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ABSTRACT

Datapath is primarily the most critical.element that affects performance. The allocations
and design of datapath depends wvarious application requirements. General speaking, for
high-performance processors like Intel’s Pentium Processors, IBM’s Cell Processors and so
on, the designers extremely rise up operating frequency by board VLSI techniques. On the
contrary, such as lightweight applications.in-the-embedded system, the goal of datapath design
is to seek low-power, small chip ‘area and so on: The instruction set architecture (ISA) has
different ways of implementation for different application requirements. Therefore, this thesis
proposes the design flow to automatically generate the area-efficient datapath for various
application requirements. The area-efficient datapath generator includes the two-phased
including spatial-optimized and temporal-optimized for datapath optimization. It can
systematically develop and optimize datapth of the processors while leveraging the instruction
set architecture (ISA) of high performance processor like IBM’s Cell and the software
toolchain and application programs. Spatial-optimized means that efficient utilization in
spatial domain including function modeling and cycle-accurate design. In other phase,
temporal-optimization explores the instruction latency to systematically build wup
mathematical formulation to get the optimal micro-architecture. We take the Cell synergistic
processor unit (SPU) as our datapath design example to analyze the optimization space of
SPU ISA implementation, and find the area-efficient micro-architecture by using our
proposed design flow. In the experiment, the micro-architecture by using our proposed design
flow improves about 15-20% of area compared to using CAD tools for datapath design of
embedded processors targeted 100MHz to 800MHz. Finally, we use the previous design flow
to implement the SPU DSP in the UMC 90nm 1P9M CMOS process. The silicon area is
2.5mmx2.5mm and the clock rate is 400MHz.
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1 INTRODUCTION

Today’s system-on-a-chip (SoC) has advanced rapidly, and there exists many design
considerations, such as time-to-market, production cost, operation speed and so on. These
demand the different performance requirement such as, low power for portable devices, small

area, and high operating frequency such as computing-intensive for workstation and so on.

In the meanwhile, the cost of software development is more and more expensive in many
embedded systems. It is not efficient time-to-market to develop the software and hardware at
the same time. By this motivation, we try to develop the hardware for different performance
requirement under the software support. In this thesis, we focus on developing processors
under different performance requirement while leaving the existing software in order to shrink
the time-to-market and then explore the micro-architecture optimization space of the specific

ISA implementation



1.1 Motivation

With the increasing performance requirement for system-on-a-chip (SoC) applications,
such as lower power, small area, and high operating frequency, developing these applications
for many performance requirements is not time-consuming. In the meanwhile, the software
development is more and more expensive in the embedded system. However, we can reuse the
existing software to develop the hardware for the various performance requirements. That’s
means that we can reduce the TTM (time-to-market) to develop the hardware for many
performance requirements. We exploit the same ISA with suitable implementation can help to

reduce design cost.

The Cell Broadband Engine (CBE) is very popular. It provides the open and full software
support. Therefore, we can take it into consideration to develop the hardware under its
software support. But its datapath.is for extremely high-performance. There is a trade-off
between the performance and the area.If-we.design the hardware for low performance
compared to Cell processor, such as-targeted to several hundred MHz. The original datapath
of Cell processor is not the most area-efficient for lower performance. However, that’s mean
that the same instruction set architecture (ISA) has different ways of implementation for

different performance requirement.

1.2 Problem Description and Distribution

With the growing computing requirement, DSPs are becoming prevalent solutions in
multimedia applications and telecommunications. In order to save time-to-market, we can
develop the processors under different performance requirements with the existing software
toolchain. By this above motivation, we can save the design time of software development to

develop DSPs for various applications with software support. For example, the software



toolchain of the famous Cell Broadband Engine (CBE) is ready to develop the processor with

the instruction set architecture (ISA) for various applications in the embedded system.

ISA is the interface between hardware and software. In fact, ISA implementation
depends on the various application requirements. That’s mean that different ISA
implementations have different micro-architecture designs under the target applications. In
other words, there are different optimization spaces under various applications. For example,
the micro-architecture targeted to several hundred MHz under the same ISA implementation
with the binary-compatible software. We can find that the Cell SPU expose the long latency
for high-performance and expose the long latency for datapath optimization as show in Figure
1-1. There are three ways for microarchitecture design. We’ll propose two-phased design flow

to design area-efficient micro-architecture under this constraint.

three=stage.. .

] 9
Combinational Combinational Combinational
circuit circuit circuit
[ [ 1
two-stage [ M [

A

Latency = 3 > Combinational Combinational
circuit circuit

one-stage  _

H ¥
g
b E A

Figure 1-1 Latency exploration

|
I

\ 4
\

In this thesis, we propose two-phased area-efficient design flow of ISA implementation
for DSPs under binary-compatible software. We take the Cell SPU as our design example.
Because the Cell SPU is the data-oriented processor, there is cleanly much more optimization
space than control-oriented processor, such ARM processors. Our proposed two-phased
area-efficient design flow includes spatial optimization and temporal optimization. This

two-phased design flow provides the systematical area-efficient micro-architecture design.



Compared with ad-hoc method, using our proposed design flow saves about 20% of area

under 100MHz to 800MHz timing constraints.

1.3 Thesis Organization

This thesis focuses primarily on two-phased systematical design flow of processor:

Spatial optimization and temporal optimization. This thesis is organized as follows.

Chapter 2 introduces the Cell SPU which includes Cell Broadband Engine Architecture
(CBEA), Synergistic Processor Unit (SPU), SPU instruction set architecture (ISA), and SPU
micro-architecture. Chapter 3 first describes the first-phased design flow including function
modeling and cycle-accurate modeling. This phase design flow is mainly spatial optimization
while the second-phased is temporal optimization'by formulating mathematical formulation.

At last of this chapter, we list the-experimental.results of our proposed design flow.

Chapter 4 shows the silicor-implementation reésults by using our proposed design flow
target to 400MHz. Finally, chapter 5 eoncludes this thesis and points out the direction of

future research.



2 BACKGROUND

Contemporary DSPs are multimedia-rich, involving significant amounts of audio and
video processing. Cell Broadband Engine (CBE) processor provides a high-performance for
applications in media-rich consumer-electronic devices. This chapter provides background
information related to this thesis. Chapter 2.1 introduces the Cell Broadband Engine (CBE)
and synergistic processing unit (SPU). Chapter 2.2 and Chapter 2.3 give an overview of the
synergistic processing unit (SPU) instruction set architecture (ISA) and micro-architecture

respectively.



2.1 Cell Broadband Engine Architecture

The Cell Board Engine (CBE) is the first implementation of a new multiprocessor family
conforming to the Cell Broadband Engine Architecture (CBEA, or informally, “Cell”). The
CBEA is a new architecture that extends the 64-bit PowerPC Architecture. The CBEA and the
CBE are multicore processors jointly developed by SONY, Toshiba, and IBM, known as STI

[4]. Figure 2-1 is a die photo of the Cell BE.

Figure 2-1 Iﬁie":p 0to of Cell Broadband Engine

Although the CBE processor is initially intended for multimedia applications in
media-rich consumer-electronics devices such as game consoles, the architecture has been
designed to extend fundamental advances in processor performance. These advances are

expected to support a broad range of applications in both commercial and scientific fields.

