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助聽器回授路徑測量及適應性的噪音消除演算法 

 

研究生：陳建男                  指導教授：桑梓賢 教授 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘要 

本篇論文主要探討助聽器回授路徑(feedback path)的測量及使用適應性濾波器

(adaptive filter)消除噪音的演算法模擬。 

 

我們首先用一個耳內型(ITC)助聽器，裡面無放大電路僅有接收器(receiver)及麥克

風(microphone)，接上脈衝產生器(pulse generator)使用掃頻(sweep stimulus)的方式驅動

助聽器的接收器並接收麥克風的聲音得到回授路徑的頻率響應(frequency response)，再

由程式將之轉回時域的脈衝響應(impulse response)，我們的測量結果可供消除回授演

算法的參考及實現。 

 

卡爾曼濾波器(Kalman filter)是一種有效率的適應性濾波器且可應用在時變系統

上。尤其是更新估記狀態時僅需計算前一個狀態估記值及新得到的資料，所以只有前

個狀態需要儲存。因此我們考慮將卡爾曼濾波器列入助聽器消除噪音演算法的可能

性。我們做了一些卡爾曼濾波器在單一頻帶消除白雜訊的學習，至於在分頻濾波上加

上卡爾曼濾波器因為可能增加大量運算故先暫時予以保留。 
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Measurement of feedback paths and adaptive noise 

cancellation algorithms in hearing aids 

 

Student：Chien-Nan Chen          Advisor：Tzu-Hsien Sang 

 

Department of Electronics Engineering & Institute of Electronics 

National Chiao Tung University 

 

ABSTRACT 

In this thesis, we focus on the measurement of feedback path of hearing aids and the 

simulation of adaptive filter algorithm for noise cancellation. 

 

First of all we put an ITC hearing aid embodying only a receiver and a microphone in 

the artificial ear in the anechoic chamber. We use the pulse generator to inject the sweep 

signal to the receiver and receive the sound from the microphone to get the frequency 

response. Then make use of Matlab to transform it into impulse response. Our measurement 

result may supply to the realization of the feedback cancellation algorithm. 

 

Kalman filter is an efficient adaptive filter and can be used for time-varying system. It 

only needs the estimated state from the previous time step and the current measurement to 

compute the estimate for the current state, so only the previous estimate requires storage. 
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Therefore we consider the possibility of using the Kalman filter in hearing aids for noise 

cancellation. The single-band Kalman filter for white noise cancellation is studied while the 

multi-band Kalman filter is kept aside due to the possible surge in computational cost. 
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Chapter 1  
Introduction 

1.1 Overview of hearing aids 

Tremendous improvements have been realized in recent years in the technology to 

assist and improve human hearing. This is especially evident in advances in computers and 

subsequent miniaturization of manufacturing. In the past, hearing aids simply amplified 

sound, i.e. made it louder across the board. But the fact that every person has a different 

hearing profile prevent the flat-amplification approach unsuitable for most cases. 

 

The older hearing aids couldn't adjust from one type of sound to another; they just 

made all the sounds louder. While that might have helped people hear some sounds they 

wanted to hear, they also amplified unwanted sounds that became uncomfortable. 

 

Older technology lacks the flexibility and adaptability of nowadays state-of-art 

technologies, especially those enabled by the advance of computing power and 

micro-electronics. Today's hearing instruments actively process sound and match it 

specifically to individual hearing needs. These instruments take the incoming sound, 

analyze it with their digital micro-processors, adjust, shape and convert it into the type of 

sound according to the customized hearing-loss compensation profiles with high accuracy. 

It is therefore possible to realize many acoustic and speech processing methods which 
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simply existed on paper but were not available in hearing aids simply because of the 

complexity of implementation; the advance in hardware also opens new opportunities to 

develop even more sophisticate signal processing approaches that were not imaginable just 

a decade ago. 

