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林淑惠 教授 

國立交通大學統計學研究所 

摘 要       

本論文主題在利用廣義方法處理具異質性 AR(1)共變異矩陣之迴歸模型，由

Tsui 與 Weerahandi (1989) 和 Weerahandi (1993) 提出廣義p值和廣義信賴區間

的觀念提供不同於傳統處理異質性方法，我們把廣義p值和廣義信賴區間推廣到

廣義多變量檢定統計量的標準化。Lin and Lee (2003)應用廣義p值和廣義信賴區

間處理具異質性 uniform共變異矩陣之多變量變異數分析問題，我們利用他們的

程序並做適度修改來處理具異質性 AR(1)共變異矩陣之迴歸模型，所得到的涵蓋

機率與預期面積是令人滿意的結果。同時我們的方法也適用於 uniform共變異矩

陣且無需限定 design matrices iX 具特定形式。 

 
 
 
 
 
 
 
 
關鍵詞： AR(1) 、廣義信賴區、廣義p值、廣義檢定統計量、異質性、迴歸模
型、uniform共變異矩陣。 
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ABSTRACT 
Our main subject in this dissertation is applying the generalized method to deal 

with regression model with heteroscedastic AR(1) covariance matrices. The concepts 

of the generalized p-values and the generalized confidence intervals proposed by Tsui 

and Weerahandi (1989) and Weerahandi (1993), respectively, provide an alternative 

way to handle with heteroscedasticity. We extend these concepts to further consider 

the standardized expression of the generalized multivariate test variable. Lin and Lee 

(2003) applied the generalized method to deal with the MANOVA model with 

unequal uniform covariance structures among multiple groups. We utilize their 

process with modifications to deal with regression model with heteroscedastic serial 

dependence. The coverage probabilities and expected areas based on our proposed 

procedure display satisfactory results. Besides, we also find that our method can be 

applied to the uniform structures without the special design matrices iX  assumption. 

 

 

Key words and phrases: AR(1); Generalized confidence intervals; Generalized 
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covariance structures. 



 

 誌 謝        

    博士論文的完成與學位取得，要感謝林淑惠老師在教學之餘，仍安排出每

週半日到一日的研討時間，對新的統計方法悉心指導並提供在此方法的個人經

驗與應注意事項。而李昭勝老師不幸發生意外之後，也是在每位老師、學長姐

與學弟妹們互相扶持，走出傷痛，由林淑惠老師與洪慧念老師持續鼓勵下，我

才得以把這階段的句點完成。 

    在本所碩士班求學期間，常常感受到指導教授李昭勝老師在教學與研究的

活力和熱情，而他也會時時關注學生的課業、生活與健康。服兵役時，也不時

直接或間接透過學長姐表達他對我的關懷。退伍後，在他的鼓勵下，我又回到

交大統計所接受更精進細緻深入的教育與研究訓練。李老師過世之後，由他的

親朋好友所透露出的點點滴滴，可知李昭勝老師在學問方面是苦學好學並勇於

嘗試新的學科。執筆至此，在腦海中響起與浮現他的聲形。 

    論文口試時，承蒙清華大學徐南蓉教授、中央研究院黃信誠老師及本所盧

鴻興教授即使準備出國參加研討會仍在暑假撥冗前來口試，對於細節與其他方

向不吝指正且提供更精闢見解與寶貴意見及建議，使本論文更加完備，在此感

謝每位口試委員傾囊相授。此外，再次感謝所上每位老師在我求學期間，不論

是課業方面還是生涯規劃方面都適時提供幫助與建議；所上行政助理郭碧芬小

姐在所務及學生事務明確告知應注意事項，使所上師生得以心無旁鶩專注在課

業研究。 

    要感謝的人太多而無法一一列舉。最後感謝家人一路上默默的支持與鼓勵。 

 

王仁聖  謹誌于 

國立交通大學 

統計學研究所 

中華民國九十七年七月 



 i

 

 

Contents 

1 Introduction 

2 The Theory of Generalized Inference 

2.1 The theories of generalized p-values and generalized 

confidence intervals‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

2.2 Substitution method‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

2.3 Illustrative example‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

3 Inferences on a Linear Combination of K 

Multivariate Normal Mean Vectors 

3.1 Introduction‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 

3.2 Hypothesis testing and confidence region estimation for 

Gµ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

3.2.1 Solutions based on the generalized method‧‧‧‧‧

3.2.2 Solutions based on the classical methods‧‧‧‧‧‧

3.3 The multivariate Behrens-Fisher problem‧‧‧‧‧‧‧‧‧

1 

 4 

 

 4

  5

 6

  

 9 

9

 

11

11

14

15



 ii

4 The Theories of the Regression Model and the 

Growth-Curve Model 

4.1 Regression model with known covariance matrices‧‧‧‧

4.2 The growth-curve model‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

4.3 Growth curve models with heteroscedastic uniform 

covariance structure‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

5 Generalized Inferences on Regression Models 

with Unequal AR(1) Covariance Matrices 

5.1 Introduction‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

5.2 Regression model with AR(1) errors‧‧‧‧‧‧‧‧‧‧‧

5.2.1 Single group based on the generalized method‧‧‧‧

5.2.2 Multiple groups based on the generalized method‧‧

5.3 The other methods‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

6 Results and Concluding Remarks 

6.1 Simulation studies about Gµ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

6.1.1 The multivariate Behrens-Fisher problem‧‧‧‧‧‧

6.1.2 The expected areas and coverage probabilities‧‧‧‧

6.2 Illustrative Examples of linear combination of mean vectors

6.2.1 Example 1‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

 

18 

18

 20

 

 21

 

24 

 24

 25

 25

 27

 31

33 

 33

 33

 35

 37

 37



 iii

 

6.2.2 Example 2‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

6.3 Illustrative examples of serial dependence‧‧‧‧‧‧‧‧‧

6.3.1 Simulated studies (Comparison of coverage 

probabilities)‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

6.3.2 Example 3: the dental data‧‧‧‧‧‧‧‧‧‧‧‧‧

6.3.3 Example 4: the simulated data (Testing equality of the 

trends)‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

6.4 Concluding remarks‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

References 

Appendix 

 39

 41

 

 41

 43

 

 44

 46

48 

53 



 iv

 

 

List of Tables 
 

6.1 Type I error with 1,000 iterations 1 2 2 2, a= =Σ I Σ I ‧‧‧‧‧

6.2 Type I error with 1,000 iterations 1 4 2 4, a= =Σ I Σ I ‧‧‧‧‧

6.3 Expected areas of 95% confidence regions and coverage 

probabilities of 1 2−µ µ  under 2
1 2 2 2

1

,  and n a
n

= =Σ I Σ I ‧‧‧‧‧

6.4 Expected areas of 95% confidence regions and coverage 

probabilities of 1 2
32 2

+ −
µ µ µ  under 1 2 2 2, 3  = =Σ I Σ I and

3 2a=Σ I ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

6.5 Sample means of plasma inorganic phosphate (mg/dl) ‧‧

6.6 Various comparisons of mean flux curves over selected 

time intervals following oral glucose challenge‧‧‧‧‧‧

6.7 Sample means of GBV and the 95% confidence region of
Gµ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

6.8 Comparison of 95% coverage probabilities of β  under 

1σ =1, 1ρ =0.1‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

6.9 Expected areas of 95% confidence regions of β  under 

1σ =1, 1ρ =0.1‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

6.10 Estimated trends, expected areas and hypotheses of the 

dental data set‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

6.11 The simulated data set for 5 groups‧‧‧‧‧‧‧‧‧‧‧

6.12 The generalized p-values for the testing equality of the 

trends‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

 34 

 35 

  

 36 

 

 

 37 

 38 

 

 39 

 

 40 

 

42 

 

42 

 

43 

45 

 

46 



 v

6.13 The generalized p-values for the testing equality of growth 

curves with uniform covariance matrices‧‧‧‧‧‧‧‧

 

46 

 



 1

Chapter 1 

Introduction 

Our main subject in this dissertation is to find a method dealing with regression 

models with heteroscedastic AR(1) covariance matrices. Heteroscedasticity, the 

phenomenon of a set of statistical distributions with different variances, is one of the 

attention-getting issues for researchers. Such heteroscedasticity may be pertained to 

unknown variables while some heteroscedasticity may be related to variables of interest. 

For instance, the behavior of a chemical reaction might be affected by temperature or 

reaction time, the heights of children may be affected by the gender and the differences 

of the yields of the corn may be affected by the species of the corn, etc. Therefore, it is 

desirable to discuss and to find a method to handle the problem with heteroscedastic 

phenomena. 

The Behrens-Fisher problem is the typical case where the variances of the two 

normal populations are not quite equal, that is, there is heteroscedasticity between two 

groups. Linnik (1968) has shown that the inferences about the difference of the means 

between two populations have no exact fixed-level tests (conventional) based on the 

complete sufficient statistics, that is, based on the two sample means and the two sample 

variances. However, exact conventional solutions based on other statistics and 

approximate solutions based on the complete sufficient statistics exist. For example, 

Scheffé (1943) gave a class of exact solutions to the Behrens-Fisher problem, but 

Scheffé type solutions are inefficient in the sense that they do not use all the information 

in the data about the true value of the parameter. The expected length of the confidence 

intervals given by the Scheffé solution is much larger than those given by approximate 

solutions. (See, Welch (1947), Lee and Gurland (1975), and Scheffé (1970), etc.) With 

prior distributions, the Bayesian method can make inferences about the difference of the 

means based on the posterior distribution, which combines the information in the prior 

distributions and the information in the data (the likelihood function) about the 

parameters. Some statisticians believe that it is not appropriate to talk about the prior 

distribution when it is known that the parameter is not a random variable but rather an 

unknown fixed number. 
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The concepts of the generalized p-values and the generalized confidence intervals 

were proposed by Tsui and Weerahandi (1989) and Weerahandi (1993), respectively. 

Although the generalized approach shares the same philosophy of the Bayesian 

approach that the inferences should be made with special regards to the data at hand, the 

parameters are not treated as random variables in generalized approach. Comparing to 

the classical tests, the generalized p-values are based on a number of test statistics 

whereas conventional p-values are based only on a single test statistics. The methods are 

exact in the sense that the tests and the confidence intervals developed are based on 

exact probability expressions rather than on asymptotic approximations. The method of 

the generalized p-values is frequently applied to deal with many practical problems 

concerning the situation with unequal variances or unequal covariance matrices. For 

example, Thursby (1992), Weerahandi (1995), Ananda and Weerahandi (1996), Chang 

and Huang (2000), McNally, Iyer and Mathew (2003), Krishnamoorthy and Lu (2003), 

Mathew and Krishnamoorthy (2003, 2004), Lee and Lin (2004), Hannig, Iyer and 

Patterson (2006) and many others have carried out a number of investigations and 

applications of generalized p-values in making inferences of the difference of two 

exponential means, extreme values under normality, the ratio of mean of two normal 

populations, some functions of the means of lognormal distribution, the Behrens-Fisher 

problem and the common mean of several normal populations, etc. 

The generalized method is also applied to deal with the traditional multivariate 

statistical problems in which nuisance parameters are present and they are difficult to 

make inferences. Griffiths and Judge (1992), Chi and Weerahandi (1998), Gamage and 

Weerahandi (1998), Gamage, Mathew and Weerahandi (2004) and others presented the 

generalized method as an alternative way of handling multivariate statistical problems 

like regression models, linear models and mixed models etc., with different covariance 

matrices among multiple groups. However, it is desired that the generalized method in 

the multivariate case should be brought to more attention. We propose a new 

generalized test variable to make inferences on a linear combination of multivariate 

normal mean vectors among multiple populations. In simulation studies, when only two 

populations are considered, our results are equivalent to those proposed by Gamage et al. 

(2004) in the bivariate case which is also known as the bivariate Behrens-Fisher 

problem. However, in some higher dimension case, these two results are quite different. 

The details will be discussed later. 
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With the notions and concepts of generalized p-values and the generalized 

confidence regions, we provide the exact inferences on the multivariate 

analysis-of-variance model (MANOVA), including the growth curve models with the 

uniform covariance structures and the serial covariance structures. Lee (1988) applied 

the growth curve model to the multivariate linear model with two special covariance 

structures, that is, the uniform covariance structures and the serial covariance structures. 

The growth curve model was first proposed by Potthoff and Roy (1964). Lee and 

Geisser (1975), Lee (1988) and many others have shown that the growth curve model is 

one of the most useful methods for dealing with the MANOVA model with the serial 

covariance structures. However, the growth curve model is restricted to handling either 

a single group or multiple groups only under the assumption of identical error 

correlation among the groups. As with many traditional methods, the growth curve 

model has difficulty in dealing with models in which the error correlations are different 

among distinct groups. Hence, we will apply the generalized method to discuss the 

regression model with heteroscedastic AR(1) covariance matrices. 

Lin and Lee (2003) showed that the generalized method provides an alternative way 

of dealing with the MANOVA model with unequal uniform covariance structures 

among multiple groups. However, the procedure was based on the assumption of the 

special design matrices. Thus we will extend the idea with some modifications to further 

consider the growth curve model with possibly unequal serial covariance matrices 

between different groups. 

In this dissertation, we will start out with brief introduction of generalized 

inferences, including generalized p-values and the generalized confidence intervals in 

Chapter 2. We will make the generalized inferences on a linear combination of the mean 

vectors under the assumption of unequal covariance matrices in Chapter 3. The 

traditional procedure to deal with regression models when the covariance matrices are 

known is described in Chapter 4. The growth curve model is also described in Chapter 4. 

The regression models with the unequal serial covariance structures will be discussed in 

Chapter 5. Finally, several numerical examples and simulation studies are given to 

illustrate the advantages of our proposed methods in Chapter 6. The concluding remarks 

are also provided in Chapter 6. Based on the standardized expression of the generalized 

test variable (GTV), we proposed algorithms to compute the generalized p-value and the 

generalized confidence region in Appendix. 
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Chapter 2 

The Theory of Generalized Inference 

2.1 The theories of generalized p-values and generalized confidence intervals 

Let W  be a random variable whose distribution ( | )f ζW  depends on a vector of 

unknown parameter vector ( ,  )ζ θ= η , where θ  is the parameter of interest, and η  

is a vector of nuisance parameters. Suppose we are interested in testing  

           0 0:H θ θ≤  vs. 1 0:H θ θ> ,                                (2.1) 

where 0θ  is a pre-specified quantity. The concepts of generalized p-values and 

generalized confidence intervals were developed by Tsui and Weerahandi (1989) and 

Weerahandi (1993), respectively, to deal with the statistical problems in which nuisance 

parameters are present such that the classical statistical methods are difficult to make 

inferences. We will briefly introduce these concepts as follows. 

The generalized test variable (GTV) of the form ( ; , , )H θW w η  with w  being 

the observed value of W  is chosen to satisfy the following requirements: 

(i) For fixed w , the distribution of ( ; , , )H θW w η  is free of the vector of nuisance 

parameters η . 

(ii) The value of ( ; , , )H θW w η  at =W w  is free of any unknown parameters. 

(iii) For fixed w  and η , Pr[ ( ; , , ) ]H hθ ≥W w η  is either an increasing or a 

decreasing function of θ  for any given h .                               (2.2) 

Under the above conditions, if ( ; , , )H θW w η  is stochastically increasing in θ , then 

the generalized p-values for testing the hypothesis in (2.1) is defined as  

0

0 0 0sup Pr[ ( ; , , ) ] Pr[ ( ; , , ) ]p H h H h
θ θ

θ θ
≤

= ≥ = ≥W w η W w η ,            (2.3) 

where 0 0( ; , , )h H θ= w w η . 