Figure 2-2 [5] shows the block diagram of Cell processor. The most distinguishing
feature is that the CBE processor is a multi-core with 9 processor elements and a shared
coherent memory on-a-chip: the Power Processor Element (PPE) and the Synergistic
Processor Element (SPE). The CBE processor has one PPE and eight SPEs. There is a mutual
dependence between the PPE and the SPEs. The PPE is responsible for running the operating

system and coordinating the flow of the data processing threads through the SPEs. This



differentiation allows the architectures and implementations of the PPE and SPE to be
optimized for their respective workloads and enables significant improvements in

performance per transistor.
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The PowerPC Processor Element (PPE) is a 64-bit PowerPC Architecture core optimized
for design frequency and power efficiency. It is a general-purpose, dual-thread, 64-bit RISC
processor with vector/SIMD extensions. The PPE is responsible for overall control of a CBE
system. It runs the operating system for all applications running on PPE and Synergistic
Processor Elements (SPEs). The PPE consists of two main units as shown in Figure 2-3 [6],
The PowerPC processor unit (PPU) is the computation unit, and the PowerPC processor
storage subsystem (PPSS) is for the purpose of storage. More detail information about

PowerPC Processing Elements is in [6].



PowerPC Processor Element (PPE)

PowerPC Processor Unit (PPU)

L1 Instruction L1 Data
Cache Cache

PowerPC Processor
Storage Subsystem (PPSS)

L2 Cache ‘

Figure 2-3 PPE block Diagram

€ Synergistic Processor Elements

The eight Synergistic Processor Elements (SPEs) execute a new single instruction multiple
data (SIMD) instruction set-the Synergistic Processor Unit Instruction Set Architecture. They
are independent processors, each running an independent application thread. Each SPE is a
128-bit RISC processor for data-richj.compute-intensive applications and includes a private
local store for efficient data and instruction aceess. Figure 2-4 [6] shows the major elements
of the SPE architecture and their relationship. Local storage (LS) is a private memory for SPE
instructions and data. The synergistic processor unit (SPU) core is a processor that runs
instructions from the LS and can read from or write to the local storage (LS). The direct
memory access (DMA) unit transfers data between LS and system memory. The channel unit
is a message-passing interface that allows the SPU core to communicate with both the DMA

unit and other devices in the Cell processor.
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Figure 2-4 SPE architecture

The SPU core is a single-instruction multiple-data (SIMD) reduced instruction set
computing (RISC) processor [7]. All instructions are encoded in 32-bit fixed-length
instruction formats. The SPU feature 128, general-purpose registers (GPRs) that are used by
both floating and integer instructions. Most ifistructions operate on 128-bit-wide data that
perform integer arithmetic, logical operations, loads, stores, compares, and branches. The
main SPU functional unist are”:shown im-Figure' 2-5 [6]. These include the synergistic
execution unit (SXU), the LS, and the 'SPU register file unit (SRF). The SPU issues two
instructions to its two execution pipelines respectively. The pipelines are referred to as even

(pipeline 0) and odd (pipeline 1). These units execute the following types of operations:
® (dd Pipeline

B SPU Odd Fixed-Point Unit (SFS) — Executes byte shift, rotate mask, and shuffle

operations on quadwords

B SPU Load and Store Unit (SLS) — Executes load and store instructions and hint for

branch instructions. It also handles DMA requests to the LS

B SPU Control Unit (SCN) — Fetches and issues instructions to the two pipelines. It

performs control functions such as branch instructions, arbitration of access to the



LS and register file, etc.

B SPU Channel and DMA Unit (SSC) — Manages communication, data transfer, and

control into and out of the SPU.

® Even Pipeline

B SPU Even Fixed-Pointed Unit (SFX) — Executes arithmetic instructions, logical
instructions, word SIMD shifts and rotations, floating-point comparisons, and

floating-point reciprocal and reciprocal square-root estimations.

B SPU Floating-Point Unit (SFP) — Executes single-precision and double-precision
floating point instructions, and conversions, and byte operations. The 32-bit

multiplier are implemented in software using 16-bit multiplies.

Synergistic Execution Unit (SXU)

Odd Pipeline

SPU Odd
Fixed-Point
Unit
(8F3)

SPU Load
and Store
Unit
(5L5)

SPU
Control
Unit
(SCN)

SPU Channel
and DMA
Unit

(55C)

I

I

!

l

SPU Even
Fixed-Foint
Unit
(SFX)

SPU
Floating-Point
Unit
(SFP)

SPU
Register File
Unit
{SRF)

Even Pipeline

Figure 2-5 SPU functional units

2.2 SPU Instruction Set Architecture

The instruction set architecture (ISA) is the most important design issue that DSP

designer must get right from the start. Instruction set architecture (ISA) serves as an

10



abstraction layer between hardware and software. It should include the following information,
instruction sets, instruction format, data representation, data storage, address modes, and
exceptional conditions. In the following section, the fixed point SPU Instruction set

architecture (ISA) [8] will be described.

€ Instruction formats

There are six basic instruction formats. These instructions are all 32-bit long. Instructions

in memory must be aligned on word boundaries. The instruction formats shown in Figure 2-6.

OoP RB RA RT

\] \A vy \A \

RR instruction format [0 10 [11 17]18 24 25 31
opP RT RB RA RC

\] |A] ¥y vy \A \

RRR instruction format |0 3[4 1011 17]18 24125 31
OP, 17 RA RT

\] vy \Al vy \

RI7 instruction format [0 10 [11 17]18 24125 31 |
OoP 110 RA RT

\J vy \AJ vy \

RI10 instruction format |0 718 17]18 2425 31
opP 116 RT

\ vy (Al \

RI16 instruction format |0 8 [9 24 [25 31
opP 118 RT

\] \AJ vy \

RI18 instruction format |0 6[7 2425 31

Figure 2-6 Instruction format

€ Data representation

The SPU hardware supports the following data types: Byte (8-bit), halfword (16-bit),
word (32-bit), doubleword (64-bit), and quadword (128-bit) as shown in Figure 2-7. All GPRs

(general-purpose resisters) are 128-bit wide. The leftmost word (bytes 0, 1, 2, and3) of a

11



register is called the preferred slot. When instructions use or produce scalar operands or
addresses, the values are in the preferred slot. Because the SPU accesses its LS a quadword at
a time, there is a set of store-assist instructions for insertion of bytes, halfwords, words, and

doublewords into a quadword for a subsequent load/store.

Byte Index
4 5 6 7 8 9 10 1" 12 12 14 15

Figure 2-7 Register layout of data types and preferred scalar slot

€ Data storage o e

The SPU architecture defines a ipgiﬁvate memoriy, also called local storage, which is
byte-addressed load and store insf'rqbtibns cornbi_néd operands from one or two registers or
immediate value to form the effective address of the memory operand. The LS is 256 KB,

single-ported, non-caching memory. It stores all instructions and data used by the SPU. SPU

data-access bandwidth is 16 bytes per cycle, quadword aligned.
€ Addressing modes

All instructions, except branches, generate address by incrementing a program counter.
For load and store instructions that specify a base register, the effective address in memory for

a data value is calculated relative to the base register in one of three ways:
B Resister + Displacement

The displacement (D) forms of the load and store instructions form the sum of a



*

displacement specified by the sign-extended 16-bit immediate field of the instruction

plus the contents of the base resister.

B Register + Register

The index (X) forms of the load and store instructions form the sum of the contents

of the index register plus the contents of the base register

B Register

The load string immediate and store string immediate instructions use the

unmodified contents of the base register

Instruction sets

The SPU instruction set used are instructions that are 4 bytes long and word-aligned. It

supports 16-byte (128-bit) operand accesses between storage and its 128 registers. For a brief

overview of the fixed point SPU-instruction-set,-including data transfer, integer, logical, data

transformation.

B Data transfer instructions

In order to process data in the memory, load/store machine use the load and store
instruction to handle memory access issues. Load and store instructions combine
operands from one or two registers and an immediate value to form the effective address
of the memory operand. Only aligned 16-byte-long quadwords can be loaded and stored.
Therefore, the rightmost 4 bits of an effective address are always ignored and are

assumed to be zero.

