

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

長管線延遲資料路徑之高面積效率設計與實現

Area-Efficient Design and Implementation of
Deep-Pipeline Latency Datapath

研究生： 呂進德

指導教授： 劉志尉

中 華 民 國 九 十 七 年 十一 月

長管線延遲資料路徑之高面積效率設計與實現

Area-Efficient Design and Implementation of Deep-Pipeline

Latency Datapath

研 究 生：呂進德 Student: Chin-Te Lu

指導教授：劉志尉 博士 Advisor: Dr. Chih-Wei Liu

國 立 交 通 大 學

電子工程學系 電子研究所班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In partial Fulfillment of the Requirements for the Degree of

Master of Science

in

Electronics Engineering

November 2008

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 七 年 十一 月

長管線延遲資料路徑之高面積效率設計與實現

研究生：呂進德 指導教授：劉志尉 博士

國立交通大學
電子工程學系 電子研究所

摘要

 處理器的資料路徑(datapath)通常是影響其效能的最重要部分。隨著不同應用需求，

資料路徑的配置與設計也會不同，一般說來，針對高效能處理器，例如 Intel Pentium 處

理器、IBM Cell 處理器等，設計者會藉由各種 VLSI 技術，盡可能的提高資料路徑的操

作頻率；但另一方面，對於輕量化(lightweight)應用、如嵌入式系統(embedded system)，
則會以追求低功率、低晶片面積等方向做最佳化資料路徑設計。同一套指令集架構

(instruction set architecture)對於不同的應用而言會有不同的資料路徑設計，針對此，本論

文提出一套能針對不同效能需求，而能自動合成一具高面積效率的資料路徑設計流程。
此具高面積效率資料路徑產生器，其中包含兩個動作：空間和時間維度做最佳化設計。

此具高面積效率資料路徑產生器可延用現有的高效能處理器的指令集、如 IBM Cell，和

其相關發展軟體與應用程式，並根據應用所需的效能，有系統的對處理器資料路徑做最

佳化。空間維度上的最有效率的應用意指資料共享路徑，包含建立函數模型(function
modeling)和週期準確模型(cycle-accurate modeling)設計。另一方面，我們也會針對時間

維度上做最佳化，並分析指令的延遲(latency)時間，系統化地建立數學方程式以獲得最

小面積的微架構(micro-architecture)。我們以 Cell SPU(Synergistic Processor Unit)資料路

徑設計為例，利用所提出的設計流程分析指令集架構，尋找出最高面積效率的微架構。

實驗顯示，針對 100MHz 到 800MHz 的嵌入式微處理器的資料路徑設計，我們所提出的

設計流程比自動化工具改善約 20%的面積。在 UMC 90nm 的製程下，我們利用前述的

設計流程實作 SPU 數位訊號處理器，晶片面積為 2.5mm×2.5mm，而其操作頻率為

400MHz。

Area-Efficient Design and Implementation
of Deep-Pipeline Latency Datapath

 Student: Chin-Te Lu Advisor: Dr. Chih-Wei Liu

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

 Datapath is primarily the most critical element that affects performance. The allocations
and design of datapath depends various application requirements. General speaking, for
high-performance processors like Intel’s Pentium Processors, IBM’s Cell Processors and so
on, the designers extremely rise up operating frequency by board VLSI techniques. On the
contrary, such as lightweight applications in the embedded system, the goal of datapath design
is to seek low-power, small chip area and so on. The instruction set architecture (ISA) has
different ways of implementation for different application requirements. Therefore, this thesis
proposes the design flow to automatically generate the area-efficient datapath for various
application requirements. The area-efficient datapath generator includes the two-phased
including spatial-optimized and temporal-optimized for datapath optimization. It can
systematically develop and optimize datapth of the processors while leveraging the instruction
set architecture (ISA) of high performance processor like IBM’s Cell and the software
toolchain and application programs. Spatial-optimized means that efficient utilization in
spatial domain including function modeling and cycle-accurate design. In other phase,
temporal-optimization explores the instruction latency to systematically build up
mathematical formulation to get the optimal micro-architecture. We take the Cell synergistic
processor unit (SPU) as our datapath design example to analyze the optimization space of
SPU ISA implementation, and find the area-efficient micro-architecture by using our
proposed design flow. In the experiment, the micro-architecture by using our proposed design
flow improves about 15-20% of area compared to using CAD tools for datapath design of
embedded processors targeted 100MHz to 800MHz. Finally, we use the previous design flow
to implement the SPU DSP in the UMC 90nm 1P9M CMOS process. The silicon area is
2.5mm×2.5mm and the clock rate is 400MHz.

誌 謝

研究生涯轉眼即逝，兩年來受到許多人幫助及鼓勵，才能順利完成碩士學業，在此致上

最深的感激。

首先，我要感謝劉志尉老師在我的專業知識和研究態度給予熱誠的指導，使我在這兩方

面更臻成熟，老師的豐富學養及學者風範，令我受益良多。特別感謝任建葳教授、周景

揚教授及周世傑教授，謝謝你們在百忙之中，撥冗參與論文口試，並對我的研究給予寶

貴的意見，讓此篇論文更加完備充實。

另外，我還要感謝林泰吉學長不厭其煩地對我的研究工作步步導引，並培養研究態度以

及應有的態度。以及歐士豪學長給我諸多細節的解惑，還有林彥呈同學和甘禮源學弟對

我的研究提出意見和討論和諸多的協助。

感謝實驗室學長、同學及學弟妹們。感謝陳信凱、郭羽庭、林禮圳、林佑昆和張彥中，

感謝學長們在研究生生涯中的各項協助及鼓勵。感謝張國強、莊明勳、葉世賢、吳聲昀、

張雅婷及蔡安綺，謝謝學弟妹們在研究工作上的一切幫忙。

感謝和我一起打拼的顏于凱、洪正堉、李岳泰、張巍瀚。這兩年，我們一同經歷了挑燈

夜戰的努力，也共同分享研究成果的喜悅。

最後，感謝我最親愛的家人。爸、媽、妹，感謝你們一路上的支持及鼓勵，沒有你們就

沒有今日的我，我愛你們。

謹將此篇論文獻給所有曾支持我、協助我的人，衷心的感謝並祝福你們。

進德
謹誌於 新竹

2008 冬

CONTENTS

1 INTRODUCTION.. 1
1.1 Motivation... 2
1.2 Problem Description and Distribution... 2
1.3 Thesis Organization .. 4

2 BACKGROUND.. 5
2.1 Cell Broadband Engine Architecture... 6
2.2 SPU Instruction Set Architecture .. 10
2.3 SPU Micro-Architecture ... 18

3 DESIGN & OPTIMIZATION FLOW OF DEEP-PIPELINE LATENCY DATAPATH.. 23
3.1 Spatial Optimization.. 24

3.1.1 Function Modeling... 24
3.1.2 Cycle-Accurate Modeling .. 29

3.2 Temporal Optimization ... 34
3.3 Experimental Results .. 41

4 SILICON IMPLEMENTATION... 49
4.1 Implementation Design Flow.. 50
4.2 Implementation Result .. 52

5 CONCLUSION & FUTURE WORKS ... 55
REFERENCES... 57

LIST OF FIGURES

Figure 1-1 Latency exploration .. 3
Figure 2-1 Die photo of Cell Broadband Engine .. 6
Figure 2-2 Block diagram of CBE processor.. 7
Figure 2-3 PPE block Diagram... 8
Figure 2-4 SPE architecture.. 9
Figure 2-5 SPU functional units ... 10
Figure 2-6 Instruction format.. 11
Figure 2-7 Register layout of data types and preferred scalar slot.. 12
Figure 2-8 Example of addition operation .. 14
Figure 2-9 Example of multiply operation.. 15
Figure 2-10 Example of form select mask for bytes operation... 17
Figure 2-11 Example of shuffle bytes operation... 18
Figure 2-12 SPU organization .. 20
Figure 2-13 SPU pipeline diagram ... 21
Figure 3-1 Overview of our proposed design flow... 24
Figure 3-2 Functional modeling ... 25
Figure 3-3 Example of behavioral assignment in RTL ... 26
Figure 3-4 Add/Sub functional unit .. 28
Figure 3-5 Cycle-accurate modeling... 29
Figure 3-6 Tolerable latencies... 31
Figure 3-7 Forwarding network.. 33
Figure 3-8 SPU Pipeline diagram ... 33
Figure 3-9 Temporal optimization .. 34
Figure 3-10 Function unit with 3-cycle latency.. 35
Figure 3-11 Piped S/R FU .. 36
Figure 3-12 Piped Shuffle FU... 37
Figure 3-13 Piped MUL FU.. 38
Figure 3-14 Timing delay of one-stage pipelined datapath... 41
Figure 3-15 Proposed design flow.. 42
Figure 3-16 Improvement by our proposed design flow... 47
Figure 4-1 Implementation flow... 50
Figure 4-2 Our SPU interface ... 51
Figure 4-3 Pipeline diagram of our SPU... 52
Figure 4-4 Implementation result ... 53