Under the same setup, a generalized pivotal quantity (GPQ), ( ; , , )D θW w η , 

satisfies the following conditions: 

(i) The distribution of ( ; , , )D θW w η  is free of unknown parameters. 

(ii) The observed value of ( ; , , )D θW w η  is free of nuisance parameters η .          

Condition (i) allows us to write probability statements leading to confidence intervals 
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that can be evaluated regardless of the values of the unknown parameters. Condition (ii) 

ensures that given the current sample point ( ; , , )D θw w η , we can obtain a subset of 

parameter space that can be computed without knowing the values of the nuisance 

parameters. Let 1c  and 2c  be such that 

 1 2Pr[ ( ; , , ) ] 1c D cθ α≤ ≤ = −W w η ,                            (2.4) 

then { }1 2: ( ; , , )c D cθ θ≤ ≤w w η is a 100(1 )%α−  generalized confidence interval for 

θ . Furthermore, if the value of ( ; , , )D θW w η  at =W w  is θ , then 

{ }( ; / 2),  ( ;1 / 2)D Dα α−w w  is a 100(1 )%α−  confidence interval for θ , where 

( ; )D γw  represents the γ th quantile of ( ; , , )D θW w η . 

2.2 Substitution method 

To get an applicable GTV or GPQ, Peterson, Berger, and Weerahandi (2003) 

proposed a systematic approach, that is, substitution method. Let 1( , , )kV V…  be a set 

of random variables with distributions free of unknown parameters, and their joint 

distribution be known. Suppose that there is also a set of observable statistics 

1( , , )kW W… , with observed values 1( , , )kw w…  and known distributions, such that the 

number of 1( , , )kW W… , ,k  is equal to that of unknown parameters of the problem, say 

1( , , )kλ λ… . Then the substitution method is carried out in the following procedure. 

1. Deposit the parameter of interest, θ , into the function of 1( , , )kλ λ…  or express 

θ  in terms of 1( , , )kW W…  and 1( , , )kV V… . 

2. Obtain a GTV ( ; , , )H θW w η  by replacing 1( , , )kW W…  with 1( , , )kw w…  and 

substrate θ  from step 1. 

3. Check whether ( ; , , )H θW w η  satisfies properties (i) and (iii) in (2.2). 

4. Rewrite 1( , , )kV V…  terms appearing in ( ; , , )H θW w η  in terms of 1( , , )kW W…  

and 1( , , )kλ λ… . Then check the properties (ii) in (2.2) and show that the 

observed sample point on the boundary of the extreme region. 

5. Calculus the generalized p-value based on ( ; , , )H θW w η . 

It should noted that to find a potential GTV or GPQ, there are various replacements 

of parameters by random variables and substitution of random variables by their 
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observed values from step 1 to step 5. 

2.3 Illustrative example 

Weerahandi (2004) gave several examples to illustrate the substitution method and 

Two of them will be chosen to exhibit the substitution method for GTV and GPQ as 

follows. 

Suppose that 1 2, , , nX X X"  are independent and identically distributed as 

2( , )N µ σ , with mean µ  and variance 2σ . X  and 2S are sample mean and sample 

variance, respectively. 

Example of the generalized p-value  

Suppose 2θ µ σ= +  is a function of the parameters of the normal distribution. The 

parameter can be expressed in terms of the sufficient statistics and random variables as 
2X Z nθ σ σ= − +                                  (2.5) 

               
2

,S nSX Z
UU

= − +                                 (2.6) 

where XZ
n
µ

σ
−

=  and 
2

2

nSU
σ

=  are the independent standard normal and 

Chi-squared random variables. Let x  and 2s  be the observed values of X  and 2S , 

respectively, we can obtain the potential test variable as 

                

2

2 2

2

s nsH x Z
UU

X s n sx
S Sn

θ

µ σ σ θ
σ

= − + −

−
= − + −

 

                  
2 2

2

( ) .s X sx
S S
µ σ θ−

= − + −                            (2.7) 

Having obtained the identity that relates the parameter to the sufficient statistics and 

random variables that are free of unknown parameters, it is clear that the observed value 

of H is zero and its distribution does not depend on nuisance parameters. It also follows 

from (2.7) that it is stochastically decreasing in the parameter of interest θ . Hence, H is 

indeed a test variable (GTV). So, for instance hypotheses of the form 0 0:H θ θ≤  can 

be tested on the generalized p-value 
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              0Pr( 0 | )p H θ θ= ≤ =  

                
2

0Pr( )sZ ns x
UU

θ= − ≥ − .                           (2.8) 

In this example, the p-value can be computed by numerical integration with respect 

to independent Z and U. The probability of the inequality in appearing in the formula 

can also be evaluated by the Monte Carlo method. This is accomplished by generating a 

large number of random numbers from Z and U, and then finding the fraction of pairs of 

random numbers for which the inequality is satisfied. 

Example of the generalized confidence interval  

Suppose 2 2( ) ( )θ µ σ µ σ= + +  is the parameter of interest, where µ  and σ  are the 

mean and the standard deviation of the normal distribution. Let XZ
n
µ

σ
−

=  and 

2

2

nSU
σ

=  be the independent standard normal and Chi-squared random variables, then 

               

2 2

2 2

2 2

( ) ( )

( )

.
( ) /

X Z n
X Z n

X Z S U S n U
X Z S U nS U

θ µ σ µ σ

σ σ
σ σ

= + +

− +
=

− +

− +
=

− +

 

Hence we can define two representations of the GPQ as  

              
2 2( ) /

x Z s U s n U
D

x Z s U ns U
− +

=
− +

                             (2.9) 

                2 2

( ) /
( ( ) ) ( / )

x s X S s S
x s X S s S

µ σ
µ σ

− − +
=

− − +
.                        (2.10) 

From (2.9), the distribution D  is free of unknown parameters and (2.10) implies that 

the observed value of D  is θ . Then { }( ; / 2),  ( ;1 / 2)D Dα α−w w  is a 100(1 )%α−  

generalized confidence interval for θ , or with ( , )x s′ =w , 

2 2
1 Pr[ ( ; / 2) ( ;1 / 2)]

( ) /
x Z s U s n U

D D
x Z s U ns U

α α α
− +

− = ≤ ≤ −
− +

w w .       (2.11) 

The probability can be evaluated by numerical integration with respect to ( , )Z U  or by 

Monte Carlo integration. 

Further details on the concepts of generalized p-values and generalized confidence 
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intervals can be found in Weerahandi (1995, 2004). When there is more than one 

parameter of interest, as usually the case in linear models, the substitution method 

should be modified to obtain potential GTV and GPQ. 
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Chapter 3 

Inferences on a Linear Combination of K 

Multivariate Normal Mean Vectors 

3.1 Introduction 

Suppose there exist K independent d-variate normal populations with mean vector 

iµ  and covariance matrix iΣ , 1, 2,...,i K= , where iµ  and iΣ  are possibly unknown 

and unequal among group. We want to make inferences on a linear combination of K 

mean vectors. This problem arises because sometimes there is a theoretical reason for 

believing some characteristics of these populations to be such that their mean vectors 

have some relationships or practitioners want to know some characteristics of 

compound material. For example, in the Edgar Anderson’s famous Iris data, there is a 

theoretical belief that the four gene structures of three species to be such that the mean 

vectors of the three populations, (1) iris versicolor (2) iris setosa and (3) iris virginica, 

are related to 1 2 33 2= +µ µ µ  (Anderson, 2003). 

If the difference between the covariance matrices is small and the sample sizes are 

large, the Hotelling’s 2T -test for testing a linear combination of mean vectors has good 

performance. However, if the covariance matrices are quite different and/or the sample 

sizes are small, the nominal significance level may be distorted. Therefore, we intend to 

develop a procedure to provide generalized inferences for a linear combination of the 

mean vectors, ,=θ Gµ  where G  is a designed d dK×  matrix, and µ  is the 

dK-variate mean vector with 1( , , )K′ ′ ′=µ µ µ" . That is, we will provide a generalized 

confidence region for θ  and test the hypothesis 

0 0:H =Gµ θ   vs.  1 0:H ≠Gµ θ ,                         (3.1) 

where 0θ  is a given vector. For example, in the Iris data, we can set 

(3 , 2 , )d d d= − −G I I I  and 0 =θ 0  to perform this hypothesis. 

Suppose ijX ’s are independent random vectors of sample size in . Define the ith 

sample mean vector and sample covariance matrix as 

   
1

1 in

i ij
jin =

= ∑X X   and   
1

1 ( )( )
in

i ij i ij i
jin =

′= − −∑S X X X X , 1,...,i K= .         (3.2) 
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It can be shown that 

       ~ ( ,  )i
i d i

i

N
n
ΣX µ   and   ~ ( 1, )i i i d i in W n= −A S Σ , 1,...,i K= ,       (3.3) 

and both of them are independently distributed, where ( ,  )dN π Ψ  denotes d-variate 

normal distribution with mean vector π  and ( ,  )dW r Ψ  is the d-dimensional Wishart 

distribution with degrees of freedom r  and scale matrix Ψ . Furthermore, in  is 

supposed to greater than d , in d> , 1,...,i K= , to ensure 1
i
−S exists with probability 

one. Because the distributions of iX  and iS  are affine invariant, and thus, we will test 

the problem (3.1) and construct a confidence region of ( )=θ Gµ  based on these 

judicious condensation of the data. Using the underlying distribution assumptions, our 

approach procedures are associated with an exact probability statement and a repeated 

sampling interpretation. 

For K=2, ( , )d d= −G I I and 0 =θ 0 , (3.1) is reduced to the well-known multivariate 

Behrens-Fisher problem. For this topic, there are several exact as well as approximate 

tests are considered in the literature for the past five decades. For example, Christensen 

and Rencher (1997) compared seven solutions for their Type I error rates and powers 

and suggested that Kim’s (1992) and Nel and Van der Merwe’s (1986) solutions had the 

highest powers among solutions whose Type I error rates were not inflated. 

Krishnamoorthy and Yu (2004) modified the Nel and Van der Merwe’s (1986) test and 

provided an approximate invariant solution for the problem. In addition to those 

approximate procedures, Bennett (1951) provided an exact solution for the generalized 

Behrens-Fisher problem. However, the power obtained by Bennett’s method was poor 

under unequal sample sizes because the method was not based on sufficient statistics. 

Johnson and Weerahandi (1988) provided an exact Bayesian solution based on Bayesian 

Approach and Gamage, Mathew and Weerahandi (2004) provided the generalized 

p-values and generalized confidence region for the Behrens-Fisher problem.  

We would like to further consider K non-homogeneous multivariate normal 

populations with unequal sample sizes and unequal covariance matrices, and then 

provide an invariant generalized test variable and construct a generalized confidence 

region for a linear combination of K multivariate normal mean vectors. In our proposed 

model, the multivariate Behrens-Fisher problem can be treated as a special case of our 

model. The concepts of generalized p-value and generalized confidence intervals have 
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turned out to be extremely fruitful for obtaining tests and confidence intervals involving 

“non-standard” parameters. Therefore, we will use the idea to derive a new generalized 

pivot quantity that is simple to use for both hypothesis testing and confidence region 

estimation of Gµ .  

Our procedures for hypothesis testing and the generalized confidence region of Gµ  

construction are presented in Section 3.2. Several methods in the multivariate 

Behrens-Fisher problem are briefly introduced in Section 3.3. Results will be illustrated 

with real and simulated data in Chapter 6. Two simulation studies are presented in 

Section 6.1 to compare the type I error rates, expected areas and the coverage 

probabilities in different combinations of sample sizes and covariance matrices for 

difference procedures, and then two sets of data will be illustrated for our procedures in 

Section 6.2. 

3.2 Hypothesis testing and confidence region estimation for Gµ  

Suppose we have K independent d-variate multivariate normal populations with 

mean vector iµ  and unequal covariance matrices iΣ  for the ith sample. Let iX  and 

iS  be the sample mean vector and sample covariance matrix for the ith population, 

which are defined in (3.2). We will consider the problem of estimating a linear 

combination of K multivariate normal mean vectors, Gµ , based on the minimal 

sufficient statistics 1 1( ,..., ,  ,..., )K KX X S S . 

In this section, we will first derive the generalized p-value and construct a 

generalized confidence region of Gµ  based on the generalized method and then 

reviewed some commonly used methods. For some special cases, especially the 

multivariate Behrens-Fisher problem, several methods will also be reviewed in Section 

3.3. 

3.2.1 Solutions based on the generalized method 

It is noted that iX  and iS  are mutually independent with ~ ( ,  / )i d i i iN nX µ Σ , 

~ ( 1, )i
i d i

i

W n
n

−
ΣS  and ~ ( 1, )i i i d i in W n= −A S Σ , 1,...,i K= . Let 1( ,..., )K′ ′ ′=X X X  

then the MLE (maximum likelihood estimator) of θ  is 

ˆ ~ ( , ) dN ′=θ GX θ GΦG ,                            (3.4) 
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where Φ  is the block diagonal matrix (Bdiag), 

 

1
1 1

1

1 1

( , , )  K

K
K K

n
Bdiag

n n
n

−

−

 
 

= ≡  
 
 

Σ 0
Σ ΣΦ

0 Σ
" % . 

If the covariance matrices iΣ ’s are given, it is known that from (3.4) we can get 

( ) 1/ 2 ( ) ~ ( ,  )d d dN−′ − ≡GΦG G X µ Z 0 I .                       (3.5) 

 If the covariance matrix iΣ  for the ith population is unknown, let 

1( ,..., )KBdiag=S S S  and 1( ,..., )KBdiag=s s s  be the observed value of S , then we 

can define 
1/ 2 1/ 21/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2− −− − − − − −     =      R s Φs s Ss s Φs ,                  (3.6) 

where 1/ 2Ψ means the positive definite square root of the positive definite matrix Ψ  

and 1/ 2 1/ 2 1( )− −=Ψ Ψ . It should be noted that R  also stands for a block diagonal matrix 

with 1( ,..., )KBdiag=R R R , where 
1/ 2 1/ 21/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2( / ) ( / )i i i i i i i i i i i in n
− −− − − − − −     =      R s Σ s s S s s Σ s .     (3.7) 

Since ~ ( 1,  )i d i dW n −R I  is free of any unknown parameters, and for the fact that at 

=S s , the observed value r  of R  is 
11/ 2 1/ 2 −− −  s Φs  , it is clear that 1/ 2 1 1/ 2− =s R s Φ  

at =S s . That means we can use the information of s  and R  to make inference 

about the nuisance parameters Φ . Furthermore, we will derive the generalized 

inferences for Gµ  based on X  and R . 

Let x  and r  be the corresponding observed values of X  and R , respectively, 

the generalized pivot quantity can be expressed as  

( ) ( )1/ 2 1/ 21/ 2 1 1/ 2( , ; , ) ( )−− ′ ′− −T X R x r = Gx Gs R s G GΦG G X µ  

( )1/ 21/ 2 1 1/ 2= d
− ′−Gx Gs R s G Z .                              (3.8) 

It is noted that the value of T  in (3.8) at ( ,  ) ( ,  )=X S x s  is Gµ  which is the 

parameter of interest. Furthermore, given ( , )x s , the distribution of T  is independent 

of any unknown parameters, therefore, T  in (3.8) satisfies the two conditions in (2.4) 

and is truly a GPQ, which can be used to construct confidence region for Gµ . 

