.1) and (2.2) and (\7(” , ﬁ“)) from the

corresponding GARCH with length of construction interval A. Note that the observed

data is indeed X ", or, equivalently, Y® . The following assumption is essentially
necessay.

Assumption 3. The GARCH processes converge to its diffusion counterpart in
distribution. That is, the conditional distribution F™(y,,h |y, ,h_) converges to

F (X, Vv, | X, V) uniformly as n—oo.

Assumption 4. Each term of the sequence q‘(Y,,Y,, - Y; |Y,,h,) exists and the
sequence converges to a proper density function.

It should be noted that Assumption 3 does not restrict the models under consideration



to a narrow extent. In fact, both the approximating augmented GARCH(1,1) process
in Duan(1997) and the CEV-ARCH models in Fornari and Mele (2006) satisfy this
condition.

The likelihood function for X has been shown in (3). With Assumption 4 that may
be generally feasible for well defined GARCH models, the likelihood function for

Y D can be written down in a similar form:

L (7Y ") = [2(0,)a™ (¥, Y5+ Yy [ Yy, hy ), (2.5)

Similar to Elerian et al. (2001) and as a direct result of Brown et al. (2003), equation
(5) can be used as an approximation to the likelihood of the stochastic volatility model.

For practical implementation, the convergence of the sequence of density functions

a™ (Y, Y, Y7 | Yo, h,) would be the major consideration. However, in spite of the

weak convergence of the processes, the convergence of the joint density function is

not necessary under general conditions. Assumption 4 is thus necessary here. The

convergence result of q(n)(yl YooY [ Yo Ng) it pCY,, Yar s Yy | Yo,h,) isthen

stated as follows.

Theorem 2.3.1. With Assumptions 3 and 4, g™ (y,,Y,. - Y | ¥,»-h,) converges to
P(Y,» Y, Yr | Yo,N,) uniformly asn-so9;

The proof of the theorem is a direct application of Lemme A1l. Convergence results
can be also obtained for specific models, for example Brown et al. (2003). However,
with Theorem 3.1, a proper approximation of the likelihood (2.3) can be obtained
from (2.5). Generally the close form of the transition density q(”) in (2.5) is not
available, but by the Markovian property of the GARCH process, there can be found
alternative expression of (2.5) as

Lo7Y ™) = [2(V) p™ (V| Vo3 m)dV,

nT
= _[ 7V, )H q" (*YSA ‘*Yo ” "*Y(s—l)A Nosmd Y, --dY, dv,
51

(2.6)
where YNI are the augmented data between Y; and Yi.1.

The problem becomes very similar to the simulated likelihood of Pedersen (1995).
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However, due to the complex structure of the GARCH models, it would not

necessarily so easy to find a sampler that mimics the conditional distribution of *YNt

well. Thus, alternative approach is to generate paths from p™ ('Y ™ |YN(”,V0;77) and
apply EM algorithm to compute the MLE, though this may be computationally costly.

With each simulated paths, the object function in the Maximization step is then
> [1|-——te
log| z(;h,) - #Gel) || 2.7
i1 ’ s=1 ;khs(An) *

where ;&) and ;h{) are innovations and variances at time SA on the i-th path.

The algorithm to compute MLE for 7 is then,

1. Initialize Voand Y ™;

2. Update ,h, from h)|'Y;

3. Update sequentially V;® _from YA [Y D5y ™ ...y W Y O YO

t-1 > "t+l

4. Repeat step 2 and 3 and take L-independent paths;
5. Maximize (2.7) with respect.to 7;

6. Repeat Steps 2 to 5 until convergence.

MCMC methods play important roles in this approach. Since the conditional density

in step 3 becomes complex and generally no well-established algorithm is available,

Metrapolis- Hasting algorithm can be used for sampling Y, . And the iterative

sampling of "X ™| X.»X;n in Steps 2 and 3 is in fact a realization of Gibbs
sampling.

It should be pointed out here that the discretization error for the transition probability
function is indeed a function of the number of subdivision n rather than solely a

function of the time between observations.

A major feature of this method is that the bivariate diffusion process with the second
process unobservable is approximated by a univariate GARCH process. This method
preserves the missing value problem from simulating the whole unobservable process

to simulating paths connecting observations. In other words, any operations about the

11



volatilities can be avoided. Furthermore, the GARCH process provides analytical
form of the likelihood functions. What is left concerns only implementation of the
MCMC algorithm.

There are three points to be emphasized. First, how equation (2.5) approaches the true
likelihood function is in fact a matter of n, the number of subdivisions between
observations, rather than the time between observations or values of X ® . This means
that however small the observation time interval is, subdivision is always necessary.
This can be seen from the fact that the GARCH model always provides normally
distributed innovations while the leptokurtosis of the conditional distribution for the
return under the stochastic volatility models denied the possibilities of the normal

distribution.

Second, this approach provides as another aspect to the continuous time stochastic
volatility models. This class of models can be viewed as a partially observed GARCH
process that has higher observation frequency and many missing values. On this point
statistical inference for these continuous time models will be made feasible

significantly.

Third, unlike Sgrensen (2003) in;which only observations previous to time t are used
in constructing the conditional density at t, the method here employs all observations
in determining each segment of"paths. Perhaps.-at a first glance, this does not seem so
natural. However, on seeing that all observations X" are correlated and thus each
segment of the path provides information about those previous to or after it, this

approach is indeed much more reasonable.
2.3.2 Why not Euler expansion?

It can be seen that the GARCH models cannot be the only class of models that satisfy
theorem 2.3.1. In addition, as is acquainted with many researcher and practitioner in
related fields, discretization through the Euler expansion provides another approach to

approximate the stochastic volatility models.

The approximate likelihood function herein then involves a functional form of the
bivariate normal distributions. For the stochastic volatility models (2.1) and (2.2),
denote the augmented data as ("X ™,V ™). Since the process V; is completely
unobservable and there does not exist a similar form like (2.6) under the Euler scheme,
the whole path of V; must be treated as missing values and be simulated conditional

on the observed price processes. Similar to (2.4) and (2.7), the likelihood function can

be approximated by L independent paths as

12



- L NAT . . .
L(7; X)) = Z[”(ivo)n MN(izén)Q i/us(n)o iEgn))] , (2.8)
i=1 s=A

where

*

i Zs = (T X s _TX S—A? ¢(tvs—A) - ¢(jvs—A ))

= (e (X009 Aty (V) -4)

*Z _ Tzs(lal) Tzs(l’z)
B RO NGRS N )

iZ,(LD=V, 05 (X,,9),

725(132)2725(271) =P Ws "Ox (i*Xs:;Vs:S)'JV (:XS,S) >

TZS (2’2) = O-\f (TVS > S) 3
and MN(;-,-) represents the denSity function-of the multivariate normal distribution.

This approach may still work to-obtain some Vvalues of the approximate likelihood
function. However, the questiontapparent is: will this-approximate likelihood function
converge to the true one as the length of subdivision A tends to 0? The answer seems

not so trivial.

The above numerical procedure in fact approximates the following integral
T
(B8] § EIC R VA A ART)
t=1

More precisely, these calculations involve the conditional expectations of volatilities
given prices. Theoretically, what would go wrong may be that the conditional
distribution under the Euler expansion will not necessarily converge to that of the
original model. Some discussions and necessary conditions on the convergence of
conditional expectations can be found in Goggin (1994) and Crimaldi and Pratelli
(2005). And extra efforts are generally required to build artfully transformed

processes to meet the required conditions.

To illustrate the property of (2.8), consider the following model where the observable
process X; has no drift and the volatility process is the limit of the GARCH(1,1)
model (Nelson, 1990):

dX, =V, dw,,, (2.9)
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AV, = —x(V, - E)dt + o -V, dW, . (2.10)

To avoid possible singularities by direct discretization for Vi, the following

discretization scheme for Xt and log(V;) by a transforma of Ito’s lemma is used:

X, =X +Von -AZ,,, .11

t t—At t-At

2
K
log(V,) = log(V, )+ (V—f— K—%)dt +0-AZ,,, (2.12)

t-At

where AZ,, and AZ,, arenormally distributed random variables with mean 0,

variance A and coefficient of correlation p.

For t<s<t+1, the posterior distribution of *VS given X" and other *Vs’s can be
expressed as

*

—2log p(*vs |*X s-1 s* Ve X ’*X s+1 =* Vea)

[log(*va—log(*vs_l)ﬂ*\’j‘f —K—Z)A}

~

o’ A

2p(X, - X, {log(*w ~logG¥eanlt (*\/Kég T Gzzmj

s—1

0'\/ VA

(log(*vs+l>—1og<*vs>+<ii —K—“;m]

(Xs+1 B Xs)2

*

+log"V, + +

V.A o’A

S

2
2p(X.s = X, )(log(*Vs“) ~log("V) +( 'if —K- Uz)AJ

o+ V.A

S

As most of these terms involve the dynamics *Vs only, they can be assume to be less

cariational. So note the terms that are related to data first, that is

(Xs+l B Xs)2

log"V, + k
g Vs V.A
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While Xi+1-X is viewed as data and thus fixed, this means that X, , — X, as one of
the n segments is approximately as large as 1/n, which in term implies that "V, is

approximately of the scale n. That is, the simulated variance process under the Euler

expansion may diverge as the number of subdivisions n approaches infinity!

Table 2.1: Parameters used in the simulation study.

parameter Value
K 0.06988
& 0.7928
o 0.1772
o, -0.65

Figure 2.1: Simulated paths of V; conditional on Xo=0, X;=1 and V¢=0.8.

