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Abstract

Motion estimation (ME) processing is the most computational and memory intensive
component in H.264 encoder. However, traditional ME algorithms focus on rate and
distortion performance and thus do not take memory bandwidth into consideration.
Therefore, the rate and distortion performance are not optimized under bandwidth
constraint. In this thesis, we propose bandwidth=rate-distortion (B-R-D) optimized ME
algorithm to solve the issue mentioned: above.. First, we mainly propose a B-R-D
optimized modeling method ‘0 determine an  appropriate search range (SR) for
maximizing rate distortion efficiency whtle” can dynamically meet the available
bandwidth. Then, we propose two methods, skip mode detection with content-aware
scheme and SR boundary prediction method, to enhance the performance of B-R-D
optimized modeling method. The skip mode detection with content-aware scheme is
presented to save the most memory bandwidth and thus gives other complex MBs more
bandwidth for better quality, and the SR boundary prediction method is presented to
determine a feasible SR boundary for SR refinement. Compared with reference software
[3], when coding in low motion sequence, the simulation result shows the proposed BRD
design could improve the bandwidth saving up to 70% with almost the same performance
at bit rate and PSNR under average search range size 16, and up to 84% with negligible
PSNR degradation with skip design added; while coding in high motion sequence, the
simulation result shows our design could save average bit rate up to 13% and at the same
time increase average PSNR up to 0.1dB under low bandwidth constraint. In summary,
our design could achieve the same and sometimes even better performance under various
bandwidth constraints and thus it is suitable for improving ME process.
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1. Introduction

1.1. Background

The emerging popular multimedia technology, such as digital television, mobile phone
and DVD player bring us convenience in daily life. However, the data amount of video is
too large to transmit or record without compression techniques. Therefore, several
compression techniques have been proposed to reduce the data and bandwidth efficiently.
The H.264/AVC standard [1] has been adopted recently as a popular compression
technique from its high compression rate. In which, motion estimation (ME) part is the
most computational and memory intensive component in H.264 encoder. To support these
high computation and high bandwidth on ME, several algorithms have been proposed.
However, traditional ME algorithms focus on rate and distortion performance, and thus do
not take memory bandwidth inte-consideration: While-coding under bandwidth constraint,
it will lead to a significant quality loss-or-the-coding time will be delayed. Therefore, the

rate and distortion performance are not-optimized-under bandwidth constraint.



1.2. Motivation and contribution

The issue mentioned above motivates us to develop rate distortion optimized motion
estimation  under the available memory  bandwidth  constraint.  The
bandwidth-rate-distortion optimized concept has a lot of similarities with the
power-aware design [8][9][10][11] and computation-aware design [12][13][14][15][16],
and both these designs develop as a basis of rate-control-like procedure. Therefore, we
propose a rate-control-like procedure for macroblock (MB)-level bandwidth allocation,
which not only meets the bandwidth constraint, but also maximizes the coding efficiency.

The contribution of the thesis is described as follows:

We proposed a bandwidth-rate-distortion (B-R-D) optimized motion estimation
algorithm. The concept has three phases including

1) We propose a simple skip mode detection.with.content-aware scheme to find if that
is a skipped MB for saving the most memory bandwidth.

2) We propose a bandwidth-rate-distortion'(B-R-D) optimize modeling method to
decide a feasible search range (SR)while can dynamically meet the available
bandwidth and maximize the coding efficiency.

3) We propose a SR boundary prediction method to determine a feasible SR boundary

for SR refinement.

1.3. Thesis organization

In chapter 2, we give an overview of the environment-aware motion estimation
algorithms. In chapter 3, we propose a B-R-D optimized ME algorithm to maximize rate
distortion efficiency while can dynamically meet the available bandwidth. In chapter 4,
we show the simulation result and analysis. In chapter 6, we implement the hardware of

the B-R-D optimized ME algorithm. Conclusion and future work are given in chapter 7.



2. Overview of environment-aware motion

estimation algorithms

Motion estimation (ME) part is the most important component in H.264 encoder. In
which, the variable block size integer-pel motion estimation (IME) not only contributes a
lot for coding efficiency but also dominate the computation, power, and bandwidth
loading of the whole encoding process. To support high performance under limited
computation, power, and bandwidth, various environment-aware motion estimations have
been proposed. The environment-aware motion estimation means that it has several
modes of motion estimation process, and could dynamically adapts its operating
configurations based on the awareness of environmental conditions, such as
computation-constrained, power-constrained, bandwidth-constrained or user preferences.

In this chapter, we first introduce.variable block-based motion estimation as a basis of
the following sections. And then, we.review-the environment-aware motion estimation
algorithms as follows:

1) Adaptive search range motion estimation

2) Power-aware motion estimation

3) Computation-aware motion estimation

4) Skip mode detection algorithm

2.1. Overview of variable block-based motion estimation

The block-based motion estimation is the most widely used motion estimation method
for video coding, since most of the pictures are normally rectangular in shape and
block-division can be easily done. In H.264 [2], the standard adopts hierarchical variable

block size motion estimation technique to improve the accuracy. Fig. 2-1(a) shows the
3



mode hierarchy and Fig. 2-1(b) shows the mode type and its block size. In one frame, it
consists of several macroblocks (MB), which are “16 by 16” pixels square. In one
macroblock, it can be divided into four “8 by 8” pixels 8x8 blocks. And within one 8x8
block, it can be further divided into four “4 by 4” pixels 4x4 blocks. Fig. 2-2 illustrates the
shape of various block size as listed in Fig. 2-1(b). For the video with complex textures,
the smaller blocks will provide better coding efficiency but with more motion vectors. In
contrast, as for the video with smooth textures, the larger blocks will provide better coding

efficiency with fewer motion vectors.

16—
% MB §R4B§ ...... | MB
MB | MB
I Mode Block size
: Frame Mode 1 16 x 16
Mede 2 16x 8
MB |
| Mode 3 8 x 16
Nego > Mode 4 8x8
L Mote 1 Mode 5 x4
i;Q ,,,,, e Mode 6 4x8
| Mode 4 | i Mol Mode 7 4 x4
et e
(a) (b)

Fig. 2-1 (a)The mode hierarchy and (b) its block size for H.264

Mode 1 Mode 2 Mode 3 Mode 4
16x8 8x16 8x8 | 8x8
16x16
16x8 8x16 8x8 | 8x8
Mode 4 Mode 5 Mode 6 Mode 7
8x4 4x8 ax4 | 4x4
8x8
8x4 4x8 4x4 | 4x4

Fig. 2-2 Different modes for H.264 motion estimation




2.2. Review of adaptive search range motion estimation

Because of the motion estimation in H.264 induces a high computational complexity
and leads high power consumption. Several motion estimation algorithms for low
complexity and low power have been proposed. However, most of the traditional fast
motion estimation algorithms reduce the complexity or power with more or less image
quality sacrifice that compared with the full search motion estimation. For this reason,
there is an approach to reduce the complexity or power by adjusting the search range size
to suit the motion level of a video sequence. In Tian’s algorithm [4] and In Toru’s
algorithm [5], an appropriate search range is determined on the basis of neighboring
motion vectors (MV) (i.e. as shown in Fig. 2-3) and prediction errors due to spatial
correlation between neighboring blocks. and.current block. And in Shih’s algorithm [6], it
adjusts the horizontal and vertical search ranges'.independently since there have no
relationship between horizontal-motion and vertical motion. In addition, to serve different
resolution video content, Wang’s-algorithm'[7]-particularly adjusts the search range on the
basis of the quantization parameter and‘the input size. In above algorithms, narrow search
ranges are chosen for slow motion to reduce the complexity and power without quality

degradation while wide search ranges are chosen for high motion to maintain the quality.