LIST OF TABLES

Table 2-1 Binary values in register RC and byte results... 17
Table 2-2 Dual issue unit assignments.. 19
Table 2-3 Unit and instruction latency.. 20
Table 3-1 Synthesis result of baseline... 27
Table 3-2 Instruction latency .. 30
Table 3-3 Forwarding table of our SPU.. 32
Table 3-4 Piped S/R FU.. 36
Table 3-5 Piped Shuffle FU .. 37
Table 3-6 Piped MUL FU ... 38
Table 3-7 Number ID of functional unit ... 39
Table 3-8 Description of equation’s parameter ... 40
Table 3-9 Synthesized result of baseline and spatial-optimized ... 43
Table 3-10 Comparison between baseline and spatial-optimized ... 44
Table 3-11 Improvement by spatial-optimized ... 44
Table 3-12 All cases for latency spec.. 45
Table 3-13 Temporal optimization.. 46
Table 3-14 Area reduction from temporal optimization.. 47
Table 4-1 Synthesis result ... 53

1

 1 INTRODUCTION

Today’s system-on-a-chip (SoC) has advanced rapidly, and there exists many design

considerations, such as time-to-market, production cost, operation speed and so on. These

demand the different performance requirement such as, low power for portable devices, small

area, and high operating frequency such as computing-intensive for workstation and so on.

In the meanwhile, the cost of software development is more and more expensive in many

embedded systems. It is not efficient time-to-market to develop the software and hardware at

the same time. By this motivation, we try to develop the hardware for different performance

requirement under the software support. In this thesis, we focus on developing processors

under different performance requirement while leaving the existing software in order to shrink

the time-to-market and then explore the micro-architecture optimization space of the specific

ISA implementation

2

1.1 Motivation

With the increasing performance requirement for system-on-a-chip (SoC) applications,

such as lower power, small area, and high operating frequency, developing these applications

for many performance requirements is not time-consuming. In the meanwhile, the software

development is more and more expensive in the embedded system. However, we can reuse the

existing software to develop the hardware for the various performance requirements. That’s

means that we can reduce the TTM (time-to-market) to develop the hardware for many

performance requirements. We exploit the same ISA with suitable implementation can help to

reduce design cost.

The Cell Broadband Engine (CBE) is very popular. It provides the open and full software

support. Therefore, we can take it into consideration to develop the hardware under its

software support. But its datapath is for extremely high-performance. There is a trade-off

between the performance and the area. If we design the hardware for low performance

compared to Cell processor, such as targeted to several hundred MHz. The original datapath

of Cell processor is not the most area-efficient for lower performance. However, that’s mean

that the same instruction set architecture (ISA) has different ways of implementation for

different performance requirement.

1.2 Problem Description and Distribution

With the growing computing requirement, DSPs are becoming prevalent solutions in

multimedia applications and telecommunications. In order to save time-to-market, we can

develop the processors under different performance requirements with the existing software

toolchain. By this above motivation, we can save the design time of software development to

develop DSPs for various applications with software support. For example, the software

3

toolchain of the famous Cell Broadband Engine (CBE) is ready to develop the processor with

the instruction set architecture (ISA) for various applications in the embedded system.

ISA is the interface between hardware and software. In fact, ISA implementation

depends on the various application requirements. That’s mean that different ISA

implementations have different micro-architecture designs under the target applications. In

other words, there are different optimization spaces under various applications. For example,

the micro-architecture targeted to several hundred MHz under the same ISA implementation

with the binary-compatible software. We can find that the Cell SPU expose the long latency

for high-performance and expose the long latency for datapath optimization as show in Figure

1-1. There are three ways for microarchitecture design. We’ll propose two-phased design flow

to design area-efficient micro-architecture under this constraint.

Figure 1-1 Latency exploration

In this thesis, we propose two-phased area-efficient design flow of ISA implementation

for DSPs under binary-compatible software. We take the Cell SPU as our design example.

Because the Cell SPU is the data-oriented processor, there is cleanly much more optimization

space than control-oriented processor, such ARM processors. Our proposed two-phased

area-efficient design flow includes spatial optimization and temporal optimization. This

two-phased design flow provides the systematical area-efficient micro-architecture design.

4

Compared with ad-hoc method, using our proposed design flow saves about 20% of area

under 100MHz to 800MHz timing constraints.

1.3 Thesis Organization

This thesis focuses primarily on two-phased systematical design flow of processor:

Spatial optimization and temporal optimization. This thesis is organized as follows.

Chapter 2 introduces the Cell SPU which includes Cell Broadband Engine Architecture

(CBEA), Synergistic Processor Unit (SPU), SPU instruction set architecture (ISA), and SPU

micro-architecture. Chapter 3 first describes the first-phased design flow including function

modeling and cycle-accurate modeling. This phase design flow is mainly spatial optimization

while the second-phased is temporal optimization by formulating mathematical formulation.

At last of this chapter, we list the experimental results of our proposed design flow.

Chapter 4 shows the silicon implementation results by using our proposed design flow

target to 400MHz. Finally, chapter 5 concludes this thesis and points out the direction of

future research.

5

 2 BACKGROUND

Contemporary DSPs are multimedia-rich, involving significant amounts of audio and

video processing. Cell Broadband Engine (CBE) processor provides a high-performance for

applications in media-rich consumer-electronic devices. This chapter provides background

information related to this thesis. Chapter 2.1 introduces the Cell Broadband Engine (CBE)

and synergistic processing unit (SPU). Chapter 2.2 and Chapter 2.3 give an overview of the

synergistic processing unit (SPU) instruction set architecture (ISA) and micro-architecture

respectively.

6

2.1 Cell Broadband Engine Architecture

The Cell Board Engine (CBE) is the first implementation of a new multiprocessor family

conforming to the Cell Broadband Engine Architecture (CBEA, or informally, “Cell”). The

CBEA is a new architecture that extends the 64-bit PowerPC Architecture. The CBEA and the

CBE are multicore processors jointly developed by SONY, Toshiba, and IBM, known as STI

[4]. Figure 2-1 is a die photo of the Cell BE.

Figure 2-1 Die photo of Cell Broadband Engine

Although the CBE processor is initially intended for multimedia applications in

media-rich consumer-electronics devices such as game consoles, the architecture has been

designed to extend fundamental advances in processor performance. These advances are

expected to support a broad range of applications in both commercial and scientific fields.

Figure 2-2 [5] shows the block diagram of Cell processor. The most distinguishing

feature is that the CBE processor is a multi-core with 9 processor elements and a shared

coherent memory on-a-chip: the Power Processor Element (PPE) and the Synergistic

Processor Element (SPE). The CBE processor has one PPE and eight SPEs. There is a mutual

dependence between the PPE and the SPEs. The PPE is responsible for running the operating

system and coordinating the flow of the data processing threads through the SPEs. This

7

differentiation allows the architectures and implementations of the PPE and SPE to be

optimized for their respective workloads and enables significant improvements in

performance per transistor.

Figure 2-2 Block diagram of CBE processor

 PowerPC Processing Elements

The PowerPC Processor Element (PPE) is a 64-bit PowerPC Architecture core optimized

for design frequency and power efficiency. It is a general-purpose, dual-thread, 64-bit RISC

processor with vector/SIMD extensions. The PPE is responsible for overall control of a CBE

system. It runs the operating system for all applications running on PPE and Synergistic

Processor Elements (SPEs). The PPE consists of two main units as shown in Figure 2-3 [6],

The PowerPC processor unit (PPU) is the computation unit, and the PowerPC processor

storage subsystem (PPSS) is for the purpose of storage. More detail information about

PowerPC Processing Elements is in [6].

