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摘要 

 處理器的資料路徑(datapath)通常是影響其效能的最重要部分。隨著不同應用需求，

資料路徑的配置與設計也會不同，一般說來，針對高效能處理器，例如 Intel Pentium 處

理器、IBM Cell 處理器等，設計者會藉由各種 VLSI 技術，盡可能的提高資料路徑的操

作頻率；但另一方面，對於輕量化(lightweight)應用、如嵌入式系統(embedded system)，
則會以追求低功率、低晶片面積等方向做最佳化資料路徑設計。同一套指令集架構

(instruction set architecture)對於不同的應用而言會有不同的資料路徑設計，針對此，本論

文提出一套能針對不同效能需求，而能自動合成一具高面積效率的資料路徑設計流程。 
此具高面積效率資料路徑產生器，其中包含兩個動作：空間和時間維度做最佳化設計。

此具高面積效率資料路徑產生器可延用現有的高效能處理器的指令集、如 IBM Cell，和

其相關發展軟體與應用程式，並根據應用所需的效能，有系統的對處理器資料路徑做最

佳化。空間維度上的最有效率的應用意指資料共享路徑，包含建立函數模型(function 
modeling)和週期準確模型(cycle-accurate modeling)設計。另一方面，我們也會針對時間

維度上做最佳化，並分析指令的延遲(latency)時間，系統化地建立數學方程式以獲得最

小面積的微架構(micro-architecture)。我們以 Cell SPU(Synergistic Processor Unit)資料路

徑設計為例，利用所提出的設計流程分析指令集架構，尋找出最高面積效率的微架構。

實驗顯示，針對 100MHz 到 800MHz 的嵌入式微處理器的資料路徑設計，我們所提出的

設計流程比自動化工具改善約 20%的面積。在 UMC 90nm 的製程下，我們利用前述的

設計流程實作 SPU 數位訊號處理器，晶片面積為 2.5mm×2.5mm，而其操作頻率為

400MHz。 
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ABSTRACT 

    Datapath is primarily the most critical element that affects performance. The allocations 
and design of datapath depends various application requirements. General speaking, for 
high-performance processors like Intel’s Pentium Processors, IBM’s Cell Processors and so 
on, the designers extremely rise up operating frequency by board VLSI techniques. On the 
contrary, such as lightweight applications in the embedded system, the goal of datapath design 
is to seek low-power, small chip area and so on. The instruction set architecture (ISA) has 
different ways of implementation for different application requirements. Therefore, this thesis 
proposes the design flow to automatically generate the area-efficient datapath for various 
application requirements. The area-efficient datapath generator includes the two-phased 
including spatial-optimized and temporal-optimized for datapath optimization. It can 
systematically develop and optimize datapth of the processors while leveraging the instruction 
set architecture (ISA) of high performance processor like IBM’s Cell and the software 
toolchain and application programs. Spatial-optimized means that efficient utilization in 
spatial domain including function modeling and cycle-accurate design. In other phase, 
temporal-optimization explores the instruction latency to systematically build up 
mathematical formulation to get the optimal micro-architecture. We take the Cell synergistic 
processor unit (SPU) as our datapath design example to analyze the optimization space of 
SPU ISA implementation, and find the area-efficient micro-architecture by using our 
proposed design flow. In the experiment, the micro-architecture by using our proposed design 
flow improves about 15-20% of area compared to using CAD tools for datapath design of 
embedded processors targeted 100MHz to 800MHz. Finally, we use the previous design flow 
to implement the SPU DSP in the UMC 90nm 1P9M CMOS process. The silicon area is 
2.5mm×2.5mm and the clock rate is 400MHz.    
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 1  INTRODUCTION 

 

 

Today’s system-on-a-chip (SoC) has advanced rapidly, and there exists many design 

considerations, such as time-to-market, production cost, operation speed and so on. These 

demand the different performance requirement such as, low power for portable devices, small 

area, and high operating frequency such as computing-intensive for workstation and so on.  

In the meanwhile, the cost of software development is more and more expensive in many 

embedded systems. It is not efficient time-to-market to develop the software and hardware at 

the same time. By this motivation, we try to develop the hardware for different performance 

requirement under the software support. In this thesis, we focus on developing processors 

under different performance requirement while leaving the existing software in order to shrink 

the time-to-market and then explore the micro-architecture optimization space of the specific 

ISA implementation  
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1.1 Motivation 

With the increasing performance requirement for system-on-a-chip (SoC) applications, 

such as lower power, small area, and high operating frequency, developing these applications 

for many performance requirements is not time-consuming. In the meanwhile, the software 

development is more and more expensive in the embedded system. However, we can reuse the 

existing software to develop the hardware for the various performance requirements. That’s 

means that we can reduce the TTM (time-to-market) to develop the hardware for many 

performance requirements. We exploit the same ISA with suitable implementation can help to 

reduce design cost. 

The Cell Broadband Engine (CBE) is very popular. It provides the open and full software 

support. Therefore, we can take it into consideration to develop the hardware under its 

software support. But its datapath is for extremely high-performance. There is a trade-off 

between the performance and the area. If we design the hardware for low performance 

compared to Cell processor, such as targeted to several hundred MHz. The original datapath 

of Cell processor is not the most area-efficient for lower performance. However, that’s mean 

that the same instruction set architecture (ISA) has different ways of implementation for 

different performance requirement. 

1.2 Problem Description and Distribution 

With the growing computing requirement, DSPs are becoming prevalent solutions in 

multimedia applications and telecommunications. In order to save time-to-market, we can 

develop the processors under different performance requirements with the existing software 

toolchain. By this above motivation, we can save the design time of software development to 

develop DSPs for various applications with software support. For example, the software 
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toolchain of the famous Cell Broadband Engine (CBE) is ready to develop the processor with 

the instruction set architecture (ISA) for various applications in the embedded system.  

ISA is the interface between hardware and software. In fact, ISA implementation 

depends on the various application requirements. That’s mean that different ISA 

implementations have different micro-architecture designs under the target applications. In 

other words, there are different optimization spaces under various applications. For example, 

the micro-architecture targeted to several hundred MHz under the same ISA implementation 

with the binary-compatible software. We can find that the Cell SPU expose the long latency 

for high-performance and expose the long latency for datapath optimization as show in Figure 

1-1. There are three ways for microarchitecture design. We’ll propose two-phased design flow 

to design area-efficient micro-architecture under this constraint. 

 

Figure 1-1 Latency exploration  

In this thesis, we propose two-phased area-efficient design flow of ISA implementation 

for DSPs under binary-compatible software. We take the Cell SPU as our design example. 

Because the Cell SPU is the data-oriented processor, there is cleanly much more optimization 

space than control-oriented processor, such ARM processors. Our proposed two-phased 

area-efficient design flow includes spatial optimization and temporal optimization. This 

two-phased design flow provides the systematical area-efficient micro-architecture design. 
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Compared with ad-hoc method, using our proposed design flow saves about 20% of area 

under 100MHz to 800MHz timing constraints.  