MVuyL
MVy MVyr

wlUL | U | UR

Fig. 2-3 Search range prediction using neighboring vectors



2.3. Review of power-aware motion estimation

Power-aware design concept has been introduced recently due to supporting high
computation and high bandwidth on mobile devices. A power-aware design is not only a
low power design, but also aware the environment to execute the functions with limited
power. Traditional ME design is considered for worst case, and therefore always uses full
energy no matter whether the execution is easy or difficult. However, it leads on
unnecessary power consumption and shortens the lifetime of devices. Thus to fully utilize
the available power in an efficient way, several power-aware designs have been proposed.
In [8], it focuses on the introduction of power-aware concepts and considerations to the
architecture design of a video coder as shown in Fig. 2-4, including the discussions of
power-aware motion estimation and discrete cosine transform. And in motion estimation,
it adopts several fast algorithms, and several skills like bit truncation scheme and
sub-sampling for multiple power modes support. In [9] and [10], they propose a dedicated
hardware with reconfigurable macroblock pipelining architecture for adopting its motion
estimation pre-skip algorithm. Through ‘the "pre-skip algorithm, the power can be
efficiently utilized, thus the power scalability can be improved for more power
management. And in [11], it develops a power-rate-distortion (P-R-D) model for
optimizing the rate-distortion (R-D) behavior under the power constraints. By using the
P-R-D model, given a power supply level and a bit rate, the power-scalable video is able

to find the best configuration of complexity control to maximize the video quality.
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Fig. 2-4 Power aware multimedia systems [8]

2.4. Review of computation-aware motion estimation

Many fast algorithms reduce the computation.complexity of motion estimation to meet
the computation constraints, and thus lead.to significant quality loss. Therefore, several
computation-aware ME algorithms.have been-proposed while can dynamically adjust the
target function under limited computation resource. In [12], its proposed
computation-aware scheme can dynamically determine the target computation which is
allocated to each frame, and then to each block in a computation-distortion-optimized
manner. The mean-square-error difference obtained from initial motion vector and best
motion vector is regarded as a distortion gain measure under computation constraints, and
thus can achieve better coding efficiency by adopting its computation-aware scheme. In
[13], it develops a complexity-rate-distortion framework, which extends the traditional
R-D analysis by including another dimension, the computation complexity. This
framework determines for each MB which partitions are likely to be optimal and motion
vector search is only carried out for only the selected partitions, thus reducing the

complexity of the ME step. In [14], Through investigating various issues in H.264, such as
7



complexity prediction methods, MB complexity scaling and time scheduling algorithms,
it proposes a method based on dynamic control of the encoding parameters to meet
real-time constraints while minimizing coding efficiency loss. In [15], it uses the sum of
absolute components of predict motion vectors to help allocating the available
computation to a frame, and then the computation to a frame is distributed to MBs. And in
[16], it presents a complexity aware motion estimation for H.624 based on pixel

representation of different bit-depth and a simple scene change detection module.

2.5. Review of skip mode detection algorithm

In MPEG-4 AVC/H.264 video coding, integer-pel motion estimation (IME) and
fraction-pel motion estimation (FME) contribute a lot for coding efficiency due to new
techniques, such as variable block'size andssix-tap interpolation filter. However, these new
complex techniques make ME-dominate the computational loading and power of the
whole encoding process up to 96%.[15]. The-most efficient way to lower the complexity
and power of ME is to directly skip the/MB ‘encoding and simply denotes it with skip
mode if the encoding situation is allowed. Therefore, as long as we can predict the skip
mode before ME, we can skip the whole coding stage and save encoding power of this
skipped MB. And in H.264/AVC, the MB will be skipped without encoding the motion
vectors and residues and is denoted as skip mode if the following conditions are matched:

1) The chosen block type is 16x16 (Mode 1).

2) The best motion vector equals the predicted motion vector (MVP).

3) The chosen frame is the previous frame.

4) All coefficients are zero after transformation and quantization.



2.5.1. Lagrangian cost motion estimation

In [18], [19] and [20], they propose a skip prediction through Lagrangian cost function.
The paper [18] uses a Lagrangian rate-distortion cost function which incorporates an
adaptive model for the Lagrangian multiplier parameter base on local sequence statistics.
The paper [19] predicts the Lagrangian multiplier parameter from the statistical
dependency of previous co-located block. And the paper [20], the skip decision is based
on a partially computed SAD metric combined with utilization of the Lagrangian cost
function from the previous frame.
2.5.2. All zero DCT blocks detection

In [21], [22] and [23], they perform a comprehensive analysis of the dynamic properties
of the DCT and quantization in H.264. They use several partial sum of absolute
differences (SADs) in a 4x4 block to predict the zero blocks in various conditions. And in
[24], a classifier based on the absolute frame differences has been employed to detect the

zero blocks to effectively skip unnecessary-modes and reference frames.
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3. Proposed B-R-D optimized motion estimation

algorithm

Motion estimation (ME) part is the most computational and memory intensive
component in H.264 encoder. Traditional ME design focuses on its rate distortion
performance, and thus assumes a worst case memory bandwidth requirement to the whole
system. However, such assumption ignores the realistic facts of diverging contents and
varying available memory bandwidth in a whole system. Diverging contents imply worst
case requirement to be an overdesign or waste. Varying bandwidth could limit the
available data and thus degrade the video quality or fail the real time constraints. Thus, in
this thesis, we propose a rate-distortion optimized motion estimation design while can
dynamically meet the available bandwidth, which is called bandwidth-rate-distortion
(B-R-D) optimized motion estimation.

The rest of chapter is organized as.follows.-\We will first introduce the whole B-R-D
optimized ME algorithms. Then we will discuss each part in details in the rest of the

chapter.
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3.1. Introduction

The overall B-R-D optimized ME is shown in Fig. 3-1. This algorithm is developed
with the following concepts. First, the target problem is to develop rate distortion
optimized motion estimation under the available memory bandwidth constraint. To make
the maximum use of the bandwidth, we first adopt a simple skip mode detection to find if
that is a skipped MB. A skipped MB implies the lowest memory bandwidth ME (zero
search range) and thus gives other complex MB more bandwidth for better quality. Thus,
for other non-skipped MBs, they go through two steps for optimization: bandwidth
prediction and bandwidth evaluation. Note that bandwidth is determined by the search
range. Thus, bandwidth prediction is first determined by initial search range boundary
prediction and refined by the current available bandwidth with the proposed B-R-D model.
Then the B-R-D optimized search rangeris used for. the current MB calculation and the
resulted B-R-D data is used for-bandwidth evaluation for further refinement in the next

MB.

