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ABSIRACT
Our main subject in this dissertation is,applying the generalized method to deal

with regression model with heteroscedastic AR(1).cavariance matrices. The concepts
of the generalized p-values and the-generalized confidence intervals proposed by Tsui
and Weerahandi (1989) and Weerahandi (1993), respectively, provide an aternative
way to handle with heteroscedasticity. We extend these concepts to further consider
the standardized expression of the generalized multivariate test variable. Lin and Lee
(2003) applied the generalized method to deal with the MANOVA model with
unequal uniform covariance structures among multiple groups. We utilize their
process with modifications to deal with regression model with heteroscedastic serial
dependence. The coverage probabilities and expected areas based on our proposed
procedure display satisfactory results. Besides, we also find that our method can be

applied to the uniform structures without the special design matrices X, assumption.

Key words and phrases. AR(1); Generalized confidence intervals, Generalized
p-values;, Generalized test variable; Heteroscedasticity; Regression model; Uniform
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Chapter 1

Introduction

Our main subject in this dissertation is to find a method dealing with regression
models with heteroscedastic AR(1) covariance matrices. Heteroscedasticity, the
phenomenon of a set of statistical distributions with different variances, is one of the
attention-getting issues for researchers. Such heteroscedasticity may be pertained to
unknown variables while some heteroscedasticity may be related to variables of interest.
For instance, the behavior of a chemical reaction might be affected by temperature or
reaction time, the heights of children may be affected by the gender and the differences
of the yields of the corn may be affected by the species of the corn, etc. Therefore, it is
desirable to discuss and to find a method to handle the problem with heteroscedastic

phenomena.

The Behrens-Fisher problem issthe.typical case where the variances of the two
normal populations are not quite equal;.that is, there is heteroscedasticity between two
groups. Linnik (1968) has-shown that the.inferences about the difference of the means
between two populations have no exact fixed-level tests (conventional) based on the
complete sufficient statistics, that Is, based on the two sample means and the two sample
variances. However, exact conventional solutions based on other statistics and
approximate solutions based on the complete sufficient statistics exist. For example,
Scheffé (1943) gave a class of exact solutions to the Behrens-Fisher problem, but
Scheffé type solutions are inefficient in the sense that they do not use al the information
in the data about the true value of the parameter. The expected length of the confidence
intervals given by the Scheffé solution is much larger than those given by approximate
solutions. (See, Welch (1947), Lee and Gurland (1975), and Scheffé (1970), etc.) With
prior distributions, the Bayesian method can make inferences about the difference of the
means based on the posterior distribution, which combines the information in the prior
distributions and the information in the data (the likelihood function) about the
parameters. Some statisticians believe that it is not appropriate to talk about the prior
distribution when it is known that the parameter is not a random variable but rather an

unknown fixed number.



The concepts of the generalized p-values and the generalized confidence intervals
were proposed by Tsui and Weerahandi (1989) and Weerahandi (1993), respectively.
Although the generalized approach shares the same philosophy of the Bayesian
approach that the inferences should be made with special regards to the data at hand, the
parameters are not treated as random variables in generalized approach. Comparing to
the classical tests, the generalized p-values are based on a number of test statistics
whereas conventional p-values are based only on asingle test statistics. The methods are
exact in the sense that the tests and the confidence intervals developed are based on
exact probability expressions rather than on asymptotic approximations. The method of
the generalized p-values is frequently applied to deal with many practical problems
concerning the situation with unequal variances or unequal covariance matrices. For
example, Thursby (1992), Weerahandi (1995), Ananda and Weerahandi (1996), Chang
and Huang (2000), McNally, lyer and Mathew (2003), Krishnamoorthy and Lu (2003),
Mathew and Krishnamoorthy (2003, 2004), Lee and Lin (2004), Hannig, lyer and
Patterson (2006) and many others have.carried out a number of investigations and
applications of generalized:p-values:in-making inferences of the difference of two
exponential means, extreme values under normality, the ratio of mean of two normal
populations, some functions of the means.of lognormal distribution, the Behrens-Fisher
problem and the common mean of several normal populations, etc.

The generalized method is also ‘applied to dea with the traditional multivariate
statistical problems in which nuisance parameters are present and they are difficult to
make inferences. Griffiths and Judge (1992), Chi and Weerahandi (1998), Gamage and
Weerahandi (1998), Gamage, Mathew and Weerahandi (2004) and others presented the
generalized method as an aternative way of handling multivariate statistical problems
like regression models, linear models and mixed models etc., with different covariance
matrices among multiple groups. However, it is desired that the generalized method in
the multivariate case should be brought to more attention. We propose a new
generalized test variable to make inferences on a linear combination of multivariate
normal mean vectors among multiple populations. In simulation studies, when only two
populations are considered, our results are equivalent to those proposed by Gamage et al.
(2004) in the bivariate case which is aso known as the bivariate Behrens-Fisher
problem. However, in some higher dimension case, these two results are quite different.
The details will be discussed later.



With the notions and concepts of generalized p-values and the generalized
confidence regions, we provide the exact inferences on the multivariate
analysis-of-variance model (MANOVA), including the growth curve models with the
uniform covariance structures and the serial covariance structures. Lee (1988) applied
the growth curve model to the multivariate linear model with two special covariance
structures, that is, the uniform covariance structures and the serial covariance structures.
The growth curve model was first proposed by Potthoff and Roy (1964). Lee and
Geisser (1975), Lee (1988) and many others have shown that the growth curve model is
one of the most useful methods for dealing with the MANOVA model with the serial
covariance structures. However, the growth curve model is restricted to handling either
a single group or multiple groups only under the assumption of identical error
correlation among the groups. As with many traditional methods, the growth curve
model has difficulty in dealing with models in which the error correlations are different
among distinct groups. Hence, we will apply the generalized method to discuss the

regression model with heteroscedastic AR(1) covariance matrices.

Lin and Lee (2003) showed that the generalized method provides an alternative way
of dealing with the MANOVA model with 'unequal uniform covariance structures
among multiple groups. However, -the-procedure was based on the assumption of the
special design matrices. Thuswe will extend the idea with some modifications to further
consider the growth curve model with possibly unequal serial covariance matrices

between different groups.

In this dissertation, we will start out with brief introduction of generalized
inferences, including generalized p-values and the generalized confidence intervals in
Chapter 2. We will make the generalized inferences on a linear combination of the mean
vectors under the assumption of unequal covariance matrices in Chapter 3. The
traditional procedure to deal with regression models when the covariance matrices are
known is described in Chapter 4. The growth curve model is also described in Chapter 4.
The regression models with the unequal serial covariance structures will be discussed in
Chapter 5. Finaly, several numerical examples and simulation studies are given to
illustrate the advantages of our proposed methods in Chapter 6. The concluding remarks
are also provided in Chapter 6. Based on the standardized expression of the generalized
test variable (GTV), we proposed algorithms to compute the generalized p-value and the

generalized confidence region in Appendix.



Chapter 2

The Theory of Generalized Inference

2.1 The theories of generalized p-values and generalized confidence intervals

Let W bearandom variable whose distribution f(W|¢) depends on avector of
unknown parameter vector ¢ =(6, ), where @ is the parameter of interest, and 1
isavector of nuisance parameters. Suppose we are interested in testing

Hy,:0<6, vs.H,:0>0,, (2.1)
where 6, is a pre-specified quantity. The concepts of generalized p-values and
generalized confidence intervals were developed by Tsui and Weerahandi (1989) and
Weerahandi (1993), respectively, to deal with the statistical problems in which nuisance
parameters are present such that the classical statistical methods are difficult to make

inferences. We will briefly introduce these concepts as follows.
The generalized test variable (GTV) of the form H(W;w,8,n) with w being

the observed value of W s chosen to satisfy the following requirements:

(i) For fixed w, the distribution of “H(W;w,8,n) isfree of the vector of nuisance
parameters 1.

(i) Thevaueof H(W;w,6,n) a W =w isfreeof any unknown parameters.

(i) For fixed w and n, Pr[H(W;w,0,n)>h] is either an increasing or a
decreasing function of @ for any given h. (2.2)
Under the above conditions, if H(W;w,68,n) is stochastically increasing in &, then
the generalized p-values for testing the hypothesisin (2.1) is defined as

p=supPr[H(W;w,0,n) 2] = Pr[H(W;w,6,n) > h], (2.3)

6<6,
where h,=H(w;w,6,,n).
Under the same setup, a generalized pivotal quantity (GPQ), D(W;w,é,n),

satisfies the following conditions:

(i) Thedistribution of D(W;w,8,1) isfreeof unknown parameters.
(i) The observed value of D(W;w,0,n) is free of nuisance parameters €.

Condition (i) allows us to write probability statements leading to confidence intervals



that can be evaluated regardless of the values of the unknown parameters. Condition (ii)

ensures that given the current sample point D(w;w,8,1), we can obtain a subset of

parameter space that can be computed without knowing the values of the nuisance

parameters. Let ¢, and c, besuch that

Prlc, <D(W;w,0,m)<¢c,]=1-«, (2.4
then {0:c, <D(w;w,0,m)<c,}is a 100(1-)% generalized confidence interval for
¢ . Furthermore, if the value of D(W;w,0,n) a W=w is 6 , then
{D(w;a/2), D(w;1-a/2)} is a 100(1-a)% confidence interval for &, where

D(w;y) representsthe y ™ quantileof D(W;w,6,n).
2.2 Substitution method

To get an applicable GTV or GPQ, Peterson, Berger, and Weerahandi (2003)
proposed a systematic approach, that is, substitution method. Let (V,,...,V,) be a set

of random variables with distributions:free of unknown parameters, and their joint
distribution be known. Suppose that-there'is also a set of observable statistics
W,...,.\W,) , with observed values (W,+..,W,) ~and known distributions, such that the

number of (W,,...,W,), ks isegual-tothat of unknown parameters of the problem, say

(A4,.--,4) . Then the substitution-method.is carried out in the following procedure.

1. Deposit the parameter of interest, &, into the function of (4,,...,4,) or express
¢ intermsof (W,...,\W,) and (V,,...,V,).

2. Obtain a GTV H(W;w,8,n) by replacing (W,,...,W,) with (w,...,w,) and
substrate ¢ from step 1.

3. Check whether H(W; w,0,n) satisfies properties (i) and (iii) in (2.2).

4. Rewrite (V,...,V,) termsappearing in H(W;w,0,n) intermsof (W,...,.\W,)

and (4,...,4.). Then check the properties (ii) in (2.2) and show that the

observed sample point on the boundary of the extreme region.

5. Calculusthe generalized p-value basedon H(W;w,6,1) .

It should noted that to find a potential GTV or GPQ, there are various replacements
of parameters by random variables and substitution of random variables by their



observed values from step 1 to step 5.

2.3 Illustrative example
Weerahandi (2004) gave several examples to illustrate the substitution method and
Two of them will be chosen to exhibit the substitution method for GTV and GPQ as

follows.

Suppose that X, X,,---, X, are independent and identically distributed as

N(u,0?), with mean x and variance o°. X and S”are sample mean and sample
variance, respectively.

