
國 立 交 通 大 學

電 電子工程學系 子研究所碩士班

碩 士 論 文

IEEE 802.16e OFDMA 多輸入輸出通道估測技術之探討與數位

訊號處理器實現

 Study in IEEE 802.16e OFDMA MIMO Channel Estimation

Techniques and Associated Digital Signal Processor

Implementation

研 究 生：余光中

指導教授：林大衛 博士

中 華 民 國 九 十 七 年 十 二 月

 IEEE 802.16e OFDMA 多輸入輸出通道估測技術之

探討與數位訊號處理器實現

Study in IEEE 802.16e OFDMA MIMO Channel Estimation

Techniques and Associated Digital Signal Processor

Implementation

研究生:余光中 Student: Kuang-Chung Yu

指導教授: 林大衛 博士 Advisor: Dr. David W. Lin

國 立 交 通 大 學

 電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science

in
Electronics Engineering

December 2008
Hsinchu, Taiwan, Republic of China

中華民國九十七年十二月

i

IEEE 802.16e OFDMA 多輸入輸出通道估測技術之探討

與數位訊號處理器實現

研究生:余光中 指導教授:林大衛 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

正交分頻多重進接(OFDMA)技術近來在行動環境中廣受注目且已經應用在許多

數位通訊應用中。如果利用多通道傳輸(MIMO)更可提高其傳輸效率以及抵抗通道衰

減的能力。本篇論文介紹 IEEE 802.16e 正交分頻多工存取(OFDMA)裡，多通道傳輸

通道估計的問題、演算法、分析、以及實作方面的議題。
在通道估測當中，我們實做了兩個方法並去比較其效能。第一個是線性內插，首

先我們使用最小平方差的估測器來估計在導訊上的通道頻率響應，之後我們分別在頻

域以及時域上使用線性內插法來得到資料載波上的平率響應。第二個方法是 Wiener
filter，由於此方法需要知道導訊載波以及資料載波通道的互相關，因此第一步是先用

線性內插求得資料載波上的頻率響應，之後利用此結果去估測我們需要的互相關。最

後我們利用其互相關以及導訊載波頻率響應的自相關求得 Wiener filter 在各個導訊載

波的權重，以求得資料載波上更精確的頻率響應。其中 Wiener filter 的準確度和我們

統計的通道範圍有關，因此對於不同的通道範圍我們也做了模擬。
在模擬當中，我們先在 AWGN 通道上驗證我們的模擬模型，然後再放置於多重

路徑的 SUI-2 和 SUI-3 通道上模擬。
為了增進程式在數位處理器上的實行效率，我們將原始的浮點運算 C 程式修改為

定點運算的程式版本。並做模擬以觀察其效能。
在本篇論文中，我們首先簡介 IEEE802.16e OFDMA 上行以及下行多通道傳輸的

標準機制，以及各種通道估測的技術。接著是模擬多通道傳輸上使用不同通道估測技

術的方式，最後介紹 DSP 的實現環境以及定點數的模擬結果。

ii

iii

Study in IEEE 802.16e OFDMA MIMO Channel Estimation

Techniques and Associated Digital Signal Processor

Implementation

Student: Kuang-Chung Yu Advisor: Dr. David W. Lin

Department of Electronics Engineering
& Institute of Electronics

National Chiao Tung University

Abstract

OFDMA (orthogonal frequency division multiple access) technique has drawn much
interest recently in the mobile transmission environment and been successfully applied to a
wide variety in the mobile transmission environment and been successfully applied to a
wide variety of digital communications applications over the past several years. If we
applied MIMO (multiple input and multiple output) technique it can enhance the
performance of the transmission and the capability of the resistance the channel fading. In
this thesis, we introduce the MIMO channel estimation problems, algorithms, analyses
and implementation issues for IEEE 802.16e OFDMA PHY system.

In the channel estimation, we have implemented two methods to compare the
performance. The first is linear interpolation. First we use LS estimator to estimate the
channel response on pilot subcarriers, and then we use linear interpolation in time domain
and frequency domain separately to get the frequency response on data subcarriers. The
second method is Wiener filter. Because of using this method we need to know the
cross-correlation of pilot and data subcarriers’ channel responses, the first step is using the
linear interpolation to get the frequency responses on data subcarriers and then using this
result to estimate the cross-correlation we want. Finally we use the cross-correlation and
the autocorrelation of pilot subcarrier channel responses to get the weight of pilot
subcarriers, and get the more accurate channel response on data subcarriers. Meanwhile,
the accuracy of Wiener filter is related to the rang of channel responses we use to average,
so we also simulate in different channel range.

In the simulation, we verify our simulation model on AWGN channel and then do the

iv

simulation on SUI-2 and SUI-3 multipath channel.
In order to increase the efficiency on DSP, we rewrite the floating-point C program to

fixed-point version, and do the simulation to see the performance.
In the thesis, we first introduce the standard of the IEEE 802.16e OFDMA MIMO

transmission and variant channel estimation methods. Then we simulate MIMO
transmission using different channel estimation techniques. Finally we introduce the DSP
implementation environment and fixed-point simulation result.

v

誌謝

本篇論文的順利完成，首先誠摯地感謝我的指導老師林大衛博士，感謝老師

在這兩年多以來的細心指導，給予我在課業、研究上的幫助，使我學到了分析問

題及解決問題的能力，同時，老師親切隨和的態度，也使我們能勇於發問，能夠

勇於面對問題。在此，僅向老師致上最高的感謝之意。

 另外要感謝的，是實驗室的洪崑健學長、吳俊榮學長及王海薇學姊。謝謝你

們熱心地幫我解決了許多研究相關的問題。

感謝通訊電子與訊號處理實驗室(commlab)，提供了充足的軟硬體資源，讓

我在研究中不虞匱乏。感謝 94 級耀鈞、柏昇、依翎、順成四位學長的指導，以

及 95 級的昀澤、婉清、佳楓等實驗室成員，讓我的研究生涯充滿歡樂又有所成

長。

最後，要感謝的是我的家人，他們的支持讓我能夠心無旁騖的從事研究工作。

 謝謝所有幫助過我、陪我走過這一段歲月的師長、同儕與家人。謝謝！

誌於 2008.12 新竹交大

 光中

vi

Contents

1 Introduction 1

2 Introduction to IEEE802.16e OFDMA and MIMO Systems 3

2.1 Overview of OFDMA [4], [5] . 3

2.1.1 Cyclic Prefix . 4

2.1.2 Discrete-Time Baseband Equivalent System Model 5

2.2 Introduction to MIMO System . 6

2.2.1 Transmit Diversity . 7

2.2.2 Spatial Multiplexing . 9

2.3 Basic OFDMA Symbol Structure in IEEE 802.16e 10

2.3.1 OFDMA Basic Terms . 10

2.3.2 Frequency Domain Description . 11

2.3.3 Primitive Parameters . 11

2.3.4 Derived Parameters . 12

2.3.5 Frame Structure . 13

2.4 Uplink Transmission in IEEE 802.16e OFDMA 13

vii

2.4.1 Data Mapping Rules . 14

2.4.2 Carrier Allocations . 15

2.4.3 Pilot Modulation . 18

2.4.4 Data Modulation . 19

2.5 Downlink Transmission in IEEE 802.16e OFDMA 19

2.5.1 Data Mapping Rules . 20

2.5.2 Preamble Structure and Modulation 20

2.5.3 Subcarrier Allocations . 22

2.5.4 Pilot Modulation . 25

2.5.5 Data Modulation . 25

2.6 Space-Time Coding in IEEE 802.16e OFDMA 25

2.6.1 STC Using Two Antennas . 26

2.6.2 STC/FHDC Configurations . 26

2.6.3 Uplink Using STC . 27

2.6.4 STC Using Two Antennas in Downlink PUSC 27

3 Channel Estimation Techniques 29

3.1 Pilot-Symbol-Aided Channel Estimation [9] 29

3.1.1 The Least-Squares (LS) Estimator [10] 29

3.1.2 The LMMSE Estimator [11] . 30

3.2 Two-Dimensional Channel Estimators . 31

3.2.1 Linear Interpolation . 31

viii

3.2.2 2-D Wiener Filter [14] . 32

4 Simulation of STC Uplink Channel Estimation 34

4.1 Linear Interpolation . 34

4.2 Wiener Filtering . 35

4.3 STC Decoding . 38

4.4 Simulation Conditions . 38

4.4.1 OFDMA Uplink System Parameters 38

4.4.2 Channel Models . 39

4.5 Simulation Results . 41

4.5.1 Simulation Flow . 41

4.5.2 Validation of Simulation Model . 42

4.5.3 Simulation Results and Analysis . 43

5 Simulation of STC Downlink PUSC Channel Estimation 61

5.1 System Parameters and Channel Models . 61

5.2 Linear Interpolation . 61

5.3 Wiener Filtering . 63

5.4 Simulation Study . 65

5.4.1 Simulation Flow . 65

5.4.2 Validation with AWGN Channel . 65

5.4.3 Simulation Results . 66

ix

6 The DSP Hardware and Associated Software Development Environment 75

6.1 The TMS320C6416 DSP . 75

6.1.1 TMS320C64x Features [21] . 75

6.1.2 Central Processing Unit [21] . 77

6.1.3 Memory Architecture [21] . 83

6.2 The Code Composer Studio Development Tools [24], [25] 85

6.3 Code Optimization Methods [27] . 87

6.3.1 Compiler Optimization Options [24], [25] 89

6.3.2 Using Intrinsics . 91

7 Fixed-Point DSP Implementation 92

7.1 Data Formats Considerations . 92

7.2 Fixed-Point Simulation . 93

7.3 DSP Computation Load . 93

7.4 Program Code . 106

8 Conclusion and Future Work 110

8.1 Conclusion . 110

8.2 Potential Future Work . 111

Bibliography 113

x

List of Figures

2.1 Discrete-time model of the baseband OFDMA system (from[4]). 4

2.2 Time structure of OFDMA symbol (from [6]). 5

2.3 Discrete-time baseband equivalent of an OFDMA system with M users (from

[5]). 6

2.4 Schematic block diagram of Alamouti’s transmit diversity (from [8]). 7

2.5 Example of the data region which defines the OFDMA allocation (from [6]). 11

2.6 OFDMA frequency description (from [6]). 11

2.7 Example of an OFDMA frame (with only mandatory zone) in TDD mode

(from [7]). 13

2.8 Example of mapping OFDMA slots to subchannels and symbols in the uplink

(from [7]). 15

2.9 Structure of an uplink tile (from [6]). 15

2.10 PRBS generator for pilot modulation (from [6] and [7]). 18

2.11 QPSK, 16-QAM, and 64-QAM constellations (from [6]). 19

2.12 Example of mapping OFDMA slots to subchannels and symbols in the down-

link in PUSC mode (from [7]). 21

2.13 Downlink transmission basic structure (from [6]). 21

xi

2.14 Cluster structure (from [7]). 23

2.15 Illustration of STC (from [7]). 26

2.16 Mapping of data subcarriers in STTD mode (from [7]). 28

2.17 Cluster structure for STC PUSC using two antennas (from [7]). 28

4.1 Linear interpolation in STTD mode at antenna 0. 35

4.2 Wiener filtering in STTD mode at Antenna 0. 36

4.3 STTD transmission. (a) Neighboring channel responses are the same. (b)

Responses are different. 39

4.4 Block diagram of the simulated system. 42

4.5 The SER curve for uncoded QPSK resulting from simulation matches the

theoretical one. 44

4.6 MSE performance for uncoded QPSK resulting with linear interpolation, an-

tenna 0. 45

4.7 SER performance for uncoded QPSK resulting from linear interpolation. . . 45

4.8 MSE performance of Wiener filtering channel estimation for uncoded QPSK,

antenna 0. Autocorrelation and cross-correlation are obtained by averaging

over one subchannel. 50

4.9 MSE performance of Wiener filtering channel estimation for uncoded QPSK,

antenna 0. Autocorrelation and cross-correlation are obtained by averaging

over ten subchannels. 51

4.10 Comparrision of SER performance with using Wiener filtering and linear in-

terpolation channel estimation in STTD under QPSK modulation in AWGN. 51

xii

4.11 Comparrision of MSE performance with using Wiener filtering and linear in-

terpolation channel estimation in STTD under QPSK modulation in AWGN. 52

4.12 MSE and SER performance for uncoded QPSK under Wiener filtering and

linear interpolation channel estimations at different velocities in single-path

Rayleigh fading channel with ρenv = 0. (a) MSE. (b) SER. 54

4.13 MSE and SER performance for uncoded QPSK under Wiener filtering and

linear interpolation channel estimation at different velocities in SUI-2 channel

with channel correlation ρenv = 0. (a) MSE. (b) SER. 55

4.14 MSE and SER performance for uncoded QPSK under Wiener filtering and

linear interpolation channel estimation at different velocities in SUI-3 channel

with channel correlation ρenv = 0. (a) MSE. (b) SER. 56

4.15 Two different subchannel sets of MSE and SER performance for uncoded

QPSK under Wiener filtering averaging over one subchannel at different ve-

locities in SUI-2 channel with channel correlation ρenv = 0. (a) MSE. (b)

SER. 57

4.16 SER comparison between zero and nonzero antenna correlation (ρenv = 0.7)

in single-path Rayleigh fading. 58

4.17 SER comparison between zero and nonzero antenna correlation (ρenv = 0.5)

in SUI-2 channel. 59

4.18 SER comparison between zero and nonzero antenna correlation (ρenv = 0.4)

in SUI-3 channel. 60

5.1 Linear interpolation in STTD mode at antenna 0. 63

5.2 Wiener filtering in STTD mode at antenna 0. 64

xiii

5.3 Block diagram of the simulated system. 65

5.4 SER for uncoded QPSK resulting from simulation compared with theory. . . 66

5.5 MSE and SER performance for uncoded QPSK resulting from simulation with

Wiener filtering and linear interpolation in AWGN channel. (a) MSE. (b)