MB Start

\

Skip Detect

\

Skip ? Yes
+No l
Pre-MB SR

———»  Feasible SR SR=0

v S
BRD Model

\

SR Boundary Pred

\

ME

v

MB End

Fig. 3-1 The total BRD optimized motion estimation algorithm flow
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3.2. Proposed skip mode detection with content-aware scheme

This algorithm is based on our previous work [23] with some refinement. The object of
the algorithm is to detect a zero MB with content-aware scheme, and save the most
memory bandwidth for other complex MB coding. The whole algorithm is illustrated in
Fig. 3-2. First, we detect whether a 4x4-block is zero or not by a refined SAD-4x4-block
threshold, and count the number of zero-4x4-blocks in a MB. If the number is larger than
MB-zero-block threshold, we refer to this current MB as a zero MB and skip this coding.
In addition, to avoid above SAD threshold affected by local large variations, we adopt a
spike threshold to remove such cases for more accurate detection. More details are
described in the following.

Start

Get zero-4x4-block threshold
(With refinement)

Count zero-4x4-blocks

v

No any 4x4-block sad >
N spike threshold ?

*Y
Get MB-zero-block threshold

Y

No. of zero-4x4-blocks >
MB-zero-block threshold ?

' '

Not Pre-Skip Pre-Skip

Fig. 3-2 Skip mode detection flow

3.2.1. Review of SAD-4x4-block threshold
From our previous work [23], the SAD-4x4-block threshold is used to decide if a

4x4-block is zero. We determine the threshold by analyzing the distribution of the
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4x4-block SADs higher than the must-be-zero-block threshold [22](Denote it by TO0), but
also quantized to zero block in skipped MB. We analyze five 300-frame CIF size test
sequences to determine this threshold as shown in TABLE 3-1. In which, the “mean”,
variance, “maxima” stand for the average, standard variation and maxima values of
4x4-blocks whose SADs are higher than TO. The boundary that we refer to as the
SAD-4x4-block threshold is the summation of mean and variance.

From TABLE 3-1, we can find that almost 85.9% in average of the 4x4-block SADs in
one skip MB is less than the boundary. When the SAD of the 4x4-block is less than the
boundary, we refer to the 4x4-block as a zero block. Therefore, we choose the
SAD-4x4-block threshold to prevent from large prediction error. And the SAD-4x4-block

threshold under different QPs is shown in TABLE 3-3.

TABLE 3-1 Boundary determination . of QP 28 (mean, variance, boundary and
maxima for the 4x4-block'SAD distribution which higher than T0)

QP 28 Mean Variance | Boundary | Maxima
Akiyo 44.3 106 55 111
Mother 45.1 9.9 55 97
Foreman 454 10.3 56 103
Football 50.8 114 62 103
Silence 55.9 12.8 69 109

TABLE 3-2 Spike threshold under different QP

QP20 QP24 QP28 QP32 QP36
Spike threshold 37 66 97 160 230

TABLE 3-3 Boundary determination under different QP

QP20 QP24 QP28 QP32 QP36
Akiyo 22 34 55 91 139
Mother 23 37 55 86 131
Foreman 23 38 56 91 142
Football 29 45 62 94 134
Silence 30 47 69 101 144
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3.2.2. Refinement of SAD-4x4-block threshold

In this section, we analyze the relationship between prediction error and
SAD-4x4-block threshold to help with refining the SAD-4x4-block threshold that
presented from section 3.2.1. From TABLE 3-4 and TABLE 3-5, we found that both
SAD-4x4-block threshold and SAD have high correlation as shown in Fig. 3-3. According
to above relationship, we make a list including SAD and boundary information as shown
in Fig. 3-4(a), and use this list to dynamically adjust SAD-4x4-block threshold from the
prediction error under different QP as shown in Fig. 3-4(b)-(f). We can see that the
SAD-4x4-block threshold is much proportion to SAD in lower QP cases. Thus such cases

will make a better approximation with SAD-4x4-block threshold refinement.

TABLE 3-4 The boundary and SAD value under QP28 of different sequences

Original Akiyo Mother Foreman Football Silence
Boundary 55 55 56 62 69
SAD 757 776 719 822 1337

TABLE 3-5 The boundary and.SAD value under QP 28 of different sequences
(Normalized to'/Akiyo)

Normalized | Akiyo Mother Foreman Football Silence
Boundary 1 1 1.018 1.127 1.254
SAD 1 1.025 1.029 1.086 1.768
2
SAD trend

1.8

/
/

3
= —&— Boundary
< 1.4
E —8-SAD
S
z A

1.2

1 4."2/7
0.8
Akiyo Mother Foreman Football Silence

Fig. 3-3 The trend between boundary and SAD (Normalized to Akiyo)
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Fig. 3-4 (a) SAD and SAD-4x4-block threshold under-different QP

Threshold estimation under (b) QP20 (c) QP24 (d) QP28 (e) QP32 (f) QP36

3.3. Proposed B-R-D optimized modeling method

In this section, a bandwidth-rate-distortion (B-R-D) optimized modeling method is
proposed as shown in Fig. 3-5. The method is developed with the following concepts.
First, to make maximum use of the bandwidth from bus system, we transform this
bandwidth into an available system search range for bandwidth budget estimation.
According to the bandwidth budget, we make an appropriate bandwidth allocation for
further MB coding process. Then, to justify the coding efficiency under a given
bandwidth, we define a bandwidth efficiency Gae up to i-th MB. And we adopt Gaye,

rate-distortion cost, and usable bandwidth budget to make a bandwidth prediction for
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keeping quality smoothness. Afterward, to make maximum use of the bandwidth budget,
we make a bandwidth boundary prediction by considering the bandwidth prediction
condition to determine a feasible bandwidth interval. Finally, we employ this interval and
certain rate distortion data to make a search range decision and set an appropriate search

range for further ME use. More details are as follows:

Start

v

BW budget init.

v

B-R-D performance cal.

Y

BW prediction

v

BW boundary prediction

/

SR decision

'

End
Fig. 3-5 B-R-D gptimized modeling method flow
Step 1: Bandwidth (BW) budget initialization
First, according to bus status and user’s preferences, we calculate the system search
range for bandwidth budget estimation. Then, we initialize the bandwidth budget for
bandwidth allocation in later coding process as shown in Fig. 3-6. Both system search

range and bandwidth budget equation are defined as follows:

Default SR
N

BW budget !
uase BWBUS -16

/: Default_ SR = \/Frame_ rate* MBs_in_one_ frame

G % :

S

—r Frame BWihudget = ( 2*Default_SR + 16 ) * ( 2*Default_SR + 16 )*

Fig. 3-6 Illustration of BW budget MBs_in_one_frame * GOP_size
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In which, the word BWg,s denotes the bus data transmission rate (MBps), Frame_rate
denotes coded frame numbers per second, MBs_in_one_frame denotes MB numbers per
frame, Default_ SR denotes default search range in a group of picture (GOP), and
GOP_size denotes frame numbers in a GOP. While coding at the beginning of GOP, our
design receive data transmission rate supplied from the bus system. To make maximum
use of the bandwidth from bus system, we transform this rate into a default search range,
and use this default search range to estimate a bandwidth budget. Base on this bandwidth
budget, we allocate appropriate bandwidth within a GOP for better quality maintain. For

ease of decision, we set the bandwidth budget for a GOP with 16 frames.