Figure 2.1 illustrates this effect. The setting'of parameters is the same as in the next
section and shown in Table 2.1. Simulated-paths of V; between the period of 0 to 1
given Xo=0, Vi=0.8 and X;= 1 are generatéd. The three panels correspond respectively
to the cases with subdivisions 55 10, 15. In‘each simulation, linear interpolations for X;
at each time point and constant V; equal'to 0.8 are used as initial values. After 200
burn-in iterations, paths of V; are taken every two.iteration from the next 200
iterations. It can be seen that the level of the Vt paths go up significantly. This
illustrates the inadequacy in estimating stochastic volatility models based on the Euler

scheme.

Figure 2.1. Simulated paths of V; conditional on X¢=0, X1=1 and V(=0.8.
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2.4 Numerical illustrations

With the model (2.9) and (2.10) for a numerical illustration of parameter estimation,
ten datasets of length 500 and time between observations as 1 are generated according
to the Euler approximation (2.11) and (2.12) with A=0.001. The initial value of X; is
Xo=0 and Vj is generated from the stationary distribution of Vi:

a -z
14 v

A= v

(a)

where a=1+2x/0" and A=2«¢/0".

From the results shown in section 2.4, the approximating GARCH process

corresponding to the model specified by (2.9) and (2.10) is
Y = "hMe A,

PO = k& A+ [1- k- A

%
. 1-p° E[9 % 12-p°
g o[ g B B 220 |y
2L=p 21-p

n) _
hks -

*¢(ﬂ)
S

An approximation for the transition density of this type of GARCH model can be
found in Duan et al. (1999). Their result also implies that Assumption 5 is satisfied for

this model.

The parameters used in this simulation study are shown in Table 2.1. And this setting
is compliant with the estimates for the NGARCH model with the NYSE composite
index returns in Duan (1997).

Summary statistics for each dataset are listed in Table 2.2. Figure 2.2 shows the trend
chart for the simulated values of Xi-X.1 and V; from the first 4 datasets. QQ-plots for
the same 4 datasets are shown in Figure 2.3. The phenomena of volatility clustering
can be easily observed. With the results of B-J tests, normality for X-X:.1 is seen to be
very different through datasets. Datasets 1, 6 and 10 are very close to being normally
distributed, while others differ from normality significantly. On the other hand, the
Ljung-Box test indicates that in principle the increments X-Xt.1 are statistically

independent.
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Table 2.2: Summary statistics for the increments Xi-Xt.1.

dataset |mean variance skewness kurtosis |BJstat pvalue |Box- p-value
Ljung
statistic
1 0.0075  0.7930 -0.0149  3.0649 0.11 0.948 | 23751 0.1233
2 -0.0260 0.7256 -0.2144 3.5662 10.51 0.005 0.0115 09146
3 0.0270  1.0351 -0.5145 6.5380 | 282.84 0 3.8780  0.0489
4 -0.0158 0.8316 -0.3243  4.6880 68.13 0 0.0000  0.9993
5 0.0236  0.7856  -0.0366  3.7860 12.98 0.002 0.1225  0.7263
6 0.0152  0.7894 -0.0426 3.1772 0.81 0.669 0.1910  0.6621
7 -0.0023  0.8312 -0.0689  3.6905 10.33 0.006 1.4088  0.2352
8 -0.0705 1.0778 -0.6887  6.8981 | 356.10 0 0.7640  0.3821
9 0.0421  0.8233  0.1272 5.3566 | 117.05 0 0.0659  0.7974
10 0.0333 0.6941 0.0116 3.4174 3.64 0.162 0.8251  0.3637
Figure 2.2: Trends of Xi-Xt.10f the first 4 datasets.
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Figure 2.3: QQ-plots of Xi-X:.10f the first 4 datasets.
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Parameter estimation based on (2.7) with these datasets proceeds with A=0.2. By the
method in Raftery and Lewis (1992), a small size experiment is conducted for

determining the iteration times required to achieve convergence in each step.
For the Metropolis algorithm used in step 2, 150 burn-in iterations are exercised
before taking one sample for each” X ™ Similarly, sample paths for *>?§”> are taken

every two iterations from the 200 iterations following 20 burn-in iterations.
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Table 2.3: Parameter estimates. A comparison between the simulated likelihood,
GARCH approximation and EMM.

Method Parameter | True Value| Mean Median Max Min STD
Simulated K 0.0699 0.0637 0.0587 0.1287 0.0423 0.0241
Likelihood & 0.7928 0.8098 0.8063 0.9379 0.6994 0.0678

o 0.1772 0.1928 0.1863 0.2255 0.1685 0.0218

P -0.6500 -0.6955 -0.7079 -0.5164 -0.8524 0.0974

GARCH K 0.0699 0.1174 0.0732 0.6060 0.0160 0.1734
& 0.7928 0.8321 0.8187 0.9587 0.7212 0.0801

o 0.1772 0.1500 0.1523 0.2505 0.0781 0.0502

P -0.6500 -0.9213 -0.9661 -0.5747 -1.0000 0.1314

EMM K 0.0699 0.0670 0.0557 0.1176 0.0161 0.0369
& 0.7928 0.8364 0.8135 1.1231 0.6964 0.1274

o 0.1772 0.1899 0.1738 0.3357 0.0972 0.0853

P -0.6500 -0.7727 -0.7575 -0.6358 -0.9855 0.1237

Table 2.4: Parameter estimates. Estimates with the likelihood function approximated

through the Euler approximatien and V; assumed to be observed.

Parameter | True*Value Mean Median Max Min STD

A=1 K 0.0699 0.0632 0.0601 0.0927 0.0379 0.0164

0.7928 0.8065 0.7924 0.9047 0.7236 0.0678

0.1772 0.1696 0.1689 0.1735 0.1656 0.0026

o
P -0.6500 -0.6507 -0.6507 -0.6165 -0.6812 0.0182
A=0.2 K 0.0699 0.0659 0.0622 0.1031 0.0421 0.0181
& 0.7928 0.8121 0.8011 0.8996 0.7318 0.0676
o 0.1772 0.1767 0.1769 0.1786 0.1726 0.0017
P -0.6500 -0.6504 -0.6508 -0.6365 -0.6600 0.0070

Estimates via NGARCH approximations and EMM methods for each dataset are also
calculated for comparisons. The AR-NGARCH and AR-EGARCH processes are
considered as the score generator for the EMM method. As in Anderson and Lund
(1997), each dataset is first fitted with the two classes of processes. By the AIC
criterion the model that fits better is selected. It is found that AR terms in the mean are
generally not necessary, and the EGARCH process fits 6 of 10 datasets better than the
NGARCH process although the latter has this diffusion models (2.9) and (2.10) as its

limit.

The SNP densities are then set with Ky=0 and Kz=1 and thus have the form
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(1+a,2,) ¢(z)
1+a,2, ) ¢(z,)dz,

f (S |77):.[(

On computing the expectation of the score, a sequence of length 100,000 is simulated
under the Euler scheme in which 4=0.04.
Figure 2.4: Box plots for estimates from different methods. The dash lines indicate the

true values.
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The summary of estimation results is listed in Table 2.3 and graphically
represented by box plots in Figure 2.4. The estimates for &, o, and p from the
approximate likelihood are concentrated around the true value. However, x seems to
be systematically underestimated. This may be explained as follows. First it should be
noted that the GARCH processes only provide as an approximation but not an exact
distribution. Since x is related to mean reversion, estimating x precisely requires more
information about the “events” of mean reversion. However, taking discrete
observations implies that those very quick mean reverse events will be dropped. In
other words, the sampled “events” for estimating x is biased under the discrete time

scheme. An indirect evidence is shown in Table 2.4. The estimates are obtained
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through maximizing the likelihood of all X; and V; under the Euler scheme for A =1
and 0.2 respectively. It is seen that x also tends to be underestimated, and estimates

for x with A=1 is even lower than those with A=0.2.

It can be seen that estimates from NGARCH approximations are much poorer than the
estimates from the simulated likelihood. In fact, there is almost at least one parameter
wildly estimated for each dataset. This result conforms to Wang (2002) and should not
be too surprising since NGARCH approximations are indeed based on normally
distributed innovations, while the bivariate diffusion models generate much more

complicated distributions.

The EMM method provides more reasonable estimates than those from the NGARCH
approximations. However, the EMM estimator is seen to be less efficient than that
from the simulated likelihood. This result is conformable to the nature of EMM
estimators discussed in Gallant and Tauchen (1996), since the diffusion models (2.9)
and (2.10) is not embedded in either the NGARCH model or the EGARCH model.

2.5 Conclusions and extensions

In this chapter, a method to approximate the likelihood functions of the continuous
time stochastic volatility models is proposed. Although this method requires some
knowledge about GARCH approximation process, it is in fact easy in coding and
practical implementations. Furthermore, it S€rves as a basis for statistical inference for
this class of models. Commonly used methods and criteria including likelihood ratio,
AIC and BIC can be conducted through this approach.

In addition to the continuous time stochastic volatility models, the method proposed
here may also be applied to the estimation of jump-diffusion models. Duan et al.
(2005) propose a family of GARCH-Jump models whose limits are just
jump-diffusion models. It is reasonable to expect that the same procedures can also be
applied to the estimation of this richer class of processes.

Furthermore, this approach on estimation problems gives alternative access to the
understanding of the stochastic volatility models. Since, as emphasized in the

introduction of the model, the volatilities are never observed, any operations such as

calculating option prices should not be conditional on the filtration J(§ VAL ), and

in fact J(§ (1)) is obviously a more reasonable candidate. More specifically,
calculating derivative prices should be based on the conditional distribution

P(S;..|S™") instead of P(S;,,|S;,V;), whereV; is filtered by S. Clearly, the
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partially observed GARCH process approach provides as a solution, although there
are technical details to be solved.