SER. 69

5.6 MSE and SER performance for uncoded QPSK resulting from simulation with

Wiener filtering and linear interpolation at different velocities in single-path

Rayleigh fading channel with ρenv = 0. (a) MSE. (b) SER. 70

5.7 MSE and SER performance for uncoded QPSK resulting from simulation with

Wiener filtering and linear interpolation at different velocities in SUI-2 channel

with ρenv = 0. (a) MSE. (b) SER. 71

5.8 MSE and SER performance for uncoded QPSK resulting from simulation with

Wiener filtering and linear interpolation at different velocities in SUI-3 channel

with ρenv = 0. (a) MSE. (b) SER. 72

5.9 SER comparison of zero and nonzero antenna correlations (ρenv = 0.7) in

single-path Rayleigh fading. 73

5.10 SER comparison of zero and nonzero antenna correlations (ρenv = 0.5) in SUI-2. 74

5.11 SER comparison of zero and nonzero antenna correlations (ρenv = 0.4) in SUI-3. 74

6.1 The DSP on the Sundance board [21]. 76

6.2 Block diagram of the TMS320C6416 DSP [21]. 78

6.3 Pipeline phases of TMS320C6416 DSP [21]. 79

6.4 TMS320C64x CPU data paths [21]. 84

xiv

6.5 Code development flow for TI C6000 DSP [27]. 88

7.1 fix point simulation flow. 93

7.2 Uplink channel estimation performance under fixed- and floating-point com-

putation in AWGN. (a) MSE. (b) SER. 94

7.3 Uplink channel estimation performance under fixed- and floating-point com-

putation in single-path Rayleigh fading. (a) MSE. (b) SER. 95

7.4 Uplink channel estimation performance under fixed- and floating-point com-

putation in SUI-2 channel. (a) MSE. (b) SER. 96

7.5 Uplink channel estimation performance under fixed- and floating-point com-

putation in SUI-3 channel. (a) MSE. (b) SER. 97

7.6 Uplink channel estimation performance under fixed- and floating-point com-

putation in Vehicular A channel. (a) MSE. (b) SER. 98

7.7 MSE and SER under fixed- and floating-point computation in AWGN. (a)

MSE. (b) SER. 99

7.8 Downlink channel estimation performance under fixed- and floating-point

computation in single-path Rayleigh fading. (a) MSE. (b) SER. 100

7.9 Downlink channel estimation performance under fixed- and floating-point

computations in SUI-2 channel. (a) MSE. (b) SER. 101

7.10 Downlink channel estimation performance under fixed- and floating-point

computation in SUI-3 channel. (a) MSE. (b) SER. 102

7.11 Downlink channel estimation performance under fixed- and floating-point

computation in Vehicular A channel (a) MSE. (b) SER. 103

7.12 Wiener filtering C code block diagram. 105

xv

7.13 FIXED.H. 106

7.14 linear interpolation. 107

7.15 Part of assembly code of function linear interpolaton. 108

7.16 Software pipelineing information of function linear interpolation. 109

xvi

List of Tables

2.1 OFDMA Uplink Subcarrier Allocations [6], [7] 16

2.2 OFDMA Downlink Subcarrier Allocation Under PUSC [6], [7] 23

4.1 αi of Eight Data Subcarriers at Antenna 0. 37

4.2 OFDMA Uplink Parameters . 40

4.3 Channel Profiles of SUI-2 and SUI-3 [17] . 41

4.4 Power-Delay Profile of the ETSI Vehicular A Channel 42

4.5 Mean Delay and RMS Delay Spread . 42

4.6 MSE of Eight Data Subcarriers at Antennas 0 and 1 44

5.1 OFDMA Downlink Parameters . 62

6.1 Execution Stage Length Description for Each Instruction Type [21] 80

6.2 Functional Units and Operations Performed (Part 1 of 2) [21] 81

6.3 Functional Units and Operations Performed (Part 2 of 2) [21] 82

7.1 OFDMA Uplink DSP Load Under 1024-FFT with 10 Subchannel 105

7.2 OFDMA Downlink DSP Load Under 1024-FFT, Major Group 0 with STC . 106

xvii

Chapter 1

Introduction

Orthogonal frequency division multiple access (OFDMA) has emerged as one of the prime

multiple access schemes for broadband wireless networks (e.g., IEEE 802.16 Mobile WiMAX,

IEEE 802.20 and 3G LTE). As a special case of multicarrier multiple access schemes, OFDMA

exclusively assigns each subchannel to only one user, eliminating intra-cell interference [1]. In

frequency selective channels, an intrinsic advantage of OFDMA is its capability to exploit the

so-called multiuser diversity provided by multipath channels. Other advantages of OFDMA

include finer granularity and better link budget [1]. OFDMA can be easily generated using

an inverse fast Fourier transform (IFFT) and received using a fast Fourier transform (FFT).

The IEEE 802.16 standard committee has developed a group of standards for wireless

metropolitan area networks (MANs). OFDMA is used in the 2 to 11 GHz systems. The

IEEE Standard 802.16-2004 is for broadband wireless access systems that provide a variety

of wireless access services to fixed outdoor and indoor users. The 802.16e is designed to

support terminal mobility, and currently it can serve terminals with a speed up to 120 km/h

[2].

Multiple-antenna techniques can be used to increase diversity and improve the bit error

rate (BER) performance of wireless systems, increase the cell range, increase the transmitted

1

data rate through spatial multiplexing, and/or reduce interference from other users. The

WiMAX Forum has selected two different multiple antenna profiles for use on the downlink

and uplink. One of them is based on the space-time code (STC) proposed by Alamouti for

transmit diversity [3], and the other is a 2x2 spatial multiplexing scheme.

This thesis focuses on the channel estimation methods for IEEE802.16e WirelessMAN-

OFDMA multi-input multi-output (MIMO) systems. We construct the multipath channel

simulator to simulate the MIMO system in IEEE 802.16e and study the performance of

different channel estimation methods. And we consider software implementation of the

channel estimation using a digital signal processor (DSP).

The thesis is organized as follows. First, in chapter 2, we introduce the OFDMA specifica-

tions in IEEE 802.16e, especially its MIMO mode of operation. In chapter 3, various channel

estimation techniques are introduced. In chpter 4, we discuss the performance of channel

estimation in uplink transmission and in chpter 4, we show the performance of downlink

channel estimation. It is seen that, due to modeling errors in parameter estimations, linear

interpolation perfors better than Wiener filtering. In chapter 6, we describe the implemen-

tation platform, which consists of a Texas Instruments’ TMS320C6416 DSP on a Sundance

compancy’s Carrier board. In chapter 7, we present some DSP implementation issues and

fixed-point simulation results. Finally, chapter 8 gives the conclusion and points out some

potential future work.

2

Chapter 2

Introduction to IEEE802.16e OFDMA
and MIMO Systems

We first introduce the basic concepts of the OFDMA and MIMO techniques for multicarrier

modulation. The specifications of IEEE 802.16e are introduced afterwards.

2.1 Overview of OFDMA [4], [5]

Orthogonal frequency-division multiple-access (OFDMA) is a major multiple access scheme

considered for future wireless systems. In an OFDMA system, several users simultaneously

transmit their data by modulating mutually exclusive sets of orthogonal subcarriers. Thus

each user’s signal can be separated easily in the frequency domain. One typical structure

is the subband OFDMA, which divides all available subcarriers into a number of subbands.

Each user is allowed to use one or more available subbands for the data transmission. Pi-

lot symbols are employed for the estimation of channel state information (CSI) within the

subbands. Besides multiuser diversity, robustness to narrowband interference and capability

of channel assignment are two other advantages of OFDMA. Figure 2.1 shows an OFDMA

network in which active users simultaneously communicate with the base station (BS).

3

Figure 2.1: Discrete-time model of the baseband OFDMA system (from[4]).

2.1.1 Cyclic Prefix

Cyclic prefix (CP), or guard time, is used to overcome the intersymbol interference (ISI)

and interchannel interference (ICI) problems. The multiuser channel is assumed to be sub-

stantially invariant within one OFDMA symbol duration. The symbol timing mismatch is

assumed to be smaller than the CP duration. In this scenario, users do not interfere each

other in the frequency domain.

A CP is a copy of the last part of the OFDMA symbol (see Fig. 2.2). It is used to collect

multipath propgation effects of the last symbol so as to maintaining the orthogonality of the

tones. However, the transmitter energy increases with the length of the guard time while

the receiver energy remains the same (since the cyclic extension is discarded in the receiver),

so there is a 10log(1− Tg/(Tb + Tg))/log(10) dB loss in Eb/N0.

4

Figure 2.2: Time structure of OFDMA symbol (from [6]).

2.1.2 Discrete-Time Baseband Equivalent System Model

The material in this subsection is mainly taken from [5]. Consider an OFDMA system with

M active users sharing a bandwidth of B = 1
T

Hz (where T is the sampling period) as shown in

Fig. 2.3. The system consists of K subcarriers, of which Ku are useful subcarriers (excluding

guard bands and DC subcarrier). The users are allocated non-overlapping subcarriers in the

spectrum depending on their needs.

The discrete time baseband channel consists of L multipath components and has the

form

h(l) =
L−1∑
m=0

hmδ(l − lm) (2.1)

where hm is a zero-mean complex Gaussian random variable with E[hih
∗
j] = 0 for i 6= j. In

frequency domain,

H = Fh (2.2)

where H = [H0, H1, ..., HK−1]
T , h = [h0, ..., hL−1, 0, ..., 0]T and F is K-point DFT matrix.

The impulse response length lL−1 is upper bounded by the length of CP (Lcp).

The received signal in frequency domain is given by

Y n =
M∑
i=1

Xi,nH i,n + V n (2.3)

5

Figure 2.3: Discrete-time baseband equivalent of an OFDMA system with M users (from
[5]).

where Xi,n = diag(Xi,n,0, ..., Xi,n,K−1) is a K×K diagonal data matrix and H i,n is the K×1

channel vector (2.2) corresponding to the ith user in nth symbol. The noise vector V n is

distributed as CN (0, σ2IK) where Ik is the K-dimensional identity matrix.

2.2 Introduction to MIMO System

In this section, we indroduce two MIMO transmission mechanisms that are used in WiMAX.

One is called transmit diversity and the other spatial multiplexing. The material in this

section is mainly taken from [8].

6

Figure 2.4: Schematic block diagram of Alamouti’s transmit diversity (from [8]).

2.2.1 Transmit Diversity

One MIMO transmission technique employed in WiMAX is the space-time coding (STC)

scheme proposed by Alamouti [3] for transmit diversity. (In the IEEE 802.16e-2005 specifi-

cations, this scheme is referred to as Matrix A.) This technique can be described as follows.

Let (s1, s2) represent a group of two consecutive symbols in the input data stream to

be transmitted. During a first symbol period t1, transmit (Tx) antenna 1 transmits symbol

s1 and Tx antenna 2 transmits symbol s2. Next, during the second symbol period t2, Tx

antenna 1 transmits symbol s∗2 and Tx antenna 2 transmits symbol −s∗1. Denote the channel

response (at the subcarrier frequency at hand) from Tx1 to the receiver (Rx) by h1 and the

channel response from Tx2 to the receiver by h2. The received signal samples corresponding

to the symbol periods t1 and t2 can be written as:

r1 = h1s1 + h2s2 + n1, (2.4)

r2 = h1s
∗
2 + h2s

∗
1 + n2, (2.5)

where n1 and n2 are additive noise terms. The receiver computes the following signals to

7

estimate the symbols s1 and s2:

x1 = h∗1r1 − h2r
∗
2 =

(|h1|2 + |h2|2
)
s1 + h∗1n1 − h2n

∗
2, (2.6)

x2 = h∗2r1 + h1r
∗
2 =

(|h1|2 + |h2|2
)
s2 + h∗2n1 + h1n

∗
2. (2.7)

These expressions clearly show that x1 (resp. x2) can be sent to a threshold detector to

estimate symbol s1 (resp. symbol s2) without interference from the other symbol. Moreover,

since the useful signal coefficient is the sum of the squared moduli of two independent fading

channels, these estimations benefit from perfect second-order diversity, equivalent to that

of Rx diversity under maximum-ratio combining (MRC). Alamouti’s transmit diversity can

also be combined with MRC when two antennas are used at the receiver. In this scheme,

the received signal samples corresponding to the symbol periods t1 and t2 can be written as

r11 = h11s1 + h12s2 + n11, (2.8)

r12 = h11s
∗
2 − h12s

∗
1 + n12, (2.9)

for the first receive antenna, and

r21 = h21s1 + h22s2 + n21, (2.10)

r22 = h21s
∗
2 − h22s

∗
1 + n22, (2.11)

for the second receive antenna. In these expressions, hji designates the channel response from

Tx i to Rx j, with i, j = 1, 2, and nij designates the noise on the corresponding channel. This

MIMO scheme does not give any spatial multiplexing gain, but it has 4th-order diversity,

which can be fully recovered by a simple receiver as follows. The optimum receiver estimates

8

the transmitted symbols s1 and s2 using

x1 = h∗11r11 − h12r
∗
12 + h∗21r21 − h22r

∗
22

=
(|h11|2 + |h12|2 + |h21|2 + |h22|2

)
s1 + h∗11n11 − h12n

∗
12 + h∗21n21 − h22n

∗
22, (2.12)

x2 = h∗12r11 + h11r
∗
12 + h∗22r21 + h21r

∗
22

=
(|h11|2 + |h12|2 + |h21|2 + |h22|2

)
s2 + h∗12n11 + h11n

∗
12 + h∗22n21 + h21n

∗
22. (2.13)

These equations clearly show that the receiver fully recovers the fourth-order diversity of the

2× 2 system.

2.2.2 Spatial Multiplexing

The second MIMO technique employed in WiMAX is the 2 × 2 spatial multiplexing (using

the so-called matrix B = (s1, s2)
T). This technique does not offer any diversity gain from

the Tx side. But it offers a diversity gain of 2 on the receiver side when detected using

maximum-likelihood (ML) detection.

To describe the technique, we omit the time and frequency dimensions, leaving only the

space dimension. The symbols transmitted by Tx1 and Tx2 in parallel are denoted s1 and

s2, respectively. Denoting by hji the channel response from Tx i to Rx j (i, j = 1, 2), the

signals received by the two Rx antennas are given by

r1 = h11s1 + h12s2 + n1, (2.14)

r2 = h21s1 + h22s2 + n2, (2.15)

which can be written in matrix form as

[
r1

r2

]
=

[
h11 h12

h21 h22

]
+

[
n1

n2

]
. (2.16)

The ML detector makes an exhaustive search over all possible values of the transmitted

9

symbols and decides in favor of (s1, s2) which minimizes the Euclidean distance

D(s1, s2) = |r1 − h11s1 − h12s2|2 + |r2 − h21s1 − h22s2|2. (2.17)

2.3 Basic OFDMA Symbol Structure in IEEE 802.16e

The WirelessMAN-OFDMA PHY is based on OFDM modulation and is designed for nonline-

of-sight (NLOS) operation in frequency bands below 11 GHz. For licensed bands, channel

bandwidths allowed shall be limited to the regulatory provisioned bandwidth divided by any

power of 2 no less than 1.0 MHz. The material in this section is mainly taken from [5] and

[6].

2.3.1 OFDMA Basic Terms

We introduce some basic terms in OFDMA PHY. These definitions help us understand the

concepts in subcarrier allocation and transmission of IEEE 802.16e OFDMA.

• Slot: A slot in OFDMA PHY is a two-dimensional entity spanning both a time and a

subchannel dimension. It is the minimum possible data allocation unit. For downlink

(DL) PUSC (Partial Usage of SubChannels), one slot is one subchannel by two OFDMA

symbols. For uplink (UL), one slot is one subchannel by three OFDMA symbols.

• Data region: In OFDMA, a data region is a two-dimensional allocation of a group of

contiguous subchannels in a group of contiguous OFDMA symbols. All the allocations

refer to logical subchannels. A two-dimensional allocation may be visualized as a

rectangle, such as the 4 × 3 rectangle shown in Fig. 2.5.

• Segment: A segment is a subdivision of the set of available OFDMA subchannels (that

may include all available subchannels). One segment is used for deploying a single

instance of the MAC.

10

Figure 2.5: Example of the data region which defines the OFDMA allocation (from [6]).

Figure 2.6: OFDMA frequency description (from [6]).

2.3.2 Frequency Domain Description

An OFDMA symbol (see Fig. 2.6) is made up of subcarriers, the number of which determines

the FFT size used. There are several subcarrier types:

• Data subcarriers: for data transmission.

• Pilot subcarriers: for various estimation purposes.

• Null subcarriers: no transmission at all, for guard bands and DC subcarrier.

2.3.3 Primitive Parameters

Four primitive parameters characterize the OFDMA symbols:

11

• BW : the nominal channel bandwidth.

• Nused: number of used subcarriers (which includes the DC subcarrier).

• n: sampling factor. This parameter, in conjunction with BW and Nused, determines

the subcarrier spacing and the useful symbol time. For channel bandwidths that are

a multiple of 1.75 MHz, n = 8/7, else for channel bandwidths that are a multiple of

any of 1.25, 1.5, 2 or 2.75 MHz, n = 28/25, else for channel bandwidths not otherwise

specified, n = 8/7.

• G: the ratio of CP time to “useful” time, i.e., Tcp/Ts. The following values shall be

supported: 1/32, 1/16, 1/8, and 1/4.

2.3.4 Derived Parameters

The following parameters are defined in terms of the primitive parameters.

• NFFT : smallest power of two greater than Nused.

• Sampling frequency: Fs = floor(n·BW/8000)× 8000.

• Subcarrier spacing: 4f = Fs/NFFT .

• Useful symbol time: Tb = 1/4f .

• CP time: Tg = G× Tb.

• OFDMA symbol time: Ts = Tb + Tg.

• Sampling time: Tb/NFFT .

12

Figure 2.7: Example of an OFDMA frame (with only mandatory zone) in TDD mode (from
[7]).

