IEEE 802.16e OFDMA % fi§ » i J3T 3f o Iz 473 fr dgei
AL E R R

Study in IEEE 802.16e OFDMA MIMO Channel Estimation
Techniques and Associated:Digital Signal Processor

Implementation

oyod Ak

d B HCHE R L






IEEE 802.16e OFDMA ﬁaa] ﬁ%l UET IR B
FHEF AT ILER R
Study in IEEE 802.16e OFDMA MIMO Channel Estimation
Techniques and Associated Digital Signal Processor

Implementation

Fra sk Student: Kuang-Chung Yu

R R E L Advisor: Dr. David W. Lin

AThesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Electronics Engineering
December 2008
Hsinchu, Taiwan, Republic of China

ﬂéﬂ\]&],i‘_l-" ._L‘H






IEEE 802.166 OFDMA 5 i » ) 4138 3§ % I iz #34
BECATEIEFTIR

ST bR B

o+

TN S E iR (OFDMA) Tkt (T H P B2 AP 2 ¢ SR 4% 5
QLRI SRS S {1 'ﬁﬁ%](MlMo)i G 3 'ﬁﬁﬁiifﬁ‘ A AR Y R
#enic 4 o AF e 4% IEEE 8021681 1A #E 5 1 5 B~ (OFDMA)L » 5 03§ By
M BB AL W2 s 4T SR FES G R -

B RRE Y APRRR AR Rl ki o B - BEARPAE F
AR Bl T L e Rl Bk G 0 i 0 2 AP A Y ui?
LR bR UL R RE IO A 0T S o % 2 B 7 2 L Wiener
filter > d >t =02 F & oo o Uk 2 FTRPLLFE DT fphl > Flut F - H LA
SURL N BT AL P A P 2 I SRR BRIAP G R NI M -
gl B3 p R 2 o B g A Fﬁ? F17 Wiener filter & % f 3 ¢
g o LR E R ?‘/P‘» b M FEeE S B o B9 Wiener filter sl g B st i
Sl R Mo Tl H’"m‘glﬁ?”ﬁ‘\ (AR U =

ARCEEE ¢ o AR A AWGN i i F SN P e i) 0 AR LN s E
B 42 £ SUI-2 4o SUI-3 3 i + 1045 -

B0 ORI EAR A RIEE P (TS AP R R AL EE Y C ARV i3 e S
?;—}.3"35 B RN MK A o T xpdg_%ﬁuﬁb.ﬁ BT o

tehfh=? o AP E A f§ 4 IEEEB02.16e OFDMA b 711 2 T {7 § i if W@ fi5en
PRI 2 LB R B AR S L B R Y A AL Rl
e N s B ofs 4 ke DSP eng IR B L & T Bl R S K o

Y






Study in IEEE 802.16e OFDMA MIMO Channel Estimation
Techniques and Associated Digital Signal Processor

Implementation

Student: Kuang-Chung Yu Advisor: Dr. David W. Lin

Department of Electronics Engineering
& Institute of Electronics
National Chiao Tung University

Abstract

OFDMA (orthogonal frequency division.multiple access) technique has drawn much
interest recently in the mobile transmission environment and been successfully applied to a
wide variety in the mobile transmission environment and been successfully applied to a
wide variety of digital communications applications over the past several years. If we
applied MIMO (multiple input“and. multiple output) technique it can enhance the
performance of the transmission and the ‘capability of the resistance the channel fading. In
this thesis, we introduce the MIMO channel estimation problems, algorithms, analyses
and implementation issues for IEEE 802.16e OFDMA PHY system.

In the channel estimation, we have implemented two methods to compare the
performance. The first is linear interpolation. First we use LS estimator to estimate the
channel response on pilot subcarriers, and then we use linear interpolation in time domain
and frequency domain separately to get the frequency response on data subcarriers. The
second method is Wiener filter. Because of using this method we need to know the
cross-correlation of pilot and data subcarriers’ channel responses, the first step is using the
linear interpolation to get the frequency responses on data subcarriers and then using this
result to estimate the cross-correlation we want. Finally we use the cross-correlation and
the autocorrelation of pilot subcarrier channel responses to get the weight of pilot
subcarriers, and get the more accurate channel response on data subcarriers. Meanwhile,
the accuracy of Wiener filter is related to the rang of channel responses we use to average,
so we also simulate in different channel range.

In the simulation, we verify our simulation model on AWGN channel and then do the



simulation on SUI-2 and SUI-3 multipath channel.

In order to increase the efficiency on DSP, we rewrite the floating-point C program to

fixed-point version, and do the simulation to see the performance.

In the thesis, we first introduce the standard of the IEEE 802.16e OFDMA MIMO
transmission and variant channel estimation methods. Then we simulate MIMO
transmission using different channel estimation techniques. Finally we introduce the DSP
implementation environment and fixed-point simulation result.



R U ST EAER- I o s A S L A A LN St
Aind E 5 j\mm,uiﬂ% » BB 2\ ttp%-g‘&_ ,pm I mfg[m, )y {® +\§mj A,,\*fr}zFa

2

A fRAR RS 4 0 o KRN o R 0 » AR § TR 0 R
oG HRAL o Bt o e EEFR AR PR HL R oo
VAR RSa A9kl 8L L EEE LR 35 S o SR
A AR F I AT MR o
PR T F EM B AIL Y % % (commlab) 0 3 &1 L KA T R 0 E
AAFFTY T L o B4 Y g R kbR RF R E o Y
290 BihiE e BREFTRES A RN ARG EES G AT
E o
B RRHPAANRA B PR FERA G R E ORI L T
;1—’31— Lr)* fg[pz,s@A. s B Ai@¢ WE,\;% LUEEE R S e ﬁ& o ’;j—’g
w3 2008.12 7+ % <

&=
™



Vi



Contents

1 Introduction 1
2 Introduction to IEEE802.16e OFDMA and MIMO Systems 3
2.1 Overview of OFDMA [4], [5] . . . . . . . ... .. . ... . 3
2.1.1 Cyclic Prefix . . . . . . . . 4

2.1.2  Discrete-Time Baseband Equivalent System Model . . . . . . . . .. 5t

2.2 Introduction to MIMO System . . . . . oo Lo 6
2.2.1 Transmit Diversity w0000 Lo oL 7

2.2.2  Spatial Multiplexing . . . ... . oL 9

2.3 Basic OFDMA Symbol Structure in IEEE 802.16e . . . . . . .. ... ... 10
2.3.1 OFDMA Basic Terms. . . . . . . .. . ... ... ... .... 10

2.3.2  Frequency Domain Description . . . . . .. ... ... ... ..... 11

2.3.3 Primitive Parameters . . . . . . .. . ..o 11

2.3.4 Derived Parameters . . . . . . . .. ..o 12

2.3.5  Frame Structure . . . . . .. ... 13

2.4 Uplink Transmission in IEEE 802.16e OFDMA . . . . .. .. .. ... ... 13

vil



2.4.1 Data Mapping Rules . . . . . . ... ... ... ... ... ... ... 14

2.4.2 Carrier Allocations . . . . . . . . ... 15
2.4.3 Pilot Modulation . . . . ... ... oo 18
2.4.4 Data Modulation . . . . . ... ... Lo 19

2.5 Downlink Transmission in IEEE 802.16e OFDMA . . . . .. ... ... ... 19
2.5.1 Data Mapping Rules . . . . . . ... ... ... .. ... ... ... 20
2.5.2  Preamble Structure and Modulation . . . . ... ... ... ... .. 20
2.5.3 Subcarrier Allocations . . . . . .. ..o 22
2.5.4 Pilot Modulation . . . . . ... ... oo 25
2.5.5 Data Modulation . . . . . ... ... ... oo 25

2.6 Space-Time Coding in IEEE.802.16e,QEDMA . . . . . ... ... ... ... 25
2.6.1 STC Using Two Antennas . .0 .. .2 . . ... ... 26
2.6.2 STC/FHDC Configurations "= S0 . oo oo oo oo .. 26
2.6.3 Uplink Using STC . . . 0RF0ilis oo oo 27
2.6.4 STC Using Two Antennas in Downlink PUSC . . . . .. ... .. .. 27

3 Channel Estimation Techniques 29
3.1 Pilot-Symbol-Aided Channel Estimation [9] . . . .. .. .. ... ... ... 29
3.1.1 The Least-Squares (LS) Estimator [10] . . . . . . .. ... ... ... 29
3.1.2  The LMMSE Estimator [11] . . . . . .. ... ... ... ... .... 30

3.2 Two-Dimensional Channel Estimators . . . . . . .. .. ... ... ... ... 31
3.2.1 Linear Interpolation . . . . . . . ... ... 0oL 31



32.2 2D Wiener Filter [14] . . . . . .. ... ... .. ... .. ... ... 32

4 Simulation of STC Uplink Channel Estimation 34
4.1 Linear Interpolation . . . . . . . . . ... oo 34
4.2 Wiener Filtering . . . . . . . . . .. 35
4.3 STC Decoding . . . . . . .« . 38
4.4 Simulation Conditions . . . . . . . . ... 38

4.4.1 OFDMA Uplink System Parameters . . . .. ... ... .. ..... 38
4.4.2 Channel Models . . . . . . . . . ... 39
4.5 Simulation Results . . . . . . . ..o 41
4.5.1 Simulation Flow . . . . edliiile.. . . . ..o 41
4.5.2 Validation of Simulation Model % = . . . ..o 0oL L 42
4.5.3 Simulation Results@and Amalysis . .. .2, . . . . . . ... ... .. 43

5 Simulation of STC Downlink PUSC Channel Estimation 61
5.1 System Parameters and Channel Models . . . . ... ... ... ... .... 61
5.2 Linear Interpolation . . . . . . . . ... ... ... ... 61
5.3 Wiener Filtering . . . . . . . . . . . 63
5.4 Simulation Study . . . . ... 65

5.4.1 Simulation Flow . . . . . . . .. ... oo 65
5.4.2 Validation with AWGN Channel . . . . . .. .. .. ... ... .... 65
5.4.3 Simulation Results . . . . ... ... ... 000 66

X



6 The DSP Hardware and Associated Software Development Environment 75

6.1 The TMS320C6416 DSP . . . . . . . . . . . ... 75
6.1.1 TMS320C64x Features [21] . . . . . . . . .. ... ... 75

6.1.2 Central Processing Unit [21] . . . . . . . ... ... ... ... .... 7

6.1.3 Memory Architecture [21] . . . . . ..o 83

6.2 The Code Composer Studio Development Tools [24], [25] . . . . . . . .. .. 85
6.3 Code Optimization Methods [27] . . . . . . .. ... ... . ... ... ... 87
6.3.1 Compiler Optimization Options [24], [25] . . . . . . . . ... ... .. 89

6.3.2 Using Intrinsics . . . . . . . .. Lo oo 91

7 Fixed-Point DSP Implementation 92
7.1 Data Formats Considerations | . =i w e oo 0oL oL 92
7.2 Fixed-Point Simulation . Z. . . afd L0 Lo 93
7.3 DSP Computation Load . ... . . . .au . o oo o 93
74 Program Code . . . . . . . . . . 106

8 Conclusion and Future Work 110
8.1 Conclusion . . . . . . . .. 110

8.2 Potential Future Work . . . . . . . ... oo 111
Bibliography 113



List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

Discrete-time model of the baseband OFDMA system (from[4]). . . . . . ..
Time structure of OFDMA symbol (from [6]). . . . . .. ... ... ... ..

Discrete-time baseband equivalent of an OFDMA system with M users (from

Example of the data region vhich defines.thetOFDMA allocation (from [6]).
OFDMA frequency description (from-[6]). . .= . . .. ... ... ... ...

Example of an OFDMA frame (with only.mandatory zone) in TDD mode
(from [7]). . . .. ..o ERELEET L L

Example of mapping OFDMA slots to subchannels and symbols in the uplink
(from [7]). . . . o o

Structure of an uplink tile (from [6]). . . . . . . ... ... ... ..
PRBS generator for pilot modulation (from [6] and [7]). . . . . . .. .. ...
QPSK, 16-QAM, and 64-QAM constellations (from [6]).. . . . . . . ... ..

Example of mapping OFDMA slots to subchannels and symbols in the down-
link in PUSC mode (from [7]). . . . . . . . ... oo

Downlink transmission basic structure (from [6]). . . . . ... ... ... ..

xi



2.14 Cluster structure (from [7]). . . . . . . . ... . 23

2.15 Mlustration of STC (from [7]). . . . . . . . . . . 26
2.16 Mapping of data subcarriers in STTD mode (from [7]). . . ... .. ... .. 28
2.17 Cluster structure for STC PUSC using two antennas (from [7]). . . ... .. 28
4.1 Linear interpolation in STTD mode at antenna 0. . . . . . . . .. ... ... 35
4.2 Wiener filtering in STTD mode at Antenna 0. . . . . . ... ... ... ... 36

4.3 STTD transmission. (a) Neighboring channel responses are the same. (b)

Responses are different. . . . . . . ... o0 Lo 39
4.4 Block diagram of the simulated system. . . . . .. ... ... ... ... ... 42

4.5 The SER curve for uncoded QPSK resulting from simulation matches the

theoretical one. . . . . . . 2% e o le L 44

4.6 MSE performance for uncoded QPSK resulting®with linear interpolation, an-

tenna 0. . ......... B W . . ... ... ... ..., 45
4.7 SER performance for uncoded QPSK resulting from linear interpolation. . . 45

4.8 MSE performance of Wiener filtering channel estimation for uncoded QPSK,
antenna 0. Autocorrelation and cross-correlation are obtained by averaging

over one subchannel. . . . . . . .. 50

4.9 MSE performance of Wiener filtering channel estimation for uncoded QPSK,
antenna 0. Autocorrelation and cross-correlation are obtained by averaging

over ten subchannels. . . . . . . . L 51

4.10 Comparrision of SER performance with using Wiener filtering and linear in-

terpolation channel estimation in STTD under QPSK modulation in AWGN. 51

xii



4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

5.1

5.2

Comparrision of MSE performance with using Wiener filtering and linear in-

terpolation channel estimation in STTD under QPSK modulation in AWGN.

MSE and SER performance for uncoded QPSK under Wiener filtering and
linear interpolation channel estimations at different velocities in single-path

Rayleigh fading channel with p,, = 0. (a) MSE. (b) SER. . . ... ... ..

MSE and SER performance for uncoded QPSK under Wiener filtering and
linear interpolation channel estimation at different velocities in SUI-2 channel

with channel correlation pe,, = 0. (a) MSE. (b) SER. . . . ... ... ...

MSE and SER performance for uncoded QPSK under Wiener filtering and
linear interpolation channel estimation at different velocities in SUI-3 channel

with channel correlation pe,, = 0. (a) MSE. (b) SER. . . . ... ... ...

Two different subchannel sets of MSE and. SER performance for uncoded
QPSK under Wiener filtering averaging over one subchannel at different ve-
locities in SUI-2 channel with chamnel correlation p.,, = 0. (a) MSE. (b)
SER. . ..........%%". ... # .. ... ... .. .........

SER comparison between zero and nonzero antenna correlation (pe,, = 0.7)

in single-path Rayleigh fading. . . . . . . . .. .. .. ... ... ...

SER comparison between zero and nonzero antenna correlation (pe,, = 0.5)

in SUI-2 channel. . . . . . . . . . . .

SER comparison between zero and nonzero antenna correlation (pe,, = 0.4)

in SUI-3 channel. . . . . . . . . . . .

Linear interpolation in STTD mode at antenna 0. . . . . . . ... ... ...

Wiener filtering in STTD mode at antenna 0. . . . . . ... ... ... ...

xiii

52

63



5.3 Block diagram of the simulated system. . . . . . . . . ... ... ... .... 65
5.4 SER for uncoded QPSK resulting from simulation compared with theory. . . 66

5.5 MSE and SER performance for uncoded QPSK resulting from simulation with
Wiener filtering and linear interpolation in AWGN channel. (a) MSE. (b)
SER. . 69

5.6 MSE and SER performance for uncoded QPSK resulting from simulation with
Wiener filtering and linear interpolation at different velocities in single-path

Rayleigh fading channel with pe,, = 0. (a) MSE. (b) SER. . . ... ... .. 70

5.7 MSE and SER performance for uncoded QPSK resulting from simulation with
Wiener filtering and linear interpolation at different velocities in SUI-2 channel

with peny, = 0. (a) MSE. (b) SER. . . . . . ... . o 71

5.8 MSE and SER performance for uncoded QPSK resulting from simulation with

Wiener filtering and linear interpolation at different velocities in SUI-3 channel

with pen, = 0. (a) MSE. (B) SER-"" "~ . = . . . ... .. 72
5.9 SER comparison of zero and nemzero antenna correlations (pe,, = 0.7) in
single-path Rayleigh fading. . . . . . . . . ... ... ... ... ....... 73

5.10 SER comparison of zero and nonzero antenna correlations (pen, = 0.5) in SUI-2. 74

5.11 SER comparison of zero and nonzero antenna correlations (pen, = 0.4) in SUI-3. 74

6.1 The DSP on the Sundance board [21].. . . . . . . ... ... ... ... ... 76
6.2 Block diagram of the TMS320C6416 DSP [21]. . . . . .. . ... ... .. .. 78
6.3 Pipeline phases of TMS320C6416 DSP [21]. . . . .. ... ... ... .... 79
6.4 TMS320C64x CPU data paths [21]. . . . . . ... .. ... .. ... ... 84

Xiv



6.5

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

Code development flow for TT C6000 DSP [27].. . . . . . ... ... ... ..

fix point simulation flow. . . . . . . ... .. 0oL

Uplink channel estimation performance under fixed- and floating-point com-

putation in AWGN. (a) MSE. (b) SER. . . ... ... ... ... .....

Uplink channel estimation performance under fixed- and floating-point com-

putation in single-path Rayleigh fading. (a) MSE. (b) SER. . . .. ... ..

Uplink channel estimation performance under fixed- and floating-point com-

putation in SUI-2 channel. (a) MSE. (b) SER. . . . ... ... ... ... ..

Uplink channel estimation performance under fixed- and floating-point com-

putation in SUI-3 channel. (a) MSE. (b) SER. . . ... ... ... ... ..

Uplink channel estimation performance under fixed- and floating-point com-

putation in Vehicular A channel. (a) MSE: (b).SER. . . ... ... ... ..

MSE and SER under fixed- and floating-point computation in AWGN. (a)
MSE. (b) SER. . . . . .. S

Downlink channel estimation performance under fixed- and floating-point

computation in single-path Rayleigh fading. (a) MSE. (b) SER. . . . .. ..

Downlink channel estimation performance under fixed- and floating-point

computations in SUI-2 channel. (a) MSE. (b) SER. . . . ... ... ... ..

Downlink channel estimation performance under fixed- and floating-point

computation in SUI-3 channel. (a) MSE. (b) SER. . .. ... ... .....

Downlink channel estimation performance under fixed- and floating-point

computation in Vehicular A channel (a) MSE. (b) SER. . .. ... ... ..

Wiener filtering C code block diagram. . . . . . . . ... .. ... ... ...