Example of the generalized p-value

Suppose @ = u+o” is a function of the parameters of the normal distribution. The

parameter can be expressed in terms of the sufficient statistics and random variables as

6=X-Zo/n+oc? (2.5)
- S nS
=X-Z—+——, 2.6
ARV (2.6)
X—pu nS? .
where Z= and U =—~ -are .the. independent standard normal and
o/\In o

Chi-squared random variables. Liet-—x—and s? be the observed values of X and S?,

respectively, we can obtain the petential test variable as

s ns
-Z—+—-0
Ju u
X-u SO'/\/H+SZO'2_
o/Nn S s
S(X-u) s’
+ J—
S s
Having obtained the identity that relates the parameter to the sufficient statistics and

H

Il
x|

0

I
x|

X —

0. (27)

random variables that are free of unknown parameters, it is clear that the observed value
of H is zero and its distribution does not depend on nuisance parameters. It also follows
from (2.7) that it is stochastically decreasing in the parameter of interest 6. Hence, H is
indeed a test variable (GTV). So, for instance hypotheses of the form H,:6<6, can

be tested on the generalized p-value



p=Pr(H<0]0=6,)

2
- Pr(i—%m—eo). 2.9)

Ju
In this example, the p-value can be computed by numerical integration with respect
to independent Z and U. The probability of the inequality in appearing in the formula
can also be evaluated by the Monte Carlo method. This is accomplished by generating a
large number of random numbers from Z and U, and then finding the fraction of pairs of
random numbers for which the inequality is satisfied.
Example of the generalized confidence interval

Suppose 0 =(u+0o)/(u*+0c?) isthe parameter of interest, where 1 and o arethe
X—u

mean and the standard deviation of the normal distribution. Let Z = and
o//n
2
U= n82 be the independent standard normal and Chi-squared random variables, then
O

0 =(u+o)/ (1 +0°)
B X—ZO‘/\/E+G
(X=Za/n) +o
X 2Z Slu—+5¢n/U;

T (X-28JU)?+nsHIU

Hence we can define two representations of the GPQ as
B X-Zs/\U +s/nU
(X—2s/JU)?+ns? /U

_ X-s(X-u)/S+sc/S
C(X=S(X—u)/9)?+(sc/S)?

(2.9)

(2.10)

From (2.9), the distribution D is free of unknown parameters and (2.10) implies that
the observed value of D is 6. Then {D(w;a/2), D(w;1-a/2)} isa 100(1-a)%

generalized confidence interval for 4, or with w'=(X,s),

o _ X-Zs/\U +s/nU __
1 a_Pr[D(W’a/Z)S(X—Zs/\/U)2+n52/U <D(w;l-al/2)]. (2.12)

The probability can be evaluated by numerical integration with respect to (Z,U) or by

Monte Carlo integration.

Further details on the concepts of generalized p-values and generalized confidence



intervals can be found in Weerahandi (1995, 2004). When there is more than one
parameter of interest, as usually the case in linear models, the substitution method
should be modified to obtain potential GTV and GPQ.



Chapter 3
Inferences on a Linear Combination of K

Multivariate Normal Mean Vectors

3.1 Introduction

Suppose there exist K independent d-variate normal populations with mean vector
p, and covariance matrix X, i=12,..,K,where p, and X, are possibly unknown
and unegqual among group. We want to make inferences on a linear combination of K
mean vectors. This problem arises because sometimes there is a theoretical reason for
believing some characteristics of these populations to be such that their mean vectors
have some relationships or practitioners want to know some characteristics of
compound material. For example, in the Edgar Anderson’s famous Iris data, there is a
theoretical belief that the four gene structures of three species to be such that the mean
vectors of the three populatiens, (1) iris versicolor (2) iris setosa and (3) iris virginica,
arerelated to 3, = 2p, +p,; (Anderson, 2003).

If the difference between the/covariance mairices is small and the sample sizes are
large, the Hotelling’s T?2-test fortesting a linear combination of mean vectors has good
performance. However, if the covariance matrices are quite different and/or the sample
sizes are small, the nominal significance level may be distorted. Therefore, we intend to
develop a procedure to provide generalized inferences for a linear combination of the

mean vectors, 0=Gp, where G is a designed dxdK matrix, and p is the
dK-variate mean vector with p'=(p,---,py). That is, we will provide a generalized
confidenceregion for 6 and test the hypothesis
H,:Gp=0, vs. H,:Gp=60,, (31)
where 0, is a given vector. For example, in the Iris data, we can set
G=(31,,-21,,-1,) and 0,=0 to perform thishypothesis.
Suppose X;;'s are independent random vectors of sample size n, . Define the it

sample mean vector and sample covariance matrix as

—- 1& 18 - =\ -

X, =EZX” and S, =HZ(X”—Xi)(X”—Xi) , i=1..,K. (3.2
j=1 j=1



It can be shown that

X, ~ Ny (w;, %) and A, =nS ~W,(n-1%), i=1.,K, (3.3)

and both of them are independently distributed, where N, (z, W) denotes d-variate
normal distribution with mean vector = and W, (r, ¥) is the d-dimensional Wishart
distribution with degrees of freedom r and scale matrix ¥ . Furthermore, n, is
supposed to greater than d, n >d, i=1..K, to ensure S *exists with probability
one. Because the distributionsof X, and S, are affine invariant, and thus, we will test

the problem (3.1) and construct a confidence region of 6(=Gp) based on these

judicious condensation of the data. Using the underlying distribution assumptions, our
approach procedures are associated with an exact probability statement and a repeated
sampling interpretation.

For K=2, G=(I,,-1,)and 6,=0, (3.1) is reduced to the well-known multivariate

Behrens-Fisher problem. For thistopic, there are several exact as well as approximate
tests are considered in the literature for the.past five decades. For example, Christensen
and Rencher (1997) compared seven solutions for their Type | error rates and powers
and suggested that Kim’'s (1992).and-Nelrand Van der Merwe's (1986) solutions had the
highest powers among solutiens whose ‘Type | error rates were not inflated.
Krishnamoorthy and Yu (2004) modified the Nel and Van der Merwe's (1986) test and
provided an approximate invariant solution for the problem. In addition to those
approximate procedures, Bennett (1951) provided an exact solution for the generalized
Behrens-Fisher problem. However, the power obtained by Bennett's method was poor
under unequal sample sizes because the method was not based on sufficient statistics.
Johnson and Weerahandi (1988) provided an exact Bayesian solution based on Bayesian
Approach and Gamage, Mathew and Weerahandi (2004) provided the generalized
p-values and generalized confidence region for the Behrens-Fisher problem.

We would like to further consider K non-homogeneous multivariate normal
populations with unequal sample sizes and unequal covariance matrices, and then
provide an invariant generalized test variable and construct a generalized confidence
region for alinear combination of K multivariate normal mean vectors. In our proposed
model, the multivariate Behrens-Fisher problem can be treated as a special case of our

model. The concepts of generalized p-value and generalized confidence intervals have

10



turned out to be extremely fruitful for obtaining tests and confidence intervals involving
“non-standard” parameters. Therefore, we will use the idea to derive a new generalized
pivot quantity that is simple to use for both hypothesis testing and confidence region
estimation of Gp.

Our procedures for hypothesis testing and the generalized confidence region of Gp

construction are presented in Section 3.2. Severa methods in the multivariate
Behrens-Fisher problem are briefly introduced in Section 3.3. Results will be illustrated
with real and simulated data in Chapter 6. Two simulation studies are presented in
Section 6.1 to compare the type | error rates, expected areas and the coverage
probabilities in different combinations of sample sizes and covariance matrices for
difference procedures, and then two sets of datawill be illustrated for our proceduresin
Section 6.2.

3.2 Hypothesis testing and confidence region estimation for G

Suppose we have K independent:d-variate multivariate normal populations with
mean vector p, and unequal covariance'matrices X. for the ith sample. Let X, and
S, be the sample mean vector and sample covariance matrix for the i™ population,

which are defined in (3.2). We willr-consider the problem of estimating a linear

combination of K multivariate.normal.-mean vectors, Gn, based on the minimal
sufficient statistics (X,,..., Xy, S-Sy -

In this section, we will first derive the generalized p-value and construct a

generalized confidence region of Gp based on the generalized method and then

reviewed some commonly used methods. For some special cases, especialy the
multivariate Behrens-Fisher problem, several methods will also be reviewed in Section
3.3.

3.2.1 Solutions based on the generalized method

It is noted that X, and S, are mutualy independent with X, ~ N, (n,, £, /n),
S ~W,(n-121) and A =nS ~W,(N-1%), i=L1..K . Let X'=(X.,...X\)
n

then the MLE (maximum likelihood estimator) of 6 is
0=GX~N,(0,G®OG) , (3.4)

11



where @ isthe block diagona matrix (Bdiag),
n'x, 0
(I):Bdiag(&'...,&)g .
n
n K 0 n;lZK
If the covariance matrices X,’sare given, it is known that from (3.4) we can get
(GBG') *G(X—p)=Zy ~ N, (0, 1,). (3.5)

If the covariance matrix X. for the i™ population is unknown, let

S =Bdiag(S,,....S¢) and s=Bdiag(s,,...,s,) be the observed value of S, then we

can define
R = I:s—llzq)s—uz]‘l’z [S—llzss—llz] I:s—uzq)s—l/z]‘l’z ’ (3.6)
where ¥"?means the positive definite square root of the positive definite matrix W

and ¥ 2 =(¥Y?™. It should be noted that R also stands for ablock diagonal matrix
with R =Bdiag(R,,...,R, ), where

R, = [si’llz():.i In )sfm]_m [si_llzsisfllz] [s[”z():i In, )s[m]fl/z : (3.7)
Since R, ~W,(n -1, 1) isfreeof any unknown parameters, and for the fact that at

S=s, the observed value rof R is [s X@s V2] | itisclear that s'’R's"’=®
a S=s. That means we can use the information of s and R to make inference
about the nuisance parameters @ . Furthermore, we will derive the generalized
inferencesfor Gp basedon X and R.

Let X and r be the corresponding observed values of X and R, respectively,
the generalized pivot quantity can be expressed as

-1/2

T(X,R;%,r) = Gx—(Gs"?R 5*°G') (GOG') > G(X~p)
=Gx-(Gs"’Rs'%G') " Z,. (3.9)

It is noted that the value of T in (3.8) a (X, S)=(X,s) is Gp which is the
parameter of interest. Furthermore, given (x,s), the distribution of T is independent

of any unknown parameters, therefore, T in (3.8) satisfies the two conditions in (2.4)

and istruly a GPQ, which can be used to construct confidence region for Gp.

The generalized p-value

12



For given(x, s), the distribution in (3.8) is independent of unknown parameters and
hence the Monte Carlo method can be utilized to construct a confidence region of Gp,
and test the hypothesis

H,:Gn=0, vs. H,:Gp=80,, (3.9
where 0, is a given vector. Suppose m, and S, are the mean and covariance

matrix of T, and T=S;"*(T-m,) is the standardized expression of T, then the
generalized p-value for testing (3.9) can be computed by
p=Pr{|T] >H60H IX,1}, (3.10)

where 0,=S;"*(0,-m,), HTH and HGOH are norms of T and @,, respectively,

with |[T|=VT'T , and the null hypothesis (3.9) will be rejected whenever p<a.
Furthermore, if we want to test the MANOVA problem of theform H,:p, =...=p,

which can be expressed as H,:G'p=0. One convenient choice for G™ in this

particular problemis

I, <1, ‘00 0 G®

G - I, 0 -I, 0 0 _ G®

I, 07,0 01, |G®
1 j=1
where G© = (L, c'L,), ¢’ =1-1 j=i .
0 ow.