For example, the partially observed GARCH process may be also used as a filter that
produces the conditional distributions of the unobserved variances. The properties of

the filter obviously need more investigations.

Finally, the introduction of the partially observed GARCH process may largely widen
the uses of continuous time stochastic volatility models in financial time series
modeling. In fact, the type of GARCH models elaborately bridges the two clusters of
models, and possesses the advantages of the two ends. An alternative may be the
discrete time stochastic volatility models, which are asymptotically equivalent to the
continuous time stochastic volatility models. Clearly, inferences about the two types
of discrete time models involve computational costly simulations to integrate out
latent variables. Some kind of unification and the extents these models are feasible
may be interesting for future studies.
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2.6 Appendix

2.6.1 Convergence of a sequence of derivatives

Let {f,} be a sequence of integrable functions in an open set EcR? and F,= j- f,du,

where u is the Lebesque measure in RY,

Lemma 2.6.1. Suppose that there exists functions g and F = I fdy such that f,

converges uniformly to g and F, converges uniformly to F. Then f=g a.e.

Proof. Assume that c<E. Define a sequence {gn}as follows:

gn(X): ﬁj.B fnd,u ifX¢C’

Convergence of {gn(C)} comes from the factthat {f,(C)} converges. For x#c¢, {gn(X)}

also converges since {Fp} converges. Thus {gn} conhverges uniformly and denote

G(X) = limg,(x).

As fy exists and is integrable, limg;(X) = g,(C)«So each g, is continuous at C. Since
X—C

gn converges uniformly to G, G is also continuous at c. Thus
G(c) = lxiirch(X) :

But for X#c,
G(x) = limg, (x) = mﬁL f du= ﬁfs ol

Thus the derivative f(C) is equal to G(c). But
G(c) = limg, (¢) = lim g, (c) = (c),

hence f(€)=g(C). Since C is arbitrary, this finishes the proof.
2.6.2 Augmented GARCH process

Duan (1997) proposed a family of parametric GARCH models and identified their
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limits. For s=1, 2, -, nT, the approximating augmented GARCH(1,1) process is

defined as

(n _ (n) (M yy (M) (n) (n) /
Yo = [a)O(hsA )+ @ (h )Y 1)A]'A+Y(s—1)A +yhy e VA,

¢(n) =(a, +q4)A+¢(n)[1+(a1 +a,q, +a50, _1)'A]+

S+A

#0028 )+ a, 28 —a)NA + 28 g WA
he = |29 ~A+1" if A>0

exp(gl) —1) if =0,

where ay and @; are Borel measurable functions, &a, 5= 5=1, 2, -, nT, are i.1.d.

standard normal random variables,

@ _ s
ZsA - |gsA -C

Z8 =max(0,c—¢&,)°,
2y =, f( &, —c:6) + &, fimax(0.c=£,0):5).

q, =E[z%1,i=1,2,3,
and

f(z;0)=(z° -1)/8 for 22>0.

For A=1 and various values of parameters A, ¢, oo, a1, @2, a3 and a4, the model
corresponds to different named GARCH models. The major result can be summarized

in the following theorem.

Theorem 2.6.2 As n — oo, the distribution function converges uniformly to that of

the limiting stochastic volatility models

dX, =@, (h) + @, (h)- X, Jdt +/h dB,,,

dg, = [0{0 +0, + (o, + @,0, + a;0; — D, ]dt +Vt10tdBt1 + Vi 1_lodez,t

1/

h =[Ag —2+1"" if1>0

exp(¢, —1) if 1=0,
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where

2 2 2 2 2 22
Ve = [04 +2(a,0,, + ;03)¢, + (2,0, +a;05 +20,0,0,;)9; ] )
-
Py = Vi [0-14 + ¢ (2,0, +0‘30-13)]a

1 o, o, o,

o2

2 706) 7@y _|“2
Var(e,,Z;”,2;7,2,") =

o, O3 O; Oy

O, Oy Oy Oy

and B,, and B,, are two independent Wiener processes.

Note that the convergence holds for 0 =t<co, not merely for some fixed time T. And

weak convergence of the processes implies the joint distributions of
((YO(") NS N A ALN RS REP AL hl(”))) converge to that of

((XO,VO), (Xlﬁvl)’ ) (XT 9VT ))

Corollary.2.6.3 The joint distributions P ™,Y,™ -+ YV) converge weakly to
P(Xy, X, X5).

Similar results for modeling interest rate related processes can be found in Fornari and
Mele (2006). A model of GARCH class that approximates stochastic volatility CEV
diffusions has been developed. And it is seen that approximating GARCH processes
for major stochastic volatility models discussed in literatures have been well
established.

2.6.2 Efficient Method of Moment

Based on the GMM principle (Hansen, 1982), Gallant and Tauchen (1997) propose
the EMM method for estimating complicated models. They show that if the score
generator encompasses the maintained model, then EMM is as efficient as maximum
likelihood. Results of Tauchen (1997) suggest that the EMM estimator will be nearly
as efficient as maximum likelihood when the score generator is a good statistical
approximation to the observed process. Gallant and Long (1997) support this
conjecture by showing that if the score generator is the SNP density, then efficiency of
the EMM estimator can be made arbitrarily close to that of maximum likelihood. An

empirical illustration for EMM can be found in Anderson and Lund (1997).
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As implementing the method, an auxiliary model which closely approximates the
conditional returns distribution must be selected first. For stochastic volatility models,
GARCH type models are naturally the candidates. The SNP densities are then used to
make high-order approximations.

The SNP densities, proposed by Gallant and Nychka (1987), is an approximation

based upon a Hermite series expansion:

[Pz, x)]  #(z,)
P (2, x)] #(z) e

hK(yt|Ft;l//) = J~[

where

Kz Kx . .
P (2,,%) = Z(Z a; X/ ]zt' , i
i=0 \_j=0

And ¢(*) is the density function:of the standard normal distribution, z4 and h; follow
the specification of the auxiliary-GARCH model.

Let £denote the parameters in the auxiliary model. An estimate f can be easily

obtained through maximizing the likelihood function of the auxiliary model. So is the

A

estimate of the inverse asymptotic variance matrix of the score function, W ,.

The EMM estimator is obtained by minimizing the moment condition:
M., Vi, M

TN)TT(N)TT(N) >

where Mr(y) 1s the expectation of the score function, evaluated at f with a sample of

length T(N) under the stochastic volatility model by Monte Carlo simulation.
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3. Computing option prices under stochastic volatility models
3.1 Introduction

This chapter proposes a new approach to calculate option prices under stochastic
volatility models. A partially observed GARCH model is employed to approximate
the joint distribution of the series of prices, so the calculation proceeds without
estimating the volatility process. Through simulation experiments there are also more

fascinating properties found for the nature of the type of models.

Stochastic volatility models arose for the relief of the constant volatility assumption of
the Black-Scholes formula. Varieties of specifications can be found in documented
literatures, such as Hull and White (1987) and Heston (1993). Empirical studies also
piled up since the last years of 1990°s, for example, Bakshi, Cao and Chen(1997) and
Bates(2000).

Generally, two stochastic processes are used for describing the dynamics of the asset
prices. However, one important issue which is seldom mentioned or emphasized in
literatures is that volatilities are in fact unobserved. This means that inference with a

stochastic volatility model is in natune aimissing.value problem.

Typical statistical approach to deal with these missing: values is taking expectations
conditional on the observed values — the prices. However, in all the literatures
reviewed, the basic idea for pricing options undet the stochastic volatility models is
originated from the Markovian property of the model, so the following formula is

generally used,
E%e"™g(Sp)[St, Vil 3.1)

where g(Sr) is the payoff at maturity. It should be noted that the formula above in fact
leads to a function of the random variable Vi, so it is obviously a random variable and
possesses specific distribution. Then, besides the structural parameters of the asset
prices, the risk premium of volatility and especially the unobserved volatilities need to

be estimated with the observed prices.

Thus, the formula becomes
E%fe " 0g(S,) 1SV, .

where \/At is the estimate of Vi. Generally a two-stage strategy is usually taken. First

the structural parameters are estimated through GMM/EMM methods or other
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approaches. Then a loss function or some moment conditions are used for the
determination of the risk premium of volatility and the instantaneous volatilities at
each time. It follows that the estimation of the unobserved volatilities will depend on
the choice of loss functions. Unfortunately, almost all commonly used loss functions
are in lack of economic interpretations or even do not satisfy certain fundamental
statistical requirements, so it can be asserted that the properties of the estimated

volatilities are suspicious, not to mention the resulting option prices.

Some authors use the Kalman filter or other nonlinear filter as proxies for volatilities
as the structural parameters are obtained. These estimates may have certain
asymptotic properties with very high sampling frequencies, but arbitrary biases exist

for observations from finite sampling frequencies.

To find the key to these problems the identification of the filtration up to time t, €,
must be made first. As mentioned earlier, the volatilities are indeed unobservable, so
there’s no doubt that €; should be o{S,...,St} instead of o{(So, Vo)/,. .»(St, Vi) /}. More
specifically, pricing options should rely on the conditional distribution

P(S; | Sys-nS,).

Based on the above arguments, @ method is proposed to compute option prices under
the stochastic volatility models without plugging in estimates of volatilities. Brown et
al. (2003) suggest the statistical equivalence 0f GARCH and stochastic volatility
models (under certain conditions). With the-simulated likelihood approach in chapter
2, paths connecting observations can be generated with a partially observed GARCH
model and MCMC algorithm. Then future asset prices can be simulated by extending
these paths using general Monte Carlo methods. Since the method is based on the
sequence of prices only, it is not necessary to estimate volatilities and there exists

one-to-one relation between the price and the premium.