XV



713 FIXED.H. . . . . . .. e 106

7.14 linear_interpolation. . . . . . . . . . .. 107
7.15 Part of assembly code of function linear_interpolaton. . . . . . . . . . . . .. 108
7.16 Software pipelineing information of function linear_interpolation. . . . . . . . 109

XVl



List of Tables

2.1

2.2

4.1

4.2

4.3

4.4

4.5

4.6

5.1

6.1

6.2

6.3

7.1

7.2

OFDMA Uplink Subcarrier Allocations [6], [7] . . . . . .. ... .. .. ... 16
OFDMA Downlink Subcarrier Allocation Under PUSC [6], [7] . . . . .. .. 23
«; of Eight Data Subcarriers at Antenna 0. . . . . . . . .. .. ... ..... 37
OFDMA Uplink Parameters . . . . . . .. . ... ... . ... ... ..... 40
Channel Profiles of SUI-2 and SUT-3 17} e, . . . . . 0 0 0oL o 0oL 41
Power-Delay Profile of the TSI Vehicular A 'Channel . . . . . . .. ... .. 42
Mean Delay and RMS Delay Spread.. . .. ./ ~. . . .. ... ... ... .. 42
MSE of Eight Data Subcarriers at-Antennas O and 1 . . . . . . .. ... .. 44
OFDMA Downlink Parameters . . . . . .. . .. ... ... .. ....... 62
Execution Stage Length Description for Each Instruction Type [21] . . . . . 80
Functional Units and Operations Performed (Part 1 of 2) [21] . .. ... .. 81
Functional Units and Operations Performed (Part 2 of 2) [21] . .. ... .. 82
OFDMA Uplink DSP Load Under 1024-FFT with 10 Subchannel . . . . . . 105

OFDMA Downlink DSP Load Under 1024-FFT, Major Group 0 with STC . 106

XVii



Chapter 1

Introduction

Orthogonal frequency division multiple access (OFDMA) has emerged as one of the prime
multiple access schemes for broadband wireless networks (e.g., IEEE 802.16 Mobile WiMAX,
IEEE 802.20 and 3G LTE). As a special case of multicarrier multiple access schemes, OFDMA
exclusively assigns each subchannel to only one usergeliminating intra-cell interference [1]. In
frequency selective channels, an intrinsic advantage of OFDMA is its capability to exploit the
so-called multiuser diversity provided by multipath channels. Other advantages of OFDMA
include finer granularity and better link bidget [1]. OFDMA can be easily generated using

an inverse fast Fourier transform (IFFT) and received using a fast Fourier transform (FFT).

The IEEE 802.16 standard committee has developed a group of standards for wireless
metropolitan area networks (MANs). OFDMA is used in the 2 to 11 GHz systems. The
IEEE Standard 802.16-2004 is for broadband wireless access systems that provide a variety
of wireless access services to fixed outdoor and indoor users. The 802.16e is designed to
support terminal mobility, and currently it can serve terminals with a speed up to 120 km/h
2].

Multiple-antenna techniques can be used to increase diversity and improve the bit error

rate (BER) performance of wireless systems, increase the cell range, increase the transmitted



data rate through spatial multiplexing, and/or reduce interference from other users. The
WiMAX Forum has selected two different multiple antenna profiles for use on the downlink
and uplink. One of them is based on the space-time code (STC) proposed by Alamouti for

transmit diversity [3], and the other is a 2x2 spatial multiplexing scheme.

This thesis focuses on the channel estimation methods for IEEE802.16e WirelessM AN-
OFDMA multi-input multi-output (MIMO) systems. We construct the multipath channel
simulator to simulate the MIMO system in IEEE 802.16e and study the performance of
different channel estimation methods. And we consider software implementation of the

channel estimation using a digital signal processor (DSP).

The thesis is organized as follows. First, in chapter 2, we introduce the OFDMA specifica-
tions in IEEE 802.16e, especially its MIMO mode of operation. In chapter 3, various channel
estimation techniques are introduced. Inschpter 4, we discuss the performance of channel
estimation in uplink transmission and in chpter 4, we show the performance of downlink
channel estimation. It is seen that,-due to modeling-errors in parameter estimations, linear
interpolation perfors better than Wiener filtering. In chapter 6, we describe the implemen-
tation platform, which consists of a Texas Instruments’ TMS320C6416 DSP on a Sundance
compancy’s Carrier board. In chapter 7, we present some DSP implementation issues and
fixed-point simulation results. Finally, chapter 8 gives the conclusion and points out some

potential future work.



Chapter 2

Introduction to IEEE802.16e OFDMA
and MIMO Systems

We first introduce the basic concepts of the OFDMA and MIMO techniques for multicarrier

modulation. The specifications of IEEE 802.16e are introduced afterwards.

2.1 Overview of OFDMA -[4]; [5]

Orthogonal frequency-division multiple-acgess (OFDMA ) is a major multiple access scheme
considered for future wireless systems. In'an OFDMA system, several users simultaneously
transmit their data by modulating mutually exclusive sets of orthogonal subcarriers. Thus
each user’s signal can be separated easily in the frequency domain. One typical structure
is the subband OFDMA, which divides all available subcarriers into a number of subbands.
Each user is allowed to use one or more available subbands for the data transmission. Pi-
lot symbols are employed for the estimation of channel state information (CSI) within the
subbands. Besides multiuser diversity, robustness to narrowband interference and capability
of channel assignment are two other advantages of OFDMA. Figure 2.1 shows an OFDMA

network in which active users simultaneously communicate with the base station (BS).



u u (m) expjw,m)
! )
P/S f— Channeln) r,(m)
order L | v,(m)
r b | Bl
. | B r(.m) r -
L
. \y" S/P Remove | ¥ .
. _ e gli cp [ [PMTe
User #K N“X i .
Skao — v (m) ™
Sk Uy uk{m) N1
X
. W Add L P/S
IDFT ™ » = Channel ) t(m)
. cp i §
5 KA1 order L
o NX 1 exp(jwmn)

Figure 2.1: Discrete-time model of the baseband OFDMA system (from[4]).

2.1.1 Cyclic Prefix

Cyclic prefix (CP), or guard time,-is used to overcome the intersymbol interference (ISI)
and interchannel interference (ICI) problems: The multiuser channel is assumed to be sub-
stantially invariant within one OFDMA symbol duration. The symbol timing mismatch is
assumed to be smaller than the CP duration. In this scenario, users do not interfere each

other in the frequency domain.

A CP is a copy of the last part of the OFDMA symbol (see Fig. 2.2). It is used to collect
multipath propgation effects of the last symbol so as to maintaining the orthogonality of the
tones. However, the transmitter energy increases with the length of the guard time while
the receiver energy remains the same (since the cyclic extension is discarded in the receiver),

so there is a 10log(1 — T, /(T, + T,))/log(10) dB loss in Ej/No.



I, T
T,
=% - o=

Figure 2.2: Time structure of OFDMA symbol (from [6]).

2.1.2 Discrete-Time Baseband Equivalent System Model

The material in this subsection is mainly taken from [5]. Consider an OFDMA system with
M active users sharing a bandwidth of B :% Hz (where T is the sampling period) as shown in
Fig. 2.3. The system consists of K subcartiers, of which K, are useful subcarriers (excluding
guard bands and DC subcarrier). The users are allocated non-overlapping subcarriers in the

spectrum depending on their needs;

The discrete time baseband channel consists of [ multipath components and has the

form
L1
h(l) =Y hwd(l = 1y) (2.1)
m=0
where h,, is a zero-mean complex Gaussian random variable with E[h;h}] = 0 for i # j. In

frequency domain,

H=Fh (2.2)

where H = [Hy, Hy,..., Hx 1]*, h = [ho,...,hr_1,0,...,0]7 and F is K-point DFT matrix.

The impulse response length [, is upper bounded by the length of CP (L,,).

The received signal in frequency domain is given by

M
Y, =) Xi.H,,+V, (2.3)
=1

5



XNi1no -
. . Channel
* IDET | * /s 1 Add CP -
- . ].lj_
XinRoT =
i
M1 .
non—overlapping users o 9
Y.l.l.'_'l_' -
* DFT * R Remove CP m'f-
L a
Yo w1 - ‘

Noise

Figure 2.3: Discrete-time baseband equivalent of an-OFDMA system with M users (from

[5])-

where X, = diag(X;n0, .., Xinx-1)i8 & KxHK-diagonal data matrix and H; , is the K x 1
channel vector (2.2) corresponding to theith user in nth symbol. The noise vector V, is

distributed as CA(0,02Ix) where I is the K-dimensional identity matrix.

2.2 Introduction to MIMO System

In this section, we indroduce two MIMO transmission mechanisms that are used in WiMAX.
One is called transmit diversity and the other spatial multiplexing. The material in this

section is mainly taken from [8].



i

S1 8

; i rl
81, 89 — /hq'
_>Tg

82 — 8]

Figure 2.4: Schematic block diagram of Alamouti’s transmit diversity (from [8]).

2.2.1 Transmit Diversity

One MIMO transmission technique employed in WiMAX is the space-time coding (STC)
scheme proposed by Alamouti [3] for transmif diversity. (In the IEEE 802.16e-2005 specifi-

cations, this scheme is referred to asMagrix Al This technique can be described as follows.

Let (s1,s2) represent a group of two econsécutive symbols in the input data stream to
be transmitted. During a first symbel period ¢y, transmit (Tx) antenna 1 transmits symbol
s1 and Tx antenna 2 transmits symbol 's2.7Next, during the second symbol period t5, Tx
antenna 1 transmits symbol s and Tx antenna 2 transmits symbol —sj. Denote the channel
response (at the subcarrier frequency at hand) from Tx1 to the receiver (Rx) by h; and the
channel response from Tx2 to the receiver by hs. The received signal samples corresponding

to the symbol periods ¢; and ¢5 can be written as:

r1 = h1s1 + hosy + 1, (2.4)

ro = h155 + has] + na, (2.5)

where n; and no are additive noise terms. The receiver computes the following signals to



estimate the symbols s; and ss:

T = h;?ﬁ — hg?”; = (|h1|2 + |h2|2) S1 -+ h’{nl — hgn;, (26)

Tog = h;?‘l + hﬂ“; = (|h1‘2 + |h2’2) So + h§n1 + hln; (27)

These expressions clearly show that x; (resp. xg) can be sent to a threshold detector to
estimate symbol s; (resp. symbol sy) without interference from the other symbol. Moreover,
since the useful signal coefficient is the sum of the squared moduli of two independent fading
channels, these estimations benefit from perfect second-order diversity, equivalent to that
of Rx diversity under maximum-ratio combining (MRC). Alamouti’s transmit diversity can
also be combined with MRC when two antennas are used at the receiver. In this scheme,

the received signal samples corresponding to the symbol periods ¢; and ¢, can be written as

r11 = hiy81 + h1253 + 141, (2.8)

T12 = hi S5 — hiosy Ty (2.9)
for the first receive antenna, and

r91 = ha151 + ho2Sa + Moy, (2.10)

T99 = hgls§ — hngT + M99, (211)

for the second receive antenna. In these expressions, h;; designates the channel response from
Tx i to Rx j, with ¢, 7 = 1,2, and n;; designates the noise on the corresponding channel. This
MIMO scheme does not give any spatial multiplexing gain, but it has 4th-order diversity,

which can be fully recovered by a simple receiver as follows. The optimum receiver estimates



the transmitted symbols s; and s, using

xrp = thTH — hm’l“ﬁ + h;l’l“zl — hgz’f’;g
= (|1 + haal® + |har|* + 1haal?) 514 hiynan — hianty + hiynay — haans,, (2.12)
Ty = h>{27’11 + h117’1‘2 + h;27“21 + h217“;2

= (‘hn‘z -+ ‘h12‘2 -+ ’h21‘2 -+ ’h22‘2) S9 + hiznn + hllnIQ + h;zngl + thTL;Q. (213)

These equations clearly show that the receiver fully recovers the fourth-order diversity of the

2 x 2 system.

2.2.2 Spatial Multiplexing

The second MIMO technique employed in WiMAX is the 2 x 2 spatial multiplexing (using
the so-called matrix B = (s1, SQ)T). This technique does not offer any diversity gain from
the Tx side. But it offers a diversity gain jof 2 on the receiver side when detected using

maximum-likelihood (ML) detection.

To describe the technique, we omit the time and frequency dimensions, leaving only the
space dimension. The symbols transmitted by "Tx1 and Tx2 in parallel are denoted s; and
s9, respectively. Denoting by hj; the channel response from Tx i to Rx j (7,5 = 1,2), the

signals received by the two Rx antennas are given by

r = hHSl + h1282 + nq, (214)

ro = h2181 + h2282 + Nno, (215)

which can be written in matrix form as

1 hir  hig n1
_ + ) 2.16
=D ] 210

The ML detector makes an exhaustive search over all possible values of the transmitted



symbols and decides in favor of (si, s3) which minimizes the Euclidean distance

D(Sl, 82) = |’f’1 — h1181 — h1282|2 + |’I“2 — h2181 — h2282|2. (217)

2.3 Basic OFDMA Symbol Structure in IEEE 802.16e

The WirelessMAN-OFDMA PHY is based on OFDM modulation and is designed for nonline-
of-sight (NLOS) operation in frequency bands below 11 GHz. For licensed bands, channel
bandwidths allowed shall be limited to the regulatory provisioned bandwidth divided by any
power of 2 no less than 1.0 MHz. The material in this section is mainly taken from [5] and

[6].
2.3.1 OFDMA Basic Terms

We introduce some basic terms in OEDMA PHY, These definitions help us understand the

concepts in subcarrier allocation and transmission of IEEE 802.16e OFDMA.

e Slot: A slot in OFDMA PHY 1s.a two-dimensional entity spanning both a time and a
subchannel dimension. It is the minimum:possible data allocation unit. For downlink
(DL) PUSC (Partial Usage of SubChannels), one slot is one subchannel by two OFDMA

symbols. For uplink (UL), one slot is one subchannel by three OFDMA symbols.

e Data region: In OFDMA, a data region is a two-dimensional allocation of a group of
contiguous subchannels in a group of contiguous OFDMA symbols. All the allocations
refer to logical subchannels. A two-dimensional allocation may be visualized as a

rectangle, such as the 4 x 3 rectangle shown in Fig. 2.5.

e Segment: A segment is a subdivision of the set of available OFDMA subchannels (that
may include all available subchannels). One segment is used for deploying a single

instance of the MAC.

10



Subchannel £~ "¢« @
offset ¥___._

No_subchannels

-
No_OFDMA_symbols

Figure 2.5: Example of the data region which defines the OFDMA allocation (from [6]).

Subchannel 1 Subchannel 2 DC subcarmier Subchannel 3
~ s
AN
Y

/\//\\+ e A
|

ST T IAtt

"W Guard Band Channel - Guard band/’

Figure 2.6: OFDMA frequency desctiption (from [6]).

2.3.2 Frequency Domain-Description

An OFDMA symbol (see Fig. 2.6) is made up of subcarriers, the number of which determines

the FFT size used. There are several subcarrier types:

e Data subcarriers: for data transmission.
e Pilot subcarriers: for various estimation purposes.

e Null subcarriers: no transmission at all, for guard bands and DC subcarrier.

2.3.3 Primitive Parameters

Four primitive parameters characterize the OFDMA symbols:

11



e BIV: the nominal channel bandwidth.
® Nyseq: number of used subcarriers (which includes the DC subcarrier).

e n: sampling factor. This parameter, in conjunction with BW and N4, determines
the subcarrier spacing and the useful symbol time. For channel bandwidths that are
a multiple of 1.75 MHz, n = 8/7, else for channel bandwidths that are a multiple of
any of 1.25, 1.5, 2 or 2.75 MHz, n = 28/25, else for channel bandwidths not otherwise
specified, n = 8/7.

e (: the ratio of CP time to “useful” time, i.e., T,,/Ts. The following values shall be

supported: 1/32, 1/16, 1/8, and 1/4.

2.3.4 Derived Parameters

The following parameters are defined in terms of the ptimitive parameters.

e Nppr: smallest power of two greater-than N, ..q.

e Sampling frequency: F, = floor(n‘BW/8000) x 8000.
e Subcarrier spacing: Af = F,/Nppr.
e Useful symbol time: T, = 1/Af.

o CP time: T, = G x T;.

e OFDMA symbol time: T, = Tj, + Tj.

Sampling time: Ty,/Nppr.

12



OFDMA symbol number t

g ko detl A3 g RES T gAY (kL AT IS k17 k20 A+23 1 k+26 K+29 1 k30 pht32
s.:: . Ranging subchannel
js+2 = T m
B > - UL burst #1
— =< DL burst #3 °
. = I
7 2 » UL burst #2
5 ] ERT) . .
= ] o€ DL burst #4
2| 32 g — z
— 1= - o = A
sl 48 |= _ E |=
&b q4 2 = UL burst #3 o =
:_‘ - = DL burst #5 A E
==
E . DL burst #2 DL burst #6 UL burst #4
. .
- UL burst #5
E+L —
" - -
- -

DL TTG UL RTG

Figure 2.7: Example of an OFDMA frame (with only mandatory zone) in TDD mode (from

[7])-

2.3.5 Frame Structure

When implementing a time-division daplex (TDD).system, the frame structure is built from
base station (BS) and subscriber station (SS) transmissions. Each frame in the DL trans-
mission begins with a preamble followed by a DL transmission period and a UL transmission
period. In each frame, the TTG and RTG shall be inserted between the downlink and uplink
and at the end of each frame, respectively, to allow the BS to turn around. Fig. 2.7 shows

an example of an OFDMA frame with only mandatory zone in TDD mode.

2.4 Uplink Transmission in IEEE 802.16e OFDMA

The material in this section is mainly taken from [6] and [7].

13



2.4.1 Data Mapping Rules

The UL mapping consists of two stages. In the first stage, the OFDMA slots allocated to

each burst are selected. In the second stage, the allocated slots are mapped.

Stage 1: Allocate OFDMA slots to bursts. A UL allocation is created by selecting an integer
number of contiguous slots according to the ordering of steps 1 to 3. This results in the

general burst structure shown by the gray area in Fig. 2.8.

1) Segment the data into blocks sized to fit into one OFDMA slot.

2) Each slot shall span one or more subchannels in the subchannel axis and one or more
OFDMA symbols in the time axis (see Fig. 2.8 for an example). Map the slots such
that the lowest numbered slot occupies the lowest numbered subchannel in the lowest

numbered OFDMA symbol.

3) Continue the mapping such that-the OFDMA ssyinbol index is increased. When the
edge of the UL zone is reached, ieontinue-the mapping from the lowest numbered

OFDMA symbol in the next available subchannel.

4)
Stage 2: Map OFDMA slots within the UL allocation.

1) Map the slots such that the lowest numbered slot occupies the lowest numbered sub-

channel in the lowest numbered OFDMA symbol.

2) Continue the mapping such that the subchannel index is increased. When the last
subchannel is reached, continue the mapping from the lowest numbered subchannel in
the next OFDMA symbol that belongs to the UL allocation. The resulting order is

shown by the arrows in Fig. 2.8.

14



- Uplink zone
OFDMA symbol number
-

-

k-2 k-1 k k+1 k2 k3 k4 kS k6 kT k48 k9 k+10 A+11 k+12
0
1
2
5
4
3
6
7 SIHT (n+j0) SIpt (2]
8 Klot (n
9
10 5. /7
1 S b
12 4y 7
13 h 4
14 rd yd
15 Fd Vi
Z 2 -
3 ¥ ‘\ h 4
Skt (n+1j0)
N,
AN
N, -
S Thata degior
vi
Subchannel

number

Figure 2.8: Example of mapping OFDMA slots to subchannels and symbols in the uplink
(from [7]).

% % Symbol 0
Symbol |
% % Symbol 2

% pilot carrier data carrier

Figure 2.9: Structure of an uplink tile (from [6]).

Fig. 2.8 illustrates the order of OFDMA slots mapping to subchannels and OFDMA symbols.

2.4.2 Carrier Allocations

Consider the 1024-FFT PUSC permutation for example. Under it, the uplink supports 35
subchannels. Each transmission uses 48 data carriers as the minimal block of processing.

Each new transmission for the uplink commences with the parameters as given in Table 2.1.

15



Table 2.1: OFDMA Uplink Subcarrier Allocations [6], [7]

] Parameter \ Value \ Notes ‘
Number of DC 1 Index 512 (counting from 0)
subcarriers
Noysed 841 Number of all subcarriers used within a symbol
Guard subcarriers: 92,91
Left, Right
TilePermutation Used to allocate tiles to subchannels

11,19, 12, 32, 33, 9, 30, 7, 4, 2,
13, 8, 17, 23, 27, 5, 15, 34, 22, 14,
21, 1, 0, 24, 3, 26, 29, 31, 20, 25,

16, 10, 6, 28, 18
Nyubchannels 35
Nsubcarriers 24
Ntiles 210
Number of subcarriers 4 Number of all subcarriers within a tile
per tile
Tiles per subchannel 6

A slot in the uplink is composed-of three OFDMA symbols and one subchannel. Within
each slot, there are 24 data subcarriers and 12 pilot subcarriers. The subchannel is con-
structed from six uplink tiles, each hayingfour successive active subcarriers with the config-

uration as illustrated in Fig. 2.9.