8

Figure 2-3 PPE block Diagram

 Synergistic Processor Elements

The eight Synergistic Processor Elements (SPEs) execute a new single instruction multiple

data (SIMD) instruction set-the Synergistic Processor Unit Instruction Set Architecture. They

are independent processors, each running an independent application thread. Each SPE is a

128-bit RISC processor for data-rich, compute-intensive applications and includes a private

local store for efficient data and instruction access. Figure 2-4 [6] shows the major elements

of the SPE architecture and their relationship. Local storage (LS) is a private memory for SPE

instructions and data. The synergistic processor unit (SPU) core is a processor that runs

instructions from the LS and can read from or write to the local storage (LS). The direct

memory access (DMA) unit transfers data between LS and system memory. The channel unit

is a message-passing interface that allows the SPU core to communicate with both the DMA

unit and other devices in the Cell processor.

9

Figure 2-4 SPE architecture

The SPU core is a single-instruction multiple-data (SIMD) reduced instruction set

computing (RISC) processor [7]. All instructions are encoded in 32-bit fixed-length

instruction formats. The SPU feature 128 general-purpose registers (GPRs) that are used by

both floating and integer instructions. Most instructions operate on 128-bit-wide data that

perform integer arithmetic, logical operations, loads, stores, compares, and branches. The

main SPU functional unist are shown in Figure 2-5 [6]. These include the synergistic

execution unit (SXU), the LS, and the SPU register file unit (SRF). The SPU issues two

instructions to its two execution pipelines respectively. The pipelines are referred to as even

(pipeline 0) and odd (pipeline 1). These units execute the following types of operations:

 Odd Pipeline

 SPU Odd Fixed-Point Unit (SFS) ― Executes byte shift, rotate mask, and shuffle

operations on quadwords

 SPU Load and Store Unit (SLS) ― Executes load and store instructions and hint for

branch instructions. It also handles DMA requests to the LS

 SPU Control Unit (SCN) ― Fetches and issues instructions to the two pipelines. It

performs control functions such as branch instructions, arbitration of access to the

10

LS and register file, etc.

 SPU Channel and DMA Unit (SSC) ― Manages communication, data transfer, and

control into and out of the SPU.

 Even Pipeline

 SPU Even Fixed-Pointed Unit (SFX) ― Executes arithmetic instructions, logical

instructions, word SIMD shifts and rotations, floating-point comparisons, and

floating-point reciprocal and reciprocal square-root estimations.

 SPU Floating-Point Unit (SFP) ― Executes single-precision and double-precision

floating point instructions, and conversions, and byte operations. The 32-bit

multiplier are implemented in software using 16-bit multiplies.

Figure 2-5 SPU functional units

2.2 SPU Instruction Set Architecture

The instruction set architecture (ISA) is the most important design issue that DSP

designer must get right from the start. Instruction set architecture (ISA) serves as an

11

abstraction layer between hardware and software. It should include the following information,

instruction sets, instruction format, data representation, data storage, address modes, and

exceptional conditions. In the following section, the fixed point SPU Instruction set

architecture (ISA) [8] will be described.

 Instruction formats

There are six basic instruction formats. These instructions are all 32-bit long. Instructions

in memory must be aligned on word boundaries. The instruction formats shown in Figure 2-6.

Figure 2-6 Instruction format

 Data representation

The SPU hardware supports the following data types: Byte (8-bit), halfword (16-bit),

word (32-bit), doubleword (64-bit), and quadword (128-bit) as shown in Figure 2-7. All GPRs

(general-purpose resisters) are 128-bit wide. The leftmost word (bytes 0, 1, 2, and3) of a

12

register is called the preferred slot. When instructions use or produce scalar operands or

addresses, the values are in the preferred slot. Because the SPU accesses its LS a quadword at

a time, there is a set of store-assist instructions for insertion of bytes, halfwords, words, and

doublewords into a quadword for a subsequent load/store.

Figure 2-7 Register layout of data types and preferred scalar slot

 Data storage

The SPU architecture defines a private memory, also called local storage, which is

byte-addressed load and store instructions combined operands from one or two registers or

immediate value to form the effective address of the memory operand. The LS is 256 KB,

single-ported, non-caching memory. It stores all instructions and data used by the SPU. SPU

data-access bandwidth is 16 bytes per cycle, quadword aligned.

 Addressing modes

All instructions, except branches, generate address by incrementing a program counter.

For load and store instructions that specify a base register, the effective address in memory for

a data value is calculated relative to the base register in one of three ways:

 Resister + Displacement

The displacement (D) forms of the load and store instructions form the sum of a

13

displacement specified by the sign-extended 16-bit immediate field of the instruction

plus the contents of the base resister.

 Register + Register

The index (X) forms of the load and store instructions form the sum of the contents

of the index register plus the contents of the base register

 Register

The load string immediate and store string immediate instructions use the

unmodified contents of the base register

 Instruction sets

The SPU instruction set used are instructions that are 4 bytes long and word-aligned. It

supports 16-byte (128-bit) operand accesses between storage and its 128 registers. For a brief

overview of the fixed point SPU instruction set, including data transfer, integer, logical, data

transformation.

 Data transfer instructions

In order to process data in the memory, load/store machine use the load and store

instruction to handle memory access issues. Load and store instructions combine

operands from one or two registers and an immediate value to form the effective address

of the memory operand. Only aligned 16-byte-long quadwords can be loaded and stored.

Therefore, the rightmost 4 bits of an effective address are always ignored and are

assumed to be zero.

 Integer and logical instructions

 Addition/subtraction instructions

14

The instructions of addition or subtraction are the operators of halfword (16-bit)

or word (32-bit) of SIMD version. “A” is the word-operator that replaces the

destination operand with the sum of the two source registers as shown in Figure 2-8,

while “ai” takes one source operand as 128-bit immediate data. “Sf” and “sfi”

perform general and immediate subtraction. The 32-bit SIMD version of “A” is

supported by the SPU instruction set and shown in Figure 2-8.

Figure 2-8 Example of addition operation

 Compare instructions

Compare instructions compare the two source operands and store the

destination to register. The source operands can be registers or immediate data. It is

the operators of byte (8-bit) or halfword (16-bit) or word of SIMD version. For

example, “ceqb” (compare equal byte) set the byte-result as 0xFF if the source

operand 1 is equal to source operand 2 and set 0x00 vice versa.

 Multiply instructions

Multiply-relative instructions combine multiply and multiply-and-accumulator

instructions. These multiply instructions only support 16-bit SIMD multiplication

which get the lower or upper part of one word in each register to take the multiply

operation and the product maybe be shifted, mask upper or lower, or the additional

accumulation with it. For example, multiply-high gets the result of the leftmost 16

bits of the value in one word of register RA are multiplied by of the rightmost 16

15

bits of the value in one word of register RB, and then the product is shifted left by

16 bits and zero are shifted in at the right for each of four word slots as shown in

Figure 2-9.

Figure 2-9 Example of multiply operation

 Logical instructions

Logical instructions handle bit-wise Boolean logical operations. The logical

operations are composed of AND, OR, XOR, NAND, NOR, and XOR instructions.

These instructions perform the general logical operation in the processor.

 Data transformation instructions

To support the data alignment of application processing, data transformation

instructions are include shift/rotator, extend, form, gather and shuffle.

 Shifter / rotator instructions

The shift instruction can shift the source operand arithmetically or logically. It

can specify the shift amount in the ways, either register or immediate. It support

shift of halfword, word, and quadword, and shift quadword by byte. The rotator

instructions also support the same as the above operation.

 Extend instructions

16

The extend instruction is used to support the data precision. These instructions

support byte (8-bit) to halfword (16-bit), halfword (16-bit) to word (32-bit), and

word (32-bit) to double word (64-bit). For example, the operation of “xsbh” (extend

sign byte to halfword) is that for each of eight halfword slots, the sign of the byte in

the right byte of the operand in register RA is propagated to the left byte.

 Gather instructions

The gather instruction is include gather bits from bytes, halfwords, or words.

This operation can be used to gather bits of the leftmost bit of one byte, halfword, or

word. For example, “gbb” (gather bits from bytes) operates as the following

description: a 16-bit quantity is formed in the right half of the preferred slot of

register RT by concatenating the rightmost bit in each byte of register RA. The

leftmost 16 bits of register RT are extending to zero as the remaining slots of

register RT.

 Form instructions

The Form instructions are to create a mask by replicating the rightmost bit of

bytes, halfwords, and words. For example, “fsmb” (form select mask for bytes)

operates as the following description: the right 16-bit of the preferred slot of register

RA are used to create a mask in register RT by replicating each bit eight times. Bits

in the operand are related to bytes in the result in a left-to-right correspondence as

shown in Figure 2-10.