2.3.5 Frame Structure

When implementing a time-division duplex (TDD) system, the frame structure is built from

base station (BS) and subscriber station (SS) transmissions. Each frame in the DL trans-

mission begins with a preamble followed by a DL transmission period and a UL transmission

period. In each frame, the TTG and RTG shall be inserted between the downlink and uplink

and at the end of each frame, respectively, to allow the BS to turn around. Fig. 2.7 shows

an example of an OFDMA frame with only mandatory zone in TDD mode.

2.4 Uplink Transmission in IEEE 802.16e OFDMA

The material in this section is mainly taken from [6] and [7].

13

2.4.1 Data Mapping Rules

The UL mapping consists of two stages. In the first stage, the OFDMA slots allocated to

each burst are selected. In the second stage, the allocated slots are mapped.

Stage 1: Allocate OFDMA slots to bursts. A UL allocation is created by selecting an integer

number of contiguous slots according to the ordering of steps 1 to 3. This results in the

general burst structure shown by the gray area in Fig. 2.8.

1) Segment the data into blocks sized to fit into one OFDMA slot.

2) Each slot shall span one or more subchannels in the subchannel axis and one or more

OFDMA symbols in the time axis (see Fig. 2.8 for an example). Map the slots such

that the lowest numbered slot occupies the lowest numbered subchannel in the lowest

numbered OFDMA symbol.

3) Continue the mapping such that the OFDMA symbol index is increased. When the

edge of the UL zone is reached, continue the mapping from the lowest numbered

OFDMA symbol in the next available subchannel.

4)

Stage 2: Map OFDMA slots within the UL allocation.

1) Map the slots such that the lowest numbered slot occupies the lowest numbered sub-

channel in the lowest numbered OFDMA symbol.

2) Continue the mapping such that the subchannel index is increased. When the last

subchannel is reached, continue the mapping from the lowest numbered subchannel in

the next OFDMA symbol that belongs to the UL allocation. The resulting order is

shown by the arrows in Fig. 2.8.

14

Figure 2.8: Example of mapping OFDMA slots to subchannels and symbols in the uplink
(from [7]).

Figure 2.9: Structure of an uplink tile (from [6]).

Fig. 2.8 illustrates the order of OFDMA slots mapping to subchannels and OFDMA symbols.

2.4.2 Carrier Allocations

Consider the 1024-FFT PUSC permutation for example. Under it, the uplink supports 35

subchannels. Each transmission uses 48 data carriers as the minimal block of processing.

Each new transmission for the uplink commences with the parameters as given in Table 2.1.

15

Table 2.1: OFDMA Uplink Subcarrier Allocations [6], [7]
Parameter Value Notes

Number of DC
subcarriers

1 Index 512 (counting from 0)

Nused 841 Number of all subcarriers used within a symbol
Guard subcarriers:
Left, Right

92,91

TilePermutation Used to allocate tiles to subchannels
11, 19, 12, 32, 33, 9, 30, 7, 4, 2,
13, 8, 17, 23, 27, 5, 15, 34, 22, 14,
21, 1, 0, 24, 3, 26, 29, 31, 20, 25,
16, 10, 6, 28, 18

Nsubchannels 35
Nsubcarriers 24
Ntiles 210
Number of subcarriers
per tile

4 Number of all subcarriers within a tile

Tiles per subchannel 6

A slot in the uplink is composed of three OFDMA symbols and one subchannel. Within

each slot, there are 24 data subcarriers and 12 pilot subcarriers. The subchannel is con-

structed from six uplink tiles, each having four successive active subcarriers with the config-

uration as illustrated in Fig. 2.9.

The usable subcarriers in the allocated frequency band shall be divided into Ntiles physical

tiles with parameters from Table 2.1. The allocation of physical tiles to logical tiles in

subchannels is performed according to:

Tiles(s, n) = Nsubchannels · n + (Pt[(s + n) mod Nsubchannels] + UL PermBase)mod Nsubchannels

where:

• Tiles(s, n) is the physical tile index in the FFT with tiles being ordered consecutively

from the most negative to the most positive used subcarrier (0 is the starting tile

index),

16

• n is the tile index 0..5 in a subchannel,

• Pt is the tile permutation,

• s is the subchannel number in the range 0..Nsubchannels − 1,

• UL PermBase is an integer value in the range 0..69, which is assigned by a manage-

ment entity, and

• Nsubchannels is the number of subchannels for the FFT size given in Table 2.1.

After mapping the physical tiles to logical tiles for each subchannel, the data subcarriers

per slot are enumerated by the following process:

1) After allocating the pilot carriers within each tile, indexing of the data subcarriers

within each slot is performed starting from the first symbol at the lowest indexed

subcarrier of the lowest indexed tile and continuing in an ascending manner through

the subcarriers in the same symbol, then going to the next symbol at the lowest indexed

data subcarrier, and so on. Data subcarriers shall be indexed from 0 to 47.

2) The mapping of data onto the subcarriers will follow the equation below. This equation

calculates the subcarrier index (as assigned in item 1) to which the data constellation

point is to be mapped:

Subcarrier(n, s) = (n + 13 · s) mod Nsubcarriers

where:

• Subcarrier(n, s) is the permutated subcarrier index corresponding to data sub-

carrier n is subchannel s,

• n is a running index between 0 and 47, indicating the data constellation point,

17

Figure 2.10: PRBS generator for pilot modulation (from [6] and [7]).

• s is the subchannel number, and

• Nsubcarriers is the number of subcarriers per slot.

2.4.3 Pilot Modulation

The PRBS (pseudo-random binary sequence) generator depicted in Fig. 2.10 is used to

produce a sequence, wk. The value of the pilot modulation, on subcarrier k, shall be derived

from wk.

For the mandatory tile structure in the uplink, pilot subcarriers shall be inserted into each

data burst in order to constitute the symbol and they shall be modulated according to their

subcarrier location within the OFDMA symbol. The pilot subcarriers shall be modulated

according to

<{ck} = 2
(1

2
− wk

)
, ={ck} = 0. (2.18)

In all permutations except UL PUSC, downlink TUSC1, and the DL and UL STC permu-

tations/modes, each pilot shall be transmitted with a boosting of 2.5 dB over the average

non-boosted power of each data tone. That is, these pilot subcarriers shall be modulated

18

Figure 2.11: QPSK, 16-QAM, and 64-QAM constellations (from [6]).

according to

<{ck} =
8

3

(1

2
− wk

) · pk, ={ck} = 0. (2.19)

2.4.4 Data Modulation

The employed cosotellations are as shown in Fig. 2.11. The data bits are entered serially

to the constellation mapper. Gray-mapped QPSK and Gray-mapped 16QAM shall be sup-

ported, whereas the support of 64QAM (also Gray-mapped) is optional.

2.5 Downlink Transmission in IEEE 802.16e OFDMA

This section briefly introduces the specifications of IEEE 802.16e OFDMA PUSC downlink

transmission. The material is mainly taken from [6] and [7].

19

2.5.1 Data Mapping Rules

The downlink data mapping rules are as follows:

1. Segment the data after the modulation block into blocks sized to fit into one OFDMA

slot.

2. Each slot shall span one subchannel in the subchannel axis and one or more OFDMA

symbols in the time axis, as per the slot definition mentioned before. Map the slots

such that the lowest numbered slot occupies the lowest numbered subchannel in the

lowest numbered OFDMA symbol.

3. Continue the mapping such that the OFDMA subchannel index is increased. When the

edge of the Data Region is reached, continue the mapping from the lowest numbered

OFDMA subchannel in the next available symbol.

Figure 2.12 illustrates the order of OFDMA slots mapping to subchannels and OFDMA

symbols.

2.5.2 Preamble Structure and Modulation

Fig. 2.13 shows a downlink transmission period. The first symbol of the downlink trans-

mission is the preamble. There are three types of preamble carrier-sets, which are defined

bellow. The subcarriers in the preamable are modulated using a boosted BPSK modulation

with a specific pseudo-noise (PN) code. The PN series modulating the pilots in the preamble

can be found in [6, pp. 553–562].

The preamble carrier-sets are defined as

PreambleCarrierSetn = n + 3 · k, (2.20)

where:

20

Figure 2.12: Example of mapping OFDMA slots to subchannels and symbols in the downlink
in PUSC mode (from [7]).

Figure 2.13: Downlink transmission basic structure (from [6]).

• PreambleCarrierSetn specifies all subcarriers allocated to the specific preamble,

• n is the index of the preamble carrier-set indexed 0 ≤ 1 ≤ 2 and

• k is a running index, 0 ≤ k ≤ 283.

21

Each segment uses one type of preamble out of the three sets in the following manner: For

the preamble symbol, there are 172 guard band subcarriers on the left side and the right side

of the spectrum. Segment i uses preamble carrier-set i, where i = 0, 1, 2. The DC subcarrier

is not modulated at all and the appropriate PN is discarded. That is, the DC subcarrier is

always zeroed.

The pilots in downlink preamble shall be modulated as

<{PreambleP ilotsModulated} = 4 ·
√

2 · (1

2
− wk

)
,

={PreambleP ilotsModulated} = 0. (2.21)

2.5.3 Subcarrier Allocations

The OFDMA symbol structure is constructed using pilots, data and zero subcarriers. The

symbol is first divided into basic clusters and zero carriers are allocated. The pilot tones are

allocated first; what remains are data subcarriers, which are divided into subchannels that

are used exclusively for data. Pilots and data carriers are allocated within each cluster.

Figure 2.14 shows the cluster structure with subcarriers from left to right in order of

increasing subcarrier index. For the purpose of determining PUSC pilot location, even and

odd symbols are counted from the beginning of the current zone. The first symbol in the

zone is even. The preamble is not counted as part of the first zone. Table 2.2 summarizes

the parameters of the OFDMA PUSC symbol structure.

The allocation of subcarriers to subchannels is performed using the following procedure:

1) Divide the subcarriers into a number (Nclusters) of physical clusters containing 14 ad-

jacent subcarriers each (starting from carrier 0).

22

Figure 2.14: Cluster structure (from [7]).

Table 2.2: OFDMA Downlink Subcarrier Allocation Under PUSC [6], [7]
Parameter Value Comments

Number of DC
subcarriers

1 Index 512 (counting from 0)

Number of guard
subcarriers, left

92

Number of guard
subcarriers, right

91

Number of used
subcarriers (Nused)

841 Number of all subcarriers used within a
symbol, including all possible allocated
pilots and the DC carrier

Number of subcarriers
per cluster

14

Number of clusters 60
Renumbering sequence Used to renumber clusters before

allocation to subchannels:
6, 48, 37, 21, 31, 40, 42, 56, 32, 47, 30, 33,
54, 18, 10, 15, 50, 51, 58, 46, 23, 45, 16, 57,
39, 35, 7, 55, 25, 59, 53, 11, 22, 38, 28, 19,
17, 3, 27, 12, 29, 26, 5, 41, 49, 44, 9, 8, 1,
13, 36, 14, 43, 2, 20, 24, 52, 4, 34, 0

Number of data
subcarriers in each
symbol per subchannel

24

Number of subchannels 30
Basic permutation
sequence 6 (for 6
subchannels)

12 3,2,0,4,5,1

Basic permutation
sequence 4 (for 4
subchannels)

8 3,0,2,1

23

2) Renumber the physical clusters into logical clusters using the following formula:

LogicalCluster

=





RenumberingSequence(PhysicalCluster), first DL zone,
RenumberingSequence

(
(PhysicalCluster+

13 ·DL PermBase)mod Nclusters

)
, otherwise.

3) Divids the clusters into six major groups. Group 0 includes clusters 0–11, group 1

clusters 12–19, group 2 clusters 20–31, group 3 clusters 32–39, group 4 clusters 40–51

and group 5 clusters 52–59. These groups may be allocated to segments. If a segment

is being used, then at least one group shall be allocated to it. (By default group 0 is

allocated to segment 0, group 2 to segment 1, and group 4 to segment 2.)

4) Allocate subcarriers to subchannel in each major group separately for each OFDMA

symbol by first allocating the pilot subcarriers within each cluster and then taking all

remaining data subcarriers within the symbol. The exact partitioning into subchannels

is according to the equation below, called a permutation formula:

subcarrier(k, s) = Nsubchannels · nk +
{
ps[nk mod Nsubchannels]+

DL PermBase
}
mod Nsubchannels

where:

• subcarrier(k, s) is the subcarrier index of subcarrier k in subchannel s,

• s is the index number of a subchannel, from the set [0..Nsubchannels − 1],

• nk = (k + 13 · s)mod Nsubcarriers , where k is the subcarrier-in-subchannel index

from the set [0..Nsubcarriers − 1],

• Nsubchannels is the number of subchannels (for PUSC use number of subchannels

in the currently partitioned group),

24

• ps[j] is the series obtained by rotating basic permutation sequence cyclically to

the left s times,

• Nsubcarriers is the number of data subcarriers allocated to a subchannel in each

OFDMA symbol, and

• DL PermBase is an integer from 0 to 31.

2.5.4 Pilot Modulation

Pilot subcarriers shall be inserted into each data burst in order to constitute the symbol.

The PRBS (pseudo-random binary sequence) generator depicted in Fig. 2.10 shall be used

to produce a sequence, wk.

Each pilot shall be transmitted with a boosting of 2.5 dB over the average non-boosted

power of each data tone. That is, the pilot subcarriers shall be modulated according to

<{ck} =
8

3

(1

2
− wk

)
, ={ck} = 0. (2.22)

2.5.5 Data Modulation

Downlink transmission also employs the modulations shown in Fig. 2.11. gray-mapped

QPSK and Gray-mapped 16QAM shall be supported, whereas the support of 64QAM (also

Gray-mapped) is optional.

2.6 Space-Time Coding in IEEE 802.16e OFDMA

This section briefly introduces the space-time coding of IEEE 802.16e. The material is

mainly taken from [6] and [7].

25

Figure 2.15: Illustration of STC (from [7]).

2.6.1 STC Using Two Antennas

STC (in some cases also termed STTD) or FHDC may be used on the DL to provide

higher order (space) Tx diversity. Consider using two Tx antennas on the BS side and one

reception antenna on the SS side. This scheme requires multiple-input single-output channel

estimation. Decoding is very similar to maximum ratio combining.

Figure 2.15 shows Tx diversity insertion into the OFDMA chain. Each Tx antenna has

its own OFDMA chain, but they have the same local oscillator for synchronization purposes.

The two antennas transmit two different OFDMA data symbols in the same time. Time

domain (space-time) or frequency domain (space-frequency) repetition is used.

2.6.2 STC/FHDC Configurations

Two transmission formats are allowed for the two-antenna configuration, each having its own

capacity-diversity tradeoffs. The following matrices define the transmission formats with the

row index indicating the antenna number and column index indicating the OFDMA symbol.

The entries define the transmission from a subchannel used for this transmission configuration

(the same operation is repeated for all subchannels used in this format). Transmission format

26

A uses matrix A (space time coding rate = 1):

A =

[
S1 − (S2)

∗

S2 (S1)
∗

]
, (2.23)

whereas transmission format B uses matrix B (space time coding rate = 2):

B =

[
S1

S2

]
. (2.24)

2.6.3 Uplink Using STC

A user supporting transmission using STC configuration in the UL shall use a modified UL

tile. The 2-Tx diversity data (STTD mode) or 2-Tx spatial multiplexing (SM mode) data

can be mapped onto each subcarrier. The mandatory tile shall be modified to accommodate

these configurations.

In STTD mode, the tiles shall be allocated to subchannels. The pilots in each tile shall

be split between the two antennas, and the data subcarriers shall be encoded in pairs after

constellation mapping, as depicted in Fig. 2.16. The data subcarriers transmitted from

antenna 0 follow the original mapping.

2.6.4 STC Using Two Antennas in Downlink PUSC

In PUSC, the data allocation to cluster is changed to accommodate two antennas trans-

mission with the same estimation capabilities, in which each cluster shall be transmitted

twice from each antenna. Figure 2.14 is replaced by Figure 2.17 in the definition of PUSC

permutation when STC is enabled. The pilot locations change in period of 4 symbols.