B Integer and logical instructions

® Addition/subtraction instructions

13



The instructions of addition or subtraction are the operators of halfword (16-bit)
or word (32-bit) of SIMD version. “A” is the word-operator that replaces the
destination operand with the sum of the two source registers as shown in Figure 2-8,
while “ai” takes one source operand as 128-bit immediate data. “Sf” and “sfi”

perform general and immediate subtraction. The 32-bit SIMD version of “A” is

supported by the SPU instruction set and shown in Figure 2-8.

source register 1 ’ A0 I Al I A2 I A3 ‘
® ® ®

source register 2 ’ B.0 I B.1 I B.2 I B.3 ‘
L L L L

destination register | T.0 | T.1 | T.2 | T.3 \

Syntax : A RT,RA,RB

Figure 2-8 Example of addition operation

® Compare instructions

Compare instructions , compare- the two source operands and store the
destination to register. THe source operands can be registers or immediate data. It is
the operators of byte (8-bit) or halfword (16-bit) or word of SIMD version. For
example, “ceqb” (compare equal byte) set the byte-result as OxFF if the source

operand 1 is equal to source operand 2 and set 0x00 vice versa.

®  Multiply instructions

Multiply-relative instructions combine multiply and multiply-and-accumulator
instructions. These multiply instructions only support 16-bit SIMD multiplication
which get the lower or upper part of one word in each register to take the multiply
operation and the product maybe be shifted, mask upper or lower, or the additional
accumulation with it. For example, multiply-high gets the result of the leftmost 16

bits of the value in one word of register RA are multiplied by of the rightmost 16

14



bits of the value in one word of register RB, and then the product is shifted left by
16 bits and zero are shifted in at the right for each of four word slots as shown in

Figure 2-9.

source register 1

source register

destination register ’ P.0<<16 I P.1<<16 I P.2 <<16 I P.3<<16 ‘
Syntax : MPY RT,RA,RB

Figure 2-9 Example of multiply operation

® [ ogical instructions

Logical instructions*handle.bit-wis€.Boolean logical operations. The logical
operations are composed 'of AND, OR, XOR, NAND, NOR, and XOR instructions.

These instructions perform the generalllogical operation in the processor.

B Data transformation instructions

To support the data alignment of application processing, data transformation

instructions are include shift/rotator, extend, form, gather and shuffle.

® Shifter / rotator instructions

The shift instruction can shift the source operand arithmetically or logically. It
can specify the shift amount in the ways, either register or immediate. It support
shift of halfword, word, and quadword, and shift quadword by byte. The rotator

instructions also support the same as the above operation.

® Extend instructions
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The extend instruction is used to support the data precision. These instructions
support byte (8-bit) to halfword (16-bit), halfword (16-bit) to word (32-bit), and
word (32-bit) to double word (64-bit). For example, the operation of “xsbh” (extend
sign byte to halfword) is that for each of eight halfword slots, the sign of the byte in

the right byte of the operand in register RA is propagated to the left byte.

®  Gather instructions

The gather instruction is include gather bits from bytes, halfwords, or words.
This operation can be used to gather bits of the leftmost bit of one byte, halfword, or
word. For example, “gbb” (gather bits from bytes) operates as the following
description: a 16-bit quantity is formed in the right half of the preferred slot of
register RT by concatenating the rightmost bit in each byte of register RA. The
leftmost 16 bits of register RT:are extending to zero as the remaining slots of

register RT.

® Form instructions

The Form instructions are to create a mask by replicating the rightmost bit of
bytes, halfwords, and words. For example, “fsmb” (form select mask for bytes)
operates as the following description: the right 16-bit of the preferred slot of register
RA are used to create a mask in register RT by replicating each bit eight times. Bits
in the operand are related to bytes in the result in a left-to-right correspondence as

shown in Figure 2-10.
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source register | A0 | Al | A2 | AJ.3

[112[113] 124 ] 115 [116 [ 117 118 129 [ 120 121 [122] 27 [ 28 [ 29 | 30 | 31‘

destination register TlO Ti1 T2 T3

Syntax : FSMB RT,RA

Figure 2-10 Example of form select mask for bytes operation

® Shuffle instructions

The shuffle operation is extremely powerful and finds its way into many
applications in which data reordering, selection, or merging is required. Its
operation is that register RA and RB are logically concatenated with the
least-significant bit of RA adjacent to the most-significant bit of RB. The bytes of
the resulting value are considered to be. numbered from 0 to 31. For each byte slot
in registers RC and RT, the value in register RC is examined, and a result byte is
produced as shown in Table 2-1 and Figure 2-11, and then the result byte is inserted

into register RT. Other instructions which are not above are enumerated in [8].

Table 2-1 Binary values in register RC and byte results

Value in Register RC Result Byte
(expressed in binary)
10xxxxxX 0x00
110xxxxX OxFF
11 Ixxxxx 0x80
otherwise shown in figure 2-11
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RC |EU‘14‘13‘10‘Eﬁ|15‘19‘1A‘1C‘1C|1C‘13‘IZ-B‘1D‘1B|IZ-E‘

Syntax : SHUFB RT,RA,RB,RC

Figure 2-11 Example of shuffle bytes operation

€ Exceptional conditions

The SPU support a single interrupt handler. The entry point for this handler is address 0
in local store. When a condition is present and interrupts are enabled, the SPU branches to
address 0 and disables the interrupt facility. The address of the next instruction to be executed
is saved in the SRRO register. The ir_gt-. :il‘l..S.tI'l:lCﬁbI"l' can be used to return from the handler.

| .
e
= |

2.3 SPU Micro-Architégture =~

Figure 2-12 [7] shows how the SPU s ofg;nized and the key bandwidth (per cycle)
between units. Instructions are fetched from the LS in 32 4-byte groups when LS is idle. The
fetched lines are sent in two cycles to the instruction line buffer (ILB). Instructions are sent,
two at a time, from the ILB to the issue control unit. The SPU issues and completes all
instructions in program order and doesn’t reorder or rename its instructions. Although the
SPU isn’t a VLIW processor, it does feature like dual feature and can issue up to two
instructions per cycle to nine execution units organized into two pipelines as shown in Table
2-1. Instructions pairs can be issued if the first instruction (from an even address) will be

routed to an even pipe unit and the second instruction to an odd pipe unit.
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Table 2-2 Dual issue unit assignments

Inst. From addrress 0 | Inst. From addrress 4

L

Simple fixed Permute
Shift Local store
Single precision Channel
Floating Integer Branch
Byte

Operands are fetched either from the register file or forward network and sent to the
execution pipelines. Each of the two pipelines can consume three 16 byte operands and
produce a 16 byte result every cycle. The register file has six read ports, two write ports, 128
entries of 128 bits each and is accessed in two cycles. Results produced by functional units are
held in the forward macro until they are committed and available from the register file. Loads

and stores transfer 16 bytes of data'between the register file and the local store.