1.3 Thesis Organization 

This thesis focuses primarily on two-phased systematical design flow of processor: 

Spatial optimization and temporal optimization. This thesis is organized as follows. 

Chapter 2 introduces the Cell SPU which includes Cell Broadband Engine Architecture 

(CBEA), Synergistic Processor Unit (SPU), SPU instruction set architecture (ISA), and SPU 

micro-architecture. Chapter 3 first describes the first-phased design flow including function 

modeling and cycle-accurate modeling. This phase design flow is mainly spatial optimization 

while the second-phased is temporal optimization by formulating mathematical formulation. 

At last of this chapter, we list the experimental results of our proposed design flow. 

Chapter 4 shows the silicon implementation results by using our proposed design flow 

target to 400MHz. Finally, chapter 5 concludes this thesis and points out the direction of 

future research. 
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 2  BACKGROUND 

 

 

 

 

 

Contemporary DSPs are multimedia-rich, involving significant amounts of audio and 

video processing. Cell Broadband Engine (CBE) processor provides a high-performance for 

applications in media-rich consumer-electronic devices. This chapter provides background 

information related to this thesis.  Chapter 2.1 introduces the Cell Broadband Engine (CBE) 

and synergistic processing unit (SPU). Chapter 2.2 and Chapter 2.3 give an overview of the 

synergistic processing unit (SPU) instruction set architecture (ISA) and micro-architecture 

respectively. 
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2.1 Cell Broadband Engine Architecture 

The Cell Board Engine (CBE) is the first implementation of a new multiprocessor family 

conforming to the Cell Broadband Engine Architecture (CBEA, or informally, “Cell”). The 

CBEA is a new architecture that extends the 64-bit PowerPC Architecture. The CBEA and the 

CBE are multicore processors jointly developed by SONY, Toshiba, and IBM, known as STI 

[4]. Figure 2-1 is a die photo of the Cell BE. 

 

 

Figure 2-1 Die photo of Cell Broadband Engine  

Although the CBE processor is initially intended for multimedia applications in 

media-rich consumer-electronics devices such as game consoles, the architecture has been 

designed to extend fundamental advances in processor performance. These advances are 

expected to support a broad range of applications in both commercial and scientific fields. 

Figure 2-2 [5] shows the block diagram of Cell processor. The most distinguishing 

feature is that the CBE processor is a multi-core with 9 processor elements and a shared 

coherent memory on-a-chip: the Power Processor Element (PPE) and the Synergistic 

Processor Element (SPE). The CBE processor has one PPE and eight SPEs. There is a mutual 

dependence between the PPE and the SPEs. The PPE is responsible for running the operating 

system and coordinating the flow of the data processing threads through the SPEs. This 
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differentiation allows the architectures and implementations of the PPE and SPE to be 

optimized for their respective workloads and enables significant improvements in 

performance per transistor. 

 

Figure 2-2 Block diagram of CBE processor 

 PowerPC Processing Elements 

The PowerPC Processor Element (PPE) is a 64-bit PowerPC Architecture core optimized 

for design frequency and power efficiency. It is a general-purpose, dual-thread, 64-bit RISC 

processor with vector/SIMD extensions. The PPE is responsible for overall control of a CBE 

system. It runs the operating system for all applications running on PPE and Synergistic 

Processor Elements (SPEs). The PPE consists of two main units as shown in Figure 2-3 [6], 

The PowerPC processor unit (PPU) is the computation unit, and the PowerPC processor 

storage subsystem (PPSS) is for the purpose of storage. More detail information about 

PowerPC Processing Elements is in [6]. 
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Figure 2-3 PPE block Diagram 

 Synergistic Processor Elements 

The eight Synergistic Processor Elements (SPEs) execute a new single instruction multiple 

data (SIMD) instruction set-the Synergistic Processor Unit Instruction Set Architecture. They 

are independent processors, each running an independent application thread. Each SPE is a 

128-bit RISC processor for data-rich, compute-intensive applications and includes a private 

local store for efficient data and instruction access. Figure 2-4 [6] shows the major elements 

of the SPE architecture and their relationship. Local storage (LS) is a private memory for SPE 

instructions and data. The synergistic processor unit (SPU) core is a processor that runs 

instructions from the LS and can read from or write to the local storage (LS). The direct 

memory access (DMA) unit transfers data between LS and system memory. The channel unit 

is a message-passing interface that allows the SPU core to communicate with both the DMA 

unit and other devices in the Cell processor. 
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Figure 2-4 SPE architecture 

The SPU core is a single-instruction multiple-data (SIMD) reduced instruction set 

computing (RISC) processor [7]. All instructions are encoded in 32-bit fixed-length 

instruction formats. The SPU feature 128 general-purpose registers (GPRs) that are used by 

both floating and integer instructions. Most instructions operate on 128-bit-wide data that 

perform integer arithmetic, logical operations, loads, stores, compares, and branches. The 

main SPU functional unist are shown in Figure 2-5 [6]. These include the synergistic 

execution unit (SXU), the LS, and the SPU register file unit (SRF). The SPU issues two 

instructions to its two execution pipelines respectively. The pipelines are referred to as even 

(pipeline 0) and odd (pipeline 1). These units execute the following types of operations: 

 Odd Pipeline 

 SPU Odd Fixed-Point Unit (SFS) ― Executes byte shift, rotate mask, and shuffle 

operations on quadwords 

 SPU Load and Store Unit (SLS) ― Executes load and store instructions and hint for 

branch instructions. It also handles DMA requests to the LS 

 SPU Control Unit (SCN) ― Fetches and issues instructions to the two pipelines. It 

performs control functions such as branch instructions, arbitration of access to the 
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LS and register file, etc. 

 SPU Channel and DMA Unit (SSC) ― Manages communication, data transfer, and 

control into and out of the SPU. 

 Even Pipeline 

 SPU Even Fixed-Pointed Unit (SFX) ― Executes arithmetic instructions, logical 

instructions, word SIMD shifts and rotations, floating-point comparisons, and 

floating-point reciprocal and reciprocal square-root estimations. 

 SPU Floating-Point Unit (SFP) ― Executes single-precision and double-precision 

floating point instructions, and conversions, and byte operations. The 32-bit 

multiplier are implemented in software using 16-bit multiplies. 

 

 

Figure 2-5 SPU functional units 

2.2 SPU Instruction Set Architecture 

The instruction set architecture (ISA) is the most important design issue that DSP 

designer must get right from the start. Instruction set architecture (ISA) serves as an 
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abstraction layer between hardware and software. It should include the following information, 

instruction sets, instruction format, data representation, data storage, address modes, and 

exceptional conditions. In the following section, the fixed point SPU Instruction set 

architecture (ISA) [8] will be described. 

 Instruction formats 

There are six basic instruction formats. These instructions are all 32-bit long. Instructions 

in memory must be aligned on word boundaries. The instruction formats shown in Figure 2-6. 