17

Syntax : FSMB RT,RA

destination register

source register

T.0 T.1 T.2 T.3

A.0 A.1 A.2

112 113 114 115 116 117 118 119 120 121 122 27 28 29 30 31

A.3

Figure 2-10 Example of form select mask for bytes operation

 Shuffle instructions

The shuffle operation is extremely powerful and finds its way into many

applications in which data reordering, selection, or merging is required. Its

operation is that register RA and RB are logically concatenated with the

least-significant bit of RA adjacent to the most-significant bit of RB. The bytes of

the resulting value are considered to be numbered from 0 to 31. For each byte slot

in registers RC and RT, the value in register RC is examined, and a result byte is

produced as shown in Table 2-1 and Figure 2-11, and then the result byte is inserted

into register RT. Other instructions which are not above are enumerated in [8].

Table 2-1 Binary values in register RC and byte results

 Value in Register RC
(expressed in binary)

Result Byte

10xxxxxx 0x00
110xxxxx 0xFF
111xxxxx 0x80
otherwise shown in figure 2-11

18

 RA

RB

RC

RT

Syntax : SHUFB RT,RA,RB,RC

Figure 2-11 Example of shuffle bytes operation

 Exceptional conditions

The SPU support a single interrupt handler. The entry point for this handler is address 0

in local store. When a condition is present and interrupts are enabled, the SPU branches to

address 0 and disables the interrupt facility. The address of the next instruction to be executed

is saved in the SRR0 register. The iret instruction can be used to return from the handler.

2.3 SPU Micro-Architecture

Figure 2-12 [7] shows how the SPU is organized and the key bandwidth (per cycle)

between units. Instructions are fetched from the LS in 32 4-byte groups when LS is idle. The

fetched lines are sent in two cycles to the instruction line buffer (ILB). Instructions are sent,

two at a time, from the ILB to the issue control unit. The SPU issues and completes all

instructions in program order and doesn’t reorder or rename its instructions. Although the

SPU isn’t a VLIW processor, it does feature like dual feature and can issue up to two

instructions per cycle to nine execution units organized into two pipelines as shown in Table

2-1. Instructions pairs can be issued if the first instruction (from an even address) will be

routed to an even pipe unit and the second instruction to an odd pipe unit.

19

Table 2-2 Dual issue unit assignments

 Inst. From addrress 0 Inst. From addrress 4

Simple fixed Permute
Shift Local store

Single precision Channel
Floating Integer Branch

Byte

Operands are fetched either from the register file or forward network and sent to the

execution pipelines. Each of the two pipelines can consume three 16 byte operands and

produce a 16 byte result every cycle. The register file has six read ports, two write ports, 128

entries of 128 bits each and is accessed in two cycles. Results produced by functional units are

held in the forward macro until they are committed and available from the register file. Loads

and stores transfer 16 bytes of data between the register file and the local store.

Table 2-3 details the eight execution units. Simple fixed point [9], floating point [10] and

load results are bypassed directly from the unit output to input operands to reduce result

latency. Other results are sent to the forward macro where they distribute a cycle later.

Figure 2-13 [7] is a pipeline diagram for the SPE that shows how flush and fetch are related to

other instruction processing.

20

Figure 2-12 SPU organization

Table 2-3 Unit and instruction latency

 Unit Instruction Instruction Latency

Simple Fixed word shifts and rotates 4
Single Precision multiply-accumulate 6
Single Precision integer multiply-accumulate 7

Local Store Load and strore 6
Channel Channel Read/Write 6
Branch Branches 4

Permute Quadword shifts, rotates, gathers, shuffles as
well as reciprocal estimate 4

Simple Fixed word arithmetic, logicals, count leading zeros,
selects, and compares 2

Bytes pop count, absolute sum of differences,
byte average, byte sum 4

21

Figure 2-13 SPU pipeline diagram

23

 3 DESIGN & OPTIMIZATION FLOW OF

DEEP-PIPELINE LATENCY DATAPATH

Today’s multimedia applications need significant amounts of digital signal processing, so

the current trend of many contemporary processors is generally designed for

datapath-dominated recently. Cell processor provides a high performance for multimedia

applications in the embedded system. One of the key features is the synergistic processing

processor (SPU) which is data-oriented core for the requirement computing-intensive

operations. In this chapter, we firstly introduce an overview of our proposed two-phased

design flow: how to design the SPU datapath systematically. Chapter 3.1 presents the

first-phased of design flow called spatial optimization including function modeling and

cycle-accurate modeling, and then chapter 3.2 gives the second-phased of design flow, and

chapter 3.3 illustrates the experimental results.

24

3.1 Spatial Optimization

Given the instruction set architecture (ISA) of synergistic processor unit (SPU), how to

design the datapath of functional modeling systematically? At this sub-section, we detail the

functional modeling and cycle-accurate design of our proposed two-phased design flow as

shown in Figure 3-1.

Figure 3-1 Overview of our proposed design flow

3.1.1 Function Modeling

The functional modeling of our proposed first-phased design flow can be divide four

steps: instruction grouping, behavioral mode in RTL, synthesize (synthesized for

time-optimized and area-optimized), and then the datapath called baseline of this step in order

as shown in Figure 3-2.

25

Figure 3-2 Functional modeling

 Instruction grouping

To reduce the effort of SPU datapath design, we profile the common instruction sets used

by multimedia applications, such as JPEG, FFT, DCT, FIR, and IIR through the SPU complier.

The first step is to categorize these profiled instruction sets mainly by operations. We divide

these instruction sets of datapath into seven group that are Add/Sub, Logic, Cmp (compare),

Mask, S/R (shifter/rotator), Shuffle, Mpy (multiply) respectively.

 Behavioral model in RTL

After we categorize these instruction sets, we analyze the synthesis result of behavioral

assignment in RTL followed the semantics of the SPU instruction sets architecture by CAD

tool. This step intends to get the information of optimized-degree by Synopsys Design

26

Complier. We take the instruction set “ah” (add halfword) for example, as shown in Figure

3-3. The “add_sub_sel” of the Figure 3-3 is the control which instruction of the Add/Sub

group. Other instructions can follow the code format like the description of Figure 3-3.

Figure 3-3 Example of behavioral assignment in RTL

 Synthesis (synthesized for timing-optimized and area-optimized)

After finishing the above RTL-coding, we initially analyze the synthesis result of the

seven functional units. This result is defined as baseline of synthesis result in this thesis. We

can get the shortest delay of each functional unit through synthesized for timing-optimized. At

the same, synthesized for area-optimized provides the information of hardware complexity.

The information of area and timing is the mainly two topics that we’re most concern in

datapath design. In Table 3-1, we can clearly indicate that both the largest area and the longest

delay of baseline is the “Mpy” functional unit. By the way, we can see the synthesized result

about the resource report, and find out the numbers of synthesized resource provided by

DesignWare. Then we find that the CAD tool doesn’t do any optimization for our functional

units in datapath. In next subsection, we will provide general strategy to optimize the datapath

27

Table 3-1 Synthesis result of baseline

Synthesis for timing Synthesis for area

delay(ns) 0.63 4
area(um2) 40468 25173
delay(ns) 0.45 3
area(um2) 14148 7209
delay(ns) 0.62 2.5
area(um2) 15914 9977
delay(ns) 0.31 1.4
area(um2) 3063 1442
delay(ns) 0.8 4.8
area(um2) 225086 131332
delay(ns) 2.51 7
area(um2) 518969 371405
delay(ns) 0.66 2
area(um2) 42123 26657

Baseline

Mpy
(#11)

Shuffle
(#7)

Grouping

Logic
(#9)

Cmp
(#18)

Mask
(#9)

S/R
(#26)

Add/Sub
(#9)

 Optimization (sharing)

The SPU instruction sets support 128-bit SIMD operations which are 8-bit, 16-bit, 32-bit,

and 128-bit. For example, the “Add/Sub” functional unit supports the 16-bit and 32-bit

addition and subtraction, and the “Cmp” functional unit even supports 8-bit (byte), 16-bit

(halfword), and 32-bit(word) comparison. In order to support varieties of bit-length

operations, we intuitively follow the behavioral assignment in RTL followed by the SPU ISA.

From the last section, we find that there is no optimization for these functional units in

datapath from these synthesized reports. This strategy is not area-efficient in order to transfer

the SPU ISA to single-cycle execution datapath. In this step, we describe how to optimize

these function units by using the general optimized strategy, such as resource sharing,

sub-parallel method [11] for this seven functional units.