Furthermore, numerical results also suggest some interesting and inspiring properties
of the method. For example, for a lower and intermediate level of the true variance,
tendency toward a positive bias exists on the conditional distribution of variance
given past path of prices and thus the implied option prices. And for ascent and
descent paths with very close level of the true variances, the method also suggests
distinct option values. These properties meet the facts in most of the markets but

cannot be achieved with the traditional approach.

This chapter is organized as follows. A brief discussion on the current practice is in
Section 3.2. Careful investigation on the proper formulation of the option prices is

included in Section 3.3. In Section 3.4 the proposed algorithm is presented and
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illustrated with examples. In Section 3.5 discussion and further extension are drawn.

3.2 A quick review on the current practice for computing option prices

Among all related literatures, Heston’s pricing model with a closed form solution
might be the most frequently referred. Heston (1993) extends the Black-Scholes

model with a stochastic factor:

dS, = xS, dt + \/V_tstdwl,t )

v, = —x(V, - @)dt + oV, dw,,,

where S; and V; are the asset price and instantaneous volatility at time t respectively,
and W1 and Wy are standard Brownian motions with coefficient of correlation p.
The solution for a call option is then of the form

S, -P(S,.V,;T —t,K,77,A)— K -P(t,T)-P,(S,.V,;T —t,K, 7, 1)

where K is the strike price, T is maturity, #is,the parameter vector (x, 6, o, p)/, Als
the risk premium of volatilities and P, P1,"Ps/are appropriate functions.

It is noted that there are parameters, y and A, and random variables V;’s to be
estimated for the implementation the formula. The structural parameters 7 can be
estimated with the price series of the underlying asset. As the likelihood function for
this type of system is not available, GMM/EMM or similar methods are the common
choices. The risk premium A is in principle disassociated to the price dynamics
directly, so the information for estimating it generally should include option prices.
Intuitively the instantaneous variance Vi’s could be estimated with a filter on the series
of the asset prices, however, by minimizing a loss function for the option prices also

seems to be common.
3.2.1 Loss functions in option pricing

Loss functions play important roles in option pricing. As the two-stage estimation
procedure is generally required, loss functions are usually the objective function for
the estimation of the risk premium and even the unobserved volatilities at each time
period, for example Bakshi et al (1997). This means that the role of the loss functions

is far beyond the evaluation of the pricing models.

However, the choice of the loss functions is an annoying problem in practical exercise

pricing options, just as in Bakshi et al (1997):
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“The objective function in equation (17) is defined as the sum of squared dollar
pricing errors, --.An alternative could be to minimize the sum of squared percentage
pricing errors ---. Based on this and other considerations, we choose to adopt the

object function in equation (17)”

Clearly there does not exist a loss function that satisfies fundamental requirements

and applies to all categories of option contracts. It is unfortunate that the standard
option valuation theory implies a unique option price, but mentions nothing about

how to specify the error term (Renault, 1997). However, there are two points about

the loss functions to be emphasized. First, consistency of the choice of loss functions
in the two stage of exercises is essentially necessary (Christoffersen and Jacobs, 2004).
Next, the choice of loss function implicitly defines the model under consideration, see
Engle (1993).

Christoffersen and Jacobs (2004) shows that the estimates of parameters and
volatilities will depend on the choice of the loss function. They also suggest that the
choice of the loss function may depend on the purpose of the empirical exercise. This
does not matter from the view of practieal purposes as long as the users may actually
benefit from it. However, from an.academic.view, is it acceptable that the volatility

process for one specific asset should be different for a speculator and a hedger?

Moreover, the commonly used loss functions are also:commonly in lack of any
economic interpretations or any supports of statistical properties. For example, the

mean squared dollar errors that is most frequently used in most literatures,

implicitly assume homogeneity of variance in the pricing errors. This seemingly
means that the errors may only come from those factors providing constant impact,
such as transaction costs, etc. Thus this would also raise questions like: does the
pricing error of one dollar have the same implications for options of one dollar and
1000 dollar? Other popular loss functions obviously have similar difficulties or

violate their statistical assumptions, see chapter 4.

In other words, forecasting the unobserved volatilities based on the loss functions can
lead to logical and theoretical contradictions. These random variables should be

forecasted or filtered with other properly established methods.
3.2.2 Filtering the volatilities with asset prices

There can be found some methods to filter variance estimates under the stochastic
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volatility model using the information of the prices only, for example Nelson and
Foster (1994).

Let X; denote the logarithm of S;. Then for the Heston model the filter of Nelson and

Foster can be derived as below:

_ﬁ . ) 2 1/2 . )
+e 2 [pgteut _;’_[lTpJ ( t2e—'Jx _1)}(7&’

where A is the sampling period and & is the normalized innovation, that is,

1

‘§t+1 = ﬁ

This filter is indeed an UMVUE. That.isj its bias for estimating Vi is 0. And note that

filters derived from the Euler expansion of the différential equation need not to

(X Xt _E(Xt+1_xt))'

t+1

provide as an unbiased or even ¢onsistent estimator, see Goggin (1994) and Crimaldi
and Pratelli (2005).

To illustrate how the estimation errors would impact the pricing of options, a
simulation experiment is conducted with the Heston model and the following setting

of parameters.

Table 3.1: Parameters used in the simulation study.

parameter Value
r 0.02
K 2
0 0.01
o 0.1
p -0.65

A sequence of (Xi, Vi) of length 25000 and time between observations as 0.004 are
generated according to the Euler approximation with At=0.0004. Estimates of
variances at every time point are then calculated with respect to the above filters.

Figures 3.1 displays the scatter plot of the estimated and true variances.
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Figure 3.1:. Scatter plot of the estimated and true variances.
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Option prices with V; estimated by'the Nelson and Eoster filter and the corresponding
standard deviations for different-levels of volatilitics are listed in Table 3.2. The
estimation error at the equilibritim of the variance, 0.01, is roughly distributed with a
standard deviation 2.75x107, which in term implies a standard deviation of 0.249 for
the price 2.793. In fact, the ratios of the standard deviation to the price for the series

of option contracts are around 9%. Obviously this is not acceptable in practice.

Table 3.2: Call option prices for different levels of volatilities.

Vi Standard deviation of Call price Standard deviation of
estimates of V; estimated call prices
0.005 0.00202 2.301 0.217
0.0075 0.00288 2.558 0.281
0.01 0.00275 2.793 0.249
0.0125 0.00333 3.009 0.278
0.015 0.00392 3.212 0.310
0.0175 0.00144 3.403 0.331
0.02 0.00489 3.585 0.345
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These results just show that pricing options with estimated variances indeed ignore
the uncertainties of the estimates and can lead to unacceptable errors. Intuitively, a
stochastic volatility model is necessary only when the volatilities change over time
considerably. Under such circumstances, it is generally difficult to estimate the level
of volatilities with the prices. On the other hand, when the volatilities can be
successfully filtered with the prices, the volatilities would be locally constant or at
least changing slowly. Thus plugging in the formula with estimated volatilities indeed

involves logical inconsistencies.

All the above conflicts come from improper formulation of option prices. In the next
section, the point will be discussed rigorously. Clearly, the filtration up to the current
time t, €, plays an important role, and all the inference including option pricing
should be based on the joint distribution of (Sp, -, St).

3.3 Which prices for options?

In the previous section, it is pointed out that filtering volatilities makes it arduous for
pricing options under the stochastic volatilities..In this section, a proper formulation
of the option prices will be carefully investigated t6.overcome the difficulties
mentioned above. Based on a new scheme for estimation of the stochastic models in
chapter 2, pricing options may proceed without plugging in estimates of variances.

The algorithm will be presented-in the néxtsection.

From the very start, the school of mathematical finance accustomed themselves to
diffusion-type models. The Morkovian properties of the models naturally lead to the
formulation for the prices of options as (3.1). Since V; is in fact an unobservable

random variable, it is necessary to take expectations over it. That is, the formula,

EP[ES e Vg(S) ISV, ), (3.3)

would be a more reasonable choice and so the commonly used one, (3.2) should be
viewed as an approximation for (3.3). But unfortunately, the estimation error can be

unacceptable for practical purposes as shown in the previous section.

To overcome this problem, it should be made clear that the information up to time t is
in fact no more than the observed asset prices. So the correct formulation of the option

prices ought to be
S T

This idea may be not so institutional. However, taking into consideration that
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volatilities are unobservable and thus (S, --, S;) are correlated and contain

information about V;, the formula is indeed trivial and more reasonable.

A further implication is that the option prices will depend on the past paths. In other
words, two price processes may lead to different option prices even though they
indeed have the same level of volatility at time t. Such property also cannot be
deduced from the approach based on the Markovian property, especially when an
unbiased estimator for V; is used. However, the asymmetry for the upturn and down
turn of the markets does exist in the real world.

Figure 3.2 shows the level of S&P 500 index, 20-day volatilities, implied volatilities
of near-the-money calls and puts in 2007. It is clear that the levels of 20-day
volatilities are very close around the bottom of March and the middle of September,

but the levels of implied volatilities (for call and put options) actually differ a lot.

Figure 3.2: S&P 500 index in 2007: level of index, 20-day volatilities, implied

volatilities for call and put options.
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To sum up, calculating option prices, from the view of statistical inference, is then
based on the joint distribution of (Sg, ‘-, St). As it is not available, an approximation

scheme using partially observed GARCH models will be presented next.
3.4 Pricing options with the filtration consisting of prices

In this section, a new scheme for inference and pricing under the stochastic volatility
models is proposed. The above two subtle difficulties may be overcome with this

approach.
3.4.1 An algorithm for ML estimation of parameters and option pricing

In contrast to the stochastic volatility models, GARCH models provide as a tool that
are feasible in practical operations. There are some facts about the two types of

models to be pointed out.