 

 

 

Figure 2-6 Instruction format 

 Data representation 

The SPU hardware supports the following data types: Byte (8-bit), halfword (16-bit), 

word (32-bit), doubleword (64-bit), and quadword (128-bit) as shown in Figure 2-7. All GPRs 

(general-purpose resisters) are 128-bit wide. The leftmost word (bytes 0, 1, 2, and3) of a 
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register is called the preferred slot. When instructions use or produce scalar operands or 

addresses, the values are in the preferred slot. Because the SPU accesses its LS a quadword at 

a time, there is a set of store-assist instructions for insertion of bytes, halfwords, words, and 

doublewords into a quadword for a subsequent load/store. 

 

 

Figure 2-7 Register layout of data types and preferred scalar slot 

 Data storage 

The SPU architecture defines a private memory, also called local storage, which is 

byte-addressed load and store instructions combined operands from one or two registers or 

immediate value to form the effective address of the memory operand. The LS is 256 KB, 

single-ported, non-caching memory. It stores all instructions and data used by the SPU. SPU 

data-access bandwidth is 16 bytes per cycle, quadword aligned. 

 Addressing modes 

All instructions, except branches, generate address by incrementing a program counter. 

For load and store instructions that specify a base register, the effective address in memory for 

a data value is calculated relative to the base register in one of three ways: 

 Resister + Displacement 

The displacement (D) forms of the load and store instructions form the sum of a 
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displacement specified by the sign-extended 16-bit immediate field of the instruction 

plus the contents of the base resister. 

 Register + Register  

The index (X) forms of the load and store instructions form the sum of the contents 

of the index register plus the contents of the base register 

 Register  

The load string immediate and store string immediate instructions use the 

unmodified contents of the base register 

 Instruction sets 

The SPU instruction set used are instructions that are 4 bytes long and word-aligned. It 

supports 16-byte (128-bit) operand accesses between storage and its 128 registers. For a brief 

overview of the fixed point SPU instruction set, including data transfer, integer, logical, data 

transformation. 

 Data transfer instructions 

In order to process data in the memory, load/store machine use the load and store 

instruction to handle memory access issues. Load and store instructions combine 

operands from one or two registers and an immediate value to form the effective address 

of the memory operand. Only aligned 16-byte-long quadwords can be loaded and stored. 

Therefore, the rightmost 4 bits of an effective address are always ignored and are 

assumed to be zero. 

 Integer and logical instructions 

 Addition/subtraction instructions 
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The instructions of addition or subtraction are the operators of halfword (16-bit) 

or word (32-bit) of SIMD version. “A” is the word-operator that replaces the 

destination operand with the sum of the two source registers as shown in Figure 2-8, 

while “ai” takes one source operand as 128-bit immediate data. “Sf” and “sfi” 

perform general and immediate subtraction. The 32-bit SIMD version of “A” is 

supported by the SPU instruction set and shown in Figure 2-8. 

 

 

Figure 2-8 Example of addition operation 

 Compare instructions 

Compare instructions compare the two source operands and store the 

destination to register. The source operands can be registers or immediate data. It is 

the operators of byte (8-bit) or halfword (16-bit) or word of SIMD version. For 

example, “ceqb” (compare equal byte) set the byte-result as 0xFF if the source 

operand 1 is equal to source operand 2 and set 0x00 vice versa.  

 Multiply instructions 

Multiply-relative instructions combine multiply and multiply-and-accumulator 

instructions. These multiply instructions only support 16-bit SIMD multiplication 

which get the lower or upper part of one word in each register to take the multiply 

operation and the product maybe be shifted, mask upper or lower, or the additional 

accumulation with it. For example, multiply-high gets the result of the leftmost 16 

bits of the value in one word of register RA are multiplied by of the rightmost 16 
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bits of the value in one word of register RB, and then the product is shifted left by 

16 bits and zero are shifted in at the right for each of four word slots as shown in 

Figure 2-9. 

 

 

Figure 2-9 Example of multiply operation 

 Logical instructions 

Logical instructions handle bit-wise Boolean logical operations. The logical 

operations are composed of AND, OR, XOR, NAND, NOR, and XOR instructions. 

These instructions perform the general logical operation in the processor. 

 Data transformation instructions 

To support the data alignment of application processing, data transformation 

instructions are include shift/rotator, extend, form, gather and shuffle. 

 Shifter / rotator instructions 

The shift instruction can shift the source operand arithmetically or logically. It 

can specify the shift amount in the ways, either register or immediate. It support 

shift of halfword, word, and quadword, and shift quadword by byte. The rotator 

instructions also support the same as the above operation. 

 Extend instructions 
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The extend instruction is used to support the data precision. These instructions 

support byte (8-bit) to halfword (16-bit), halfword (16-bit) to word (32-bit), and 

word (32-bit) to double word (64-bit). For example, the operation of “xsbh” (extend 

sign byte to halfword) is that for each of eight halfword slots, the sign of the byte in 

the right byte of the operand in register RA is propagated to the left byte. 

 Gather instructions 

The gather instruction is include gather bits from bytes, halfwords, or words. 

This operation can be used to gather bits of the leftmost bit of one byte, halfword, or 

word. For example, “gbb” (gather bits from bytes) operates as the following 

description: a 16-bit quantity is formed in the right half of the preferred slot of 

register RT by concatenating the rightmost bit in each byte of register RA. The 

leftmost 16 bits of register RT are extending to zero as the remaining slots of 

register RT. 

 Form instructions 

The Form instructions are to create a mask by replicating the rightmost bit of 

bytes, halfwords, and words. For example, “fsmb” (form select mask for bytes) 

operates as the following description: the right 16-bit of the preferred slot of register 

RA are used to create a mask in register RT by replicating each bit eight times. Bits 

in the operand are related to bytes in the result in a left-to-right correspondence as 

shown in Figure 2-10. 
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Syntax : FSMB RT,RA

destination register 

source register 

T.0 T.1 T.2 T.3

A.0 A.1 A.2

112 113 114 115 116 117 118 119 120 121 122 27 28 29 30 31

A.3

 

Figure 2-10 Example of form select mask for bytes operation 

 Shuffle instructions 

The shuffle operation is extremely powerful and finds its way into many 

applications in which data reordering, selection, or merging is required. Its 

operation is that register RA and RB are logically concatenated with the 

least-significant bit of RA adjacent to the most-significant bit of RB. The bytes of 

the resulting value are considered to be numbered from 0 to 31. For each byte slot 

in registers RC and RT, the value in register RC is examined, and a result byte is 

produced as shown in Table 2-1 and Figure 2-11, and then the result byte is inserted 

into register RT. Other instructions which are not above are enumerated in [8]. 

Table 2-1 Binary values in register RC and byte results 

 Value in Register RC
(expressed in binary)

Result Byte

10xxxxxx 0x00
110xxxxx 0xFF
111xxxxx 0x80
otherwise shown in figure 2-11  
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 RA

RB

RC

RT

Syntax : SHUFB RT,RA,RB,RC  

Figure 2-11 Example of shuffle bytes operation 

 Exceptional conditions 

The SPU support a single interrupt handler. The entry point for this handler is address 0 

in local store. When a condition is present and interrupts are enabled, the SPU branches to 

address 0 and disables the interrupt facility. The address of the next instruction to be executed 

is saved in the SRR0 register. The iret instruction can be used to return from the handler. 