Resource sharing is the general method that the same bit-length computation of on

functional unit uses the same hardware to compute with encoder that decides which

instruction set to execute. We use this method in these functional units called “Logical”,

“Mask”, “S/R”, and “Mpy”.

28

Sub-parallel method is that using multiple sub-word length hardware for word length

computation. For a subword adder, this method is achieved by inserting multiplexers in the

subword boundaries to propagate or prevent the subword carries in the carry chain [12]. For

example, the “Add/Sub” functional unit is support 16-bit and 32-bit operations. We use two

16-bit adders to support 32-bit adder by adding an and-gate to control the 16-bit adder result’s

carry as shown in Figure 3-4. If the word control bit is “1”, this hardware is to execute 32-bit

addition or subtraction, and execute 16-bit operations vice versa. Other functional unit, such

“Cmp”, can follow this method to do 8-bit, 16-bit, or 32-bit operations

Figure 3-4 Add/Sub functional unit

We design the SPU datapath by using the above these optimized methods. In fact, these

above optimization methods are the spatial optimization on the contrary to the temporal

optimization in the 3.2 chapter.

29

3.1.2 Cycle-Accurate Modeling

Figure 3-5 Cycle-accurate modeling

Because the front sub-section is just single-execution in datapath, we must take the

latency spec. of the SPU ISA into consideration in datapath design as shown in Figure 3-5. In

Table 3-2, it provides the instruction latency of all seven functional units. Instruction latency

means that the number of clock cycles it takes for the instruction to get the available result

through the pipeline. For example, the “Add/Sub” has two instruction latencies that means its

result must be produced within two-cycle. At this step called “cycle-accurate modeling”, we

combine the previous optimized single-execution with the instruction latency spec. of the

SPU to design the micro-architecture. We use the main two methods, queue-sharing and the

forwarding unit design. Queue-sharing means that these single-execution functional units

bypass the same pipelined-register to meet the instruction latency, and the forwarding unit

uses the above pipelined-register to forward the data to operand fetch unit. Next, we will

30

introduce how to design the forward unit.

Table 3-2 Instruction latency

 Grouping # latency
Add/Sub 2

Logic 2
Cmp 2
Mask 2
S/R 4

Shuffle 4
Mpy 7

Data forwarding is a well-known technique to reduce the number of extra execution

cycles. However, the complexity of forwarding network is rapidly increasing and usually

constitutes the critical path [14]. In order to design forwarding unit systematically, we sort out

pipelined-stage that producer (produce data) or consumer (consume data) and divide them

into two categories. The analysis of the data forwarding paths includes two domains. One is

temporal domain analysis and the other is spatial domain analysis. The temporal domain

analysis checks the results produced by previous instructions but still in execution unit

pipeline, while the spatial domain analysis checks all possible paths between every producer

and consumer stages.

We defined the tolerable latency (TL) [14] of forwarding unit is the latency between data

producing and data consuming:

TL (tolerable latency) = data consuming time – data producing time

The TL indicates the available latencies between consumer and producer. If the TL is less

than the latency of forwarding unit, the data forwarding is impossible and has to stall several

cycles till the TL is equal to the latency of forwarding unit. Figure 3-6 shows the example of

TL in our SPU datapath design.

31

Figure 3-6 Tolerable latencies

For the forwarding unit which has one-cycle latency, there are three possible forwarding

cases depending on the TL:

1. Non-causal (TL < 0).

2. Timing critical (TL = 0).

3. Normal (TL ≥ 1).

The first one is non-causal path. It happens that the consumer is executed earlier than the

producer that results in a non-causal forwarding condition. The second one is the producer is

directly forwarding to the consumer. That is, the data of producer is directly forwarded to

consumer at next instruction cycle that means non-tolerable extra latency on the forwarding

path. The final one is normal paths which have multi-cycle tolerable latencies between

consumer and producers. In this case, the result produced by producer can’t be forwarded to

consumer directly but has to queue for multiple cycles. In our datapath, we divide seven

functional units into main three groups having the same instruction latencies, which have

two-latency, four-latency, and seven-latency respectively. Table 3-3 shows all of our

forwarding paths. In this table, all possible paths between each producer and consumer are

categorized into three forwarding cases mentioned above. The instruction number indicates

the instruction cycle latencies between consumer and producer.

32

Table 3-3 Forwarding table of our SPU

2-latenty of FUs 4-latenty of FUs 7-latenty of FUs

inst. 1 timing critical non-causal non-causal
inst. 2 normal (TL=1) non-causal non-causal
inst. 3 normal (TL=2) timing critical non-causal
inst. 4 normal (TL=3) normal (TL=1) non-causal
inst. 5 normal (TL=4) normal (TL=2) non-causal
inst. 6 normal (TL=5) normal (TL=3) timing critical
inst. 1 timing critical non-causal non-causal
inst. 2 normal (TL=1) non-causal non-causal
inst. 3 normal (TL=2) timing critical non-causal
inst. 4 normal (TL=3) normal (TL=1) non-causal
inst. 5 normal (TL=4) normal (TL=2) non-causal
inst. 6 normal (TL=5) normal (TL=3) timing critical
inst. 1 timing critical non-causal non-causal
inst. 2 normal (TL=1) non-causal non-causal
inst. 3 normal (TL=2) timing critical non-causal
inst. 4 normal (TL=3) normal (TL=1) non-causal
inst. 5 normal (TL=4) normal (TL=2) non-causal
inst. 6 normal (TL=5) normal (TL=3) timing critical

C
on

su
m

er

Producer

4 -
la

te
nt

y
of

 F
U

s
7 -

la
te

nt
y

of
 F

U
s

2 -
la

te
nt

y
of

 F
U

s

The forwarding module can be imaged as a pipelined stage in the forwarding paths

which isolates the complicated network from datapath by output registers. Once the

forwarding table is established, we can design the forwarding micro-architecture as shown in

Figure 3-7.

By using sharing queue and forwarding unit, we can design the micro-architecture of

SPU. Because the SPU is dual-issue, we divide the datapath into two pipelined path. Figure

3-8 shows the pipelined diagram which meets the instruction latency of the SPU.

One of the fundamental decisions to be made in the design of a processor is the choice of

the structure of the pipeline. In next chapter, we explore this issue to get an optimal

area-efficient pipeline stage for each functional unit of SPU, given the instruction latency of

ISA with a targeted performance requirement. This issue is treated both analytically and by

simulation. We use the spatial optimization for our datapath design. At first, we have the

preliminary analysis for the latency exploration. Finally, we use the mathematical formulation

to get the optimal architecture.

33

Forward Unit

Function Unit 0

producer 0

producer 1

fw_src1
fw_src2

Function Unit 1

EXEOF

producer 0

producer 1

fw_src3

fw_src1

fw_src2

fw_src3

src1

src2

src3

FU_src1

FU_src2

FU_src3

FW_control

Figure 3-7 Forwarding network

EXE

EXE

EXE

EXE

EXE

src1_exe

src2_exe

src3_exe

even_pipe_out

ADD/SUB Unit

Logical Unit

Cmp Unit

Mask Unit

MUL Unit

EXE

Shuffle Unit

EXE

S/R Unit

even pipe

odd pipe

Forward Unit

Consumer
Producer 1

Producer 2

Producer 3

Producer 4

Producer 5

Producer 6

even_pipe_out

Producer 7

Producer 8

Producer 9

Producer 10

Figure 3-8 SPU Pipeline diagram

34

3.2 Temporal Optimization

As shown in Figure 3-8, the pipeline datapath just use bypassing-register to meet the

instruction latency of functional units, but we can explore the latency spec. to optimize the

datapath as shown in Figure 3-9. This is the question as to an optimum pipeline depth for a

processor, given the latency spec. of ISA. Retiming is a structural optimization technique that

relocates the registers in a logic circuit with the objective of minimizing their total gate counts,

maximizing the circuit performance, or achieving both simultaneously [15][16]. We apply

retiming to make functional units run at the required timing constraints containing a minimum

number of registers.

Figure 3-9 Temporal optimization

35

 Latency exploration

Retiming [15] is a transformation technique used to change the locations of delay

element in a circuit without affecting the input/output characteristics of the circuit. It is a

useful method for optimize the performance in synchronous circuit design. These include

reducing the clock period of the circuit, reducing the number of registers in the circuit,

reducing the power consumption of the circuit, and logic synthesis. In this thesis, we use the

retiming to reduce the number of registers in out datapath.