1. For specific sequence of observations, the joint distributions of GARCH models

are analytical, while generally the stochastic volatility models are not.

2. As the period of observations approaches 0, the GARCH models converge to
stochastic volatility models in distribution, see Nelson (1990), Duan (1997) and
Fornari and Mele (2004).

The first point implies that likelihood inferencewith the stochastic volatility models is
generally infeasible. However, in light of the second argument, approximating

stochastic volatility models with some specially designed GARCH is possible.

For this point, Brown et al. (2003) show the asymptotic equivalence of GARCH and
stochastic volatility models. And the partially observed GARCH with MCMC

methods for statistical inference is proposed in chapter 2.
Let (>? o ,\7(”) be drawn from the stochastic volatility model and (YN(” , ﬁ“)) from
the corresponding GARCH with length of construction interval A. Denote

3k,

YNt = (th1+ PSRN A A) as the augmented data between Y and Y1 . Note that the

observed data is indeed X, or equivalently Y.

Past paths Y conditional on the observed data Y ® can be generated with the
following algorithm.

1. Initialize Vg and A

2. Update ;h, from hy|'Y .
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3. Update sequentially Y'Y from Y, ™ |Y Y@ .0y DYDY B ip

4. Repeat step 2 and 3 until convergence and take L independent paths.

The likelihood function can be approximated as

L nAT 1

> ﬂ(iho)-g Wﬂ?eﬁ)

i=l

By maximizing the above function, maximum likelihood estimator for the parameters
can be obtained. Option prices then can be calculated based on the estimated

parameters and the L independent paths.

5. Extending the L paths using general Monte Carlo methods with the
risk-neutral measure under the GARCH model to get L samples of Yt and

thus the option prices.

This method converts the bivariate diffusion process with the second process
unobservable into a partially observed univariate GARCH process. So it does provide
an approximation for the formulation of the option prices (3.3), without requiring the
estimation of the current variance, Vi or hi. Itis also applicable to various types of

derivatives as long as the payoff:functionratmaturity involves the prices only.

Furthermore an important implication is that the'option prices at time t may depend on
(So, -+, St) in a much more complicated manner, instead of the estimated volatilities
only. This important characteristic provides a way to distinct valuations of options
conditional on different patterns of past paths. Next, a simple numerical experiment

will be conducted for further studies.
3.4.2 Empirical performance of the algorithm

First, 12 disjoint paths whose variances at terminal ranges from 0.004 to 0.026 are
selected. Both the Nelson and Foster filter and the partially observed GARCH
methods are applied to estimate the variances. For the partially observed GARCH
method, each observation period of 0.004 is divided into 5 subdivisions.
Metropolis-Hasting algorithm is applied to each segment with 200 iterations of
burn-in. After 100 iterations for the whole path, 1200 samples of paths are taken every

two iterations.

Since there exists a monotone relation between the options prices, it suffices to

compare the estimated variances at time t. From Figure 3.3, it can be seen that the
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Nelson and Foster filter actually provides as an asymptotic unbiased estimator,
although it tends to have larger variance. In contrast, the partially observed GARCH
estimates seem to be less volatile but biased upward at lower and intermediate level of

the true variance at terminal point.

Figure 3.3: Comparison between the filters.
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The observed unbiasedness means that the option prices obtained with the Nelson and
Foster filter essentially match the prices by assuming that the true variances are
known. On the other hand, the option prices from the partially observed GARCH tend
to be higher compared to the “true” prices as the level of the true variance at terminal
is under or near the long term equilibrium level of the variance process. The source of
the bias may be partly due to the discretization error. But more probable, it may

indicate that the conditional distribution of V; given (So,", S¢) is positively biased as
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in Figure 3.3. The property coincides with the phenomenon that the implied
volatilities are generally higher than the historical volatilities or most of

model-implied volatilities. Of course, more details are worth further investigations.

Next, from the very long simulated path, 10 ascent and 10 descent disjoint paths of

length 100 are selected according to the conditions below:
1. The variance at the last point is between 0.0097 and 0.013.

2. The absolute change rate through the 100 periods is the largest.

Figure 3.5: Ascent and descent paths.
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These paths are shown in Figure 3.5. And in Figure 3.6, the true volatilities, the
Nelson and Foster filter and partially GARCH, implied volatilities are plotted together.
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Again, the unbiasedness of the Nelson and Foster filter is revealed, indifferent to
ascent or descent paths. However, in addition to the positive bias, the partially
observed GARCH implied volatilities are definitely dependent on the past paths.
There clearly exist significant differences between the volatilities from ascent paths
and descent paths. This property certainly may help to explain the asymmetry of the

markets shown in Figure 3.2.

Figure 3.6: Variance estimates for ascent and descent paths.
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In addition to the consistency in‘theory and integration in practical operation, the
results summarized above show that the partially ebserved GARCH approach
provides huge potential to rationalize the behavior of the participants in the option
markets, while the traditional method does not. A major key is of course the fact that
volatilities are unobservable and should not simply be estimated. Furthermore, the
method leads to a one-to-one relation between the risk premium of volatilities and
option prices. As recently many researches are focused on the dynamics of implied
volatility surfaces, alternative choice such as premium surface can be explored to

further understanding of the behavior of the financial markets.

3.5. Conclusions

This study provides as an application of the partially observed GARCH for the
inference about the stochastic volatility models. As emphasized in documented
literatures, volatility could be the most important latent variable in modeling the
financial time series. But as it is not observed, the prices are in fact correlated and

inferences generally become much more complex.

Currently, the common approach to obtain these unobserved volatilities is by

minimizing some loss functions or by filtering with prices. Such practices by intuition
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evidently lead into logical difficulties or contradictions with the reality. Moreover, this
even casts away the advantages of the elegant modeling as shown in 4.2. Fortunately,
it is illustrated here that inferences about the (option) prices without estimating the

volatility processes may proceed well.

Off with absurd loss functions and piece-together calibration procedures, pricing
derivatives can be more scientific and systematic. The results of simulations also
suggest that there can be found more fantastic properties that really meet the

real-world markets. What come next would be further studies about the premium
surface, which is reasonably expected to reflect the psychological response of the

market participants.

To sum up, the study proposes and demonstrates a totally new scheme for pricing
options under the stochastic volatility models. Further studies should be conducted for
the properties of the partially observed GARCH model. For example, the possible
biases for filtering volatilities should be well explored since it may have significant
implications as stated in 4.2. Combining the advantages of GARCH and diffusion
types of models, alternative approach for modeling financial time series may be

Initiated.
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3.6 Appendix
2.5.1 CEV GARCH family and their limiting processes

Fornari and Mele (2004) considered the following processes for short-term rate with

its volatility having a constant elasticity of variance process,

dr, = (u—&r)dt+ o, /r.dw,”,

do? = (o -@oc!)dt + o "dW, .

The model can be modified to the Heston’ model by setting the price process as the

geometric Brownian motion and (6, 7)=(2,1/2) in the volatility process.

The discrete time counterpart with length of construction A is then
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where Uy, /A is general error distributed with shape parameter v and Sy is the sign

of Uy /vA.
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4. Which Loss Functions for Option Pricing?
4.1 Introduction

Since Black-Scholes (1973, henceforth BS) and Merton (1973) originally constructed
their option pricing formulas, a number of different new models have been developed
for option valuation. Each of these models relaxes some of the restrictive BS
assumptions for the unrealistic assumptions of the BS world. For instance, an
important class of models specifies the heteroskedasticity of the price returns (see,
e.g., the stochastic volatility models of Hull and White (1987), Scott (1987), Stein and
Stein (1991) and Heston (1993), the stochastic volatility jump diffusion models of
Bates (1996) and Scott (1997) and discrete-time GARCH model of Duan (1995) and
Heston and Nandi (2000)). In most of these articles it is emphasized that their model
iIs more practical and that the corresponding model-implied option prices can fit the
market-observed option prices better. However, a solid foundation for model
valuations does not seem to exist. In this chapter, some commonly used loss functions
are investigated and a procedure to construct reasonable loss function is proposed.

It is well accepted in the literatures that.the choice of loss function is important for
parameter estimation and model-evaluation. First of all, consistency in the two stage is
essentially necessary (Christoffersen and Jacobs; 2004). Next, Engle (1993) already
argued that the choice of loss function-implicitly defines the model under
consideration. However, it is unfortunate that the standard option valuation theory
implies a unique option price, but mentions nothing about how to specify the error
term (Renault, 1997). The choice of loss function is a vital step in model estimation
and evaluation as it implicitly assumes some specific error structures. For example,
using loss function such as sums of squares of pricing errors implies the assumption
of white noise errors.

There are many loss functions commonly used for model comparison such as root
mean squared dollar errors (SRMSE), root mean squared relative errors (%RMSE),
mean absolute dollar errors ($MAE) and mean absolute relative errors (%MAE).
These criteria consist mainly of differences between model-implied prices and market

priceS. That iS, (Cmodel _Cmarket)'
A quickly and easily seen conflict for this class of loss functions is that the option
price or the pricing error does not contain any information about the market. More

specifically, two different option contracts can have the same price and even pricing
error under some models, but they in fact reflect very different market scenarios. That
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is, only when accompanied with its specification and prices of underlying asset, the
price of an option contract can be informative. In fact, when considering the
information contents of option prices, implied volatilities play an important role in all
major aspects.