Symbols are counted from the beginning of the current zone. The first symbol in the

zone is even. STC encoding is done on each pair of symbols 2n, 2n + 1 (n = 0, 1, ...).

27

Figure 2.16: Mapping of data subcarriers in STTD mode (from [7]).

Figure 2.17: Cluster structure for STC PUSC using two antennas (from [7]).

28

Chapter 3

Channel Estimation Techniques

In this chapter, we discuss some channel estimation methods.

3.1 Pilot-Symbol-Aided Channel Estimation [9]

Channel estimators usually need some kind of pilot information as a point of reference. A

fading channel requires constant tracking, so pilot information has to be transmitted more

or less continuously. Decision-directed channel estimation can also be used. But even in

this type of schemes, pilot information has to be transmitted regularly to mitigate error

propagation.

3.1.1 The Least-Squares (LS) Estimator [10]

The simplest channel estimator one can imagine consists simply in dividing the received signal

by the symbols that have been actually sent (and that are supposed to be known). Based

on a priori known data, we can estimate the channel information on pilot carriers roughly

by the least-squares (LS) estimator. An LS estimator minimizes the following squared error

:

||Y − ĤLSX||2 (3.1)

29

where Y is the received signal and X is a priori known pilots, both in the frequency domain

and both being N × 1 vectors where N is the FFT size. ĤLS is an N ×N diagonal matrix

whose diagonal values are 0 except at pilot locations mi where i = 0, · · · , Np − 1:

ĤLS =




Hm0,m0 · · · 0 · · · 0 · · · 0
0 · · · Hm1,m1 · · · 0 · · · 0
0 · · · 0 · · · Hm2,m2 · · · 0
0 · · · 0 · · · 0 · · · 0
0 · · · 0 · · · 0 · · · HmNp−1,HmNp−1




. (3.2)

Therefore, (3.1) can be rewritten as

[Y (m)− ĤLS(m)X(m)]2, for all m = mi. (3.3)

Then the estimate of pilot subcarrier responses, based on only one observed OFDM symbol,

is given by

ĤLS(m) =
Y (m)

X(m)
=

X(m)H(m) + N(m)

X(m)
= H(m) +

N(m)

X(m)
(3.4)

where N(m) is the complex white Gaussian noise on subcarrier m. We collect HLS(m) into

Ĥp,LS, an Np × 1 vector where Np is the total number of pilots, as

Ĥp,LS = [Hp,LS(0) Hp,LS(1) · · ·Hp,LS(Np − 1)]T

= [Yp(0)

Xp(0)
, Yp(1)

Xp(1)
, . . . , Yp(Np−1)

Xp(Np−1)
]T .

(3.5)

The LS estimate of Hp based on one OFDM symbol is susceptible to noise effects, and thus

an estimator better than the LS estimator is desirable.

3.1.2 The LMMSE Estimator [11]

The minimum mean-square error (MMSE) estimate has been shown to be better than the LS

estimate for channel estimation in OFDM systems, but the major drawback of the MMSE

estimate is its high complexity. A low-rank approximation results in a linear minimum mean

squared error (LMMSE) estimator that uses the frequency-domain correlation of the channel

30

[11]. The linear minimum mean-square error channel estimator tries to minimize the mean

squared error between the actual and the estimated channels, the latter obtained by a linear

transformation applied to Ĥp,LS. The mathematical representation of the LMMSE estimator

on pilot signals is

Ĥp,lmmse = RHpHp,LS
R−1

Hp,LSHp,LS
Ĥp,LS

= RHpHp(RHpHp + σ2
n(XpX

H
p)−1)−1Ĥp,LS (3.6)

where Ĥp,LS is the least-square estimate of Hp in (3.5), σ2
n is the variance of the Gaussian

white noise, Xp is the vector of transmitted signal on pilot subcarriers, and the covariance

matrices are defined by

RHpHp,LS
= E{HpH

H
p,LS}, (3.7)

RHp,LSHp,LS
= E{Hp,LSH

H
p,LS}, (3.8)

RHpHp = E{HpH
H
p }. (3.9)

Note that there is a matrix inverse involved in the MMSE estimator, which must be calculated

every time, and the computation of matrix inversion requires O(N3
p) arithmetic operations

[12].

3.2 Two-Dimensional Channel Estimators

By two-dimensional channel estimation, we mean that in addition to using channel informa-

tion along the frequency domain, we also use channel information along the time domain to

get better performance.

3.2.1 Linear Interpolation

After obtaining the channel response estimate at the pilot subcarriers, one may use interpola-

tion to obtain the response at the rest of the subcarriers. Linear interpolation is a commonly

31

considered scheme due to its low complexity. It does the interpolation between two known

data. That is, we use the channel information at two pilots obtained by the LS estimator to

estimate the channel frequency response information at the data subcarriers between them.

The channel estimates at data subcarrier k, mL < k < (m+1)L, using linear interpolation

is given by [13]

He(k) = He(m + l) = (Hp(m + 1)−Hp(m))
l

L
+ Hp(m) (3.10)

where Hp(k), k = 0, 1, · · · , Np, are the channel frequency responses at pilot subcarriers, L is

the pilot subcarriers spacing, and 0 < l < L. In two-dimensional channel estimation, to suit

the tile structure, we first interpolate in the time domain and then in the frequency domain.

3.2.2 2-D Wiener Filter [14]

The Wiener filter is the optimum (in the sense of minimum mean-squared error) linear filter

or smoother or predictor, if the noise is additive.

Assume we have transmitted pilot signal vector p and received pilot signal vector p̂

containing noise. We want to find an estimate ĥ of the channel response h as a linear

combination of p̂. That means we want to find w that makes J (w) minimum, where w and

J (w) are defined as

ĥ = wT p̂, J(w) = E
[
|h− ĥ|2

]
. (3.11)

By applying the orthogonal projection theorem, we get

w = θT Φ−1 (3.12)

where θ is the cross-covariance vactor between p and h, and Φ is the auto-corvariance matrix

between pilots.

32

Let k and l be the subcarrier number and the OFDM symbol number, respectively. The

correlation values may be assumed as given by [15]

E
[
hk,lp̂

∗
k′,l′

]
= rf (k − k′)rt(l − l′) (3.13)

where rt (l)and rf (k) are the correlation functions in time and frequency, respectively. For

an exponentially decaying multipath power delay profile,

rf (k) =
1

1 + j2πτrmsk/T
(3.14)

where 1/T is the subcarrier spacing, which is the inverse of the FFT interval T . For a

time-fading signal with a maximum Doppler frequency fmax and a Clarke-Gans spectrum,

the time correlation function rt(l) is given by

rt(l) = J0(2πfmaxlTs) (3.15)

where J0 is the zeroth order Bessel function of the first kind and Ts is the OFDM symbol

duration, which is the FFT interval T plus the CP time.

33

Chapter 4

Simulation of STC Uplink Channel
Estimation

In this chapter we will simulate two different channel estimation methods for the in IEEE

802.16e OFDMA uplink system. One is linear interpolation and the other is Wiener filter.

We evaluate the performance of both methods mainly by observing the mean square error

(MSE) and the symbol error rate (SER).

4.1 Linear Interpolation

As described in chapter 2, the uplink transmission uses a tile structure to transmit pilot

and data information. In the STC mode, one tile only contains two pilots. So we use tile

(N−1) and tile (N +1) to interpolate the channel response of tile N , as shown in Fig. 4.1, to

yield enough references for linear interpolation in frequency. Within three successive three

tiles, we first estimate the channel response at each pilot position. Then we interpolate

for the frequency response at each data subcarrier from the estimated pilot response in

time domain. Lastly, we get the frequency response of the whole tile by interpolating the

frequency response in the frequency domain.

The detailed steps for channel estimation are as follows:

34

Figure 4.1: Linear interpolation in STTD mode at antenna 0.

• Estimate the channel response at each pilot location by using the LS technique.

• Use linear interpolation in the time dimension to get some data subcarrier responses

(makred 1 in Fig. 4.1).

• Estimate the channel responses of the remaining subcarriers in a tile by frequency

domain interpolation (marked 2 in Fig. 4.1).

4.2 Wiener Filtering

For two-dimensional Wiener filtering, we also choose three contiguous tiles to do channel

estimation as depicted in Fig. 4.2. To do Wiener filtering, we have to know two parameters:

autocorrelation of channel responses Φ at pilots and cross-correlation θ of channel response

at data subcarriers and pilots. In the uplink, one subchannel contains six tiles. Thus we

use the average over six tiles in the same subchannel to calculate Φ. That means if pilot

subcarrier Pk’s channel response is pk and the estimate is p̂k, where p̂k = pk + nk with nk

35

Figure 4.2: Wiener filtering in STTD mode at Antenna 0.

being additive white Gaussian noise (AWGN), then we estimate Φ by

Φ = E




p̂1p̂
∗
1 p̂1p̂

∗
2 p̂1p̂

∗
3 p̂1p̂

∗
4

p̂2p̂
∗
1 p̂2p̂

∗
2 p̂2p̂

∗
3 p̂2p̂

∗
4

p̂3p̂
∗
1 p̂3p̂

∗
2 p̂3p̂

∗
3 p̂3p̂

∗
4

p̂4p̂
∗
1 p̂4p̂

∗
2 p̂4p̂

∗
3 p̂4p̂

∗
4


 ≈

1

6

∑

one subchannel




p̂1p̂
∗
1 p̂1p̂

∗
2 p̂1p̂

∗
3 p̂1p̂

∗
4

p̂2p̂
∗
1 p̂2p̂

∗
2 p̂2p̂

∗
3 p̂2p̂

∗
4

p̂3p̂
∗
1 p̂3p̂

∗
2 p̂3p̂

∗
3 p̂3p̂

∗
4

p̂4p̂
∗
1 p̂4p̂

∗
2 p̂4p̂

∗
3 p̂4p̂

∗
4


 . (4.1)

To caculate θ, we first assume the channel response at data subcarrier hk is the 2-D linear

interpolation of four nearest pilot channel responses [16] as

hk =
3∑

i=0

αipi (4.2)

where αi are the linear interpolation weights. There are eight data subcarriers in a tile. We

list the αi of different data subcarrier in Table 4.1.

Since we can only get p̂k, so we use p̂k in place of pk, yielding

36

Table 4.1: αi of Eight Data Subcarriers at Antenna 0.
Carrier α1 α2 α3 α4

1 2/3 2/9 0 1/9
2 1/3 4/9 0 2/9
3 2/3 0 1/3 0
4 4/9 1/9 2/9 2/9
5 2/9 2/9 1/9 4/9
6 0 1/3 0 2/3
7 2/9 0 4/9 1/3
8 1/9 0 2/9 2/3

E

[(
3∑

i=0

αip̂i

)
p̂∗k

]
= E

[(
3∑

i=0

αipi +
3∑

i=0

αipini

)
p∗k + n∗k

]

= E

[(
3∑

i=0

αipi

)
p∗k

]
+ αkσ

2
0 (4.3)

where ni denotes the noise at pilot i and σ2
0 is the variance of the white Gaussian noise. Here

E [hj p̂
∗
k] = E

[(
3∑

i=0

αip̂i

)
p̂∗k

]
− αkσ

2
0. (4.4)

As a result, the cross-correlation vector θk is given by

θk = E
[

hkp̂
∗
1 hkp̂

∗
2 hkp̂

∗
3 hkp̂

∗
4

]

= E
[(∑3

i=0 αip̂i

)
p̂∗1

(∑3
i=0 αip̂i

)
p̂∗2

(∑3
i=0 αip̂i

)
p̂∗3

(∑3
i=0 αip̂i

)
p̂∗4

]

− [
α0σ

2
0 α1σ

2
0 α2σ

2
0 α3σ

2
0

]
. (4.5)

Using the average over the six tiles of one subchannel to approximate the expectation oper-

ation, we have

θk ≈
1

6

(∑

one subchannel

[(∑3
i=0 αip̂i

)
p̂∗1

(∑3
i=0 αip̂i

)
p̂∗2

(∑3
i=0 αip̂i

)
p̂∗3

(∑3
i=0 αip̂i

)
p̂∗4

]
)

− [
α0σ

2
0 α1σ

2
0 α2σ

2
0 α3σ

2
0

]
(4.6)

where we can estimate σ2
0 by the power of the subcarriers in the guard band and those that

have a null value.

37

4.3 STC Decoding

After we have estimated the channel response, we can decode the STC, where the decoding

method has been introduced before. If the channel responses are the same in neighboring

subchannels as shown in Figure 4.3(a), then the received signals r1 and r2 are given by in,

absence of noise,

r1 = S1h0 − S∗2h1, r2 = S2h0 + S∗1h1. (4.7)

Then we can decode the received signal as

S1 = (r1h
∗
0 + r∗2h1) /

(|h0|2 + |h1|2
)
,

S2 = (r2h
∗
0 − r∗1h1) /

(|h0|2 + |h1|2
)
. (4.8)

But in a real channel, the neighboring channel responses may not be the same, especially

when in high mobile speed, as shown in Figure 4.3(b),

r1 = S1h0 − S∗2h2, r2 = S2h1 + S∗1h3. (4.9)

So we decode by calculating

S1 = (r1h
∗
1 + r∗2h2) / (h0h

∗
1 + h2h

∗
3) ,

S1 = (r2h
∗
0 − r∗1h3) / (h∗2h3 + h∗0h1) . (4.10)

4.4 Simulation Conditions

This section gives the system parameters and introduces the channel models used in our

simulation work.

4.4.1 OFDMA Uplink System Parameters

In chapter 2, we introduced the primitive and the derived parameters of the system. The

system parameters used in our simulation are listed in Table 4.2.

38

(a)

(b)

Figure 4.3: STTD transmission. (a) Neighboring channel responses are the same. (b)
Responses are different.

4.4.2 Channel Models

We consider the following channel models: AWGN, single-path Rayleigh, SUI, and ETSI

Vehicular A.

Erceg et al. [17] published a total of 6 different radio channel models for type G2 (i.e.,

LOS and NLOS) MMDS BWA systems in three terrain categories. The three types in

suburban area are:

• A: hilly terrain, heavy tree,

39

Table 4.2: OFDMA Uplink Parameters
Parameters Values

Bandwidth 10 MHz
Carrier frequency 3.5 GHz
NFFT 1024
Nused 841
Sampling factor n 28/25
G 1/8
Sampling frequency 11.2 MHz
Subcarrier spacing 10.94 kHz
Useful symbol time 91.43 µs
CP time 11.43 µs
OFDMA symbol time 102.86 µs
Sampling time 89.29 ns

• C: flat terrain, light tree, and

• B: between A and C.

The correspondence with the so-called SUI channels is as follows:

• C: SUI-1, SUI-2,

• B: SUI-3, SUI-4, and

• A: SUI-5, SUI-6.

In the above, SUI-1 and SUI-2 are Ricean multipath channels, whereas the other four are

Rayleigh multipath channels [18]. The Rayleigh channels are more hostile and exhibit a

greater RMS delay spread. And the SUI-2 represents a worst case link for terrain type C.

We employ the SUI-2 and SUI-3 models in our simulation, but we use Rayleigh fading to

model all the paths in these channels. The channel charateristics are as shown in Table 4.3.

We also employ the ETSI Vehicular A model [19]. The model’s power delay profile is as

shown in Table 4.4. The mean dealay and thd RMS delay are shiwn in Table 4.5.

40

Table 4.3: Channel Profiles of SUI-2 and SUI-3 [17]

4.5 Simulation Results

4.5.1 Simulation Flow

Figure 5.3 illustrates our simulated system. We assume perfect synchronization. After

channel estimation, we calculate the MSE between the real channel and the estimated one,

41

Table 4.4: Power-Delay Profile of the ETSI Vehicular A Channel
Tap Relative Delay (µs) Average Power (dB)
1 0 0
2 0.31 −1.0
3 0.71 −9.0
4 1.09 −10.0
5 1.73 −15.0
6 2.51 −20.0

Table 4.5: Mean Delay and RMS Delay Spread
Channel Mean Delay (µs) RMS Delay Spread(µs)
SUI-2 0.0027 (0.0302 samples) 0.0428 (0.4793 samples)
SUI-3 0.0413 (0.4626 samples) 0.1318 (1.4762 samples)

Vehicular A 0.1325 (1.4840 samples) 0.1821 (2.0395 samples)

Figure 4.4: Block diagram of the simulated system.

where the average is taken over the subcarriers. The symbol error rate (SER) can also be

obtained after demapping.