Step 2: B-R-D performance calculation

To justify the bandwidth usage, we define the bandwidth efficiency Gaye up to i-th MB

as follows.
X (RDGjgj; “RDCp)10)
Gaye =i=1
=
igl BWisage

In which, let RDCiinit denotes the rate-distortion cost that obtained using the initial MV
(i.e. MvP), RDC éMA denotes the rate-distortion cost that obtained after a motion search

from block-matching algorithm (BMA) (i.e. Full search algorithm), and BWuisagedenOtes

actual BW usage that performed in previous k-1 MB. G, means the average
rate-distortion gain of a given bandwidth. The more G, we gain, the better coding
efficiency we will perform. In the following step, we will use Gae. for bandwidth

prediction.
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Step 3: Bandwidth prediction

In this step, the objective of bandwidth prediction is to predict usable bandwidth for
next MB. First, to keep the quality smoothness between the current and the previous MBs,
we adopt certain data from previous MBs for further prediction as shown in Fig. 3-7.

The following equation should hold:

k-1 -
> RDC!
-Gaye BWK_—i=l BMA

K
RDC I

Init
Let BW ka be the backward bandwidth prediction. Where the left-hand side of the
equation stands for the target rate distortion cost (RDC) of the current MB, the right-hand
side of the equation is the averaged RDC value of the previous MB. While we obtained
larger Gave from the former step, it means the:less bandwidth (i.e. BW ka ) we need for

maintaining the rate distortion gain (RDG) of the previous MB. Therefore, the backward

prediction for the current MB k:can be, derived as

kz_lRDCi
rockr iy BMA
k Init k-1
BWK_ =
BP Gave

In contrast to BW ka , we define the forward prediction BW ka for further prediction to

keep the quality smoothness between the current and the future MB by adopting certain

bandwidth information as shown in Fig. 3-7. The equation is as follows:

K=l
— 1
BWpget %, BWisage
n—(k-1)

K _
BWEp =
Because we have no knowledge of the future RDG performance, and therefore the

forward prediction BW,l(p is equal to the remaining bandwidth budget divided by the
remaining MBs in a GOP that are not coded yet.
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BWg, BWe,

Fig. 3-7 Illustration of BW prediction
Step 4: Bandwidth boundary prediction
In this step, to make maximum use of the bandwidth budget, we make a bandwidth
boundary prediction by considering the bandwidth prediction condition as mentioned

previously to determine a feasible bandwidth interval as follows:

if (BWgp > BWpgp) (condition 1)

{
BWiower = BWgp + 0.5 * (BWrp — BWep) ;
BWuypper = BWep + 0.25%(BWrp — BWgp) ;

}

else (condition 2)

{
BWiower = BWgp — 0.5% (BWgp —BWkp) ;
BWupper = BWep ;

}
Cond. 1 BWBP BWFP
BWper BWuppef BW budget
Cond. 2 BWFP BWBP
| | BW budget

BWiower BW, upper

Fig. 3-8 Hllustration of bandwidth boundary determination
In which, BWower and BWypper denotes lower and upper bound of bandwidth usage per

MB, respectively. We allow the bandwidth vary within an interval that bounded by
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BWiower @and BW,pper. TO consider the condition 1 as depicted above in Fig. 3-8, BWgp
smaller than BWgp implies that insufficient BW had been allocated to the previous MBs,
and thus more bandwidth could be allocated to the next MB. As a result, we set BW)gyer
equal to BWgp + 0.5 * (BWgp — BWgp), and set BWypper €qual to BWep + 0.25*(BWep —
BWgp). To improve the coding efficiency under feasible bandwidth supply, above
equations imply a reasonable allocation. In contrast, to consider the condition 2 as
depicted above in Fig. 3-8, BWgp smaller than or equal to BWgp implies that too much
bandwidth had been allocated to the previous MBs, and hence less bandwidth could be
allocated to the next MB. In other words, to keep the smooth constraint under feasible BW
supply, we should save bandwidth for further use. Note that although adopt BWgp in
bandwidth allocation for the further coding process will guarantee the average B-R-D
performance as for the previous MBS, the BW allocated to the next MB is excessive that
compared with BWgp. As a result, we set BWisier €qual to BWep — 0.5 * (BWgp — BWgp),

and set BW pper equal to BWep.

Step 5: SR decision

Finally, we employ this interval and certain rate distortion data to make a search range
decision and set an appropriate search range for further ME use. In the final step, we make
a search range decision by considering bandwidth boundary interval and some rate
distortion data. The search decision mainly divides into two phases as follows:

1) Decision for bandwidth concern

2) Decision for quality concern

21



BWlower BWupper

SR_up . SR_down
\! > BW concern
RxDave + oﬁsgt BW budget

R_up >
RxD pool )
RDG, - offset RDG,yc + Offset Quality concern
SR_down Constant SR_up >
RDC pool

Fig. 3-9 Illustration of SR decision

The whole decision is illustrated in Fig. 3-9. In phase 1, making a search range decision
under feasible BW supply is considered. If average bandwidth usage for previous MBs is
more than BWypper, the search range should be decreased for next MB. While if average
bandwidth usage for previous MBs is less than BWiower, the search should be increased for
the next MB.

Phase 2 is on the other hand. If the average bandwidth usage for previous MBs is in the
interval that bounded by BWioger and BWipper,:.then making a search decision under
quality maintain is next to consider. If the’'RDG (i.e. RDCiyit - RDCgwma ) in current MB is
less than the average RDG subtracted with an adaptive offset (i.e. RDCgua/20000 ) in the
previous MBs, the search range should be decreased for next MB. Because in spite of the
coding is under feasible bandwidth supply, the rate distortion performance could not be
maintained with previous MBs. In contrast, if the RDG in current MB is more than the
average RDG added with an adaptive offset in previous MBs, the search range should be
increased for next MB. Otherwise, if the RDG in current MB is in the interval that
bounded by RDGg,e + offset and RDGg,y, + offset, the search range should be hold.

Meanwhile, a special case must be considered. To avoid the terrible quality loss, the
search range no longer be decreased as mentioned above. Instead, the search range could
be increased by checking rate multiplied distortion (RxD). If RxD in current MB is more

than average 4xRxD, the search range should be increased. After the search has decided,
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the search window will be updated that corresponds to the new search range as shown in

Fig. 3-10.

» SR=4

SR=8

MB

Fig. 3-10 Illustration of SR modification

The total search range decision.is shown as follows:
if (BWa\/e > BWupper)

SR_down=8;
}
else if (BWave < BWIower)

SR up=8;
}

else
If (RXDgyr > RXDaye X4)

SR up=16;
}

else

{
if (RDC_gaingr < RDC_gain,y - offset)

{
SR up=4;

}
else if (RDC_gaing,r > RDC_gainae + offset)
SR down=4;
}

}
}
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3.4. SR boundary prediction method

The objective of search range boundary prediction method is presented to refine the
SR that had decided from section 3.3 by determining a feasible search range boundary
and it could avoid unnecessary bandwidth waste for further ME use. The search range
boundary prediction method is illustrated in Fig. 3-11(a). First, we get the adjacent motion
vectors (MV) from neighboring blocks and current block (co-located block of previous
frame), such as MVy., MVy, MV ygr, MV, MV¢,. These blocks are local maximum MV
within their own blocks, and the relationship between neighboring blocks and current
block are shown as Fig. 3-11(b). Second, we compare with these five local maximum MV
that mentioned above, and choose a global maximum MV. Finally, we set the available

search range by referring to global maximum MV for next block coding as shown in Fig.