So there appear in recent years new performance criteria such as implied volatility
root mean squared error (IVRMSE). Clearly, such criteria can be viewed as designed
specifically for option model. In fact, many authors in the literature felt inadequate
using only dollar based performance criteria for model selection so that they
supplemented with the implied volatility graphs to help them evaluate models.
Rubinstein (1985) and Bakshi, Cao and Chen (1997) diagnosed the relative model
misspecification by comparing the implied-volatility patterns of each model across
both moneyness and maturity. Besides, Canina and Figlewski (1993) pointed out that
if a model is to provide a plausible explanation of market price, then it needs to be
consistent with the observed “smile” across strike prices in the BS model. These
arguments all support the use of implied volatility loss function for model evaluation
instead of dollar based loss functions. Pan (2002) used IVMSE to measure model
performance instead of dollar based loss function. He thinks that this avoids placing
undue weight on expensive options; generally:those are options deep-in the-money
with longer time to maturity. Duan(1996) used IVMSE not only to evaluate models
but also to estimate option models.

In this chapter all the commonly’ used performance criteria mentioned above are
carefully investigated. Statistical properties are examined using the ad-hoc
Black-Scholes model and GARCH pricing models applied to TAIEX options. All
evidences show that there exist significant violations to the fundamental assumptions
for the loss functions.

On the other hand, once it is reached the consensus that the loss function should be
based on the implied volatilities, some well known properties may be used to
construct the required loss function. Among all of them, mean reversion would be the
first choice as it can be quantitatively characterized. Furthermore, since all structural
pricing models are based on some equilibrium conditions, the role of the implied
volatilities induced by the model prices would be just the target of mean reversion for
the real implied volatilities naturally. Then the speed of mean reversion is meaningful
and can be used as the loss function for model evaluation.

The remainder of this chapter is organized as follows. Section 4.2 introduces these
common performance criteria. Section 4.3 briefly provides a description of the
TAIEX option data, then demonstrates that the performance criteria of loss functions
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based on pricing errors have heteroskedastic pattern. Section 4.4 is a discussion on
how to build a reasonable loss function. Finally, concluding remarks are offered in
Section 4.5.

4.2 Commonly used loss functions and their characteristics

In this section some commonly used loss functions are introduced. They can be
divided into two major classes based on pricing errors and implied volatility errors.

The first class of loss functions for model evaluation can be divided into two
subclasses further, which are the dollar loss functions relate only to the pricing

A

error ,C -C and the relative error loss functions to the relative error,

model market !

A

(Cmodel - Cmarket)/cmarket :

Within the first subclass, one frequently used loss functions is the root mean squared
dollar errors (SRMSE) given by

$RMSE = \/%_Zn:(éi - of (4.1)

where éi, C, and n are the model-implied option price, market-observed option

price and the number of option contracts used. An immediate alternative is the mean
absolute dollar errors (SMAE) defined by

SMAE = ="
N

¢ -c- 4.2)

The error structure for the dollar loss functions can be written as

C=C+e,. (4.3)
where &g is a white noise. It is seen that the dollar loss functions are advantageous
in being easily interpreted. However, it is expected that the relatively wide range of
option prices across moneyness and maturities would raise the problem of
heteroskedasticity. In-the-money and long-term contracts usually have higher option
prices and thus tend to correspond to higher pricing errors, so dollar loss functions
implicitly assign more weight to this group of contracts and thus would tend to choose
the model which is outstanding in high value option contracts.
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To overcome this problem some researchers prefer using loss functions based on
relative errors. Examples include the root mean squared relative errors (%MRAE),
defined as

%RMSE = \/%i((éi ~C)IC)?, (4.4)

whereas the mean absolute relative errors (%MAE), given by
%MAE = %Z\(éi _c)c, (4.5)
i=1

And the error structure of relative error loss functions is then

A

C=C+Ca,. (4.6)

The relative error loss functions are also easy to understand and comparatively
conform to common sense if all marketiparticipants have their portfolios completely
constructed by options. Then $1 error on.a,$10.option is more serious than $1 error on
a $100 option, isn’t it? However; since options behave very differently from the spots,
the error structure (4.6) could overcorrect-in practice, and the out-of-the money and
short term options with value very.low will-implicitly be assigned too much weight.

Dollar loss functions and relative error loss-functions are both widely used in the
literatures and sometimes even both criteria are applied together. Chernov and
Ghysels (2000) used $RMSE and %RMSE, Dumas, Fleming, and Whaley (DFW)
(1998) used $RMSE and $MAE, Heston and Nandi (2000) used $RMSE, %RMSE
and $MAE (only when the valuation error does not fall within the bid-ask spread),
and Bakshi, Cao and Chen (1997) applied SMAE and %MAE to evaluate their option
pricing model. Although these criteria appear in most of articles concerning empirical
investigations on option pricing theories, the error structures (4.3) and (4.6) are
seldom examined.

On the other hand, for the nonlinearity of the payoffs of options, there are loss
functions designed specifically for option valuation problems. With the convention of
quoting option price in terms of volatility on the market, some researchers favor
estimating option pricing models by minimizing the mean squared errors of the
implied volatility of the BS formula. It is therefore the implied volatility root mean
squared errors (IVRMSE) defined as

47



IVRMSEs\/%i(&i o) 4.7)

where the implied volatilities are
o, =BS™(C,,T,,X;,S,r)
and

& =BSC.,T,, X,,5,r)

and BS™ is the inverse of BS formula, T,, X;, S and r are time-to-maturity, strike

price, the price of underlying asset and risk free-rate respectively. Similarly, the
implied volatility mean absolute errors (IVMAE) is given by

IVMAE =136, — o). (4.8)
Nz
And the error structure of implied volatility less functions is then

c=0+¢&, (4.9)

or equivalently
C=C¥(c+ey). (4.10)

It is noted that the option price becomes a nonlinear function of the implied volatility
error term. This reflects the fact that option prices are expectation values of nonlinear
functions of asset prices, and utilizing this class of loss functions also implies that
prices do not contribute to information discovery directly.

There can be also found some articles in which the implied volatility based loss
functions are used, for example Duan (1996) and Pan (2002).

4.3 Empirical investigation of the error structures
To investigate empirically the error structures implied by the loss functions, a dataset

from TAIFEX is analyzed with three pricing models, ad hoc BS, NGARCH and
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EGARCH models. All the corresponding properties mentioned above will be
investigated.

4.3.1 Data description

The sample contains reported prices of TAIEX options traded on the Taiwan Futures
Exchange (TAIFEX) over the period July 2002 through June 2004. The underlying
asset is the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX).
TAIEX options are European-style and expire at the open of the market on the trading
day following the third Wednesday of the delivery month. More details about the
specification of TAIEX options can be found at the website http://www.taifex.com.tw.

The raw data is collected directly from the website of the exchange. Similar to Bakshi,
Cao and Chen (1997) and Dumas, Fleming and Whaley (1998), several criteria are
used to construct the dataset. First, quotes for call options from 1:15 p.m. to 1:25 p.m.
in every trading day are collected. Although the same option may be quoted again in
the time window (with the same or different index levels) on a given day, only the last
record of that option is included in.our sample. Second, option data with less than six
days or more than one hundred days to.expiration are eliminated to avoid the
expiration-related price effects. Third, option data whose absolute “moneyness”

( ‘%—4 ) is greater than 10 percent are also-eliminated. These options may induce

liquidity-related biases because they:aresusually not actively traded in the market.
Forth, the option contracts quoted less than 1 point are excluded because of the
transaction cost effect. Finally, option quotes lower than their intrinsic values are
excluded.

These criteria yield a sample of 5957 observations. Table 4.1 describes the sample
characteristics of the call option prices employed in this work. Average prices and the
number of available calls are reported for each category. Moneyness is defined as the
ratio of the spot price to the exercise price (S/K). A call option is said to be deep
out-of-the money if moneyness belongs to the interval (0.90, 0.97); out-of-the-money
(OTM) if 0.97<S/K<0.99; at-the-money (ATM) when 0.99<S/K <1.01;
in-the-money (ITM) when 1.01<S/K <1.03 ; and deep-in-the-money if
1.03<S/K <1.10. In terms to maturity, option contacts can be classified as
short-term (<30 days), medium-term (30-60 days) and long-term (>60 days).

The annualized 1-Month Deposit Rates obtained from the Central Bank of China are
used as the proxy of the risk-free interest rates in pricing these options.
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Table 4.1: Sample characteristics of TAIEX index options

S/K T-t<=30 31<T-t<60  T->60
N 1225 928 266
Average Price 32.66 76.58 112.11
0.90-0.97 | Price STD 27.50 40.60 58.49
Average IV 0.2796 0.2577 0.2232
IVSTD 0.0563 0.0622 0.0521
N 467 347 73
Average Price 76.40 134.22 178.42
0.97-0.99 | Price STD 39.21 48.48 65.08
Average IV 0.2580 0.2415 0.2178
IVSTD 0.0597 0.0590 0.0463
N 455 342 65
Average Price 118.81 178.80 232.40
0.99-1.01 | Price STD 45.49 52.90 74.52
Average IV 0:2529 0.2360 0.2192
IVSTD 0.0613 0.0602 0.0517
N 426 245 35
Average Price 18254 24291 307.17
1.01-1.03 | Price STD 49.10 61.59 87.56
Average IV 0.2544 0.2388 0.2293
IV STD 0.0627 0.0612 0.0516
N 703 328 52
Average Price 338.86 369.14 472.06
1.03-1.10 | Price STD 108.07 104.16 137.83
Average IV 0.2906 0.2405 0.2578
IV STD 0.0912 0.0610 0.0696

4.3.2 Statistical properties of the errors

As many authors, for example Bakshi, Cao and Chen (1997), point out, dollar-error
based loss functions generally put more weights on certain groups of options. In fact,
there actually exist obvious patterns of pricing errors and relative errors to option
prices, which in nature induce different weights on each contract. The following
investigations will demonstrate the phenomenon and thus lead to violations to the
assumptions (3) and (6) for these criteria are not satisfied.
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In fact, the investigations proceed just as stated in the elementary statistics textbooks,
and all we have to do is simply see if there exist certain patterns in the scatter plots of
pricing errors or relative pricing errors to prices.