Table 2-3 details the eight execution units. Simple fixed point [9], floating point [10] and
load results are bypassed directly:ftom the unit-output to input operands to reduce result
latency. Other results are sent to the forward macro where they distribute a cycle later.
Figure 2-13 [7] is a pipeline diagram for the SPE that shows how flush and fetch are related to

other instruction processing.
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Even Pipe

‘ Floating Point Unit ‘ ‘

Odd Pipe

Permute Unit ‘

‘ Fixed Point Unit

3x 16 B Operands
16 B Result

Channel Umt Local Store:

256 KB
Single port SRAM
6 cycle access time

3x 16 B Operands
16 B Result

Forwarding Macro

Register File

16 B load/store
- T e 80-90% Occupancy

3. Instruction Fetch

Fully pipelined reads/writes

Cyele by eyele arbitration
I. DMA {scheduled in advance)
2. SPU Loads and Stores

[}

Issue Control

128 B Line Read

Line Buffer

2 Inst, 1
T | Read Data Latch
Instruction 64 B Read Transfer

128 B Line Write

[ DMA Read Data Latich || DMA Write Data Latch |

8B DMA Out Bus

on chip interconnect

B DMA In Bus

DMA Unit

Figure 2-12 SPU organization

Table'2-3 Unit and instruction latency

Unit Instruction Instruction Latency]

Simple Fixed word arithmetic, logicals, count leading zeros, )

selects, and compares
Simple Fixed word shifts and rotates 4
Single Precision multiply-accumulate 6
Single Precision integer multiply-accumulate 7
Bytes pop count, absolute sum of differences, 4

byte average, byte sum

Quadword shifts, rotates, gathers, shuffles as
Permute . . 4
well as reciprocal estimate

Local Store Load and strore 6
Channel Channel Read/Write 6
Branch Branches 4
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[ Fetch ﬂ!lDﬁcodeHDep flissue B{Route PRFI ]

"

¥ 5 0 & ¥ 0]
[rrr [px1 [ByTEl][Fx1 || |[PERMI][LS-Ag ]
| 1

[PERM2[[ LS-Ax |

E
:

B Result staging in forward macro

[rx2 [ByTE2| Fx2

[[Fx3 [BYTE3

Instruction Fetch Pipeline

Figure 2-13 SPU pipeline diagram
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3 DESIGN & OPTIMIZATION FLOW OF
DEEP-PIPELINE LATENCY DATAPATH

Today’s multimedia applications need significant amounts of digital signal processing, so
the current trend of many contemporary processors 1is generally designed for
datapath-dominated recently. Cell processor provides a high performance for multimedia
applications in the embedded system. One of the key features is the synergistic processing
processor (SPU) which is data-oriented core for the requirement computing-intensive
operations. In this chapter, we firstly introduce an overview of our proposed two-phased
design flow: how to design the SPU datapath systematically. Chapter 3.1 presents the
first-phased of design flow called spatial optimization including function modeling and
cycle-accurate modeling, and then chapter 3.2 gives the second-phased of design flow, and

chapter 3.3 illustrates the experimental results.
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3.1 Spatial Optimization

Given the instruction set architecture (ISA) of synergistic processor unit (SPU), how to
design the datapath of functional modeling systematically? At this sub-section, we detail the
functional modeling and cycle-accurate design of our proposed two-phased design flow as

shown in Figure 3-1.

ISA

-

Function modeling
(Single-cycle execution)

-

[ Spatial optimization

[ Inst. latency ] :> (Cyc]e-accurate mode]ing)
[ RTL ]

C

-

C

[Performance requirement] > [ Temporal optimization
[ Netlist

Figure 3-1 Overview of our proposed design flow

C

3.1.1 Function Modeling

The functional modeling of our proposed first-phased design flow can be divide four
steps: instruction grouping, behavioral mode in RTL, synthesize (synthesized for
time-optimized and area-optimized), and then the datapath called baseline of this step in order

as shown in Figure 3-2.
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Ve - )
Function modeling
Instruction

grouping

ISA

-

Behavioral model
(in RTL)

Function modeling
(Single-cycle execution)

Synthesis

[ Inst. latency ] $ (Cycle-accurate modelingj
[ RTL ]

-

[ Spatial optimization

-

-

-

[Performance requirement] ) [ Temporal optimization
[ Netlist

Figure 3-2°Functional modeling

-

€ Instruction grouping

To reduce the effort of SPU datapath design, we profile the common instruction sets used
by multimedia applications, such as JPEG, FFT, DCT, FIR, and IIR through the SPU complier.
The first step is to categorize these profiled instruction sets mainly by operations. We divide
these instruction sets of datapath into seven group that are Add/Sub, Logic, Cmp (compare),

Mask, S/R (shifter/rotator), Shuffle, Mpy (multiply) respectively.

€ Bcehavioral model in RTL

After we categorize these instruction sets, we analyze the synthesis result of behavioral
assignment in RTL followed the semantics of the SPU instruction sets architecture by CAD

tool. This step intends to get the information of optimized-degree by Synopsys Design
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Complier. We take the instruction set “ah” (add halfword) for example, as shown in Figure
3-3. The “add sub _sel” of the Figure 3-3 is the control which instruction of the Add/Sub

group. Other instructions can follow the code format like the description of Figure 3-3.

Syntax : AH RT,RA,RB
Description : Add word

RTO — RA%T + %1
RTZ3 « RAZ3 + RB?3
RT*® « RA*S + RE*S
RTET  RABT + RBET
RTE? — RA%® + RBS?
RTIEM — RATEN L RO
RT12'|3 PRA'ZH_RE'E'B
RTI#12 — RA™15 L gp1#15

<+

(add_sub_sel)

result[ ] = srcl[ ] + sre2[ 1:
result[ ] = srci[ ] + src2[ 1:
resultc[ ] = srecl[ ] + sre2[ 1:
result[ ] = srel[ ] + src2[ 1:
result[ ] = srecl[ ] + sre2[ 1:
result[ ] = srel[ ] + sre2[ 1:
result[ ] = srel[ ] + src2[ 1:
resulc[ ] = srel[ ] + sre2[ 1:

Figure 3-3 Example-6fbehavioral assignment in RTL

€ Synthesis (synthesized for timing-optimized and area-optimized)

After finishing the above RTL-coding, we initially analyze the synthesis result of the
seven functional units. This result is defined as baseline of synthesis result in this thesis. We
can get the shortest delay of each functional unit through synthesized for timing-optimized. At
the same, synthesized for area-optimized provides the information of hardware complexity.
The information of area and timing is the mainly two topics that we’re most concern in
datapath design. In Table 3-1, we can clearly indicate that both the largest area and the longest
delay of baseline is the “Mpy” functional unit. By the way, we can see the synthesized result
about the resource report, and find out the numbers of synthesized resource provided by
DesignWare. Then we find that the CAD tool doesn’t do any optimization for our functional

units in datapath. In next subsection, we will provide general strategy to optimize the datapath
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Table 3-1 Synthesis result of baseline

Grouping : : B.aseline :
Synthesis for timing| Synthesis for area
Add/Sub || delay(ns) 0.63 4
(#9)  larea(um® 40468 25173
Logic | delay(ns) 0.45 3
(#9)  |larea(um® 14148 7209
Cmp |/ delay(ns) 0.62 2.5
(#18)  [larea(um’ 15914 9977
Mask || delay(ns) 0.31 1.4
(#9)  |larea(um’ 3063 1442
S/R | delay(ns) 0.8 4.8
(#26) |larea(um® 225086 131332
Mpy ||delay(ns) 2.51 7
(#11) [larea(um’ 518969 371405
Shuffle ||delay(ns) 0.66 2
(#7)  |larea(um’ 42123 26657

€ Optimization (sharing)

The SPU instruction sets support 128-bit SIMD operations which are 8-bit, 16-bit, 32-bit,
and 128-bit. For example, the <*Add/Sub” functional unit supports the 16-bit and 32-bit
addition and subtraction, and the “Cmp~-functional unit even supports 8-bit (byte), 16-bit
(halfword), and 32-bit(word) comparison....In“order to support varieties of bit-length
operations, we intuitively follow the behavioral assignment in RTL followed by the SPU ISA.
From the last section, we find that there is no optimization for these functional units in
datapath from these synthesized reports. This strategy is not area-efficient in order to transfer
the SPU ISA to single-cycle execution datapath. In this step, we describe how to optimize
these function units by using the general optimized strategy, such as resource sharing,

sub-parallel method [11] for this seven functional units.