 

Today’s hearing-loss compensation strategy aims to amplify sound separately for each 

frequency bands, according to the degree of hearing loss. Therefore the entire sound is not 

amplified with a flat gain, but only that bands with severe hearing loss are subjected to 

high-level amplification. This method allows the hearing instrument to be tuned to the 

frequencies where the hearing loss specifically requires assistance. It does this by actually 

"shaping" the sound in the frequency domain specifically to suit the patient’s needs and by 

keeping it within the comfort range. 

 

The most advanced hearing instruments today have multi-memory capabilities that 

change with the listening environment. Some do this automatically, some with the push of a 

button on the instrument, and some with a remote control. Some also have directional 

microphones that effectively reduce the background noise and enhance speech intelligibility. 

 

Other advantages in today's hearing instruments are that they are smaller, more flexible 

and better able to deal with background noise. Here are some types of hearing aids shown in 

Fig. 1.1 [29]. 
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Fig. 1.1 Some types of hearing aids [29].  

1.2 Introduction to hearing aid systems 

The number of hearing impaired individuals who need to use hearing aids is rapidly 

increasing [1]. But the cost of hearing aids is still a big concern for those in need. The goal 

of the NCTU hearing-aid team is to develop a low cost and low power-consumption, but yet 

high-performance hearing aid. It is therefore very important to consider signal processing 

tasks in terms of ease of implementation and power consumption in addition to 

effectiveness. In the following, the basic structure of hearing-aids is presented; along the 

way, major issues and signal processing tasks will be discussed and the main theme of this 

thesis will become clear. 
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Current hearing aids are digital devices that embody input (microphone) and output 

(receiver/subminiature loudspeaker) transducers, analog input conditioning circuits, an 

analog-to-digital converter (ADC), a digital signal processor (DSP), a digital-to-analog 

converter (DAC) and a power amplifier [2]. The block diagram of a digital hearing aids is 

shown in Fig. 1.2.  Hearing aids amplify incoming sound according to the hearing-loss 

profile of the patient so as to increase the signal level and compensate part of the hearing 

loss. 

 

 
Fig. 1.2 Block diagram of a digital hearing aid. 

 

There are two major signal processing issues discussed in this thesis, namely the 

feedback problem and the noise reduction problem. First, consider the feedback problem. 

Due to imperfect earmold fitting and venting in the hearing aid device, there is acoustic 

leakage from the receiver to the microphone. The leakage causes a regenerative feedback 

loop, which frequently makes the hearing aid oscillate and results in a whistling sound. For 

people with severe hearing loss, this problem is serious because at high gains there is an 

increased risk of squealing which may render the hearing aid useless. Feedback becomes 

more apparent when an object is close to the ear (i.e. when using a telephone) or when the 

jaw is moving (i.e. when chewing). In case of squealing, hearing aid users tune down the 

hearing aid gain or fit hearing aids more tightly in the ear canal, but such adjustments may 

compromise the function and comfort of the hearing aid [3]. 
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To solve the problem of feedback, modern hearing-aids usually utilize adaptive 

filtering to imitate and eliminate the feedback signal. But before doing that, knowledge 

about typical feedback path is essential in making specifications on the adaptive feedback 

canceling filter. The first contribution of this thesis therefore consists of establishing an 

acoustic measuring environment and carrying out feedback path measurement and 

estimation task. An ITC hearing-aid earmold embodied with a receiver and a microphone, 

together with an artificial ear in the acoustic chamber, is used in the experiment. More 

technical details can be found in Chapter two. Our measurement results provide a reference 

point for the specification and implementation of the feedback canceling filter. 

 

The second major issue is the background noise experienced in the daily lives of 

hearing aid users; this greatly reduces the speech intelligibility as well as comfort of 

listening [4]. Quite often noise reduction is a built-in feature for modern hearing aids, 

especially when the users’ primary need is to comprehend human speech. To achieve 

effective reduction, the usual approach is first to identify the defining characteristics of the 

speech and non-speech signals, then do different operations to signals with different 

characteristics. Not surprisingly, the most common operation is filtering. 