The generalized p-value 



 13

For given ( ,  )x s , the distribution in (3.8) is independent of unknown parameters and 

hence the Monte Carlo method can be utilized to construct a confidence region of Gµ , 

and test the hypothesis 

0 0:H =Gµ θ   vs.  1 0:H ≠Gµ θ ,                        (3.9) 

where 0θ  is a given vector. Suppose Tm  and TS  are the mean and covariance 

matrix of T , and 1/ 2 ( )−= −T TT S T m  is the standardized expression of T , then the 

generalized p-value for testing (3.9) can be computed by  

0Pr{ > | , }p = T θ x r ,                             (3.10) 

where 1/ 2
0 0( )−= −T Tθ S θ m , T  and 0θ  are norms of T  and 0θ , respectively, 

with = ′T T T , and the null hypothesis (3.9) will be rejected whenever p α≤ . 

Furthermore, if we want to test the MANOVA problem of the form 0 1: ... KH = =µ µ  

which can be expressed as *
0 :H =G µ 0 . One convenient choice for *G  in this 

particular problem is  
(2)

(3)
*

( )

...

...

...

d d

d d

K
d d

−   
  −   = =
  
  −      

I I 0 0 0 G
I 0 I 0 0 G

G

I 0 0 0 I G
# #

,  

where ( ) ( ) ( )
1( , , ),i i i

d K dc c=G I I"   ( )

 1 j= 1 
1 j= i  

 0 o.w.

i
jc


= −



.  

Similar to T  in (3.8), the generalized test variable can be expressed as 
1/ 2

* * * 1/ 2 1 1/ 2 *
( 1)= d K

−
−

 ′−  
 

T G x G s R s G Z . And the p-value can also be computed in the 

similar way as (3.10). 

The generalized confidence region 

If we are interested in constructing confidence interval of θ . Since T  in (3.8) also 

fulfills two requirements of the generalized pivotal quantity and the observed value of 

T  is θ , so it can be used to construct the confidence region of θ . Let { }; 1-
q

αT
 be the 

100(1 )α− th percentile of T , such that 
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          { }{ }1 2
; 1-

Pr ( ) ( ) 1-q
α

α−′ ′= − − ≤ =T T T T
T T T m S T m ,                (3.11) 

Therefore, the 100(1 )%α−  confidence region of θ  can be solved through  

{ }{ }1 2
; 1-

 : ( ) ( ) q
α

−′− − ≤T T T T
θ θ m S θ m .                         (3.12) 

Some remarks about confidence region are given in the Appendix. 

3.2.2 Solutions based on the classical methods 

In the classical procedure, the Hotelling’s 2T  test and the Chi-square test are the 

commonly used methods. In Hotelling’s 2T  test, we assume the population covariance 

matrices are the same, whereas in the classical Chi-square method, practitioners usually 

replace the population covariance matrices with the sample covariance matrices. We 

will briefly introduce these two methods to deal with our problem. 

The Hotelling’s 2T  test  

In this method, we will assume that 1 ... K= = =Σ Σ Σ  and 1( , , )d K dc c=G I I , 

then the point estimator of 
1

K

i i
i

c
=

= =∑θ Gµ µ  and the pool covariance matrix are 

1
ˆ K

i ii
c

=
=∑µ X  

and          
1 1 1

1 1( )( )iK n K
H ij i ij i i ii j i

n
N K N K= = =

′= − − =
− −∑ ∑ ∑S X X X X S ,  (3.13) 

respectively, where 
1

K

i
i

N n
=

= ∑  and and i iX S are defined in (3.2), respectively. The 

criterion is 
1

2 2
1 1 1

( ) / ( )K K K
i i i H i i ii i i

Q c c n c
−

= = =
 ′= − − ∑ ∑ ∑X θ S X θ  

= ( ) 1ˆ( ) Hb −′−µ θ S ˆ( )−µ θ ,  

where  2Q  has the Hotelling’s 2T -distribution with N K−  degrees of freedom and 

2
1

/K
i ii

b c n
=

= ∑ . Thus 

2

, 1
1 ~ d N K d

Q N K d F
N K d − − +

− − +
×

−
,                   (3.14) 

so the p-value for testing 0 0
1

:
K

i i
i

H c
=

=∑ µ θ , where 0θ  is a given vector, is 
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      1
, 1 0 01 1

1Pr ( )   ( )
( )

K K
d N K d i i H i ii i

N K dp F c c
bd N K

−
− − + = =

 − − +′= > − − ⋅ − 
∑ ∑x θ S x θ ,          (3.15) 

and the 100(1 )%α−  confidence region of θ  can be solved through the inequality  

{ 1ˆ: ( ) H
−′−θ µ θ S 1

( )ˆ( ) ( ,  1)
1

bd N K F d N K d
N K d α−

− − ≤ − − + − − + 
µ θ ,           (3.16) 

where 1 ( ,  1)F d N K dα− − − + is the 100(1 )α− th percentile of the , 1d N K dF − − +  

distribution.  

The classical Chi-square test   

The classical Chi-square method is valid when the covariance matrices are known. 

The statistics 2
dΗ , 

1
2 2

1
ˆ( ) /( 1)K

d i i ii
c n

−

=
 ′Η = − − ∑µ θ S ˆ( )−µ θ , is distributed 

approximately as a Chi-square distribution with degrees of freedom d when the sample 

sizes tend to infinity, where 
1

ˆ K
i ii

c
=

=∑µ X  and 
1

K

i i
i

c
=

=∑θ µ . The p-value for testing 

0 0
1

:
K

i i
i

H c
=

=∑ µ θ  is 

       
1

2 2
0 01 1 1

Pr ( ) /( 1) ( )K K K
d i i i i i i ii i i

p c c n cχ
−

= = =

  ′= > − − −   
∑ ∑ ∑x θ S x θ ,           (3.17) 

and the approximate 100(1 )%α−  confidence region of θ  may be obtained by 

evaluating 

{ 2 1
1

ˆ: ( ) ( /( 1))K
i i ii

c n −
=

′− −∑θ µ θ S }2
1ˆ( ) ( )dαχ −− ≤µ θ ,            (3.18) 

where 2
1 ( )dαχ − is the 100(1 )α− th percentile of the 2χ  distribution with degrees of 

freedom d. 

3.3 The multivariate Behrens-Fisher problem 

If we are only interested in the multivariate Behrens-Fisher problem, that is, only 

two populations are related and 1 1c =  and 2 1c = − , i.e., ( , )d d= −G I I ; then (3.8) for 

the generalized pivotal quantity becomes 

( )1/ 21/ 2 1 1/ 2 1/ 2 1 1/ 2
1 1 2 1 1 1 2 2 2( , ; , ) ( ) d

− −− − +T X S x s = x x s R s s R s Z .            (3.19) 

The p-value for testing  

0 1 2:H =µ µ  vs. 1 1 2:H ≠µ µ                           (3.20) 
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is similar to (3.10) by replacing T�  and 0θ  with 1T�  and 0 , respectively.  

Some other methods for dealing with the multivariate Behrens-Fisher problem are 

briefly reviewed in the follows.  

Gamage, Mathew and Weerahandi (2004) 

The p-value for testing (3.20) derived by Gamage et al. (2004) is 
1

1 2
Gam 1 2 1 2 0

1 2

Pr T ( ) ( ) |
n 1 n 1

p H
−   ′= ≥ − + −  − −   

s sx x x x ,         (3.21) 

where GamT  is defined as 

1/2 -1 1/2 1/2 -1 1/2
Gam 1 1 1 2 2 2T   [ ]′= +Z v Ψ v v Ψ v Z ,                         (3.22) 

with 
1/ 2 1/ 2

1 2 1 2
i i

1 2 1 2n 1 n 1 n 1 n 1

− −
   

= + +   − − − −   

s s s sV S , and iv  being the observed values 

of iV , i d i d~ W (n 1,  )−Ψ I , 1, 2i =  and ~ ( ,  )d dNZ 0 I . 

Furthermore, they also defined * *
Gam GamT /t  to test the MANOVA problem of the form 

0 1: ... KH = =µ µ , where 
K

*
Gam 1 i

i=1

ˆT ( ,..., )= ( - )K in ′Σ Σ ∑ X µ -1
i i ˆ( - )Σ X µ , *

Gamt  is the observed 

value of *
GamT  and 1 1 1

i
1 1

ˆ ( )
K K

i i i i
i i

n n− − −

= =

= Σ Σ∑ ∑µ X . However, as the authors had mentioned 

in their paper, this new GTV * *
Gam GamT /t  was not invariant under non-singular 

transformation (Gamage et. al., 2004). 

Krishnamoorthy and Yu (2004) 

Krishnamoorthy and Yu (2004) modified the Nel and Van der Merwe’s (1986) test 

and provided an approximate invariant solution for the multivariate Behrens-Fisher 

problem. They obtained a nonsingular invariant statistic 

11 1
1 2 1 2 1 1 2 2 1 2 1 2T ( ) ( ) ( 1) ( 1) ( ) ( )Kri n n

−− −′     = − − − − + − − − −    X X µ µ S S X X µ µ , (3.23) 

which is approximately distributed as , 1 /( 1)d ddF dνν ν− + − +  where 

1 2 2 1 2 2
1 1 1 2 2 2

( 1)
( 1) ( ) ( 1) ( )

d d
n tr tr n tr tr

ν
− −

+
=

   − Λ + Λ + − Λ + Λ   
 ,  

11 1 2
1

1 1 2

( )
1 1 1n n n

−Λ = +
− − −

S S S ,  
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12 1 2
2

2 1 2

( )
1 1 1n n n

−Λ = +
− − −

S S S . 

The p-value for testing (3.20) is 
1

1 2
, 1 1 2 1 2 0

1 2

1Pr ( ) ( ) |
n 1 n 1d d

dp F H
dν

ν
ν

−

− +

  − + ′= ≥ ⋅ − + −  − −   

s sx x x x .       (3.24) 
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Chapter 4 

The Theories of the Regression Model and the 

Growth-Curve Model 

In this chapter, repeated measurements with different covariance matrices among 

groups can be expressed by the regression model in matrix form as follows: 

ij i i ij= +Y X β ε ,                                     (4.1) 

where 1( , , )ij ij ijTY Y ′=Y " , ijtY  are measurements at time point t  for subject j in group 

i for 1, ,i I= " , 1, , ij J= " , 1, ,t T= " , and iX ’s are the KT ×  design matrices 

with rank K , 1 K T≤ ≤ . Further, ijε  are independent T-variate normal, with mean 

vector 0 and the positive definite covariance matrices iΣ ’s. Estimating and making 

inferences on iβ ’s are important aspects of regression analysis. If iΣ ’s are known, the 

best linear unbiased estimator (BLUE) of iβ  can be readily obtained via standard 

procedures. If the error covariance matrices are not known but are assumed to be 

identical, maximum likelihood estimates (MLE’s) via the growth-curve method is one 

of the approximation methods for dealing with this model when the sample size is large. 

However, if iΣ ’s are unknown and distinct between different groups, the traditional 

methods have serious drawbacks in making inferences about iβ ’s. Even when the 

covariance matrices are identical among different groups, the growth-curve method can 

only provide an approximate result. We will briefly introduce the traditional regression 

model when the covariance matrices are known and the growth-curve model with two 

special covariance structures. 

4.1 Regression model with known covariance matrices 

In this section, we will briefly introduce the traditional method for making 

inferences on iβ ’s when the covariance matrices are known (Arnold (1981), Scheffé 

(1999) and Anderson(2003)). If the covariance matrices iΣ ’s of the regression model 

(4.1) are known and given, we can pre-multiply 1 2
i
−Σ  to both sides of the regression 

model (4.1), where 1 2
i
−Σ  denotes a positive definite square root matrix of 1

i
−Σ , 

therefore we get the following standardized regression model: 



 19

ij i i ij= +Y X β ε� � � , 1, , ij J= " ; 1, ,i I= " ,                   (4.2) 

where ~ ( , )ij T TN 0 Iε� , TI  is the T-dimension identical matrix. The best linear 

unbiased estimator (BLUE) of iβ  is 

1ˆ ( )i i i i i ij
j

J −′ ′= ∑β X X X Y� � � � ,                           (4.3) 

and 1 1ˆ ~ ( , ( ) )i K i i i i iN J − −′β β X Σ X , 1, , .i I= "  Hence ˆ( )i i iJ ′−β β 1 ˆ( )i i i i i
−′ −X Σ X β β  are 

independently distributed as the 2 -distributionχ  with degree of freedom K  for 

1, ,i I= " . Researchers are interested in testing the equality of the trends with 

heteroscedastic phenomena, that is,  

0 1: I= = =H β β β" .                            (4.4) 

Under the null hypothesis (4.4), the estimator of the common β  is 

 1ˆ ( ) ( )i i i i ij
i i j

J −′ ′= ∑ ∑∑β X X X Y� � � � ~ ( , )KN β Ψ ,                 (4.5) 

where 1 1 1( ) ( ) .i i i i i i i
i i

J J− − −′ ′= =∑ ∑Ψ X X X Σ X� �  Let 2
0

ˆ( )ij i
i j

S ′= −∑∑ Y X β� � � ˆ( )ij i−Y X β� �  

be the standardized residual sum of squares under the null hypothesis and  
2 ˆ( )a ij i i

i j
S ′= −∑∑ Y X β� � � ˆ( )ij i i−Y X β� �  be the standardized residual sum of squares under 

the alternative hypothesis. We can then obtain the F statistic with 

                
2 2
0

(( 1) , )2 ~
( 1)

a
I K NT IK

a

S SNT IKF F
I K S − −

−−
=

−

� �
� ,                    (4.6) 

where iN J=∑ . The p-value for testing (4.4) can be calculated by 

p-value=
2 2
0

( 1) , 2Pr{ }
( 1)

a
I K NT IK

a

s sNT IKF
I K s− −

−−
≥

−
� �
�

,                (4.7) 

where 2
0s�  and 2

as�  are the observed values of 2
0S�  and 2

aS� , respectively, and 

hypothesis (4.4) is rejected if p-value α≤ .  

If the null hypothesis cannot be rejected, we may assume that the populations have 

the common trend β . The estimation of β  is then important. From (4.5), the 

confidence region with confidence coefficient 1 α−  for the common trend β  is  

{β : 1ˆ( ) −′−β β Ψ 2ˆ( ) (1 )K αχ− ≤ −β β },                   (4.8) 

where 1 1
i i i i

i
J− −′= ∑Ψ X Σ X  and 2 (1 )K αχ −  is the 100(1 )α−  percent point of the 
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2 -distributionχ  with degrees of freedom K . 

4.2 The growth-curve model 

Potthoff and Roy (1964) proposed the growth-curve model which is a useful 

generalized multivariate analysis-of-variance model especially for growth-curve 

problems. Rao (1967, 1975, 1977), Grizzle and Allen (1969), Geisser (1970, 1981), 

Fearn (1977) and others applied the growth-curve model to some biological data, the 

forecast of technology substitutions and Bayesian analysis. The regression model (4.1) 

can be expressed as a growth-curve model if the design matrices are identical. The 

growth-curve model can be defined as 

            
              

     
I NT N T K K I T N×× × × ×

= +Y X B F ε ,                              (4.9) 

where 11( , , )
IIJ=Y Y Y" , 11( , , )

IIJ=ε ε ε" , 1( , , )I=B β β"  and F  is the I N×  

design matrix characterizing the distinct grouping of the N  independent vector 

observations, where i
i

N J=∑ . Let Z  be a known ( )T T K× − matrix with rank 

T K−  such that ′ =X Z 0 . We will utilize the results of the growth-curve model with 

two special covariance matrices proposed by Lee (1988) to make inferences on iβ ’s. 