4.5.2 Validation of Simulation Model

Before considering multipath channels, we do simulation with an AWGN channel to validate

the simulation model. We validate the model by comparing theoretical SER curves and the

SER curves resulting from simulations, where we use C/C++ programing languange and

42

TI’s Code Composer Studio (CCS).

For an even number of bits per symbol, the SER of rectangular QAM is given by

Ps = 4

(
1− 1√

M

)
Q

(√
3

M − 1

Es

N0

)
(4.11)

where

• M = number of symbols in modulation constellation; for example, M = 4 for QPSK,

M = 16 for 16QAM and M = 64 for 64QAM,

• Es = average symbol energy,

• N0 = noise power spectral density (W/Hz), and

• Q(x) = 1√
2π

∫∞
x

e−t2/2dt, x ≥ 0.

In Figure 4.5, the theoretical symbol error rate (SER) curve versus Es/N0 for uncoded QPSK

is plotted together with the SER curve resulting from simulation under no channel estimation

error. This validates the simulation model.

4.5.3 Simulation Results and Analysis

For verification of the simulation results, note that the theoretical MSE for linear interpola-

tion in AWGN is given by

MSE = E[|h− ĥ|2]

= E[|h−
3∑

i=0

αi(pi + ni)|2]

= E[|
3∑

i=0

αini|2]

=
3∑

i=0

α2
i σ

2
0. (4.12)

43

0 2 4 6 8 10 12 14
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0

S
E

R

QPSK

Perfect Estimation
Theory

Figure 4.5: The SER curve for uncoded QPSK resulting from simulation matches the theo-
retical one.

Table 4.6: MSE of Eight Data Subcarriers at Antennas 0 and 1
Carrier Index, Antenna 0 1,8 2,7 3,6 4,5
Carrier Index, Antenna 1 2,7 1,8 4,5 3,6

MSE 41
81

σ2
0

29
81

σ2
0

5
9
σ2

0
25
81

σ2
0

Note also that, the MSE is different at different data subcarriers. The MSE at the eight

data subcarriers in a tile are listed in Table 4.6.

The theoretical MSE and the simulation result are shown in Figure 4.6.

If we regard MSE as noise, then the equivalent SNR would be SNR/(1 + MSE). So we

can get theoretical SER under AWGN channel for QPSK as

SER = 2Q

(√
Es

1.4321N0

)
. (4.13)

The result is as shown in Figure 4.7. Since STC using two data subcarriers to decode. The

influence of MSE on two neighbor subcarriers would be average.

44

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR

M
S

E

Linear Interpolation MSE in AWGN QPSK

MSE1
MSE2
MSE3
MSE4
MSE1,8 Theory
MSE2,7 Theory
MSE3,6 Theory
MSE4,7 Theory

Figure 4.6: MSE performance for uncoded QPSK resulting with linear interpolation, antenna
0.

0 2 4 6 8 10 12 14 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER performance compare

Linear
Theory
Perfect Est.

Figure 4.7: SER performance for uncoded QPSK resulting from linear interpolation.

45

Now we derive the theoretical MSE for Wiener filtering in AWGN channel. Suppose we

know the autocorrelation Φ and the cross-correlation θ. Since the channel response h = 1 in

AWGN and the noise power is σ2
0, we get

Φ =




1 + σ2
0 1 1 1

1 1 + σ2
0 1 1

1 1 1 + σ2
0 1

1 1 1 1 + σ2
0


 , (4.14)

θ =
[

1 1 1 1
]
. (4.15)

The received pilot vector p, containing noise, is given by

pT =
[

1 + n0 1 + n1 1 + n2 1 + n3

]
. (4.16)

Hence the estimation is given by

ĥ =
[

1 1 1 1
]



1 + σ2
0 1 1 1

1 1 + σ2
0 1 1

1 1 1 + σ2
0 1

1 1 1 1 + σ2
0




−1 


1 + n0

1 + n1

1 + n2

1 + n3




=
4 + n0 + n1 + n2 + n3

4 + σ2
0

. (4.17)

The theoretical MSE in AWGN channel is thus

MSE = E
[
|h− ĥ|2

]

= E

[
|1− 4 + n0 + n1 + n2 + n3

4 + σ2
0

|2
]

=
σ4

0 + 4σ2
0

(4 + σ2
0)

2 . (4.18)

But actually we do not know the autocorrelation and the cross-correlation. In our cal-

culation, we sum the six tiles (one subchannel) instead to eatimate the autocorrelation and,

further, use linear interpolation to approximate the channel response at the data subcarrier

46

locations to estimate the cross-correlation over the six tiles. These methods cause errors.

The true cross-correlation is

θ = E
[

hp∗1 hp∗2 hp∗3 hp∗4
]
. (4.19)

We use ĥ in place of h, where ĥ is given by

ĥ =
3∑

i=0

αip̂i =
3∑

i=0

αi (1 + ni) . (4.20)

The estimated cross-correlation is then equal to, for one tile,

ĥp̂∗i =

(
3∑

k=0

αk (1 + nk)

)
(1 + ni)

∗

=1 + n∗i +
3∑

k=0

αknk +
3∑

k=0

αknkn
∗
i . (4.21)

If we ignore the second-order noise terms, then

ĥp̂∗i ≈1 + n∗i +
3∑

k=0

αknk

=1 + N1 (4.22)

where

N1 ∼N


0,

(1 + αi)
2 σ2

0 +
(∑3

k=0,
k 6=i

α2
k

)
σ2

0

2




+ jN


0,

(1− αi)
2 σ2

0 +
(∑3

k=0,
k 6=i

α2
k

)
σ2

0

2


 . (4.23)

We add up all the estimates for the six tiles to estimate θ, resulting in

θ
′
= θ +

[
δ0 δ1 δ2 δ3

]
(4.24)

where

47

θ =
[

6 6 6 6
]
,

δi ∼N


0, 3(1 + αi)

2 σ2
0 + 3




3∑
k=0,
k 6=i

α2
k


 σ2

0




+ jN


0, 3(1− αi)

2 σ2
0 + 3




3∑
k=0,
k 6=i

α2
k


 σ2

0


 . (4.25)

Similiarly, if we ignore the second-order noise terms in the estimation of the autocorrelation

matrix Φ, then the estimated quantity containing noise is given by

Φ
′
= Φ + ∆ (4.26)

where

Φ =




6 + 6σ2
0 6 6 6

6 6 + 6σ2
0 6 6

6 6 6 + 6σ2
0 6

6 6 6 6 + 6σ2
0


 ,

∆ =




n00 n01 n02 n03

n10 n11 n12 n13

n20 n21 n22 n23

n30 n31 n32 n33


 , (4.27)

with

nij =
∑

6 tiles

(
ni + n∗j

)
. (4.28)

The channel estimate by Wiener filtering using estimated autocorrelation and cross-

correlation is given by

48

ĥ = θ
′
Φ
′−1




p̂1

p̂2

p̂3

p̂4




≈ θΦ−1




p̂1

p̂2

p̂3

p̂4


 +

[
δ0 δ1 δ2 δ3

]
Φ−1




1
1
1
1


− θΦ−1∆Φ−1




1
1
1
1




=
4 + Σ3

i=0ni

4 + σ2
0

+
1
6
Σ6tiles (Σ3

i=0n
∗
i + 4Σ3

i=0αini)

4 + σ2
0

−
4
6
Σ6tilesΣ

3
i=0 (ni + n∗i)

(4 + σ2
0)

2

≈ 4 + N2 + N3

4 + σ2
0

+
N4

(4 + σ2
0)

2 (4.29)

where

N2 ∼ N

(
0, Σ3

i=0

(
1 + 1

6
+ 4

6
αi

)2
σ2

0

2

)
+ jN

(
0, Σ3

i=0

(
1− 1

6
+ 4

6
αi

)2
σ2

0

2

)
,

N3 ∼ N

(
0,

5

72
Σ3

i=0 (1 + 4αi)
2 σ2

0

)
+ jN

(
0,

5

72
Σ3

i=0 (1− 4αi)
2 σ2

0

)
,

N4 ∼ N

(
0,

32

3
σ2

0

)
. (4.30)

And the MSE would be

MSE =E
[
|h− ĥ|2

]

=
σ4

0 + V ar (N2) + V ar (N3)

(4 + σ2
0)

2 +
(N4)

(4 + σ2
0)

4

=
σ4

0 + 1
2
Σ3

i=0

[(
1 + 1

6
+ 4

6
αi

)2
+

(
1− 1

6
+ 4

6
αi

)2
]
σ2

0

(4 + σ2
0)

2

+
5
72

Σ3
i=0

[
(1 + 4αi)

2 + (1− 4αi)
2] σ2

0

(4 + σ2
0)

2

+
32
3
σ2

0

(4 + σ2
0)

4 . (4.31)

The theoretical MSE and the simulation result are shown in Figure 4.8. In the simulation,

we use the average over guard band subcarriers (subcarriers 0 through 89 and 933 through

49

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR

M
S

E

AWGN

MSE1
MSE2
MSE3
MSE4
MSE5
MSE6
MSE7
MSE8
MSE1,8 Theory
MSE2,7 Theory
MSE3,6 Theory
MSE4,7 Theory

Figure 4.8: MSE performance of Wiener filtering channel estimation for uncoded QPSK,
antenna 0. Autocorrelation and cross-correlation are obtained by averaging over one sub-
channel.

1023) to estimate the noise power. In the following simulations, each data point in an average

over simulation of 420000 tiles and each symbol containing ten subcannel (average over three

subchannels use 378000 tiles and nine subchannel instead).

From the simulation result, we can see that the performance of Wiener filtering is worse

than linear interpolation if only six tiles are used to estimate the autocorrelation and the

cross-correlation. The reason should be due to noise-induced model mismatch as the au-

tocorrelation and the cross-correlation are both calculated from noisy signal. If we use ten

subchannels to estimate the autocorrelation and the cross-correlation, then we can get better

performance. And the performance is much closer to the theory under known autocorrelation

and cross-correlation. Figure 4.9 shows the MSE simulation result where ten subchannels to

estimate the autocorrelation and the cross-correlation.

Figer 4.10 and 4.11 shows the SER and MSE performance under channel estimation by

linear interpolation and that by Wiener filtering with averages taken over one, three, five

50

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR

M
S

E

AWGN

MSE1
MSE2
MSE3
MSE4
MSE5
MSE6
MSE7
MSE8
MSE Theory

Figure 4.9: MSE performance of Wiener filtering channel estimation for uncoded QPSK,
antenna 0. Autocorrelation and cross-correlation are obtained by averaging over ten sub-
channels.

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in uplink STTD mode under AWGN

Linear
MMSE One
MMSE Three
MMSE Five
MMSE Ten

Figure 4.10: Comparrision of SER performance with using Wiener filtering and linear inter-
polation channel estimation in STTD under QPSK modulation in AWGN.

and ten subchannels, separately, in AWGN channel. We can see that if we use only one

subchannel to average, the performance of Wiener filter is worse than linear interpolation

51

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR

M
S

E

AWGN

MSELin
MSEMMSE1
MSEMMSE3
MSEMMSE5
MSEMMSE10

Figure 4.11: Comparrision of MSE performance with using Wiener filtering and linear inter-
polation channel estimation in STTD under QPSK modulation in AWGN.

and if we choose more subchannel to average, the performance is better. The performance

of using five subchannel to average is close to using ten subchannels.

In SUI channels, the antenna correlation ρenv is defined as follows: The baseband signals

are modeled as two complex random processes X(t) and Y (t) with an envelope correlation

coefficient of

ρenv =

∣∣∣∣∣
E {(X − E {X}) (Y − E {Y })∗}√

E {|X − E {X} |∗}E {|Y − E {Y } |∗}

∣∣∣∣∣ . (4.32)

In our simulation, we consider to two different cases, one with correlation equal to zero and

the other with nonzero antenna correlation. We can see that in 2-Tx transmission with zero

correlation, the slope of SER is nearly equal to −2, meaning a diversity order of 2. The

presence of antenna correlation will decrease the performance.

Fig. 4.12 shows the STTD transmission performance with channel esimation by linear

interpolation and that by Wiener filtering under single-path Rayleigh fading at several dif-

52

ferent velocities, where the antenna correlation is equal to zero. Figs. 4.13 and 4.14 are

under SUI2 and SUI3 respectively. In OFDMA, the tile allocation in frequency domain is

not contiguous, if choose different subchannel to average to get correlation, the performance

of Wiener filtering might be different. In Fig. 4.15 we simulate two different subchannel sets,

each set containing ten subchannels, and using Wiener filtering with correlation average over

one subchannel. In the simulation, we see no difference at SER and MSE in two different

sets of subchannel. Thus we can ignore the influence of different subchanel.

In Figs. 4.16, 4.17, and 4.18, we compare the SER with zero and nonzero antenna corre-

lations. From the simulation, we can see that, since the power delay profile does not exceed

the CP length, the MSEs for different power delay profiles have little difference. We also

notice that at high SNR, the MSE saturates because of channel fading. Comparing linear

interpolation and Wiener filtering, at low SNR, the Wiener filter has better performance if

the samples averaged are enough. But in high SNR, the performance is almost the same. If

there is nonzero antenna correlation, the performance would degrade.

53

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

MSE in UplinkPUSC QPSK channel 0 at SinglePathChan

Linear V60
Linear V90
Linear V120
Wiener AverageOneSubch. V60
Wiener AverageOneSubch. V90
Wiener AverageOneSubch. V120
Wiener AverageAllSubchan. V60
Wiener AverageAllSubchan. V90
Wiener AverageAllSubchan. V120

(a)

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK at Single Path Rayleigh

Linear V60
Linear V90
Linear V120
Wiener Average One subchan. V60
Wiener Average One subchan. V90
Wiener Average One subchan. V120
Wiener Average Ten subchan. V60
Wiener Average Ten subchan. V90
Wiener Average Ten subchan. V120

(b)

Figure 4.12: MSE and SER performance for uncoded QPSK under Wiener filtering and
linear interpolation channel estimations at different velocities in single-path Rayleigh fading
channel with ρenv = 0. (a) MSE. (b) SER.

54

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR

M
S

E

MSE in UplinkPUSC QPSK channel 0 at SUI−2

Linear V60
Linear V90
Linear V120
MMSEOneV60
MMSEOneV90
MMSEOneV120
MMSETenV60
MMSETenV90
MMSETenV120

(a)

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK at SUI−2

Linear V60
Linear V90
Linear V120
Wiener Average One subchan. V60
Wiener Average One subchan. V90
Wiener Average One subchan. V120
Wiener Average Ten subchan. V60
Wiener Average Ten subchan. V90
Wiener Average Ten subchan. V120

(b)

Figure 4.13: MSE and SER performance for uncoded QPSK under Wiener filtering and
linear interpolation channel estimation at different velocities in SUI-2 channel with channel
correlation ρenv = 0. (a) MSE. (b) SER.