In the following pipelined functional units, we use the CAD tool called pipeline_design

of Synopsys Design Complier to pipeline the functional units. For example, we have three

ways to decide the pipeline structure with the given latency of functional units as shown in

Figure 3-10. The first way is that the functional unit is directly bypassing three pipelined

register without pipelining the functional unit. The second way is that the functional unit is

pipelined 2-stage by CAD tool and then bypassing two pipelined registers. The final way, we

use CAD tool to pipeline the functional unit with 3-atage and bypassing the output register.

We find that the trivial stage-selection, that is 3-stage, is not surely the best area-efficient with

targeted frequency, so we will analyze the synthesized area trend of pipelined functional units

to help formulate mathematical formulation.

Figure 3-10 Function unit with 3-cycle latency

Next, we’ll analyze the multiple-cycle latency basic module of functional units. That is,

36

we will analyze these functional units, such as 16-bit “S/R”, 8-bit “Shuffle”, and 16-bit

“MUL”

 Functional unit characterization

 S/R

The “S/R” functional unit has 3-latency, so there is three ways to decide the

pipelined structure. We use the 16-bit shifter to estimate the area trend of all three ways

by using the synthesized result of pipelined functional unit and estimate the 16-bit

pipelined register under the 1.25ns timing constraints. As shown in both Table 3-4 and

Figure 3-11, we can see that the first column is the possible stage number of “S/R”

functional unit. At the same time, we try to estimate the pipelined register the third

column and the 16-bit register is 288 um2. For example, the first case is that the

functional unit is directly bypassing three-stage pipelined-registers, so 288 multiplied by

three is 864 um2. We use this way to estimate the synthesized trend, and cleanly see the

area is proportion to the stage number as shown in Figure 3-11.

 Table 3-4 Piped S/R FU

 Piped Stage Piped-FU Bypassing Register Area (um2)
1 1514 864 2378
2 2237 576 2813
3 2528 288 2816

 Piped S/R FU

2100

2200

2300

2400

2500

2600

2700

2800

2900

1 2 3
piped stage

 Piped S/R FU

 Figure 3-11 Piped S/R FU

37

 Shuffle

The “Shuffle” is also a 3-latency functional unit, so it has three choice of

pipelined-stage. We use 8-bit shuffle module to approximate the area trend of the three

possible cases for pipelined stage under the 1.25ns timing constraints. In both Table 3-5

and Figure 3-12, we can find the area trend of pipelined “Shuffle” is almost proportion to

the pipelined stage of functional unit. We can see the slight difference between 2-stage

and 3-stage, but it will be more distinct from the multiple modules in our “Shuffle” unit.

 Table 3-5 Piped Shuffle FU

 Piped Stage Piped-FU Bypassing Register Area (um2)
1 1433 432 1865
2 1580 288 1868
3 1724 144 1868

 Piped Shuffle FU

1863.5
1864

1864.5
1865

1865.5
1866

1866.5
1867

1867.5
1868

1868.5

1 2 3
Piped Stages

 Piped Shuffle FU

 Figure 3-12 Piped Shuffle FU

 MUL

The multiplier is the main critical functional unit, so multiplier typically has much

more pipelined-stages than other functional units in order to target high frequency. It

means that there is deeper pipeline in multiplier, so we have more design space to decide

the pipelined-stages. Our “MUL” functional unit has 6-latency, so it has six possible

38

selections of pipelined-stages. Here, we use 16-bit multiplier synthesized under 1.25ns

timing constraints. In both Table 3-6 and Figure 3-13, we can cleanly see the trend of the

area of pipelined-stage “MUL”. Different from the previous functional units, there is a

non-available synthesized result in the second row. Because the non-pipelined MUL’s

critical path is longer than 1.25 ns, it requires at least 2 pipelined-stages to target our

operating frequency, 800MHz. In Figure 3-13, we can find there is a smooth curve

between the 2-stage and 3-stage functional unit. At the same time, there is a steep curve

between 3-stage and 4-stage functional unit. That’s because the synthesized result is not

absolutely linear growing up with the pipelined-stage functional unit. General speaking,

the area of MUL is proportion to the pipelined-stage.

 Table 3-6 Piped MUL FU

 Piped Stage Piped-FU Bypassing Register Area (um2)
1 NA NA NA
2 8521 2880 11401
3 9403 2304 11707
4 9981 1728 11709
5 11340 1152 12492
6 12140 576 12716

Piped MUL FU

10500

11000

11500

12000

12500

13000

2 3 4 5 6
piped stage

A
re

a(
um

^2
)

Piped MUL FU

 Figure 3-13 Piped MUL FU

In one word, we use smaller modules to estimate the area of functional unit with the

above synthesized trend in reality. These results help us to formulate the following

39

mathematical formulation. After using register estimation and pipeline functional unit to

estimate the area trend, we’ll introduce how to formulate the mathematical formulation for

our datapath design.

 Formulation

 Retiming is a structural optimization technique that relocates the registers in datapath

that is targeted to minimize total gate count and maximize the circuit performance. We

formulate the mathematical formulation with retiming method that is to minimize the area

under timing constraint.

The mathematical formulation is as follows. We solve the equations to minimize the total

area of all pipelined functional units under timing constraints. As shown in Table 3-8, the first

parameter “i” gives the identified number to each functional unit. Table 3-7 shows the ID

number of each functional unit. The second Api is the total area of each pipelined functional

unit, Pi and Li is respectively the pipelined-stage and latency spec. of each functional unit.

Finally, we introduce the following timing parameter. The first parameter Ci is the control

delay of each functional unit, means the timing delay of multiplex before function unit. The

Means of ti and tp are timing delay of pipelined-register and pure combinational respectively.

We estimate the parameter “tp” about 0.15 ns to 0.2 ns from the manual of UMC 90 process.

The least timing constraint is “t” that is our targeted operating frequency 800MHz (1.25ns).

Table 3-7 Number ID of functional unit

FU ID number (i)
Add/Sub 1

Logic 2
Cmp 3
Mask 4
S/R 5

Shuffle 6
Mpy 7

40

Table 3-8 Description of equation’s parameter

Parameter Description
i ith FU

Ai area of ith FU
Pi # pipelined stage
Li latency spec.
Ci control delay
ti timing of non-piped FU
tp pipelined register
t timing contraints

7654321 M AAAAAAAinimize ++++++ (3-1)

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

≤
≤
≤
≤
≤
≤
≤

77

66

55

44

33

22

11

LP
LP
LP
LP
LP
LP
LP

 (3-2)

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

<++

<++

<++

<++

<++

<++

<++

C

7
7

7

6
6

6

5
5

5

4
4

4

3
3

3

2
2

2

1
1

1

ttC
P
t

ttC
P
t

ttC
P
t

ttC
P
t

ttC
P
t

ttC
P
t

tt
P
t

p

p

p

p

p

p

p

 (3-3)

41

In Equation 3-1, we try to derive the minimum area of each one of the seven functional

units. We formulate Equation 3-2 and Equation 3-3 with parameters. We list a simultaneous

inequality by the mainly concepts, that is the total delay must be shorter than timing

constraints (1.25ns) within one-stage pipelined datapath as shown in Figure 3-14. The

parameter ti can be derived from the column of synthesis for timing of every functional unit in

Table 3-8. Equation 3-2 is the latency spec. that means combinational circuit of every

functional unit can be divided into at most stage.

Function unitControl circuit

< t

Figure 3-14 Timing delay of one-stage pipelined datapath

 From these above constraints and Equation 3-2 and 3-3, we can derive the solution as the

Equation 3-4.

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=
=
=
=
=
=
=

3
1
3
1
1
1
1

7

6

5

4

3

2

1

P
P
P
P
P
P
P

 (3-4)

3.3 Experimental Results

In this chapter, we show the experimental result of our proposed design flow. It includes

spatial optimization and temporal optimization as shown in Figure 3-15.

42

Figure 3-15 Proposed design flow

Spatial optimization

Table 3-9 shows the synthesized result by using the above optimized method that is

defined as spatial-optimized. It shows the timing critical and the hardware complexity of each

grouping. At the same time, we also set the timing constraint as 2.5ns (400MHz) as the typical

case. By the way, we can derive the general case of common operating frequency in DSP.