Uniform covariance structure 

 When the design matrix 2( , )T=X 1 X , (1, ,1)T ′=1 … , and the covariance matrix is 

uniform structure, that is,  

       2 2 2[(1 ) ] (1 ) [ ]u u u T T u u u u T Tσ ρ ρ σ ρ σ ρ′ ′= − + = − +Σ I 1 1 I 1 1              (4.10) 

with 1 1
1 uT

ρ−
< <

−
, then the MLE’s of B , 2

uσ  and uρ  derived by Lee (1988) are 

ˆ =B 1 1( ) ( )− −′ ′ ′ ′X X X YF FF ,                             (4.11) 
2 *ˆu tr TNσ = S , 

* * *ˆ ( ) ( 1)u T T tr T trρ ′= − −1 S 1 S S , 

where * 1 1 1 1( ) ( ) ( ) ( )− − − −′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − +S Y(I F FF F)Y Z Z Z Z YF FF FY Z Z Z Z . 
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Serial covariance structure 

When the covariance matrix is serial structure, i.e., the AR(1) errors correlation, 
2σ=Σ C ,                                    (4.12) 

where ( )m nρ −=C , 1 ,m n T≤ ≤ , 2 0σ > , and ρ  is restricted to 1ρ < , which 

ensures that Σ  is positive definite. The MLE’s of B  and 2σ  are 

ˆ ˆ( )ρB = 1 1ˆ( )− −′X C X 1 1ˆ ( )− −′ ′ ′X C YF FF                         (4.13) 

and 2 ˆˆ ( )σ ρ =
1

NT
1 1ˆ[ ( )tr − −′X C X 1ˆ −′X C 1( )−′ ′ ′−Y(I F FF F)Y 1ˆ −C X + 1ˆ( ) ]tr −′ ′ ′Z CZ Z YY Z , 

respectively, where ˆ ˆ( )m nρ −=C  and ρ̂  is obtained by maximizing the profile 

likelihood function 
2 2 2 ( 1) 2

max ˆ( ) ( ( )) (1 )NT N TL ρ σ ρ ρ− − −= − .                       (4.14) 
For the single group, (1, ,1)=F " , and N′ =FF , ij

i j
N′ = =∑∑YF Y Y  and the 

MLE’s of (4.13) can be written as 

ˆ ˆ( )G ρβ = 1 1ˆ( )− −′X C X 1 1ˆ ( )− −′ ′ ′X C YF FF = 1 1ˆ( )− −′X C X 1ˆ −′
_

X C Y ,            (4.15) 

and 2 ˆˆ ( )σ ρ =
1

NT
1 1ˆ[ ( )tr − −′X C X 1ˆ −′X C 1

N
′ ′−Y(I F F)Y 1ˆ −C X + 1ˆ( ) ]tr −′ ′ ′Z CZ Z YY Z , 

where ρ̂  is obtained by maximizing the profile likelihood function. 

The approximate 100(1 )%α−  confidence region for β  under (4.4) is  

{β : 2ˆNσ − ˆ( )G ′−β β 1ˆ( )−′X C X 2ˆ( ) (1 )G K αχ− ≤ −β β }.          (4.16) 

When 2K = , the area of the approximate 100(1 )%α−  confidence region for β  is 

           
1 22 1 2ˆˆ( ,  1 ) ( ) (1 )G KA

N
πα σ αχ

−
− −′− = −β X C X .                  (4.17) 

4.3 Growth curve models with heteroscedastic uniform covariance structure 

Lin and Lee (2003) considered the unbalanced data and unequal design matrices 

2( , )i T i=X 1 X  for heteroscedastic variances. The model is expressed in matrix form as 

follows 

ij i i ij T ijα= + +Y X β 1 ε , 1, , ij J= " , 1, ,i I= " ,        (4.18) 

where, ( , )ij eiN 0 Σε ∼ , the random effects 2(0, )ij N αα σ∼  vary independently, and 

2[(1 ) ]ei i T Tσ ρ ρ ′= − +Σ I 1 1  is uniform correlation structure. The covariance matrix of 



 22

ijY  is also uniform correlation structure, that is, for 1, ,i I= "  

2 2 2 2
( ) (1 ) ( )ij i T T ei i i T TCov α ασ σ ρ ρσ σ′ ′= = + = − + +Y Σ 1 1 Σ I 1 1 ,        (4.19) 

and 
2 2

1 2 1

2

(1 )[ (1 )] [ ]i i
i i T T

iT
φ σ ρσ ρ

φ

− − − − ′= − −Σ I 1 1 ,                       (4.20) 

with 
2 2 2 2

(1 ) ( )i i iT αφ σ ρ ρσ σ= − + + . The inverse of iΣ  depends on 
2
(1 )iσ ρ−  and 

2
iφ , 

but not on by ρ  itself, therefore 
1

i
−

Σ  can be expressed as 
1 1 2 2

( (1 ),  )i i i iσ ρ φ
− −
= −Σ Σ . 

Furthermore,  
1 1

1 1 1 1 ( )ˆ ( ) ( ) ( ,  )i i i
i i i i i i i i i i i i

i

N
J

− −
− − − − ′

′ ′ ′ ′= =
_ _ X Σ Xβ X Σ X X Σ Y X X X Y β∼       (4.21) 

where 1
i ij

jiJ
= ∑Y Y . The residual sum of squares is  

1 1

ˆ( )
iJI

ij i i
i j

SSE
= =

′= −∑∑ Y X β , ,
1 1

ˆ( )
I I

ij i i W i B i
i i

S S
= =

− = +∑ ∑Y X β ,             (4.22) 

where 

, . ..
1

ˆ[ ( ) ]
iJ

W i ij i i ij i T
j

S Y Y
=

′≡ − − −∑ Y X β 1 . ..
ˆ[ ( ) ]ij i i ij i TY Y− − −Y X β 1  and 2

, . ..
1

( )
iJ

B i ij i
j

S T Y Y
=

≡ −∑  

with (1,1, ,1)T ′=1 " , .
1 1

j jt T j
t

Y Y
T T

′= =∑ 1 Y , .. .
1 1 1 1

j T j T
j j

Y Y
J J T T

′ ′= = =∑ ∑ 1 Y 1 Y . 

For 1, ,i I= " , ,W iS  and ,B iS  are independently distributed as  

2,
, ( 1) ( 1)2 (1 ) i

W i
W i J T K

i

S
U

σ ρ
χ − − −=

−
∼  and 2,

, 12 i

B i
B i J

i

S
U

φ
χ −= ∼ ,             (4.23) 

respectively. Pre-multiplying 1 2 1 2 2 2( (1 ),  )i i i iσ ρ φ− −= −Σ Σ  to both sides of Equation 

(4.18), the model with identity covariance matrix can be rewritten as  

          ij i i ij= +Y X β ε� � � ,                                   (4.24) 

where ~ ( , )ij T TN 0 Iε� , which is the same as (4.2).  

Let 2 2 2 2 2
0 1 1( (1 ), , (1 ), , , )I IS σ ρ σ ρ φ φ− −� " "  be the standardized residual sum of 

squares under null hypothesis (4.4) and 2 2 2 2 2
1 1( (1 ), , (1 ), , , )a I IS σ ρ σ ρ φ φ− −� " "  be the 

standardized residual sum of squares under the alternative. The generalized p-value for 
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testing the hypothesis (4.4) 0 1: I= = =H β β β"  can be expressed as 

2 2 2 2 2 2 ,1 , ,1 ,
0 1 1 0

,1 , ,1 ,

Pr{ ( (1 ), , (1 ), , , ) ( , , , , , )}

  

w w I b b I
I I

W W I B B I

s s s s
p S s

U U U U
σ ρ σ ρ φ φ= − − >� �" " " "   

2 2
2 ,1 , ,1 ,0
02

,1 , ,1 ,

= Pr{ ( , , , , , ) 1}
/ / / /

w w I b b Ia

W T W I T B T B I Ta

s s s sS S s
U U U U U U U US

−
> −

� �
� " "�        (4.25) 

1 2 2 1 2 1 2 2 1 2
1 2

2 ,1 , ,1 ,2
, 0

1 (1 ) (1 ) (1 )
1 { [ { ( , , , , , ) 1}]},

I I I I I I I I I

w w I b b I

M M M M M M M M M M M

s s s s
E F sν ν

ν
ν − + −− − −

= − −∆ " " "
� " "  

where 1 ( 1)I Kν = − , 2 NT IKν = −  and
2

2
, ,

1

( )~
I

T W i B i
i

U U U νχ
=

= +∑  with 
1

I

i
i

N J
=

=∑ . 

And E∆  is the expected value with respect to the independent Beta random 

variables 11 1
1

1

~ ( , )
2 2

r

ii

r
ii r

r r
ii

q qM Beta
λ

λ
== +

+

=

= ∑∑
∑

, 1, , (2 1)r I= −" , with two auxiliary 

constants 0 0M ≡  and 2 1IM ≡ , where 1 2 ,1 , ,1 ,( , , ) ( , , , , , )I W W I B B IU U U Uλ λ =" " " , rq  

is the degrees of freedom of rλ  with 
( 1) ( 1), 1, , .

1, 1, , 2 .r
r

r I

q
J T K r I
J r I I−

− − − =
=  − = +

"
"
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Chapter 5 

Generalized Inferences on Regression Models 

with Unequal AR(1) Covariance Matrices 

5.1. Introduction 

In many fields, such as business, engineering, medical studies, meteorology, etc., 

serial dependence, i.e., AR(1) errors correlation, is considered one of the most important 

correlation structures. In particular, a regression model with a polynomial trend 

(including a linear trend, especially for few measurements taken over time) and serial 

dependence is one of the strong candidates for analyzing the data sets collected across 

equally spaced time intervals. Repeated measurement with serial dependence can be 

expressed by the regression model in matrix form as follows: 

ij i i ij= +Y X β ε ,                              (5.1) 

where 1( , , )ij ij ijTY Y ′=Y "  for 1, ,i I= " , 1, , ij J= " , 1, ,t T= " , and iX ’s are 

design matrices. Further, ijε  are independent T-variate normal, with mean vector 0 and 

the AR(1) covariance matrix 2
i i iσ=Σ C , ( )m n

i iρ
−=C , 1 ,m n T≤ ≤ , 2 0iσ > , and iρ  

is restricted to 1iρ < , which ensures that iΣ  is positive definite. 

Potthoff and Roy (1964), Lee and Geisser (1975), Lee (1988) and many others have 

shown that the growth-curve model is one of the most useful methods for dealing with 

the regression model (5.1) with AR(1) dependence. However, the growth-curve model 

is restricted to handling either a single group or multiple groups only under the 

assumption of identical error correlation among the groups. As with many traditional 

methods, the growth-curve model has difficulty dealing with models in which the error 

correlations are different among distinct groups. In this chapter, we propose a method 

based on the concepts of the generalized p-values and the generalized confidence 

intervals to handle the problem with heteroscedastic phenomena. 

Estimating and making inferences on iβ ’s are important aspects of regression 

analysis. If the error covariance matrices are not known but are assumed to be identical, 

maximum likelihood estimates (MLE’s) via the growth-curve method is one of the 

approximation methods for dealing with this model when the sample size is large. 
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However, if the nuisance parameters 2
iσ  and iρ  are unknown and distinct between 

different groups, the traditional methods have serious drawbacks in making inferences 

about iβ ’s. Thus, an exact procedure for making inferences of the fixed effect iβ  

when the serial covariance matrices are unknown and unequal among groups needs to 

be explored. In Section 4.3, Lin and Lee (2003) showed that the generalized method 

provided an alternative way of dealing with a regression model (5.1) with unequal 

uniform covariance structures among multiple groups. Thus, we will extend the idea to 

further consider the regression model (5.1) without making the equal serial dependence 

assumption. We perform hypothesis testing for the equality of the fixed effects and 

derive the distribution of the common trend if the null hypothesis cannot be rejected. 

Our procedures for dealing with a single group and multiple groups are both 

presented in Section 5.2. The other commonly used methods, the growth-curve model, 

the classical Hotelling’s 2T  and the classical Chi-square method, are presented in 

Section 5.3. The illustrative examples of real and simulated data sets are provided in 

Section 6.3 for the purpose of making comparisons of the different methods with 

respect to their coverage probabilities, expected areas and p-values. 

5.2 Regression model with AR(1) errors 

  In this section, we first introduce our method for dealing with the single group in 

Section 5.2.1 and then consider the multiple groups with and without the assumptions of 

identical AR(1) covariance matrices in Section 5.2.2. Other methods such as the ML 

method via growth-curve model, the classical Chi-square approximation and the 

Hotelling’s 2T –statistic are also briefly introduced in Section 5.3. 

5.2.1 Single group based on the generalized method 

In the single group, the model (5.1) can be reduced to 

j j= +Y Xβ ε , 1, ,j J= " ,                          (5.2) 

where 1, , Jε ε"  are identical and independent multivariate normal distributions with 

mean vector 0  and the AR(1) covariance matrix 2σ=Σ C  with ( )m nρ −=C , 

1 ,m n T≤ ≤ . 

Let (1,1, ,1)T ′=1 " , .
1 1

j jt T j
t

Y Y
T T

′= =∑ 1 Y , .. .
1 1 1 1

j T j T
j j

Y Y
J J T T

′ ′= = =∑ ∑ 1 Y 1 Y  
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and 1
j

jJ
= ∑Y Y , we obtain a linear unbiased estimator 1( )−′ ′= =

_ _

b X X X Y A Y  with 

1( )−′ ′=A X X X , and b  is distributed as 21( , )KN
J
σ ′β ACA . We utilize the estimator 

b  to make inferences on the unknown AR(1) covariance matrix through two 

independent random variables, one is the sum of square errors about Xb  within 

subjects, . .. . ..( ) [ ( ) ] [ ( ) ]j j T j j T
j

SSW Y Y Y Y′= − − − − − −∑Xb Y Xb 1 Y Xb 1 , and the other is 

the sum of square errors between subjects, 2
. ..( ) ( )j

j
SSB T Y Y= −∑Xb . The sum of 

square errors about Xb , ( ) ( ) ( )j j
j

SST ′= − −∑Xb Y Xb Y Xb , can be expressed as the 

sum of ( )SSW Xb  and ( )SSB Xb . 

Through the distributions and the expected values of ( )SSW Xb  and ( )SSB Xb , 

we can get information about Σ . The expectations of ( )SST Xb  and ( )SSB Xb  are 

2( ( )) ( ( )) ( ( )) [ ( )] ( ( ))j
j

E SST E SSW E SSB tr Cov JT trσ= + = − = −∑Xb Xb Xb Y Xb XAC  

and 2( 1)( ( )) T T
JE SSB
T

σ− ′=Xb 1 C1 . 

Let 
2

b T Te
T
σ ′= 1 C1  and 

2 1( ( ) )
( 1) ( 1)w T T

Je JT tr
J T K T

σ − ′= − −
− − −

XAC 1 C1 , then 

             2
( 1) ( 1)

( ) ~W J T K
w

SSWU
e

χ − − −=
Xb ,                             (5.3) 

             2
1

( ) ~B J
b

SSBU
e

χ −=
Xb ,                                   (5.4) 

and WU  and BU  are independently distributed. Since the pair 2 ,  σ ρ〈 〉  can be 

uniquely determined by the pair ,  w be e〈 〉 , we can get information about nuisance 

parameters 2σ  and ρ  through we  and be . Hence, Σ  can be expressed as 

( ,  )w be e≡Σ Σ . And for any positive number λ , we have ( ,  ) ( ,  )w b w be e e eλ λ λ=Σ Σ  

and 1 1( ,  ) ( ,  )w b w be e e eλ λ λ− −=Σ Σ . Thus  

1 ( ) ( )( , ) 
( ) ( )w b

ssw ssbe e
SSW SSB

− Xb XbΣ
Xb Xb

 

1 ( ) ( )( , )
W B

ssw ssb
U U

−=
Xb XbΣ  
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= 1 ( ) ( )( , )T T T
W B

ssw ssbU U U
U U

− Xb XbΣ  

1 2 1 2

1

, ,

( ) ( )( , )
1T

v v v v

ssw ssbU
B B

−=
−

Xb XbΣ ,                                    (5.5) 

where ( )ssw Xb  and ( )ssb Xb  are the observed values of ( )SSW Xb  and ( )SSB Xb , 

respectively, 2~T B w JT KU U U χ −= + , and 
1 2,Bν ν  is the Beta random variable with 

1
( 1) ( 1)

2
J T Kν − − −

=  and 2
1

2
Jν −

= . 