2.3 SPU Micro-Architecture 

Figure 2-12 [7] shows how the SPU is organized and the key bandwidth (per cycle) 

between units. Instructions are fetched from the LS in 32 4-byte groups when LS is idle. The 

fetched lines are sent in two cycles to the instruction line buffer (ILB). Instructions are sent, 

two at a time, from the ILB to the issue control unit. The SPU issues and completes all 

instructions in program order and doesn’t reorder or rename its instructions. Although the 

SPU isn’t a VLIW processor, it does feature like dual feature and can issue up to two 

instructions per cycle to nine execution units organized into two pipelines as shown in Table 

2-1. Instructions pairs can be issued if the first instruction (from an even address) will be 

routed to an even pipe unit and the second instruction to an odd pipe unit. 
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Table 2-2 Dual issue unit assignments 

 Inst. From addrress 0 Inst. From addrress 4

Simple fixed Permute
Shift Local store

Single precision Channel
Floating Integer Branch

Byte  

Operands are fetched either from the register file or forward network and sent to the 

execution pipelines. Each of the two pipelines can consume three 16 byte operands and 

produce a 16 byte result every cycle. The register file has six read ports, two write ports, 128 

entries of 128 bits each and is accessed in two cycles. Results produced by functional units are 

held in the forward macro until they are committed and available from the register file. Loads 

and stores transfer 16 bytes of data between the register file and the local store. 

Table 2-3 details the eight execution units. Simple fixed point [9], floating point [10] and 

load results are bypassed directly from the unit output to input operands to reduce result 

latency. Other results are sent to the forward macro where they distribute a cycle later.  

Figure 2-13 [7] is a pipeline diagram for the SPE that shows how flush and fetch are related to 

other instruction processing. 
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Figure 2-12 SPU organization 

 

Table 2-3 Unit and instruction latency 

 Unit Instruction Instruction Latency

Simple Fixed word shifts and rotates 4
Single Precision multiply-accumulate 6
Single Precision integer multiply-accumulate 7

Local Store Load and strore 6
Channel Channel Read/Write 6
Branch Branches 4

Permute Quadword shifts, rotates, gathers, shuffles as
well as reciprocal estimate 4

Simple Fixed word arithmetic, logicals, count leading zeros,
selects, and compares 2

Bytes pop count, absolute sum of differences,
byte average, byte sum 4
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Figure 2-13 SPU pipeline diagram 
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 3  DESIGN & OPTIMIZATION FLOW OF 

DEEP-PIPELINE LATENCY DATAPATH 

 

 

Today’s multimedia applications need significant amounts of digital signal processing, so 

the current trend of many contemporary processors is generally designed for 

datapath-dominated recently. Cell processor provides a high performance for multimedia 

applications in the embedded system. One of the key features is the synergistic processing 

processor (SPU) which is data-oriented core for the requirement computing-intensive 

operations. In this chapter, we firstly introduce an overview of our proposed two-phased 

design flow: how to design the SPU datapath systematically. Chapter 3.1 presents the 

first-phased of design flow called spatial optimization including function modeling and 

cycle-accurate modeling, and then chapter 3.2 gives the second-phased of design flow, and 

chapter 3.3 illustrates the experimental results. 
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3.1 Spatial Optimization 

Given the instruction set architecture (ISA) of synergistic processor unit (SPU), how to 

design the datapath of functional modeling systematically? At this sub-section, we detail the 

functional modeling and cycle-accurate design of our proposed two-phased design flow as 

shown in Figure 3-1. 

                      

Figure 3-1 Overview of our proposed design flow 

3.1.1 Function Modeling 

The functional modeling of our proposed first-phased design flow can be divide four 

steps: instruction grouping, behavioral mode in RTL, synthesize (synthesized for 

time-optimized and area-optimized), and then the datapath called baseline of this step in order 

as shown in Figure 3-2. 
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Figure 3-2 Functional modeling 

 Instruction grouping 

To reduce the effort of SPU datapath design, we profile the common instruction sets used 

by multimedia applications, such as JPEG, FFT, DCT, FIR, and IIR through the SPU complier. 

The first step is to categorize these profiled instruction sets mainly by operations. We divide 

these instruction sets of datapath into seven group that are Add/Sub, Logic, Cmp (compare), 

Mask, S/R (shifter/rotator), Shuffle, Mpy (multiply) respectively. 

 Behavioral model in RTL 

After we categorize these instruction sets, we analyze the synthesis result of behavioral 

assignment in RTL followed the semantics of the SPU instruction sets architecture by CAD 

tool. This step intends to get the information of optimized-degree by Synopsys Design 
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Complier. We take the instruction set “ah” (add halfword) for example, as shown in Figure 

3-3. The “add_sub_sel” of the Figure 3-3 is the control which instruction of the Add/Sub 

group. Other instructions can follow the code format like the description of Figure 3-3. 

 

Figure 3-3 Example of behavioral assignment in RTL 

 Synthesis (synthesized for timing-optimized and area-optimized)  

After finishing the above RTL-coding, we initially analyze the synthesis result of the 

seven functional units. This result is defined as baseline of synthesis result in this thesis. We 

can get the shortest delay of each functional unit through synthesized for timing-optimized. At 

the same, synthesized for area-optimized provides the information of hardware complexity. 

The information of area and timing is the mainly two topics that we’re most concern in 

datapath design. In Table 3-1, we can clearly indicate that both the largest area and the longest 

delay of baseline is the “Mpy” functional unit. By the way, we can see the synthesized result 

about the resource report, and find out the numbers of synthesized resource provided by 

DesignWare. Then we find that the CAD tool doesn’t do any optimization for our functional 

units in datapath. In next subsection, we will provide general strategy to optimize the datapath 
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Table 3-1 Synthesis result of baseline 

 
Synthesis for timing Synthesis for area

delay(ns) 0.63 4
area(um2) 40468 25173
delay(ns) 0.45 3
area(um2) 14148 7209
delay(ns) 0.62 2.5
area(um2) 15914 9977
delay(ns) 0.31 1.4
area(um2) 3063 1442
delay(ns) 0.8 4.8
area(um2) 225086 131332
delay(ns) 2.51 7
area(um2) 518969 371405
delay(ns) 0.66 2
area(um2) 42123 26657

Baseline

Mpy
(#11)

Shuffle
(#7)

Grouping

Logic
(#9)

Cmp
(#18)

Mask
(#9)

S/R
(#26)

Add/Sub
(#9)

 

 Optimization (sharing) 

The SPU instruction sets support 128-bit SIMD operations which are 8-bit, 16-bit, 32-bit, 

and 128-bit. For example, the “Add/Sub” functional unit supports the 16-bit and 32-bit 

addition and subtraction, and the “Cmp” functional unit even supports 8-bit (byte), 16-bit 

(halfword), and 32-bit(word) comparison.  In order to support varieties of bit-length 

operations, we intuitively follow the behavioral assignment in RTL followed by the SPU ISA. 