3-11(c).
MVyL
MVy  MVur
: MV, UL | VU UR
Get Adj. MVs
* L | Cur
Fil’ld Max MV (b)
l <« AelSR
Set Available SR | |
> I
¢ 5 |
ol Next |
e '
I I
|Ref |

(a) (c)
Fig. 3-11(a) Search range boundary predicted method flow

(b) The relationship between neighboring blocks and current block

(c) Example of available SR for next block coding
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The search range boundary corresponding to MVs is shown as follows:

if  (max_mv<=2) max_ avail SR =4;

else if(max_mv<=4) max_avail SR =8;

else if(max_mv<=8) max_avail SR =12;
else if(max_mv<=12) max_avail_SR = 16;
else if(max_mv<=16) max_avail_SR = 20;
else if(max_mv<=20) max_avail_SR = 24;
else if(max_mv<=24) max_avail_SR = 28;
else max_avail_SR = 32;

3.5. Summary

In this chapter, we propose a B-R-D optimized ME algorithm in H.264 video coding. To
summarize, we first detect a MBiwhether_it_skip.or not by skip mode detection with
content-aware scheme. Then “according to'the current SR, BW status and data
characteristics, we make a SR-decision forinext:MB coding from B-R-D optimized
modeling method. Finally, the SR ‘decided before will be refined by SR boundary
prediction method for further ME use. In addition, the simulation result is described in

chapter 4.
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4. Simulation and Analysis

In this chapter, we simulate the algorithms that proposed in chapter 3. First, we will
introduce the bandwidth (BW) pattern which is used to stand for various bus systems.
Second, we will show the experimental results as four phases:

1) Performance comparison

2) The distribution of MB for skip mode analysis

3) Timing comparison with skip detection

4) Completion time comparison of SR random patterns
Compared with the reference software [3], we can not only achieve better efficiency than
JM 12.2, but also allow the motion estimation (ME) algorithm to be realized by external
bus system. This is attributed to that qur algorithm could save unnecessary bandwidth
(BW) by detecting bus status, and thenrutilizing remaining BW to search more in the

search window for finding better solution.

4.1. BW pattern setting

In this section, we introduce six different BW patterns to stand for various bus systems
as shown in Fig. 4-1(a)-(f). These BW patterns are as follows, SR constant 8, SR constant
16, SR constant 24, SR random 8, SR random 16 and SR random 24. The numbers ‘8, ‘16’
and ‘24’ mentioned above stand for average SR usage which are 8, 16 and 24 respectively.
The word “constant’ represents BW supply in bus system is constant; In contrast, the word
‘random’ represents BW supply in bus system is random. The SR 8, 16 and 24 patterns are
used to fit the low, medium, and high BW design respectively. Then, the SR constant
pattern is used to fit the BW design with stable bus status; In contrast, the SR random
pattern is used to fit the BW design with unstable bus status.

The bandwidth usage of different SR in one MB is listed in TABLE 4-1. By adopting
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these BW patterns as mentioned above, our algorithm dynamically adjust the SR (i.e. the
‘proposed’ in Fig. 4-1(a)-(f)) to meet the BW supply in bus system. While adjusting the
SR, the PSNR and bit-rate also vary per frame, thus further improve the coding efficiency.
Here is an example below as follows. When we coding under the system bandwidth with
blue line as shown in Fig. 4-2(a), our algorithm dynamically adjust the search range with
red line as shown in Fig. 4-2(a) for better quality maintain. Fig. 4-2(b) and Fig. 4-2(c)
shows the PSNR and bit-rate variation under our feasible search range in 300 frames

compared with JM 12.2.
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Fig. 4-1 6 kind of BW patterns: (a) SR constant 8 (b) SR constant 16 (c) SR constant 24
(d) SR random 8 (e) SR random 16 (f) SR random 24
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TABLE 4-1 Bandwidth usage of one MB

SR4 | SR8 | SR12|SR16 | SR20 | SR24 | SR28 | SR32 | Skip

BW 625 1089 | 1681 | 2401 | 3249 | 4225 | 5329 | 6561 256
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Fig. 4-2 The example of dynamically adjust the SR (a)

The performance example of dynamiclly adjust the SR: (b) PSNR (c) Bit-rate

4.2. Experimental result

The simulation environment is described below. At First, we partition the simulation
into three versions, JM version, BRD version, and BRD + Skip version. The JM version
stands for JM 12.2. The BRD version stands for our B-R-D optimized ME algorithm
without skip detection. And the BRD + Skip version stands for our B-R-D optimized ME

algorithm with skip detection.
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In each of above version, then, we will show the performance under various small size
test sequences. We analyze three 300-frame CIF size test sequence, including low motion,
medium motion and high motion sequences for more accurate evaluation. The low motion
sequence is ‘Akiyo’, and the medium motion sequence is ‘Foreman’. The high motion
sequence is ‘Stefan’. In addition, we use the BW patterns mentioned from section 4.1 to

stand for simulation of various bus systems.

The test environments are: baseline profile, no rate-distortion optimization, one
reference frame, full-search algorithm in ME, image sequences are IPPP... (i.e. only one
I-frame) and no B frames were used. The mainly performance of our design is described
in section 4.2.1. The distribution of MB for skip mode analysis is described in section
4.2.2. The timing comparison withiskip detectionis described in section 4.2.3. And the
completion time comparison of SR random!'patterns is-described in section 4.2.4. All these

following simulations are compared with-JM-12.2.

4.2.1. Performance comparison

The average comprehensive performances in QP 28 of JM version, BRD version, and
BRD + Skip version are listed in TABLE 4-2 — TABLE 4-7. These performances include
4 parts: BW saving, PSNR drop, bit-rate saving, and encoding time comparison. With all
Tables, these reveal that the BW saving is roughly proportion to BW pattern. With high
motion sequence, our design will save more bit-rate and even produce rising PSNR with
low BW supply. In BRD + Skip design, the time saving with 79%, 23% and 18% is shown
in “TABLE 4-2 - TABLE 4-4” or “TABLE 4-5 - TABLE 4-7”, which is in ‘Akiyo’,

‘Foreman’, ‘Stefan’ respectively.
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Fig. 4-3 to Fig. 4-5 shows the BW usage, PSNR, bit-rate, and coding time of low
motion, medium motion and high motion sequences respectively in SR constant patterns
in QP 28. The less motion sequence is encoded, the more BW is saved in our design that
compared with JM 12.2. It because we used SR boundary predicted method to analyze
adjacent MV, and it could set a proper SR for saving unnecessary BW without quality loss.
Both the PSNR and bit-rate curves of our BRD version design are almost the same as the
original curve, and particularly is better than the original curve under high motion
sequence. Since that the unnecessary memory access can be saved by fully utilize the BW
while applying our B-R-D optimized process, and unexhausted BW can be used to enlarge
the SR for finding better solution in the posterior MBs or frames. Thus JM12.2 is no
longer the optimal algorithm if our B-R-D optimized concept is considered. In addition,
plenty of coding time can be saved with negligible PSNR drop while applying our
detection. Since the pre-skipped MBs are nearly to be skipped, hence these MBs do not
degrade performance significantly. On-the-other-hand, Fig. 4-6 to Fig. 4-8 shows the BW
usage, PSNR, bit-rate, and coding time.of low motion, medium motion and high motion
sequences respectively in SR random patterns. The performance is nearly the same that

compared with the SR constant patterns mentioned above.