If we  and be  are known, pre-multiplying 1 2−Σ  to both sides of Eq. (5.2), we 

obtain the standardized regression model with identity covariance matrix as follows. 

        j j= +Y Xβ ε� � � , 1, ,j J= " , where ~ ( , )j T TN 0 Iε� ,                (5.6) 

which is equivalent to model (3.2). Based on (5.6), the BLUE of β , denoted as ˆ
Pβ , 

1 1ˆ ( ) ( )P j
jJ

−′ ′= ∑β X X X Y� � � �  and 1 1ˆ ~ ( , ( ) )P KN J − −′β β XΣ X . 

Since ˆ( )PJ ′−β β 1 ˆ( )P
−′ −X Σ X β β  is distributed as 2 ,Kχ  then the random variable 

( ) ˆ( )P
J JT K

K
− ′−β β 1 ˆ( ) ( )T PU −′ −X Σ X β β is distributed as an F distribution with degrees 

of freedom K and JT-K. When 2K = , the expected area of the 100(1 )%α−  coverage 

probability of β  can be obtained by 

   
1 2 1 2 1 2

1 2
( ) ( )1

,1, , ,
( ,  1 ) [ ( , ) ] (1 )

( )
ssw ssb

P B K JT KB B

KA E F
J JT K ν ν ν ν ν ν

πα α
−

−
−−

′− = −
−

Xb Xbβ X Σ X ,    (5.7) 

where 
1 2,Bν ν is as defined in (5.5) 

5.2.2 Multiple groups based on the generalized method 

In this section, we incorporate the generalized method into the traditional regression 

procedure. Our proposed method will provide an alternative process for making 

inferences for iβ ’s of the regression model. The inferences under the assumptions of 

distinct AR(1) covariance matrices among groups, and the equal AR(1) covariance 

matrices case, are both introduced in this section.  

Different covariance matrices among groups 

For the situation with distinct covariance matrices among groups, we utilize similar 
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steps as in the single group model with some modifications. First, we have to obtain the 

information for 1
i
−Σ  and pre-multiply 1 2

i
−Σ  to both sides of the regression model (5.1), 

1, ,i I= " , then we get the standardized regression model: 

ij i i ij= +Y X β ε� � � , 1, , ij J= " ; 1, ,i I= " ,                    (5.8) 

where ~ ( , )ij T TN 0 Iε� . In Section 5.2.1, the AR(1) covariance matrix Σ  is expressed 

as ( ,  )w be e≡Σ Σ  through the generalized method. Similarly, we will obtain the AR(1) 

covariance matrices iΣ ’s with some modification, then we can make inferences for the 

common trend β  based on the standardized regression model (5.8) via the traditional 

regression procedure. The procedure is as follows. 

Let 1 ,i ij
jiJ

= ∑Y Y  .
1 ,ij T ijY
T

′= 1 Y  ..
1

i T iY
T

′= 1 Y  and 1( )i i i i
−′ ′=A X X X , then the 

estimator 1( )i i i i i i i
−′ ′= =b X X X Y A Y  is distributed as 21( , )K i i i i i

i

N
J
σ ′β A C A . The sum 

of square errors “within” subjects and “between” subjects are ,W iS ≡  

. .. . ..( ) [ ( ) ] [ ( ) ]i i ij i i ij i T ij i i ij i T
j

SSW Y Y Y Y′= − − − − − −∑X b Y X b 1 Y X b 1  and ,B iS ≡   

2
. ..( ) ( )i i ij i

j
SSB T Y Y= −∑X b , respectively. Let ,

,
,

W i
W i

w i

S
U

e
=  and ,

,
,

B i
B i

b i

S
U

e
= , with 

2

,
1( ( ) )

( 1) ( 1)
i i

w i i i i i T i T
i

Je JT tr
J T K T

σ − ′= − −
− − −

XAC 1 C1  and 
2

,
i

b i T i Te
T
σ ′= 1 C 1 , then it is 

known that ,W iU  and ,B iU  are independently distributed as 2
( 1) ( 1)iJ T Kχ − − −  and 2

1iJχ − , 

respectively. Suppose ,w is  and ,b is  are the observed values of ,W iS  and ,B iS , 

respectively, then  

, , , ,
, ,

, , , ,

( ,  ) ( ,  )w i b i w i b i
i w i b i i

W i B i W i B i

s s s s
e e

S S U U
=Σ Σ .                    (5.9) 

Hence we can obtain the generalized estimator ,
ˆ

P iβ  for the individual group as 

1
,

1ˆ ( ) ( )P i i i i ij
jiJ

−′ ′= ∑β X X X Y� � � � . 

The standardized model (5.8) can be also obtained by pre-multiplying 1 2
i
−Σ , the 

square root of (5.9), to both sides of the regression model (5.1), 1, ,i I= " . We are 

interested in testing the equality of the trends with heteroscedastic phenomena, that is,  
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0 1: I= = =H β β β" .                                (5.10) 

Under the null hypothesis (5.10), the common trend estimator ˆ
Pβ  is defined as  

1ˆ ( ) ( )P i i i i ij
i i j

J −′ ′= ∑ ∑∑β X X X Y� � � �
,

ˆ( )P i i i P i
i

J ′= ∑Ψ X X β� � ,             (5.11) 

which is distributed as ( , )K PN β Ψ , where 

            1( )P i i i
i

J −′= ∑Ψ X X� � .                                (5.12) 

 We utilize 2 2
0 ,1 , ,1 , 0

ˆ( , , , , , ) ( )w w I b b I ij i P
i j

S e e e e S ′≡ = −∑∑ Y X β� � � �" " ˆ( )ij i P−Y X β� �  and 

2
,1 , ,1 ,( , , , , , )a w w I b b IS e e e e ≡� " " 2

,
ˆ( )a ij i P i

i j
S ′= −∑∑ Y X β� � �

,
ˆ( )ij i P i−Y X β� �  to test the null 

hypothesis (5.10). It is noted that 2
0S� and 2

aS�  are distributed as 2 -distributionχ  with 

degrees of freedom NT K−  and NT IK− , respectively, where i
i

N J=∑ . Then the 

generalized p-values for testing (5.10), the hypothesis of the equality of the trends, can 

be calculated by 

 

2 2 ,1 , ,1 ,
0 ,1 , ,1 , 0

,1 , ,1 ,
2 2

2 ,1 , ,1 ,0
02

,1 , ,1 ,

Pr{ ( , , , , , ) ( , , , , , )}

   = Pr{ ( , , , , , ) 1}
/ / / /

  

w w I b b I
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1 2,Fν ν  is the cumulative density function(cdf) of 

the F distribution with degrees of freedom 1 ( 1)I Kν = −  and 2 NT IKν = − . And E∆  

is the expected value with respect to the independent Beta random variables 
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If the null hypothesis cannot be rejected, the common trend β  can be estimated by 

ˆ
Pβ , and 1ˆ( )P P

−′−β β Ψ ˆ( )P−β β  is distributed as 2
Kχ . Hence, the random variable 
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ˆ( )P
NT IK

K
− ′−β β 1 ˆ[ ] ( )T P PU − −Ψ β β  is distributed as an F distribution with degrees of 

freedom K and NT-IK. 

When 2K = , the expected area, ( ,  1 )PA α−β , of the 100(1 )%α−  coverage 

probability of β  can be obtained by 
1 2

, ,1

1 2 1 2

[ ( ,  ) ],
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w i b i
p i i i i

i i i I i I i I I
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where the constant , (1 )p K NT IK
Ka F

NT IK
π α−= −
−

. 

Equal covariance matrices among groups 

When the AR(1) covariance matrices are equal among groups, i.e., 2 2
1 Iσ σ= ="  

and 1 Iρ ρ= =" , set ,cT T i
i

S S=∑ , ,cB B i
i

S S=∑  and ,cW W i
i

S S=∑ . Let 

2

cb T Te
T
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2
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( 1) ( 1)cw i i T T

i

N Ie NT tr
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− − − ∑X A C 1 C1 , 

then cW
cW

cw

SU
e

=  and  cB
cB

cb

SU
e

=  are independently distributed as 2
( 1) ( 1)N T I Kχ − − −  and 

2
N Iχ − , respectively. The subscript c in these notations stands for the case of “common 

covariance matrix.” Similar to the previous procedure, let cws  and cbs  be the observed 

values of cWS  and cBS , respectively. Then the identical covariance matrix can be 

expressed as 
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s s s se e
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,
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the null hypothesis, is distributed as ( , )K cPN β Ψ , where 
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The generalized p-values for testing (5.10) can be calculated as 
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where 2~cT cW cB NT IKU U U χ −= + , [ ]
1 2,Fν ν ⋅  is the cdf of the F distribution with degrees 

of freedom  1 ( 1)I Kν = −  and 2 NT IKν = −  and BE  is the expected value with 

respect to the Beta random variables 

 ( 1) ( 1)~ ( ,  )
2 2

N T I K N IB Beta − − − − .  

If the null hypothesis cannot be rejected, the common trend β  is estimated by ˆ
cPβ , 

then 1ˆ( ) [ ]cP cT cP
NT IK U

K
−− ′−β β Ψ ,

ˆ( )~cP K NT IKF −−β β . When 2K = , the area of the 

100(1 )%α−  coverage probability of β  is 
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5. 3 The other methods 

The growth-curve model 

   The regression model (5.1) can be expressed as a growth-curve model if the design 

matrices are identical. The results are given in Section 4.2. 

The classical Chi-square approximation 

In the classical Chi-square method, researchers often substitute the unknown iΣ  

with the sample covariance matrices 1
1 ( )( )

ii ij i ij iJ
j

− ′= − −∑S Y Y Y Y , where 

1
i ij

jiJ
= ∑Y Y  for 1, ,i I= " . Let ( 2) /( 1)i i ia J T J= − − − , it is then easy to show that 

1 1( )i i iE a − −=S Σ . Under hypothesis (5.10), the estimate of the common trend β  can be 

expressed as ˆ
Chi =β 1

( )
ˆ( )Chi i i i i i chi i

i
J a −′∑Ψ X S X β , where 1 1( )Chi i i i i i

i
J a − −′= ∑Ψ X S X  and 

1 11
( )

ˆ ( )chi i i i i i i i
− −−′ ′=

_

β X S X X S Y . 

The approximate 100(1 )%α−  confidence region for the common trend β  is 
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{β : 1ˆ( )Chi Chi
−′−β β Ψ 2ˆ( ) (1 )Chi K αχ− ≤ −β β } .                   (5.18) 

When 2K = , the area of the approximate 100(1 )%α−  confidence region for β  is 

              1 2 2( ,  1 ) (1 )Chi Chi KA α π αχ− = −β Ψ .                      (5.19) 

The Hotelling’s 2T  –statistic 

Assuming 1 I= = =Σ Σ Σ  and 1 I= = =X X X , pre-multiply 1( )−′ ′X X X  to 

both sides of the regression model (5.1). Then the model can be transformed as 
* *
ij i ij= +Y β ε , which is distributed as *( , )K iN β Σ , * 1 1( ) ( )− −′ ′ ′=Σ X X X ΣX X X , for 

1, , ij J=  and 1, ,i I= . Thus the Hotelling’s 2T  –method is applicable. Under 

(5.10), the estimate of the common trend β  is *1ˆ
H i i

i
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The 100(1 )%α−  confidence region for the common trend β  is 

      {β : 1*ˆ( )H H
−′−β β S , 1

( )ˆ( ) (1 )
( 1)H K N I K

N I K F
N I K N

α− − +
−

− ≤ −
− − +

β β }.       (5.20) 

When 2K = , the area of the 100(1 )%α−  confidence region for β  is 

       
1 2*

, 1
( )( ,  1 ) (1 )

( 1)H H K N I K
K N IA F

N N I K
πα α− − +

−
− = −

− − +
β S .              (5.21) 

 



 33

Chapter 6 

Results and Concluding Remarks 

In this Chapter, two simulation studies about linear combination of mean vectors, 

Gµ , discussed in Chapter 3, are presented in Section 6.1 to compare the type I error 

rates, expected areas and the coverage probabilities in different combinations of sample 

sizes and covariance matrices for difference procedures, and then two sets of data will 

be illustrated for our procedures in Section 6.2. The illustrative examples of real and 

simulated data sets with different AR(1) covariance matrices discussed in Chapter 5 are 

provided in Section 6.3 for the purpose of making comparisons of the different methods 

with respect to their coverage probabilities, expected areas and p-values. Finally, the 

concluding remarks are provided in Section 6.4. 

6.1 Simulation studies about Gµ  

In this section, we first consider the multivariate Behrens-Fisher problem compared 

with five methods with their type I errors. Then, for the case of 3 ( 2)K = > , we present 

expected areas and coverage probabilities of three methods for various sample sizes and 

parameter configurations. 

6.1.1 The multivariate Behrens-Fisher problem 

 We apply five methods to calculate the type I error probabilities of multivariate 

Behrens-Fisher problem under different scenarios. The results are in Table 6.1 and Table 

6.2 for 2d =  and 4d = , respectively. Each combination is based on 1,000 replicates 

with 0.05α =  and these comparisons presented correspond to 

(1) General: The generalized method proposed in Section 3.2.1. 

(2) Hote: The Classical Hotelling’s method described in Section 3.2.2. 

(3) Chi: Classical Chi-square test described in Section 3.2.2. 

 (4) Gam: Gamage, Mathew and Weerahandi described in Section 3.3. (2004) 

  (5) Kri: Krishnamoorthy and Yu described in Section 3.3. (2004) 

The methods (1) and (4) both are based on 5,000 runs in each simulation. From 

Table 6.1, it is interesting to find that the results based our proposed method are very 

close to those proposed by Gamage et al. except only by simulated and round off errors. 

Both of them have the type I error probabilities close to the nominal level. The method 
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proposed by Krishnamoorthy and Yu also has the similar results except few 

combinations. 

 

Table 6.1: Type I error with 1,000 iterations 1 2 2 2, a= =Σ I Σ I  

a General Hote Chi Gam Kri 

1 210, 15n n= =   

9 0.045 0.032 0.080 0.045 0.054 

25 0.046 0.026 0.099 0.046 0.056 

100 0.045 0.023 0.104 0.044 0.044 

400 0.045 0.018 0.097 0.043 0.046 

1 210, 10n n= =   

9 0.049 0.101 0.120 0.049 0.062 

25 0.050 0.077 0.115 0.048 0.050 

100 0.055 0.092 0.124 0.053 0.051 

400 0.048 0.089 0.125 0.044 0.046 

1 215, 10n n= =       

9 0.052 0.162 0.137 0.053 0.070 

25 0.055 0.161 0.124 0.054 0.056 

100 0.051 0.193 0.153 0.052 0.055 

400 0.053 0.178 0.128 0.052 0.051 

 

 However, in Table 6.2 with 4d = , except our proposed method, there are 

unanticipated results in the case 1 210,  5n n= = . The method proposed by Gamage et al. 

tends to accept the null hypothesis (3.20) since the generalized p-values calculated by 

their test variable do not have a uniform distribution in this case while we use the 

standardized GTV to calculate the generalized p-values. And the type I error 

probabilities of the method proposed by Krishnamoorthy and Yu range from 0.11 to 

0.16. The type I error probabilities calculated based on the classical Hotelling’s method 

are under estimated when smaller sample sizes are associated with smaller variances 

and over estimated when two sample sizes are equal or smaller sample sizes are 

associated with larger variances. Those obtained based on the classical Chi-square test 

are over estimated in all combinations and their performances grow worse as the degree 

of non-homogeneity increases. This comes to a similar conclusion with a number of 
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other problems solved based on generalized p-values, see Thursby (1992), Zhou and 

Mathew (1994) and many others. They found that when the covariance matrices are 

quite different and the sample sizes are small, the nominal significance level obtained 

by the Hotelling’s and the Chi-square methods may be distorted. 