Similar to T in (3.8), the generalized test variable can be expressed as
1/2
T =G*i—(G*sl’2Rls” G’ ) Zg_y- And the p-value can also be computed in the

similar way as (3.10).
The generalized confidence region

If we are interested in constructing confidence interval of 0. Since T in(3.8) aso
fulfills two requirements of the generalized pivotal quantity and the observed value of

T is 0, soit can be used to construct the confidence region of 0. Let q{ be the

[1}; 1-<}

100(1— &) " percentile of HTH , such that

13



Pr {T’T =(T-m,)S;(T-m,) <’ } =1-a, (3.11)

(I 2-e)

Therefore, the 100(1-«)% confidenceregion of 6 can be solved through

{e O-m,)S0-m) <, M}}. (3.12)
Some remarks about confidence region are given in the Appendix.

3.2.2 Solutions based on the classical methods

In the classical procedure, the Hotelling’'s T? test and the Chi-square test are the

commonly used methods. In Hotelling's T? test, we assume the population covariance
matrices are the same, whereas in the classical Chi-sguare method, practitioners usually
replace the population covariance matrices with the sample covariance matrices. We
will briefly introduce these two methods to deal with our problem.

The Hotelling’s T test

In this method, we will assume that X, =..=X, =X and G=(cl,,---,¢1,),

K
then the point estimator of -0 = Gp = ZC, ;- and the pool covariance matrix are
i=1

= ZiKzqui

1 K n S < \/ 1 K
and S, :ﬁzi:lzjzl(xij -X)(X; X)) :ﬁzizlnisi , (313

K [e—
respectively, where N :Zni and X, and S, are defined in (3.2), respectively. The
i=1

— -1 —
criterionis Q%= (Y." ¢X, —9)'[ZLQZSH /ni] " X, -6)
=(i-0)'(bS,) " (i-0),
where Q° has the Hotelling's T?-distribution with N —K degrees of freedom and
K
b=> " c/n.Thus

Q N-K-d+1
N - K d

- Fd, N-K-d+1? (3.14)

K
so the p-value for testing HO:ZCI;;i =0,, where 0, isagiven vector, is
i=1
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(3.15)

_ ) e _ N-K-d+1
p= H|:Fd, N-K-di1~ (Ziqui -0,)' S,/ (Ziqui —0,) } )

" bd(N—K)
and the 100(1—«)% confidenceregion of 6 can be solved through the inequality

0:(n-0)'S; (p-0)<——~—
{0:(@-0ySy (i-0)<— — "R,

bi(N=K) (d, N—K—d+])}, (3.16)
where F_ (d, N-K-d+1) is the 100(l-a) " percentile of the F,\ 4.
distribution.
The classical Chi-square test

The classical Chi-square method is valid when the covariance matrices are known.

-1

The satistics H? , H%= (ﬁ—ﬂ)’[ZLC?Si I(n —1)] (i—0) , is distributed
approximately as a Chi-square distribution with degrees of freedom d when the sample

K
sizes tend to infinity, where ﬁzz;q)—(i and 6=>) cp,. The p-value for testing
i=1
K
Ho: Y cm =90, is
i=1

p= P{zs SO SOND SV TR —90)} , (317)
and the approximate 100(1—a)%..confidence region of 6 may be obtained by
evaluating

0:(i-0)(X),cs, /(n -D)* (i-0)< 2, | (3.18)
where 2 (d)is the 100(1-a)™ percentile of the y* distribution with degrees of
freedom d.

3.3 The multivariate Behrens-Fisher problem

If we are only interested in the multivariate Behrens-Fisher problem, that is, only
two populations are related and ¢, =1 and c,=-1,i.e, G=(I,,-1,); then (3.8) for
the generalized pivotal quantity becomes

T(X,8%,8) = (%, - X,) — (s /2R, %" +5,/°R, ’s,*2) " Z,. (3.19)
The p-value for testing
Hoip,=n, vs. H ip, #p, (3.20)
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issimilar to (3.10) by replacing T and 6, with T, and 0, respectively.
Some other methods for dealing with the multivariate Behrens-Fisher problem are

briefly reviewed in the follows.
Gamage, Mathew and Weerahandi (2004)

The p-value for testing (3.20) derived by Gamage et al. (2004) is

-1
S, S —  —
p= PI’{ Tean 2 (X, —X,)’ (n1_1+ nj—l] (Xl_xz)lHo}’ (3.21)
where T, isdefined as
Tean = ZTvV2WV? +VPWIVIIZ, (3.22)

~12 -1/2
with V, = N . S, %4 % | and v, being the observed values
n-1 n,-1 n-1 n,-1

of V,, ¥,~W,(n,-1L 1,), i=12 and Z~N,(0, I,).

Furthermore, they also defined T, /tis. totest the MANOVA problem of the form

K vl - * -
Hoip =..=p, where Tg, (Z,.02)=> n(X-p) =" (X-i), tg,, is the observed

i=1

K K
value of Tg,, and p=( RZ Y nE X However, as the authors had mentioned

in their paper, this new GTV T, /t,,, was not invariant under non-singular

am

transformation (Gamage et. al., 2004).
Krishnamoorthy and Yu (2004)

Krishnamoorthy and Yu (2004) modified the Nel and Van der Merwe's (1986) test
and provided an approximate invariant solution for the multivariate Behrens-Fisher

problem. They obtained a nonsingular invariant statistic

-1 —_ —
T =[ (X =X,) ~ (1) [ [( -7, + (,-0)7's, | [(X,-X,)— (i —1) ] (323)
which is approximately distributed as vdF,, ,,,/(v-d+1) where

~ d(d+1)
=D AT+ A) |+ (n - D) rAZ+ (trA,)? |

— 1 2 \1
nll(nll n—)

1
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A2= SZ (Sl + S2 )—1.
n-1n-1 n,-1

The p-valuefor testing (3.20) is

-1
v—d+1 _ _ [ s s _
pZPr{Fd,vd+1ZT'(Xl_X2) (n 1_1+n 2_1] (Xl_xz)lHo}- (3:24)
1 2
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Chapter 4
The Theories of the Regression Model and the
Growth-Curve Model

In this chapter, repeated measurements with different covariance matrices among
groups can be expressed by the regression model in matrix form as follows:

Y, =XB; +€&;, (4.1
where Y; = (Y, -+, Y;r)", Y aremeasurements at time point t for subject j in group
| for i=%---,1, j=1---,J,, t=1---T, and X,’s are the TxK design matrices
with rank K, 1<K <T. Further, §; are independent T-variate normal, with mean
vector 0 and the positive definite covariance matrices X,’s. Estimating and making
inferences on B,’s are important aspects of regression anaysis. If X.’s are known, the
best linear unbiased estimator (BLUE) of “B. can be readily obtained via standard

procedures. If the error covariance€ matrices are not known but are assumed to be
identical, maximum likelihood estimates (MLE's) via the growth-curve method is one
of the approximation methods for-dealing with.this model when the sample sizeislarge.

However, if X,’s are unknown ‘anddistinct between different groups, the traditional
methods have serious drawbacks in making inferences about B.’s. Even when the

covariance matrices are identical among different groups, the growth-curve method can
only provide an approximate result. We will briefly introduce the traditional regression
model when the covariance matrices are known and the growth-curve model with two

specia covariance structures.
4.1 Regression model with known covariance matrices

In this section, we will briefly introduce the traditional method for making

inferences on B.’s when the covariance matrices are known (Arnold (1981), Scheffé

(1999) and Anderson(2003)). If the covariance matrices X,’s of the regression model
(4.1) are known and given, we can pre-multiply Z[J/Z to both sides of the regression
model (4.1), where 2(”2 denotes a positive definite square root matrix of ):i’l,

therefore we get the following standardized regression model:

18



Y, =XB+E&, =13 i=L-1, (4.2)

1

where ?3”. ~N;(0,I;), I; is the T-dimension identica matrix. The best linear

unbiased estimator (BLUE) of B, is

A

B = (J|X:X|)71X|’Z? ’ (4.3)

and ﬁi - NK(Bi’(JiXiIEiilXi)il) ) i:l"'” |. Hence ‘]i (B. _Bi), X;E;lxi (ﬁ| _Bi) ae
independently distributed as the y*-distribution with degree of freedom K for

i=1---,1 . Researchers are interested in testing the equality of the trends with

heteroscedastic phenomena, that is,

Hy:B,=-=B, =8B. (4-4)
Under the null hypothesis (4.4), the estimator of the common B is
= IXX) (T IXY,) N (B, (4.5)
i i i

where ¥ =(3 IXX) "= QUIXEX). Let §=3 (Y, -XB) (Y,-Xp)

be the standardized residual sum of squares under the null hypothesis and

§="3(Y,-XB,) (Y;= X,) be the standardized residual sum of squares under
i

the alternative hypothesis. We can then obtain the F statistic with

= _NT-IK §-g

T (0-DK & ~ Foyk ok (4.6)
where N = z J. . The p-value for testing (4.4) can be calculated by
NT-IK § -8
p-value= Pr{F 2% 4.7)

I-1)K,NT-IK = (I —l)K 2

a

where §§ and s: are the observed values of Sf and S: , respectively, and
hypothesis (4.4) isrejected if p-value< « .
If the null hypothesis cannot be rejected, we may assume that the populations have

the common trend B . The estimation of B is then important. From (4.5), the

confidence region with confidence coefficient 1-« for thecommontrend p is

{B:(B—B)¥" (B-B) < rc(L-a)}, (48)
where \1'*1:ZJix;2;1Xi and yZ(1-a) is the 100(1-c«) percent point of the
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y2-distribution with degrees of freedom K.

4.2 The growth-curve model

Potthoff and Roy (1964) proposed the growth-curve model which is a useful
generalized multivariate analysis-of-variance model especially for growth-curve
problems. Rao (1967, 1975, 1977), Grizzle and Allen (1969), Geisser (1970, 1981),
Fearn (1977) and others applied the growth-curve model to some biologica data, the
forecast of technology substitutions and Bayesian analysis. The regression model (4.1)
can be expressed as a growth-curve model if the design matrices are identical. The
growth-curve model can be defined as

Y =X B F +§, (4.9)

TeN  TxK Kxl bn TxN
where Y=(Yy,Y,), €=(&,,.&;), B=(,B) and F is the IxN
design matrix characterizing the distinct grouping of the N independent vector
observations, where N=>'J, . Let Z be a known Tx(T-K) matrix with rank

T-K suchthat X'Z=0. We willutilize the results of the growth-curve model with

two specia covariance matrices proposed by L ee (1988) to make inferenceson f.’s.