 

In Chapter three, we consider the possibility of using the Kalman filter in hearing-aids 

for noise reduction. The single-band Kalman filter is studied while the multi-band Kalman 

filter is kept aside due to the possible surge in computational cost. We did simulation and 

comparison studies between the Kalman filter and the well-known spectrum subtraction 

method. The Kalman filter, in general, has the potential of obtaining better performance in 

reducing the noise, while the spectral subtraction method enjoys simple formulation and 

easy implementation. In considering signal processing tasks for real-time applications like 

hearing-aids, it is important to keep in mind that performance evaluation is not always the 
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major criterion of choosing particular signal processing algorithms. Easy implementation 

and low consumption, which often come with the low computation cost, are rather 

important, if not more important, in making the decision. We also suggest the possibility of 

combining the Kalman filter and the existing analysis/synthesis filter bank as the future 

development in order to achieve a balance between the performance and low power/cost.      
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Chapter 2  
Measurement of feedback paths in 
hearing aids 

2.1  Introduction to the feedback path 

Undesirable acoustic feedback is an uncomfortable squeal that occurs when the output 

sound from the receiver leaks to the microphone and that leaked sound gets re-amplified. 

Unstable acoustic feedback develops into a problem when the earmold/earshell is loosely 

fitted (or a large vent is part of the earmold/earshell) and when there is large signal 

amplification in the hearing instrument. From a signal processing viewpoint, this feedback 

mechanism is usually modeled as a linear operation and typical system identification 

methods are used to obtain the feedback path model. 

 

The most straightforward method to reduce the possibility of unstable acoustic 

feedback is to reduce the gain, but this is often unacceptable because reducing gain means 

that the effectiveness of hearing-aids would be severely limited. To maintain the amplifying 

gain while prevent the onset of unstable acoustic feedback, many modern hearing 

instruments feature adaptive feedback canceling algorithms. Among them the popular 

methods include adaptive notch filters, automatic gain reduction in a multi-channel system 

and several variations of adaptive feedback cancellation [4],[5]. Of these, the adaptive 
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feedback cancellation methods that estimate the feedback path and subtract it from the input 

signal of the hearing instrument are arguably the most effective to date. From a clinical 

perspective, although many manufacturers claim an increased gain of ≧15dB (with the 

application of these algorithms) before the onset of unstable acoustic feedback , an 

increased gain of ＜10dB is often the case. 

 

The hearing instrument system, in particular the acoustic feedback path, has been 

studied, especially been modeled as a linear system depicted in Fig. 2.1. For example, 

Lybarger [6] measured the frequency response, but the frequency response was limited only 

to magnitude responses at a few selected frequencies. Bustamante [5] chose click sequences 

as stimuli and measured the response. The impulse response of the system was calculated by 

averaging the responses. Stinson [7] measured the frequency response with a sweep 

stimulus. Egolf et al. [8] modeled each component of a glass type analog hearing instrument 

by two-port methods that took load effects into consideration. Kates [9] transferred each 

component of an ITE hearing instrument from frequency domain into time domain that 

matched the magnitude response, but ignored the phase response. Jingbo Yang [2] used 

sweep stimulus and white noise method to model the EFP in an ITE hearing instrument and 

verify the Nyquist criterion. Then he employed an adaptive LMS FIR filter to determine the 

impulse response of the EFP. 

 

In this chapter, we describe a measuring platform to facilitate research for the 

development of acoustic feedback algorithms. Specially we consider the magnitude and 

phase response of the external feedback path (EFP) obtained by the sweep stimulus method. 

Using the characteristics of EFP obtained, we predict theoretically (Nyquist criterion) the 

possible frequency range in which the howling feedback sound might occur. Finally, from 

the frequency domain characteristics of the EFP, we obtain its equivalent time-domain 



 

 9

impulse response. An adaptive Finite-Impulse-Response (FIR) filter can be used to match 

the actual EFP impulse response such that the effects of the EFP can be nullified (Fig. 2.1) 

[2]. 

 

 

 

Fig. 2.1 Block diagram of the basic hearing instrument system with adaptive 

feedback cancellation [2]. 

2.2 ITC digital hearing instrument 

In this section, we will describe the experimental setup of the measurement platform. 

The hearing instrument used in this setup is a custom-made In-The-Canal (ITC) hearing 

instrument embodying only a microphone and a receiver. The block diagram is shown in Fig. 