The usable subcarriers in the allocated frequency band shall be divided into Ny, physical
tiles with parameters from Table 2.1. The allocation of physical tiles to logical tiles in

subchannels is performed according to:

Til€S<S, n) = Nsubchannels -n+ (Pt[(S + n) mod Nsubchannels] + UL,PeTmBase)mod Nsubchannels
where:

e Tiles(s,n) is the physical tile index in the FFT with tiles being ordered consecutively
from the most negative to the most positive used subcarrier (0 is the starting tile

index),

16



n is the tile index 0..5 in a subchannel,
Pt is the tile permutation,
s is the subchannel number in the range 0.. Nyupehanners — 1,

UL_PermBase is an integer value in the range 0..69, which is assigned by a manage-

ment entity, and

Ngubchannels 18 the number of subchannels for the FFT size given in Table 2.1.

After mapping the physical tiles to logical tiles for each subchannel, the data subcarriers

per slot are enumerated by the following process:

)

After allocating the pilot carriers within each tile, indexing of the data subcarriers
within each slot is performed starting from the first symbol at the lowest indexed
subcarrier of the lowest indexed tile and ¢ontinuing in an ascending manner through
the subcarriers in the same symbol, thenr'going to the next symbol at the lowest indexed

data subcarrier, and so on. Data subcarriers shall be indexed from 0 to 47.

The mapping of data onto the subcarriers will follow the equation below. This equation
calculates the subcarrier index (as assigned in item 1) to which the data constellation

point is to be mapped:
Subcarrier(n, s) = (n+ 13 - s) mod Nsypearriers
where:

e Subcarrier(n, s) is the permutated subcarrier index corresponding to data sub-

carrier n is subchannel s,

e n is a running index between 0 and 47, indicating the data constellation point,

17



LSB MSB
Initialization DLz 1 1 1 | R B B 1 1

Sequences U1 0 0 1 ] L0 1 0 1

| 3 516 |7 [t

Wy

Figure 2.10: PRBS generator for pilot modulation (from [6] and [7]).

e s is the subchannel number, and

® Noupearriers 1S the number of subcarriers per slot.

2.4.3 Pilot Modulation

The PRBS (pseudo-random binary: sequence) generator depicted in Fig. 2.10 is used to
produce a sequence, wg. The value of the pilot modulation, on subcarrier &, shall be derived

from wy,.

For the mandatory tile structure in the uplink, pilot subcarriers shall be inserted into each
data burst in order to constitute the symbol and they shall be modulated according to their
subcarrier location within the OFDMA symbol. The pilot subcarriers shall be modulated

according to
1
%{Ck} = 2(5 — wk), %{Ck} = 0. (2.18)

In all permutations except UL PUSC, downlink TUSC1, and the DL and UL STC permu-
tations/modes, each pilot shall be transmitted with a boosting of 2.5 dB over the average

non-boosted power of each data tone. That is, these pilot subcarriers shall be modulated

18



-"?:ﬂ"3|-"?g;. j‘ I 1. J—E

011 = - . e 71 = . - »
010 = L] . L . . .
000 = . . et e . - -
00] = - L] a4+ = L} . L]
' N L |
: Y D
""|-”J|3 Q ¢ "m 101 = - . -1 = . . -
01 = [] - .
100 = N - a-H a - - -
an o w LI L] L]
< } - 110 = L] . L L] . .
AT :
10 = - . .
111 = - . -1 a - . -
Y

11 = e« ®» . 11 110 1000 101 001 000 010 011 bshyby

11 10 00 01 D3bsy

Figure 2.11: QPSK, 16-QAM, and 64-QAM constellations (from [6]).

according to

Riceh =5 (g = W) ") =0 (2.19)

2.4.4 Data Modulation

The employed cosotellations are as shown in Fig. 2.11. The data bits are entered serially
to the constellation mapper. Gray-mapped QPSK and Gray-mapped 16QAM shall be sup-

ported, whereas the support of 64QAM (also Gray-mapped) is optional.

2.5 Downlink Transmission in IEEE 802.16e OFDMA

This section briefly introduces the specifications of IEEE 802.16e OFDMA PUSC downlink

transmission. The material is mainly taken from [6] and [7].

19



2.5.1 Data Mapping Rules

The downlink data mapping rules are as follows:

1. Segment the data after the modulation block into blocks sized to fit into one OFDMA

slot.

2. Each slot shall span one subchannel in the subchannel axis and one or more OFDMA
symbols in the time axis, as per the slot definition mentioned before. Map the slots
such that the lowest numbered slot occupies the lowest numbered subchannel in the

lowest numbered OFDMA symbol.

3. Continue the mapping such that the OFDMA subchannel index is increased. When the
edge of the Data Region is reached, continue the mapping from the lowest numbered

OFDMA subchannel in the next available symbol.

Figure 2.12 illustrates the order:ofilOFDMA slotsmapping to subchannels and OFDMA

symbols.

2.5.2 Preamble Structure and Modulation

Fig. 2.13 shows a downlink transmission period. The first symbol of the downlink trans-
mission is the preamble. There are three types of preamble carrier-sets, which are defined
bellow. The subcarriers in the preamable are modulated using a boosted BPSK modulation
with a specific pseudo-noise (PN) code. The PN series modulating the pilots in the preamble
can be found in [6, pp. 553-562].

The preamble carrier-sets are defined as
PreambleCarrierSet, =n+ 3 -k, (2.20)
where:

20



OFDMA symbol index
L

B2 k-l k  ktl k2 k3 ktd k5 k6 kT kHE kA9 k10 k1l kHI2

Slot (p=17) |

R
L4 I
; r 2

]
T
1
12 v ) 14
1
T
1
T

P T P R P=)

7
I

T
N
i
k4 T

Ihata tegior

vt

Subchannel
number

Figure 2.12: Example of mapping OFDMA slots to subchannels and symbols in the downlink
in PUSC mode (from [7]).

Data Symbol
Data Symbol

Figure 2.13: Downlink transmission basic structure (from [6]).

o PreambleCarrierSet, specifies all subcarriers allocated to the specific preamble,
e n is the index of the preamble carrier-set indexed 0 < 1 < 2 and

e [ is a running index, 0 < k& < 283.

21



Each segment uses one type of preamble out of the three sets in the following manner: For
the preamble symbol, there are 172 guard band subcarriers on the left side and the right side
of the spectrum. Segment i uses preamble carrier-set ¢, where ¢ = 0, 1,2. The DC subcarrier
is not modulated at all and the appropriate PN is discarded. That is, the DC subcarrier is

always zeroed.

The pilots in downlink preamble shall be modulated as

1
R{ PreamblePilotsModulated} = 4 - /2 - (5 — wg),

S{ Preamble Pilots M odulated} = 0. (2.21)

2.5.3 Subcarrier Allocations

The OFDMA symbol structure is constructed using pilots, data and zero subcarriers. The
symbol is first divided into basic clusters and zero.carriers are allocated. The pilot tones are
allocated first; what remains are data.subcarriers, which are divided into subchannels that

are used exclusively for data. Pilotsandydata carriers are allocated within each cluster.

Figure 2.14 shows the cluster structure with-subcarriers from left to right in order of
increasing subcarrier index. For the purpose of determining PUSC pilot location, even and
odd symbols are counted from the beginning of the current zone. The first symbol in the
zone is even. The preamble is not counted as part of the first zone. Table 2.2 summarizes

the parameters of the OFDMA PUSC symbol structure.

The allocation of subcarriers to subchannels is performed using the following procedure:

1) Divide the subcarriers into a number (Nguysters) Of physical clusters containing 14 ad-

jacent subcarriers each (starting from carrier 0).

22



L X R N Joi X X JOoN N X N N
o X X X X N N N N N J JOX

& : data subcarrier

(O : pilot subcarrier

even symbols

odd symbols

Figure 2.14: Cluster structure (from [7]).

Table 2.2: OFDMA Downlink Subcarrier Allocation Under PUSC [6], [7]

Parameter \ Value \ Comments ‘

Number of DC 1 Index 512 (counting from 0)

subcarriers

Number of guard 92

subcarriers, left

Number of guard 91

subcarriers, right

Number of used 841 Number of all subcarriers used within a

subcarriers (Nyseq) symbol;sincluding all possible allocated
pilots and‘the DC carrier

Number of subcarriers 14

per cluster

Number of clusters 60

Renumbering sequence Usedto renumber clusters before
allocation to subchannels:
6, 48; 37, 21, 31, 40, 42, 56, 32, 47, 30, 33,
54, 18, 10, 15, 50, 51, 58, 46, 23, 45, 16, 57,
39, 35, 7, 55, 25, 59, 53, 11, 22, 38, 28, 19,
17, 3, 27, 12, 29, 26, 5, 41, 49, 44, 9, 8, 1,
13, 36, 14, 43, 2, 20, 24, 52, 4, 34, 0

Number of data 24

subcarriers in each

symbol per subchannel

Number of subchannels 30

Basic permutation 12 3,2,0,4,5,1

sequence 6 (for 6

subchannels)

Basic permutation 8 3,0,2,1

sequence 4 (for 4

subchannels)

23



2)

3)

Renumber the physical clusters into logical clusters using the following formula:

LogicalCluster

RenumberingSequence( Physical Cluster), first DL zone,
= RenumberingSequence((PhysicalC’luster—l—
13- DL_PermBase)mod Nclusms), otherwise.

Divids the clusters into six major groups. Group 0 includes clusters 0-11, group 1
clusters 12-19, group 2 clusters 20-31, group 3 clusters 32-39, group 4 clusters 40-51
and group 5 clusters 52-59. These groups may be allocated to segments. If a segment
is being used, then at least one group shall be allocated to it. (By default group 0 is

allocated to segment 0, group 2 to segment 1, and group 4 to segment 2.)

Allocate subcarriers to subchannel in each major group separately for each OFDMA
symbol by first allocating the pilot subgarriers within each cluster and then taking all
remaining data subcarriers within the symbeol. The exact partitioning into subchannels

is according to the equation below, called & permutation formula:

SUbCCLTT’i@T(k’, S) - Nsubchannels *Ng + {ps [nk mod Nsubchannels]+

DL_PermBase } mod Ngubchannels

where:

e subcarrier(k,s) is the subcarrier index of subcarrier k in subchannel s,
e s is the index number of a subchannel, from the set [0.. Ngybchanners — 1],

o n; = (k+ 13- s)mod Ngypearriers , Where k is the subcarrier-in-subchannel index

from the set [0.. Ngupearriers — 1],

® Ngubchanners 1 the number of subchannels (for PUSC use number of subchannels

in the currently partitioned group),

24



e p;[j] is the series obtained by rotating basic permutation sequence cyclically to

the left s times,

® Noubearriers 15 the number of data subcarriers allocated to a subchannel in each

OFDMA symbol, and

e DL_PermBase is an integer from 0 to 31.

2.5.4 Pilot Modulation

Pilot subcarriers shall be inserted into each data burst in order to constitute the symbol.
The PRBS (pseudo-random binary sequence) generator depicted in Fig. 2.10 shall be used

to produce a sequence, wy.

Each pilot shall be transmitted with a boosting of 2.5 dB over the average non-boosted

power of each data tone. That is, the pilot subcarriers shall be modulated according to

R{ck}=

(

wyl Co
DO | —

2.5.5 Data Modulation

Downlink transmission also employs the modulations shown in Fig. 2.11. gray-mapped
QPSK and Gray-mapped 16QAM shall be supported, whereas the support of 64QAM (also

Gray-mapped) is optional.

2.6 Space-Time Coding in IEEE 802.16e OFDMA

This section briefly introduces the space-time coding of IEEE 802.16e. The material is

mainly taken from [6] and [7].

25



Subchannel IFFT Input
Modulation| "] Packing Tx

[FFT || Filter}—pm] DAC[ | RF ..-E
Diversity

Encoder —y//
% IFFT |y Filter| s DAC| 5| RF

\\;‘\ s

% RF || ADC || Filter|—pm| FFT

Demod. Ratios

Diversity Sub- Log-
Combiner channel ] likelihood —®{decoder

B
s
Figure 2.15: Illustration of STC (from [7]).

2.6.1 STC Using Two Antennas

STC (in some cases also termed STTD) or FHDC may be used on the DL to provide
higher order (space) Tx diversity. Consider using two Tx antennas on the BS side and one
reception antenna on the SS side. This schéme requires multiple-input single-output channel

estimation. Decoding is very similar‘to maximum ratio.combining.

Figure 2.15 shows Tx diversity insertion into the OFDMA chain. Each Tx antenna has
its own OFDMA chain, but they have the 'sameTocal oscillator for synchronization purposes.
The two antennas transmit two different OFDMA data symbols in the same time. Time

domain (space-time) or frequency domain (space-frequency) repetition is used.

2.6.2 STC/FHDC Configurations

Two transmission formats are allowed for the two-antenna configuration, each having its own
capacity-diversity tradeoffs. The following matrices define the transmission formats with the
row index indicating the antenna number and column index indicating the OFDMA symbol.
The entries define the transmission from a subchannel used for this transmission configuration

(the same operation is repeated for all subchannels used in this format). Transmission format

26



A uses matrix A (space time coding rate = 1):

A= { g; 1%) } : (2.23)

whereas transmission format B uses matrix B (space time coding rate = 2):

B= { g; ] . (2.24)

2.6.3 Uplink Using STC

A user supporting transmission using STC configuration in the UL shall use a modified UL
tile. The 2-Tx diversity data (STTD mode) or 2-Tx spatial multiplexing (SM mode) data
can be mapped onto each subcarrier. The mandatory tile shall be modified to accommodate

these configurations.

In STTD mode, the tiles shall be.allocated.to-subehannels. The pilots in each tile shall
be split between the two antennas, ‘and-the data‘subearriers shall be encoded in pairs after
constellation mapping, as depicted-in Fig.-2.16. - The-data subcarriers transmitted from

antenna 0 follow the original mapping.

2.6.4 STC Using Two Antennas in Downlink PUSC

In PUSC, the data allocation to cluster is changed to accommodate two antennas trans-
mission with the same estimation capabilities, in which each cluster shall be transmitted
twice from each antenna. Figure 2.14 is replaced by Figure 2.17 in the definition of PUSC

permutation when STC is enabled. The pilot locations change in period of 4 symbols.

Symbols are counted from the beginning of the current zone. The first symbol in the

zone is even. STC encoding is done on each pair of symbols 2n,2n +1(n =0,1,...).

27



Antenna O (Pattern A) Antenna 1 (Pattern B)

0008 €000
0006 @88

€000 00608

. Data subcarrier

O Null subcarrier
% Pilot subcarrier

Figure 2.16: Mapping of data sub

arriers in STTD mode (from [7]).

0000000000000 symbals 4+3
2000000000000 0 symbols 44+2
00000000 200000 symbols 4k+1
0002000000000 symbols 4k

. data subcarrier

. pilot subcarrier for antenna 0

@ pilot subcarrier for antenna 1

Figure 2.17: Cluster structure for STC PUSC using two antennas (from [7]).

28



Chapter 3

Channel Estimation Techniques

In this chapter, we discuss some channel estimation methods.

3.1 Pilot-Symbol-Aided Channel Estimation [9]

Channel estimators usually need sonie kind!of pilet information as a point of reference. A
fading channel requires constant tracking, so pilot information has to be transmitted more
or less continuously. Decision-directed chammel-estimation can also be used. But even in
this type of schemes, pilot information has to bé transmitted regularly to mitigate error

propagation.
3.1.1 The Least-Squares (LS) Estimator [10]

The simplest channel estimator one can imagine consists simply in dividing the received signal
by the symbols that have been actually sent (and that are supposed to be known). Based
on a priori known data, we can estimate the channel information on pilot carriers roughly

by the least-squares (LS) estimator. An LS estimator minimizes the following squared error
Y — H. sX|[? (3.1)

29



where Y is the received signal and X is a priori known pilots, both in the frequency domain

and both being N x 1 vectors where N is the FFT size. I:ILS is an NV x N diagonal matrix

whose diagonal values are 0 except at pilot locations m; where i =0,--- | N, — 1:
Hiomo 0 0 0
0 Hm1,m1 0 O
I:ILS — 0 0 Hmz,mQ 0 (32)
0 0 0 e 0
0 0 e 0 e Hmzv,,q,HmNp,l
Therefore, (3.1) can be rewritten as
[V (m) — Hpg(m)X (m)]2, for all m = m;. (3.3)

Then the estimate of pilot subcarrier responses, based on only one observed OFDM symbol,

is given by
Hustm) = s = SRR )+ T (3.4)

where N(m) is the complex white Gaussian noise on.subcarrier m. We collect Hyg(m) into

A

H, s, an N, x 1 vector where N, is the,total number of pilots, as

Hy s = [Hpws(O)H,s(1)ets Hy (N, — 1)]7
(3.5)

— [Yp(o) Yp(1) Yp(Np—1) ]T
Xp(0)? Xp(1)7 """ Xp(Np—1)

The LS estimate of H, based on one OFDM symbol is susceptible to noise effects, and thus

an estimator better than the LS estimator is desirable.

3.1.2 The LMMSE Estimator [11]

The minimum mean-square error (MMSE) estimate has been shown to be better than the LS
estimate for channel estimation in OFDM systems, but the major drawback of the MMSE
estimate is its high complexity. A low-rank approximation results in a linear minimum mean

squared error (LMMSE) estimator that uses the frequency-domain correlation of the channel

30



[11]. The linear minimum mean-square error channel estimator tries to minimize the mean
squared error between the actual and the estimated channels, the latter obtained by a linear
transformation applied to IZIvas. The mathematical representation of the LMMSE estimator

on pilot signals is

A~

_ -1
Hp,lmmse - RHpHp,LS RHp,LSHp,LS

A

Hp,LS
= Ru,u,(Ru,nm, + o0 (X, X)) ' H, s (3.6)

where IA{p’ s is the least-square estimate of H, in (3.5), o2 is the variance of the Gaussian

white noise, X, is the vector of transmitted signal on pilot subcarriers, and the covariance

matrices are defined by

R, s = E{HpHgLs}a (3.7)
R, psHy,s = E{Hp,LSHgLs}, (3.8)
Rum, = E{Hpr}. (3.9)

Note that there is a matrix inverse involved in the MMSE estimator, which must be calculated

every time, and the computation of*matrix inversion requires O(Ng) arithmetic operations

12].

3.2 Two-Dimensional Channel Estimators

By two-dimensional channel estimation, we mean that in addition to using channel informa-
tion along the frequency domain, we also use channel information along the time domain to

get better performance.

3.2.1 Linear Interpolation

After obtaining the channel response estimate at the pilot subcarriers, one may use interpola-

tion to obtain the response at the rest of the subcarriers. Linear interpolation is a commonly

31



considered scheme due to its low complexity. It does the interpolation between two known
data. That is, we use the channel information at two pilots obtained by the LS estimator to

estimate the channel frequency response information at the data subcarriers between them.

The channel estimates at data subcarrier k, mL < k < (m+1)L, using linear interpolation
is given by [13]

H.(k)=H.(m+1)= (Hy(m+1)— Hp(m))% + H,(m) (3.10)

where Hy,(k),k =0,1,---, N,, are the channel frequency responses at pilot subcarriers, L is
the pilot subcarriers spacing, and 0 < [ < L. In two-dimensional channel estimation, to suit

the tile structure, we first interpolate in the time domain and then in the frequency domain.