Uniform covariance structure

When the design matrix X=(1;,X,), 1; =(...,1)’, and the covariance matrix is

uniform structure, that is,
X =0(1- p )+ p 1 1= ol (1- p )T+ [0l p, 1151y (4.10)
with T__—11< 0, <1, thentheMLE'sof B, o7 and p, derived by Lee (1988) are
B= (X'X)"X'YF'(FF)™, (4.11)
G2 =trS"/TN,

p, =0 S'1, —trS") /(T-DtrS”

where S =Y -F'(FF)"'F)Y' +Z(Z'2Z) "Z’YF' (FF)'FY'Z(Z'2) 'Z .
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Serial covariance structure
When the covariance matrix is seria structure, i.e., the AR(1) errors correlation,
r=0c°C, (4.12)
where C=(p™"), 1<mn<T, ¢?>0, and p is resricted to |p| <1, which
ensuresthat X ispositive definite. TheMLE'sof B and o° are
B(p)=(X'C*X)™ X'C'YF'(FF)™ (4.13)
and 6%(p) = N—lT [tr(X'C™X) " X'C YA -F'(FF)'F)Y' C X +tr(Z'CZ)*Z'YY'Z]
respectively, where C=(5™") and /5 is obtained by maximizing the profile
likelihood function

Lac (0) = (6%(0)) "2 (1= p*) T2, (4.14)
For the single group, F=(1---,1), and FF'=N, YF'=) >'Y, =NY and the
]

MLE’s of (4.13) can be written.as

B.(p) = (X'CX) " X'CYF(FF) *= (X' CX) ' X'CY, (4.15)

~20 A\ 1 1=l -1 -1 1 ’ 1 ~—1 1 Ly ’
and 6°(p) = v [tr (X'CTX) LXC Y(I—NF F)Y' C'X +tr(Z'CZ)'Z'YY'Z],
where p isobtained by maximizingthe profile likelihood function.
The approximate 100(1-«)% confidenceregionfor B under (4.4)is
{B:NG* (B-Bs) (XC'X) (B—Bo) < xi(1-a)}. (4.16)

When K =2, the area of the approximate 100(1-«)% confidenceregionfor p is

AP, 1-a) =[5 (XEX) -, (4.17)

4.3 Growth curve models with heteroscedastic uniform covariance structure

Lin and Lee (2003) considered the unbalanced data and unequal design matrices

X; =(1;,X,) for heteroscedastic variances. The model is expressed in matrix form as

follows
Y, =XB +1; +§; , j=1--,3, ,i=1--,1, (4.18)

where, &; ~N(0,X,), the random effects o; ~ N(0,c2) vary independently, and

X, = aiz[(l— o)+ plTlT'] is uniform correlation structure. The covariance matrix of
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Y, isasouniform correlation structure, that is, for i=1,---,1

Cov(Y;) =X = Uj 1T1T’ +Xg = Uiz A-p)I+ (,0‘7i2 + O-j )ITIT’ ' (4.19)
and

z =l @-p) 11 —ﬂ_ai—(zl_p)lTlT'] , (4.20)
T4

with ¢" =c (1- p)+T(po. +o.). Theinverseof X, dependson o (1-p) and 4,

but not on by p itsdlf, therefore £ can be expressed as Z‘.i_l = ):i_l(aiz(l— 0), ¢,2).

Furthermore,
- Xz 'x)"
B =(XIZ X)) XE Y = (XIX) XY NG, ) (42)
where Y, ==Y, . Theresidual sum of squaresis
1 R R I I
SE =32 (% - XB) (Y, —XiB) =D S + 2. S, - (4.22)
i=1 j-1 i=1 i-1
where

S, = 0¥, - X, - (% UL IGERB A, -V)L] ad 8, =Ty (7, -’

- 1lew- 1«1 1., -
with 1; = - o Y==)>Y. == 1Y ==1Y.
=11 Z g JZ J;TTJ =t
For i=1, , Sy, and S;; areindependently distributed as
S/V,i SB|
w,i — ZJZ-(T—l) (K-2) and UB| = "‘ZJ -1 (4-23)

ol-p) ¢
respectively. Premultiplying ** =2 **(c’(1- p), ¢°) to both sides of Equation
(4.18), the model with identity covariance matrix can be rewritten as
Y, =X8 +E,, (4.24)
where €, ~N,(0,1;), whichisthe same as (4.2).
Let S (o.A-p),,0,(1-p).4 .- ¢") be the standardized residua sum of

squares under null hypothesis (4.4) and S (o, (1-p),--,0. A= p), 4.+, 4°) be the

standardized residual sum of squares under the alternative. The generalized p-value for
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testing the hypothesis (4.4) H,:p,=---=pB, =p canbe expressed as

p=PHS (oW p) o0 A Pt ) > S (G e )

=2 ~2
:PI’{ rz A >s)2( Slv,l e SN,I ’ So,l el SO,I )_]} (425)
S Uy /Uq U, /Ur Ug,/Us Ug, /Uy
L EdF Mg Sa S S, S
- EA{FVIVVZ[Vl{SO(Mle'”Mzw , ,(1_MI71)MI.”M2I ’(1_M|)M|+1"'M2| , ,(1_M2|71)M2|) J}]}’

| |
where v, =(1-D)K , v,=NT-IK andU; =D (U, +Ug)~x2 with N=>J .

i=1 i=1
And E, is the expected value with respect to the independent Beta random

w; "q
Zizl I ~Beta(z‘:1q'

r+1ﬂ, 2

i=1 7

variables M = ,qgl), r=1--,(21 1) , with two auxiliary

constants M,=0 and M, =1, where (A4,---,4,)=Uy,---,\Uy,Ugs---.Ug ),

I (T-)—(K-1), r=21-,1.

is the degrees of freedom of-'4, , with'fg.=
Jo-1 r=1+1.--,2l.
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Chapter 5
Generalized Inferences on Regression Models
with Unequal AR(1) Covariance Matrices

5.1. Introduction

In many fields, such as business, engineering, medical studies, meteorology, etc.,
serial dependence, i.e., AR(1) errors correlation, is considered one of the most important
correlation structures. In particular, a regression model with a polynomial trend
(including a linear trend, especially for few measurements taken over time) and seria
dependence is one of the strong candidates for analyzing the data sets collected across
equally spaced time intervals. Repeated measurement with serial dependence can be
expressed by the regression model in matrix form as follows:

Y, =XB+E, (5.1)
where Y, = (Y, Yr) fori=La ., 4=1---,J, t=1---T, and X;’s are
design matrices. Further, §&; jareindependent T-variate normal, with mean vector 0 and
the AR(1) covariance matfix. 3 =61C,C.= (™), 1<mn<T, 62>0, and p
isrestricted to || <1, which ensuresthat' ', is positive definite.

Potthoff and Roy (1964), Lee and Geisser (1975), Lee (1988) and many others have
shown that the growth-curve model is one of the most useful methods for dealing with
the regression model (5.1) with AR(1) dependence. However, the growth-curve model
is restricted to handling either a single group or multiple groups only under the
assumption of identical error correlation among the groups. As with many traditional
methods, the growth-curve model has difficulty dealing with models in which the error
correlations are different among distinct groups. In this chapter, we propose a method
based on the concepts of the generalized p-values and the generalized confidence
intervals to handle the problem with heteroscedastic phenomena.

Estimating and making inferences on B,’s are important aspects of regression

analysis. If the error covariance matrices are not known but are assumed to be identical,
maximum likelihood estimates (MLE’s) via the growth-curve method is one of the

approximation methods for dealing with this model when the sample size is large.
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However, if the nuisance parameters o> and p, are unknown and distinct between

different groups, the traditional methods have serious drawbacks in making inferences
about B.’s. Thus, an exact procedure for making inferences of the fixed effect B,
when the serial covariance matrices are unknown and unequal among groups needs to
be explored. In Section 4.3, Lin and Lee (2003) showed that the generalized method
provided an alternative way of dealing with a regression model (5.1) with unequal
uniform covariance structures among multiple groups. Thus, we will extend the idea to
further consider the regression model (5.1) without making the equal serial dependence
assumption. We perform hypothesis testing for the equality of the fixed effects and
derive the distribution of the common trend if the null hypothesis cannot be rejected.
Our procedures for dealing with a single group and multiple groups are both
presented in Section 5.2. The other commonly used methods, the growth-curve model,
the classical Hotelling's T? and the classical Chi-square method, are presented in
Section 5.3. The illustrative examples of real and simulated data sets are provided in
Section 6.3 for the purpose-of making comparisons of the different methods with

respect to their coverage probabilities, expected areas and p-values.
5.2 Regression model with AR(1) errors

In this section, we first:introduce our method for dealing with the single group in
Section 5.2.1 and then consider the'multiple groups with and without the assumptions of
identical AR(1) covariance matrices in Section 5.2.2. Other methods such as the ML

method via growth-curve model, the classical Chi-square approximation and the

Hotelling's T>—statistic are also briefly introduced in Section 5.3.
5.2.1 Single group based on the generalized method

In the single group, the model (5.1) can be reduced to
Y, =Xp+§&,, j=1--,7, (5.2)

where €,,---,€, are identical and independent multivariate normal distributions with

mean vector 0 and the AR(1) covariance matrix X =oc°C with C:(p\m—n\)’

1<mn<T.

oo 1 , s 1o 11, 1.,<
Let 1, =111, Yj.:?ijt:_lTYJ‘1 Y..:jzj:Yj.:ij:?lTYj:?lTY
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and Yz%ZYj , we obtain a linear unbiased estimator b= (X'X)"'X'Y=AY with
]

A=(XX)"X', and b is distributed as NK(B,%JZACA’). We utilize the estimator

b to make inferences on the unknown AR(1) covariance matrix through two

independent random variables, one is the sum of sguare errors about Xb within

subjects, SSW(Xb) =Y [Y, -Xb—(Y, -Y)1:1TY,; - Xb—(Y, —Y)1;], and the other is
j
the sum of square errors between subjects, SSB(Xb)=TY (Y, -Y)*. The sum of
j
square errors about Xb, SST(Xb)= Z(Yi —Xb)'(Y; —Xb), can be expressed as the
j

sumof SSW(Xb) and SSB(Xb).
Through the distributions and the expected values of SSW(Xb) and SSB(Xb),
we can get information about X . The expectationsof SST(Xb) and SSB(Xb) are

E(SST (Xb)) = E(SSW(Xb)) + E(ESB(Xb))=. > tr[CoU(Y, - Xb)] = *(JT ~tr (XAC))

and E(SSB(Xb)):@ale’CL.

o’ o’ J-1_.
Let =—1.Cl1l, and 5 JT —tr(XAC)-—=1, C1,), then
6 =T 1/Cl and e, ST (T (XAQ) - )

SSW(Xb

Uy = # - ZJz(T—l)—(K-l) ’ (5.3)

€

SB(Xb

UB=$~)(J21! (5.4)

and U, and U, are independently distributed. Since the pair (o, p) can be

uniquely determined by the pair (g, €,), we can get information about nuisance
parameters o> and p through e, and € . Hence, £ can be expressed as
X=X(e,, €). And for any positive number A, we have X(1e,, 1e)=A1X(e,, &)
and AX'(1e,, 1e)=X"'(g,, &). Thus

-1

5(q, SMXD) . SH(Xb),

SSW(Xb) ' " SSB(Xb)
_1,ssW(Xb) ssb(Xb)

= ( UW ’ UB )
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SSW(Xb) |, SH(Xb),

=U, XU
T T UW UB

ssw(Xb) ssb(Xb)
B "1- B,.,

vy, Vo

=U;Z( ), (5.5)

where ssw(Xb) and ssb(Xb) are the observed values of SSW(Xb) and SSB(Xb),
respectively, U, =U,+U ~y> ., and B,,, is the Beta random variable with

_IT-D-(K-D J-1

Vi d VZZT.