2.2. 
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Fig. 2.2 Experimental setup with the ITC placed in-situ. 

Legend 
(1) Artificial head (Head and Torso Simulator-Type 4128C) 
(2) Artificial right ear (Head and Torso Simulator-Type 4128C) 
(3) Artificial pinna (Head and Torso Simulator-Type 4128C) 
(4) ITC hearing instrument shell with a microphone and receiver 
(5) Knowles FG-23742-D36 microphone 
(6) Knowles FK-23451-000 receiver 
(7) Acoustical feedback path 
(8) Interface between microphone and ADC 
(9) Interface between DAC and receiver  
(10) PC, B&K3560-C 
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2.3 Sweep stimulus method 

The method we used to obtain the frequency response of the EFP is called the sweep 

stimulus method. In the method, a sweep signal (its frequency changes from low to high) is 

utilized as the stimulus to the receiver. The sinusoidal sweep signal 1volt(rms) from 100Hz 

to 25000Hz is injected into (A) and the output of (C) is measured. In general hearing aids 

just consider the frequency bandwidth which is from 200Hz to 8000Hz. But in our 

experiment we measure the frequency response from 100Hz to 25000Hz to obtain the 

broader result and get a better impulse response. We depict the signal flow of the 

measurement platform in Fig. 2.3. The stimulus sweep signal is obtained from the pulse 

generator (B&K 3560C). Because the microphone in the hearing aid is unstable above 

10000Hz, we use another microphone (B&K4190L) put near the hearing aid’s microphone 

to measure the feedback path from 100Hz to 25000Hz. By means of the platform, we obtain 

the sound pressure level of EFP. Then we transfer it to voltage and then depict the frequency 

response in Fig. 2.4. 

 

 
 

Fig. 2.3 Experimental system to measure the EFP. 
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Fig. 2.4 Frequency response of EFP. 
 

    The Nyquist criterion states that oscillations will occur if the magnitude response of 

the loop-gain is greater than unity and the phase response is a multiple of 2π. Most hearing 

aids have different gains in different frequency. Usually the maximum gain is above 40dB. 

Therefore we suggest the gain of our hearing aid system is a constant. So we plus the gain 

40dB and get the closed-loop response as Fig. 2.5. Therefore in our system the oscillations 

may occur in 3000Hz and 9000Hz. As a result, the howling may occur in 3000Hz in a 

general hearing aid. 
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Fig. 2.5 Frequency response of the closed-loop. 

 

    On the other hand, we also used the hearing aid microphone and the microphone in 

right ear simulator to model the acoustic feedback path which is equivalent to the transfer 

function from (B) to (D) in Fig. 2.3. We assume that the sound pressure level in ear canal is 

almost the same as that of the receiver. So the SPL of hearing aid divided by that of the ear 

canal is equivalent to the transfer function of the acoustic feedback. The frequency response 

of the acoustic feedback path is as Fig. 2.6. We also give it a 40dB gain to obtain the 

closed-loop response which is as Fig. 2.7. Therefore the hearing aid may oscillate in 

6200Hz. 
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Fig. 2.6 Frequency response of the acoustic feedback path. 

 
Fig. 2.7 Frequency response of the closed-loop. 



 

 15

2.4 Modeling the EFP in the time-domain 

In the previous section, we have modeled the frequency response of the EFP with 

sweep stimulus. As most of the recent feedback cancellation methods are based on adaptive 

filtering ( the filter response changes with time according to the variance of the EFP ), it is 

imperative to model the EFP in the time domain. The time-domain model proposed by 

Kates [9], as mentioned earlier, considered only the magnitude response and ignored the 

phase response. However, as we have shown in the previous section, the phase of the EFP is 

important for determining the frequency where acoustic oscillation occurs. 