55

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR

M
S

E

MSE in UplinkPUSC QPSK channel 0 at SUI−3

Linear V60
Linear V90
Linear V120
MMSEOneV60
MMSEOneV90
MMSEOneV120
MMSETenV60
MMSETenV90
MMSETenV120

(a)

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK at SUI−3

Linear V60
Linear V90
Linear V120
Wiener Average One subchan. V60
Wiener Average One subchan. V90
Wiener Average One subchan. 120
Wiener Average Ten subchan. V60
Wiener Average Ten subchan. V90
Wiener Average Ten subchan. V120

(b)

Figure 4.14: MSE and SER performance for uncoded QPSK under Wiener filtering and
linear interpolation channel estimation at different velocities in SUI-3 channel with channel
correlation ρenv = 0. (a) MSE. (b) SER. 56

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

MSE in UpinkPUSC QPSK channel 0 at SUI−3

MMSEOneV60
MMSEOneV90
MMSEOneV120
AnotherSet V60
AnotherSet V90
AnotherSet V120

(a)

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in uplink STTD mode under SUI−2

V60 setA
V90 setA
V120 setA
V60 setB
V90 setB
V120 setB

(b)

Figure 4.15: Two different subchannel sets of MSE and SER performance for uncoded QPSK
under Wiener filtering averaging over one subchannel at different velocities in SUI-2 channel
with channel correlation ρenv = 0. (a) MSE. (b) SER.

57

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK at SinglePath with Cor=0.7

Linear V60
Linear V90
Linear V120
Wiener Average One subchan. V60
Wiener Average One subchan. V90
Wiener Average One subchan. 120
Wiener Average Ten subchan. V60
Wiener Average Ten subchan. V90
Wiener Average Ten subchan. V120 Corr
Linear V60 Corr
Linear V90 Corr
Linear V120 Corr
Wiener One subchan. V60 Corr
Wiener One subchan. V90 Corr
Wiener One subchan. 120 Corr
Wiener Ten subchan. V60 Corr
Wiener Ten subchan. V90 Corr
Wiener Ten subchan. V120 Corr

Figure 4.16: SER comparison between zero and nonzero antenna correlation (ρenv = 0.7) in
single-path Rayleigh fading.

58

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK at SUI−2 with Cor=0.5

Linear V60
Linear V90
Linear V120
Wiener Average One subchan. V60
Wiener Average One subchan. V90
Wiener Average One subchan. 120
Wiener Average Ten subchan. V60
Wiener Average Ten subchan. V90
Wiener Average Ten subchan. V120 Corr
Linear V60 Corr
Linear V90 Corr
Linear V120 Corr
Wiener One subchan. V60 Corr
Wiener One subchan. V90 Corr
Wiener One subchan. 120 Corr
Wiener Ten subchan. V60 Corr
Wiener Ten subchan. V90 Corr
Wiener Ten subchan. V120 Corr

Figure 4.17: SER comparison between zero and nonzero antenna correlation (ρenv = 0.5) in
SUI-2 channel.

59

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK at SUI−3 with Cor=0.4

Linear V60
Linear V90
Linear V120
Wiener Average One subchan. V60
Wiener Average One subchan. V90
Wiener Average One subchan. 120
Wiener Average Ten subchan. V60
Wiener Average Ten subchan. V90
Wiener Average Ten subchan. V120 Corr
Linear V60 Corr
Linear V90 Corr
Linear V120 Corr
Wiener One subchan. V60 Corr
Wiener One subchan. V90 Corr
Wiener One subchan. 120 Corr
Wiener Ten subchan. V60 Corr
Wiener Ten subchan. V90 Corr
Wiener Ten subchan. V120 Corr

Figure 4.18: SER comparison between zero and nonzero antenna correlation (ρenv = 0.4) in
SUI-3 channel.

60

Chapter 5

Simulation of STC Downlink PUSC
Channel Estimation

In this chapter we will simulate two different channel estimation methods for the in IEEE

802.16e OFDMA downlink PUSC system. One is linear interpolation and the other is Wiener

filtering as introduced before. We evaluate the performance of both methods mainly by

observing the mean square error (MSE) and the symbol error rate (SER).

5.1 System Parameters and Channel Models

Table 5.1 gives the primitive and derived parameters used in our simulation work. In addition

to AWGN, we use SUI-2 and SUI-3 to do simulation. Their profiles are already introduced

in Table 4.3.

5.2 Linear Interpolation

Similar to uplink, the number of pilots contained in one cluster is not enough for us to

interpolate for the channel response. We use cluster (N−1) and cluster (N+1) to interpolate

the channel response of cluster N , as shown in Fig. 5.1. Within three successive clusters,

we first estimate the channel response at each pilot position. Then we interpolate for the

61

Table 5.1: OFDMA Downlink Parameters
Parameters Values

Bandwidth 10 MHz
Carrier frequency 3.5 GHz
NFFT 1024
Nused 841
Sampling factor n 28/25
G 1/8
Sampling frequency 11.2 MHz
Subcarrier spacing 10.94 kHz
Useful symbol time 91.43 µs
CP time 11.43 µs
OFDMA symbol time 102.86 µs
Sampling time 89.29 ns

frequency response at each intervening data subcarrier from the estimated pilot responses in

the time domain. Lastly, we get the frequency responses of the remaining data subcarriers

in the cluster by interpolation and extrapolations in the frequency domain, as in the case of

uplink.

The detailed steps are as follows:

• Estimate the channel response at each pilot location by using the LS technique.

• Use linear interpolation to estimate the data subcarrier responses between the pilots

in the time dimension (makred 1 in Fig. 5.1).

• Estimate the channel responses at the remaining data subcarriers in a cluster by fre-

quency domain interpolation (marked 2 in Fig. 5.1).

• Extrapolate for the channel responses at the rightmost data subcarriers in the cluster.

As shown in Fig. 5.1, all the data subcarrier responses are estimated by interpolation using

the four nearest pilot subcarriers except for the rightmost data subcarriers where extrapola-

62

Figure 5.1: Linear interpolation in STTD mode at antenna 0.

tion is used.

5.3 Wiener Filtering

As mentioned before, in Wiener filtering, we need to know the autocorrelation between pilots

and cross-correlation between data subcarriers and pilots. To calculate the autocorrelation,

we suppose that a major group or a whole OFDMA symbol employ STC encoding. Then

we can average over the major group or the entire symbol to estimate the autocorrelation.

We use the four pilots in the cluster to do two-dimensinal Wiener filtering, as shown

in Figure 5.2. In the case of the autocorrelation, if we want a more accurate estimate, we

can average over three temporally contiguous clusters. To calculate the cross-correlation,

63

Figure 5.2: Wiener filtering in STTD mode at antenna 0.

we linearly interpolate for the estimated responses at the pilot locations and average their

sample cross-correlations with the pilot channel response estimates over the clusters in the

frequency domain.

The detailed steps are as follows:

• Estimate the channel responses using linear interpolation.

• Estimate the noise power by averaging over the guard band subcarriers.

• Use the estimated channel responses and add the noise power correction term to cal-

culate cross-correlation.

• Calculate the autocorrelation of the four pilots in the cluster.

• Use the Wiener filtering formula to estimate the channel responses.

64

Figure 5.3: Block diagram of the simulated system.

5.4 Simulation Study

5.4.1 Simulation Flow

Figure 5.3 illustrates the block diagrams of our simulatated system. We also assume perfect

synchronization and omit it in our simulation. After channel estimation, as we do in uplink

transmission, we calculate the channel MSE between the real channel and the estimated one,

where the average is taken over the subcarriers. The symbol error rate (SER) can also be

obtained after demapping. The used channel models are as the same as described in Chpter

4.

5.4.2 Validation with AWGN Channel

Before considering multipath channels, we do simulation with an AWGN channel to validate

the simulation model. We validate this model by comparing the theoretical SER and the

SER resulting from simulation.

In Figure 5.4, the theoretical SER curve versus SNR for uncoded QPSK is plotted to-

gether with that resulting from the simulation. The simulation is obtained under no channel

estimation error. This validates the simulation model.

65

0 2 4 6 8 10 12 14 16
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER performance compare

Theory
No estimationerror

Figure 5.4: SER for uncoded QPSK resulting from simulation compared with theory.

5.4.3 Simulation Results

We know that the accuracy of autocorrelation estimates would affect the Wiener filter per-

formance. The autocorrelation is obtained from the average of the sample correlation over a

number of clusters. That means, in AWGN channel, if more clusters are used in the average,

then the accuracy of the autocorrelation estimates is better. So in the following simulation,

we show three different choices of number of clusters to average for the autocorrelation. One

is averaging over one major group (in the simulation we choose major group 0 which con-

tains 12 clusters) in frequency domain. The second one is averaging over one major group

in the frequency domain over three contiguous clusters in the time domain (a total of 36

clusters). The third is averaging over all subchannels (60 clusters in one OFDM symbol).

The cross-correlation in the first method is averaging over one major group in frequency

domain as the autocorrelation. It is worth noting that the cross-correlation in the second

66

method is obtained from averaging only over the frequency domain in one major group as in

the first method since we only interpolate the frequency response in the middle cluster. The

cross-correlation in the third method is averaging over all subchannels. . Figure 5.5 show

the MSE and SER simulation result.

From the simulation, we find that the autocorrelation obtained from average over time

and frequency domains together with the cross-correlation obtained only from frequency

domain has poor performance, even though the autocorrelation is more accurate. In fact,

if we use the theoretical cross-correlation value (the theoretical cross-correlation value is 1

in AWGN channel) together with the autocorrelation obtained from simulation, the perfor-

mance is bad, too. Tha reason should be that the number of pilots we use is not close to

infinity. Since the pilot signals contain noise, if we only use a finite number of pilot signals,

the autocorrelation and the cross-correlation are not independent in statistic. And if we

choose the same set of pilots to calculate cross-correlation, the statistical dependency caus

no influence. Beside this, the ill-conditoning of matrix inversion is another reason caus the

performance degradation. Use SNR = 10 for example. That means if the pilot power equals

to 1, then the noise power is 0.1. The autocorrelation would be

Φ =




1.1 1 1 1
1 1.1 1 1
1 1 1.1 1
1 1 1 1.1


 , (5.1)

and the eigenvalues are 0.1, 0.1, 0.1 and 4.1. The condition number is

κ (Φ) = 41 (5.2)

Since the samples we choose are not enough, the noise power does not concentrate on the

diagonal terms and cause matrix ill-conditioning.

Figure 5.6 presents the simulation results in the STTD with linear interpolation and

Wiener filtering channel estimations and compares them with perfect estimation under single

67

path Rayleigh fading channel in different velocities with zero antenna correlation. Figures 5.7

and 5.8 are under SUI2 and SUI3. We can see that, in low SNR, Wiener filter has better

performance than linear interpolation, but in high SNR, the performance is a little worse than

linear interpolation. The reason should be that the pilots we used in the Wiener filtering

are not the nearest with the data subcarrier that we want to estimate but in the same

cluster instead. That means the channel response we estimated is the linear combination

of the responses of the four pilots in the same cluster. Since the estimation using linear

interpolation is the linear combination of the nearest pilots, in high SNR, the performance

is a little better than Wiener filtering.

In Figs. 5.9, 5.10, and 5.11, we compare the SER under zero and nonzero antenna

correlation. From the simulation,we see that as in the uplink, if we choose proper samples to

average, the performance of Wiener filtering would be better than the linear interpolation.

And if the channel has nonzero antenna correlation, the performance would degrade.

68

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR

M
S

E

MSE performance for uncoded QPSK resulting from simulation.

Linear
Wiener OneGroup3TimeCluster
Wiener OneGroup
Wiener AllSubchannel
4 Pilots Theory

(a)

0 5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

M
S

E

SER performance for uncoded QPSK resulting from simulation.

Linear
Wiener OneGroup3TimeCluster
Wiener OneGroup
Wiener AllSubchannel

(b)

Figure 5.5: MSE and SER performance for uncoded QPSK resulting from simulation with
Wiener filtering and linear interpolation in AWGN channel. (a) MSE. (b) SER.

69

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

MSE in DownlinkPUSC QPSK at SinglePathChan

Linear V60
Linear V90
Linear V120
Wiener AverageOneGroup. V60
Wiener AverageOneGroup. V90
Wiener AverageOneGroup. 120
Wiener AverageAllSubchan. V60
Wiener AverageAllSubchan. V90
Wiener AverageAllSubchan. V120

(a)

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in DownlinkPUSC QPSK at SinglaPath

Linear V60
Linear V90
Linear V120
Wiener AverageOneGroup. V60
Wiener AverageOneGroup. V90
Wiener AverageOneGroup. 120
WienerAverageAllSubchannel. V60
Wiener AverageAllSubchannel. V90
Wiener AverageAllSubchannel. V120

(b)

Figure 5.6: MSE and SER performance for uncoded QPSK resulting from simulation with
Wiener filtering and linear interpolation at different velocities in single-path Rayleigh fading
channel with ρenv = 0. (a) MSE. (b) SER.

70

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

MSE in DownlinkPUSC QPSK at SUI−2

Linear V60
Linear V90
Linear V120
Wiener AverageOneGroup. V60
Wiener AverageOneGroup. V90
Wiener AverageOneGroup. V120
Wiener AverageAllSubchan. V60
Wiener AverageAllSubchan. V90
Wiener AverageAllSubchan. V120

(a)

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in DownlinkPUSC QPSK at SUI−2

Linear V60
Linear V90
Linear V120
Wiener AverageOneGroup. V60
Wiener AverageOneGroup. V90
Wiener AverageOneGroup. 120
WienerAverageAllSubchannel. V60
Wiener AverageAllSubchannel. V90
Wiener AverageAllSubchannel. V120

(b)

Figure 5.7: MSE and SER performance for uncoded QPSK resulting from simulation with
Wiener filtering and linear interpolation at different velocities in SUI-2 channel with ρenv = 0.
(a) MSE. (b) SER.

71

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

MSE in DownlinkPUSC QPSK at SUI−3

Linear V60
Linear V90
Linear V120
Wiener AverageOneGroup. V60
Wiener AverageOneGroup. V90
Wiener AverageOneGroup. V120
Wiener AverageAllSubchan. V60
Wiener AverageAllSubchan. V90
Wiener AverageAllSubchan. V120

(a)

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in DownlinkPUSC QPSK at SUI−3

Linear V60
Linear V90
Linear V120
Wiener AverageOneGroup. V60
Wiener AverageOneGroup. V90
Wiener AverageOneGroup. 120
WienerAverageAllSubchannel. V60
Wiener AverageAllSubchannel. V90
Wiener AverageAllSubchannel. V120

(b)

Figure 5.8: MSE and SER performance for uncoded QPSK resulting from simulation with
Wiener filtering and linear interpolation at different velocities in SUI-3 channel with ρenv = 0.
(a) MSE. (b) SER.

72

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in DownLink QPSK at SinglePath with Cor=0.7

Linear V60
Linear V90
Linear V120
Wiener AverageOneGroup. V60
Wiener AverageOneGroup. V90
Wiener AverageOneGroup. 120
Wiener AverageAllSubchan. V60
Wiener AverageAllSubchan. V90
Wiener AverageAllSubchan. V120 Corr
Linear V60 Corr
Linear V90 Corr
Linear V120 Corr
Wiener OneGroup. V60 Corr
Wiener OneGroup. V90 Corr
Wiener OneGroup. 120 Corr
Wiener AllSubchan. V60 Corr
Wiener AllSubchan. V90 Corr
Wiener AllSubchan. V120 Corr

Figure 5.9: SER comparison of zero and nonzero antenna correlations (ρenv = 0.7) in single-
path Rayleigh fading.

73

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in DownLink QPSK at SUI−2 with Cor=0.5

Linear V60
Linear V90
Linear V120
Wiener AverageOneGroup. V60
Wiener AverageOneGroup. V90
Wiener AverageOneGroup. 120
Wiener AverageAllSubchan. V60
Wiener AverageAllSubchan. V90
Wiener AverageAllSubchan. V120
Linear V60 Corr
Linear V90 Corr
Linear V120 Corr
Wiener OneGroup. V60 Corr
Wiener OneGroup. V90 Corr
Wiener OneGroup. 120 Corr
Wiener AllSubchan. V60 Corr
Wiener AllSubchan. V90 Corr
Wiener AllSubchan. V120 Corr

Figure 5.10: SER comparison of zero and nonzero antenna correlations (ρenv = 0.5) in SUI-2.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in DownLink QPSK at SUI−3 with Cor=0.4

Linear V60
Linear V90
Linear V120
Wiener AverageOneGroup. V60
Wiener AverageOneGroup. V90
Wiener AverageOneGroup. 120
Wiener AverageAllSubchan. V60
Wiener AverageAllSubchan. V90
Wiener AverageAllSubchan. V120
Linear V60 Corr
Linear V90 Corr
Linear V120 Corr
Wiener OneGroup. V60 Corr
Wiener OneGroup. V90 Corr
Wiener OneGroup. 120 Corr
Wiener AllSubchan. V60 Corr
Wiener AllSubchan. V90 Corr
Wiener AllSubchan. V120 Corr

Figure 5.11: SER comparison of zero and nonzero antenna correlations (ρenv = 0.4) in SUI-3.