-12

If g, and g are known, pre-multiplying X " to both sides of Eq. (5.2), we

obtain the standardized regression model with identity covariance matrix as follows.

Y, =Xp+&,, j=1--,J, where € ~N,(0,I,), (5.6)
which is equivalent to model (3.2). Based on (5.6), the BLUE of p, denoted as ﬁp,
N vIv\-1lv! 1 \ o Iy -

Br = (X'X) X (FZYJ) and B, ~ N, (B,(IX'Z lX) 1)-
j
Since J(B- BP)’ X’E‘1X(B—[§P) is distributed as y., then the random variable

J(JTK—_K) (B-B.) X'(U,Z)"X(B=B,)is distributed as an F distribution with degrees

of freedom K and JT-K. When K = 2, the expected area of the 100(1—«)% coverage
probability of B can be obtained by

7K e e
A, 1-a) ZWEBVNZ[XZ 1(%,$)X ]FK,JT—K 1-a), (5.7)

where B, , isasdefinedin (5.5)
5.2.2 Multiple groups based on the generalized method

In this section, we incorporate the generalized method into the traditional regression
procedure. Our proposed method will provide an alternative process for making

inferences for B.’s of the regression model. The inferences under the assumptions of

distinct AR(1) covariance matrices among groups, and the equal AR(1) covariance

matrices case, are both introduced in this section.
Different covariance matrices among groups

For the situation with distinct covariance matrices among groups, we utilize similar
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steps as in the single group model with some modifications. First, we have to obtain the
information for Z‘.i_l and pre-multiply Zi_m to both sides of the regression model (5.1),
i=1---,1, then we get the standardized regression mode!:

Y, =XB +&, j=1-3; i=L-1, (5.8)
where éij ~N;(0,I;). In Section 5.2.1, the AR(1) covariance matrix X is expressed
as X=X(e, &) through the generalized method. Similarly, we will obtain the AR(1)
covariance matrices X,’s with some modification, then we can make inferences for the

common trend B based on the standardized regression model (5.8) via the traditional

regression procedure. The procedure is as follows.

Let - z AR \?i,_:%m and A =(X'X.)X!, then the

| ij

estimator b, = (X'X;)" XY AY is distributed as N, (B, aACA) The sum

of square errors “within® “subjects:and “between” subjects are §,; =

SOV (X;b,) = Z[Yu - Xib; —(V” _Vi..)lT]’[Yij ~Xb, —(Y_” _Y_i..)lT] and SB,i =

SB(Xb,) = TZ(\?I —Y )?7, respectively. . Let UWJ:i and UBJ:E, with
2 2

& m(ﬂ tr(XAQ)— ITQIT) and g, = T‘lT C1, , then it is

known that U,,; and U,; are independently distributed as 7 ., .y ad x;..,
respectively. Suppose s,; and s; are the observed values of §,, and S,
respectively, then

S Svi S
(QNI e0| :Zi ’ ! ’
SNI SBI UW,i UB,i

Hence we can obtain the generalized estimator ﬁpli for the individua group as

). (5.9)

Boy = (XXX 2,).

The standardized model (5.8) can be also obtained by pre-multiplying ):i_j/z, the
square root of (5.9), to both sides of the regression model (5.1), i=1---,1 . We are
interested in testing the equality of the trends with heteroscedastic phenomena, that is,
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Hy:p,=---=PB, =B. (5.10)

Under the null hypothesis (5.10), the common trend estimator ﬁp is defined as

= (2 IXIX) (ZZX. Y,) = ‘PP(ZJX Ber). (5.12)
whichisdistributedas N, (B,¥,), where
Y. =0 IXX)". (5.12)
We utilize SJZ(QN,J.’.”’QN,I’e[),l'”.’eo,l)Es)z:ZZ(YH _XiﬁP)' (Yij_XiﬁP) and
i
ézf(qmlf'"am,l’q),l”"’eoJ)E éa?:ZZ(?ij_XiﬁP,i)' (Yij_i(iﬁp,i) to test the null
i

hypothesis (5.10). It is noted that S?and S? are distributed as y?-distribution with

degrees of freedom NT —-K and NT -1K, respectively, where N = ZJi . Then the

generalized p-values for testing (5.10), the hypothesis of the equality of the trends, can
be calculated by

S Swi S S
p=Pr{S)2(qN TR - WP - e m %( - U
~5 ~12 | : W1 UW,I UB,l UBI
SJ S &2 Svz S Soa
_P o K )ty 5.13
r{ SO(UW,1/UT Uy, /U U, U, U, /U )-3 (5.13)
SNJ So'l
~1-E(F,, [2 {8 (MM e vl vy e MM)MZ.) 11},

where U, :Z(UW,i +Ug ) ~Xar i F.., isthe cumulative density function(cdf) of

the F distribution with degrees of freedom v, =(1 -)K and v,=NT-IK. And E,

IS the expected value with respect to the independent Beta random variables

) "q
M, = Z"ll : ~Beta(z‘:lq' ,q”l) T
P! 2 2

M;=0 and M, =1, where (4, 4;)=Uyz Uy, Ugs-Ug ), 0 s the

=1---,(21 -1) , with two auxiliary constants

J(T-D—(K-1), r=21-€1.

degrees of freedomof 4 with g =
J. -1 r=1+1---,2l

If the null hypothesis cannot be rejected, the common trend B can be estimated by

B.,and (B—P,)¥Y: (B—B,) isdistributedas y?2.Hence, the random variable
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NT - 1K
K

freedom K and NT-1K.
When K =2, the expected area, A, (B, 1-«), of the 100(1-«)% coverage

(B—B,) [U; ¥, (B—B,) isdistributed as an F distribution with degrees of

probability of B can be obtained by

s, s, s
a,E[> 3 X/E( , X/| 1. (514
. Z (1_Mi—1)Mi"'M2| (1_Mi+|—1)Mi+|"'M2|
7K
where the constant a, = NT_IK Fe nrok —a).
Equal covariance matrices among groups
When the AR(1) covariance matrices are equal among groups, i.e., o; =+ =0/

and pp=:=p , St SCTZZSH , ScB:ZSB,i and Scw:ZSw,i . Let

2 2

o’ o N-1_.

e, =—1.C1 and e = NT —tr EX.A.C -—1. C1 ,
S o N(I'—l)—I(K—l)( (i AC)- el

then U, = and Ugj =2 are independently distributed as 42, , o, and
eCW ch

=, respectively. The subscript ¢ in-these notations stands for the case of “common
covariance matrix.” Similar to the'previous procedure, let s, and s, be the observed

values of S,, and S;, respectively. Then the identical covariance matrix can be

expressed as

S S S S
Z(e —w ey cb ) = Z(_WV , b
> SCW SCB UcW UcB

). (5.15)
Hence, B = IX X)) D XY,) =¥, (O I XX B.,), the estimator under
i ] i
the null hypothesis, isdistributed as N, (B,¥ ) , where
By =(RIX) X () 2.
and ¥, = (Y 3X%)".
The generalized p-values for testing (5.10) can be calculated as

p= Pr{i(em,ecb»éé(j—m,i)}

cw UCB
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-5 2, S Sy

:Pr{Sb >§’(u 10U /U )3
=1-Eg{F,., {SO(EW” c'°) -1}, (5.16)

where U =U_, +U g ~ Zor i F,.,[]] isthecdf of the F distribution with degrees

of freedom v,=(1-DK and v,=NT-IK and E; is the expected value with

respect to the Beta random variables

B ~ Beta( N(I'—l);I(K—l),NZ—I ).

If the null hypothesis cannot be rejected, the common trend B is estimated by ﬁcp ,

NT —

then K- Beo)[Usr¥ ol ™ (B—Bep)~Fi nri - When K =2, the area of the

100(1— )% coverage probability of p is

~2
Egl (ZJX'Z ( o CbB)Xi) ]FK,NT—IK(l_a)' (5.17)

Ae(B, 1-a) =1

5. 3 The other methods
The growth-curve model

The regression model (5.1) can beexpressed as a growth-curve model if the design
matrices are identical. The results are given in Section 4.2.

The classical Chi-square approximation

In the classical Chi-square method, researchers often substitute the unknown X,

with the sample covariance matrices S, = le( -Y)(Y,-Y,) . where

ZY for i=1---,1.Let a =(J,-T-2)/(J,-1), it is then easy to show that

E(a,.Si‘l) = X", Under hypothesis (5.10), the estimate of the common trend § can be

expressed as ch =W, (z ‘]iXi’aiSi_lxiB(chi)i)l where W, :(Z‘]iXi'aiSi_lxi)_l and

ﬁ(chi)i = (Xi,Si_lXi)ilXi’Si_lY_i .

The approximate 100(1-«)% confidence region for the common trend B is
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{B: (B_ﬁcm)"lj;ﬂ (B—ﬁcm) < Zi 1-a)} . (5.18)
When K =2, the area of the approximate 100(1-«)% confidenceregionfor p is

Ao (B, 1-a) = 7[¥eu [ 7E(1-a). (5.19)
The Hotelling’s T? —statistic

Assuming £, ==X =X and X, =---=X, =X, premultiply (X'’X)'X' to

both sides of the regresson model (5.1). Then the model can be transformed as

Y, =B, +€&; , which is distributed as N, (B,X), X =(XX)'XEX(XX)", for

j=1--,J and i=1---,1. Thus the Hotelling’'s T? —method is applicable. Under
(5.10), the estimate of the common trend B is ﬁH :%Z JY, , then the Hotelling's

(N-1)K

.. ~ P . . .
T? -statistic T>=N(B,, —B)'S,, (B, —B) is distributed as N K1 KNtk

where S, =5 X Y (¥; - YW, - e ¥ - 13,
i i

The 100(1- )% confidence regionfor thecommontrend B is

e n vt L7RL A (N-DHK B
{B: B-B,)S, (B BH)S(N_I K +DN FK,N—I—K+1(1 a)}. (5.20)
When K =2, theareaof the 100(1=«)% confidenceregionfor B is
~ K(N-Nr . Y2 B
A 1-a)= N(N~—I —K+1)‘ H‘ Fe nakal-a). (5.21)
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Chapter 6
Results and Concluding Remarks

In this Chapter, two simulation studies about linear combination of mean vectors,

G, discussed in Chapter 3, are presented in Section 6.1 to compare the type | error

rates, expected areas and the coverage probabilities in different combinations of sample
sizes and covariance matrices for difference procedures, and then two sets of data will
be illustrated for our procedures in Section 6.2. The illustrative examples of real and
simulated data sets with different AR(1) covariance matrices discussed in Chapter 5 are
provided in Section 6.3 for the purpose of making comparisons of the different methods
with respect to their coverage probabilities, expected areas and p-values. Findly, the

concluding remarks are provided in Section 6.4.