 

    To determine the impulse response of the external feedback path, we employed a 

Matlab program which uses the IFFT function to transfer the frequency response to the 

time-domain that is impulse response. In order to get a more natural impulse response, we 

took the broadband frequency response as Fig. 2.4 to deal with. The impulse response is 

depicted in Fig. 2.8. And we can obtain the feedback time which is about 3 milliseconds 

(ms). As a result , the processing time of feedback cancellation should be in 3 ms. Therefore 

the time-domain model (or impulse response) can therefore be used for the development of 

acoustic feedback cancellation algorithms in the future. 
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Fig. 2.8 Impulse response of the EFP. 
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Chapter 3  
Adaptive noise cancellation 
algorithms in hearing aids 

3.1 Introduction 

Noise problem naturally arise in many areas, such as voice communication, speech 

recognition, and hearing aids. As a result, noise cancellation becomes an important research 

topic and many studies have been using techniques such as short-time spectral amplitude 

estimation [10]-[13], iterative Wiener filtering [14]-[16], audio-based filtering [17],[18], 

signal-subspace processing [19],[20], and hidden Markov modeling (HMM) [21],[22]. 

Although significant results have been achieved, most of them are not suitable for real-time 

implementation because their computational complexities are generally too high. 

 

The Kalman filter is well known in signal processing for its efficient structure, and it 

can be used for time-varying system. It is used in a wide range of engineering applications 

from radar to computer vision, and is an important topic in control theory and noise 

cancellation. The Kalman filter is a recursive estimator, that is to say, it only needs the 

estimated state from the previous time step and the current measurement to estimate the 

current state. Since it has the potential of high performance, is naturally adaptive, and may 

qualify for low computational cost, we decided to study the possibility of applying it to 

noise cancellation in hearing aids.     
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In [23], Paliwal and Basu used a Kalman filter to enhance speech corrupted by white 

noise. On a short-time base, speech signals were modeled as stationary AR process and AR 

parameters were assumed to be known. Gibson, Koo, and Gray considered speech 

enhancement with colored noise in [24]. They modeled both speech and colored noise as 

AR processes and developed scalar and vector Kalman filtering algorithms. To estimate the 

AR coefficients, an EM-based algorithm was employed. In [25], Lees and Ann proposed a 

non-Gaussian AR model for speech signals. They modeled the distribution of the 

driving-noise as a Gaussian mixture and applied a decision-directed nonlinear Kalman filter. 

Again, an EM-based algorithm was used to identify unknown parameters. Niedzwiecki and 

Cisowki [26] assumed that speech signals are nonstationary AR processes and used a 

random-walk model for the AR coefficients. An extended Kalman filter was then used to 

simultaneously estimate speech and AR coefficients, Note that the stability of the extended 

Kalman filter is not guaranteed and dimensions of the Kalman filter are greatly increased. 

 

The aforementioned Kalman filtering algorithms still require extensive computations 

for two reasons: first, using EM algorithms to identify AR coefficients costs a lot, and 

second, using Kalman filters usually involves matrix inversion. However, the above costs 

depend on the order of the Kalman filter used. In order to carefully assess the pros and cons 

of using Kalman filters in hearing aids, we intend to use low-order Kalman filters and 

low-cost Yule-Walker method for estimating AR coefficients. As a future plan, Kalman 

filters incorporating with sub-band filtering structure will also be studied; in this case, zero 

or first-order Kalman filters may be sufficient and the calculation only involves scalar 

operations, thus saving a considerable amount of computation [27]. 
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3.2 Kalman filtering for white noise cancellation 

  We derived the following from [27],[24]. On a short-time basis, a speech sequence 

( )nx  can be represented as an AR process, which is essentially the output of an all-pole 

linear system driven by a white noise sequence: 

            
1

( ) ( ) ( )
p

i
i

x n a x n i w n
=

= − +∑                       (3.1) 

where ( )w n  is a zero-mean white Gaussian process with variance 2
wσ . The observed 

speech signal ( )z n  is assumed to be contaminated by a zero-mean additive Gaussian 

noise ( )v n , i.e., ( ) ( ) ( )z n x n v n= + . Let ( )v n be white and 

( ) [ ( ) ( 1) ( 1)]Tn x n x n x n p
Δ

= − ⋅⋅⋅ − +x . Equation (3.1) and the corrupted speech ( )z n  can be 

formulated in the state-space domain as 

                   ( ) ( 1) ( )Tn n w n= − +x Fx H                       (3.2) 