Resource sharing is the general method that the same bit-length computation of on
functional unit uses the same hardware to compute with encoder that decides which
instruction set to execute. We use this method in these functional units called “Logical”,

GCMask’9, “S/R”’ and C‘Mpy7’.
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Sub-parallel method is that using multiple sub-word length hardware for word length
computation. For a subword adder, this method is achieved by inserting multiplexers in the
subword boundaries to propagate or prevent the subword carries in the carry chain [12]. For
example, the “Add/Sub” functional unit is support 16-bit and 32-bit operations. We use two
16-bit adders to support 32-bit adder by adding an and-gate to control the 16-bit adder result’s
carry as shown in Figure 3-4. If the word control bit is “1”, this hardware is to execute 32-bit
addition or subtraction, and execute 16-bit operations vice versa. Other functional unit, such

“Cmp”, can follow this method to do 8-bit, 16-bit, or 32-bit operations

cin
src2 [15:0]
— ™ 16-bit SUM [15:]
srel [15:0] TTT T
Ul ADDER
word_conto] }
- ey M
\
src2 [31:16]
R~ 16-bit SUM [31:16]
sl 311161 | AppER [ *
- >
cout
L

Figure 3-4 Add/Sub functional unit

We design the SPU datapath by using the above these optimized methods. In fact, these
above optimization methods are the spatial optimization on the contrary to the temporal

optimization in the 3.2 chapter.
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3.1.2 Cycle-Accurate Modeling

ISA

-

Function modeling
(Single-cycle execution)

-

[ Spatial optimization

[ Inst. latency ) $ (Cycle-accurate modeling]
[ RTL ]

-

-

-

[Performance requirementj > [Temporal optimization
[ Netlist

Figure 3-5'Cycle-accurate modeling

-

Because the front sub-section is just single-execution in datapath, we must take the
latency spec. of the SPU ISA into consideration in datapath design as shown in Figure 3-5. In
Table 3-2, it provides the instruction latency of all seven functional units. Instruction latency
means that the number of clock cycles it takes for the instruction to get the available result
through the pipeline. For example, the “Add/Sub” has two instruction latencies that means its
result must be produced within two-cycle. At this step called “cycle-accurate modeling”, we
combine the previous optimized single-execution with the instruction latency spec. of the
SPU to design the micro-architecture. We use the main two methods, queue-sharing and the
forwarding unit design. Queue-sharing means that these single-execution functional units
bypass the same pipelined-register to meet the instruction latency, and the forwarding unit

uses the above pipelined-register to forward the data to operand fetch unit. Next, we will
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introduce how to design the forward unit.

Table 3-2 Instruction latency

Grouping # latency
Add/Sub 2
Logic
Cmp
Mask
S/R
Shuffle

Mpy

RN BN SN | (O3 § \O ) 9]

Data forwarding is a well-known technique to reduce the number of extra execution
cycles. However, the complexity of forwarding network is rapidly increasing and usually
constitutes the critical path [14]. In order to.design forwarding unit systematically, we sort out
pipelined-stage that producer (produce data) or. cohsumer (consume data) and divide them
into two categories. The analysis of the data forwarding paths includes two domains. One is
temporal domain analysis and the other is=spatial domain analysis. The temporal domain
analysis checks the results produced’ by previous instructions but still in execution unit
pipeline, while the spatial domain analysis checks all possible paths between every producer

and consumer stages.

We defined the tolerable latency (TL) [14] of forwarding unit is the latency between data

producing and data consuming:

TL (tolerable latency) = data consuming time — data producing time

The TL indicates the available latencies between consumer and producer. If the TL is less
than the latency of forwarding unit, the data forwarding is impossible and has to stall several
cycles till the TL is equal to the latency of forwarding unit. Figure 3-6 shows the example of

TL in our SPU datapath design.
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Time

\/

T T T T T T T T T
Inst. 13 EXEI | EXE2 'F\\EXE3 3 EXE4 3 EXE5 3 EXE6 3 3 3 3 3
I = W I I I I I I I I
I I [IEARRS I I I I I I I I
Inst.2i | EXEl TE:;g‘iEEi;L\ EXE3 | EXE4 | EXES5 | EXE6 | | | |
Inst. 3 i | EXEip[JEXE2 | EXE3 | EXE4 | EXES | EXEG | i i
| | —_——_——— - —— | | | | | |
| | | N | | | | | |
Inst. 4 | | | l EXEthEi(EZ ' EXE3 | EXE4 | EXES | EXE6 | |
1 1 1 s S 1 1 1 1 1
Inst. 5 | | | | :_EXEI | EXE2 | EXE3 | EXE4 | EXES | EXE6 |
| | | | PR — | | | | |
| | | | | | | | | | |

Inst. 6 ! ! ! ! ! | EXEl | EXE2 | EXE3 ! EXE4 | EXE5 ! EXE6
! | ! | ! | | | | | |

Figure 3-6 Tolerable latencies

For the forwarding unit which has one-cycle latency, there are three possible forwarding

cases depending on the TL:

1. Non-causal (TL <0).

2. Timing critical (TL = 0).

3. Normal (TL>1).

The first one is non-causal path: It-happens that the consumer is executed earlier than the
producer that results in a non-causal forwarding condition. The second one is the producer is
directly forwarding to the consumer. That is, the data of producer is directly forwarded to
consumer at next instruction cycle that means non-tolerable extra latency on the forwarding
path. The final one is normal paths which have multi-cycle tolerable latencies between
consumer and producers. In this case, the result produced by producer can’t be forwarded to
consumer directly but has to queue for multiple cycles. In our datapath, we divide seven
functional units into main three groups having the same instruction latencies, which have
two-latency, four-latency, and seven-latency respectively. Table 3-3 shows all of our
forwarding paths. In this table, all possible paths between each producer and consumer are
categorized into three forwarding cases mentioned above. The instruction number indicates

the instruction cycle latencies between consumer and producer.
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Table 3-3 Forwarding table of our SPU

Producer
2-latenty of FUs || 4-latenty of FUs || 7-latenty of FUs
4 inst. 1 || timing critical non-causal non-causal
Z|[inst. 2 || normal (TL=1) non-causal non-causal
|l inst. 3 || normal (TL=2) || timing critical non-causal
% inst. 4 || normal (TL=3) |[ normal (TL=1) non-causal
S| inst. 5 || normal (TL=4) || normal (TL=2) non-causal
~|linst. 6 | normal (TL=5) || normal (TL=3) || timing critical
2 inst. 1 || timing critical non-causal non-causal
g |||l inst. 2 || normal (TL=1) non-causal non-causal
% g inst. 3 || normal (TL=2) || timing critical non-causal
g || £[Linst. 4 || normal (TL=3) || normal (TL=1) non-causal
O = inst. 5 || normal (TL=4) || normal (TL=2) non-causal
< [inst. 6 || normal (TL=5) |[ normal (TL=3) || timing critical
4 inst. 1 || timing critical non-causal non-causal
~|[inst. 2 || normal (TL=1) non-causal non-causal
g inst. 3 || normal (TL=2) || timing critical non-causal
% inst. 4 || normal (TL=3) || normal (TL=1) non-causal
S| inst. 5 || normal (TL=4) || normal (TL=2) non-causal
™~ ["inst. 6 || normal (TL=5) |[ normal (TL=3) || timing critical

The forwarding module can be imaged as a.pipelined stage in the forwarding paths
which isolates the complicated network frem datapath by output registers. Once the
forwarding table is established, we can-design-the forwarding micro-architecture as shown in

Figure 3-7.