3.2.2 2-D Wiener Filter [14]

The Wiener filter is the optimum (insthe sense of minimum mean-squared error) linear filter

or smoother or predictor, if the noise is additive:

Assume we have transmitted pilot: signal veetor'p and received pilot signal vector p
containing noise. We want to find an estimate h of the channel response h as a linear
combination of p. That means we want to find w that makes J (w) minimum, where w and

J (w) are defined as
h=wlp, J(w)=E [|h - iﬂ . (3.11)
By applying the orthogonal projection theorem, we get

w=0"o"! (3.12)

where @ is the cross-covariance vactor between p and h, and @ is the auto-corvariance matrix

between pilots.

32



Let k and [ be the subcarrier number and the OFDM symbol number, respectively. The

correlation values may be assumed as given by [15]

where 7, (l)and r¢ (k) are the correlation functions in time and frequency, respectively. For

an exponentially decaying multipath power delay profile,

1
14 527k /T

re(k) (3.14)

where 1/T is the subcarrier spacing, which is the inverse of the FFT interval T. For a
time-fading signal with a maximum Doppler frequency f,,.. and a Clarke-Gans spectrum,

the time correlation function (1) is given by
re(1)Z2 T (27 fiis L T) (3.15)

where .Jy is the zeroth order Bessel-function of the first kind and 7, is the OFDM symbol

duration, which is the FFT intervallZ plus-the CP time:

33



Chapter 4

Simulation of STC Uplink Channel
Estimation

In this chapter we will simulate two different channel estimation methods for the in IEEE
802.16e OFDMA uplink system. One is linear interpolation and the other is Wiener filter.
We evaluate the performance of bothsmethods mainly by observing the mean square error

(MSE) and the symbol error rate (SER).

4.1 Linear Interpolation

As described in chapter 2, the uplink transmission uses a tile structure to transmit pilot
and data information. In the STC mode, one tile only contains two pilots. So we use tile
(N —1) and tile (N +1) to interpolate the channel response of tile N, as shown in Fig. 4.1, to
yield enough references for linear interpolation in frequency. Within three successive three
tiles, we first estimate the channel response at each pilot position. Then we interpolate
for the frequency response at each data subcarrier from the estimated pilot response in
time domain. Lastly, we get the frequency response of the whole tile by interpolating the

frequency response in the frequency domain.

The detailed steps for channel estimation are as follows:

34



tile N—‘; O J J y

tile N

() Pilot subcarrier _Data subcarrier
) Null subcarrier

|

tile N+1

Figure 4.1: Linear interpolation in STTD mode at antenna 0.

e Estimate the channel response at eaclipilét docation by using the LS technique.

. . . HAS, & .
e Use linear interpolation in the time dimension to-get some data subcarrier responses
e 4 ' -

(makred 1 in Fig. 4.1). . | N & | ..-,;

e Estimate the channel responseé' of the remain'i"rllg subcarriers in a tile by frequency

e

domain interpolation (marked 2 in Fig. 4.1).

4.2 Wiener Filtering

For two-dimensional Wiener filtering, we also choose three contiguous tiles to do channel
estimation as depicted in Fig. 4.2. To do Wiener filtering, we have to know two parameters:
autocorrelation of channel responses ® at pilots and cross-correlation 8 of channel response
at data subcarriers and pilots. In the uplink, one subchannel contains six tiles. Thus we
use the average over six tiles in the same subchannel to calculate ®. That means if pilot

subcarrier Pj’s channel response is p; and the estimate is py, where pr = pr + ng with ny

35



Figure 4.2: Wiener filtering in STTD mode at Antenna 0.

being additive white Gaussian noise (AWGN); then we estimate ® by

PPy
o=p| P
P3P1
Dapl

tile N

tile N+1

p1D5
P25
P3Ds
Paps

!

O

() Pilot subcarrier _Data subcarrier

) Null subcarrier

P1p3
P2p3
P33
DD

P1pis|
P2l

P3Dy
]34132'-:.

|
&1 NS
l g - d 4 prT
e g - -
= ‘"I
ﬁ'érr_te subchannel - 223121
y 185E Ppapy

p1D5
P2p5
P3ps
DaDs

cross-covariance

P1P3
Pap3
D3D3
PP

To caculate 8, we first assume the chéhnél respgnsé‘ ‘at data subcarrier hy,

interpolation of four nearest pilot channel responses [16] as

3
he =) aip;
i=0

1Py
Dapi | (4.1)
P3Py
DaDy

is the 2-D linear

(4.2)

where «; are the linear interpolation weights. There are eight data subcarriers in a tile. We

list the «; of different data subcarrier in Table 4.1.

Since we can only get pg, so we use pi in place of py, yielding

36



Table 4.1: «; of Eight Data Subcarriers at Antenna 0.
Carrier | a1 | oo | a3 | ay

1 2/312/9 0 |1/9
1/314/9| 0 |2/9
2/31 0 |1/3] 0
4/9 11/912/912/9
2/912/911/91]4/9
0 | 1/3| 0 |2/3
2/91 0 [4/91]1/3
/91 0 |2/9]2/3

QO | O O = W N

E =F

r/ 3 3
(Z op; + Z Oéipmi> pr g,
L \i=0 i=0
T/ 3
=K (Z Oéipz) Dk

=0

3
(Z Oéiﬁz) 252
i=0

+ ol (4.3)

where n; denotes the noise at pilot i and o is.the variance of the white Gaussian noise. Here

(Z aiﬁi) 152] — oy (4.4)

=0

Elh;ppl = E

As a result, the cross-correlation vector ¢,:is given by
0, = E[ hpi haps s hapi |
=E[ (XCloop) i (Cigauibs) 05 (Cigaipi) b5 (Xigipi) i |
— [ 0400'(2) OélO'g 0420'(2) 0630'3 } . (45)

Using the average over the six tiles of one subchannel to approximate the expectation oper-

ation, we have

0, %8 ( Z [ (Z?:o Oéz'pi) P (Z?:o Oéipz') Y2 (Z?:o Oéipi) P3 (Z?:o aipi) y2 })
one subchannel
— [ 0500'3 0610'3 0520'8 0630'3 } (46)

where we can estimate o2 by the power of the subcarriers in the guard band and those that

have a null value.

37



4.3 STC Decoding

After we have estimated the channel response, we can decode the STC, where the decoding
method has been introduced before. If the channel responses are the same in neighboring
subchannels as shown in Figure 4.3(a), then the received signals r; and ry are given by in,

absence of noise,

r1 = Stho — Syhy, 19 = Sahg + ST h;. (4.7)
Then we can decode the received signal as

S = (rhg +r3h) / ([hol® + 1),

Sy = (rahg — i) / ([hol® + [ha]?) - (4.8)

But in a real channel, the neighboring channel responses may not be the same, especially

when in high mobile speed, as shown in Figure 4:3(b),
r1 = Sthy — S5hals ra =S2h1 + ST hs. (4.9)
So we decode by calculating
S1 = (rmhTFarihe) [ (hohi + hah}) ,

51 = (’f’ghg — Tfhg) / (h;hg + hzk)hl) . (410)

4.4 Simulation Conditions

This section gives the system parameters and introduces the channel models used in our

simulation work.

4.4.1 OFDMA Uplink System Parameters

In chapter 2, we introduced the primitive and the derived parameters of the system. The

system parameters used in our simulation are listed in Table 4.2.

38



Antenna 0 (Pattern A) Antenna | (Pattern B)

cl@ ele e 8]0

S3 (S (S5 (Sg S (S¢S (¢

©68009080

Figure 4.3: STTD transmission.
Responses are different.

g 'nnel responses are the same. (b)

YAEE Ol F

4.4.2 Channel Models

We consider the following channel models: AWGN; single-path Rayleigh, SUI, and ETSI
Vehicular A.

Erceg et al. [17] published a total of 6 different radio channel models for type G2 (i.e.,
LOS and NLOS) MMDS BWA systems in three terrain categories. The three types in

suburban area are:

e A: hilly terrain, heavy tree,

39



Table 4.2: OFDMA Uplink Parameters

’ Parameters Values
Bandwidth 10 MHz
Carrier frequency 3.5 GHz
Nepr 1024
Nused 841
Sampling factor n 28/25
G 1/8
Sampling frequency 11.2 MHz
Subcarrier spacing 10.94 kHz
Useful symbol time 91.43 ps
CP time 11.43 us
OFDMA symbol time 102.86 ps
Sampling time 89.29 ns

e C: flat terrain, light tree, and

e B: between A and C.
The correspondence with the so-called/SUI channels is'as follows:

e C: SUI-1, SUI-2,

e B: SUI-3, SUI-4, and

e A: SUI-5, SUI-6.
In the above, SUI-1 and SUI-2 are Ricean multipath channels, whereas the other four are
Rayleigh multipath channels [18]. The Rayleigh channels are more hostile and exhibit a
greater RMS delay spread. And the SUI-2 represents a worst case link for terrain type C.

We employ the SUI-2 and SUI-3 models in our simulation, but we use Rayleigh fading to

model all the paths in these channels. The channel charateristics are as shown in Table 4.3.

We also employ the ETSI Vehicular A model [19]. The model’s power delay profile is as
shown in Table 4.4. The mean dealay and thd RMS delay are shiwn in Table 4.5.

40



Table 4.3: Channel Profiles of SUI-2 and SUI-3 [17]

SUT - 2 Channel
Tap L Tap2 Tap 3 Units

Delay 0 04 11 s
Power (omni ant.) 0 -12 -15 dB
90% K-fact. (ommi) | 2 0 Q
75% K-Tact. (omni) 11 0 0
Power (30° ant.) 0 -1% =27 dB
90% K-Tact. (30°) g 0 a
75% K-Tact. (30°) i6 0 a
Doppler 0.2 0.15 0.25 Hz
Antenna Correlation: Py = 0.5 Terrain Type: C
Gain Rednction Factor: GRF=2dB Omni antenna:  tpys = 0.202 ps,
bllg e TNl Teie ?m"' Z'?]- Z?é‘é ‘31]; overall K- K = 1.6 (90%): K = 5.1 (75%)

Bl T 30° antenna: Trus = 0.069 s,

averall K: K =6.9 (90%); K =21.8 (75%)

SUI - 3 Channel
Tap 1 Tap 2 Tap 3 Units

Delay 0 04 0.9 s
Power (pmmi ant.) 4] -5 -10 dB
0% K-fact, (omni) |1 0 0
75% K-fact. (omni) |7 0 0
Power (30° ant.) 0 -11 22 dB
909, K-Tact. (307) 3 0 0
75% K-Tact, (307 19 ¢ 0
Doppler 0.4 03 0.5 Hz
Antenna Correlation: Pew =04 Terrain Type: B
Gain Reduction Factor: GEF=31dB Omni antenoa: Ty = 0.264 ps,
B Ry T overall K: K =0.5 (90%); K = 1.6 (75%)

w ) 30° antenna: Ty = 0.123 s,

overall K: K =2.2 (90%). K= 7.0 (75%)

4.5 Simulation Results

4.5.1 Simulation Flow

Figure 5.3 illustrates our simulated system. We assume perfect synchronization. After

channel estimation, we calculate the MSE between the real channel and the estimated one,

41



Table 4.4: Power-Delay Profile of the ETSI Vehicular A Channel

Tap | Relative Delay (us) | Average Power (dB)
1 0 0
2 0.31 —-1.0
3 0.71 -9.0
4 1.09 —10.0
5 1.73 —15.0
6 2.51 —20.0

Table 4.5: Mean Delay and RMS Delay Spread
Channel Mean Delay (us) RMS Delay Spread(us)
SUI-2 0.0027 (0.0302 samples) | 0.0428 (0.4793 samples)
SUI-3 0.0413 (0.4626 samples) | 0.1318 (1.4762 samples)
Vehicular A | 0.1325 (1.4840 samples) | 0.1821 (2.0395 samples)

Data a|Framing HModulationIE. STC Tx-SRRC

encode
Tx-SRRC J

Tx ¥ y
2 to 1 channel

Rx simulator

STC Channel )
- d .
decode{ Estimation H De-Framing [€FFT}¢ Rx-SRRC

Figure 4.4: Block diagram of the simulated system.

where the average is taken over the subcarriers. The symbol error rate (SER) can also be

obtained after demapping.

4.5.2 Validation of Simulation Model

Before considering multipath channels, we do simulation with an AWGN channel to validate
the simulation model. We validate the model by comparing theoretical SER curves and the

SER curves resulting from simulations, where we use C/C++ programing languange and

42



TI's Code Composer Studio (CCS).

For an even number of bits per symbol, the SER of rectangular QAM is given by

rea(i- e (Vi) ()

where

e VM = number of symbols in modulation constellation; for example, M = 4 for QPSK,

M = 16 for 16QAM and M = 64 for 64QAM,
e F, = average symbol energy,
e Ny = noise power spectral density (W/Hz), and
o Qx) = \/%7 [ e t2at, x> 0.

In Figure 4.5, the theoretical symbol érror rate (SER) ¢urve versus E /N, for uncoded QPSK
is plotted together with the SER curve resulting from simulation under no channel estimation

error. This validates the simulationZmodel.

4.5.3 Simulation Results and Analysis

For verification of the simulation results, note that the theoretical MSE for linear interpola-

tion in AWGN is given by
MSE = E[|h — h|?]

= E[lh - ZO%(Z% + ;) |’]

3

=> aja. (4.12)



Figure 4.5:

retical one.

QPSK
10 T T

—&— Perfect Estimation
@ —O— Theory

SER

The SER curve for uncoded QPSK resulting from simulation matches the theo-

Table 4.6: MSE of Eight-Data Subc¢arriers at Antennas 0 and 1
Carrier Index, Antenna 04 1.8 /| 2,7 | 3,6 | 4,5
Carrier Index, Antennarl72;7 1.8 | 45| 3,6

I 2029 25,2 B2
MSE 8120 1'58190 | 990 | 8190

Note also that, the MSE is different at different data subcarriers. The MSE at the eight

data subcarriers in a tile are listed in Table 4.6.

The theoretical MSE and the simulation result are shown in Figure 4.6.

If we regard MSE as noise, then the equivalent SNR would be SNR/(1+ MSE). So we

can get theoretical SER under AWGN channel for QPSK as

| Es

The result is as shown in Figure 4.7. Since STC using two data subcarriers to decode. The

influence of MSE on two neighbor subcarriers would be average.

44



Linear Interpolation MSE in AWGN QPSK
T T T

T

—©— MSE1

—A— MSE2

—&— MSE3

—— MSE4

- A - MSE1,8 Theory
MSE2,7 Theory

- ¢ = MSE3,6 Theory

= P = MSE4,7 Theory

107

10
SNR

Figure 4.6: MSE performance for uncoded QPSK resulting with linear interpolation, antenna
0.

SER performance compare
10 T T T

T T
=—— Linear
‘ —8— Theory
—#— Perfect Est.

-3

-4

10 'k

10 'k

-6

10 -

SNR

Figure 4.7: SER performance for uncoded QPSK resulting from linear interpolation.

45



Now we derive the theoretical MSE for Wiener filtering in AWGN channel. Suppose we
know the autocorrelation ® and the cross-correlation 6. Since the channel response h = 1 in

AWGN and the noise power is o3, we get

1+ 02 1 1 1
B 1 1+o0? 1 1
¢ = 1 1 1405 1 ’ (4.14)
1 1 1 1+o0?
=[1 11 1]. (4.15)
The received pilot vector p, containing noise, is given by
p’=[14ny 1+n 14+ny 1+ng]. (4.16)
Hence the estimation is given by
1+a82 1 1 1 17T 1+n
s 1 1 +0% 1 1 1+mn
h_[l L 1] %! 1 14 of 1 1+ mno
1 i 1 1+o02 14+ ns
_4—|—n0+n1+ng+n3 (417)
B 4+ o ' '
The theoretical MSE in AWGN channel is thus
MSE=E [|h - hﬂ
_E |:|1_ 4+n0+n1+2n2—|—n3|2
4+ o;
_ oo +dog (4.18)
(44 02)?

But actually we do not know the autocorrelation and the cross-correlation. In our cal-
culation, we sum the six tiles (one subchannel) instead to eatimate the autocorrelation and,

further, use linear interpolation to approximate the channel response at the data subcarrier

46



locations to estimate the cross-correlation over the six tiles. These methods cause errors.

The true cross-correlation is
0=FE[ hpi hps hpy hp; ].

We use h in place of h, where h is given by

3 3
=0 =0

The estimated cross-correlation is then equal to, for one tile,

hp; = (Z o (1 + nk)) (1+mn;)°

3 3
k=0 k=0

If we ignore the second-order noise terms; then

3
k=0
— LR

where

(14 @)’ o2 + (z?ﬁ, ot ) o

Ny ~N |0, 5

1— ;)02 + 30 a2) o2
( i) og =0 Q% ) 90

N |0
+J ; 5

We add up all the estimates for the six tiles to estimate 6, resulting in

!

0 =046 61 0 0]

where

47

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)



0=[6 6 6 6],

3
6 ~N [ 0,301+ )02 +3 Zaz os

k=0,
k#i

3

+iN 10,31 - )’ og+3 | ) ai|at]. (4.25)
k=0,
ki

Similiarly, if we ignore the second-order noise terms in the estimation of the autocorrelation

matrix @, then the estimated quantity containing noise is given by

P =d+A (4.26)
where
6 + 608 6 6 6
D — 6 6 =+ 603 6 6
| 6 6 G6+60 6 |’
|6 6 6 = 6+ 603
[ noo Mer Mgz o3
A — Nio Ni1* Mg 13 ) (4.27)
2o T21 T22 Ti23
| T30 T31 T32 M33
with

Nij = D26 tiles (nl + ";) . (4.28)

The channel estimate by Wiener filtering using estimated autocorrelation and cross-

correlation is given by

48



h=g60"" |
Y25
Pa
2 1 1
~ H(I)il ]52 -+ [ 50 51 52 53 } (I)il ! — 9@71Aq}71 1
- P3 1 1
D4 1 1
4432 n, D 6tites (Si_gny + 452 gain;) B S VetitesXi_g (13 +1])
4+ o0? 440 (44 02)
4+ N, + N. N.
~ 2T t (4.29)
d+oq (4+07)
where
2 4 2
Ny ~ N (0, S th +2%ai) Jg) + N (0, Yo 1-g ‘ZEO‘Z') Ug) ;
5 . 5
Ny~ N (0, =52 (14 4a8)” o2 Jmmi 0;—=x2 (1 —40,)% 02 ),
72 72
32 ‘
Ny~ N <o, ?0(2)) : (4.30)
And the MSE would be
MSE =E [|h . 1}|2]
oy + Var (Nz) + Var (N3) (Ny)
(4+03)" (4+03)"
oh4ivs [(1 T (e gaiﬂ o3
- (4 +08)’
253 0 [(1+40:)? + (1 — 4)?] o
(4 +03)”
32 2
3% (4.31)
(4+02)

The theoretical MSE and the simulation result are shown in Figure 4.8. In the simulation,

we use the average over guard band subcarriers (subcarriers 0 through 89 and 933 through

49



H AWGN
10 T

T
—6— MSE1
—b— MSE2
—e— MSE3
—%— MSE4
—&— MSE5
MSE6
—8— MSE7
—&— MSE8 H
= A - MSE1,8 Theory
= W = MSE2,7 Theory
= <« = MSE3,6 Theory
= P = MSE4,7 Theory

10t

10°F

e

10

SNR

Figure 4.8: MSE performance of Wiener filtering channel estimation for uncoded QPSK,
antenna 0. Autocorrelation and cross-correlation are obtained by averaging over one sub-
channel.

1023) to estimate the noise power. In‘the following simulations, each data point in an average
over simulation of 420000 tiles and each symbol containing ten subcannel (average over three

subchannels use 378000 tiles and nine subchannel instead).