6.1 Simulation studies about Gp

In this section, we first consider the multivariate Behrens-Fisher problem compared

with five methods with theif type | errors. Then; for the caseof K =3 (> 2), we present

expected areas and coverage probabilities of three methods for various sample sizes and

parameter configurations.
6.1.1 The multivariate Behrens-Fisher problem

We apply five methods to calculate the type | error probabilities of multivariate
Behrens-Fisher problem under different scenarios. The results arein Table 6.1 and Table
6.2for d=2 and d =4, respectively. Each combination is based on 1,000 replicates
with « =0.05 and these comparisons presented correspond to

(1) General: The generalized method proposed in Section 3.2.1.

(2) Hote: The Classical Hotelling’s method described in Section 3.2.2.

(3) Chi: Classica Chi-sguare test described in Section 3.2.2.

(4) Gam: Gamage, Mathew and Weerahandi described in Section 3.3. (2004)

(5) Kri: Krishnamoorthy and Yu described in Section 3.3. (2004)

The methods (1) and (4) both are based on 5,000 runs in each simulation. From

Table 6.1, it is interesting to find that the results based our proposed method are very
close to those proposed by Gamage et al. except only by ssimulated and round off errors.

Both of them have the type | error probabilities close to the nominal level. The method
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proposed by Krishnamoorthy and Yu aso has the similar results except few

combinations.

Table 6.1: Type | error with 1,000 iterations X, =1,,X, =al,

a Generd Hote Chi Gam Kri
n =10,n, =15
9 0.045 0.032 0.080 0.045 0.054
25 0.046 0.026 0.099 0.046 0.056
100 0.045 0.023 0.104 0.044 0.044
400 0.045 0.018 0.097 0.043 0.046
n =10,n, =10
9 0.049 0.101 0.120 0.049 0.062
25 0.050 0.077 0.115 0.048 0.050
100 0.055 0.092 0.124 0.053 0.051
400 0.048 0.089 0.125 0.044 0.046
n =15n,=10
9 0.052 0.162 0.137 0.053 0.070
25 0:055 0:161 0.124 0.04 0.056
100 0.05% 0.193 0.153 0.052 0.055
400 0.053 0.178 0.128 0.052 0.051

However, in Table 6.2 with d=4, except our proposed method, there are
unanticipated resultsin the case n, =10, n, =5. The method proposed by Gamage et al.
tends to accept the null hypothesis (3.20) since the generalized p-values calculated by

their test variable do not have a uniform distribution in this case while we use the
standardized GTV to calculate the generalized p-values. And the type | error
probabilities of the method proposed by Krishnamoorthy and Yu range from 0.11 to
0.16. The type | error probabilities calculated based on the classical Hotelling’s method
are under estimated when smaller sample sizes are associated with smaller variances
and over estimated when two sample sizes are equal or smaler sample sizes are
associated with larger variances. Those obtained based on the classical Chi-square test
are over estimated in all combinations and their performances grow worse as the degree

of non-homogeneity increases. This comes to a similar conclusion with a number of
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other problems solved based on generalized p-vaues, see Thursby (1992), Zhou and
Mathew (1994) and many others. They found that when the covariance matrices are
quite different and the sample sizes are small, the nominal significance level obtained
by the Hotelling’s and the Chi-square methods may be distorted.

Although the method proposed by Krishnamoorthy and Yu is a strong candidate for
the multivariate Behrens-Fisher problem, it has some weaknesses for particular
combinations of sample sizes, dimensions and parameter configurations. Furthermore, it
can be used only in two populations. Thus, for overall comparisons from Table 6.1 and

Table 6.2, we conclude that our proposed method is useful for practical use.

Table 6.2: Type | error with 1,000 iterations X, =1,,X, =al,

a General Hote Chi Gam Kri
n =10,n,=5

9 0.036 0.467 0.578 0 0.108
25 0.042 0.525 0.647 0 0.125
100 0.052 0.650 0.684 0.001 0.161
400 0.056 0.748 0.745 0.008 0.127
n =10,n, =10

9 0.032 0.127 0.258 0.031 0.068
25 0.041 0.156 0.261 0.042 0.060
100 0.055 0.156 0.296 0.055 0.059
400 0.053 0.159 0.299 0.054 0.054
n =10,n, =20

9 0.031 0.017 0.132 0.030 0.071
25 0.043 0.013 0.138 0.039 0.057
100 0.051 0.009 0.132 0.054 0.060
400 0.048 0.010 0.125 0.047 0.050

6.1.2 The expected areas and coverage probabilities

In simulation studies, we used 1,000 iterations to calculate the expected areas of the
95% confidence regions and the corresponding coverage probabilities of

Cp, +Cp,+Cp, under different scenarios. First, we chose (c,c,,c;)=(1-10)
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which is known as the multivariate Behrens-Fisher problem, and the results compared

with five methods are in Table 6.3. Next, we choose (c,c,,c;)=(0.5,0.5,-1) and the

results compared with three methods are in Table 6.4.

Table 6.3: Expected areas of 95% confidence regions and coverage probabilities of
B, -, under % =1, adz, Zﬁalz

a General Hote Chi Gam Kri
n =10,n, =20
9 23.251(.962) 39.4807(.992) 18.228(.924) 23.267(.961) 21.639(.962)
15 36.758(.963) 65.0438(.993) 29.056(.924) 36.765(.963) 35.063(.938)
25 59.280(.958) 107.646(.994) 47.089(.922) 59.294(.960) 57.072(.957)
50 115.603(.959) 214.151(.996) 92.155(.925) 115.664(.961) 114.061(.951)
100 228.298(.959) 427.157(.996) 182.275(.926) 228.378(.960) 224.332(.953)
500 1129.820(.959) 2131.21(.997) 903.209(.929) 1129.990(.959) 1109.206(.962)
n =20,n,=10
9 13.705(.962) .'6.563(:856) . 8.556(.903) 13.713(.962) 12.796(.960)
15 22.078(.961) = 9:413(.820)" 13:574(.896) 22.089(.961) 21.249(.936)
25 36.033(.961) ©14.124(:791) -21.928(.892) 36.061(.961) 34.617(.950)
50 70.938(.955) 25.845(.769) 42.801(.891) 70.982(.956) 69.578(.944)
100 140.755(.957) 49.233(.751) * 84.539(.892) 140.829(.956) 139.740(.938)
500 699.357(.959) 236.168(.741) 418.422(.889) 699.641(.959) 693.913(.957)

From Table 6.3, we find that the coverage probabilities obtained by the Hotelling's
method are over-estimated when the large sample sizes are associated with large
covariance matrices and vice versa. The coverage probabilities obtained by the
Chi-square method are under-estimated in all cases. On the other hand, the rest three
methods have good coverage probabilities and similar expected areas in al cases. In
Table 6.4, athough the Hotelling's method and the Chi-square test have smaller average
areas of 95% confidence regions, their confidence regions are too small to ensure their
coverage probabilities are close to the nominal level 0.95. On the contrary, these
simulated results support that our method not only assures the level of the test in al
cases, but also has good coverage probabilities comparing to those of the classical

Hotelling’s method and the classical Chi-square test.
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Table 6.4: Expected areas of 95% confidence regions and coverage probabilities

of ﬂ+u_22—u3 under 21212,222312 and23=a12

a : Genera Hote Chi
(n n, n;)=(1085)

9 118.257(.957) 18.319(.716) 29.651(.776)
25 297.648(.954) 32.708(.588) 71.844(.738)
50 614.952(.959) 56.745(.536) 145.938(.757)

100 1204.655(.941) 101.422(.486) 284.573(.750)
500 5926.295(.953) 452.362(.463) 1388.306(.756)
(n,n, n)=(8105)

9 110.010(.959) 18.991(.758) 27.637(.790)
25 299.104(.961) 34.243(.602) 72.169(.758)
50 616.133(.954) 58.086(.555) 145.488(.755)

100 1208.969(:953) 102.749(.507) 284.487(.770)
500 6063.718(:952) 463.086(.454) 1417.512(.759)
(n,n, n)=(5108)

9 42.678(.966) 20.266(.884) 20.828(.866)
25 106.023(.954) 42.525(.804) 52.563(.846)
50 207.290(-968) 77.877(.807) 103.119(.868)

100 401.150(.941) 145.413(.774) 200.280(.841)
500 2061.426(.945) 721.244(.760) 1031.064(.849)

6.2 Illustrative Examples of linear combination of mean vectors

6.2.1 Example 1

Zerbe (1979) analyzed the plasma inorganic phosphate flux data to study the
association of hyperglycemia and relative hyperinsulinemia. The standard glucose
tolerance tests were administered to 13 control (C) and 20 obese (O) patients on the
Pediatric Clinical Research Ward of the University of Colorado Medical Center. Zerbe
and Murphy (1986) divided the 20 obese patients into two subgroups; the first 12 obese
patients were nonhyperinsulinemic (NO) while the latter 8 were hyperinsulinemic (HO).
The sample means of plasma inorganic phosphate measurements determined from blood
samples withdrawn 0, 0.5, 1, 1.5, 2, 3, 4, and 5 hours after a standard-dose oral glucose
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challenge are reported in Table 6.5. The researchers wanted to compare the mean curves
separately over the first 3 and last 2 hours of the glucose tolerance test since the

metabolic mechanism responsible for the liver changes.

Table 6.5: Sample means of plasma inorganic phosphate (mg/dl)

Hours after glucose challenge

Group 0 0.5 1 15 2 3 4 5
C 4.092 3262 2723 2631 3046 3346 3515 3.939
O 4530 4140 3780 3480 3195 3375 3700 4.015