43

Table 3-9 Synthesized result of baseline and spatial-optimized

Baseline Spatial-
optimized

Baseline Spatial-
optimized

Baseline Spatial-
optimized

delay(ns) 0.63 0.82 4 4.6 2.5 2.5
area(um2) 40468 8811 25173 5635 26183 9530
delay(ns) 0.45 0.45 3 3 2.5 2.5
area(um2) 14148 14282 7209 7209 7215 7215
delay(ns) 0.62 0.72 2.5 2.8 2.5 2.5
area(um2) 15914 7040 9977 5515 9977 5547
delay(ns) 0.31 0.31 1.4 1.4 2.5 2.5
area(um2) 3063 3063 1442 1442 1443 1443
delay(ns) 0.8 1.4 4.8 9.3 2.5 2.5
area(um2) 225086 94460 131332 49693 132160 50341
delay(ns) 2.51 2.01 7 7.6 2.5 2.5
area(um2) 518969 68055 371405 39317 NA 47741
delay(ns) 0.66 0.66 2 2 2.5 2.5
area(um2) 42123 30393 26657 24388 26657 24399

Shuffle

Grouping

S/R

Mpy

Cmp

Mask

Add/Sub

Logic

Synthesis for timing Synthesis for area Target 400 MHz

In Table 3-10, we can find the hardware complexity of spatial-optimization is much

lower than that of baseline from the third column “Area-optimized”. In order to sharing the

hardware resource, we add some control hardware like encoder which adds timing delay

slightly in datapath. In the “Synthesis for timing” column of Table 3-10, we can find the

timing delay of most functional units is increasing slightly except the “Mpy” functional unit.

Because the hardware complexity of the “Mpy” functional unit of baseline with larger

encoder is much lager than spatial-optimized with smaller encoder, the timing delay of

baseline is longer than spatial-optimization. By the way, the “Logic” and “Mask” unit are the

same in both baseline and spatial-optimized because these units use simple logical gate or just

wiring. If we add some controller to share the same logical gate, there is much overhead

compared to the original controller in these two units. Finally, we use a typical case target to

400MHz (2.5ns) to confirm the above optimized method for area. We show the improvement

of these functional units as shown in Table 3-11. In the “Mpy” unit of the 400MHz column,

the “NA” means no available because its timing delay is longer than 2.5ns. In the next section,

we’ll take the latency spec. of the SPU into consideration for micro-operation design.

44

Table 3-10 Comparison between baseline and spatial-optimized

Grouping Baseline
Spatial-

optimized Baseline
Spatial-

optimized Baseline
Spatial-

optimized
Add/Sub 0.63 0.82 25173 5635 26183 9530

Logic 0.45 0.45 7209 7209 7215 7215
Cmp 0.62 0.72 9977 5515 9977 5547
Mask 0.31 0.31 1442 1442 1443 1443
S/R 0.8 1.4 131332 49693 132160 50341
Mpy 2.51 2.01 371405 39317 NA 47741

Shuffle 0.66 0.66 26657 24388 26657 24399

Timing-optimized (ns) Area-optimized (μm2) 400MHz (μm2)

Table 3-11 Improvement by spatial-optimized

Grouping Timing Area 400MHz

Add/Sub -30.2% 77.6% 63.6%
Logic 0.0% 0.0% 0.0%
Cmp -16.1% 44.7% 44.4%
Mask 0.0% 0.0% 0.0%
S/R -75.0% 62.2% 61.9%
Mpy 19.9% 89.4% NA

Shuffle 0.0% 8.5% 8.5%

 Temporal optimization

We’ll prove our proposed temporal optimization that is optimal micro-architecture. In

fact, we can synthesize for all cases of the latency spec. of functional units. But, this method

is too trivial to consume the design time in order to get the optimal micro-architecture with

the deeper pipelined datapath. Our proposed temporal optimization not only saves the iterative

time, but also gets the optimal selection of pipelined-stage as shown in Table 3-12.

45

Table 3-12 All cases for latency spec.

1 2 3 4 5 6
delay(ns) 1.25 NA NA NA NA NA
area(um2) 9490 NA NA NA NA NA
delay(ns) 1.25 NA NA NA NA NA
area(um2) 10287 NA NA NA NA NA
delay(ns) 1.25 NA NA NA NA NA
area(um2) 7690 NA NA NA NA NA
delay(ns) 1.25 NA NA NA NA NA
area(um2) 3710 NA NA NA NA NA
delay(ns) 1.25 1.25 1.25 NA NA NA
area(um2) NA NA 78639 NA NA NA
delay(ns) 1.25 1.25 1.25 NA NA NA
area(um2) 31283 32653 34888 NA NA NA
delay(ns) 1.25 1.25 1.25 1.25 1.25 1.25
area(um2) NA NA 81782 83195 83554 85655

Grouping Latency(#)
under timing constraint 1.25

 Add/Sub 1

 Logic 1

 Cmp 1

 Mask 1

 S/R 3

 Shuffle 3

 Mpy 6

In Table 3-12, the blue-color word is derived form our proposed temporal optimization.

For each functional unit, the blue-word selection is the best choice for the optimal

micro-architecture. Maybe we can try to synthesize for all case, but it is time-consuming. For

example, the Mpy functional unit has six latencies, that’s mean that it have six possible

pipelined structure. If we try to synthesize for all cases, it is not timing-efficient. This

situation is becoming serious for functional unit with more and more latencies of deeper

function unit in order to target high operation frequency. Finally, we show the improvement

compared to trivial approach with our proposed temporal optimization as shown in Table

3-13.

Table 3-13 shows the comparison of all pipelined functional units between our proposed

temporal optimization and the trivial approach with the pipeline diagram of the reference

paper [7]. The Reference version uses the spatial-optimized datapath to explore the latency

directly by the pipelined-diagram of reference, and the temporal-optimized uses the same

datapath by temporal optimization. The first column is all functional units, and the second is

the latency spec. that means the maximum number pipelined-stage of each functional unit. We

can see that the reference is directly used the latency spec. to pipeline each functional unit by

46

CAD tool. However, the spatial optimization uses our proposed temporal optimization. Seeing

the “Improvement” column, we can see improvement by 0% from Add/Sub to S/R functional

units, because these functional units have no latency to explore. In other words, these

functional units have only one-latency and the S/R must pipeline 3 stages into it in order to

target high frequency. In both “Shuffle” and “Mpy”, we improve the area compared to the

version 3 by 10% and 4.5% respectively.

Table 3-13 Temporal optimization

pipelined-stage 1 1
area 9490 9490

pipelined-stage 1 1
area 10033 10033

pipelined-stage 1 1
area 7690 7690

pipelined-stage 1 1
area 3710 3710

pipelined-stage 3 3
area 78639 78639

pipelined-stage 1 3
area 31283 34888

pipelined-stage 3 6
area 82964 85655

Ref. Improvement (%)

Add/Sub 1 0%

FU latency(#)
(800MHz)

Temporal-
optimized

Logic 1 0%

Cmp 1 0%

Mask 1 0%

S/R 3 0%

Shuffle 3 10.33%

Mpy 6 3.14%

Finally, we show the area-efficient micro-architecture target to lightweight applications

target to 100MHz to 800MHz as shown in Table 3-14. Our proposed design flow improves the

area of micro-architecture by approximate 20%. The case “800 MHz” is just improved by 3%

because its optimization space is limited by timing-optimized. General speaking, we can see

the trend of micro-architecture is area-efficient by using our proposed design flow. In Table

3-14 and Figure 3-16, we can see the other case is area-efficient micro-architecture improved

15% to 20% of area.

47

Table 3-14 Area reduction from temporal optimization

Freq. 800 700 600 500 400 300 200 100
Ref 231180 227291 222731 220023 211618 205309 204331 200748

Proposed 224884 192097 177805 174614 169417 160588 157005 154830
Improvement 2.72% 15.48% 20.17% 20.64% 19.94% 21.78% 23.16% 22.87%

0

50000

100000

150000

200000

250000

800 700 600 500 400 300 200 100

Freq. (MHz)

A
re

a
(u

m
^2

)

Ref Proposed

Figure 3-16 Improvement by our proposed design flow

49

 4 SILICON IMPLEMENTATION

In this chapter, the silicon implementation is to implement the design with cell-based

flow, and the result shows the area and timing after physical implementation. The result of

silicon implementation contains two parts. The first one is the implementation flow and the

second one is the implementation result of SPU and layout of SPU chip.

50

4.1 Implementation Design Flow

We will design the SPU processor based on UMC 90nm 1P9M Process Low-K. Figure

4-1 is a flow chart which illustrates the design flow for our SPU design.