From the simulation result, we can see that: the performance of Wiener filtering is worse
than linear interpolation if only six tiles are used to estimate the autocorrelation and the
cross-correlation. The reason should be due to noise-induced model mismatch as the au-
tocorrelation and the cross-correlation are both calculated from noisy signal. If we use ten
subchannels to estimate the autocorrelation and the cross-correlation, then we can get better
performance. And the performance is much closer to the theory under known autocorrelation
and cross-correlation. Figure 4.9 shows the MSE simulation result where ten subchannels to

estimate the autocorrelation and the cross-correlation.

Figer 4.10 and 4.11 shows the SER and MSE performance under channel estimation by

linear interpolation and that by Wiener filtering with averages taken over one, three, five

20



AWGN

T
—6— MSE1
—A— MSE2
—e— MSE3
—— MSE4
8 —&— MSE5

MSE6
—8— MSE7
10tk —— MSES 4

= = = MSE Theory

SNR

Figure 4.9: MSE performance of Wiener filtering channel estimation for uncoded QPSK,
antenna 0. Autocorrelation and cross-correlation are obtained by averaging over ten sub-
channels.

SER in uplink STTD mode under AWGN
T T T T T

T T
~—=y— Linear
—A— MMSE One
—<&— MMSE Three
—p— MMSE Five
—&— MMSE Ten

Figure 4.10: Comparrision of SER performance with using Wiener filtering and linear inter-
polation channel estimation in STTD under QPSK modulation in AWGN.

and ten subchannels, separately, in AWGN channel. We can see that if we use only one

subchannel to average, the performance of Wiener filter is worse than linear interpolation

o1



AWGN
10 T

T
—6— MSELin

—— MSEMMSEL
—A— MSEMMSE3

&Ddo

~—&— MSEMMSES5
—<&¢— MSEMMSE10

Figure 4.11: Comparrision of MSE performance with using Wiener filtering and linear inter-
polation channel estimation in STTD under QPSK modulation in AWGN.

and if we choose more subchannel to average, the perfermance is better. The performance

of using five subchannel to averages close to-using ten-subchannels.

In SUI channels, the antenna correlation p.,,, is«defined as follows: The baseband signals
are modeled as two complex random processes X (¢) and Y (¢) with an envelope correlation

coefficient of
E{X-BXYY-BYY |
VE{X - E{X} [} E{lY —E{Y}|*}

In our simulation, we consider to two different cases, one with correlation equal to zero and

Penv =

(4.32)

the other with nonzero antenna correlation. We can see that in 2-Tx transmission with zero
correlation, the slope of SER is nearly equal to —2, meaning a diversity order of 2. The

presence of antenna correlation will decrease the performance.

Fig. 4.12 shows the STTD transmission performance with channel esimation by linear

interpolation and that by Wiener filtering under single-path Rayleigh fading at several dif-

52



ferent velocities, where the antenna correlation is equal to zero. Figs. 4.13 and 4.14 are
under SUI2 and SUI3 respectively. In OFDMA, the tile allocation in frequency domain is
not contiguous, if choose different subchannel to average to get correlation, the performance
of Wiener filtering might be different. In Fig. 4.15 we simulate two different subchannel sets,
each set containing ten subchannels, and using Wiener filtering with correlation average over
one subchannel. In the simulation, we see no difference at SER and MSE in two different

sets of subchannel. Thus we can ignore the influence of different subchanel.

In Figs. 4.16, 4.17, and 4.18, we compare the SER with zero and nonzero antenna corre-
lations. From the simulation, we can see that, since the power delay profile does not exceed
the CP length, the MSEs for different power delay profiles have little difference. We also
notice that at high SNR, the MSE saturates because of channel fading. Comparing linear
interpolation and Wiener filtering, at low, SNR.:the Wiener filter has better performance if
the samples averaged are enough. But in highsSNR, the performance is almost the same. If

there is nonzero antenna correlation, the performance would degrade.

93



MSE in UplinkPUSC QPSK channel 0 at SinglePathChan

10 T T T T

—&A— Linear V60
—— Linear V90
—O6— Linear V120
— A - Wiener AverageOneSubch. V60
= W = Wiener AverageOneSubch. V90
= © = Wiener AverageOneSubch. V120 | |
-+ Wiener AverageAllSubchan. V60

”’g} p .3 '+ Wiener AverageAllSubchan. V90
107tk "l,. b Y : 1@ '+ Wiener AverageAllSubchan. V120||
L
%]
=
107F
10°
0
SNR
(@)
o SER in Uplink QPSK at Single Path Rayleigh
10 T T T T
10" n 3
@ 107k : E
[ =& Linear V60 N
| —%— Linear v90
| =©— Linear V120
| = A = Wiener Average One subchan. V60
= ¥ = Wiener Average One subchan. V90

= © = Wiener Average One subchan. V12
107 A Wiener Average Ten subchan. V60
1+ ~g'+ Wiener Average Ten subchan. V90
+@ '+ Wiener Average Ten subchan. V120

107 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Figure 4.12: MSE and SER performance for uncoded QPSK under Wiener filtering and
linear interpolation channel estimations at different velocities in single-path Rayleigh fading
channel with pe,, = 0. (a) MSE. (b) SER.

54



MSE in UplinkPUSC QPSK channel 0 at SUI-2

10 T T T ]
g : : —&A— Linear V60
hi N —%— Linear V90
g x —6— Linear V120
~ . : = A - MMSEOneV60 ||
", = ¥ = MMSEOnev90 ||
“u : : = © = MMSEOneV120
., b A MMSETenV60
107 F " ” g MMSETenvoo H
[ ey b 0+ MMSETenVv120 |]
! wn : e
u
%) [
2 107}
107 C
SNR
(a)
SER in Uplink QPSK at SUI-2
100 T T

—A— Linear V60
—— Linear V90
—©— Linear V120
= A - Wiener Average One subchan. V60 |
= ¥ = Wiener Average One subchan. V90
1073 = = © = Wiener Average One subchan. V12
F A+ Wiener Average Ten subchan. V60 |
"+ Wiener Average Ten subchan. V90
+@ ' Wiener Average Ten subchan. V12

107 1 1 1 1 I L 1
0 2 4 6 8 10 12 14 16 18 20

SNR

(b)

Figure 4.13: MSE and SER performance for uncoded QPSK under Wiener filtering and
linear interpolation channel estimation at different velocities in SUI-2 channel with channel
correlation pen, = 0. (a) MSE. (b) SER.



MSE in UplinkPUSC QPSK channel 0 at SUI-3

10 T T T T
: —&— Linear V60
S —— Linear V90
w N —6— Linear V120
‘N = A - MMSEOneV60
= V¥V = MMSEOneV90
B /, ~ = © = MMSEOneV120
107 g3 L8 A MMSETenV60
“/'/ ~ ¥ MMSETenv90 ]
///g, ~ @+ MMSETenV120 |
////’g J
w
(%] -
2 10
10°
10 ‘
0 5 10 15 20 25 30
SNR
(a)
SER in Uplink QPSK at SUI-3
10° \ \
107t e
107°¢ e
o
|
7]
107t e
—A— Linear V60
—%— Linear V90
—©— Linear V120
= A - Wiener Average One subchan. V60
" = ¥ = Wiener Average One subchan. V90

10 & = © = Wiener Average One subchan. 120
F A" Wiener Average Ten subchan. V60
+ ¢ Wiener Average Ten subchan. V90
+1© ' Wiener Average Ten subchan. V12(

10° 1 1 1
0 5 10 15 20 25 30

SNR

(b)

Figure 4.14: MSE and SER performance for uncoded QPSK under Wiener filtering and
linear interpolation channel estimation at different velocities in SUI-3 channel with channel
correlation pen, = 0. (a) MSE. (b) SER. 54



MSE in UpinkPUSC QPSK channel 0 at SUI-3

10° ; ‘ ; ‘
*® A+ MMSEOneV60
‘\ 7 MMSEOneV90
N @' MMSEOneV120
\ - AnotherSet V60
By —d&— AnotherSet V90
\ L AnotherSet V120
107
L
wn
=
107}
10° i
0 5
SNR
()
o SER in uplink STTD mode under SUI-2
10 T T T T T
,,£ < —%— V60 setA
E ~ —6— V90 setA
« —8— V120 setA
-1 Sy = A - V60 setB
10 : '\} -« - V90 setB
‘\‘ V120 setB
10°F
x
L
[7p]
10
10F
10_5 I I
0 5 10 15 20 25 30
SNR
(b)

Figure 4.15: Two different subchannel sets of MSE and SER performance for uncoded QPSK
different velocities in SUI-2 channel

under Wiener filtering averaging over one subchannel at
with channel correlation pe,, = 0. (a) MSE. (b) SER.

27



SER in Uplink QPSK at SinglePath with Cor=0.7
T T T T T

L

Ll

—&— Linear V60
—3g— Linear V90
r —O6— Linear V120

= A - Wiener Average One subchan. V60

= W = Wiener Average One subchan. V90

= © = Wiener Average One subchan. 120
A Wiener Average Ten subchan. V60
7' Wiener Average Ten subchan. V90

@ Wiener Average Ten subchan. V120 Corl
t —&— Linear V60 Corr

—— Linear V90 Corr

1073k . | —©— Linear V120 Corr

= A = Wiener One subchan. V60 Corr

107

SER

= W = Wiener One subchan. V90 Corr
= © = Wiener One subchan. 120 Corr
t A+ Wiener Ten subchan. V60 Corr
++Ng+ Wiener Ten subchan. V90 Corr
+++© Wiener Ten subchan. V120 Corr

107 1 1 1 |
0 2 4 6 8 10 12 14 16 18 20

SNR

Figure 4.16: SER comparison between zero and nonzero antenna correlation (pen, = 0.7) in
single-path Rayleigh fading.

o8



SER in Uplink QPSK at SUI-2 with Cor=0.5
T

10

10"

—&A— Linear V60
=—%— Linear V90
r —6— Linear V120

— A - Wiener Average One subchan. V60
1072 E = ¥ = Wiener Average One subchan. V90
[ = © = Wiener Average One subchan. 120

SER

A Wiener Average Ten subchan. V60
¢ Wiener Average Ten subchan. V90
r @+ Wiener Average Ten subchan. V120 Cor
L —h— Linear V60 Corr

—F— Linear V90 Corr

-3 =—8— Linear V120 Corr

= A - Wiener One subchan. V60 Corr

= ¥ = Wiener One subchan. V90 Corr

= © = Wiener One subchan. 120 Corr

t A Wiener Ten subchan. V60 Corr
'\ Wiener Ten subchan. V90 Corr
++@ '+ Wiener Ten subchan. V120 Corr

10

107 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

SNR

Figure 4.17: SER comparison between zero and nonzero antenna correlation (pem, = 0.5) in
SUI-2 channel.

29



SER

Figure 4.18: SER comparison between zero

SUI-3 channel.

SER in Uplink QPSK at SUI-3 with Cor=0.4

10

-3

10

-4

10

10

T T

T

—#A— Linear V60
=—%— Linear V90
—©— Linear V120

= A - Wiener Average One subchan. V60

= ¥ = Wiener Average One subchan. V90

= © = Wiener Average One subchan. 120
A Wiener Average Ten subchan. V60
7+ Wiener Average Ten subchan. V90
@ Wiener Average Ten subchan. V120 Corl
—A— Linear V60 Corr

—%F— Linear V90 Corr

=—©— Linear V120 Corr

= A - Wiener One subchan. V60 Corr

= W = Wiener One subchan. V90 Corr

= © = Wiener One subchan. 120 Corr

A Wiener Ten subchan. V60 Corr

N7+ Wiener Ten subchan. V90 Corr

+:@ ' Wiener Ten subchan. V120 Corr

T T

5 10

15 20 25 30
SNR

and nonzero antenna correlation (pe,, = 0.4) in

60



Chapter 5

Simulation of STC Downlink PUSC
Channel Estimation

In this chapter we will simulate two different channel estimation methods for the in IEEE
802.16e OFDMA downlink PUSC system. One is linear interpolation and the other is Wiener
filtering as introduced before. We evaluate the performance of both methods mainly by

observing the mean square error (MSE) and the symbol error rate (SER).

5.1 System Parameters and Channel Models

Table 5.1 gives the primitive and derived parameters used in our simulation work. In addition
to AWGN, we use SUI-2 and SUI-3 to do simulation. Their profiles are already introduced

in Table 4.3.

5.2 Linear Interpolation

Similar to uplink, the number of pilots contained in one cluster is not enough for us to
interpolate for the channel response. We use cluster (N —1) and cluster (N +1) to interpolate
the channel response of cluster N, as shown in Fig. 5.1. Within three successive clusters,

we first estimate the channel response at each pilot position. Then we interpolate for the

61



Table 5.1: OFDMA Downlink Parameters

Parameters Values
Bandwidth 10 MHz
Carrier frequency 3.5 GHz
Nppr 1024
Nused 841
Sampling factor n 28/25
G 1/8
Sampling frequency 11.2 MHz
Subcarrier spacing 10.94 kHz
Useful symbol time 91.43 us
CP time 11.43 us
OFDMA symbol time 102.86 us
Sampling time 89.29 ns

frequency response at each intervening data subcarrier from the estimated pilot responses in
the time domain. Lastly, we get the frequency responses of the remaining data subcarriers

in the cluster by interpolation and extrapolations in the frequency domain, as in the case of

uplink.

The detailed steps are as follows:

in the time dimension (makred 1 in Fig. 5.1).

Estimate the channel response at each pilot location by using the LS technique.

Use linear interpolation to estimate the data subcarrier responses between the pilots

Estimate the channel responses at the remaining data subcarriers in a cluster by fre-

quency domain interpolation (marked 2 in Fig. 5.1).

As shown in Fig. 5.1, all the data subcarrier responses are estimated by interpolation using

the four nearest pilot subcarriers except for the rightmost data subcarriers where extrapola-

62

Extrapolate for the channel responses at the rightmost data subcarriers in the cluster.




cluster N+1

cluster N

cluster N—1t

() Pilot subcarrier _ Data subcarrier
C) Null subcarrier

&F i,
Figure 5.1: Linear interpolation-in. STTD mode at antenna 0.

tion is used.

5.3 Wiener Filtering

As mentioned before, in Wiener filtering, we need to know the autocorrelation between pilots
and cross-correlation between data subcarriers and pilots. To calculate the autocorrelation,
we suppose that a major group or a whole OFDMA symbol employ STC encoding. Then

we can average over the major group or the entire symbol to estimate the autocorrelation.

We use the four pilots in the cluster to do two-dimensinal Wiener filtering, as shown
in Figure 5.2. In the case of the autocorrelation, if we want a more accurate estimate, we

can average over three temporally contiguous clusters. To calculate the cross-correlation,

63



cluster N+1

cluster N

=
cluster N-1t[ v ‘

() Pilot subcarrier _Data subcarrier
) Null subcarrier

Figure 5.2: Wiener filtering in STTD mode at antenna 0.

we linearly interpolate for the estimated responses at the pilot locations and average their

sample cross-correlations with the pilot channel response estimates over the clusters in the

frequency domain. . ‘ ElS

1

The detailed steps are as follow‘s': !

Estimate the channel responses using linear interpolation.

Estimate the noise power by averaging over the guard band subcarriers.

Use the estimated channel responses and add the noise power correction term to cal-

culate cross-correlation.

Calculate the autocorrelation of the four pilots in the cluster.

Use the Wiener filtering formula to estimate the channel responses.

64



Data a|Framing |> Modulation|> STC T™x-SRRC
encode
Tx-SRRC
Tx T y
2 to 1 channel
Rx simulator

)

STC éi Channel HDe-Frami”Q € FFT}¢ Rx-SRRC

decode] | Estimation

Figure 5.3: Block diagram of the simulated system.

5.4 Simulation Study

5.4.1 Simulation Flow

Figure 5.3 illustrates the block diagrams of our simulatated system. We also assume perfect
synchronization and omit it in our simulation. After channel estimation, as we do in uplink
transmission, we calculate the channel MSE hetween the real channel and the estimated one,
where the average is taken over the subearriets: The symbol error rate (SER) can also be
obtained after demapping. The used channel models are as the same as described in Chpter

4.

5.4.2 Validation with AWGN Channel

Before considering multipath channels, we do simulation with an AWGN channel to validate
the simulation model. We validate this model by comparing the theoretical SER and the

SER resulting from simulation.

In Figure 5.4, the theoretical SER curve versus SNR for uncoded QPSK is plotted to-
gether with that resulting from the simulation. The simulation is obtained under no channel

estimation error. This validates the simulation model.

65



SER performance compare
10 T T T ‘

—XF— Theory
-1l o= - o ) ) —©— No estimationerror| |

SER
=
o

0 2 4 6 8 10 12 14 16
SNR

Figure 5.4: SER for uncoded QPSK resulting.from simulation compared with theory.

5.4.3 Simulation Results

We know that the accuracy of autocerrelation estimates would affect the Wiener filter per-
formance. The autocorrelation is obtained ‘from the average of the sample correlation over a
number of clusters. That means, in AWGN channel, if more clusters are used in the average,
then the accuracy of the autocorrelation estimates is better. So in the following simulation,
we show three different choices of number of clusters to average for the autocorrelation. One
is averaging over one major group (in the simulation we choose major group 0 which con-
tains 12 clusters) in frequency domain. The second one is averaging over one major group
in the frequency domain over three contiguous clusters in the time domain (a total of 36
clusters). The third is averaging over all subchannels (60 clusters in one OFDM symbol).
The cross-correlation in the first method is averaging over one major group in frequency

domain as the autocorrelation. It is worth noting that the cross-correlation in the second

66



method is obtained from averaging only over the frequency domain in one major group as in
the first method since we only interpolate the frequency response in the middle cluster. The
cross-correlation in the third method is averaging over all subchannels. . Figure 5.5 show

the MSE and SER simulation result.

From the simulation, we find that the autocorrelation obtained from average over time
and frequency domains together with the cross-correlation obtained only from frequency
domain has poor performance, even though the autocorrelation is more accurate. In fact,
if we use the theoretical cross-correlation value (the theoretical cross-correlation value is 1
in AWGN channel) together with the autocorrelation obtained from simulation, the perfor-
mance is bad, too. Tha reason should be that the number of pilots we use is not close to
infinity. Since the pilot signals contain noise, if we only use a finite number of pilot signals,
the autocorrelation and the cross-correlationsare not independent in statistic. And if we
choose the same set of pilots to calculate cross=correlation, the statistical dependency caus
no influence. Beside this, the ill-conditoning of matrix inversion is another reason caus the
performance degradation. Use SN R.= 10 for-example, That means if the pilot power equals

to 1, then the noise power is 0.1. The autecorrelation would be

and the eigenvalues are 0.1, 0.1, 0.1 and 4.1. The condition number is
k(D) =41 (5.2)
Since the samples we choose are not enough, the noise power does not concentrate on the

diagonal terms and cause matrix ill-conditioning.

Figure 5.6 presents the simulation results in the STTD with linear interpolation and

Wiener filtering channel estimations and compares them with perfect estimation under single

67



path Rayleigh fading channel in different velocities with zero antenna correlation. Figures 5.7
and 5.8 are under SUI2 and SUI3. We can see that, in low SNR, Wiener filter has better
performance than linear interpolation, but in high SNR, the performance is a little worse than
linear interpolation. The reason should be that the pilots we used in the Wiener filtering
are not the nearest with the data subcarrier that we want to estimate but in the same
cluster instead. That means the channel response we estimated is the linear combination
of the responses of the four pilots in the same cluster. Since the estimation using linear
interpolation is the linear combination of the nearest pilots, in high SNR, the performance

is a little better than Wiener filtering.

In Figs. 5.9, 5.10, and 5.11, we compare the SER under zero and nonzero antenna
correlation. From the simulation,we see that as in the uplink, if we choose proper samples to
average, the performance of Wiener filteringswould be better than the linear interpolation.

And if the channel has nonzero anteuna correlation, the performance would degrade.

68



MSE performance for uncoded QPSK resulting from simulation.