By using sharing queue and forwarding unit, we can design the micro-architecture of
SPU. Because the SPU is dual-issue, we divide the datapath into two pipelined path. Figure

3-8 shows the pipelined diagram which meets the instruction latency of the SPU.

One of the fundamental decisions to be made in the design of a processor is the choice of
the structure of the pipeline. In next chapter, we explore this issue to get an optimal
area-efficient pipeline stage for each functional unit of SPU, given the instruction latency of
ISA with a targeted performance requirement. This issue is treated both analytically and by
simulation. We use the spatial optimization for our datapath design. At first, we have the
preliminary analysis for the latency exploration. Finally, we use the mathematical formulation

to get the optimal architecture.
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Figure 3-7 Forwarding network
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Figure 3-8 SPU Pipeline diagram
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3.2 Temporal Optimization

As shown in Figure 3-8, the pipeline datapath just use bypassing-register to meet the
instruction latency of functional units, but we can explore the latency spec. to optimize the
datapath as shown in Figure 3-9. This is the question as to an optimum pipeline depth for a
processor, given the latency spec. of ISA. Retiming is a structural optimization technique that
relocates the registers in a logic circuit with the objective of minimizing their total gate counts,
maximizing the circuit performance, or achieving both simultaneously [15][16]. We apply
retiming to make functional units run at the required timing constraints containing a minimum

number of registers.

ISA

-

Function modeling
(Single-cycle execution)

-

[ Spatial optimization

[ Inst. latency ] $ (Cycle-accurate modeling)
[Performance requirement]
[ RTL ]

-

-

L

Temporal optimization )

-

C

Latency
exploration Temporal optimization

C

Fomulation

Temporal- [ Netlist
optimized

- J

Figure 3-9 Temporal optimization
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€ Latency exploration

Retiming [15] is a transformation technique used to change the locations of delay
element in a circuit without affecting the input/output characteristics of the circuit. It is a
useful method for optimize the performance in synchronous circuit design. These include
reducing the clock period of the circuit, reducing the number of registers in the circuit,
reducing the power consumption of the circuit, and logic synthesis. In this thesis, we use the

retiming to reduce the number of registers in out datapath.

In the following pipelined functional units, we use the CAD tool called pipeline design
of Synopsys Design Complier to pipeline the functional units. For example, we have three
ways to decide the pipeline structure with the given latency of functional units as shown in
Figure 3-10. The first way is that the functional unit is directly bypassing three pipelined
register without pipelining the functional unit. The second way is that the functional unit is
pipelined 2-stage by CAD tool and then bypassing two pipelined registers. The final way, we
use CAD tool to pipeline the functional unit with'3-atage and bypassing the output register.
We find that the trivial stage-selection, that is 3-stage, is not surely the best area-efficient with
targeted frequency, so we will analyze the synthesized area trend of pipelined functional units

to help formulate mathematical formulation.

three-stage

9

two-stage

Latency =3 >
&

one-stage _ -

Figure 3-10 Function unit with 3-cycle latency

Combinational
circuit

r
F
C

Y

Next, we’ll analyze the multiple-cycle latency basic module of functional units. That is,
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we will analyze these functional units, such as 16-bit “S/R”, 8-bit “Shuffle”, and 16-bit

CCMUL’9
€ Functional unit characterization
H S/R

The “S/R” functional unit has 3-latency, so there is three ways to decide the
pipelined structure. We use the 16-bit shifter to estimate the area trend of all three ways
by using the synthesized result of pipelined functional unit and estimate the 16-bit
pipelined register under the 1.25ns timing constraints. As shown in both Table 3-4 and
Figure 3-11, we can see that the first column is the possible stage number of “S/R”
functional unit. At the same time, we try to estimate the pipelined register the third
column and the 16-bit register is 288 um™. For example, the first case is that the
functional unit is directly bypassing three-stage pipelined-registers, so 288 multiplied by
three is 864 um’. We use this way to-estimate the synthesized trend, and cleanly see the

area is proportion to the stage number as shown in Figure 3-11.

Table 3-4 Piped S/R FU

Piped S/R FU
Piped Stage| Piped-FU | Bypassing Register | Area (um?)
1 1514 864 2378
2 2237 576 2813
3 2528 288 2816

2900

2800 [

2700 [

2600

2500

2400

2300

2200

2100

1 2 3
# piped stage

Figure 3-11 Piped S/R FU
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B Shuffle

The “Shuffle” is also a 3-latency functional unit, so it has three choice of
pipelined-stage. We use 8-bit shuffle module to approximate the area trend of the three
possible cases for pipelined stage under the 1.25ns timing constraints. In both Table 3-5
and Figure 3-12, we can find the area trend of pipelined “Shuffle” is almost proportion to
the pipelined stage of functional unit. We can see the slight difference between 2-stage

and 3-stage, but it will be more distinct from the multiple modules in our “Shuffle” unit.
Table 3-5 Piped Shuffle FU

Piped Shuffle FU

Piped Stage| Piped-FU |Bypassing Register| Area (umz)
1 1433 432 1865
2 1580 288 1868
3 1724 144 1868
1868.5
1868
1867.5
1867 |
1866.5
1866
1865.5
1865
1864.5
1864 |
1863.5
1 2 3

# Piped Stages

Figure 3-12 Piped Shuffle FU

®E MUL

The multiplier is the main critical functional unit, so multiplier typically has much
more pipelined-stages than other functional units in order to target high frequency. It
means that there is deeper pipeline in multiplier, so we have more design space to decide

the pipelined-stages. Our “MUL” functional unit has 6-latency, so it has six possible
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selections of pipelined-stages. Here, we use 16-bit multiplier synthesized under 1.25ns
timing constraints. In both Table 3-6 and Figure 3-13, we can cleanly see the trend of the
area of pipelined-stage “MUL”. Different from the previous functional units, there is a
non-available synthesized result in the second row. Because the non-pipelined MUL’s
critical path is longer than 1.25 ns, it requires at least 2 pipelined-stages to target our
operating frequency, 800MHz. In Figure 3-13, we can find there is a smooth curve
between the 2-stage and 3-stage functional unit. At the same time, there is a steep curve
between 3-stage and 4-stage functional unit. That’s because the synthesized result is not
absolutely linear growing up with the pipelined-stage functional unit. General speaking,

the area of MUL is proportion to the pipelined-stage.

Table 3-6 Piped MUL FU

Piped MUL FU
Piped Stage | —Piped-FU | Bypassing Register| Area (um?)
1 NA NA NA
2 8521 2880 11401
3 9403 2304 11707
4 9981 1728 11709
5 11340 1152 12492
6 12140 576 12716
13000
12500 —
N
£ 12000 ¢
2
3
=z 11500 —
11000 |
10500
2 3 4 5 6
# piped stage

Figure 3-13 Piped MUL FU

In one word, we use smaller modules to estimate the area of functional unit with the

above synthesized trend in reality. These results help us to formulate the following
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mathematical formulation. After using register estimation and pipeline functional unit to
estimate the area trend, we’ll introduce how to formulate the mathematical formulation for

our datapath design.

€ Formulation

Retiming is a structural optimization technique that relocates the registers in datapath
that is targeted to minimize total gate count and maximize the circuit performance. We
formulate the mathematical formulation with retiming method that is to minimize the area

under timing constraint.

The mathematical formulation is as follows. We solve the equations to minimize the total
area of all pipelined functional units under timing constraints. As shown in Table 3-8, the first

3L
1

parameter gives the identified .number to each. functional unit. Table 3-7 shows the ID
number of each functional unit. -The second As;is the total area of each pipelined functional
unit, P; and L; is respectively the pipelined-stage and latency spec. of each functional unit.
Finally, we introduce the following timing parameter. The first parameter C; is the control
delay of each functional unit, means the timing delay of multiplex before function unit. The
Means of t; and t, are timing delay of pipelined-register and pure combinational respectively.