Following Christoffersen and Jacobs (2004) on using consistent loss function at both
the estimation and evaluation stages, the parameters of the ad hoc Black-Scholes
model are estimated daily by minimizing $RMSE, %RMSE and IVRMSE
respectively. On each day parameters are estimated with data from the past five days.
The residual plots with respect to the option prices under the ad hoc Black-Scholes
model are presented in Figure 4.1. In Figure 4.1a, the heteroskedastic pattern of the
pricing errors versus the observed option prices is obvious. When the call price is
close to zero, the errors tend to be smaller. The amplitude of the errors increases as the
call price increases until the call price reaches around $100, and then decreases
slightly. Figure 4.1b also shows that the relative errors still have a significant
heteroskedastic pattern. Especially, when the option prices are small, the relative
pricing errors become terribly large. This means that using relative error measure tend
to overcorrect. In Figure 1c, it can_berseen;that the residuals are distributed with
seemingly larger variances while.the option.prices:are large. These results reveal that
all the above loss functions are not consistent with the homogeneity assumptions.

Beside the simple model, it is expected that the-same results can be obtained under the
GARCH option pricing models. In-applying GARCH models, the likelihood functions
based on observations from asset prices can:be expressed explicitly, so the MLE’s of
the parameters (A, ao, aa, B, 7) are obtained by numerical methods and then applied
to the pricing of options. No information from option prices will be used to determine
any parameters so the inconsistency problem mentioned in Christoffersen and Jacobs
(2004) shall not be confronted.

The parameters are estimated month by month using the maximum likelihood method
on the TAIEX daily closing prices in the past year and then volatilities are updated
day by day. Residual plots of the GARCH option pricing models are presented in
Figures 4.2 and 4.3. Similar patterns to those in Figure 4.1 can be easily found. And
furthermore, the IV errors for higher option prices tend to be negative instead of
concentrating around zero.

Figure 4.4 shows the scatter plots of the IV errors versus the real implied volatilities
for all the three models. Obvious patterns can be seen in all the three panels. In fact,
due to the temporal structure of volatilities, there certainly exist autocorrelations
among all these volatilities and the errors cannot be independent so as to exhibit
patterns of correlations.

51



All the above results state that the commonly used loss functions may be in lack of
solid statistical grounds, no mention economic interpretations. An important issue is
the role of the pricing models to be expected — a good predictor or an equilibrium
level under the assumption of reasonable behaviors.

Figure 4.1: Residual plots of the ad hoc BS model versus call price.
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Figure 4.2: Rresidual plots of the NGARCH model versus call price.
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Figure 4.3: Residual plots of the EGARCH model versus call price.
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Figure 4.4: Implied volatility residual plots.
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4.4 Aspects toward a rational loss function

4.4.1 Inconsistency of dollar based loss functions in information revealing

On investigating the performances of option pricing models, it should be noted that
pricing errors or even the prices themselves are meaningless without incorporating
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current prices of underlying assets and the specifications of the options such as the
strike price and time to maturity.

Consider the quotes for the two contracts listed in Table 4.2. The two contracts have
the same price but very different implied volatilities. Suppose that a trader obtains his
volatility as 20% and then his fair prices for the two contracts will be 5.64. Clearly all
values of the dollar based loss functions for both contracts will be almost identical.
However, pricing contract 2 with volatility 20% can lead to much larger loss (or gain)
since the two values appear to be very different than those of contract 1.This example
illustrates that loss functions such as $MSE, $MAE, %RMSE or %RMAE can be very
insensitive to the parameters of the model.

Table 4.2: Comparison of two call option contracts with different specification.

Contract1  Contract 2

Stock price 100 100
Strike 100 95
time to maturity 0.5 0.09
Interest rate 0 0
Actual price 5 )
Implied volatility 17.75% 7.50%
Price estimated with 6=20% 5.64 5.64

The difficulty confronted here for SMSA etc is just that the information about the
specification of each option contract is not well incorporated. More specifically,
pricing an option contract with an error of 5% or 1 dollar, say, does not help judge
how a model or method has satisfactory performance.

In the real world, the price is not the only thing to be considered for the market. A
basket of options can be traded as if people are trading volatilities. That is, volatility
in some circumstances may be viewed as some kind of tradables. Therefore, options
for them are not presented as the instruments to bet on or hedge against the direction
of an underlying risk. Instead, options are motivated as the instrument of volatility. So
volatility provides more information than option price. In practice, there are even
option contracts quoted by BS implied volatilities instead of the prices.

4.4.2 Information contents of option prices
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By the arbitrage pricing theory, in a frictionless and dynamically complete market,
options would be redundant securities. This means that option prices contain no more
information than stock prices. However, interestingly, there are still piled amount of
literatures for exploring the information contents of option prices.

A major concern of these articles is the insider trading in the option market. It is noted
that in this category of literatures the underlying asset and the corresponding option
are usually considered as simultaneously traded securities. So the causality relation of
the observed and option implied stock price changes would be put into comparisons.
Typical examples via this approach include Stephan and Whaley (1990) and Chan,
Chung and Johnson (1993). Chakravarty, Gulen and Mayhew (2004), with the
information share of Hasbrouck (1995), measured relative contribution of each market
to price discovery.

It should be emphasized again that in all of the above studies the option price itself is
never used as the proxy of information. What is taken into comparisons with the price
of the underlying asset is the implied price through the implied volatilities! This
implicitly points to the invalidity of the:doellar-oss functions.

Another main theme considering the information content of option prices is if the
implied volatility could provide atgood forecast of the future volatility, for example
Christensen and Prabhala (1998). From.this context, a causality test is usually applied
to detect the relation between the implied volatilities and future realized volatilities.
The conclusions of these studies are very-mixed. But what is important is that the
implied volatilities play a major role in all of the above studies instead of the option
prices. That is, even in documented academic literatures, implied volatilities have
been viewed as the major characteristics of the option prices.

4.4.3 Black-Scholes formula as a self-fulfilling prophecy

As discussed above, the BS implied volatilities are indeed the sole of the information
content of the option prices in academic researches. The dominance of the BS model
is reflected in the fact that the implied volatility becomes the standard method of
quoting option prices in industry.

Option traders routinely use the BS formula, although it is well known that the BS
assumptions are not realistic. However, since there exists a one-to-one
correspondence relation between the option price and the only parameter - volatility,
the BS formula becomes easy to understand and remember. Thus practitioners would
rather use the BS model instead of other complicated model.
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The BS formula has become a standard among professionals and also in computer
platforms. It provides a way to transform a volatility quote to a dollar value attached
to this quote. This helps develop common platforms for hedging, risk managing, and
trading volatility. Thus, once we accept that the use of the BS formula amounts to a
convention, and that traders differ in the selection of the value of the parameter o, the
critical quantity is no longer the option price, but the volatility. This is also why for
derivatives such as caps, floors, and swaptions the quote is just in term of volatility.

What is left is then the question: if the prices of the underlying assets do not possess a
lognormal distribution as the BS model implies, will the market prices of options
satisfy the formula just because the participants believe and use it? In a complete
market, the answer for the above question cannot be positive as there will certainly
produce opportunities for arbitrage.

However, in an incomplete market, the answer for the above question could be very
different compared with in a complete market. Cherian and Jarrow (1998)
demonstrated that the BS model can be a self-fulfilling prophecy. That is, in an
incomplete market, even though the underlying asset’s objective distribution is not
lognormal, as long as all participants believe it is, the BS formula is still the
equilibrium eventually. Therefore, even from the.academic viewpoint, it is reasonable
to use the implied volatility of the BS model as the characteristics of option prices.

4.4.4 Setting up a reasonable loss‘function

As it is assured that a reasonable loss function must be built through the implied
volatilities or other similar quantities, what is left would be which property can be
used to construct a loss function.

There are at least twenty years since the researchers in the finance and economics
areas note the temporal structure of volatilities, see Engle and Patton (2001). Some
major characteristics of volatilities have been well identified, for example persistence
and mean reverting. The famous ARCH model by Engle and its variations are all
addressing these properties. And furthermore the continuous time volatility models
generally contain their drifting parts corresponding to the properties, especially mean
reversion. These properties also explain the patterns of IV errors in Figure 4.4 since
these observed and model projected volatilities would certainly be highly correlated.

On the other hand, it is noted that all pricing models are based on some kind of
equilibrium arguments but there are in fact lots of noises in reality that cannot be
covered by these theories. Thus, the pricing models should not provide as an absolute

58



standard so that the real prices must be always close to the model projected. A more
feasible approach is that the pricing models only reveal the equilibrium level at the
specific moment. That is, the implied volatilities deduced from the structural model
are viewed as the dynamic target of mean reversion for the observed implied
volatilities. So a reasonable loss function from this context is just the speed of mean
reversion. The parameters such as the risk premium can be obtained by maximization
of the speed of mean reversion.

The simplest formulation for this problem can be obtained by assuming that the

logarithm of the implied volatilities U = log(c,*) follows the

Ornstein-Uhlenbeck process with a time varying target of mean reversion that is
deduced from the structural model. More precisely, it may be assumed

=-K - t+ , :
du u>-uM odW, (4.11)

where «is the speed of mean reversion;1UYs= log(c," ) is the logarithm of implied

volatility induced by the model price:and W; is a.standard Brownian motion. An
approximate discrete time version may be expressed as

UP =(1-e™)UZ +efuMa g, (4.12)

where & is an error term with constant variance. The ML estimator for x is then

Z(UtBS _UtB—iXUtM _UtB—Sl).
(UtBS _UtEﬁ )2

K=

The above equations (4.11) and (4.12) indicate that the observed implied volatilities
will always tend to move toward the level of model implied volatility from its
previous level. Thus, a model is said to have better performance when it corresponds
to higher speed of mean reversion, and versa. So a natural loss function would be just
the estimated speed of mean reversion «.