( ) ( ) ( )z n n v n= +Hx                          (3.3) 
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1[10 00] p×= ⋅⋅⋅H                           (3.5) 

From standard Kalman filtering theory for white message and measurement noise, the 

state vector estimate is 

               )]1(ˆ)()[()1(ˆˆ −−+−= nnznn xHFGxFx                 (3.6) 

 



 

 20

With the initial condition 0)0(ˆ =x . The gain and error covariance equations are 

                  1])([)()( −+= Rnnn TT HHMHMG                  (3.7) 

                  HHFFSM Qnn TT +−= )1()(                     (3.8) 

                    )(])([)( nnn MHGIS −=                        (3.9) 

where )(nG is the Kalman gain vector, )(nM is the prediction-error covariance matrix, 

)(nS is the filtering-error covariance matrix, 2
vR σ=  is the variance of the noise 

sequence )}({ nv , and 2
wQ σ=  is the variance of the driving term )}({ nw . With the initial 

condition, ppS ×= ]0[)0( , (3.8) is processed first, followed by (3.7) and (3.9). The speech 

sample estimate at time instant n is finally obtained by xH ˆ)(ˆ =nx . The parameters 

1[ ]pa a
Δ

=a L and 2
wσ  are computed over block lengths of 360 samples using the 

autocorrelation method from the noisy observations when the true values are not known. 

The frame length of 360 samples corresponds to 15ms and was selected arbitrarily from 

within the common parameter update range of 10 to 30 ms often used in linear predictive 

systems. The frame length is not critical to the filter performance within these bounds. The 

noise variance 2
vσ  is estimated in some time interval before speech is present. Fig. 3.1 is 

the flowchart of the Frame-based AR Kalman filtering for white noise cancellation. At each 

iteration, we alternately estimate the parameters and filter the speech. 

For the complexity of estimating AR coefficients, we propose a simpler method to 

reduce the computation of AR coefficients. First we estimate the AR coefficients from a 

clean speech, and then we use the Kalman filter with the fixed AR coefficients to filter the 

noisy speech. Fig. 3.2 is the flowchart of the fixed AR Kalman filtering for white noise 

cancellation. We reduce the computation and get a not bad performance in Kalman filtering 

for white noise cancellation. The simulation results are listed in section 3.3. 
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Fig. 3.1 The flowchart of the frame-based AR Kalman filtering for white noise 

cancellation. 

 

Fig. 3.2 The flowchart of the fixed AR Kalman filtering for white noise cancellation. 
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3.3 Simulation 

    In this section, we take a girl’s sound “girl , meat ball” in Mandarin from Hearing and 

Speech Engineering Lab in National Yang-Ming University to be the clean input speech. 

This sentence of sound is sampling in 24KHz and about 3.2sec. The white noise we used is 

a function “rand” in Matlab. We add the white noise in some level of SNR and used the 

Kalman filter to enhance the noisy signal. Here are some simulation results and we will 

discuss them in the next section. 

 

    In the frame-based AR method we estimate AR coefficients and filter speech in every 

frame. Fig. 3.3 and Fig. 3.4 are the plots of frame-based method. Then we evaluate the 

SNRseg and PESQ of speech frames in Table 3.1 and Table 3.2 in different AR orders and 

in different SNR. Differently we estimate the AR coefficients once from the clean sentence 

and filter the noisy sentence with the fixed AR coefficients. Then we have the simulation 

plots of fixed AR method in Fig. 3.5 and Fig. 3.6. After that we also construct Table 3.3 and 

Table 3.4 with evaluation of speech frames in different AR orders and in different SNR. 

 

    Finally we also take five girl’s speech samples from Hearing and Speech Engineering 

Lab in National Yang-Ming University to be the clean input speech. We contaminate the 

five speech samples in SNR0 and evaluate those PESQ as the benchmark. Then we use the 

fixed AR method and framed-base AR method in AR order 4 to enhance these noisy 

speeches. The simulation results are as Fig. 3.11 and Fig. 3.12. 
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Fig. 3.3 Time plot of enhanced SNR-5 white noisy speech by frame-based AR4 

Kalman filtering. 