We estimate the parameter “t,” about 0.15 ns to 0.2 ns from the manual of UMC 90 process.

The least timing constraint is “t” that is our targeted operating frequency 800MHz (1.25ns).

Table 3-7 Number ID of functional unit

FU ID number (i)
Add/Sub 1
Logic
Cmp
Mask
S/R
Shuffle

Mpy

N[O [WIN
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Table 3-8 Description of equation’s parameter

Parameter Description
i ith FU
A area of ith FU
P; # pipelined stage
L; latency spec.
Ci control delay
t fiming of non-piped FU
ty pipelined register
t timing contraints
Minimize A+ A +A+A +A+A +A (3-1)
R<L,
P,<L,
P <L,
P, <L, (3-2)
P, <L,
P, <L
P, <L,
t1
—+C, +1, <t
P
t,
—+C, +t, <t
2
t
—+C; +t, <t
3
t,
2 +C, +t, <t (3-3)
P,
t;
—+C, +t, <t
5
ty
—+C, +t, <t
Ps
t;
—+C, +t, <t
;
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In Equation 3-1, we try to derive the minimum area of each one of the seven functional
units. We formulate Equation 3-2 and Equation 3-3 with parameters. We list a simultaneous
inequality by the mainly concepts, that is the total delay must be shorter than timing
constraints (1.25ns) within one-stage pipelined datapath as shown in Figure 3-14. The
parameter t; can be derived from the column of synthesis for timing of every functional unit in
Table 3-8. Equation 3-2 is the latency spec. that means combinational circuit of every

functional unit can be divided into at most stage.

Figure 3-14 Timing delay of'one-stage pipelined datapath

From these above constraints and Equation3-2 and 3-3, we can derive the solution as the

Equation 3-4.

P=1
P =1
P =1
P, =1 (3-4)
P =3
P, =
P =3

3.3 Experimental Results

In this chapter, we show the experimental result of our proposed design flow. It includes

spatial optimization and temporal optimization as shown in Figure 3-15.
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Figure 3-15 Proposed-design flow
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Table 3-9 shows the synthesized result by using the above optimized method that is
defined as spatial-optimized. It shows the timing critical and the hardware complexity of each
grouping. At the same time, we also set the timing constraint as 2.5ns (400MHz) as the typical

case. By the way, we can derive the general case of common operating frequency in DSP.
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Table 3-9 Synthesized result of baseline and spatial-optimized

Synthesis for timing Synthesis for area Target 400 MHz
Grouping Baseline Spatial- Baseline Spatial- Baseline Spatial-
optimized optimized optimized
Add/Sub delay(nsz) 0.63 0.82 4 4.6 2.5 2.5
area(um®) 40468 8811 25173 5635 26183 9530
Logic delay(nsz) 0.45 0.45 3 3 2.5 2.5
area(um”) 14148 14282 7209 7209 7215 7215
Cmp delay(nsz) 0.62 0.72 2.5 2.8 2.5 2.5
area(um®) 15914 7040 9977 5515 9977 5547
Mask deIay(nsz) 0.31 0.31 1.4 1.4 2.5 2.5
area(um®) 3063 3063 1442 1442 1443 1443
SR delay(nsz) 0.8 1.4 4.8 9.3 2.5 2.5
area(um®) 225086 94460 131332 49693 132160 50341
Mpy delay(nsz) 2.51 2.01 7 7.6 2.5 2.5
area(um®) 518969 68055 371405 39317 NA 47741
Shuffle delay(nsz) 0.66 0.66 2 2 2.5 2.5
area(um®) 42123 30393 26657 24388 26657 24399

In Table 3-10, we can find the hardware complexity of spatial-optimization is much
lower than that of baseline from-the.third column .“Area-optimized”. In order to sharing the
hardware resource, we add some control-hardware like encoder which adds timing delay
slightly in datapath. In the “Synthesis-for timing” column of Table 3-10, we can find the
timing delay of most functional units is increasing slightly except the “Mpy” functional unit.
Because the hardware complexity of the “Mpy” functional unit of baseline with larger
encoder is much lager than spatial-optimized with smaller encoder, the timing delay of
baseline is longer than spatial-optimization. By the way, the “Logic” and “Mask” unit are the
same in both baseline and spatial-optimized because these units use simple logical gate or just
wiring. If we add some controller to share the same logical gate, there is much overhead
compared to the original controller in these two units. Finally, we use a typical case target to
400MHz (2.5ns) to confirm the above optimized method for area. We show the improvement
of these functional units as shown in Table 3-11. In the “Mpy” unit of the 400MHz column,
the “NA” means no available because its timing delay is longer than 2.5ns. In the next section,

we’ll take the latency spec. of the SPU into consideration for micro-operation design.
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Table 3-10 Comparison between baseline and spatial-optimized

Timing-optimized (ns) Area-optimized (um?) 400MHz (um?)

Grouping Baseline o?)fi?r:ilizd Baseline oigfntil:;d Baseline oiﬁitil:;d
Add/Sub 0.63 0.82 25173 5635 26183 9530
Logic 0.45 0.45 7209 7209 7215 7215
Cmp 0.62 0.72 9977 5515 9977 5547
Mask 0.31 0.31 1442 1442 1443 1443
S/R 0.8 1.4 131332 49693 132160 50341
Mpy 2.51 2.01 371405 39317 NA 47741
Shuffle 0.66 0.66 26657 24388 26657 24399

Table 3-11 Improvement by spatial-optimized

Grouping|| Timing Area 400MHz
Add/Sub (| -30.2% || 77.6% 63.6%
Logic 0.0% 0.0% 0.0%
Cmp [[-16.1%| 44.7% 44.4%
Mask 0.0% 0.0% 0.0%
S/R -7010% |lz ,62.2% 61.9%
Mpy 19.9% | 89:4% NA
Shuffle {11 0.0% 8.5% 8.5%

€ Temporal optimization

We’ll prove our proposed temporal optimization that is optimal micro-architecture. In
fact, we can synthesize for all cases of the latency spec. of functional units. But, this method
is too trivial to consume the design time in order to get the optimal micro-architecture with
the deeper pipelined datapath. Our proposed temporal optimization not only saves the iterative

time, but also gets the optimal selection of pipelined-stage as shown in Table 3-12.
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Table 3-12 All cases for latency spec.

under timing constraint 1.25

Grouping|Latency(# 7 > 3 7 5 5
delay(ns) | 1.25 NA NA NA NA NA
Add/Sub ! area(um?) | 9490 | NA NA NA NA NA
Logic 1 delay(ns) 1.25 NA NA NA NA NA
area(um?) | 10287 | NA NA NA NA NA
Cmp ] delay(ns) | 1.25 NA NA NA NA NA
area(um?) | 7690 | NA NA NA NA NA
Mask ] delay(ns) | 1.25 NA NA NA NA NA
area(um?) | 3710 | NA NA NA NA NA
SR 3 delay(ns) 1.25 1.25 1.25 NA NA NA
area(um®) | NA NA | 78639 [ NA NA NA
Shuffle 3 delay(nsz) 125 | 125 [ 1.25 NA NA NA
area(um?) | 31283 | 32653 | 34888 | NA NA NA
Mpy 5 delay(ns) | 125 [ 125 | 125 | 125 | 125 | 1.25
area(um’) | NA NA | 81782 | 83195 | 83554 | 85655

In Table 3-12, the blue-color word is derived form our proposed temporal optimization.
For each functional unit, the blue-word selection is the best choice for the optimal
micro-architecture. Maybe we can try to synthesize for all case, but it is time-consuming. For
example, the Mpy functional unit has six latencies,’ that’s mean that it have six possible
pipelined structure. If we try to“synthesize for'all cases, it is not timing-efficient. This
situation is becoming serious for functional unit with more and more latencies of deeper
function unit in order to target high operation frequency. Finally, we show the improvement
compared to trivial approach with our proposed temporal optimization as shown in Table

3-13.