Although the method proposed by Krishnamoorthy and Yu is a strong candidate for 

the multivariate Behrens-Fisher problem, it has some weaknesses for particular 

combinations of sample sizes, dimensions and parameter configurations. Furthermore, it 

can be used only in two populations. Thus, for overall comparisons from Table 6.1 and 

Table 6.2, we conclude that our proposed method is useful for practical use. 

 

Table 6.2: Type I error with 1,000 iterations 1 4 2 4, a= =Σ I Σ I  

a General Hote Chi Gam Kri 

1 210, 5n n= =       

9 0.036 0.467 0.578 0 0.108 

25 0.042 0.525 0.647 0 0.125 

100 0.052 0.650 0.684 0.001 0.161 

400 0.056 0.748 0.745 0.008 0.127 

1 210, 10n n= =       

9 0.032 0.127 0.258 0.031 0.068 

25 0.041 0.156 0.261 0.042 0.060 

100 0.055 0.156 0.296 0.055 0.059 

400 0.053 0.159 0.299 0.054 0.054 

1 210, 20n n= =       

9 0.031 0.017 0.132 0.030 0.071 

25 0.043 0.013 0.138 0.039 0.057 

100 0.051 0.009 0.132 0.054 0.060 

400 0.048 0.010 0.125 0.047 0.050 

 

6.1.2 The expected areas and coverage probabilities  

In simulation studies, we used 1,000 iterations to calculate the expected areas of the 

95% confidence regions and the corresponding coverage probabilities of 

1 1 2 2 3 3c c c+ +µ µ µ  under different scenarios. First, we chose 1 2 3( , , ) (1, 1,0)c c c = −  
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which is known as the multivariate Behrens-Fisher problem, and the results compared 

with five methods are in Table 6.3. Next, we choose 1 2 3( , , ) (0.5,0.5, 1)c c c = −  and the 

results compared with three methods are in Table 6.4. 

Table 6.3: Expected areas of 95% confidence regions and coverage probabilities of 

1 2−µ µ  under 2
1 2 2 2

1

,  and n a
n

= =Σ I Σ I  

a General Hote Chi Gam Kri 

1 210, 20n n= =      

  9 23.251(.962) 39.4807(.992) 18.228(.924) 23.267(.961) 21.639(.962)

 15 36.758(.963) 65.0438(.993) 29.056(.924) 36.765(.963) 35.063(.938)

 25 59.280(.958) 107.646(.994) 47.089(.922) 59.294(.960) 57.072(.957)

 50 115.603(.959) 214.151(.996) 92.155(.925) 115.664(.961) 114.061(.951)

100 228.298(.959) 427.157(.996) 182.275(.926) 228.378(.960) 224.332(.953)

500 1129.820(.959) 2131.21(.997) 903.209(.929) 1129.990(.959) 1109.206(.962)

1 220, 10n n= =   

  9 13.705(.962) 6.563(.856) 8.556(.903) 13.713(.962) 12.796(.960)

 15 22.078(.961) 9.413(.820) 13.574(.896) 22.089(.961) 21.249(.936)

 25 36.033(.961) 14.124(.791) 21.928(.892) 36.061(.961) 34.617(.950)

 50 70.938(.955) 25.845(.769) 42.801(.891) 70.982(.956) 69.578(.944)

100 140.755(.957) 49.233(.751) 84.539(.892) 140.829(.956) 139.740(.938)

500 699.357(.959) 236.168(.741) 418.422(.889) 699.641(.959) 693.913(.957)

 

From Table 6.3, we find that the coverage probabilities obtained by the Hotelling’s 

method are over-estimated when the large sample sizes are associated with large 

covariance matrices and vice versa. The coverage probabilities obtained by the 

Chi-square method are under-estimated in all cases. On the other hand, the rest three 

methods have good coverage probabilities and similar expected areas in all cases. In 

Table 6.4, although the Hotelling’s method and the Chi-square test have smaller average 

areas of 95% confidence regions, their confidence regions are too small to ensure their 

coverage probabilities are close to the nominal level 0.95. On the contrary, these 

simulated results support that our method not only assures the level of the test in all 

cases, but also has good coverage probabilities comparing to those of the classical 

Hotelling’s method and the classical Chi-square test. 
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Table 6.4: Expected areas of 95% confidence regions and coverage probabilities 

   of 1 2
32 2

+ −
µ µ µ  under 1 2 2 2 3 2, 3  and a= = =Σ I Σ I Σ I  

a General Hote Chi

( 1 2 3  n n n )= (10 8 5) 

9 118.257(.957) 18.319(.716) 29.651(.776)

25 297.648(.954) 32.708(.588) 71.844(.738)

50 614.952(.959) 56.745(.536) 145.938(.757)

100 1204.655(.941) 101.422(.486) 284.573(.750)

500 5926.295(.953) 452.362(.463) 1388.306(.756)

( 1 2 3  n n n )= (8 10 5) 

9 110.010(.959) 18.991(.758) 27.637(.790)

25 299.104(.961) 34.243(.602) 72.169(.758)

50 616.133(.954) 58.086(.555) 145.488(.755)

100 1208.969(.953) 102.749(.507) 284.487(.770)

500 6063.718(.952) 463.086(.454) 1417.512(.759)

( 1 2 3  n n n )= (5 10 8) 

9 42.678(.966) 20.266(.884) 20.828(.866)

25 106.023(.954) 42.525(.804) 52.563(.846)

50 207.290(.968) 77.877(.807) 103.119(.868)

100 401.150(.941) 145.413(.774) 200.280(.841)

500 2061.426(.945) 721.244(.760) 1031.064(.849)

 

6.2 Illustrative Examples of linear combination of mean vectors 

6.2.1 Example 1 

Zerbe (1979) analyzed the plasma inorganic phosphate flux data to study the 

association of hyperglycemia and relative hyperinsulinemia. The standard glucose 

tolerance tests were administered to 13 control (C) and 20 obese (O) patients on the 

Pediatric Clinical Research Ward of the University of Colorado Medical Center. Zerbe 

and Murphy (1986) divided the 20 obese patients into two subgroups; the first 12 obese 

patients were nonhyperinsulinemic (NO) while the latter 8 were hyperinsulinemic (HO). 

The sample means of plasma inorganic phosphate measurements determined from blood 

samples withdrawn 0, 0.5, 1, 1.5, 2, 3, 4, and 5 hours after a standard-dose oral glucose 
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challenge are reported in Table 6.5. The researchers wanted to compare the mean curves 

separately over the first 3 and last 2 hours of the glucose tolerance test since the 

metabolic mechanism responsible for the liver changes. 

 

Table 6.5: Sample means of plasma inorganic phosphate (mg/dl) 

Hours after glucose challenge 

Group 0 0.5 1 1.5 2 3 4 5 

C 4.092 3.262 2.723 2.631 3.046 3.346 3.515 3.939

O 4.530 4.140 3.780 3.480 3.195 3.375 3.700 4.015

NO 4.358 4.033 3.567 3.292 3.100 3.333 3.708 4.000
O 

HO 4.788 4.300 4.100 3.763 3.338 3.438 3.688 4.038

 

We consider the multivariate Behrens-Fisher problem twice to see whether two 

mean vectors are equal or not. First, we want to test if the mean curves of the 

nonhyperinsulinemic obese group and the hyperinsulinemic obese group are the same. 

If we cannot reject this null hypothesis, we further discuss the equality of the mean 

curves of the control group and the obese group, and all results are in Table 6.6. We 

regard the ratio of determinants of sample covariance matrices as the crude index of the 

heteroscedasticity. From Table 6.6, Tm  and Gx  are very close, and ratios don’t 

display strong heteroscedasticity between groups. The p-values in Table 6.6 indicate that 

no significant evidence exist to reject the null hypothesis that the mean curve of the 

nonhyperinsulinemic obese group and that of the hyperinsulinemic obese group are 

equal. However, the mean curves of the control group and the obese group are the same 

in the 3-5 hours interval, but different in the 0-3 hours interval. Hence the metabolic 

mechanisms over the first 3 hours of the glucose tolerance test should be quite different 

from the control group to the obese group. We also run some tests with the similar 

conclusions as Zerbe and Murphy. It should be noted that we used *G  to test the 

equality of the mean curves of 3 groups (C, NO, HO). In the 3-5 hours interval, the ratio 

of determinants is (3.37, 1, 1.92) and the p-values by our method is 0.905 which 

strongly support the null hypothesis. In the 0-3 hours’ interval, the ratio of determinants 

is (11.8, 9.88, 1) and the p-values is 0.035 which reject the null hypothesis. 
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Table 6.6: Various comparisons of mean flux curves over selected time intervals 

following oral glucose challenge 

p-value 
Groups Interval ′

Tm  and ( )′Gx  Ratios 
General Gam Kri 

(NO, HO) 0-3 hrs 
0.42, 0.26, 0.53, 0.47,0.23, 0.11 

(0.43, 0.27, 0.53, 0.47, 0.24, 0.10) 
(10, 1) 0.695 0.670 0.455

(NO, HO) 3-5 hrs 
0.10, -0.02, 0.04 

(0.10, -0.02, 0.04) 
(1, 1.9) 0.869 0.897 0.880

(C, O) 0-3 hrs 
0.44, 0.88, 1.06, 0.85, 0.15, 0.03 

(0.44, 0.88, 1.06, 0.85, 0.15,-0.03) 
(1, 1.6) 0.004 0.006 0.0001

(C, O) 3-5 hrs 
0.028, 0.183, 0.078 

(0.029, 0.185, 0.077) 
(2.1, 1) 0.651 0.665 0.617

(C, O) 0-5 hrs 
0.4, 0.9, 1.1, 0.9, 0.1, 0.03, 0.19, 0.08
(0.4, 0.9, 1.1, 0.8, 0.1, 0.03, 0.18, 0.08) 

(1, 2.0) 0.036 0.050 0.001

Other comparisons 

(C, NO) 0-3 hrs 
0.25, 0.76, 0.83, 0.65, 0.05, -0.02 

(0.27, 0.77, 0.84, 0.66, 0.05, -0.01) 
(1.2, 1) 0.021 0.023 0.007

(C, NO) 3-5 hrs 
-0.015, 0.190, 0.058 

(-0.013, 0.193, 0.062) 
(3.4, 1) 0.642 0.642 0.579

(C, HO) 0-3 hrs 
0.69, 1.04, 1.37, 1.13, 0.29, 0.09 

(0.70, 1.04, 1.38, 1.13, 0.29, 0.09) 
(12, 1) 0.007 0.014 0.001

(C, HO) 3-5 hrs 
0.095, 0.178, 0.108 

(0.091, 0.172, 0.099) 
(1.8, 1) 0.899 0.923 0.902

 

6.2.2 Example 2 

Sterczer, Vörös, and Karsai (1996) studied the effect of tap water and three kinds of 

cholagogues, magnesium sulphate, clanobutin and cholecystokinin, on changes in the 

gallbladder volume (GBV) by two-dimensional ultrasonography in six healthy dogs. In 

this experiment, the dogs were treated with each test substance and GBV (ml) was 

measured immediately before the administration of each test substance and at 10-minute 

intervals for 120 minutes thereafter. They found that the changes in the GBV treated 

with magnesium sulphate were very similar to those treated with clanobutin. The GBV 

data was available in Reiczigel (1999). 



 40

Table 6.7: Sample means of GBV and the 95% confidence region of Gµ . 

 Minutes after treatment 

 20 40 60 80 100

Tap water 12.505 14.153 15.242 16.995 18.090

Clanobutin 12.082 13.248 13.890 14.480 15.232

Cholecystokinin 16.643 16.512 16.712 16.853 16.455

Tm  30.654 33.817 35.821 39.016 40.977

2014.1  

2552.8 3285.4  

2795.0 3588.4 3940.8  

2901.5 3751.9 4110.0 4309.2 
TS  

2984.2 3837.7 4212.5 4402.2 4520.6

Note: From (3.12) the 95% confidence region of Gµ  is 1( ) ( ) 24.704−′− − ≤T T TGµ m S Gµ m . 

 

Studying the human medical literature about the effects exerted by tap water and 

clanobutin, a researcher wants to experiment with cocktail therapy, which mixing 70% 

tap water, 20% clanobutin and 10% cholecystokinin. The knowledge of Gµ  can help 

him to prevent the patients’ uncomfortableness, or the threshold value 0θ . The ratio of 

canine GBV to human beings is about 3:1 (50:17.4), and the ratios of one minus the 

maximal reductions in canine GBV to human beings are 0.75 and 0.87, with respective 

to tap water and clanobutin. Hence he can set 1 2 31.575 0.522 0.3= + +Gµ µ µ µ  

1 2 33*(0.7*0.75 0.2*0.87 0.1 )= + +µ µ µ . To ensure the inverse of the sample covariance 

matrix exists with probability one, the dimension of the measurements must be less than 

six. We take the first 5 measurements at 20-minute intervals for 100 minutes and the 

ratio of determinants is (1217.8, 1, 1.6). The 95% confidence region of Gµ  from (3.12) 

and the summary data are in Table 6.7. The researcher can check to see if 0θ  is in the 

95% confidence region with { }
2

; 95%
q

T
=24.704. 

In Example 1, we not only test the multivariate Behrens-Fisher problem twice but 

also test the MANOVA problem. We illustrate the process to find G  and the procedure 

for constructing the 95% confidence region based on our proposed method in Example 

2. It should be noted that in the Edgar Anderson’s Iris data, the 95% confidence region 
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of 1 2 33 2− −µ µ µ  dose not contain 0 , that means that such a relationship among these 

three species does not exist. 

According to the numerical examples, our proposed method in Chapter 3 is 

commended since the generalized p-values assure the level of the test in all simulated 

cases. Moreover, the coverage probabilities and the expected areas are satisfactory while 

the other methods become worse when the heteroscedasticities increased. The 

traditional methods usually are restricted to some conditions which are sometimes 

violated when the covariance matrices are quite different. 

6.3 Illustrative examples of serial dependence 

In this section we illustrate the procedures introduced in Chapter 5. First, results of a 

simulation study are described to make comparisons of different methods with respect 

to their coverage probabilities and expected areas. Next, a biological data set is utilized 

to compare the estimated trends via MLE method and our procedure. Finally, the 

generalized p-values to test a set of simulated data are presented. 

6.3.1 Simulated studies (Comparison of coverage probabilities) 

In simulation studies, we generate the data sets with the common trend of 

(0 2)′ =β , design matrices 
1  1 1 1

-3 -1 1 3i
 ′ =  
 

X , 1, 2i = , and different serial covariance 

matrices among groups. For demonstration purposes, we compare five procedures with 

respect to their coverage probabilities and expected areas. These five methods are as 

follows: 

(1) Diff: The generalized method with different covariance matrices proposed in Section 

5.2.2. 

(2) Equal: The generalized method with identical covariance matrix. 