 

Fig. 3.4 Spectrogram of enhanced SNR-5 white noisy speech by frame-based AR4 
Kalman filtering. 
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Fig. 3.5 Time plot of enhanced SNR-5 white noisy speech by fixed AR4 Kalman 

filtering. 

 

Fig. 3.6 Spectrogram of enhanced SNR-5 white noisy speech by fixed AR4 Kalman 
filtering. 
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Table 3.1  SNRseg of speech frames for frame-based AR Kalman filtering. 

Order\SNR -5 0 5 10 15
Noisy 6.11 11.02 15.99 20.99 25.94
AR1 8.63 13 17.37 21.87 26.42
AR2 9.73 14.2 18.66 23.05 27.32
AR3 10.05 14.47 18.85 23.22 27.49
AR4 10.17 14.56 18.93 23.29 27.52

 
 

5

10

15

20

25

‐5 0 5 10 15

SNRseg

SNR

Noisy

AR1

AR2

AR3

AR4

 
 

Fig. 3.7 SNRseg of speech frames for frame-based AR Kalman filtering. 
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Table 3.2  PESQ of speech frames for frame-based AR Kalman filtering. 

Order\SNR -5 0 5 10 15
Noisy 1.91 2.2 2.42 2.69 2.97
AR1 1.94 2.21 2.44 2.72 3
AR2 1.98 2.25 2.49 2.77 3.04
AR3 2.01 2.28 2.51 2.8 3.07
AR4 2.01 2.29 2.52 2.81 3.07
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Fig. 3.8 PESQ of speech frames for frame-based AR Kalman filtering. 
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Table 3.3  SNRseg of speech frames for fixed AR Kalman filtering. 

Speech -5 0 5 10 15
Noisy 6.11 11.02 15.99 20.99 25.94
AR1 9.05 12.75 16.75 21.25 26.03
AR2 11.52 15.55 19.58 23.49 27.3
AR3 12.39 16.06 19.72 23.6 27.57
AR4 12.67 16.09 19.77 23.69 27.59
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Fig. 3.9 SNRseg of speech frames for fixed AR Kalman filtering. 
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Table 3.4  PESQ of speech frames for fixed AR Kalman filtering. 

Order\SNR -5 0 5 10 15
Noisy 1.91 2.2 2.42 2.69 2.97
AR1 2.04 2.27 2.46 2.71 2.98
AR2 2.13 2.36 2.6 2.83 3.03
AR3 2.2 2.48 2.67 2.84 3.05
AR4 2.31 2.51 2.68 2.86 3.05
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Fig. 3.10 PESQ of speech frames for fixed AR Kalman filtering. 
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Fig. 3.11 PESQ of sentences in different SNR0 speech samples. 
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Fig. 3.12 PESQ of speech frames in different SNR0 speech samples. 
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3.4 Discussion 

    From Table 3.1 to Table 3.4 we can find that SNRseg and PESQ are directly 

proportional to AR order. Intuitively, cleaner speech signals generate more accurate 

estimates of AR coefficients. Therefore we can model the speech signal more accurately. In 

these examples the SNRseg and PESQ grades of the two methods saturate on AR3. In my 

experience different noisy speech signals saturates on different AR orders. Generally AR4 is 

good enough to model the speech signals. 

 

    In Fig. 3.11 and Fig. 3.12 we contaminate five different speech samples and use the 

two methods to enhance them. Obviously in speech sample 1 and 3 the fixed AR method is 

much better than frame-based method. On the other hand the frame-based method is better 

in the other speech samples. Generally the two methods can enhance noisy speech except 

the few samples. For example in speech sample 4 the fixed AR method’s PESQ is worse 

than unfiltered noisy speech. But in the subjective evaluation of speech quality, the filtered 

speech still sounds better than the unfiltered noisy speech does. Since PESQ is an objective 

measure to simulate the evaluation of the subjective speech quality, it is a valuable reference 

but not an absolute standard. In order to further compare the significant difference in speech 

quality resulting from these algorithms, we should do the subjective listening tests [31]. 