74

Chapter 6

The DSP Hardware and Associated
Software Development Environment

DSP implementation is the final goal of our work. The DSP system used is Sundance’s PC

plug-in board that houses TMS320C6416 DSP made by Texas Instruments (see Fig. 6.1). In

this chapter, we introduce the architecture of the DSP chip and the software development

environment.

6.1 The TMS320C6416 DSP

6.1.1 TMS320C64x Features [21]

The TMS320C64x DSP that we employ is the highest-performance fixed-point DSP genera-

tion of the TMS320C6000 DSP devices, with a performance of up to 1000 million instructions

per second (MIPS) and an efficient C compiler. The TMS320C64x device is based on the

second-generation high-performance, very-long-instruction-word (VLIW) architecture devel-

oped by Texas Instruments (TI). The C6416 device has two high-performance embedded

coprocessors, Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP),

that can significantly speed up channel-decoding operations on-chip. But they do not apply

to the work reported in this thesis.

75

Figure 6.1: The DSP on the Sundance board [21].

The C64x core CPU consists of 64 general-purpose 32-bit registers and 8 function units.

These 8 functional units contain 2 multipliers and 6 arithmetic units. Below are some C6000

features:

• Advanced VLIW executes up to eight instructions per cycle and allows designers to

develop highly effective RISC-like code for fast development time.

• Instruction packing gives code size equivalence for eight instructions executed serially

or in parallel and reduces code size, program fetches, and power consumption.

• Conditional execution of all instructions reduces costly branching and increases paral-

lelism for higher sustained performance.

• Efficient code execution on independent functional units, including efficient C compiler

on DSP benchmark suite. and assembly optimizer for fast development and improved

parallelization.

• 8/16/32-bit data support, providing efficient memory support for a variety of applica-

tions.

76

• 40-bit arithmetic options add extra precision for applications requiring it.

• Saturation and normalization provide support for key arithmetic operations.

• Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and data manipulation applications.

The additional features of C64x include the following:

• Each multiplier can perform two 16×16 bits or four 8×8 bits multiplies every clock

cycle.

• Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

• Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses.

• Special communication-specific instructions addressing common operations in error-

correcting codes.

• Bit count and rotate hardware extends support for bit-level algorithms.

6.1.2 Central Processing Unit [21]

The block diagram of the C6416 DSP is shown in the Fig. 6.2. The C64x CPU, shaded in

the figure, contains:

• Program fetch unit.

• Instruction dispatch unit.

• Instruction decode unit.

• Two data paths, each with four functional units.

77

Figure 6.2: Block diagram of the TMS320C6416 DSP [21].

• 64 32-bit registers.

• Control registers.

• Control logic.

• Test, emulation, and interrupt logic.

The program fetch, instruction dispatch, and instruction decode units can deliver up to

eight 32-bit instructions to the functional units every CPU clock cycle. The processing of

instructions occurs in each of the two data paths (A and B), each of which contains four

functional units (.L, .S, .M, and .D) and 32 32-bit general-purpose registers, for the C6416.

6.1.2.1 Pipeline Structure

The TMS320C64x DSP pipeline provides flexibility to simplify programming and improve

performance. The pipeline can dispatch eight parallel instructions every cycle. The pipeline

78

Figure 6.3: Pipeline phases of TMS320C6416 DSP [21].

phases are divided into three stages as shown in Fig. 6.3.

• Fetch has 4 phases:

– PG (program address generate): The address of the fetch packet is determined.

– PS (program address send): The address of the fetch packet is sent to memory.

– PW (program access ready wait): A program memory access is performed.

– PR (program fetch packet receive): The fatch packet is at the CPU boundary.

• Decode has two phases:

– DP (instruction dispatch): The next execute packet in the fetch packet is deter-

mined and sent to the appropriate functional units to be decoded.

– DC (instruction decode): Instructions are decoded in functional units.

• Execute has five phases:

– E1: Execute 1.

– E2: Execute 2.

– E3: Execute 3.

– E4: Execute 4.

– E5: Execute 5.

79

Table 6.1: Execution Stage Length Description for Each Instruction Type [21]

The pipeline operation of the C62x/C64x instructions can be categorized into seven in-

struction types. Six of them are shown in Table 6.1, which gives a mapping of operations

occurring in each execution phase for the different instruction types. The delay slots associ-

ated with each instruction type are listed in the bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot is

a CPU cycle that occurs after the first execution phase (E1) of an instruction. Results

from instructions with delay slots are not available until the end of the last delay slot. For

example, a multiply instruction has one delay slot, which means that one CPU cycle elapses

before the results of the multiply are available for use by a subsequent instruction. However,

results are available from other instructions finishing execution during the same CPU cycle

in which the multiply is in a delay slot.

80

Table 6.2: Functional Units and Operations Performed (Part 1 of 2) [21]

6.1.2.2 Functional Units

The eight functional units in the C6000 data paths can be divided into two groups of four;

each functional unit in one data path is almost identical to the corresponding unit in the

other data path. The functional units are described in Tables 6.2 and 6.3.

Besides being able to perform 32-bit operations, the C64x also contains many 8-bit and

16-bit extensions to the instruction set. For example, the MPYU4 instruction performs four

8×8 unsigned multiplies with a single instruction on an .M unit. The ADD4 instruction

performs four 8-bit additions with a single instruction on an .L unit.

81

Table 6.3: Functional Units and Operations Performed (Part 2 of 2) [21]

82

The data line in the CPU supports 32-bit operands, long (40-bit) and double word (64-

bit) operands. Each functional unit has its own 32-bit write port into a general-purpose

register file (listed in Fig. 6.4). All units ending in 1 (for example, .L1) write to register file

A, and all units ending in 2 write to register file B. Each functional unit has two 32-bit read

ports for source operands src1 and src2. Four units (.L1, .L2, .S1, and .S2) have an extra

8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Because

each unit has its own 32-bit write port, when performing 32-bit operations all eight units

can be used in parallel every cycle.

6.1.3 Memory Architecture [21]

The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory is orga-

nized in separate data and program spaces. When off-chip memory is used, these spaces are

unified on most devices to a single memory space via the external memory interface (EMIF).

The C64x has two 64-bit internal ports to access internal data memory and a single internal

port to access internal program memory, with an instruction-fetch width of 256 bits.

A variety of memory options are available for the C6000 platform. In our system, the

memory types we can use are:

• On-chip RAM, up to 7 Mbits.

• Program cache.

• 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and other asyn-

chronous memories.

• Two-level caches [22]. Level 1 cache is split into program (L1P) and data (L1D)

caches. Each L1 cache is 16 KB. Level 2 memory is configurable and can be split into

L2 SRAM (addressable on-chip memory) and L2 cache for caching external memory

83

Figure 6.4: TMS320C64x CPU data paths [21].

84

locations. The size of L2 is 1 MB. The access time of external memory depends on the

memory technology used but is typically around 100 to 133 MHz. In our system, the

external memory usable by the DSP is a 32 MB SDRAM.

6.2 The Code Composer Studio Development Tools

[24], [25]

We now introduce the software environment used in our work. TI supports a useful GUI

development tool set to DSP users for developing and debugging their projects: the Code

Composer Studio (CCS). The CCS development tools are a key element of the DSP software

and development tools from TI. The fully integrated development environment includes real-

time analysis capabilities, easy-to-use debugger, C/C++ compiler, assembler, linker, editor,

visual project manager, simulators, XDS560 and XDS510 emulation drivers and DSP/BIOS

support.

Some of CCS’s fully integrated host tools include:

• Simulators for full devices, CPU only and CPU plus memory for optimal performance.

• Integrated visual project manager with source control interface, multi-project support

and the ability to handle thousands of project files.

• Source code debugger common interface for both simulator and emulator targets:

– C/C++/assembly language support.

– Simple breakpoints.

– Advanced watch window.

– Symbol browser.

• DSP/BIOS host tooling support (configure, real-time analysis and debug).

85

• Data transfer for real time data exchange between host and target.

• Profiler to analyze code performance.

CCS also delivers “foundation software” consisting of:

• DSP/BIOS kernel for the TMS320C6000 DSPs.

– Pre-emptive multi-threading.

– Interthread communication.

– Interrupt handling.

• TMS320 DSP Algorithm Standard to enable software reuse.

• Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

TI also supports some optimized DSP functions for the TMS320C64x devices: the

TMS320C64x digital signal processor library (DSPLIB). This source code library includes

C-callable functions (ANSI-C language compatible) for general signal processing mathemat-

ical and vector functions [26]. The routines included in the DSP library are organized as

follows:

• Adaptive filtering.

• Correlation.

• FFT.

• Filtering and convolution.

• Math.

86

• Matrix functions.

• Miscellaneous.

6.3 Code Optimization Methods [27]

The recommended code development flow involves utilizing the C6000 code generation tools

to aid in optimization rather than forcing the programmer to code by hand in assembly. This

makes the compiler do all the laborious work of instruction selection, parallelizing, pipelining,

and register allocation, which simplifies the maintenance of the code, as everything resides

in a C framework that is simple to maintain, support, and upgrade.

The recommended code development flow for the C6000 involves the phases described in

Fig. 6.5. The tutorial section of the Programmer’s Guide [27] focuses on phases 1 and phase

2, and the Guide also instructs the programmer about the tuning stage of phase 3. What

is learned is the importance of giving the compiler enough information to fully maximize its

potential. An added advantage is that this compiler provides direct feedback on the entire

program’s high MIPS areas (loops). Based on this feedback, there are some simple steps the

programmer can take to pass complete and better information to the compiler to maximize

the compiler performance.

The following items list the goal for each phase in the software development flow shown

in Fig. 6.5.

• Developing C code (phase 1) without any knowledge of the C6000. Use the C6000

profiling tools to identify any inefficient areas that we might have in the C code. To

improve the performance of the code, proceed to phase 2.

• Use techniques described in [27] to improve the C code. Use the C6000 profiling tools

87

Figure 6.5: Code development flow for TI C6000 DSP [27].

88

to check its performance. If the code is still not as efficient as we would like it to be,

proceed to phase 3.

• Extract the time-critical areas from the C code and rewrite the code in linear assembly.

We can use the assembly optimizer to optimize this code.

TI provides high performance C program optimization tools, and they do not suggest the

programmer to code by hand in assembly. In this thesis, the development flow is stopped at

phase 2. We do not optimize the code by writing linear assembly. Coding the program in

high level language keeps the flexibility of porting to other platforms.

6.3.1 Compiler Optimization Options [24], [25]

The compiler supports several options to optimize the code. The compiler options can be

used to optimize code size or execution performance. Our primary concern in this work is

the execution performance. Hence we do not care very much about the code size. The easiest

way to invoke optimization is to use the cl6x shell program, specifying the -on option on the

cl6x command line, where n denotes the level of optimization (0, 1, 2, 3) which controls the

type and degree of optimization:

• -o0.

– Performs control-flow-graph simplification.

– Allocates variables to registers.

– Performs loop rotation.

– Eliminates unused code.

– Simplifies expressions and statements.

– Expands calls to functions declared inline.

89

• -o1. Performs all -o0 optimization, and:

– Performs local copy/constant propagation.

– Removes unused assignments.

– Eliminates local common expressions.

• -o2. Performs all -o1 optimizations, and:

– Performs software pipelining.

– Performs loop optimizations.

– Eliminates global common subexpressions.

– Eliminates global unused assignments.

– Converts array references in loops to incremented pointer form.

– Performs loop unrolling.

• -o3. Performs all -o2 optimizations, and:

– Removes all functions that are never called.

– Simplifies functions with return values that are never used.

– Inlines calls to small functions.

– Reorders function declarations so that the attributes of called functions are known

when the caller is optimized.

– Propagates arguments into function bodies when all calls pass the same value in

the same argument position.

– Identifies file-level variable characteristics.

90

The -o2 is the default if -o is set without an optimization level.

The program-level optimization can be specified by using the -pm option with the -

o3 option. With program-level optimization, all of the source files are compiled into one

intermediate file called a module. The module moves through the optimization and code

generation passes of the compiler. Because the compiler can see the entire program, it

performs several optimizations that are rarely applied during file-level optimization:

• If a particular argument in a function always has the same value, the compiler replaces

the argument with the value and passes the value instead of the argument.

• If a return value of a function is never used, the compiler deletes the return code in

the function.

• If a function is not called directly or indirectly, the compiler removes the function.

When program-level optimization is selected in Code Composer Studio, options that have

been selected to be file-specific are ignored. The program level optimization is the highest

level optimization option. We use this option to optimize our code. In our study, we use

-o3, pm and Speed Most Critical (no instruction) as compiler condition number

6.3.2 Using Intrinsics

The C6000 compiler provides intrinsics, which are special functions that map directly to

C64x instructions, to optimize the C code performance. All instructions that are not easily

expressed in C code are supported as intrinsics. Intrinsics are specified with a leading under-

score () and are accessed by calling them as we call a function. A table of TMS320C6000

C/C++ compiler intrinsics can be found in [27].

91

Chapter 7

Fixed-Point DSP Implementation

7.1 Data Formats Considerations

In algorithm development, it is often convenient to employ floating-point computation to

acquire better accuracy. However, for the sake of power consumption, execution speed,

and hardware costs, practical implementations usually adopt fixed-point computations. The

DSP chip used in our work, TI’s TMS320C6416 is also of the fixed-point category. It means

that fixed-point computations are executed more efficiently than floating-point ones on this

platform. Due to these facts, we consider implementation using in 16-bit fixed-point compu-

tations. Compared with 32-bit computation, it has better efficiency and negligible accuracy

loss in many applications. Although fixed-point operation has less accuracy, it does have

much shorter execution time. However, we find that the fixed-point format is only suitable

in linear interpolation, not in Wiener filtering, because the Wiener filtering needs complex

matrix inversion which needs very high accuracy.

In our simulation, we use the format Q2.13, which means a 16-bit fixed-point number

with one sign bit, 2 integer bits, and then 13 fractional bits to the right of the dot. Here

we only focus on the channel estimation function. Therefore, we only translate the input to

channel estimation into fixed-point format for simplicity. The simulation flow is shown in

92

Figure 7.1: fix point simulation flow.

Fig. 7.1.

7.2 Fixed-Point Simulation

We only adopt fixed-point computation in the linear interpolation method, since Wiener

filtering needs to calculate matrix inverse that needs high dynamic range.

The accuracy results of linear interpolation channel estimation in uplink with different

velocities in different channels are given in Figures 7.2 to 7.6. The simulation results under

fixed-point and floating-point computations are shown in Figures 7.7 to 7.11. With fixed-

point computation, we can see that the performance is almost the same the floating-point

computation. In low SNR the performance of fixed-point computation has a little degrada-

tion. We think the reason is when the noise power is high, it is easy to cause fixed-point

data overflow.

7.3 DSP Computation Load

We run the fixed-point C program under CCS to see the DSP cycle count performance.

Although Wiener filtering is not suitable for fixed-point computation, we still run it in fixed-

point format to see the computational load. We also compare the result with the uplink tile

93

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR

M
S

E

Linear Interpolation MSE in AWGN QPSK

MSE1fix
MSE2fix
MSE3fix
MSE4fix
MSE1float
MSE2float
MSE3float
MSE4float

(a)

0 2 4 6 8 10 12 14 16
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

Floar and Fix SER performance compare in AWGN

Float
Fix

(b)

Figure 7.2: Uplink channel estimation performance under fixed- and floating-point compu-
tation in AWGN. (a) MSE. (b) SER.