(3) GC: Growth-curve method described in Section 4.2. 

(4) CHI: Classical Chi-square approximation described in Section 5.3. 

(5) Hotell: Hotelling’s 2T  –statistic described in Section 5.3. 

  Based on 1,000 replicates in each combination and 5,000 runs in the generalized 

methods (1) and (2), the coverage probabilities of the five methods under different 

combinations are given in Table 6.8, and the corresponding estimated expected areas of 

95% confidence region are given in Table 6.9 under different scenarios. 
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Table 6.8: Comparison of 95% coverage probabilities of β  under 1σ =1, 1ρ =0.1 
( 1 7n = , 2 15n = ) Diff Equal GC CHI Hotell 

2σ  2ρ       
 1 0.1 0.952 0.957 0.931 0.882 0.953 
 0.9 0.959 0.965 0.946 0.869 0.943 

 5 0.1 0.948 0.944 0.922 0.873 0.942 
 0.9 0.960 0.964 0.948 0.876 0.951 

10 0.1 0.946 0.945 0.925 0.897 0.939 
 0.9 0.957 0.961 0.944 0.871 0.948 

20 0.1 0.947 0.938 0.920 0.896 0.940 
 0.9 0.954 0.963 0.951 0.890 0.939 

( 1 15n = , 2 7n = ) Diff Equal GC CHI Hotell 

2σ  2ρ       
 1 0.1 0.941 0.955 0.936 0.878 0.966 
 0.9 0.956 0.963 0.934 0.862 0.953 

 5 0.1 0.947 0.906 0.894 0.904 0.897 
 0.9 0.953 0.926 0.901 0.890 0.911 

10 0.1 0.948 0.907 0.905 0.908 0.871 
 0.9 0.950 0.926 0.904 0.884 0.874 

20 0.1 0.951 0.889 0.870 0.910 0.847 
 0.9 0.950 0.935 0.914 0.901 0.876 

 

From Table 6.8 and Table 6.9, we can see that the coverage probabilities obtained 

by the classical Chi-square approximation were below the nominal level 0.95 in all 

cases although its expected areas were small. Similarly, the coverage probabilities, 

obtained by methods (2), (3) and (5) with the identical covariance matrix assumption, 

decrease when the heteroscedasticities increase. On the other hand, the method (1), the 

generalized method without the equal covariance matrix assumption, had good coverage 

probabilities in all cases even when the heteroscedasticities among groups were large.  

 

Table 6.9: Expected areas of 95% confidence regions of β  under 1σ =1, 1ρ =0.1 
( 1 7n = , 2 15n = ) Diff Equal GC CHI Hotell 

2σ  2ρ       
 1 0.1 0.112  0.118  0.097 0.138  0.123 
 0.9 0.076  0.136  0.123 0.073  0.114 

 5 0.1 0.365  2.063  1.706 0.730  2.134 
 0.9 0.326  1.603  1.665 0.484  1.289 

10 0.1 0.406  8.187  6.782 0.888  8.457 
 0.9 0.391  6.020  6.298 0.714  4.802 

20 0.1 0.419 32.862 27.029 0.951 33.489 
 0.9 0.416 23.718 24.835 0.879 19.092 
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( 1 15n = , 2 7n = ) Diff Equal GC CHI Hotell 

2σ  2ρ       
 1 0.1 0.109 0.118 0.097 0.138 0.123 
 0.9 0.083 0.139 0.114 0.093 0.131 

 5 0.1 0.170 0.943 0.791 0.184 0.912 
 0.9 0.165 0.853 0.849 0.173 0.676 

10 0.1 0.170 3.434 2.955 0.182 3.286 
 0.9 0.169 2.729 2.806 0.179 2.027 

20 0.1 0.172 13.421 11.414 0.183 12.749 
 0.9 0.172 10.381 10.759 0.182 7.571 

 

Hence, based on the overall comparisons, the generalized method without equal 

covariance matrix assumption is better than the other four methods with respect to their 

coverage probabilities and expected areas, especially when small sample sizes are 

associated with large variances.  

 

6.3.2 Example 3: the dental data 

The dental data for 11 girls and 16 boys at ages 8, 10, 12 and 14 years were first 

considered by Potthoff and Roy (1964) and later analyzed by Lee and Geisser (1975), 

Lee (1988) and many others. The design matrix is set to be 
 1  1 1 1
-3 -1 1 3
 ′ =  
 

X . From 

(5.13) and (5.16), the generalized p-values for testing the equality of the trends are 

about 4*10-7 and 2*10-8 for distinct covariance matrices and equal covariance matrices, 

respectively.  

 

Table 6.10: Estimated trends, expected areas and hypotheses of the dental data set 
 The generalized method Growth-curve method 

Group Estimated trend Expected area Estimated trend Expected area
11 girls (22.638  0.485 )′ 0.999 (22.639  0.485 )′  0.924 
16 boys (25.063  0.769 )′ 1.113 (25.027  0.773 )′  0.929 
15 boys (25.107  0.782 )′ 1.083 (25.092  0.782 )′  0.963 

 

Lee and Geisser had pointed out that individual 20, who is a boy, should be 

excluded. In this case, the generalized p-values are about 6*10-6 and 5*10-6 under 

distinct covariance matrices and equal covariance matrices, respectively. Hence we 

treated this dental data as arising from two different groups with distinct trends and 
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serial covariance matrices. We used 10,000 runs to apply the generalized method to 

estimate trends and the expected areas of the 95% confidence region for the trends of 11 

girls, 16 boys and 15 boys. The results are summarized in Table 6.10.  

From Table 6.10, we can see that the estimated trends obtained by the generalized 

method and the growth-curve method are quite similar; however, the expected areas via 

the generalized method are slight larger than those via the growth-curve method. In 

general, the larger the expected areas, the larger the coverage probabilities. The 

simulation study in Section 6.3.1 also shows this phenomenon.  

6.3.3 Example 4: the simulated data (Testing equality of the trends) 

In order to illustrate our procedures to test the equality of the trends, five sets of data 

were generated assuming serial dependence regression model (5.1) with the small 

sample sizes 8,in =  1, ,5i = " . The values of the parameters are 1 1,σ =  2 1.5,σ =  

3 2,σ =  4 4,σ =  5 20,σ = 1 2 3 (10  2),′ ′ ′= = =β β β 4 (12  2),′ =β 5 (14  2),′ =β  0.3iρ = , 

1, ,5i = " , and the design matrices are 
1  1 1 1 1

-2 -1 0 1 2i
 ′ =  
 

X , 1, ,5i = " . The generated 

data sets are presented in Table 6.11. The p-values for testing the equality of the trends 

are displayed in Table 6.12.  

It is noted that the p-values in Table 6.12 are computed with 10,000 runs in each 

combination, ep  means the p-value under equal covariance matrices assumption by 

using formula (5.16) and up  means the p-value without the assumption of equal 

covariance matrices by (5.13). The smaller the p-values, the stronger is the evidence to 

reject the null hypothesis. From Table 6.12, the numerical results showed that when 

groups are homogeneous, both ep  and up  reached the same conclusion that there was 

not sufficient evidence to reject the null hypothesis. However, when heteroscedasticity 

is present, ep  usually fails to detect the differences between groups. On the other hand, 

up  is more sensitive and is able to detect the differences between the distinct groups. 

Thus compared to ep , up  is more powerful than ep  under heteroscedasticity. 

  It is also noted that if we change the serial dependence into uniform covariance 

structure in program, the results with the procedure in Section 5.2 are very close to 

those proposed by Chi and Weerahandi (1998). The comparison is displayed in Table 

6.13 and our results are computed with 5,000 runs in each simulated data set. 
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Table 6.11: The simulated data set for 5 groups 
Group t=-2 t=-1 t=0 t=1 t=2 

i=1  5.317  9.454  9.192 12.461 13.720 
i=1  5.809  8.271 10.402 13.639 15.084 
i=1  4.225  8.239  6.988 11.676 13.713 
i=1  5.515  8.044  9.359 12.326 13.002 
i=1  6.209  9.348  8.789 11.061 12.339 
i=1  7.268  8.806  9.038 11.525 14.740 
i=1  6.950  8.159  9.876 12.741 15.100 
i=1  4.751  8.423  9.788 11.517 14.328 
i=2  3.479  7.283 11.478 12.476 15.240 
i=2  4.768  5.964 11.269 10.437 12.298 
i=2  5.684  6.795 10.870 10.457 12.453 
i=2  5.597  8.183  8.025 12.269 11.619 
i=2  4.656  8.680 11.735 11.069 15.841 
i=2  6.705  7.992  9.593 12.772 12.005 
i=2  5.375  8.474 10.931 12.306 13.233 
i=2  6.648  9.760  9.541 12.024 14.737 
i=3  7.792  7.853 11.848 13.339 15.404 
i=3  6.704  6.747 10.522 12.626 14.499 
i=3  2.623  7.420 10.141  7.929 14.943 
i=3  9.040 11.211  9.210 13.447 14.008 
i=3  6.226  8.143  7.233 12.126 10.774 
i=3  3.188  8.114  9.059 13.483 12.891 
i=3  3.303 11.286  8.380 10.021 16.122 
i=3  6.784  5.921 12.561 12.478 14.418 
i=4 10.047  9.090  6.987  8.703 15.811 
i=4  9.890  5.362 12.305 14.816 16.782 
i=4 11.747  9.269 15.375 16.333 20.243 
i=4  8.576  6.958 12.237 16.103 14.539 
i=4  3.357 -0.004 12.236 13.394 13.968 
i=4  9.838 16.003 20.672 19.727 20.724 
i=4  9.826 13.713  7.021 17.078 13.031 
i=4 11.567  9.680 10.762 17.249 22.972 
i=5  5.634 13.870 21.912 -4.802 22.294 
i=5  2.952 21.233 -26.393 15.328  4.827 
i=5  2.765 11.701  4.881 -0.456  8.499 
i=5 -3.491  11.824 -1.604 42.528 20.791 
i=5 11.124  30.875 38.875 16.394 34.617 
i=5 37.900 -12.610 -7.722 27.170 10.618 
i=5 47.762   3.990 12.793 39.530 19.299 
i=5 20.352  -8.508 25.906 30.113 16.731 
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Table 6.12: The generalized p-values for the testing equality of the trends 
Hypothesis up  ep  

01H : 1 2 3= =β β β  0.083499 0.189677 

02H : 1 2 4= =β β β  0.000447*   0.000001* 

03H : 1 2 5= =β β β  0.047343* 0.082289 

04H : 1 3 4= =β β β  0.000418*   0.000002* 

05H : 1 3 5= =β β β  0.032971* 0.093071 

06H : 1 4 5= =β β β  0.000187* 0.106036 

07H : 2 4 5= =β β β  0.000231* 0.098681 

08H : 3 4 5= =β β β  0.000398* 0.113409 

09H : 2 3 4 5= = =β β β β  0.000365* 0.057247 
* significance under the nominal level 0.05 
 

Table 6.13: The generalized p-values for the testing equality of growth curves with 

uniform covariance matrices 

Chi and 

Weerahandi(1998) 
Section 5.2 (uniform) 

Examples  

up  ep  up  ep  

(1) Serious heteroscedasticity 0.0236 0.0817 0.0245 0.0826 

(2) Mild heteroscedasticity 0.0441 0.0113 0.0491 0.0112 

 

We demonstrate the advantages of our proposed method when there are few subjects 

or few measurements taken over time in this section. The other traditional methods 

usually are restricted to specific conditions that are sometimes violated when the serial 

covariance matrices are quite different or the sample sizes are small. According to the 

numerical examples, our proposed method is superior since it does not require the 

assumption of equal covariance matrices and the generalized p-values are better able to 

detect the differences between the trends among the groups and for the single group 

case, the estimated trend is the same via the growth-curve method. Moreover, the 

coverage probabilities and the expected areas for this method are satisfactory while the 

other methods become worse when the heteroscedasticities increase. 

6.4 Concluding remarks 

The concepts of the generalized p-values and the generalized confidence intervals 

proposed by Tsui and Weerahandi (1989) and Weerahandi (1993) provide a new 

viewpoint of handling the problems with heteroscedastic phenomena. Although the 
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generalized approach shares the same philosophy of the Bayesian approach that the 

inferences should be made with special regards to the data at hand, the parameters are 

not treated as random variables in generalized approach. From Section 6.1, the 

multivariate GTV based on the concept of the standardized expression modifies that 

proposed by Gamage et al.(2004) when the distribution of multivariate GTV is 

unknown. When the covariance matrices are quite different and the sample sizes are 

small, the Type I errors obtained by our proposed method are very closed to the nomial 

significane level while the other methods become worse when the heteroscedasticities 

increase or the dimension increases. 

Based on the generalized approach, Lin and Lee (2003) provided an alternative way 

of dealing with the MANOVA model with unequal uniform covariance structures 

among multiple groups. However, (4.21) is true only when the covariance matrix is the 

uniform structure and the design matrix is the form 2( , )T=X 1 X . To apply the similar 

procedure for handling the regression model with unequal serial dependence, the 

procedure requires some modifications since 
1 1 1 1

( ) ( )
− − − −

′ ′ ′ ′≠
_ _

X Σ X X Σ Y X X X Y . Our 

proposed method is a strong candidate for dealing with the regression model with AR(1) 

dependence since it does not require the assumption of equal serial covariance matrices 

and the coverage probabilities obtained are close to the nominal level even when there 

are heteroscedasticities among groups.  

From Table 6.13, the difference between the p-values of our proposed method, 

which are two simulated data sets of regression model with heteroscedastic uniform 

covariance matrices, and those proposed by Chi and Weerahandi (1998) is very small. 

Therefore, it is desirable to discuss and to find a method to handle the regression model 

with unequal some covariance structures 2 ( )i iσ ρC , 1, , ,i I= "  where I  is the 

number of the groups. The uniform and serial dependences are also in the consideration. 

Moreover, the case of the AR(p) covariance structures is also desirable to further 

explore. 



 48

References  
Ananda, M. M. A. and Weerahandi, S. (1996). Testing the differences of two 

exponential means using generalized p-values. Communications in Statistics. Simulation 

and Computation 25, 521-532. 

 

Anderson, T. W. (2003). An introduction to multivariate statistical analysis. John Wiley, 

Hoboken, N. J. 

 

Arnold, S. F. (1981). The theory of linear models and multivariate analysis. Wiley, New 

York. 

 

Bennett, B. M. (1951). Note on a solution of the generalized Behrens-Fisher problem. 

Ann. Inst. Statist. Math. 2, 87-90. 

 

Chang, Y. P. and Huang, W. T. (2000). Generalized confidence intervals for the largest 

value of some functions of parameters under normality. Statistica Sinica 10, 1369–1383. 

 

Chi, E. M. and Weerahandi, S. (1998). Comparing treatments under growth curve 

models: exact tests using generalized p-values. Journal of Statistical Planning and 

Inference 71, 179-189. 

 

Christensen, W. F. and Rencher, A. C. (1997). A comparison of type I error rates and 

power levels for seven solutions to the multivariate Beherns-Fisher problem. 

Communications in Statistics. Simulation and Computation 26, 1251-1273. 

 

Fearn, T. (1977). A Bayesian approach to growth curves. Biometrika 62, 89-100. 

 

Gamage, J. (1997). Generalized p-values and the multivariate Beherns-Fisher problem, 

Linear Algebra and Its Applications 253, 369-377. 

 

Gamage, J., Mathew, T. and Weerahandi, S. (2004). Generalized p-values and 

generalized confidence regions for the multivariate Behrens-Fisher problem and 

MANOVA. Journal of Multivariate Analysis 88, 177-189. 