  

In this part, we discuss the computational complexities of Kalman filtering. The 

following result is derived from [27]. First, we define three terms for measuring complexity: 

MPU, multiplications per unit of time; DVU, divisions per unit of time; and APU, additions 

per unit of time. According to (3.1), speech is modeled as AR(p). If 1p ≥  the AR 

coefficients described in (3.1) requires 23p  MPU [30]. The Q ( 2
wσ ) in (3.8) reguires p 
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MPU、p APU. The Kalman filter described in (3.6)-(3.9) requires 23 2p p+  MPU, p  

DVU, and 23 2p +  APU. Totally the frame-based AR Kalman filter needs 26 3p p+  

MPU、 23 2p p+ +  ADU and p DVU. On the other hand the Kalman filter with fixed AR 

coefficients needs 23 2p p+  MPU、 23 2p +  APU and p DVU. We list the complexities 

of Kalman filtering and spectrum subtraction for white noise cancellation in Table 3.5. 

Obviously in the single band the AR3 and AR4 Kalman filters are more complicated than 

spectrum subtraction. 

 

Table 3.5  Overall complexities of a Kalman filter.  

 MPU DVU ADU 

AR 23p  0 0 

Q p  0 p  

Kalman 23 2p p+  p  23 2p +  

 

Table 3.6  Complexities of Kalman filtering and spectrum subtracton for white 

noise cancellation.  

 

 Fixed AR Frame-based AR  

 AR1 AR2 AR3 AR4 AR1 AR2 AR3 AR4 Spectrum Subtraction

MPU 5 16 33 56 9 30 63 108 0 

DVU 1 2 3 4 1 2 3 4 0 

ADU 5 14 29 50 6 16 32 54 119 
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From Table 3.1 to Table 3.4 the performances of Kalman filters are good in every AR 

order and SNR. But the complexities of Kalman filters are too high. So in the single band 

Kalman filters may not be able to process noisy speech in real time. As a result, it may not 

be suitable for the white noise cancellation in the hearing aids system. We will evaluate the 

possibility of multi-band Kalman filter for white and color noises cancellation to achieve a 

balance between the performance and low power/cost in the future.  
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Chapter 4  
Conclusions and future work 

4.1 Conclusions 

    We have described a platform to facilitate research for the development of acoustic 

feedback algorithm on the basis of an ITC hearing instrument placed in-situ. We used sweep 

stimulus method to measure the broad band frequency response of the EFP and obtained its 

equivalent impulse response. Then we take a 40dB gain to get the closed-loop response and 

make use of the Nyquist criterion to obtain the most possible frequency location of inducing 

oscillation. Our measurement results are helpful to the design and realization of the 

feedback cancellation algorithm. 

    We introduce the Kalman filter and apply it to the white noise cancellation. For the 

complexity of estimating AR coefficients, we propose a simpler method to reduce the 

computation of AR coefficients. First we estimate the AR coefficients from a clean speech, 

and then we use the Kalman filter with the fixed AR coefficients to filter the noisy speech. 

We canceled some noise and get good grades of PESQ. Then we compare the complexities 

of them and spectrum subtraction. I think that the single band Kalman filtering is not 

suitable for the white noise cancellation in hearing aid system because of its high 

complexity. As a result we will evaluate the combining of Kalman filter and the existing 

analysis/synthesis filter bank as the future development in order to achieve a balance 

between the performance and low power/cost. 
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4.2 Future work 

There are several possible extensions for our researches: 

(1) Use the platform to measure the EFP in other situations, such as jaw movements or 

handset proximity and our future hearing aids. 

 

(2) Evaluate the possibility of using state augmentation or other method for Kalman filter to 

cancel the color noise. 

 

(3) Combine the Kalman filter and the existing analysis/synthesis filter bank to achieve  

the balance between the performance and low power/cost. 

 

(4) Do the subjective listening tests conducted according to the ITU-T P.835 [31],[32]. 
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