The PSNR and bit-rate comparison in QPs of JM version, BRD version, and BRD +
Skip version are listed in TABLE 4-8 — TABLE 4-25. In BRD version, most PSNR and
bit-rate are hold compared with JM 12.2. And in BRD + Skip version, the PSNR slightly
descend with high QP because the rising skip ratio. Fig. 4-9, Fig. 4-10, Fig. 4-12, Fig. 4-13,
Fig. 4-15, Fig. 4-16, Fig. 4-18, Fig. 4-19, Fig. 4-21, Fig. 4-22, Fig. 4-24 and Fig. 4-25
shows the rate-distortion curves of low and medium motion sequences in JM version,

BRD version, and BRD + Skip version. Our design has almost the same curve as original
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JM curve. Fig. 4-11, Fig. 4-14, Fig. 4-17, Fig. 4-20, Fig. 4-23 and Fig. 4-26 shows the
rate-distortion curves of high motion sequences in JM version, BRD version, and BRD +
Skip version. Our design has better than the original JM curve, particularly in low BW
cases (i.e. SR Const 8, SR Random 8). Because the SR in high motion sequence would
have large variation, and the more BW limited, the more BW control needed. While
coding under the BW limited situation, our design could manage the BW usage more

accurately compared with JIM12.2.

In summary, our BRD design could save average bit rate up to 13% and increase
average PSNR up to 0.1 dB (i.e. SR Const 8 pattern of TABLE 4-4) in high motion
sequence under low bandwidth constraint. While coding in low motion sequence, our
BRD design could save bandwidth.from 35% to 83% with almost the same performance at
bit rate and PSNR (i.e. TABLE 4-2.and TABLE 4-5) under different bandwidth supply. In
addition, our BRD-Skip design couldialmost.save 80% coding time with negligible PSNR

degradation (i.e. TABLE 4-2 and TABLE 4-5)-under different bandwidth supply.
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TABLE 4-2 Performance of BRD and BRD + Skip model under SR const pattern for “Akiyo” sequence

Akiyo BRD BRD + Skip
BW pattern |ABW(%)| APSNR(dB) |ABit-rate(%)| Atime(%) | ABW(%) | APSNR(dB) |ABit-rate(%)|Atime(%)
Const 8 -35.17 -0.02 0.24 0.45 -63.73 -0.14 -1.73 -78.96
Const 16 -69.80 -0.01 -0.35 -0.57 -83.55 -0.14 -1.70 -79.20
Const 24 -82.82 -0.01 -0.45 -1.94 -90.65 -0.15 -1.80 -79.54

TABLE 4-3 Performance of BRD and BRD + Skip model und

er SR const pattern for “Foreman” sequence

Foreman BRD BRD + Skip
BW pattern |ABW(%)| APSNR(dB) |ABit-rate(%)| Atime(%) | ABW(%) | APSNR(dB) |ABit-rate(%)| Atime(%)
Const 8 -4.78 -0.02 1.79 0.06 -4.32 -0.04 0.78 -22.89
Const 16 -22.07 -0.02 2.10 -0.32 -24.91 -0.04 1.98 -23.00
Const 24 -43.74 -0.02 1.99 -0.69 -50.65 -0.05 1.41 -23.78

TABLE 4-4 Performance of BRD and BRD + Skip model und

er SR const pattern for “Stefan” sequence

Stefan BRD BRD + Skip
BW pattern |ABW(%)| APSNR(dB) |ABit-rate(%)| Atime(%) | ABW(%) | APSNR(dB) |ABit-rate(%)| Atime(%)
Const 8 -1.01 0.10 -13.42 0.19 -1.10 0.04 -7.92 -18.05
Const 16 -6.04 0.01 +2:45 -0.06 -6.00 0.00 -2.51 -18.24
Const 24 -17.59 0.01 -1.21 :0.38 -19.69 0.00 -1.76 -18.48

TABLE 4-5 Performance of BRD and:BRD + Skip-model und

er-SR random pattern for “Akiyo” sequence

Akiyo BRD BRD + Skip
BW pattern |ABW(%)| APSNR(dB) |ABit-rate(%)| Atime(%) | ABW(%) | APSNR(dB) |ABit-rate(%)| Atime(%)
Random 8 -37.83 -0.01 0.10 0.38 -63.73 -0.14 -1.73 -79.03
Random 16 | -69.89 -0.02 0.14 -0.76 -83.55 -0.14 -1.70 -79.14
Random 24 | -82.82 -0.01 -0.45 -2.13 -90.65 -0.15 -1.80 -79.47

TABLE 4-6 Performance of BRD and BRD + Skip model und

er SR random pattern for “Foreman” sequence

Foreman BRD BRD + Skip
BW pattern |ABW(%)| APSNR(dB) |ABit-rate(%)| Atime(%) | ABW(%) | APSNR(dB) |ABit-rate(%)| Atime(%)
Random 8 -12.30 -0.02 2.32 0.25 -12.58 -0.04 0.93 -23.08
Random 16 | -31.03 -0.03 3.23 -0.13 -34.19 -0.05 2.04 -23.44
Random 24 | -45.56 -0.02 1.69 -0.88 -51.91 -0.05 2.28 -23.59

TABLE 4-7 Performance of BRD and BRD + Skip model und

er SR random pattern for “Stafen” sequence

Stefan BRD BRD + Skip
BW pattern |ABW(%)| APSNR(dB) |ABit-rate(%)| Atime(%) | ABW(%) | APSNR(dB) |ABit-rate(%)| Atime(%)
Random 8 -1.38 0.06 -9.28 0.26 -1.74 0.04 -7.78 -17.54
Random 16 | -7.29 0.01 -2.99 0.19 -8.45 0.00 -2.99 -18.11
Random 24 | -19.10 0.00 -1.69 -0.75 -20.43 0.00 -1.79 -18.61
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TABLE 4-8 RD comparison of BRD and BRD + Skip model under SR constant 8 for “Akiyo” sequence

Const 8 Akiyo BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 0.00 -0.11 -0.02 -0.17
QP 24 -0.02 0.20 -0.09 -0.85
QP 28 -0.02 0.24 -0.14 -1.73
QP 32 -0.02 -1.04 -0.24 -4.16
QP 36 0.01 0.12 -0.22 -4.71
TABLE 4-9 RD comparison of BRD and BRD + Skip model under SR constant 8 for “Foreman” sequence
Const 8 Foreman BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 -0.01 0.56 0.02 0.76
QP 24 -0.02 1.87 0.00 1.24
QP 28 -0.02 1.79 -0.04 0.78
QP 32 -0.01 1.59 -0.11 -0.25
QP 36 -0.02 2.31 -0.17 -1.24
TABLE 4-10 RD comparison of BRD and BRD + Skip model under SR constant 8 for “Stefan” sequence
Const 8 Stefan BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 0.04 -7.42 0.02 -3.47
QP 24 0.05 -7.23 0.04 -5.49
QP 28 0.10 -13.42 0.04 -7.92
QP 32 0.06 -8.80 0.04 -11.77
QP 36 0.06 :12.62 0.00 -13.51
TABLE 4-11 RD comparison of BRD and BRD +Skip-model under SR constant 16 for “Akiyo” sequence
Const 16 Akiyo BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 0.00 0.05 -0.01 -0.07
QP 24 -0.01 0.00 -0.09 -0.94
QP 28 -0.01 -0.35 -0.14 -1.70
QP 32 0.01 -0.97 -0.22 -4.35
QP 36 0.02 -0.12 -0.23 -4.59
TABLE 4-12 RD comparison of BRD and BRD + Skip model under SR constant 16 for “Foreman” sequence
Const 16 Foreman BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 -0.01 1.35 0.02 1.16
QP 24 -0.01 1.82 0.00 1.61
QP 28 -0.02 2.10 -0.04 1.98
QP 32 -0.02 2.94 -0.13 1.40
QP 36 -0.05 4.20 -0.20 1.92
TABLE 4-13 RD comparison of BRD and BRD + Skip model under SR constant 16 for “Stefan” sequence
Const 16 Stefan BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 0.01 -2.70 0.02 -1.87
QP 24 0.01 -3.32 0.02 -2.78
QP 28 0.01 -2.45 0.00 -2.51
QP 32 0.00 -1.52 -0.04 -1.88
QP 36 -0.02 -0.01 -0.06 -1.95
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TABLE 4-14 RD comparison of BRD and BRD + Skip model under SR constant 24 for “Akiyo” sequence