Beyond constructing loss functions, an approach to examine if the model is effective

can be also provided. By replacing U," with a constant parameter, equation (4.12)

just assumes simply an AR(1) structure for the implied volatility process U . So
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what is left is just standard procedures for model selection. And obviously, the above
simple modeling for the volatility can be replaced by another process that better
describes that of volatilities, for example the square root process by Cox, Ingersol and
Rubinstein(19??). However, more computation burden is of course necessary.

4.4.5 Investigations on the loss function

In practical implementation, a volatility index should be constructed first since the
sample generally contains multiple contracts at each time period. The (old or new)
CBOE volatility index would be the candidate to construct the necessary values of

log(c*) and log(c,").
For a numerical illustration, the index is constructed using the same dataset in the

previous section. A weighted average for the volatilities of the near term contracts are
calculated day by day with the reciprocal of absolute moneyness as the weights.

Figure 4.5: Implied volatility index, real and by models.
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Figure 4.5 shows the dynamics of the real volatility index and the model implied ones
by the three pricing models. It is easily seen that the ad hoc BS implied index proceed
with the real implied volatilities adaptively since much more information are utilized
with this method. On the other hand, the index form the two GARCH models just
duteously play as the target of mean reversion for the long term. Theses facts are also
reflected in Figures 4.6.a, b and c. The speeds of mean reversion are estimated day by
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day with a rolling window of 65 days. Clearly, the ad hoc BS has much larger speeds
of mean reversion over the whole period. And the two GARCH models are averagely
lower but comparable to each other.

Figure 4.6a: Real and model implied volatility index and estimated speed of mean
reversion with moving window by the ad hoc BS model.
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Figure 4.6b: Real and model impliedvolatility. index and estimated speed of mean
reversion with moving window by the NGARCH model.
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Figure 6¢: Real and model implied volatility index and estimated speed of mean
reversion with moving window by the EGARCH model.
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Figure 4.7 represents residual series fram-a simple AR(1) model and the mean
reversion model in (4.12) with the target provided-by the above three methods. It is
clearly seen that different levels of serial-corrglation and volatility cluster exist among
all four charts, especially obvious for the two from NGARCH and EGARCH. These
evidence imply that the loss function based on (4.13) could be still too simple and not
satisfactory, but acceptable for practical implementation since the ad hoc BS,
commonly believed well behaved, has insignificant serial correlation and roughly
local homogeneity of variance.
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Figure 4.7a: Residual series of volatility index with AR(1) model.
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Figure 4.7b: Residual series of volatility index regressed with the ad hoc BS as the
target of mean reversion.
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Figure 4.7c: Residual series of volatility index regressed with the NGARCH as the
target of mean reversion.
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Figure 7d:Residual series of volatility index regressed with the EGARCH as the target
of mean reversion.
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4.5 Concluding Remarks

In this chapter a procedure for choosing appropriate loss functions for evaluating
option pricing models is sketched. Inappropriate loss function may cause bias for
model selection. And it has been shownithat.the traditional loss functions that are
currently widely used are generally inappropriate. They are in lack of economic
interpretations at first. Furthermore, significant heteroskedastic patterns of residuals
exist so as to violate fundamental statistical’assumptions of the underlying model.

There are two points to be emphasized:*First, the lass functions composed of the
option prices or pricing errors only are meaningless. As indicated in 4.1, the same
prices and pricing errors can be easily made by options with different specifications.
Implied volatilities, which in fact incorporate the information of prices and
specifications, are the possible candidate for the construction of loss function. In fact,
whether in industry or in academics, the Black-Scholes implied volatilities are
commonly used as the advocates of option prices. In other words, the Black-Scholes
may not be so “right”, but it actually provides as a platform to the investigation of
options.

Second, a pricing model need not provide the correct price, but the level of the
characteristics of the information content should tend to be. As mentioned earlier, all
pricing models are based on some kind of equilibrium arguments. However, there are
indeed large amounts of noises in the financial markets. And more important, market
participants who are really risk neutral are rarely seen. More or less, people tend to be
risk averse or seeking so that patterns of mean reversion would always exists in the
financial markets. Thus, it is natural that the loss functions are constructed by the
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assumption that the models provide the level of mean reversion for the characteristics
of information contents.

Obviously, further investigations on the detailed properties of the real and model
implied characteristics should be made. And more elaborate modeling for their
relations would be necessary in the future. For example, multivariate approaches such
as implied volatility surface, see Benko et al. (2007), certainly provide much richer
contents and possibilities than volatility index. And it should not be expected that a
perfect loss function could be obtained before the information contents of option
prices are well clarified.
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4.6 Appendix

4.6.1 The ad hoc Black-Scholes model

The BS model assumes that the volatility of the underlying asset return is constant,
which is not realistic. However, in practical applications, analysts and traders always
use the market price to extract the implied volatility based on the BS model. One way
to adjust the classic BS model is to allow each option to have its own BS implied
volatility depending on the strike price and time-to-maturity. Following Dumas,
Fleming and Whaley (1998) and Derman (1999) with some modifications, the
following functional form for the options implied volatility is considered:

2
a:ao+a1%+a2(%J +a,T +a4T2+a5(%jT +&y, (4.6.1)

where o denotes the implied volatility, S is underlying asset price, K is strike price
and T is time-to-maturity. For each contract with different exercise price and maturity
the fitted value for volatility can be,plugged back:into the BS formula to obtain the
model price.

In the empirical analysis of Section 4.3.2, heteroskedasticity of the traditional loss
function with respect to the optien pricesiis illustrated using the ad hoc Black-Scholes
model estimated daily, because this‘approach issimple and widely used as a
benchmark in the existing literature. Furthermore, to make sure that the ad hoc
Black-Scholes model is not a special case for heteroskedasticity of traditional loss
function, the properties of loss functions under the GARCH models are also
investigated.

4.6.2 The GARCH pricing models

Since Engle (1982) and Bollerslev (1986), GARCH models have become one of the
standard method for modeling financial time series. For obtaining pricing measures
under the GARCH models, Duan (1995) first proposed the criteria Local Risk-Neutral
Valuation Relationship (LRNVR). In this chapter, two types of GARCH models,
NGARCH and EGARCH, are taken into consideration as illustrations. Following
Duan (1996b), the two GARCH models and the corresponding pricing measures can
be well defined.

The NGARCH model is defined as
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log$S, =logS, , +r +/1\/H—%+ £ (4.6.2)

h =a,+a, -h, -gf_l + 4, -h, (4.6.3)
where S; and h; are the spot price and volatility at time t, r is the risk-free interest rate,
A, o, cu, and py are nonnegative parameters, and &’s are i.i.d. normally distributed

innovations with variances h;. The corresponding pricing measure is then

logS, =logsS, , +r —%+ g, (4.6.4)

2
hy=a,+a,-hy (é:t - i\/h_t) + 4 -h .y, (4.6.5)

where & is normally distributed with mean 0 and variance h;.

Similarly, for the EGARCH model (4.6.3) is replaced by
log(h,) = & + a, (&,o| 49+ 1)+ B 0g(h, ) (4.6.6)
and (4.6.5) by

l0g(h,) =, + e, &, “Ayfh |+ 7l - 2,

+ f, -log(h, ;) (4.6.7)
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5. Conclusions and discussions

This series of studies are focused on two important issues about option pricing. The first
one concerns the implementation of continuous time stochastic volatility models,
including procedures for estimation and pricing. The second is about the loss functions
which are important both in parameter estimation and model evaluation for pricing
options.

For the estimation of stochastic volatility models, a partially observed GARCH model is
proposed to approximate the likelihood function. Beyond the purpose of estimation, this
type of models indeed bridges the gap between the continuous time stochastic volatility
models and the discrete time GARCH models. Furthermore, inferences including
estimation and pricing can be done under the same schema.

The most fascinating is that the method provides an approach for pricing options based

on an approximated conditional distribution of the future price given the prices up to now,
instead of the current price and a “filtered” volatility. And this approach obviously leads
to some interesting results, for example higher option prices accompanied by descent
paths of prices and lower prices by ascent paths.

Clearly the properties of the partially observed GARCH models shall be worth further
investigations. It is not clear if the filtered variance via this method will be an (asymptotic)
unbiased estimator of the true variance. If notyitimay help explain partly why option
prices are generally higher than that by the Black-Scholes formula with volatility
estimated by past prices, which in‘turn is about the behaviors of market participants when
they cannot observe some state variables such-aswvolatilities.

Loss functions are important and critical“for option:pricing, even though no theory can be
found to formally address it. However, aspointed out in the third chapter, it is essential
that the loss function should not be composed of option prices only since there are
certainly much more other elements to constitute the information contents together.

From a practical point of view, the Black-Scholes implied volatility or other
nonparametric volatility index is certainly to provide as a basis for constructing loss
functions. Then mean reversion as a major characteristic of volatilities should be
quantified for the introduction of loss functions. That is, a precise definition of mean
reversion may be the next step to a more compact and meaningful loss functions.

Some elementary statistical concepts are incorporated into all of the studies. For example,
error sum of squares used as loss functions should be based on homogeneity of variance,
and taking expectations over unobserved random variables instead of just “estimating” it.
For financial engineering as “engineering”, the introduction of these concepts may help
increase the proportionality of science.
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