10
10"
b 10"
=
—A&— Linear
107k —0— Wiener OneGroup3TimeCluster
—%F— Wiener OneGroup
=& Wiener AllSubchannel
4 Pilots Theory
10’4 i i i i i
0 5 10 15 20 25 30
SNR
AL
o SER performance for uncoded QPSK resulting from simulation.
10 T T T T T
_ ‘\.*
107t N e
N 2

-a|

MSE

10

10°F

10°F ; 2

—A— Linear v
—6— Wiener OneGroup3TimeCluster

107k —— Wiener OneGroup

—&— Wiener AllSubchannel

10'8 i i i i i
0 5 10 15 20 25

Figure 5.5: MSE and SER performance for uncoded QPSK resulting from simulation with
Wiener filtering and linear interpolation in AWGN channel. (a) MSE. (b) SER.

69



MSE in DownlinkPUSC QPSK at SinglePathChan
T T

10°

T
—#— Linear V60
—%— Linear V90
=—©— Linear V120 1
= A - Wiener AverageOneGroup. V60 ||
= W = Wiener AverageOneGroup. V90
= © = Wiener AverageOneGroup. 120
A Wiener AverageAllSubchan. V60
+\g++ Wiener AverageAllSubchan. V90 |

Q@ Wiener AverageAllSubchan. V120|

107 4
w
7}
=

1072F

10°

0 5 10 15 20 25 30
SNR
(a)
o SER in DownlinkPUSC QPSK at SinglaPath
10 T T T T T

{| == Linear V60

—%— Linear V90

10 =—©— Linear V120

[| = A = Wiener AverageOneGroup. V60

[| = ¥ = Wiener AverageOneGroup. V90

r1 = © = Wiener AverageOneGroup. 120
& WienerAverageAllSubchannel. V60
++ g+ Wiener AverageAllSubchannel. V90
+@ ' Wiener AverageAllSubchannel. V120

10 1 1 1 1 I L 1 1
0 2 4 6 8 10 12 14 16 18 20

SNR

(b)

Figure 5.6: MSE and SER performance for uncoded QPSK resulting from simulation with
Wiener filtering and linear interpolation at different velocities in single-path Rayleigh fading
channel with pe,, = 0. (a) MSE. (b) SER.

70



MSE in DownlinkPUSC QPSK at SUI-2

10 T T i
—A— Linear V60
=%y— Linear V90
—©— Linear V120
— A - Wiener AverageOneGroup. V60
= ¥ = Wiener AverageOneGroup. V90
= © = Wiener AverageOneGroup. V120
A . Wiener AverageAllSubchan. V60
++ g Wiener AverageAllSubchan. V90
: ’. @+ Wiener AverageAllSubchan. V120
107 '
w
7]
=
107k
107
0
SNR
(a)
. SER in DownlinkPUSC QPSK at SUI-2
10 T T T

-1

107}

-2

1072

—A— Linear V60

10 "¢ =g Linear V90
f | =@ Linear V120

= A - Wiener AverageOneGroup. V60

= W = Wiener AverageOneGroup. V90

5 = © = Wiener AverageOneGroup. 120

107k oA WienerAverageAllSubchannel. V60
N+ Wiener AverageAllSubchannel. VOO
++@ ' Wiener AverageAllSubchannel. V120 --
10° ‘ ‘ ‘ .
0 5 10 15 20 2 %
SNR

(b)

Figure 5.7: MSE and SER performance for uncoded QPSK resulting from simulation with
Wiener filtering and linear interpolation at diffgrent velocities in SUI-2 channel with pe,, = 0.

(a) MSE. (b) SER.



MSE in DownlinkPUSC QPSK at SUI-3

10 T T T
© | —— Linear V60
=—%y— Linear V90
—©— Linear V120
= A - Wiener AverageOneGroup. V60
= ¥ = Wiener AverageOneGroup. V90
= © = Wiener AverageOneGroup. V120
,‘ % A Wiener AverageAllSubchan. V60
o UITPANN - ¢+ Wiener AverageAllSubchan. V90
10 ¢ ’R:’;///ﬂ k O+ Wiener AverageAllSubchan. V120[]
W
7]
=
107k
10° .
0 5
SNR
(a)
. SER in DownlinkPUSC QPSK at SUI-3
10 T T T

SER

~—— Linear V60

—%— Linear V90
—©— Linear V120
— A - Wiener AverageOneGroup. V60
= ¥ = Wiener AverageOneGroup. V90
10°k = © = Wiener AverageOneGroup. 120

3 A WienerAverageAllSubchannel. V60
++ g+ Wiener AverageAllSubchannel. V90
+@ "+ Wiener AverageAllSubchannel. V120

10 1 1 L
0 5 10 15 20 25 30

SNR

(b)

Figure 5.8: MSE and SER performance for uncoded QPSK resulting from simulation with
Wiener filtering and linear interpolation at different velocities in SUI-3 channel with p,, = 0.
(a) MSE. (b) SER.

72



o SER in DownLink QPSK at SinglePath with Cor=0.7
10 T T T

T T T T

-1

10

—he— Linear V60
—gp— Linear V90
—©— Linear V120
= A = Wiener AverageOneGroup. V60
10 ‘|| = ¥ = Wiener AverageOneGroup. V90
= © = Wiener AverageOneGroup. 120
A Wiener AverageAllSubchan. V60
7+ Wiener AverageAllSubchan. V90
O Wiener AverageAllSubchan. V120 Corr|
—&— Linear V60 Corr
—XF— Linear V90 Corr

5| | === Linear V120 Corr
10°F| = A = wiener OneGroup. V60 Corr
= ¥ = Wiener OneGroup. V90 Corr
= © = Wiener OneGroup. 120 Corr
A Wiener AllSubchan. V60 Corr
+ g+ Wiener AllSubchan. V90 Corr
+Q ' Wiener AllSubchan. V120 Corr

SER

-4

10 1 L 1 1
0 2 4 6 8 10 12 14 16 18 20
SNR

Figure 5.9: SER comparison of zero and nonzero antenna correlations (pen

= 0.7) in single-
path Rayleigh fading.

73



o SER in DownLink QPSK at SUI-2 with Cor=0.5
10 T T T T

10 'k 2 4

—A— Linear V60

1072} | =%~ Linear V90

—©— Linear V120

= A = Wiener AverageOneGroup. V60

= ¥ = Wiener AverageOneGroup. V90

= © = Wiener AverageOneGroup. 120

A Wiener AverageAllSubchan. V60 > & o

10° ] 'V ' Wiener AverageAllSubchan. V90 \ L
@+ Wiener AverageAllSubchan. V120 OO S :

—ad— Linear V60 Corr & R

=—%— Linear V90 Corr

=——©— Linear V120 Corr

= A = Wiener OneGroup. V60 Corr ,

10 "F{ = w = Wiener OneGroup. V90 Corr R AN "

= © = Wiener OneGroup. 120 Corr ) B

A Wiener AllSubchan. V60 Corr M

+'§'+ Wiener AllSubchan. V90 Corr h\

+Q '+ Wiener AllSubchan. V120 Corr N

-5 I I I I 1 n

0 5 10 15 20 25 30
SNR

SER

10

Figure 5.10: SER comparison of zero and, nonzerorantenna correlations (pen, = 0.5) in SUI-2.

SER in DownLink QPSK at SUI-3 with Cor=0.4
T T T

10°

10°

—#— Linear V60
1072 | == Linear V90
—©— Linear V120
= A = Wiener AverageOneGroup. V60
= W = Wiener AverageOneGroup. V90
t-{ = © = Wiener AverageOneGroup. 120
A wiener AverageAllSubchan. V60
"7+ Wiener AverageAllSubchan. V90
1O+ Wiener AverageAllSubchan. V120
—A— Linear V60 Corr
—XF— Linear V90 Corr
=—©— Linear V120 Corr
4| | = A = wiener OneGroup. V60 Corr
= W = Wiener OneGroup. V90 Corr
= © = Wiener OneGroup. 120 Corr
A Wiener AllSubchan. V60 Corr
+ ¢+ Wiener AllSubchan. V90 Corr
O Wiener AllSubchan. V120 Corr
10 I I

0 5 10 15 20 25 30
SNR

SER

10

10

Figure 5.11: SER comparison of zero and nonzero antenna correlations (pen, = 0.4) in SUI-3.

74



Chapter 6

The DSP Hardware and Associated
Software Development Environment

DSP implementation is the final goal of our work. The DSP system used is Sundance’s PC
plug-in board that houses TMS320C6416 DSP made by Texas Instruments (see Fig. 6.1). In
this chapter, we introduce the architecture of the DSP chip and the software development

environment.

6.1 The TMS320C6416 DSP

6.1.1 TMS320C64x Features [21]

The TMS320C64x DSP that we employ is the highest-performance fixed-point DSP genera-
tion of the TMS320C6000 DSP devices, with a performance of up to 1000 million instructions
per second (MIPS) and an efficient C compiler. The TMS320C64x device is based on the
second-generation high-performance, very-long-instruction-word (VLIW) architecture devel-
oped by Texas Instruments (TI). The C6416 device has two high-performance embedded
coprocessors, Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP),
that can significantly speed up channel-decoding operations on-chip. But they do not apply

to the work reported in this thesis.

75



e PPESSpR |

: f . i"{ll_[hﬂ
s WPDSP AR q VIRTRRS

\ ‘[\li}lﬂLichl-Trl_l
fGraoee 11

Figure 6.1: The DSP on the Sundance board [21].

The C64x core CPU consists of 64 general-purpose 32-bit registers and 8 function units.
These 8 functional units contain 2 multipliers and 6 arithmetic units. Below are some C6000

features:

develop highly effective RISC- hke C e':@fa,st de‘velopment time.

. &Y ',_.'u._'n._.

e Instruction packing gives code sizd éﬁﬁﬁ@}éﬁ@é for eight instructions executed serially

or in parallel and reduces code size, program fetches, and power consumption.

e Conditional execution of all instructions reduces costly branching and increases paral-

lelism for higher sustained performance.

e Efficient code execution on independent functional units, including efficient C compiler
on DSP benchmark suite. and assembly optimizer for fast development and improved

parallelization.

e 8/16/32-bit data support, providing efficient memory support for a variety of applica-

tions.

76



e 40-bit arithmetic options add extra precision for applications requiring it.
e Saturation and normalization provide support for key arithmetic operations.

e Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and data manipulation applications.

The additional features of C64x include the following:

Each multiplier can perform two 16x16 bits or four 8x8 bits multiplies every clock

cycle.

Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses.

Special communication-specifie instructions addressing common operations in error-

correcting codes.

Bit count and rotate hardware extends support for bit-level algorithms.

6.1.2 Central Processing Unit [21]

The block diagram of the C6416 DSP is shown in the Fig. 6.2. The C64x CPU, shaded in

the figure, contains:

e Program fetch unit.
e Instruction dispatch unit.
e Instruction decode unit.

e Two data paths, each with four functional units.

7



CE2x/C64x/CETx device

Program cachefprogram memery
32-bit address
256-bit data

CB62x/CB4x/C67x CPU

Power Program fetch
down Instruction dispatch (See Note) Control
Instruction decode TegIstet
Data path A Data path B
1 DMA, EMIF Control
Register file A Register file B logic
-—> Test
Emulati
RIEIERE D2 M2| s2] 12 [ulation
Interrupts
Additional
peripherals
Data cache/data memory T_W‘hersi —»
32-bit address Serlzt:Dr S,
8-, 16-, 32-bit data (54-bit data, C64x only)

Figure 6.2: Block diagram of the TMS320C6416 DSP [21].

64 32-bit registers.

Control registers.

Control logic.

Test, emulation, and interrupt logic.

The program fetch, instruction dispatch, and instruction decode units can deliver up to
eight 32-bit instructions to the functional units every CPU clock cycle. The processing of
instructions occurs in each of the two data paths (A and B), each of which contains four

functional units (.L, .S, .M, and .D) and 32 32-bit general-purpose registers, for the C6416.

6.1.2.1 Pipeline Structure

The TMS320C64x DSP pipeline provides flexibility to simplify programming and improve

performance. The pipeline can dispatch eight parallel instructions every cycle. The pipeline

78



4— Fetch ———p4- Decode —p4——— Execute —p

PG PS | PW | PR | DFP| DC | E1 E2 E3 | E4 | E5

Figure 6.3: Pipeline phases of TMS320C6416 DSP [21].

phases are divided into three stages as shown in Fig. 6.3.

e Fetch has 4 phases:

— PG (program address generate): The address of the fetch packet is determined.
— PS (program address send): The address of the fetch packet is sent to memory.
— PW (program access ready wait): A program memory access is performed.

— PR (program fetch packet receive): The fatch packet is at the CPU boundary.
e Decode has two phases:

— DP (instruction dispatch)i The'next execute packet in the fetch packet is deter-

mined and sent to the appropriate functional units to be decoded.

— DC (instruction decode): Instructions are decoded in functional units.
e Execute has five phases:

— E1: Execute 1.
— E2: Execute 2.
— E3: Execute 3.
— E4: Execute 4.

— Eb: Execute 5.

79



Table 6.1: Execution Stage Length Description for Each Instruction Type [21]

Instruction Type

16 X 16 Single Cé4x
. Multiply/ Multiply
Single Cycl St Load B h
ingle Lycle C64x .M Unit ore Extensions oa ranc
Non-Multiply
Execution E1 Compute Read operands Compute  Reads oper- Compute Target-
phases result and start address ands and address code
and write to  computations start com- in PGT
register putations
E2 Compute result  Send ad- Send ad-
and write to dress and dress to
register data to memaory
memory
E3 Access Access
memory memaory
E4 Write results ~ Send data
to register back to CFU
ES Whte data
into register
Delay 0 1 ot 3 41 51

slots

The pipeline operation of the C62%/C64x. instructions can be categorized into seven in-
struction types. Six of them are shown'in Table 6.1; which gives a mapping of operations
occurring in each execution phase for the different instruction types. The delay slots associ-

ated with each instruction type are listed in the boettom row.

The execution of instructions can be defined in terms of delay slots. A delay slot is
a CPU cycle that occurs after the first execution phase (E1) of an instruction. Results
from instructions with delay slots are not available until the end of the last delay slot. For
example, a multiply instruction has one delay slot, which means that one CPU cycle elapses
before the results of the multiply are available for use by a subsequent instruction. However,
results are available from other instructions finishing execution during the same CPU cycle

in which the multiply is in a delay slot.

80



Table 6.2: Functional Units and Operations Performed (Part 1 of 2) [21]

Functional Unit Fixad-Point O peraticns Floating-Paoint O peraticns
Lounit {.L1, L2} 32040-bit arithrmetic and compars Arithmetic operaticons
operalions DP — P, INT — OP, INT —SP
32-hit logical operations coMWersion operations

Lefimost 1 or O counting for 32 bits
Marmalization count for 32 and 40 kits
Byte shifts

Data packing/unpacking

S-bit constant generation

Dual 16-bit arithmetic sperations
Quad & bit arithmetic oparations
Dual 16-bit min/max opsrations
Quad & bit min‘max operations

Sunit(.51, 52) 32-hit arithmetic opsrations Compars

32/40-bit shifts and 22-bit bit-fisld Reciprocal and redprocal square-root
opsrations operations

32-tit logical operations Absoluts valus operaions

Branches i SP — DP conversion opsrafions

Canstant generation

Register fransfers tofrom control register
file (.52 orly)

Byte shifts

Data packing/unpacking

Dual 16-bit compare opsrations

Quad & bit compare operations

Dual 16-bit shift cperations

Dual 16-bit saturated arithmetic
ap=rations

Quad & bit saturated arithmetic
apsrations

6.1.2.2 Functional Units

The eight functional units in the C6000 data paths can be divided into two groups of four;
each functional unit in one data path is almost identical to the corresponding unit in the

other data path. The functional units are described in Tables 6.2 and 6.3.

Besides being able to perform 32-bit operations, the C64x also contains many 8-bit and
16-bit extensions to the instruction set. For example, the MPYU4 instruction performs four
8x8 unsigned multiplies with a single instruction on an .M unit. The ADD4 instruction

performs four 8-bit additions with a single instruction on an .L unit.

81



Table 6.3: Functional Units and Operations Performed (Part 2 of 2) [21]

Functicnal Unit

Fixed-Point Operations

Flzating-Point Operations

Murit( M1, M2}

Durit{.D1, .02)

16 x 16 multiply operations

16 x 22 multiply operations
Ciuad 8 x 8 multiply operations
Dual 16 x 16 multiply aperaticns

Dual 16 x 16 multiply with
add/subtract operations

Cuad 8 x 8 multiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rataticn

Galois Field Multiply

32-bil add, subtradt, linear and dreular
address calculation

Loads and stores with 5-bit constant offest

Loads and stores with 15-bit constant
offset (D2 only)

Lead and store double words with 5-bit
constant

Load and store non-aligned words and
double words

5-bit constant generation
32-bit logical operations

32 X 32-bit fixed-point multiply operatiors
Floating-point mulliply operatiors

Lead doubleword with 5-bit constant offset

82



The data line in the CPU supports 32-bit operands, long (40-bit) and double word (64-
bit) operands. Each functional unit has its own 32-bit write port into a general-purpose
register file (listed in Fig. 6.4). All units ending in 1 (for example, .LL1) write to register file
A, and all units ending in 2 write to register file B. Each functional unit has two 32-bit read
ports for source operands srcl and src2. Four units (.L1, .12, .S1, and .S2) have an extra
8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Because
each unit has its own 32-bit write port, when performing 32-bit operations all eight units

can be used in parallel every cycle.

6.1.3 Memory Architecture [21]

The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory is orga-
nized in separate data and program spaces. ,When off-chip memory is used, these spaces are
unified on most devices to a single memory space via the external memory interface (EMIF).
The C64x has two 64-bit internal ports to access internal data memory and a single internal

port to access internal program memoryliwith-an-istruction-fetch width of 256 bits.

A variety of memory options are available-for the C6000 platform. In our system, the

memory types we can use are:

On-chip RAM, up to 7 Mbits.
e Program cache.

e 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and other asyn-

chronous memories.

e Two-level caches [22]. Level 1 cache is split into program (L1P) and data (L1D)
caches. Each L1 cache is 16 KB. Level 2 memory is configurable and can be split into

L2 SRAM (addressable on-chip memory) and L2 cache for caching external memory

83



i

Ja

long dst

L 2

long sne|

Data path A

a
LD1b EENT

long srg

t

]

long dsi

-

dst
by

51

sred)

M1 sret

long dst
ds|

Yk &
Ty

52|

9

ATIAT

- .
LD1a ":LEB,

DA

DILE
LD2a —22LSB

o s

¥y 'y

Register
file A
(AD-A21)

Iy

Dz st

LD2h — =2 MSB -

Data path B

L J

S|

M2 s

& i
F

dst

vy

lang o'sf

S|

srel

e

52 dst

long dsi

long sre|

Notes for .M unit:

1. long dstis 32 MSB
2 dstis 32 LSB

long sro|

tel, t

[

I

long dst

ry

dst

L2

/i?/i\

Register
file B
(BO-B821)

Zontrol Register

Figure 6.4: TMS320C64x CPU data paths [21].

84




locations. The size of L2 is 1 MB. The access time of external memory depends on the
memory technology used but is typically around 100 to 133 MHz. In our system, the
external memory usable by the DSP is a 32 MB SDRAM.

6.2 The Code Composer Studio Development Tools
[24], [25]

We now introduce the software environment used in our work. TI supports a useful GUI
development tool set to DSP users for developing and debugging their projects: the Code
Composer Studio (CCS). The CCS development tools are a key element of the DSP software
and development tools from TI. The fully integrated development environment includes real-
time analysis capabilities, easy-to-use debugger, C/C++ compiler, assembler, linker, editor,
visual project manager, simulators, XDS560-and XDS510 emulation drivers and DSP/BIOS

support.
Some of CCS’s fully integrated host tools-include:
e Simulators for full devices, CPU only and CPU"lus memory for optimal performance.

e Integrated visual project manager with source control interface, multi-project support

and the ability to handle thousands of project files.
e Source code debugger common interface for both simulator and emulator targets:

— C/C++/assembly language support.
— Simple breakpoints.
— Advanced watch window.