Const 24 Akiyo BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 0.00 -0.02 -0.01 -0.21
QP 24 -0.01 -0.13 -0.08 -1.07
QP 28 -0.01 -0.45 -0.15 -1.80
QP 32 -0.02 -1.17 -0.24 -4.54
QP 36 0.00 -0.12 -0.25 -4.59
TABLE 4-15 RD comparison of BRD and BRD + Skip model under SR constant 24 for “Foreman” sequence
Const 24 Foreman BRD BRD +Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 0.00 0.55 0.03 1.02
QP 24 -0.01 0.67 0.00 1.31
QP 28 -0.02 1.99 -0.05 1.41
QP 32 -0.02 2.03 -0.13 0.89
QP 36 -0.03 4.48 -0.19 1.94
TABLE 4-16 RD comparison of BRD and BRD + Skip model under SR constant 24 for “Stefan” sequence
Const 24 Stefan BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 -0.01 -0.20 0.01 -0.08
QP 24 0.00 -1.13 0.01 -1.32
QP 28 0.01 -1.21 0.00 -1.76
QP 32 -0.01 0.36 -0.05 -0.08
QP 36 -0.03 2,19 -0.09 1.18
TABLE 4-17 RD comparison of BRD and BRD + Skip-madel under SR random 8 for “Akiyo” sequence
Rand 8 Akiyo BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 0.00 0.06 -0.02 -0.17
QP 24 -0.02 0.11 -0.09 -0.85
QP 28 -0.04 0.10 -0.14 -1.73
QP 32 -0.01 -1.04 -0.24 -4.16
QP 36 0.01 0.24 -0.22 -4.71
TABLE 4-18 RD comparison of BRD and BRD + Skip model under SR random 8 for “Foreman” sequence
Rand 8 Foreman BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 -0.01 0.38 0.03 0.85
QP 24 -0.02 1.59 0.00 1.36
QP 28 -0.02 2.32 -0.04 0.93
QP 32 -0.02 2.49 -0.12 0.25
QP 36 -0.04 2.82 -0.19 -1.10

TABLE 4-19 RD comparison of BRD and BRD + Skip model under SR random 8 for “Stefan” sequence

Rand 8 Stefan BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 0.03 -6.43 0.03 -3.75
QP 24 0.05 -7.22 0.03 -4.74
QP 28 0.06 -9.28 0.04 -7.78
QP 32 0.07 -11.02 0.05 -12.88
QP 36 0.06 -11.06 -0.01 -13.25
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TABLE 4-20 RD comparison of BRD and BRD + Skip model under SR random 16 for “Akiyo” sequence

Rand 16 Akiyo BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 0.00 -0.02 -0.01 -0.07
QP 24 -0.01 0.04 -0.09 -0.94
QP 28 -0.02 0.14 -0.14 -1.70
QP 32 0.01 -0.97 -0.22 -4.35
QP 36 0.02 0.47 -0.23 -4.59
TABLE 4-21 RD comparison of BRD and BRD + Skip model under SR random 16 for “Foreman” sequence
Rand 16 Foreman BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 -0.01 0.71 0.02 1.25
QP 24 -0.01 1.76 -0.01 2.20
QP 28 -0.03 3.23 -0.05 2.04
QP 32 -0.02 3.84 -0.13 1.58
QP 36 -0.06 4.53 -0.19 1.83
TABLE 4-22 RD comparison of BRD and BRD + Skip model under SR random 16 for “Stefan” sequence
Rand 16 Stefan BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 0.01 -2.68 0.02 -2.15
QP 24 0.02 -3.56 0.02 -2.70
QP 28 0.01 -2.99 0.00 -2.99
QP 32 0.00 -1.79 -0.03 -2.04
QP 36 -0.02 -0.35 -0.08 -1.05
TABLE 4-23 RD comparison of BRD and BRD-+ Skip model under SR random 24 for “Akiyo” sequence
Rand 24 Akiyo BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 0.00 -0.07 -0.01 -0.21
QP 24 -0.01 -0.04 -0.08 -1.07
QP 28 -0.01 -0.45 -0.15 -1.80
QP 32 -0.02 -1.17 -0.24 -4.54
QP 36 0.00 -0.12 -0.25 -4.59

TABLE 4-24 RD com

parison of BRD and BRD + Skip model under SR random 24 for “Foreman” sequence

Rand 24 Foreman BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 -0.01 0.55 0.02 1.02
QP 24 -0.01 1.04 0.00 1.37
QP 28 -0.02 1.69 -0.05 2.28
QP 32 -0.02 1.83 -0.13 0.92
QP 36 -0.02 3.28 -0.19 1.94
TABLE 4-25 RD comparison of BRD and BRD + Skip model under SR random 24 for “Stefan” sequence
Rand 24 Stefan BRD BRD + Skip
QP APSNR (dB) ABit-rate (%) APSNR (dB) ABit-rate (%)
QP 20 -0.01 -0.30 0.01 -0.32
QP 24 0.00 -1.77 0.01 -1.80
QP 28 0.00 -1.69 0.00 -1.79
QP 32 -0.02 0.46 -0.05 0.27
QP 36 -0.03 2.12 -0.08 1.47
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Fig. 4-22 RD curve comparison under SR random 16 for “Foreman” sequence
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Fig. 4-23 RD curve comparison under SR random 16 for “Stefan” sequence
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Fig. 4-24 RD curve comparison under SR random 24 for “Akiyo” sequence
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4.2.2. The distribution of MB for skip mode analysis

Fig. 4-27 - Fig. 4-29 are the average distribution of not skipped and skipped MB for low,
medium, and high motion CIF size sequences. The portion of skipped MB consists of
three types: miss skip predict, error skip predict, and correct skip predict. “miss skip”
means that the MB should be pre-skipped but it is not detected in the pre-skip stage by our
skip detection design. “error skip” means that the MB is pre-skipped but it should not be
skipped. “correct skip” means that we can accurately pre-skip the MB. The results
represent that the high QP case will skip more MBs, up to 89.15% for low motion, 46.68%
for medium motion, and 31.96% for high motion sequence. On the other hand, we find
that the “error skip predict” does not degrade the performance a lot because these

error-skipped MBs are nearly to be skipped.
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4.2.3. Timing comparison with skip detection

TABLE 4-26 (a)-(f) are the coding time of CIF sequences in 6 BW patterns compared
with JM12.2. For low motion sequence, our design only needs 11% to 35% coding time
from QP 20 to QP 36. Nevertheless, for high motion sequence, the performance is limited.
Fig. 4-30 (a)-(f) are the coding time of CIF sequences in 6 BW patterns. Each of them
reveals that the coding time is roughly inverse proportion to QP. It is because that the MB

coding with low QP can be hardly skipped.