94

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

Fix Point MSE at SinglePathChan

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(a)

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK in Single Path

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(b)

Figure 7.3: Uplink channel estimation performance under fixed- and floating-point compu-
tation in single-path Rayleigh fading. (a) MSE. (b) SER.

95

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

Fixed and Floating Point MSE in SUI−2

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(a)

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK in SUI−2

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(b)

Figure 7.4: Uplink channel estimation performance under fixed- and floating-point compu-
tation in SUI-2 channel. (a) MSE. (b) SER.

96

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

Fixed and Floating Point MSE in SUI−3

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(a)

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK in SUI−3

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(b)

Figure 7.5: Uplink channel estimation performance under fixed- and floating-point compu-
tation in SUI-3 channel. (a) MSE. (b) SER.

97

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

Fixed and Floating Point MSE in V−A

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(a)

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK in V−A

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(b)

Figure 7.6: Uplink channel estimation performance under fixed- and floating-point compu-
tation in Vehicular A channel. (a) MSE. (b) SER.98

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR

M
S

E

Fix & Floating point MSE in DownlinkPUSC QPSK AWGN

Fix Point
Floating Point

(a)

0 2 4 6 8 10 12 14 16 18
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

Linear interpolation using fix point and floating point

FixPoint
FloatingPoint

(b)

Figure 7.7: MSE and SER under fixed- and floating-point computation in AWGN. (a) MSE.
(b) SER.

99

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

Fixed and Floating Point MSE in Single Path

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(a)

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK in SinglePath

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(b)

Figure 7.8: Downlink channel estimation performance under fixed- and floating-point com-
putation in single-path Rayleigh fading. (a) MSE. (b) SER.

100

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

Fixed and Floating Point MSE in SUI−2

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(a)

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK in SUI−2

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(b)

Figure 7.9: Downlink channel estimation performance under fixed- and floating-point com-
putations in SUI-2 channel. (a) MSE. (b) SER.

101

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

Fixed and Floating Point MSE in SUI−3

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(a)

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK in SUI−3

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(b)

Figure 7.10: Downlink channel estimation performance under fixed- and floating-point com-
putation in SUI-3 channel. (a) MSE. (b) SER.

102

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

Fixed and Floating Point MSE in V−A

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(a)

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

SER in Uplink QPSK in V−A

LinearFloat V60
LinearFloat V90
LinearFloat V120
LinearFix V60
LinearFix V90
LinearFix 120

(b)

Figure 7.11: Downlink channel estimation performance under fixed- and floating-point com-
putation in Vehicular A channel (a) MSE. (b) SER.

103

structure without STC encoding. Table 7.1 shows the CCS simulation result in uplink.

Our DSP can execute 2 multiplications and 6 additions in one cycle. In the uplink channel

estimation without using STC, the ideal case is one tile using ten additions (we ignore the

multiplications and shifts because they can be executed with additions at the same time).

Under STC, we need fifteen additions per tile, and we need to estimate two channels. So in

the ideal case, the cycle count of linear interpolation under STC is three
(
i.e., 15

10
× 2

)
times

that without using STC. In the simulation result, we can see the cycle count using STC 3.3

times without using STC, which is close to our expectation.

In the simulation, using linear interpolation needs 15450 cycles to complete the estimation

job when executing on CCS. Since a tile spans 3 symbols, the cycle count averages to 5150

per symbol. The DSP we use, C6416T, has a 1 GHz processor clock with 32 MB DRAM. As

the symbol time is 102.86 µsec, it amounts to approximately 0.050 of DSP computation load.

In Wiener filter simulation, we do filtering with every subchannel separately. That means

in ten subchannels with two antennas, we calculate complex matrix inverse 20 times, and

each time needs 2754 cycles. In complex variable, the multiplication of three variables needs

16 multiplications (8 to calculate real part and 8 for imaginary part) and multiplication of

four complex variable needs 20 multiplications. If we use the formula to solve the 4 × 4

matrix inverse, the determinant needs 24 terms of four variables multiplication, the adjoint

matrix needs 16 × 6 terms of three variables multiplication, and need 16 multiplication to

multiply the inverse of the determinant with the adjoint matrix. That means, one matrix

inversion total needs about 2032 multipications. Our DSP can execute 2 multiplications and

6 additions in one cycle. In the ideal case, the DSP needs about 1016 cycles. But in realistic

it cost 2754 cycles, so the compile efficiency is about 0.36.

We also need to calculate the correlation with every data subcarrier. They both cause

large computation load. In the simulation, the Wiener filtering requires 7.5 times more

104

Figure 7.12: Wiener filtering C code block diagram.

Table 7.1: OFDMA Uplink DSP Load Under 1024-FFT with 10 Subchannel
Condition Cycle count DSP load factor for

channel estimation

Linear interpolation (not using
STC) [29]

4576 0.015

Linear interpolation (using STC) 15450 0.050
Wiener filtering (using STC) 131776 0.427

load compared to linear interpolation. Figure 7.12 shows the Wiener filtering C code block

diagram. Since the Wiener filtering needs to use the result of linear interpolation, in the C

code, the complexity of Wiener filtering contains that of linear interpolation.

Table 7.2 shows the DSP load in downlink channel estimation, in major group 0. There

are 4 symbols in one STC downlink cluster. So using linear interpolation requires 0.041 of

the DSP’s computation power. We also compare linear interpolation and Wiener filtering.

105

Table 7.2: OFDMA Downlink DSP Load Under 1024-FFT, Major Group 0 with STC
Condition Cycle count DSP load factor for

channel estimation

Linear interpolation 16903 0.041
Wiener filtering 88222 0.210

Figure 7.13: FIXED.H.

We can see that for major group 0, it needs 5.2 times the computation of that in linear

interpolation.

7.4 Program Code

Fig. 7.13 shows the header file FIXED.H which we use to transform floating-point data

into fixed-point. Function linear interpolation is the main function of channel estimation by

linear interpolation in uplink. After receiving the first OFDMA symbol that defines a tile,

it estimates the channel responses at the pilot subcarriers by using the LS technique, and

buffers it, until it receives the next two tiles when it does linear interpolation and clears the

buffer. The original code is shown in Fig. 7.14. Part of the corresponding assembly code of

function channel estimation is listed in Figures 7.15, where we can see the usage of registers

in the DSP. Software pipelining information of the function is illustrated in Figure. 7.16

which shows the information of optimization by DSP compiler .

106

Figure 7.14: linear interpolation.
107

Figure 7.15: Part of assembly code of function linear interpolaton.

108

Figure 7.16: Software pipelineing information of function linear interpolation.

109

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we presented several channel estimation methods for OFDMA STC uplink

and downlink. To do channel estimation, first we use LS estimator to estimate the channel

frequency response on pilot subcarriers. Then we used two different methods to calculate

the channel response of entire cluster or tile. One is linear interpolation and the other one

is Wiener filtering. In the linear interpolation, we demonstrated the performance in differ-

ent channel conditions. In Wiener filtering, we chose different sets of samples to calculate

autocorrelation and cross-correlation that causes different performance in our simulation.

If we chose proper sets of samples to average, then the performance would better than the

linear interpolation. After applying these methods on the MIMO system, we could get better

performance than the single antenna.

For DSP implementation, we replaced all the operations into 16-bit fixed point operation

and implement the MIMO structure of IEEE 802.16e. In the uplink linear interpolation, we

could see that the DSP computation load of using STC need 3.3 times that without using

STC. Since the Wiener filtering is not suitable for fixed-point format, but we also compared

the computation load. By calculating DSP load, we could see the Wiener filtering need large

110

amount of computation than linear interpolation.

8.2 Potential Future Work

There are several possible extension for our research:

• Construct MMSE error model to discuss how to improve the performance.

• Try other kinds of techniques to estimate channel response that more suitable for

MIMO system.

• Optimize the performance on DSP.

• In this thesis, we do not consider the influence of intercarrier interference (ICI). The

ICI simulation can be involved in the future.

• Use model base method to calculate cross-correlation to improve Wiener filtering.

If we want to use model base method, the first thing we want to know is the maximum

Doppler frequency of the mobile station. In [30] shows the method that using pilots to

calculate velocity. Since we know the time domain correlation is

rt(l) = J0(2πfmaxlTs) (8.1)

then we can calculate the pilot correlation in time domain, and find out which neighbor two

pilots correlation cause zero crossing and the time cause zero crossing called T0. Since The

smallest positive zero crossing point of the Bessel function J0(x) occurs at x = 2.405. An

estimation for the user maximum Doppler frequency can be obtained by

fmax =
2.405

2πT0

. (8.2)

111

But its defect is that it needs long time buffer to get real time domain correlation. Besides

time domain correlation, we also need to know frequency domain correlation. As mention in

chpter 3, for an exponentially decaying multipath power delay profile, the frequency domain

correlation is

rf (k) =
1

1 + j2πτrmsk/T
. (8.3)

In [31] it mention the meathod of calculating τrms by using pilots.

By utilizing above two methods, we might improve the Wiener filtering by using model

base method.

112

Bibliography

[1] Hongxiang Li and Hui Liu, “An analysis on uplink OFDMA optimality,” in Proc. IEEE

Veh. Technol. Conf., vol. 3, 2006, pp. 1339–1343.

[2] Liangshan Ma and Dongyan Jia, “The competition and cooperation of WiMAX, WLAN

and 3G, in ” Inter. Conf. Applica. Sys., Mobile Tech. Nov. 2005, pp. 1–5.

[3] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,”

IEEE. Selected Areas Commun., vol. 16, pp. 1451–1458, Oct. 1988.

[4] Man-On Pun, Michele Morelli, and C.-C. Jay Kuo, “Maximum-likelihood synchroniza-

tion and channel estimation for OFDMA uplink transmissions,” IEEE Trans. Commun.,

vol. 54, no. 4, pp. 726–736, Apr. 2006.

[5] Lior Eldar, M. R. Raghavendra, S. Bhashyam, Ron Bercovich, and K. Giridhar,

“Parametric channel estimation for pseudo-random user-allocation in uplink OFDMA,”

in IEEE Int. Conf. Commun., vol. 7, 2006, pp. 3035–3039.

[6] IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks—Part

16: Air Interface for Fixed Broadband Wireless Access Systems. New York: IEEE, June

24, 2004.

[7] IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005, IEEE Standard for Local

and Metropolitan Area Networks—Part 16: Air Interface for Fixed and Mobile Broad-

113

band Wireless Access Systems—Amendment 2: Physical and Medium Access Control

Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum

1. New York: IEEE, Feb. 28, 2006.

[8] B. Muquet, E. Biglieri, A. Goldsmith, and H. Sari, “MIMO techniques for Mobile

WiMAX systems,” SEQUANS Communications White Paper, September 2006.

[9] O. Edfors, M. Sandell, J. J. van de Beek, D. Landstrom, and

F. Sjoberg, “An introduction to orthogonal frequency-dicision multiplexing,”

http://courses.ece.uiuc.edu/ece459/spring02/ofdmtutorial.pdf.

[10] M.-H. Hsieh, “Synchronization and channel estimation techniques for OFDM systems,”

Ph.D. dissectation, Department of Electronics Engineering, National Chiao Tung Uni-

versity, Hsinchu, Taiwan, R.O.C., May 1998.

[11] O. Edfors, M. Sandell, J. J. van de Beek, S. K. Wilson, and P. O. Börjesson, “OFDM

channel estimation by singular value decomposition,” in IEEE 46th Veh. Technol. Conf.,

Apr. 1996, pp. 923–927.

[12] C. K. Koc and G. Chen, “Authors’ reply [Computational complexity of matrix inver-

sion],” IEEE Trans. Aerospace Electronic Systems, vol. 30, no 4, p. 1115, Oct. 1994.

[13] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques based

on pilot arrangement in OFDM systems,” IEEE Trans. Broadcasting, vol. 48, no. 3,

pp. 223–229, Sep. 2002.

[14] P. Hoeher, S. Kaiser, and P. Robertson, “Two-dimensional pilot-symbol-aided channel

estimation by Wiener filtering,” in IEEE Int. Conf. Acoust. Speech Signal Process., Apr.

1997, pp. 1845–1848.

114

[15] R. Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwell,

Mass.: Artech House, 2000.

[16] F. Said and H. Aghvami, “Linear two dimensional pilot assisted channel estimation for

OFDM systems,” in IEE Conf. Telecommunications, Edinburgh, Scotland, Apr. 1998,

pp. 32V-36.

[17] V. Erceg et al, “Channel models for broadband fixed wireless systems,” IEEE 802.16.3c-

00/53.

[18] E. Bartsch, I. Wassell, and M. Sellars, “Equalization requirement study for broadband

MMDS wireless access systems,” presented at Int. Symp. Communications, Tainan,

Taiwan, R.O.C., 2001.

[19] ETSI, “Selection procedure for the choice of radio transmission technolo- gies of the

UMTS,” ETSI tech. rep. TR 101 112, V3.0.2, pp. 38–43, Apr. 1994.

[20] P. Dent, G. E. Bottomley, and T. Croft, “Jakes fading model revisited,” Electron. Lett.,

vol. 29, no. 13, pp. 1162–1163, June 1993.

[21] Texas Instruments, TMS320C6000 CPU and Instruction Set. Literature number

SPRU189F, Oct. 2000.

[22] Texas Instruments, TMS320C6000 DSP Cache Users Guide. Literature number

SPRU656A, May. 2003.

[23] Yu-Sheng Chen, “DSP software implementation and integration of IEEE 802.16a TDD

OFDMA downlink transceiver system,” M.S. thesis, Department of Electronics Engi-

neering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., June 2005.

[24] Texas Instruments, Code Composer Studio User’s Guide. Literature number SPRU328B,

Feb. 2000.

115

[25] Texas Instruments, TMS320C6000 Code Composer Studio Getting Started Guide. Lit-

erature number SPRU509D, Aug. 2003.

[26] Texas Instruments, TMS320C64x DSP Library Programmer’s Reference. Literature

number SPRU565B, Oct. 2003.

[27] Texas Instruments, TMS320C6000 Programmer’s Guide. Literature number

SPRU198G, Oct. 2002.

[28] Ruu-Ching Chen, “Techniques for the DSP software implementation of IEEE 802.16a

TDD OFDMA downlink pilot-symbol-aided channel estimation,” M.S. thesis, Depart-

ment of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan,

R.O.C., June 2005.

[29] Yi Ling Wang, “Reserch in and DSP Implementation of Channel Estimation Techniques

for IEEE 802.16e OFDMA Uplink and Downlink,” M.S. thesis, Department of Electron-

ics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., June 2006.

[30] H. Schober and F. Jondral, “Velocity estimation for OFDM based communication sys-

tems,” in Veh. Technol. Conf., vol.2, fall 2002, pp. 715–718.

[31] Kun-Chien Hung, “Digital signal processing algorithms for communication receives:

synchronizatoin, equalization, and channel estimation,” Ph.D. dissertation, Department

of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,

Oct. 2008.

116

作者簡歷

姓名：余光中 (Kuang-Chung Yu)

生日：1984 年 4 月 11 日

出生地：台北市

學歷：交通大學電子工程系學士(2002.9~2006.6)

 交通大學電子研究所碩士(2006.9~2008.11)

研究領域：通訊系統及數位訊號處理

論文題目：IEEE 802.16e OFDMA 多輸入輸出通

道估測技術之探討與數位訊號處理器實現

(Study in IEEE 802.16e OFDMA MIMO Channel

Estimation Techniques and Associated Digital Signal

Processor Implementation)

	Cover_01(1)
	國立交通大學
	電子工程學系 電子研究所碩士班
	碩士論文
	 Study in IEEE 802.16e OFDMA MIMO Channel Estimation Techniques and Associated Digital Signal Processor Implementation
	中華民國九十七年十二月

	Cover2_02(1)
	A Thesis

	Abstract_03
	誌謝_04
	thesis_content
	Vita_06