— Symbol browser.

e DSP/BIOS host tooling support (configure, real-time analysis and debug).

85



e Data transfer for real time data exchange between host and target.

e Profiler to analyze code performance.

CCS also delivers “foundation software” consisting of:

e DSP/BIOS kernel for the TMS320C6000 DSPs.

— Pre-emptive multi-threading.
— Interthread communication.

— Interrupt handling.
e TMS320 DSP Algorithm Standard to enable software reuse.

e Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control-on-chip peripherals.

TT also supports some optimized DSP-functions for the TMS320C64x devices: the
TMS320C64x digital signal processof:library (DSPLIB). This source code library includes
C-callable functions (ANSI-C language compatible) for general signal processing mathemat-
ical and vector functions [26]. The routines included in the DSP library are organized as

follows:

e Adaptive filtering.

Correlation.

o FFT.

Filtering and convolution.

e Math.

86



e Matrix functions.

e Miscellaneous.

6.3 Code Optimization Methods [27]

The recommended code development flow involves utilizing the C6000 code generation tools
to aid in optimization rather than forcing the programmer to code by hand in assembly. This
makes the compiler do all the laborious work of instruction selection, parallelizing, pipelining,
and register allocation, which simplifies the maintenance of the code, as everything resides

in a C framework that is simple to maintain, support, and upgrade.

The recommended code development flow for the C6000 involves the phases described in
Fig. 6.5. The tutorial section of the Programmer’s Guide [27] focuses on phases 1 and phase
2, and the Guide also instructs the programmmer-about the tuning stage of phase 3. What
is learned is the importance of giving the compiler enough information to fully maximize its
potential. An added advantage is that this-eompiler provides direct feedback on the entire
program’s high MIPS areas (loops). Based on thisfeedback, there are some simple steps the
programmer can take to pass complete and better information to the compiler to maximize

the compiler performance.

The following items list the goal for each phase in the software development flow shown

in Fig. 6.5.

e Developing C code (phase 1) without any knowledge of the C6000. Use the C6000
profiling tools to identify any inefficient areas that we might have in the C code. To

improve the performance of the code, proceed to phase 2.

e Use techniques described in [27] to improve the C code. Use the C6000 profiling tools

87



Phase 1: Write C code
Develop C Code 3
Compile
Y
Profile

Yes
Complete )
Mo
Refine C code
Phase 2: T
Refine C Code .
Compile
y
Profile
Complete )
Yes
optimization?,
Write linear assembly
Phase 3:
Write Linear ¥ —
Assembly Assembly optimize
¥
Profile
No
Yes

( Complete )

Figure 6.5: Code development flow for TI C6000 DSP [27].

88



to check its performance. If the code is still not as efficient as we would like it to be,

proceed to phase 3.

e Extract the time-critical areas from the C code and rewrite the code in linear assembly.

We can use the assembly optimizer to optimize this code.

TT provides high performance C program optimization tools, and they do not suggest the
programmer to code by hand in assembly. In this thesis, the development flow is stopped at
phase 2. We do not optimize the code by writing linear assembly. Coding the program in

high level language keeps the flexibility of porting to other platforms.

6.3.1 Compiler Optimization Options [24], [25]

The compiler supports several options to optimize the code. The compiler options can be
used to optimize code size or execution perfermance.:Our primary concern in this work is
the execution performance. Hence we do not care‘very much about the code size. The easiest
way to invoke optimization is to use-the eléxshell-program, specifying the -on option on the
cl6x command line, where n denotes the level of opfimization (0, 1, 2, 3) which controls the

type and degree of optimization:

e -00.

— Performs control-flow-graph simplification.

Allocates variables to registers.

Performs loop rotation.

— Eliminates unused code.

Simplifies expressions and statements.

— Expands calls to functions declared inline.

89



e —0l. Performs all -00 optimization, and:

— Performs local copy/constant propagation.
— Removes unused assignments.

— Eliminates local common expressions.
e -02. Performs all -0l optimizations, and:

— Performs software pipelining.

— Performs loop optimizations.

Eliminates global common subexpressions.

Eliminates global unused assignments.
— Converts array references in leops 0 incremented pointer form.

— Performs loop unrolling.

e -03. Performs all -02 optimizations; and.;

— Removes all functions that are'never called.
— Simplifies functions with return values that are never used.
— Inlines calls to small functions.

— Reorders function declarations so that the attributes of called functions are known

when the caller is optimized.

— Propagates arguments into function bodies when all calls pass the same value in

the same argument position.

— Identifies file-level variable characteristics.

90



The -02 is the default if -o is set without an optimization level.

The program-level optimization can be specified by using the -pm option with the -
03 option. With program-level optimization, all of the source files are compiled into one
intermediate file called a module. The module moves through the optimization and code
generation passes of the compiler. Because the compiler can see the entire program, it

performs several optimizations that are rarely applied during file-level optimization:

e [f a particular argument in a function always has the same value, the compiler replaces

the argument with the value and passes the value instead of the argument.

e If a return value of a function is never used, the compiler deletes the return code in

the function.

e [f a function is not called directlysor indirectly, the compiler removes the function.

When program-level optimization is selected in“Code Composer Studio, options that have
been selected to be file-specific are ignored:=Theprogram level optimization is the highest
level optimization option. We use this‘option tooptimize our code. In our study, we use

-03, pm and Speed Most Critical (no instruction) as compiler condition number

6.3.2 Using Intrinsics

The C6000 compiler provides intrinsics, which are special functions that map directly to
C64x instructions, to optimize the C code performance. All instructions that are not easily
expressed in C code are supported as intrinsics. Intrinsics are specified with a leading under-
score (_) and are accessed by calling them as we call a function. A table of TMS320C6000

C/C++ compiler intrinsics can be found in [27].

91



Chapter 7

Fixed-Point DSP Implementation

7.1 Data Formats Considerations

In algorithm development, it is often convenient to employ floating-point computation to
acquire better accuracy. However, for the sake .of power consumption, execution speed,
and hardware costs, practical implementations usually adopt fixed-point computations. The
DSP chip used in our work, TT’s TMS320C64167is also ¢f the fixed-point category. It means
that fixed-point computations are executedmiore efficiently than floating-point ones on this
platform. Due to these facts, we consider implementation using in 16-bit fixed-point compu-
tations. Compared with 32-bit computation, it has better efficiency and negligible accuracy
loss in many applications. Although fixed-point operation has less accuracy, it does have
much shorter execution time. However, we find that the fixed-point format is only suitable
in linear interpolation, not in Wiener filtering, because the Wiener filtering needs complex

matrix inversion which needs very high accuracy.

In our simulation, we use the format Q2.13, which means a 16-bit fixed-point number
with one sign bit, 2 integer bits, and then 13 fractional bits to the right of the dot. Here
we only focus on the channel estimation function. Therefore, we only translate the input to

channel estimation into fixed-point format for simplicity. The simulation flow is shown in

92



Data [t Framing Ml Modulation js| STC —)lTX'SRRCJ

encode
Tx-SRRC

¥

Tx W
2 to 1 channel
Rx simulator
sTc L™ [Channel LI , !
decode| Estimation%_ De-Framing élFFTIé Rx-SRRC

Figure 7.1: fix point simulation flow.

Fig. 7.1.

7.2 Fixed-Point Simulation

We only adopt fixed-point computation in the linear interpolation method, since Wiener

filtering needs to calculate matrix inverse that needs high dynamic range.

The accuracy results of linear interpolation'channel estimation in uplink with different
velocities in different channels are given in Figures 7.2/ to 7.6. The simulation results under
fixed-point and floating-point computations are shown in Figures 7.7 to 7.11. With fixed-
point computation, we can see that the performance is almost the same the floating-point
computation. In low SNR the performance of fixed-point computation has a little degrada-
tion. We think the reason is when the noise power is high, it is easy to cause fixed-point

data overflow.

7.3 DSP Computation Load

We run the fixed-point C program under CCS to see the DSP cycle count performance.
Although Wiener filtering is not suitable for fixed-point computation, we still run it in fixed-

point format to see the computational load. We also compare the result with the uplink tile

93



Linear Interpolation MSE in AWGN QPSK
T

T T
—6— MSELfix
—he— MSE2fix
—e— MSE3fix
—y— MSE4fix
- A - MSE1float ||
MSE2float
-« - MSE3float ||
= P = MSE4float

10

-3

1071
10"
0 5 10 15 20 25 30
SNR
M 7
o Floar and Fix SER performance compare in AWGN
10 T T T T T T T
—%F— Float
o —O— Fix

10 "¢ : T E

107

10°F
14
L
@ -4

10

10°k:

10°

10_7 I I I I I I I

0 2 4 6 8 10 12 14 16
SNR
(b)

Figure 7.2: Uplink channel estimation performance under fixed- and floating-point compu-
tation in AWGN. (a) MSE. (b) SER.

94



Fix Point MSE at SinglePathChan

10" T T T T
r —&— LinearFloat V60
—— LinearFloat V90
—06— LinearFloat V120|
s - & = LinearFix V60
= B = LinearFix V90
= # = LinearFix 120
10" r
w
0
=
107}
10°
0
SNR
(a)
0 SER in Uplink QPSK in Single Path
10 T T T T T T T ]
—A— LinearFloat V60 |]
—%— LinearFloat V90 |q
—©— LinearFloat V120 |
= A - LinearFix V60
= ¥ = LinearFix V90
_p = © = LinearFix 120
10 "k
x
w 107 £
0 3
10° £
10’4 I I I
0 2 4 6

Figure 7.3: Uplink channel estimation performance under fixed- and floating-point compu-
tation in single-path Rayleigh fading. (a) MSE. (b) SER.

95



Fixed and Floating Point MSE in SUI-2

10°
T T T T 4
—#— LinearFloat V60 1
=—%— LinearFloat V90 |]
—©— LinearFloat V120 |
= @ = LinearFix V60
= B = LinearFix V90 1
= + = LinearFix 120
107
w
%}
=
107 r
10°
0
(a)
SER in Uplink QPSK in SUI-2
0
10 T T T T T T T ]
- | === LinearFloat V60 |]
—%— LinearFloat V90 |
—O— LinearFloat V120 ]
‘| = A = LinearFix V60 ||
= ¥ = LinearFix V90
= © = LinearFix 120
107k :
x
o 107k
%] 3
10°k
107 | I I I | I | I |
0 2 4 6 8 10 12 14 16 18 20
SNR

Figure 7.4: Uplink channel estimation performance under fixed- and floating-point compu-

tation in SUI-2 channel. (a) MSE. (b) SER.
96



Fixed and Floating Point MSE in SUI-3

10 T T T T T
—#— LinearFloat V60
—%— LinearFloat V90
—©— LinearFloat V1201
\ = ® = LinearFix V60
= B = LinearFix V90
= + = LinearFix 120
107
w
0
=
107
107
0
SNR
@
SER in Uplink QPSK in SUI-3
0
10 T T T T T T ]
—&— LinearFloat V60 |]
—— LinearFloat V90 |]
—©— LinearFloat V120 |{
= A - LinearFix V60
= ¥ - LinearFix V90
= © = LinearFix 120
107
o _2
leJ 10 "
107k
107 | | | | | 1 | | |
0 2 4 6 8 10 12 14 16 18 20

SNR

(b)

Figure 7.5: Uplink channel estimation performance under fixed- and floating-point compu-

tation in SUI-3 channel. (a) MSE. (b) SER. 97



Fixed and Floating Point MSE in V-A

10 T T T P —
t —A— LinearFloat V60 |
—— LinearFloat V90 |]
—©— LinearFloat V120 |
= @ = LinearFix V60
= B = LinearFix V90 |
= 4+ = LinearFix 120
107k
w
0
=
10721
10°
0
SNR
a
(2)
SER in Uplink QPSK in V-A
0
10 T T T T T T ]
—A— LinearFloat V60 |]
=—— LinearFloat V90 |]
—©— LinearFloat V120 |
= A - LinearFix V60
= ¥ - LinearFix V90 |
= © = LinearFix 120
10_1 -
w107k
10° e n
107 I I I 1 L 1 I I L
0 2 4 6 8 10 12 14 16 18 20

Figure 7.6: Uplink channel estimation performance under fixed- and floating-point compu-
tation in Vehicular A channel. (a) MSE. (b) 8ER.



Fix & Floating point MSE in DownlinkPUSC QPSK AWGN

10 T T T T T
—A— Fix Point
—%— Floating Point
10°
W
0 10
2 0
10°
1074 I I I I I
0 5 10 15 20 25 30
SNR
(a)
0 Linear interpolation using fix point and floating point
10 T T T T T T T 3
: : —A— FixPoint ]
—%— FloatingPoint |]
107" 4
107 4
5 1073 - E
n E
107E 5
10° 4
10° ‘
0 2 4 6 8 10 12 14 16 18
SNR
(b)

Figure 7.7: MSE and SER under fixed- and floating-point computation in AWGN. (a) MSE.
(b) SER.

99



Fixed and Floating Point MSE in Single Path

10

10

MSE

107

T
=—#— LinearFloat V60 |1
—%y— LinearFloat V90 |
—©6— LinearFloat V120 |
= ® = LinearFix V60

= B = LinearFix V90
= % = LinearFix 120

10°

SNR

(a)

SER in Uplink QPSK in SinglePath

10

-1

10 '

-2

10 "

SER

10°F

-4

T T T

T T
—&— LinearFloat V60
—%— LinearFloat V90
—©— LinearFloat V120
= A - LinearFix V60
= ¥ = LinearFix V90
= © = LinearFix 120

10

Figure 7.8: Downlink channel estimation performance under fixed- and floating-point com-

putation in single-path Rayleigh fading. (a) MSE. (b) SER.

100




Fixed and Floating Point MSE in SUI-2

10 T T T I ]
. =& LinearFloat V60 |{
—%F— LinearFloat V90 |]
—6— LinearFloat V120 ||
~ = @ = LinearFix V60
= LinearFix V90
= LinearFix 120
107
w
7}
=
107
107 I I I I I
0 5 10 15 20 25 30
SNR
(@)
SER in Uplink QPSK in SUI-2
0
10 T T T T T T T
—&— LinearFloat V60
—— LinearFloat V90
—©— LinearFloat V120
= A - LinearFix V60
= ¥ = LinearFix V90
= © = LinearFix 120
107
o _
o 107k
%]
10°F
10 I I I
0 2 4 6

Figure 7.9: Downlink channel estimation performance under fixed- and floating-point com-
putations in SUI-2 channel. (a) MSE. (b) SER.

101



Fixed and Floating Point MSE in SUI-3

10 T T T T ]
—A— LinearFloat V60 |7
—3%F— LinearFloat V90 |1
—©— LinearFloat V120|]
= @ = LinearFix V60
= B = LinearFix V90
= + = LinearFix 120
107
W
n
=
107
10°
0
(a)
SER in Uplink QPSK in SUI-3
0
10 T T T T T T
: —&— LinearFloat V60
—%— LinearFloat V90
—O6— LinearFloat V120
- A - LinearFix V60 ||
= ¥ = LinearFix V90
= © = LinearFix 120
107E
x
m 107°F
%]
10°F ]
10'4 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18
SNR

Figure 7.10: Downlink channel estimation performance under fixed- and floating-point com-

putation in SUI-3 channel. (a) MSE. (b) SER.

102

20



Fixed and Floating Point MSE in V-A

10 T T T —]
—&A— LinearFloat V60 |]
—— LinearFloat V90 |
—6— LinearFloat V120
= @ = LinearFix V60
= B = LinearFix V90
= 4+ = LinearFix 120
107
w
n
=
107 r
107
0
SNR
(a)
SER in Uplink QPSK in V-A
0
10 T T T T T T T
—A— LinearFloat V60
—— LinearFloat V90
—©— LinearFloat V120
= A - LinearFix V60
= ¥ = LinearFix V90
= © = LinearFix 120
107
[r
o 107k
n
10°F 4
107 L I L L L L I I I
0 2 4 6 8 10 12 14 16 18 20

Figure 7.11: Downlink channel estimation performance under fixed- and floating-point com-
putation in Vehicular A channel (a) MSE. (b) SER.

103



structure without STC encoding. Table 7.1 shows the CCS simulation result in uplink.

Our DSP can execute 2 multiplications and 6 additions in one cycle. In the uplink channel
estimation without using STC, the ideal case is one tile using ten additions (we ignore the
multiplications and shifts because they can be executed with additions at the same time).
Under STC, we need fifteen additions per tile, and we need to estimate two channels. So in
the ideal case, the cycle count of linear interpolation under STC is three (z'.e., % X 2) times

that without using STC. In the simulation result, we can see the cycle count using STC 3.3

times without using STC, which is close to our expectation.

In the simulation, using linear interpolation needs 15450 cycles to complete the estimation
job when executing on CCS. Since a tile spans 3 symbols, the cycle count averages to 5150
per symbol. The DSP we use, C6416T, has a 1 GHz processor clock with 32 MB DRAM. As
the symbol time is 102.86 usec, it amounts to'appreximately 0.050 of DSP computation load.
In Wiener filter simulation, we do filteringrwith every’subchannel separately. That means
in ten subchannels with two antennas, we calculate complex matrix inverse 20 times, and
each time needs 2754 cycles. In complex variable,the multiplication of three variables needs
16 multiplications (8 to calculate real partrand-8 for imaginary part) and multiplication of
four complex variable needs 20 multiplications. If we use the formula to solve the 4 x 4
matrix inverse, the determinant needs 24 terms of four variables multiplication, the adjoint
matrix needs 16 x 6 terms of three variables multiplication, and need 16 multiplication to
multiply the inverse of the determinant with the adjoint matrix. That means, one matrix
inversion total needs about 2032 multipications. Our DSP can execute 2 multiplications and
6 additions in one cycle. In the ideal case, the DSP needs about 1016 cycles. But in realistic

it cost 2754 cycles, so the compile efficiency is about 0.36.

We also need to calculate the correlation with every data subcarrier. They both cause

large computation load. In the simulation, the Wiener filtering requires 7.5 times more

104



C Code Block Diagram

Complexity of { Linear Interpolation
linear interpolation

Autocorrelation

Complexity of < Inverse function
Wiener filtering

Cross-correlation

Y

Wiener filtering

Figure 7.12: Wienerfiltering C eode block diagram.

Table 7.1: OFDMA Uplink :DSP Load Under 1024-FFT with 10 Subchannel

Condition Cycle.count DSP load factor for
channel estimation
Linear interpolation (not using 4576 0.015
STC) [29]
Linear interpolation (using STC) 15450 0.050
Wiener filtering (using STC) 131776 0.427

load compared to linear interpolation. Figure 7.12 shows the Wiener filtering C code block
diagram. Since the Wiener filtering needs to use the result of linear interpolation, in the C

code, the complexity of Wiener filtering contains that of linear interpolation.

Table 7.2 shows the DSP load in downlink channel estimation, in major group 0. There
are 4 symbols in one STC downlink cluster. So using linear interpolation requires 0.041 of

the DSP’s computation power. We also compare linear interpolation and Wiener filtering.

105



Table 7.2: OFDMA Downlink DSP Load Under 1024-FFT, Major Group 0 with STC

Condition Cycle count DSP load factor for
channel estimation
Linear interpolation 16903 0.041
Wiener filtering 88222 0.210

#define Q1_14 short

#define QZ_13 short

s Thanigd Same tlwe fsbort). using JFfferent tipes to decisre Is mucd more olesr
< Gl averd sawe mistsbes

#define ftoQl_14(4) (short) (A*16354) o Flast to P14 pPrId=16384)
#define ftoQ2_13(4) (short) (A*5192 ) s Float ta P17 (2 iF=8152)
#define ftoQ3_12(4) (short) (A*4096 ) s Flast to GF 17 pF0IF=4085)
#define Q1 _l4tof(a) (((float) A)-s1lb354) - G774 fo flost
#define Q2 _13tof (&) (((float) A)s51592) e 32, I3 to Float
#define Q3 _12tof (&) (((float) A)-40596) e (3318 ta Flost

Figure 7.13: FIXED.H.