NO 4358 4033 3567 3292 3100 3333 3.708 4.000
HO 4788 4300 4100 3763 3338 3438 3.688 4.038

We consider the multivariate Behrens-Fisher problem twice to see whether two
mean vectors are equa or not. First, we want to test if the mean curves of the
nonhyperinsulinemic obese group'and the hyperinsulinemic obese group are the same.
If we cannot reject this null: hypothesis; we further discuss the equality of the mean
curves of the control group and the obese group, and all results are in Table 6.6. We
regard the ratio of determinants,of sample-covariance matrices as the crude index of the

heteroscedasticity. From Table 6.6, m, and Gx are very close, and ratios don’t

display strong heteroscedasticity between groups. The p-valuesin Table 6.6 indicate that
no significant evidence exist to reject the null hypothesis that the mean curve of the
nonhyperinsulinemic obese group and that of the hyperinsulinemic obese group are
equal. However, the mean curves of the control group and the obese group are the same
in the 3-5 hours interval, but different in the 0-3 hours interval. Hence the metabolic
mechanisms over the first 3 hours of the glucose tolerance test should be quite different
from the control group to the obese group. We also run some tests with the similar
conclusions as Zerbe and Murphy. It should be noted that we used G™ to test the
equality of the mean curves of 3 groups (C, NO, HO). In the 3-5 hoursinterval, the ratio
of determinants is (3.37, 1, 1.92) and the p-values by our method is 0.905 which
strongly support the null hypothesis. In the 0-3 hours’ interval, the ratio of determinants
1S (11.8, 9.88, 1) and the p-valuesis 0.035 which reject the null hypothesis.
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Table 6.6: Various comparisons of mean flux curves over selected time intervals

following oral glucose challenge

-value
Groups Interval m, and (GX)' Ratios P _
Generad Gam Kri
0.42, 0.26, 0.53, 0.47,0.23, 0.11
(NO,HO) 0-3hrs (10,1) 0695 0670 0455
(0.43, 0.27, 0.53, 0.47, 0.24, 0.10)
0.10, -0.02, 0.04
(NO,HO) 3-5hrs (1,190 0869 0897 0.880
(0.10, -0.02, 0.04)
0.44, 0.88, 1.06, 0.85, 0.15, 0.03
(C,0) 0-3hrs (1,1.6) 0004 0.006 0.0001
(0.44, 0.88, 1.06, 0.85, 0.15,-0.03)
0.028, 0.183, 0.078
(C,O) 3-5hrs (21,1) 0651 0665 0.617
(0.029, 0.185, 0.077)
0.4,0.9, 1.1, 0.9, 0.1, 0.03, 0.19, 0.08
(C,O0) 05hrs (1,200 0036 0050 0.001
(0.4,0.9,1.1,0.8, 0.1, 0.03, 0.18, 0.08)
Other comparisons
0.25, 0.76, 0.83, 0.65, 0.05, -0.02
(C,NO) 0-3hrs (12,1) 0021 0023 0.007
(0.27, 0.77,:0.84, 0.66,.0:05, -0.01)
-0.015,.0.190, 0.058
(C,NO) 3-5hrs (34,1) 0642 0642 0579
(-0.013, 0.193,.0.062)
0.69,1.04,1.37,1.13, 0.29, 0:09
(C,HO) 0-3hrs (12,1) 0007 0014 0.001
(0.70;:1:044.1.38,.1:13,:0.29, 0.09)
0.095, 0.178,.0:108
(C,HO) 3-5hrs (1.8,1) 0899 0923 0.902

(0.091, 0.172, 0.099)

6.2.2 Example 2

Sterczer, Voros, and Karsai (1996) studied the effect of tap water and three kinds of

cholagogues, magnesium sulphate, clanobutin and cholecystokinin, on changes in the

gallbladder volume (GBV) by two-dimensional ultrasonography in six healthy dogs. In

this experiment, the dogs were treated with each test substance and GBV (ml) was

measured immediately before the administration of each test substance and at 10-minute
intervals for 120 minutes thereafter. They found that the changes in the GBV treated
with magnesium sulphate were very similar to those treated with clanobutin. The GBV

data was available in Reiczigel (1999).
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Table 6.7: Sample means of GBV and the 95% confidence region of Gp.

Minutes after treatment

20 40 60 80 100
Tap water 12.505 14.153 15.242 16.995 18.090
Clanobutin 12.082 13.248 13.890 14.480 15.232
Cholecystokinin 16.643 16.512 16.712 16.853 16.455
m, 30.654 33.817 35.821 39.016 40.977
2014.1
2552.8 3285.4
S, 2795.0 3588.4 3940.8

2901.5 3751.9 4110.0 4309.2
2984.2 3837.7 4212.5 4402.2 4520.6

Note: From (3.12) the 95% confidenceregion of Gp is (Gp—m,)'S;'(Gp—m,) < 24.704.

Studying the human medical literature about the effects exerted by tap water and
clanobutin, a researcher wants to experiment with cocktail therapy, which mixing 70%

tap water, 20% clanobutinzand 10% cholecystokinin. The knowledge of Gu can help
him to prevent the patients uncomfortableness, or the threshold value 6,. The ratio of
canine GBV to human beings is ‘about"3:1 (50:17.4), and the ratios of one minus the
maximal reductions in canine GBV to human beings are 0.75 and 0.87, with respective

to tap water and clanobutin. Hence he can set Gp=1.575p,+0.522pn, +0.3p,
=3*(0.7*0.75n, + 0.2* 0.87p, + 0.1n,) . To ensure the inverse of the sample covariance

matrix exists with probability one, the dimension of the measurements must be less than
six. We take the first 5 measurements at 20-minute intervals for 100 minutes and the
ratio of determinantsis (1217.8, 1, 1.6). The 95% confidence region of Gp from (3.12)

and the summary data are in Table 6.7. The researcher can check to seeif 6, isinthe

95% confidence region with ¢’ =24.704.

{1 oo
In Example 1, we not only test the multivariate Behrens-Fisher problem twice but
also test the MANOVA problem. We illustrate the processto find G and the procedure

for constructing the 95% confidence region based on our proposed method in Example
2. It should be noted that in the Edgar Anderson’s Iris data, the 95% confidence region



of 3u,—2p,—p, dosenot contain 0, that means that such a relationship among these

three species does not exist.

According to the numerical examples, our proposed method in Chapter 3 is
commended since the generalized p-values assure the level of the test in all simulated
cases. Moreover, the coverage probabilities and the expected areas are satisfactory while
the other methods become worse when the heteroscedasticities increased. The
traditional methods usually are restricted to some conditions which are sometimes
violated when the covariance matrices are quite different.

6.3 Illustrative examples of serial dependence

In this section we illustrate the procedures introduced in Chapter 5. First, results of a
simulation study are described to make comparisons of different methods with respect
to their coverage probabilities and expected areas. Next, a biological data set is utilized
to compare the estimated trends via MLE method and our procedure. Finaly, the
generalized p-valuesto test a set of simulated data are presented.

6.3.1 Simulated studies (Comparison of coverage probabilities)

In simulation studies, we generate the data sets with the common trend of

o R e o

"=(0 2), design matrices. X/"=
p'=(02 g i [_3_113

J, 1 =12, and different serial covariance

matrices among groups. For demonstration purposes, we compare five procedures with
respect to their coverage probabilities and expected areas. These five methods are as
follows:
(1) Diff: The generalized method with different covariance matrices proposed in Section
5.2.2.

(2) Equal: The generalized method with identical covariance matrix.
(3) GC: Growth-curve method described in Section 4.2.
(4) CHI: Classica Chi-square approximation described in Section 5.3.
(5) Hotell: Hotelling's T* —statistic described in Section 5.3.

Based on 1,000 replicates in each combination and 5,000 runs in the generalized
methods (1) and (2), the coverage probabilities of the five methods under different
combinations are given in Table 6.8, and the corresponding estimated expected areas of

95% confidence region are given in Table 6.9 under different scenarios.
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Table 6.8: Comparison of 95% coverage probabilitiesof B under o,=1, p, =0.1

(n,=7, n,=15) Diff Equal GC CHI Hotell
0, Po

1 0.1 0.952 0.957 0.931 0.882 0.953

0.9 0.959 0.965 0.946 0.869 0.943

5 0.1 0.948 0.944 0.922 0.873 0.942

0.9 0.960 0.964 0.948 0.876 0.951

10 0.1 0.946 0.945 0.925 0.897 0.939

0.9 0.957 0.961 0.944 0.871 0.948

20 0.1 0.947 0.938 0.920 0.896 0.940

0.9 0.954 0.963 0.951 0.890 0.939

(=15, n,=7) Diff Equa GC CHI Hotell
0, P>

1 0.1 0.941 0.955 0.936 0.878 0.966

0.9 0.956 0.963 0.934 0.862 0.953

5 0.1 0.947 0.906 0.894 0.904 0.897

0.9 0.953 0.926 0.901 0.890 0.911

10 0.1 0.948 0.907 0.905 0.908 0.871

0.9 0.950 0.926 0.904 0.884 0.874

20 0.1 0.951 0.889 0.870 0.910 0.847

0.9 0.950 0.935 0.914 0.901 0.876

From Table 6.8 and Table 6.9, we can see that the coverage probabilities obtained
by the classica Chi-square approximation were below the nominal level 0.95 in al
cases athough its expectedareas were small. Similarly, the coverage probabilities,
obtained by methods (2), (3) and (5) with the identical covariance matrix assumption,
decrease when the heteroscedasticities increase. On the other hand, the method (1), the
generalized method without the equal covariance matrix assumption, had good coverage

probabilitiesin all cases even when the heteroscedasticities among groups were large.

Table 6.9: Expected areas of 95% confidence regionsof B under o,=1, p,=0.1

(n,=7, n,=15) Diff Equal GC CHI Hotell
0> P>

1 0.1 0.112 0.118 0.097 0.138 0.123

0.9 0.076 0.136 0.123 0.073 0.114

5 0.1 0.365 2.063 1.706 0.730 2.134

0.9 0.326 1.603 1.665 0.484 1.289

10 0.1 0.406 8.187 6.782 0.888 8.457

0.9 0.391 6.020 6.298 0.714 4.802

20 0.1 0.419 32.862 27.029 0.951 33.489

0.9 0.416 23.718 24.835 0.879 19.092
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(n,=15, n,=7) Diff Equal GC CHI Hotell

0, P2
1 0.1 0.109 0.118 0.097 0.138 0.123
0.9 0.083 0.139 0.114 0.093 0.131
5 0.1 0.170 0.943 0.791 0.184 0.912
0.9 0.165 0.853 0.849 0.173 0.676
10 0.1 0.170 3.434 2.955 0.182 3.286
0.9 0.169 2.729 2.806 0.179 2.027
20 0.1 0.172 13.421 11.414 0.183 12.749
0.9 0.172 10.381 10.759 0.182 7571

Hence, based on the overall comparisons, the generalized method without equal
covariance matrix assumption is better than the other four methods with respect to their
coverage probabilities and expected areas, especially when small sample sizes are

associated with large variances.

6.3.2 Example 3: the dental data
The dental data for 11 girls and 16 boys. at ages 8, 10, 12 and 14 years were first
considered by Potthoff and Roy (1964) and |atér analyzed by Lee and Geisser (1975),

1 111}
. From

Lee (1988) and many others. The design matrix is set to be X’:( 3113

(5.13) and (5.16), the generalized p-values for testing the equality of the trends are
about 4*10° and 2*10°® for distinct covariance matrices and equal covariance matrices,
respectively.

Table 6.10: Estimated trends, expected areas and hypotheses of the dental data set

The generalized method Growth-curve method
Group Estimatedtrend  Expectedarea  Estimated trend  Expected area
11 girls (22.638 0.485)’ 0.999 (22.639 0.485)’ 0.924
16 boys (25.063 0.769)’ 1.113 (25.027 0.773)’ 0.929
15boys (25.107 0.782) 1.083 (25.092 0.782) 0.963

Lee and Geisser had pointed out that individual 20, who is a boy, should be
excluded. In this case, the generalized p-values are about 6*10° and 5*10° under
distinct covariance matrices and equal covariance matrices, respectively. Hence we
treated this dental data as arising from two different groups with distinct trends and



serial covariance matrices. We used 10,000 runs to apply the generalized method to
estimate trends and the expected areas of the 95% confidence region for the trends of 11
girls, 16 boys and 15 boys. The results are summarized in Table 6.10.