From the last section, we find that there is no optimization for these functional units in 

datapath from these synthesized reports. This strategy is not area-efficient in order to transfer 

the SPU ISA to single-cycle execution datapath. In this step, we describe how to optimize 

these function units by using the general optimized strategy, such as resource sharing, 

sub-parallel method [11] for this seven functional units. 

Resource sharing is the general method that the same bit-length computation of on 

functional unit uses the same hardware to compute with encoder that decides which 

instruction set to execute. We use this method in these functional units called “Logical”, 

“Mask”, “S/R”, and “Mpy”. 
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Sub-parallel method is that using multiple sub-word length hardware for word length 

computation. For a subword adder, this method is achieved by inserting multiplexers in the 

subword boundaries to propagate or prevent the subword carries in the carry chain [12]. For 

example, the “Add/Sub” functional unit is support 16-bit and 32-bit operations. We use two 

16-bit adders to support 32-bit adder by adding an and-gate to control the 16-bit adder result’s 

carry as shown in Figure 3-4. If the word control bit is “1”, this hardware is to execute 32-bit 

addition or subtraction, and execute 16-bit operations vice versa. Other functional unit, such 

“Cmp”, can follow this method to do 8-bit, 16-bit, or 32-bit operations 

 

 

Figure 3-4 Add/Sub functional unit 

We design the SPU datapath by using the above these optimized methods. In fact, these 

above optimization methods are the spatial optimization on the contrary to the temporal 

optimization in the 3.2 chapter. 
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3.1.2 Cycle-Accurate Modeling 

 

Figure 3-5 Cycle-accurate modeling 

Because the front sub-section is just single-execution in datapath, we must take the 

latency spec. of the SPU ISA into consideration in datapath design as shown in Figure 3-5. In 

Table 3-2, it provides the instruction latency of all seven functional units. Instruction latency 

means that the number of clock cycles it takes for the instruction to get the available result 

through the pipeline. For example, the “Add/Sub” has two instruction latencies that means its 

result must be produced within two-cycle. At this step called “cycle-accurate modeling”, we 

combine the previous optimized single-execution with the instruction latency spec. of the 

SPU to design the micro-architecture. We use the main two methods, queue-sharing and the 

forwarding unit design. Queue-sharing means that these single-execution functional units 

bypass the same pipelined-register to meet the instruction latency, and the forwarding unit 

uses the above pipelined-register to forward the data to operand fetch unit. Next, we will 
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introduce how to design the forward unit. 

Table 3-2 Instruction latency 

 Grouping # latency
Add/Sub 2

Logic 2
Cmp 2
Mask 2
S/R 4

Shuffle 4
Mpy 7  

Data forwarding is a well-known technique to reduce the number of extra execution 

cycles. However, the complexity of forwarding network is rapidly increasing and usually 

constitutes the critical path [14]. In order to design forwarding unit systematically, we sort out 

pipelined-stage that producer (produce data) or consumer (consume data) and divide them 

into two categories. The analysis of the data forwarding paths includes two domains. One is 

temporal domain analysis and the other is spatial domain analysis. The temporal domain 

analysis checks the results produced by previous instructions but still in execution unit 

pipeline, while the spatial domain analysis checks all possible paths between every producer 

and consumer stages.  

We defined the tolerable latency (TL) [14] of forwarding unit is the latency between data 

producing and data consuming:  

TL (tolerable latency) = data consuming time – data producing time 

The TL indicates the available latencies between consumer and producer. If the TL is less 

than the latency of forwarding unit, the data forwarding is impossible and has to stall several 

cycles till the TL is equal to the latency of forwarding unit. Figure 3-6 shows the example of 

TL in our SPU datapath design. 
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Figure 3-6 Tolerable latencies  

For the forwarding unit which has one-cycle latency, there are three possible forwarding 

cases depending on the TL: 

1. Non-causal (TL < 0). 

2. Timing critical (TL = 0). 

3. Normal (TL ≥ 1). 

The first one is non-causal path. It happens that the consumer is executed earlier than the 

producer that results in a non-causal forwarding condition. The second one is the producer is 

directly forwarding to the consumer. That is, the data of producer is directly forwarded to 

consumer at next instruction cycle that means non-tolerable extra latency on the forwarding 

path. The final one is normal paths which have multi-cycle tolerable latencies between 

consumer and producers. In this case, the result produced by producer can’t be forwarded to 

consumer directly but has to queue for multiple cycles. In our datapath, we divide seven 

functional units into main three groups having the same instruction latencies, which have 

two-latency, four-latency, and seven-latency respectively. Table 3-3 shows all of our 

forwarding paths. In this table, all possible paths between each producer and consumer are 

categorized into three forwarding cases mentioned above. The instruction number indicates 

the instruction cycle latencies between consumer and producer. 
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Table 3-3 Forwarding table of our SPU 

 
2-latenty of FUs 4-latenty of FUs 7-latenty of FUs

inst. 1 timing critical non-causal non-causal
inst. 2 normal (TL=1) non-causal non-causal
inst. 3 normal (TL=2) timing critical non-causal
inst. 4 normal (TL=3) normal (TL=1) non-causal
inst. 5 normal (TL=4) normal (TL=2) non-causal
inst. 6 normal (TL=5) normal (TL=3) timing critical
inst. 1 timing critical non-causal non-causal
inst. 2 normal (TL=1) non-causal non-causal
inst. 3 normal (TL=2) timing critical non-causal
inst. 4 normal (TL=3) normal (TL=1) non-causal
inst. 5 normal (TL=4) normal (TL=2) non-causal
inst. 6 normal (TL=5) normal (TL=3) timing critical
inst. 1 timing critical non-causal non-causal
inst. 2 normal (TL=1) non-causal non-causal
inst. 3 normal (TL=2) timing critical non-causal
inst. 4 normal (TL=3) normal (TL=1) non-causal
inst. 5 normal (TL=4) normal (TL=2) non-causal
inst. 6 normal (TL=5) normal (TL=3) timing critical
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The forwarding module can be imaged as a pipelined stage in the forwarding paths 

which isolates the complicated network from datapath by output registers. Once the 

forwarding table is established, we can design the forwarding micro-architecture as shown in 

Figure 3-7. 

By using sharing queue and forwarding unit, we can design the micro-architecture of 

SPU. Because the SPU is dual-issue, we divide the datapath into two pipelined path. Figure 

3-8 shows the pipelined diagram which meets the instruction latency of the SPU. 

One of the fundamental decisions to be made in the design of a processor is the choice of 

the structure of the pipeline. In next chapter, we explore this issue to get an optimal 

area-efficient pipeline stage for each functional unit of SPU, given the instruction latency of 

ISA with a targeted performance requirement. This issue is treated both analytically and by 

simulation. We use the spatial optimization for our datapath design. At first, we have the 

preliminary analysis for the latency exploration. Finally, we use the mathematical formulation 

to get the optimal architecture. 
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Figure 3-7 Forwarding network 
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Figure 3-8 SPU Pipeline diagram 
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3.2 Temporal Optimization 

As shown in Figure 3-8, the pipeline datapath just use bypassing-register to meet the 

instruction latency of functional units, but we can explore the latency spec. to optimize the 

datapath as shown in Figure 3-9. This is the question as to an optimum pipeline depth for a 

processor, given the latency spec. of ISA. Retiming is a structural optimization technique that 

relocates the registers in a logic circuit with the objective of minimizing their total gate counts, 

maximizing the circuit performance, or achieving both simultaneously [15][16]. We apply 

retiming to make functional units run at the required timing constraints containing a minimum 

number of registers. 