μ-architecture design

RTL coding

RTL simulation

Synthesis

Gate-level simulation

Physical design

Figure 4-1 Implementation flow

Figure 4-2 illustrates the I/O interface. The SPU has 32KB on-chip instruction memory

and 64KB on-chip data memory. The datapath is dual-issue as shown in Figure 4-3. By our

proposed design flow of last chapter, we can decide systematically the pipelined stage of

every functional unit to design area-efficient micro-architecture. By the way, the S/R and Mul

are pipelined into two stages respectively to meet the timing constraints. Due to the critical

path determined by the memory modules provided in cell library, we set 400 MHz (2.5ns) as

the operating frequency of our SPU core. We can see that the LS pipe is pipelined into 5

stages because these stages are to do data-gather due to the 32-bit output of data memory. In

order to gather the data, we need four cycles to do that. After getting the available result of

51

each functional unit, we use shared by-passing register to pass the result of every functional

unit.

According the micro-architecture proposed from the last chapter, it defines pipeline stage

to facilitate the RTL design. And then the forwarding path will take into consideration to

avoid redundant routing paths. On the basis of pipeline stage and the I/O definition, we define

the micro-operation of all instructions in every pipeline stage. By doing this work, hardware

resources will be further defined. After these above analysis and design, the RTL (register

transfer level) model can be built up. We execute behavioral-level simulation in the RTL

model by using NC-Verilog simulator. After the RTL code is bug free, we use synthesis tool

(Synopsys design complier) to synthesis our RTL code into gate-level netlist. The gate-level

simulation will be performed to sure the logic gates work correctly. When the gate-level

netlist is ready, we can use Cadence SoC encounter to implement physical design.

Figure 4-2 Our SPU interface

52

EXE

EXE

EXE

EXE

EXE

src1_exe

src2_exe

src3_exe

even_pipe_out

ADD/SUB Unit

Logical Unit

Cmp Unit

Mask Unit

MUL Unit

EXE

Shuffle Unit

EXE

S/R Unit

even pipe

odd pipe

odd_pipe_out

EXE

EXE

Forward Unit

Consumer

AG

LS

Producer 1

Producer 2

Producer 3

Producer 4

Producer 5

Producer 6

Producer 7

Producer 8

Producer 9

Producer 10

MEM MEM MEM MEM

EXE

Figure 4-3 Pipeline diagram of our SPU

4.2 Implementation Result

In Table 4-1 , the synthesis result which uses UMC 90nm 1P9M Process Low-K and

operates in worst case shows the area and timing. Figure 4-4 shows the layout of our

SPU_CHIP. This processor is pipelined into 10 stages (4 instruction pipeline and 6 execution

pipeline). According to simulation and APR result, SPUCHIP can operate at 400MHz and

core size is 2.5mm x 2.5mm shows the summary of APR results.

53

Table 4-1 Synthesis result

Technology UMC 90nm 1P9M Process Low-K
Total area 927,326
Die size 2.5mm x 2.5mm

Operating freq. 400 MHz
Power 320 mW

64 KB Data Mem

SPU_DSP

32 KB Instr. Mem

Figure 4-4 Implementation result

55

 5 CONCLUSION & FUTURE WORKS

In this thesis, we proposed two-phased design flow to explore the optimization space

with respect to the specific ISA implementation for embedded applications. The proposed

two-phased design flow is to get the optimal micro-architecture under the various timing

constraints with the software support. First-phased design flow is spatial-optimized includes

function modeling and cycle-accurate modeling. In one word, the first-phased design flow is

mainly spatial optimization. Second-phased design flow is temporal optimization to explore

the latency by building mathematical formulation. Using formulating the mathematical

formulation by our proposed temporal optimization, we can get the area-efficient

micro-architecture systematically. We take the Cell SPU as our design example because the

Cell SPU is data-oriented processor that exposes long latency. Our proposed design flow is

more area-efficient than the ad-hoc method to design micro-architecture. The experimental

result shows that our proposed design flow is more area-efficient 15% to 20% than the

micro-architecture of reference [7] directly under timing constraints 100 MHz to 800 MHz.

Besides, our proposed design flow can be applied to the synthesis of ASIPs (Application

56

Specific Instruction set Processor), such as an automatic processor for optimal

micro-architecture under the targeted timing constraints with the existing software support.

For example, within the last year commercial tools like LISATek [18] framework came up,

that allows to designing ASIP architectures by using their own description language. It

shortens the design time dramatically compared to classical register-transfer-level (RTL)

based approaches. For the micro-architecture of the specific ISA, the processor generator can

be used to get the area-efficient micro-architecture under the target timing constraints with the

existing software support when the RTL model of the processor is ready.

57

REFERENCES

[1] Y. H. Hu, Programmable Digital Signal Processors – Architecture, Programming, and
Applications, Marcel Dekker Inc., 2002

[2] R.B. Lee, “Multimedia extensions for general-purpose processors,” in Proc. IEEE
Workshop Signal Processing Systems, pp. 9-23, Nov.1997.

[3] K. Diefendorff, P.K. Dubey, R. Hochsprung, and H. Scales, “AltiVec extension to
PowerPC accelerates media processing,” IEEE Micro, vol. 20, no. 2, pp. 85-95,
Mar./Apr. 2000.

[4] J.A Kahle et al., “Introduction to the Cell multiprocessor,” IBM J. Research and
Development, vol. 49, no. 4/5, July 2005, pp.589-604

[5] The Cell architecture. [Online]. Available:
http://domino.watson.ibm.com/comm/research.nsf/pages/r.arch.innovation.html

[6] Cell Broadband Engine Programming Handbook version 1.1, IBM, 2007

[7] B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee, G. Gervais, R. Kim, T. Le, et. al.,
"The microarchitecture of the synergistic processor for a Cell processor," IEEE J.
Solid State Circuits 41, No. 1, 63-70 (2006).

[8] Synergistic Processor Unit Instruction Set Architecture, Version 1.2, IBM Corporation,
Sony Computer Entertainment Corporation, and Toshiba Corporation. [Online].
http://www.ibm.com/chips/techlib/techlib.nsf/techdecs/
76CA6C7304210F3987257060006F2C44/$file/ SPU_ISA_v1.2_27Jan2007_pub.pdf.

[9] J. Leenstra et al., “The vector fixed point unit of the streaming processor of a CELL
processor,” presented at the Symp. VLSI Circuits, Kyoto, Japan, 2005.

[10] H. Oh et al., “A fully-pipelined single-pipelined single-precision floating point unit in
the streaming processing unit of a CELL processor,” presented at the Symp. VLSI
Circuits, Kyoto, Japan, 2005.

[11] S. Krithivasan and M.J. Schutle, “Multiplier Architecture for Media Processing,” in
Proc. 37th Asilomar Conf. Signals, Systems, and Computers, pp. 2193-2197, Nov.
2003

58

[12] Suzuki, K. et al.,”A 2000-MOPS embedded RISC processor with a Rambus DRAM
controller,” IEEE J. Solid-State Circuit, vol. 34, pp. 1010-1021, 1999

[13] A. Terechko, M. Garg, and H. Corporaal, “Evaluation of speed and area of clustered
VLIW Processors,” in Proc. VLSID, pp.557-563, 2005

[14] P.C. Hsiao, T. J. Lin, C. W. Liu, and C. W. Jen, “Efficient datapath design for clustered
&pipelined digital signal processors,” in Proc. VLSI design/CAD, Aug. 2005

[15] C. Leiserson, F. Rose, and J. Saxe, “Optimizing synchronous circuitry by retiming,”
in Third Caltech Conference on VLSI, pp. 87-116, 1983

[16] C. Leiserson, F. Rose, and J. Saxe, “Retiming synchronous circuitry,” Algorithmica,
vol.6, pp. 5-35, 1911

[17] K. K. Parhi, VLSI Digital Signal Processing Systems – Design and Implementation,
John Wiley & Sons, 1999

[18] A. Hoffmann, H. Meyr, and R. Leupers, Architecture Exploration for Embedded
Processors with LISA, Kluwer Academic Publishers, 2002

59

作者簡歷

呂進德，1983 年 9 月 13 日出生於台南縣。2006 年取得國立中央大學電機工程學

系學士學位，並在國立交通大學電子工程研究所攻讀碩士。2008 年在劉志尉教授指導

下，取得碩士學位。本篇論文「長管線延遲資料路徑之高面積效率設計與實現」為其碩

士論文。