SR Const 8 SR Random 8
Time (%) | QP20 QP24 QP28 QP32 QP36 Time (%) | QP20 QP24 QP28 QP32 QP36
Akiyo 35.52 26.77 21.04 15.14 11.33 Akiyo 35.46 26.77 20.97 15.21 11.33
Foreman [ 96.44 88.92 71.11 63.10 51.85 Foreman [ 96.69 88.73 76.92 62.84 5191
Stefan 94.59 87.52 e 81.95 76.34 08.67 Stefan 94.72 87.14 82.46 75.89 68.92
a (d)
SR Const 16 SR Random 16
Time (%) | QP20 QP24 QP28 QP32 QP36 Time (%) | QP20 QP24 QP28 QP32 QP36
Akiyo 35.07 26.52 20.80 15.06 11535 Akiyo 35.39 26.52 20.86 15.06 11.22
Foreman [ 96.21 88.38 77.00 62.48 5170 Foreman [ 95.96 88.19 76.56 62.42 51.89
Stefan 94.44 86.98 81.76 75.61 68.12 Stefan 94.56 86.98 81.89 75.87 68.06
(b) (e)
SR Const 24 SR Random 24
Time (%) | QP20 QP24 QP28 QP32 QP36 Time (%) | QP20 QP24 QP28 QP32 QP36
Akiyo 35.03 26.38 20.46 14.87 11.15 Akiyo 35.10 26.32 20.53 14.87 11.03
Foreman | 95.86 87.91 76.22 61.59 51,03 Foreman 95.61 87.98 76.41 61.53 51.15
Stefan 94.60 86.98 81.52 75.61 67.67 Stefan 94.47 86.79 81.39 75.74 67.67
© 0]

TABLE 4-26 Coding time with skip detection of CIF sequences under: (a) SR constant 8 (b) SR constant 16

(c) SR constant 24 (d) SR random 8 (e) SR random 16 (f) SR random 24 patterns
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Fig. 4-30 Coding time curve with skip détection of CIF sequences under: (a) SR constant 8
(b) SR constant 16 (c) SR constant 24 (d) SR random 8 () SR random 16 (f) SR random 24 patterns

4.2.4. Completion time comparison of BW random patterns

The object of BW random patterns is used to represent a various bus systems, whereas
it has various bandwidth supplies. In this section, we use BW random patterns to analyze
the completion time between JM12.2 and our proposed design.

For example as shown in Fig. 4-31, the SR random 8 of BW patterns represents low
BW status. For IM12.2, the data was only accessed with the constant SR, and it means the
coding time would be limited by low BW status. If the BW is insufficient, the process
must be waited and delayed to obtain the data. The area with slashed line in Fig. 4-31

shows the insufficient BW, and it causes the time overhead under original JM algorithm.
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In contrast with our design, the data access with adaptable SR to approximate the curve of
SR random 8 of BW patterns, and it means the coding would not be limited by low BW
status. The other two examples are as shown in Fig. 4-32 and Fig. 4-33, and Fig. 4-34
shows the completion time comparison with SR random 8, 16, and 24 of BW patterns.
Our design can complete the coding process on time, while original JM12.2 has to

complete the coding process with 10% to 13% timing overhead.
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= // S | | VA |
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Fig. 4-31 Completion time comparison under SR random 8 pattern
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Fig. 4-32 Completion time comparison under SR random 16 pattern
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Fig. 4-33 Completion time comparison under SR random 24 pattern
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Fig. 4-34 Illustration of completion time comparison under different SR random pattern

4.3. Summary

In this chapter, we simulate the algorithms that proposed in chapter 3. We have
analyzed the relationship between BW, PSNR, bit-rate, coding time, and skip rate. The
experimental result shows that our design could achieve the same and sometimes even
better performance under various BW bus systems. And thus it could be applied to the BW

constrained devices.
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5. Hardware implementation

5.1. Hardware design

Fig. 5-1 shows the proposed hardware architecture. The “RDCi,” stand for
rate-distortion cost that obtained by using the predicted motion vector, in contrast, the
“RDCgma” stand for rate-distortion cost that obtained by block-matching algorithm (i.e.
full-search algorithm). The “Adj. MVs” stand for the adjacent motion vector from
neighboring blocks and current block. Note that we use the “Skip_flag” to choose the
“SADyre” or “SAD¢,” into Skip detection circuit. While the current MB have been
skipped, we have no SAD value (i.e. SAD,) for skip detection in the next MB. In
addition, the skipped MB has spatial correlation between the previous MB and the current

MB. Therefore we use “SADp" t0 substitute for “SADy.” for more accurate skip

detection.
rAd, v SAD e SAD o
j. MVs
—>  SR-Opt vV
Feasible| SR SRI=O » 1 0

|

|

ﬂ |

A <57 Skip Detect :
|

4

| RDCews ["B_R-D Model
o _ghewsr | MY HW
ME RDC init
Y L
T arid Q |
- Entropy

Fig. 5-1 BRD optimized motion estimation algorithm hardware architecture
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5.2. Implementation result

The proposed design has been designed by using Verilog HDL and synthesized by

TSMC 0.13 CMOS technology. Fig. 5-2 shows the test system of our design. Our design

can provide various search ranges from [-4, 3] to [-32, 31] and just needs 1.3K gate count.

In addition, our design could be achieved under bandwidth constrained system with only

100 MHz operating frequency. Thus it is suitable for portable devices with bandwidth

constrained.
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Fig. 5-2 Hardware verification for BRD optimized motion estimation algorithm
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6. Conclusion and future work

6.1. Conclusion

In this thesis, we proposed a bandwidth-rate-distortion (B-R-D) optimized motion
estimation algorithm to maximize rate distortion efficiency while can dynamically meet
the available bandwidth. Compared with JM12.2, our B-R-D design could improve the
bandwidth saving up to 70% under average search range size 16 due to appropriate
MB-level bandwidth allocation by our B-R-D model calculation and bandwidth budget
estimation; while the bandwidth saving up to 84% with further skip design added. In
addition, while coding in high motion sequence, the simulation result shows our design
could save average bit rate up to 13% and increase average PSNR up to 0.1dB at the same
time under low bandwidth constraint:

In summary, our design could:not only: achieve the same and sometimes even better
performance under various bandwidth constraints, but also fully utilize bandwidth for

better quality maintain. Thus our design is suitable for video application nowadays.
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6.2. Future work

We have proposed rate distortion optimized motion estimation under the available
memory bandwidth constraint, while there are several issues should be analyzed to further
improve the performance of the B-R-D design. We find that the bandwidth can be
determined in another ways. For example, we can adopt other fast algorithms, such as
three-step search [25], four-step search [26], or diamond search [27] to reduce the
checking points. Another example is like “pixel truncation scheme” [28], which truncates
lower bits of a coefficient during ME search, and “sub-sampling scheme” [29], which
sub-sample the image to a small one for ME search. All these skills mentioned above
make a trade-off between the performances and the bandwidth requirement to support
more flexible design in an efficient way., This is another challenge need to study in the

future.
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