 

Figure 3-9 Temporal optimization 
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 Latency exploration 

Retiming [15] is a transformation technique used to change the locations of delay 

element in a circuit without affecting the input/output characteristics of the circuit. It is a 

useful method for optimize the performance in synchronous circuit design. These include 

reducing the clock period of the circuit, reducing the number of registers in the circuit, 

reducing the power consumption of the circuit, and logic synthesis. In this thesis, we use the 

retiming to reduce the number of registers in out datapath.  

In the following pipelined functional units, we use the CAD tool called pipeline_design 

of Synopsys Design Complier to pipeline the functional units. For example, we have three 

ways to decide the pipeline structure with the given latency of functional units as shown in 

Figure 3-10. The first way is that the functional unit is directly bypassing three pipelined 

register without pipelining the functional unit. The second way is that the functional unit is 

pipelined 2-stage by CAD tool and then bypassing two pipelined registers. The final way, we 

use CAD tool to pipeline the functional unit with 3-atage and bypassing the output register. 

We find that the trivial stage-selection, that is 3-stage, is not surely the best area-efficient with 

targeted frequency, so we will analyze the synthesized area trend of pipelined functional units 

to help formulate mathematical formulation. 

 

Figure 3-10 Function unit with 3-cycle latency 

Next, we’ll analyze the multiple-cycle latency basic module of functional units. That is, 
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we will analyze these functional units, such as 16-bit “S/R”, 8-bit “Shuffle”, and 16-bit 

“MUL” 

 Functional unit characterization  

 S/R 

The “S/R” functional unit has 3-latency, so there is three ways to decide the 

pipelined structure. We use the 16-bit shifter to estimate the area trend of all three ways 

by using the synthesized result of pipelined functional unit and estimate the 16-bit 

pipelined register under the 1.25ns timing constraints. As shown in both Table 3-4 and         

Figure 3-11, we can see that the first column is the possible stage number of “S/R” 

functional unit. At the same time, we try to estimate the pipelined register the third 

column and the 16-bit register is 288 um2. For example, the first case is that the 

functional unit is directly bypassing three-stage pipelined-registers, so 288 multiplied by 

three is 864 um2. We use this way to estimate the synthesized trend, and cleanly see the 

area is proportion to the stage number as shown in           Figure 3-11. 

                                      Table 3-4 Piped S/R FU 

 Piped Stage Piped-FU Bypassing Register Area (um2)
1 1514 864 2378
2 2237 576 2813
3 2528 288 2816

 Piped S/R FU
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          Figure 3-11 Piped S/R FU 
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 Shuffle  

The “Shuffle” is also a 3-latency functional unit, so it has three choice of 

pipelined-stage. We use 8-bit shuffle module to approximate the area trend of the three 

possible cases for pipelined stage under the 1.25ns timing constraints. In both Table 3-5 

and Figure 3-12, we can find the area trend of pipelined “Shuffle” is almost proportion to 

the pipelined stage of functional unit. We can see the slight difference between 2-stage 

and 3-stage, but it will be more distinct from the multiple modules in our “Shuffle” unit. 

                                Table 3-5 Piped Shuffle FU 

 Piped Stage Piped-FU Bypassing Register Area (um2)
1 1433 432 1865
2 1580 288 1868
3 1724 144 1868

 Piped Shuffle FU
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        Figure 3-12 Piped Shuffle FU 

 MUL 

The multiplier is the main critical functional unit, so multiplier typically has much 

more pipelined-stages than other functional units in order to target high frequency. It 

means that there is deeper pipeline in multiplier, so we have more design space to decide 

the pipelined-stages. Our “MUL” functional unit has 6-latency, so it has six possible 
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selections of pipelined-stages. Here, we use 16-bit multiplier synthesized under 1.25ns 

timing constraints. In both Table 3-6 and Figure 3-13, we can cleanly see the trend of the 

area of pipelined-stage “MUL”. Different from the previous functional units, there is a 

non-available synthesized result in the second row. Because the non-pipelined MUL’s 

critical path is longer than 1.25 ns, it requires at least 2 pipelined-stages to target our 

operating frequency, 800MHz. In Figure 3-13, we can find there is a smooth curve 

between the 2-stage and 3-stage functional unit. At the same time, there is a steep curve 

between 3-stage and 4-stage functional unit. That’s because the synthesized result is not 

absolutely linear growing up with the pipelined-stage functional unit. General speaking, 

the area of MUL is proportion to the pipelined-stage. 

        Table 3-6 Piped MUL FU 

 Piped Stage Piped-FU Bypassing Register Area (um2)
1 NA NA NA
2 8521 2880 11401
3 9403 2304 11707
4 9981 1728 11709
5 11340 1152 12492
6 12140 576 12716

Piped MUL FU
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         Figure 3-13 Piped MUL FU 

In one word, we use smaller modules to estimate the area of functional unit with the 

above synthesized trend in reality. These results help us to formulate the following 
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mathematical formulation. After using register estimation and pipeline functional unit to 

estimate the area trend, we’ll introduce how to formulate the mathematical formulation for 

our datapath design. 

 Formulation 

    Retiming is a structural optimization technique that relocates the registers in datapath 

that is targeted to minimize total gate count and maximize the circuit performance. We 

formulate the mathematical formulation with retiming method that is to minimize the area 

under timing constraint. 

The mathematical formulation is as follows. We solve the equations to minimize the total 

area of all pipelined functional units under timing constraints. As shown in Table 3-8, the first 

parameter “i” gives the identified number to each functional unit. Table 3-7 shows the ID 

number of each functional unit. The second Api is the total area of each pipelined functional 

unit, Pi and Li is respectively the pipelined-stage and latency spec. of each functional unit. 

Finally, we introduce the following timing parameter. The first parameter Ci is the control 

delay of each functional unit, means the timing delay of multiplex before function unit. The 

Means of ti and tp are timing delay of pipelined-register and pure combinational respectively. 

We estimate the parameter “tp” about 0.15 ns to 0.2 ns from the manual of UMC 90 process. 

The least timing constraint is “t” that is our targeted operating frequency 800MHz (1.25ns). 

Table 3-7 Number ID of functional unit 

FU ID number (i)
Add/Sub 1

Logic 2
Cmp 3
Mask 4
S/R 5

Shuffle 6
Mpy 7  
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Table 3-8 Description of equation’s parameter 

Parameter Description
i ith FU

Ai area of ith FU
Pi # pipelined stage
Li latency spec.
Ci control delay
ti timing of non-piped FU
tp pipelined register
t timing contraints  

7654321 M AAAAAAAinimize ++++++                           (3-1) 
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In Equation 3-1, we try to derive the minimum area of each one of the seven functional 

units. We formulate Equation 3-2 and Equation 3-3 with parameters. We list a simultaneous 

inequality by the mainly concepts, that is the total delay must be shorter than timing 

constraints (1.25ns) within one-stage pipelined datapath as shown in Figure 3-14. The 

parameter ti can be derived from the column of synthesis for timing of every functional unit in 

Table 3-8. Equation 3-2 is the latency spec. that means combinational circuit of every 

functional unit can be divided into at most stage. 