We can see that for major group 0, it needs 5.2 times the computation of that in linear

interpolation.

7.4 Program Code

Fig. 7.13 shows the header file FIXED.H which we use to transform floating-point data
into fixed-point. Function linear_interpolation is the main function of channel estimation by
linear interpolation in uplink. After receiving the first OFDMA symbol that defines a tile,
it estimates the channel responses at the pilot subcarriers by using the LS technique, and
buffers it, until it receives the next two tiles when it does linear interpolation and clears the
buffer. The original code is shown in Fig. 7.14. Part of the corresponding assembly code of
function channel_estimation is listed in Figures 7.15, where we can see the usage of registers
in the DSP. Software pipelining information of the function is illustrated in Figure. 7.16

which shows the information of optimization by DSP compiler .

106



woid interpolation{inc N pilot, int *piloc,

Q2 13 *inv_pilot_mod,
£2 13 **pileRe,

Q2 13 *¥tilelm,

Q2 13 wizespRel,

Q2 13 **respImd;

Q2 13 »*respRel,

Q2 13 w**respimi,

Q2 13 buffRe[][2]1[220],
Q2 13 buffIm[][2][420])

211
2
23
24
25
26
29

=k

23 Q2 13 dRe,dIm;

30 Q1 14 spacing;

32

23

34 spacing=froQl 14(

35 H for(i=0;i<N pilot;i=i+2){

38 /! Antenna O
dRe={(buffRe[1][L1]1 [1]1-buffRe[0]1 [L]1[1]) *spacing)>>
dIm=({(buffIm[ ] [1] [i]-buffIm[0] [1] [i]) *spacing})>>

38 respRel[2] [pilot[i]1=buffRe[0][:] [1]+dRe;

a8 respIm0[0] [piloc[i]1=buffIm[0] [1] [1]1+dIm;

41 respRel[l][pilot[i] J=respRe0[C] [pilot[i]]1+dRe;

42 respImQ[Z] [pilot[i] l=respImO[C] [pilot{i]l+dIm;

43 respRe0[2] [piloc[i]]=buffRe[Z1[1]1[1]1-

45 respIm0[2] [pilot[i]]=buffIm[1][2][i]:

45

46 dRe=((buffRe[2] [0] [i+:]-buffRe[1] [0] [i+.])*spacing)>>14;

57 dIm=((buffIm[2] [0] [i+i]1-buffIm[ ] [C][i+i])*spacing)}>>i4;

48 respRed[0] [pilot[i+i]]=buffRe[Z][2] [i+1];

49 respIm0[0] [piloc[i+1]11=buffTm[i] [2] [i+1]:

50 respRe0[1] [pilot[i+1] 1=buffRe[1][C] [1+.]+dRe;

51 respImd[I] [pilot[i+l]1=buffIm[:i] [0] [i+1]+dIm:

B2 respRe0[2] [pilot[i+i] )=respRe0[ ] [pilot[i+:]]+dRe;

B3 respIm0[2] [pilot[i+1]]=respTm0[ ] [pilot [i+1]]1+dIm;

T4

S5 for (3=0:;3<3:;:3j++)

(o | i

o dRe=({respRel[j] [pilot[i+1]1]-xespRel[j] [pilot[il]) *spacing)>>14;

S dIm={ {respIm0[j] [pilot[i+1]]-TespImO[j] [pilot[i]]) *spacing)>>i4;

) respRed[j] [pilot[i]+! J=respRe0[j] [pilot[i]]+dRe;

&0 respIm0[j] [pilot[i]l+i]=respIm0[j] [pilot{i]]+dIm;

gl respRel[j] [pilot[i]+2]=respRe0[j] [pilot[i]+11+dRe;

82 respImO[j] [pilot[il+2]=respImO[j] [pilot[i]+2 14dIm;

= }

&5 //Antenna 1

&5 dRe=((buffRe[2][C] [1]-buffRe[1]1[C][1]) *spacing)>>.%;

67 dIm=((buffIm[2] [O] [i]1-buffIm[z] [2] [i])*spacing)>>12;

&8 respRel[20] [pilot[i]l=buffRe[Z][2][11~

&9 respIml[2] [piloc[il]=buffIm([1][2] [1]:

respRel[ ] [pilot[i]]=buffRe[2][7] [i]+dRe;
respImi[:] [piloc[i]]=buffIm{2][0] [i]+dIm;
respRel[Z2] [pilot[i] l=respRel[i] [pilot([i] ]+dRe;
respIml[2] [pilot[i]]l=reapImli([il] [pilot[i]]+diIm;

dRe=( (buffRe[2][2] [i+2]-buffRe[0] [2][i+1])*spacing)>>24;
dIm=((buffIm[1][2] [i+ ]-baffIm[C] [1][i+.])*spacing)5>>i4;
respRel[0] [piloc[i+1]1]=buffRe[0] [1][i+1]+dRe;

respIml [C] [Pilot[i+1]]1=buffIm[C] [1] [1+1]+dIm;

respRel[i] [pilot[i+il]]=respRel[0] [pilot[i+i]]+dRe;
respIml[I] [pilot[i+i]]l=respIml[C] [pilot [i+i]1+dIm:;
respRel[2] [pilot[i+i]]=buffRe[:][1] [i+1]:

respIml[2] [pilot[i+1]]=buffIm[ ][] [i+.];

for (3=0:3<3:3+4)

{
dRe=({respRel[j] [pilot[i+1]]-respRel[j][pilot{i]]) *spacing)>>14;
dIm={ {(respImi[j] [pilot[i+I]]-respImi[j] [pilot[i]])*spacing)>>i4;
88 respRel[j] [pilot[ij+i]=respRel[j] [pilot[i]]+dRe;
g respIml[j] [pilot[i]+i]=respIml[j] [piloc[i]]+dIm;
respRel[j] [pilot[i]+42]=respRel[j] [pilot[i]]+2*dRe;
respImi [J] [pilot[i]+Z]=respImi[j] [pilot[i]]+2*dIm;
}
g P 1
i
g5 -}

Figure 7.14: liqear_mterpolation.



> FUNCTION MAME: interpolation(int. int =, short *, short**, short **, short**, short **, short **; short*=*, short (*)[2][420], shert (*}[z

= =

* Regs Modified - ADLAS.A4.AS AG.A7 AB.A9.BOBZ B4 B5.R6.B7 BE B ALE.*

P AIT ALB.AI.A20.A21A22 A23 A24 A31.BI6.BIT BI18, =

o B19 B20B21B22 B23.B24 B25.B26.B27 B23.B23 B30, *

3 B3I *

> Regs Used S ADA3.AL AD.AG.AT.AB.AD.AL0 ALZ BOBZ B3 B4 BS.BO BT *
i B8 B9 BIO.LP.SP ALS.ALT A1B AR A2DAZLAZ2 A23.

o AZ24 A31.B16 BI7 Bi8 Bi® B20 B21.B22 B23 B24 B2S *

¥ B26 B27 B25 B22 B30.B31 =

7 Local Frame Size -0 Args + 0 Auto + 0 Save = O byte &

- B

* Using -g (debug) with optimization (03} may disable key optimizations! *

* =

_interpolation FiPiPsPPsNS4PAZ A420 sPA2 R420 =:

.dwcfi cfa offset,
.dwcfi save reg to reg,

SCEDWSE3S .dwtag DW TAG formal parameter, DW AT name ("N
.dwattr $CEDW$539, DW AT TI symbol name{" N | £y
.dwattr $CSDWES39, DW AT type (*SCSDWSTS10)

.dwattr ECEDWE5339, DW_AT location[DW _OP reg4]
SCEDWSE40 .dwtag DW TAG formal parameter, DW AT name("pi
.dwattr $CEDWS540, DW AT TI symbol name{" p )
.dwattr $CSDWS540, DW AT type (*$CSDWSTS101)

.dwattr ECEDWE540, DW_AT location[DW _OF reg20]

FCEDWSE4L .dwtag DW TAG formal parameter, DW AT name("in
.dwattr $CSDWS541, DW AT TI symbol name{" i 1 mod™)
.dwattr $CSDWS541, DW AT type (*SCSDWSTS103)

.dwattr ECEDWE541, DW_AT location[DW _OP regé]

SCEDWS542 .dwtag DW TAG formal parameter, DW AT name ("t
.dwattr $CS$DWS542, DW AT TI symbol name{" til
.dwattr $CSDWS542, DW AT type (*SCSDWSTS1O05)
dwattr ECEDWE542, DW_AT location[DW _OF reg22]

SCEDWSE43 .dwtag DW TAG formal parameter,
.dwattr $CSDW$543, DW AT TI symbol name{" =
.dwattr $CSDWS543, DW AT type (*SCSDWSTS1O05)

Figure 7.15: Part of assembly code of function linear_interpolaton.

108



10377 = *
10378 * SOFTWARE PIPELIME INFORMATION
10378 =

10380 * Loop source line 155

10381 * Loop opening brace source line : 56
10382 * Loop closing brace source line : 63
10383 >  Known Minimum Trip Count 13
10384 > Known Maximum Trip Count ©3
10385 * Known Max Trip Count Factor -3
10386 * Loop Carried Dependency Bound(™) : 59
10387 * Unpartitioned Resource Bound : 8
10388 * Partitioned Resource Bound(®*) : %
10389 * Resource Partition:

10380 = A-side B-side
10391 *  Lunits ) a0
10382 *  Sunits 1 2
10383 * _.Dunits 8 8
10394 * _Munits 0 2
103895 * X crosspaths 2 7

10396 .~ Toddress paths 8
10397 *  Longread paths 0
10338 = Longwrite paths 0
10398 * Logical ops (LS) o (.L or .5 unit)

10400 *  Addition ops (L5D) 6 13 (Lor.5or.Dunif)

10401 ~ Bound(L.5.LS) 12

10402 * Bound(L.5.D.LS.LSD) 5 o

10403 =~

10404 *  Searching for software pipeline schedule at ...
10405 = ii = 52 Schedule found with 1 iterations in parallel
10406 * Done

10407 >

10408 * Collapsed epilog stages -0
10409 >  Collapsed prolog stages 0

10410 *

10411 *  Minimum safe frip count -1

10412 * =
10413 S$CSL135: s PIPED LOOP PROLOG

10414 = 1
anaATc Ealad b b - T = AT | sl Wk i

Figure 7.16: Software pipelineing information of function linear_interpolation.

109



Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we presented several channel estimation methods for OFDMA STC uplink
and downlink. To do channel estimation,.first ¥e use LS estimator to estimate the channel
frequency response on pilot subcarriers.. Then we.used two different methods to calculate
the channel response of entire cluster or tile. Oneé is linear interpolation and the other one
is Wiener filtering. In the linear interpolation;®wedemonstrated the performance in differ-
ent channel conditions. In Wiener filtering; we chose different sets of samples to calculate
autocorrelation and cross-correlation that causes different performance in our simulation.
If we chose proper sets of samples to average, then the performance would better than the
linear interpolation. After applying these methods on the MIMO system, we could get better

performance than the single antenna.

For DSP implementation, we replaced all the operations into 16-bit fixed point operation
and implement the MIMO structure of IEEE 802.16e. In the uplink linear interpolation, we
could see that the DSP computation load of using STC need 3.3 times that without using
STC. Since the Wiener filtering is not suitable for fixed-point format, but we also compared

the computation load. By calculating DSP load, we could see the Wiener filtering need large

110



amount of computation than linear interpolation.

8.2 Potential Future Work

There are several possible extension for our research:

e Construct MMSE error model to discuss how to improve the performance.

e Try other kinds of techniques to estimate channel response that more suitable for

MIMO system.
e Optimize the performance on DSP.

e In this thesis, we do not consider the influence of intercarrier interference (ICI). The

ICI simulation can be involved inthe future.

e Use model base method to caleulate cross-correlation to improve Wiener filtering.

If we want to use model base method,the first thing we want to know is the maximum
Doppler frequency of the mobile station.” Tn [30] shows the method that using pilots to

calculate velocity. Since we know the time domain correlation is

roll) = Jo(27 frnaal T) (8.1)

then we can calculate the pilot correlation in time domain, and find out which neighbor two
pilots correlation cause zero crossing and the time cause zero crossing called Tj. Since The
smallest positive zero crossing point of the Bessel function Jy(z) occurs at x = 2.405. An

estimation for the user maximum Doppler frequency can be obtained by

2.405

fmaz = Tj})

(8.2)

111



But its defect is that it needs long time buffer to get real time domain correlation. Besides
time domain correlation, we also need to know frequency domain correlation. As mention in
chpter 3, for an exponentially decaying multipath power delay profile, the frequency domain

correlation is
B 1
14 2Tk /T

ry(k) (8.3)
In [31] it mention the meathod of calculating 7,.,,s by using pilots.

By utilizing above two methods, we might improve the Wiener filtering by using model

base method.

112



Bibliography

1]

Hongxiang Li and Hui Liu, “An analysis on uplink OFDMA optimality,” in Proc. IEEE
Veh. Technol. Conf., vol. 3, 2006, pp. 1339-1343.

Liangshan Ma and Dongyan Jia, “The competition and cooperation of WiMAX, WLAN
and 3G, in 7 Inter. Conf. Applica. Sys., Mobile Tech. Nov. 2005, pp. 1-5.

S. M. Alamouti, “A simple transmit diversity technique for wireless communications,”

IEEE. Selected Areas Commun.,wol. 167pps1451-1458, Oct. 1988.

Man-On Pun, Michele Morellizand C.-CiJay Kuo,=“Maximum-likelihood synchroniza-
tion and channel estimation for QEDMA uplink transmissions,” IEEE Trans. Commun.,

vol. 54, no. 4, pp. 726-736, Apr. 2006:

Lior Eldar, M. R. Raghavendra, S. Bhashyam, Ron Bercovich, and K. Giridhar,
“Parametric channel estimation for pseudo-random user-allocation in uplink OFDMA”

in IEEE Int. Conf. Commun., vol. 7, 2006, pp. 3035-3039.

IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks—Part
16: Auwr Interface for Fized Broadband Wireless Access Systems. New York: IEEE, June
24, 2004.

IEEE Std 802.16e-2005 and IEEE Std 802.16-2004 /Cor 1-2005, IEEE Standard for Local

and Metropolitan Area Networks—Part 16: Air Interface for Fized and Mobile Broad-

113



[10]

[11]

[12]

[13]

[14]

band Wireless Access Systems—Amendment 2: Physical and Medium Access Control
Layers for Combined Fized and Mobile Operation in Licensed Bands and Corrigendum

1. New York: TEEE, Feb. 28, 2006.

B. Muquet, E. Biglieri, A. Goldsmith, and H. Sari, “MIMO techniques for Mobile
WiMAX systems,” SEQUANS Communications White Paper, September 2006.

O. Edfors, M. Sandell, J. J. van de Beek, D. Landstrom, and
F. Sjoberg, “An introduction to orthogonal frequency-dicision multiplexing,”

http://courses.ece.uiuc.edu/eced59 /spring02 /ofdmtutorial. pdf.

M.-H. Hsieh, “Synchronization and channel estimation techniques for OFDM systems,”
Ph.D. dissectation, Department of Electronics Engineering, National Chiao Tung Uni-

versity, Hsinchu, Taiwan, R.O.C., May1998.

O. Edfors, M. Sandell, J. J. van de/ Beek, 5. K. Wilson, and P. O. Borjesson, “OFDM
channel estimation by singular value decomposition,” in IEEE 46th Veh. Technol. Conf.,
Apr. 1996, pp. 923-927.

C. K. Koc and G. Chen, “Authors’ reply [Computational complexity of matrix inver-

sion|,” IEEE Trans. Aerospace Electronic Systems, vol. 30, no 4, p. 1115, Oct. 1994.

S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques based
on pilot arrangement in OFDM systems,” IEEFE Trans. Broadcasting, vol. 48, no. 3,
pp. 223-229, Sep. 2002.

P. Hoeher, S. Kaiser, and P. Robertson, “Two-dimensional pilot-symbol-aided channel
estimation by Wiener filtering,” in IEEE Int. Conf. Acoust. Speech Signal Process., Apr.
1997, pp. 1845-1848.

114



[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwell,
Mass.: Artech House, 2000.

F. Said and H. Aghvami, “Linear two dimensional pilot assisted channel estimation for
OFDM systems,” in IEE Conf. Telecommunications, Edinburgh, Scotland, Apr. 1998,
pp- 32V-36.

V. Erceg et al, “Channel models for broadband fixed wireless systems,” IEEE 802.16.3c-

00/53.

E. Bartsch, I. Wassell, and M. Sellars, “Equalization requirement study for broadband
MMDS wireless access systems,” presented at Int. Symp. Communications, Tainan,

Taiwan, R.O.C., 2001.

ETSI, “Selection procedure for the, choice'of radio transmission technolo- gies of the

UMTS,” ETSI tech. rep. TR 1047112, V310:25pp.38-43, Apr. 1994

P. Dent, G. E. Bottomley, and “I'. Croft,“Jakes fading model revisited,” Electron. Lett.,

vol. 29, no. 13, pp. 1162-1163, June 1993.

Texas Instruments, TMS320C6000 CPU and Instruction Set. Literature number

SPRU189F, Oct. 2000.

Texas Instruments, TMS320C6000 DSP Cache Users Guide. Literature number
SPRU656A, May. 2003.

Yu-Sheng Chen, “DSP software implementation and integration of IEEE 802.16a TDD
OFDMA downlink transceiver system,” M.S. thesis, Department of Electronics Engi-

neering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., June 2005.

Texas Instruments, Code Composer Studio User’s Guide. Literature number SPRU328B,

Feb. 2000.

115



[25]

[26]

[29]

[30]

[31]

Texas Instruments, TMS320C6000 Code Composer Studio Getting Started Guide. Lit-
erature number SPRU509D, Aug. 2003.

Texas Instruments, TMS320C64x DSP Library Programmer’s Reference. Literature

number SPRU565B, Oct. 2003.

Texas Instruments, TMS320C6000 Programmer’s Guide. Literature number

SPRU198G, Oct. 2002.

Ruu-Ching Chen, “Techniques for the DSP software implementation of IEEE 802.16a
TDD OFDMA downlink pilot-symbol-aided channel estimation,” M.S. thesis, Depart-

ment of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan,

R.O.C., June 2005.

Yi Ling Wang, “Reserch in and DSP Implementation of Channel Estimation Techniques
for IEEE 802.16e OFDMA Uplink and Downlink,” M.S. thesis, Department of Electron-

ics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,; June 2006.

H. Schober and F. Jondral, “Veloeity estimation for OFDM based communication sys-

tems,” in Veh. Technol. Conf., vol.2, fall 2002, pp. 715-718.

Kun-Chien Hung, “Digital signal processing algorithms for communication receives:
synchronizatoin, equalization, and channel estimation,” Ph.D. dissertation, Department
of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,

Oct. 2008.

116



¥z . &£%¥7 (Kuang-Chung Yu)

4p 1984 % 4% 11 p
e A
FRh U BT F 34255 L (2002.9-2006.6)
i~ BT F T PTAR 2 (2006.9~2008.11)

FTARRE Ak A BB AT

#W~ 4 p : IEEE 802.16e OFDMA ;@1 ﬁ;:j 3
o Pl $E S B A T eI B IR

(Study in IEEE 802.16e OEDMA MIMO Channel
Estimation Techniques and Associated Digital Signal

Processor Implementation)



	Cover_01(1)
	國立交通大學
	電子工程學系 電子研究所碩士班
	碩士論文
	 Study in IEEE 802.16e OFDMA MIMO Channel Estimation Techniques and Associated Digital Signal Processor Implementation
	中華民國九十七年十二月



	Cover2_02(1)
	A Thesis

	Abstract_03
	誌謝_04
	thesis_content
	Vita_06