 49

Gamage, J. and Weerahandi, S. (1998). Size performance of some tests in one-way 

ANOVA. Communications in Statistics. Simulation and Computation, 27, 625-640. 

 

Geisser, S. (1970). Bayesian analysis of growth curves. Sankhya, Series A 32, 53-64. 

 

Geisser, S. (1981). Sample reuse procedures for prediction of the unobserved portion of 

a partially observed vector. Biometrika 68, 243-250. 

 

Grizzle, J. E. and Allen D. M. (1969). Analysis of growth and dose response curve. 

Biometrics 25, 357-381. 

 

Griffiths, W. and Judge, G. (1992). Testing and estimating location vectors when the 

error covariance matrix is unknown. Journal of Econometrics, 54, 121-138. 

 

Hannig, J., Iyer, H. K. and Patterson, P. (2006). Fiducial generalized confidence 

intervals. Journal of American Statistical Association 101, 254-269. 

 

Johnson, A. and Weerahandi, S. (1988). A Bayesian solution to the multivariate 

Beherns-Fisher problem. Journal of American Statistical Association 83, 145-149. 

 

Kim, S. (1992). A practical solution to the multivariate Beherns-Fisher problem. 

Biometrika 79, 171-176. 

 

Krishnamoorthy, K. and Lu, Y. (2003). Inferences on the common mean of several 

normal populations based on the generalized variable method. Biometrics 59, 237–247. 

 

Krishnamoorthy, K. and Mathew, T. (2003). Inferences on the means lognormal 

distributions using generalized p-values and generalized confidence intervals. Journal of 

Statistical Planning and Inference 115, 103-121. 

 

Krishnamoorthy K. and Yu, J. (2004). Modified Nel and Van der Merwe test for the 

multivariate Behrens-Fisher problem. Statistics & Probability Letters 66, 161-169. 

 

 



 50

Lee, J. C. (1988). Prediction and estimation of growth curves with special covariance 

structures. Journal of the American Statistical Association 83, 432-440. 

 

Lee, J. C. and Geisser, S. (1975). Applications of growth curve prediction. Sankhya, 

Series A 37, 329-356. 

 

Lee, A. F. S. and Gurland, J. (1975). Size and power of tests for equality of means of 

two normal populations with unequal variances. Journal of the American Statistical 

Association 70, 933-941. 

 

Lee, J. C. and Lin, S. H. (2004). Generalized confidence intervals for the ratio of means 

of two normal populations. Journal of Statistical Planning and Inference 123, 49-60. 

 

Lin, S. H. and Lee, J. C. (2003). Exact tests in simple growth curve models and one-way 

ANOVA with equicorrelation error structure. Journal of Multivariate Analysis 84, 

351-368. 

 

Lin, S. H., Lee, J. C. and Wang, R. S. (2007). Generalized inferences on the common 

mean vector of several multivariate normal populations. Journal of Statistical Planning 

and Inference 137, 2240-2249. 

 

Linnik, Y. (1968). Statistical problems with nuisance parameters. Translation of 

Mathematical Monograph No. 20, New York: American Mathematical Society.  

 

Mathew, T. and Krishnamoorthy, K. (2004). One-sided tolerance limits in balanced and 

unbalanced one-way random models based on generalized confidence limits. 

Technometrics 46, 44–52. 

 

McNally, R. J., Iyer, H. K. and Mathew, T. (2003). Tests for individual and population 

bioequivalence based on generalized p-values. Statistics in Medicine 22, 31–53. 

 

Nel, D.G., Van der Merwe, C.A. (1986). A solution to the multivariate Behrens–Fisher 

problem. Communications in Statistics: Theory and Methods 15, 3719–3735. 

 



 51

Peterson, J. J., Berger, V., and Weerahandi, S. (2003) Generalized p-values and 

confidence intervals: their role in statistical methods for pharmaceutical research and 

development. Technical Report.  

 

Potthoff, R. F. and Roy, S. N. (1964). A generalized multivariate analysis of variance 

model useful especially for growth curve problems. Biometrika 51, 313-326. 

 

Rao, C. R. (1967). Least squares theory using an estimated dispersion matrix and its 

application to measurement of signals. in Proceedings of the fifth Berkeley symposium 

on mathematical statistics and probability (Vol. 1), eds. LeCam, L. M. and Neyman, J., 

Berkeley: University of California Press, 355-372.  

 

Rao, C. R. (1973). Linear statistical inference and its applications, John Wiley, New 

York. 

 

Rao, C. R. (1975). Simultaneous estimation of parameters in different linear models and 

applications to biometric problems. Biometrics, 31, 545-554. 

 

Rao, C. R. (1977). Prediction of future observations with special reference to linear 

models. in Multivariate analysis (Vol. 4), ed. Krishnaiah, P. R., Amsterdam: 

North-Holland, 193-208. 

 

Reiczigel, J. (1999). Analysis of experimental data with repeated measurements. 

Biometrics, 55, 1059-1063. 

 

Scheffé, H. (1943). On solutions of the Behrens–Fisher problem based on the t- 

distribution. Annals of Mathematical Statistics 14, 35-44. 

 

Scheffé, H. (1970). Practical solutions of the Behrens–Fisher problem. Journal of the 

American Statistical Association 65, 1501-1508. 

 

Scheffé, H. (1999). The analysis of variance. Wiley, New York. 

 

 



 52

Srivastava, M. S. and Carter, E. M. (1983). An introduction to applied multivariate 

statistics, North Holland, New York. 

 

Sterczer, A., Vörös, K., and Karsai, F. (1996). Effect of cholagogues on the volume of 

the gallbladder of dogs. Research in Veterinary Science 60, 44-47. 

 

Thursby, J. G. (1992). A comparison of several exact and approximate tests for structural 

shift under heteroscedasticity. Journal of Econometrics 53, 363-386. 

 

Tsui, K.W. and Weerahandi, S. (1989). Generalized p-values in significance testing of 

hypotheses in the presence of nuisance parameters. Journal of the American Statistical 

Association 84, 602-607. 

 

Weerahandi, S. (1993). Generalized confidence intervals. Journal of the American 

Statistical Association 88, 899-905. 

 

Weerahandi, S. (1995). Exact statistical methods for data analysis. Springer-Verlag, 

New York. 

 

Weerahandi, S. (2004). Generalized inference in repeated measures: exact methods in 

MANOVA and mixed models. John Wiley, Hoboken, N. J. 

 

Welch, B. L. (1947). The generalization of Students’ problem when several different 

population variances are involved. Biometrika 34, 28-35. 

 

Zerbe, G. O. (1979). Randomization analysis of the completely randomized design 

extended to growth and response curves. Journal of American Statistical Association 74, 

215-221. 

 

Zerbe, G. O. and Murphy, J. R. (1986). On multiple comparisons in the randomization 

analysis of growth and response curves. Biometrics 42, 795-804. 

 

Zhou, L. and Mathew, T. (1994). Some tests for variance components using generalized 

p-values. Technometrics 36, 394-402.



 53

Appendix 

The Distribution of the Multivariate GPQ 

In Chapter 2, the distribution of the generalized pivotal quality (GPQ), 

( ; , , )D θW w η  must be free of unknown parameters. Sometimes, we express D  as 

( ; , , ) ( ; , )D Tθ θ≡ −W w η W w η ,                           (A.1) 

or            ( ; , , ) ( ; , )≡ −D W w θ η T W w η θ ,                            (A.2) 

for the multivariate case. 

To make inference about θ , for example, the hypothesis testing, confidence region, 

the expected area (volume) and the coverage probability of confidence region, the 

distribution of D  plays an important part. However, the distribution of D  usually is 

unknown, and the empirical cumulative distribution function is the estimated 

cumulative proportion of the data set that does not exceed any specified values. The 

distribution of D  (or D ) is free of unknown parameters while that of T  perhaps 

involved with the location parameter θ  and sometimes it is more proper to apply the 

distribution of T  in practice. Lin et al. (2007) proposed algorithms to compute the 

p-value and confidence region, etc. 

Hypothesis testing and confidence region 

Suppose that given =W w , the observed value of T  is θ  and the distribution of 

T  in (A.1) is free of nuisance parameters η . Hence T  can be used to construct a 

confidence region of θ  and test the hypothesis 

0 0 1 0:  vs. H :H = ≠θ θ θ θ ,                               (A.3) 

where 0θ  is a pre-specified value. 

Remark 1: If a  is a 1d ×  column vector with elements 1 2, ,..., da a a < ∞ , we 

write [( )]ia=a , and the length or norm of a  is denoted by a . Thus  

2 2 2 1/ 2
1 2( ... )da a a′= = + + +a a a .                                    

Remark 2: For a vector y , 1/ 2| | ( )c′ ′≤b y b b  if and only if 2c′ ≤y y , for any 

nonzero vector b , which is a consequence of the Cauchy-Schwarz inequality.  

Let T  denote the standardized expression of T  with 1/ 2 ( ),−= −T TT Σ T µ  where 
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Tµ  and TΣ  represent the mean and covariance matrix of T . Define 

1/ 2
0 0( )−= −T Tθ Σ θ µ� , and then the generalized p-value for testing (A.3) can be given by 

0Pr{ > | }p = T θ x�� ,                                     (A.4) 

and 0H  will be rejected whenever p  is less than α . Furthermore, let { }; 
q

γT�
 be the 

100γ th percentile of T� , so we have  

     { }{ }1 2
; 

Pr ( ) ( ) q
γ

γ−′ ′= − − ≤ =T T T T
T T T µ Σ T µ �
� � .                      (A.5) 

Since the observed value of T  is θ , the 100(1 )%α−  confidence region of θ  can 

be solved by the inequality  

        { }{ }1 2
; 1-

: ( ) ( ) q
α

−′− − ≤T T T T
θ θ µ Σ θ µ � ,                          (A.6) 

which is equivalent to solving the inequality { }{ }1/ 2
; 1-

: ( ) q
α

− − ≤T T T
θ Σ θ µ � .  

Simultaneous confidence intervals for the d-components of θ  can be developed 

from consideration of confidence intervals for ′a T , where a  is any nonzero d-variate 

vector. 

According to Remark 2, let 1/ 2 ( )−= −T Ty Σ T µ , 1/ 2= Tb Σ a  and { }; 1-
c q

α
=

T�
, then 

from (A.5), we have the following: 

{ }
1 2

; 1-
( ) ( ) q

α
−′− − ≤T T T T

T µ Σ T µ �  if and only if { }; 1-
( )  q

α
′ ′− ≤T TT

a T µ a Σ a� .   (A.7) 

The inequality (A.7) implies that  

{ } { }{ }; 1- ; 1-
Pr   1-q q

α α
α′ ′ ′ ′ ′− ≤ ≤ + =T T T TT T

a µ a Σ a a T a µ a Σ a� � ,       (A.8) 

for all nonzero vector a . If a  is the vector with 1 for the l th element and 0 elsewhere, 

the simultaneous 100(1 )%α−  confidence interval for the l th component of common 

mean vector θ , lθ , is  

{ } { }
( , ) ( , )

( ) ( ); 1- ; 1-
 ,    l l l l

l lq q
α α

µ µ − Σ + Σ 
 T T T TT T� � , 1,...,l d= ,          (A.9) 

where ( )lµT  is the l th component of Tµ  and ( , )l lΣT  is the ( , )l l th component of TΣ . 

To take ( )1/ 21/ 2 1 1/ 2= d
− ′−T Gx Gs R s G Z  in Chapter 3 as an example, we will use the 

following algorithm to compute the p-value (A.4) and confidence region of θ  (A.6). 
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Algorithm 1: For a given 1 1( ,..., ),  ( ,..., )K Kn n x x , 1( ,..., )Ks s  and G : 

1( ,..., )K′ ′ ′=x x x  and 1( ,..., )KBdiag=s s s . 

For 1,...,j m= : 

Generate from ( ,  )d d dNZ 0 I . 

Generate ~ ( 1,  ),  1,..., .i d i dW n i K− =R I  

1( ,..., )KBdiag=R R R . 

Compute ( )1/ 21/ 2 1 1/ 2=j d
− ′−T Gx Gs R s G Z . 

(End j loop) 

Compute 
1

1ˆ
m

j
jm =

= ∑Tµ T  and 
1

1ˆ ˆ ˆ( )( )
1

m

j j
jm =

′= − −
− ∑T T TΣ T µ T µ . 

Compute ˆ
jT�  and 0θ̂� , where 1/ 2ˆ ˆ ˆ( ),  1,..., ,  j j j m−= − =T TT Σ T µ� and 

1/ 2
0 0

ˆ ˆ ˆ( )−= −T Tθ Σ θ µ� . 

Let 1jτ =  if 0
ˆˆ

j ≥T θ�� ; else 0.jτ =  

1

1 m

j
jm
τ

=
∑  is a Monte Carlo estimate of the generalized p-value for testing (A.3). 

Let { }ˆ ; 1-
q

αT�
 be the 100(1 )thα−  percentile of ˆ ,  1,..., ,j j m=T�  then the 

confidence region of θ  and the simultaneous confidence interval of lθ , 1,...,l d= , 

can be obtained through (A.6) and (A.9), respectively. 

The expected area and coverage probability of the confidence region 

We will compute the coverage probabilities and the expected surface areas or the 

expected d-dimensional volumes of the generalized confidence regions under 2d ≥ .  

Remark 3: Suppose we have a confidence region of µ  which satisfies the 

following inequality: 1 2ˆ ˆ( ) ( ) c−′− − ≤µ µ V µ µ , where V is a d d×  positive definite 

matrix. The ellipsoid center is µ̂ , and the axes of the ellipsoid are | | lc e±  in the 

direction of lξ , where le ’s are the eigenvalues of V  and lξ ’s are the corresponding 

eigenvectors, 1,...,l d= . Thus the expected d-dimensional volume of µ  can be 
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computed by 
/ 2

[ ]
(1 / 2)

d dc E
d

π
Γ +

V , where V  is the determinant of V  and ( )Γ ⋅ is 

gamma function. Specially, for 2d =  and 3d = , the expected area and volume can be 

reduced to 2 [ ]c Eπ V  and 
34 [ ]

3
c Eπ V , respectively. 

According to Remark 3, the d-dimensional volume of the confidence region in (A.6) 

derived by generalized method are 

{ }
/ 2

; 1-

(1 / 2)

d dq
E

d
α

π ⋅
 
 Γ +

T

TΣ
�

.                              (A.10) 

The algorithm for computing the d-dimensional volume as well as coverage probability 

is given as follows. 

Algorithm 2: For a given 1 1 1( ,..., ),  ( ,..., ),  ( ,..., )K K Kn n µ µ Σ Σ  and G : 

For 1,...,l L= : 

Generate ( ) ~ ( ,  / ),l
i d i i iN nX µ Σ  1,..., .i K=  

Generate ( ) ~ ( 1,  / )l
i d i i iW n n−U Σ , 1,..., .i K=  

Use Algorithm 1 to compute d-dimensional volume lH  of the confidence region in the 

l th iteration, { }
/ 2 ( )

; 1- ( )ˆ
(1 / 2)

d d l

l
l

q
H

d
α

π ⋅
=

Γ +
T

TΣ
�

. 

Use Algorithm 1 to compute coverage probability, set 1lδ =  if  

{ }
1/ 2( ) ( ) ( )

ˆ ; 1-
ˆ ˆ( )l l lq

α

− − ≤T T T
Σ θ µ

�
; else 0lδ = . 

(End l  loop) 

1

1 L

l
l

H
L =
∑  and 

1

1 L

l
lL
δ

=
∑  are Monte Carlo estimates of the d-dimensional volume and 

coverage probability of the generalized confidence region, respectively.  