Table 3-13 shows the comparison of all pipelined functional units between our proposed
temporal optimization and the trivial approach with the pipeline diagram of the reference
paper [7]. The Reference version uses the spatial-optimized datapath to explore the latency
directly by the pipelined-diagram of reference, and the temporal-optimized uses the same
datapath by temporal optimization. The first column is all functional units, and the second is
the latency spec. that means the maximum number pipelined-stage of each functional unit. We

can see that the reference is directly used the latency spec. to pipeline each functional unit by
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CAD tool. However, the spatial optimization uses our proposed temporal optimization. Seeing
the “Improvement” column, we can see improvement by 0% from Add/Sub to S/R functional
units, because these functional units have no latency to explore. In other words, these
functional units have only one-latency and the S/R must pipeline 3 stages into it in order to
target high frequency. In both “Shuffle” and “Mpy”, we improve the area compared to the

version 3 by 10% and 4.5% respectively.

Table 3-13 Temporal optimization

FU l(agtggl\(;lxll-(lj; Zz?ni?zr:g Ref. |Improvement (%

Addisup| 1 (Ppelnedslage Lt 5256 0%
Logic 1 pipelizcre::tage 10(1)33 10833 0%
o ) pipeliztra::tage 76190 76190 0%
Mask 1 p|pe||2$:a-stage 3711 0 3711 0 o%
SR 3 plpellzfed:tage 78239 78239 0%

Shuffls 3 plpellzf;stage - ;83 34288 10.33%

Moy 5 pipelizfs:tage 82364 85255 3.14%

Finally, we show the area-efficient micro-architecture target to lightweight applications
target to 100MHz to 800MHz as shown in Table 3-14. Our proposed design flow improves the
area of micro-architecture by approximate 20%. The case “800 MHz” is just improved by 3%
because its optimization space is limited by timing-optimized. General speaking, we can see
the trend of micro-architecture is area-efficient by using our proposed design flow. In Table
3-14 and Figure 3-16, we can see the other case is area-efficient micro-architecture improved

15% to 20% of area.
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Table 3-14 Area reduction from temporal optimization

Freq.

800 700 600 500 400 300

200

100

Ref

231180 227291 1222731 (220023 |211618 | 205309

204331

200748

Proposed

224884 (192097 |177805 |174614 | 169417 (160588

157005

154830

Improvement

2.72%)] 15.48%)| 20.17%)| 20.64%)| 19.94%| 21.78%

23.16%

22.87%

250000

200000

1

Area (um”2)

150000
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Freq. (MHz)

100

Figure 3-16-Improvement by our proposed design flow
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4  SILICON IMPLEMENTATION

In this chapter, the silicon implementation is to implement the design with cell-based
flow, and the result shows the area and timing after physical implementation. The result of
silicon implementation contains two parts. The first one is the implementation flow and the

second one is the implementation result of SPU and layout of SPU chip.
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4.1 Implementation Design Flow

We will design the SPU processor based on UMC 90nm 1P9M Process Low-K. Figure

4-1 is a flow chart which illustrates the design flow for our SPU design.

[ p-architecture design j

-

RTL coding

-

RTL simulation

-

Synthesis

&

Gate-level simulation

[ ]
( )
[ ]
[ )

&

[ Physical design ]

Figure 4-1 Implementation flow

Figure 4-2 illustrates the I/O interface. The SPU has 32KB on-chip instruction memory
and 64KB on-chip data memory. The datapath is dual-issue as shown in Figure 4-3. By our
proposed design flow of last chapter, we can decide systematically the pipelined stage of
every functional unit to design area-efficient micro-architecture. By the way, the S/R and Mul
are pipelined into two stages respectively to meet the timing constraints. Due to the critical
path determined by the memory modules provided in cell library, we set 400 MHz (2.5ns) as
the operating frequency of our SPU core. We can see that the LS pipe is pipelined into 5
stages because these stages are to do data-gather due to the 32-bit output of data memory. In

order to gather the data, we need four cycles to do that. After getting the available result of
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each functional unit, we use shared by-passing register to pass the result of every functional

unit.

According the micro-architecture proposed from the last chapter, it defines pipeline stage
to facilitate the RTL design. And then the forwarding path will take into consideration to
avoid redundant routing paths. On the basis of pipeline stage and the I/O definition, we define
the micro-operation of all instructions in every pipeline stage. By doing this work, hardware
resources will be further defined. After these above analysis and design, the RTL (register
transfer level) model can be built up. We execute behavioral-level simulation in the RTL
model by using NC-Verilog simulator. After the RTL code is bug free, we use synthesis tool
(Synopsys design complier) to synthesis our RTL code into gate-level netlist. The gate-level
simulation will be performed to sure the Jlogic gates work correctly. When the gate-level

netlist is ready, we can use Cadence SoC encouriter to implement physical design.

im_cen

Yy

im_addr
_ im_data

-«
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dm_cen

dm_wen _
dm_addr
<dm Rdata _ DM
dm_Wdata

-
-

Figure 4-2 Our SPU interface
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Figure 4-3 Pipeline diagram of our SPU

4.2 Implementation Result

In Table 4-1 , the synthesis result which uses UMC 90nm 1P9M Process Low-K and
operates in worst case shows the area and timing. Figure 4-4 shows the layout of our
SPU_CHIP. This processor is pipelined into 10 stages (4 instruction pipeline and 6 execution

pipeline). According to simulation and APR result, SPUCHIP can operate at 400MHz and

core size is 2.5mm x 2.5mm shows the summary of APR results.
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Table 4-1 Synthesis result

Technology | UMC 90nm 1P9M Process Low-K
Total area 927,326
Die size 2.5mm x 2.5mm
Operating freq 400 MHz
Power 320 mW

64 KB Data Mem

P e

#

e i e ;
32 KB Instr. Mem

4994K54)_<1CM§‘_ .

Figure 4-4 Implementation result
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5 CONCLUSION & FUTURE WORKS

In this thesis, we proposed:two-phased design flow to explore the optimization space
with respect to the specific ISA implementation for;embedded applications. The proposed
two-phased design flow is to get.the optimal micro-architecture under the various timing
constraints with the software support. First-phased design flow is spatial-optimized includes
function modeling and cycle-accurate modeling. In one word, the first-phased design flow is
mainly spatial optimization. Second-phased design flow is temporal optimization to explore
the latency by building mathematical formulation. Using formulating the mathematical
formulation by our proposed temporal optimization, we can get the area-efficient
micro-architecture systematically. We take the Cell SPU as our design example because the
Cell SPU is data-oriented processor that exposes long latency. Our proposed design flow is
more area-efficient than the ad-hoc method to design micro-architecture. The experimental
result shows that our proposed design flow is more area-efficient 15% to 20% than the

micro-architecture of reference [7] directly under timing constraints 100 MHz to 800 MHz.
Besides, our proposed design flow can be applied to the synthesis of ASIPs (Application
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Specific Instruction set Processor), such as an automatic processor for optimal
micro-architecture under the targeted timing constraints with the existing software support.
For example, within the last year commercial tools like LISATek [18] framework came up,
that allows to designing ASIP architectures by using their own description language. It
shortens the design time dramatically compared to classical register-transfer-level (RTL)
based approaches. For the micro-architecture of the specific ISA, the processor generator can
be used to get the area-efficient micro-architecture under the target timing constraints with the

existing software support when the RTL model of the processor is ready.
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