Function unitControl circuit

< t

 

Figure 3-14 Timing delay of one-stage pipelined datapath 

    From these above constraints and Equation 3-2 and 3-3, we can derive the solution as the 

Equation 3-4. 
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3.3 Experimental Results 

In this chapter, we show the experimental result of our proposed design flow. It includes 

spatial optimization and temporal optimization as shown in Figure 3-15. 
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Figure 3-15 Proposed design flow 

Spatial optimization 

Table 3-9 shows the synthesized result by using the above optimized method that is 

defined as spatial-optimized. It shows the timing critical and the hardware complexity of each 

grouping. At the same time, we also set the timing constraint as 2.5ns (400MHz) as the typical 

case. By the way, we can derive the general case of common operating frequency in DSP.  

 

 

 

 

 



 

43  

Table 3-9 Synthesized result of baseline and spatial-optimized 

Baseline Spatial-
optimized

Baseline Spatial-
optimized

Baseline Spatial-
optimized

delay(ns) 0.63 0.82 4 4.6 2.5 2.5
area(um2) 40468 8811 25173 5635 26183 9530
delay(ns) 0.45 0.45 3 3 2.5 2.5
area(um2) 14148 14282 7209 7209 7215 7215
delay(ns) 0.62 0.72 2.5 2.8 2.5 2.5
area(um2) 15914 7040 9977 5515 9977 5547
delay(ns) 0.31 0.31 1.4 1.4 2.5 2.5
area(um2) 3063 3063 1442 1442 1443 1443
delay(ns) 0.8 1.4 4.8 9.3 2.5 2.5
area(um2) 225086 94460 131332 49693 132160 50341
delay(ns) 2.51 2.01 7 7.6 2.5 2.5
area(um2) 518969 68055 371405 39317 NA 47741
delay(ns) 0.66 0.66 2 2 2.5 2.5
area(um2) 42123 30393 26657 24388 26657 24399

Shuffle

Grouping

S/R

Mpy

Cmp

Mask

Add/Sub

Logic

Synthesis for timing Synthesis for area Target 400 MHz

 

In Table 3-10, we can find the hardware complexity of spatial-optimization is much 

lower than that of baseline from the third column “Area-optimized”. In order to sharing the 

hardware resource, we add some control hardware like encoder which adds timing delay 

slightly in datapath. In the “Synthesis for timing” column of Table 3-10, we can find the 

timing delay of most functional units is increasing slightly except the “Mpy” functional unit.  

Because the hardware complexity of the “Mpy” functional unit of baseline with larger 

encoder is much lager than spatial-optimized with smaller encoder, the timing delay of 

baseline is longer than spatial-optimization. By the way, the “Logic” and “Mask” unit are the 

same in both baseline and spatial-optimized because these units use simple logical gate or just 

wiring. If we add some controller to share the same logical gate, there is much overhead 

compared to the original controller in these two units. Finally, we use a typical case target to 

400MHz (2.5ns) to confirm the above optimized method for area. We show the improvement 

of these functional units as shown in Table 3-11. In the “Mpy” unit of the 400MHz column, 

the “NA” means no available because its timing delay is longer than 2.5ns. In the next section, 

we’ll take the latency spec. of the SPU into consideration for micro-operation design. 
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Table 3-10 Comparison between baseline and spatial-optimized 

Grouping Baseline
Spatial-

optimized Baseline
Spatial-

optimized Baseline
Spatial-

optimized
Add/Sub 0.63 0.82 25173 5635 26183 9530

Logic 0.45 0.45 7209 7209 7215 7215
Cmp 0.62 0.72 9977 5515 9977 5547
Mask 0.31 0.31 1442 1442 1443 1443
S/R 0.8 1.4 131332 49693 132160 50341
Mpy 2.51 2.01 371405 39317 NA 47741

Shuffle 0.66 0.66 26657 24388 26657 24399

Timing-optimized (ns) Area-optimized (μm2) 400MHz (μm2)

 

Table 3-11 Improvement by spatial-optimized 

Grouping Timing Area 400MHz

Add/Sub -30.2% 77.6% 63.6%
Logic 0.0% 0.0% 0.0%
Cmp -16.1% 44.7% 44.4%
Mask 0.0% 0.0% 0.0%
S/R -75.0% 62.2% 61.9%
Mpy 19.9% 89.4% NA

Shuffle 0.0% 8.5% 8.5%  

 

 Temporal optimization 

We’ll prove our proposed temporal optimization that is optimal micro-architecture.  In 

fact, we can synthesize for all cases of the latency spec. of functional units. But, this method 

is too trivial to consume the design time in order to get the optimal micro-architecture with 

the deeper pipelined datapath. Our proposed temporal optimization not only saves the iterative 

time, but also gets the optimal selection of pipelined-stage as shown in Table 3-12. 
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Table 3-12 All cases for latency spec. 

1 2 3 4 5 6
delay(ns) 1.25 NA NA NA NA NA
area(um2) 9490 NA NA NA NA NA
delay(ns) 1.25 NA NA NA NA NA
area(um2) 10287 NA NA NA NA NA
delay(ns) 1.25 NA NA NA NA NA
area(um2) 7690 NA NA NA NA NA
delay(ns) 1.25 NA NA NA NA NA
area(um2) 3710 NA NA NA NA NA
delay(ns) 1.25 1.25 1.25 NA NA NA
area(um2) NA NA 78639 NA NA NA
delay(ns) 1.25 1.25 1.25 NA NA NA
area(um2) 31283 32653 34888 NA NA NA
delay(ns) 1.25 1.25 1.25 1.25 1.25 1.25
area(um2) NA NA 81782 83195 83554 85655

Grouping Latency(#)
under timing constraint 1.25

 Add/Sub 1

 Logic 1

 Cmp 1

 Mask 1

 S/R 3

 Shuffle 3

 Mpy 6
 

In Table 3-12, the blue-color word is derived form our proposed temporal optimization. 

For each functional unit, the blue-word selection is the best choice for the optimal 

micro-architecture. Maybe we can try to synthesize for all case, but it is time-consuming. For 

example, the Mpy functional unit has six latencies, that’s mean that it have six possible 

pipelined structure. If we try to synthesize for all cases, it is not timing-efficient. This 

situation is becoming serious for functional unit with more and more latencies of deeper 

function unit in order to target high operation frequency. Finally, we show the improvement 

compared to trivial approach with our proposed temporal optimization as shown in Table 

3-13. 

Table 3-13 shows the comparison of all pipelined functional units between our proposed 

temporal optimization and the trivial approach with the pipeline diagram of the reference 

paper [7]. The Reference version uses the spatial-optimized datapath to explore the latency 

directly by the pipelined-diagram of reference, and the temporal-optimized uses the same 

datapath by temporal optimization. The first column is all functional units, and the second is 

the latency spec. that means the maximum number pipelined-stage of each functional unit. We 

can see that the reference is directly used the latency spec. to pipeline each functional unit by 
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CAD tool. However, the spatial optimization uses our proposed temporal optimization. Seeing 

the “Improvement” column, we can see improvement by 0% from Add/Sub to S/R functional 

units, because these functional units have no latency to explore. In other words, these 

functional units have only one-latency and the S/R must pipeline 3 stages into it in order to 

target high frequency. In both “Shuffle” and “Mpy”, we improve the area compared to the 

version 3 by 10% and 4.5% respectively.  

Table 3-13 Temporal optimization 

pipelined-stage 1 1
area 9490 9490

pipelined-stage 1 1
area 10033 10033

pipelined-stage 1 1
area 7690 7690

pipelined-stage 1 1
area 3710 3710

pipelined-stage 3 3
area 78639 78639

pipelined-stage 1 3
area 31283 34888

pipelined-stage 3 6
area 82964 85655

Ref. Improvement (%)

Add/Sub 1 0%

FU latency(#)
(800MHz)

Temporal-
optimized

Logic 1 0%

Cmp 1 0%

Mask 1 0%

S/R 3 0%

Shuffle 3 10.33%

Mpy 6 3.14%
 

Finally, we show the area-efficient micro-architecture target to lightweight applications 

target to 100MHz to 800MHz as shown in Table 3-14. Our proposed design flow improves the 

area of micro-architecture by approximate 20%. The case “800 MHz” is just improved by 3% 

because its optimization space is limited by timing-optimized. General speaking, we can see 

the trend of micro-architecture is area-efficient by using our proposed design flow. In Table 

3-14 and Figure 3-16, we can see the other case is area-efficient micro-architecture improved 

15% to 20% of area. 
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Table 3-14 Area reduction from temporal optimization 

     

Freq. 800 700 600 500 400 300 200 100
Ref 231180 227291 222731 220023 211618 205309 204331 200748

Proposed 224884 192097 177805 174614 169417 160588 157005 154830
Improvement 2.72% 15.48% 20.17% 20.64% 19.94% 21.78% 23.16% 22.87%  
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Figure 3-16 Improvement by our proposed design flow 
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 4  SILICON IMPLEMENTATION 

 

 

 

 

 

 

 

In this chapter, the silicon implementation is to implement the design with cell-based 

flow, and the result shows the area and timing after physical implementation. The result of 

silicon implementation contains two parts. The first one is the implementation flow and the 

second one is the implementation result of SPU and layout of SPU chip.  
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4.1 Implementation Design Flow 

We will design the SPU processor based on UMC 90nm 1P9M Process Low-K. Figure 

4-1 is a flow chart which illustrates the design flow for our SPU design. 

 
μ-architecture design

RTL coding

RTL simulation

Synthesis

Gate-level simulation

Physical design
 

Figure 4-1 Implementation flow 

Figure 4-2 illustrates the I/O interface. The SPU has 32KB on-chip instruction memory 

and 64KB on-chip data memory. The datapath is dual-issue as shown in Figure 4-3. By our 

proposed design flow of last chapter, we can decide systematically the pipelined stage of 

every functional unit to design area-efficient micro-architecture. By the way, the S/R and Mul 

are pipelined into two stages respectively to meet the timing constraints. Due to the critical 

path determined by the memory modules provided in cell library, we set 400 MHz (2.5ns) as 

the operating frequency of our SPU core. We can see that the LS pipe is pipelined into 5 

stages because these stages are to do data-gather due to the 32-bit output of data memory. In 

order to gather the data, we need four cycles to do that. After getting the available result of 
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each functional unit, we use shared by-passing register to pass the result of every functional 

unit. 

According the micro-architecture proposed from the last chapter, it defines pipeline stage 

to facilitate the RTL design. And then the forwarding path will take into consideration to 

avoid redundant routing paths. On the basis of pipeline stage and the I/O definition, we define 

the micro-operation of all instructions in every pipeline stage. By doing this work, hardware 

resources will be further defined. After these above analysis and design, the RTL (register 

transfer level) model can be built up. We execute behavioral-level simulation in the RTL 

model by using NC-Verilog simulator. After the RTL code is bug free, we use synthesis tool 

(Synopsys design complier) to synthesis our RTL code into gate-level netlist. The gate-level 

simulation will be performed to sure the logic gates work correctly. When the gate-level 

netlist is ready, we can use Cadence SoC encounter to implement physical design. 

 

 

Figure 4-2 Our SPU interface 
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Figure 4-3 Pipeline diagram of our SPU 

4.2 Implementation Result 

In Table 4-1 , the synthesis result which uses UMC 90nm 1P9M Process Low-K and 

operates in worst case shows the area and timing. Figure 4-4 shows the layout of our 

SPU_CHIP. This processor is pipelined into 10 stages (4 instruction pipeline and 6 execution 

pipeline). According to simulation and APR result, SPUCHIP can operate at 400MHz and 

core size is 2.5mm x 2.5mm shows the summary of APR results. 
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Table 4-1 Synthesis result 

Technology UMC 90nm 1P9M Process Low-K
Total area 927,326
Die size 2.5mm x 2.5mm

Operating freq. 400 MHz
Power 320 mW  

 

64 KB Data Mem

SPU_DSP

32 KB Instr. Mem

 

Figure 4-4 Implementation result 
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 5  CONCLUSION & FUTURE WORKS 

In this thesis, we proposed two-phased design flow to explore the optimization space 

with respect to the specific ISA implementation for embedded applications. The proposed 

two-phased design flow is to get the optimal micro-architecture under the various timing 

constraints with the software support. First-phased design flow is spatial-optimized includes 

function modeling and cycle-accurate modeling. In one word, the first-phased design flow is 

mainly spatial optimization. Second-phased design flow is temporal optimization to explore 

the latency by building mathematical formulation. Using formulating the mathematical 

formulation by our proposed temporal optimization, we can get the area-efficient 

micro-architecture systematically. We take the Cell SPU as our design example because the 

Cell SPU is data-oriented processor that exposes long latency. Our proposed design flow is 

more area-efficient than the ad-hoc method to design micro-architecture. The experimental 

result shows that our proposed design flow is more area-efficient 15% to 20% than the 

micro-architecture of reference [7] directly under timing constraints 100 MHz to 800 MHz.  

Besides, our proposed design flow can be applied to the synthesis of ASIPs (Application 



 

56  

Specific Instruction set Processor), such as an automatic processor for optimal 

micro-architecture under the targeted timing constraints with the existing software support.  

For example, within the last year commercial tools like LISATek [18] framework came up, 

that allows to designing ASIP architectures by using their own description language. It 

shortens the design time dramatically compared to classical register-transfer-level (RTL) 

based approaches. For the micro-architecture of the specific ISA, the processor generator can 

be used to get the area-efficient micro-architecture under the target timing constraints with the 

existing software support when the RTL model of the processor is ready. 
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