From Table 6.10, we can see that the estimated trends obtained by the generalized
method and the growth-curve method are quite similar; however, the expected areas via
the generalized method are dlight larger than those via the growth-curve method. In
general, the larger the expected areas, the larger the coverage probabilities. The

simulation study in Section 6.3.1 also shows this phenomenon.
6.3.3 Example 4: the simulated data (Testing equality of the trends)

In order to illustrate our procedures to test the equality of the trends, five sets of data
were generated assuming serial dependence regresson model (5.1) with the small

sample sizes n =8, i=1---,5. The values of the parameters are o, =1 o, =15
0,=2, 0,=4, 0,=20, B;=P,=P,=(10 2), B, =(12 2), p;=(14 2), p =03,

11111

i=1---,5, and the design matrices are X! =
-2-1012

J, i=1---,5. The generated

data sets are presented in Table 6.11. The p-values for testing the equality of the trends
aredisplayed in Table 6.12:
It is noted that the p-values In Table 6.12 are computed with 10,000 runs in each

combination, p, means the p-value under equal covariance matrices assumption by
using formula (5.16) and p, means the p-value without the assumption of equal

covariance matrices by (5.13). The smaller the p-values, the stronger is the evidence to
reject the null hypothesis. From Table 6.12, the numerical results showed that when

groups are homogeneous, both p, and p, reached the same conclusion that there was
not sufficient evidence to reject the null hypothesis. However, when heteroscedasticity
ispresent, p, usualy failsto detect the differences between groups. On the other hand,
p, 1S more sensitive and is able to detect the differences between the distinct groups.
Thus comparedto p,, p, ismorepowerful than p, under heteroscedasticity.

It is also noted that if we change the serial dependence into uniform covariance
structure in program, the results with the procedure in Section 5.2 are very close to
those proposed by Chi and Weerahandi (1998). The comparison is displayed in Table
6.13 and our results are computed with 5,000 runsin each simulated data set.



Table 6.11: The simulated data set for 5 groups

Group t=-2 t=-1 t=0 t=1 t=2
i=1 5.317 9.454 9.192 12.461 13.720
i=1 5.809 8.271 10.402 13.639 15.084
i=1 4.225 8.239 6.988 11.676 13.713
i=1 5.515 8.044 9.359 12.326 13.002
i=1 6.209 9.348 8.789 11.061 12.339
i=1 7.268 8.806 9.038 11.525 14.740
i=1 6.950 8.159 9.876 12.741 15.100
i=1 4.751 8.423 9.788 11.517 14.328
=2 3.479 7.283 11.478 12.476 15.240
i=2 4.768 5.964 11.269 10.437 12.298
=2 5.684 6.795 10.870 10.457 12.453
i=2 5.597 8.183 8.025 12.269 11.619
=2 4.656 8.680 11.735 11.069 15.841
i=2 6.705 7.992 9.593 12.772 12.005
=2 5.375 8.474 10.931 12.306 13.233
i=2 6.648 9.760 9.541 12.024 14.737
i=3 7.792 7.853 11.848 13.339 15.404
i=3 6.704 6.747 10.522 12.626 14.499
i=3 2.623 7.420 10.141 7.929 14.943
i=3 9.040 11212 9.210 13.447 14.008
i=3 6.226 8.143 7.233 12.126 10.774
i=3 3.188 8.114 9.059 13.483 12.891
i=3 3.303 11.286 8:380 10.021 16.122
i=3 6.784 5.921 12,561 12.478 14.418
i=4 10.047 9.090 6.987 8.703 15.811
i=4 9.890 5.362 12.305 14.816 16.782
i=4 11.747 9.269 15.375 16.333 20.243
i= 8.576 6.958 12.237 16.103 14.539
= 3.357 -0.004 12.236 13.394 13.968
i= 9.838 16.003 20.672 19.727 20.724
= 9.826 13.713 7.021 17.078 13.031
i= 11.567 9.680 10.762 17.249 22.972
iI=5 5.634 13.870 21.912 -4.802 22.294
i=5 2.952 21.233 -26.393 15.328 4.827
i=5 2.765 11.701 4.881 -0.456 8.499
i=5 -3.491 11.824 -1.604 42.528 20.791
iI=5 11.124 30.875 38.875 16.394 34.617
i=5 37.900 -12.610 -71.722 27.170 10.618
iI=5 47.762 3.990 12.793 39.530 19.299
i=5 20.352 -8.508 25.906 30.113 16.731
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Table 6.12: The generalized p-values for the testing equality of the trends

Hypothesis P, Pe
Ho B, =B, =B 0.083499 0.189677
He B =B, =B, 0.000447° 0.000001"
Ho B =B, =B 0.047343 0.082289
Ho i B =Bs =B, 0.000418" 0.000002"
Hos By = B3 =Bs 0.032971° 0.093071
Hos By =Bs =B 0.000187° 0.106036
Ho B, =B, =Bs 0.000231° 0.098681
Hos:Bs =B, =B 0.000398" 0.113409
Hoo B, =Bs=B,=Bs 0.000365 0.057247

* significance under the nominal level 0.05

Table 6.13: The generalized p-values for the testing equality of growth curves with
uniform covariance matrices

Chi and _ _
. Section 5.2 (uniform)
Examples Weerahandi(1998)
Py Pe Py Pe
(1) Serious heteroscedasticity 0.0236 0.0817 0.0245 0.0826
(2) Mild heteroscedasticity 0.0441 0.0113 0.0491 0.0112

We demonstrate the advantages of our proposed method when there are few subjects
or few measurements taken over time in this section. The other traditional methods
usually are restricted to specific conditions that are sometimes violated when the seria
covariance matrices are quite different or the sample sizes are small. According to the
numerical examples, our proposed method is superior since it does not require the
assumption of equal covariance matrices and the generalized p-values are better able to
detect the differences between the trends among the groups and for the single group
case, the estimated trend is the same via the growth-curve method. Moreover, the
coverage probabilities and the expected areas for this method are satisfactory while the

other methods become worse when the heteroscedasticities increase.

6.4 Concluding remarks

The concepts of the generalized p-values and the generalized confidence intervals
proposed by Tsui and Weerahandi (1989) and Weerahandi (1993) provide a new

viewpoint of handling the problems with heteroscedastic phenomena. Although the
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generalized approach shares the same philosophy of the Bayesian approach that the
inferences should be made with special regards to the data at hand, the parameters are
not treated as random variables in generalized approach. From Section 6.1, the
multivariate GTV based on the concept of the standardized expression modifies that
proposed by Gamage et al.(2004) when the distribution of multivariate GTV is
unknown. When the covariance matrices are quite different and the sample sizes are
small, the Type | errors obtained by our proposed method are very closed to the nomial
significane level while the other methods become worse when the heteroscedasticities
increase or the dimension increases.

Based on the generalized approach, Lin and Lee (2003) provided an alternative way
of dealing with the MANOVA mode with unequal uniform covariance structures
among multiple groups. However, (4.21) is true only when the covariance matrix is the

uniform structure and the design matrix is the form X =(1;,X,). To apply the similar

procedure for handling the regresson model with unequal serial dependence, the

procedure requires some modifications Since (X'Z X) X'Z Y #(X'X) X'Y. Our
proposed method is a strong candidate for dealing with the regression model with AR(1)
dependence since it does not require the assumption of equal serial covariance matrices
and the coverage probabilities abtained-are close to the nominal level even when there
are heteroscedasticities among groups.

From Table 6.13, the difference between the p-values of our proposed method,
which are two simulated data sets of regresson model with heteroscedastic uniform
covariance matrices, and those proposed by Chi and Weerahandi (1998) is very small.
Therefore, it is desirable to discuss and to find a method to handle the regression model

with unequal some covariance structures o°C(p), i=1---,1, where | is the

number of the groups. The uniform and serial dependences are also in the consideration.
Moreover, the case of the AR(p) covariance structures is also desirable to further

explore.
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Appendix
The Distribution of the Multivariate GPQ

In Chapter 2, the distribution of the generalized pivotal quality (GPQ),

D(W;w,8,n1) must be free of unknown parameters. Sometimes, we express D as

D(W;w,0,)=T(W;w,n)-46, (A.1)
or D(W;w,0,m) =T(W;w,n)—-0, (A.2)
for the multivariate case.

To make inference about 0, for example, the hypothesis testing, confidence region,
the expected area (volume) and the coverage probability of confidence region, the
distribution of D plays an important part. However, the distribution of D usualy is
unknown, and the empirical cumulative distribution function is the estimated
cumulative proportion of the data set that does not exceed any specified values. The
distribution of D (or D) is freerof sunknown parameters while that of T perhaps
involved with the location parameter; -0 -and sometimes it is more proper to apply the
distribution of T in practice.'Lin et a: (2007) proposed agorithms to compute the

p-value and confidence region, etc.
Hypothesis testing and confidence region

Suppose that given W =w, the observed valueof T is 6 and the distribution of

T in (A.l) is free of nuisance parameters n. Hence T can be used to construct a
confidence region of 6 and test the hypothesis

H,:0=0,vs.H :0+-0,, (A.3)

where 0, isapre-specified value.

Remark 1: If a is a dx1 column vector with elements a,a,,...,a, <o, we

write a=[(g)], and thelength or normof a isdenoted by [a|. Thus

1/2

|a = Va'a = (&2 + &2 +...+ a%)"2.

Remark 2: For a vector y, |b'y[Kc(b'b)”? if and only if y'y<c?, for any
nonzero vector b, which is a consequence of the Cauchy-Schwarz inequality.

-1/2

Let T denote the standardized expression of T with T=X;"*(T—p,), where
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p, and X, represent the mean and covariance matrix of T . Define
0, = Z,'(0, —p,) , and then the generalized p-value for testing (A.3) can be given by
p = Pr{| T > 8, %}, (A.4)

and H, will bergected whenever p islessthan « . Furthermore, let q{HTH' | be the

100y ™ percentile of HTH , so we have

PriT T = (T-p 2T -w) = =7 (A5)

1l »
Since the observed value of T is 0, the 100(1—-«)% confidence region of 6 can

be solved by the inequality

{e : (e _”T)’E}l(e _HT) < q{jTH 1_a}} ' (A-6)

which is equivalent to solving the inequality {0 . HZ;” (- ”T)H < G 1) } .

Simultaneous confidence intervals for the d-components of 6 can be developed

from consideration of confidence intervals for a'T, where a isany nonzero d-variate

vector.
According to Remark 2, let .y =X:**(T=p,), b=XY%a and c= G 1) then
from (A.5), we have the following:
(T—p,)E(T—p,) < q{m 1) if and only if |a'(T —uT)| < q{HTH; 1) aXa. (A7)

Theinequality (A.7) implies that

Pr {a’pT - q{HTH? 1] JaXja<aT<a'p, + q{HTH? 1] 3 /a'ZTa} =1-a, (A.8)
for all nonzero vector a.If a isthe vector with 1 for the 1" element and O elsewhere,

the simultaneous 100(1— )% confidence interval for the |™ component of common

mean vector 0, 4 ,is

[0~ g Nty g V) 10 (A9

th
|

where s, isthe 1™ component of p, and =" isthe (I,1)™ component of X,.

1/2

To takeT:Gi—(Gsl’zR’ls”ZG') Z, in Chapter 3 as an example, we will use the

following agorithm to compute the p-value (A.4) and confidenceregionof 6 (A.6).
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Algorithm 1: For agiven (n,...,n.), (x;,....Xc), (s,-...8¢) and G:
X' =(x],..,Xx) and s=Bdiag(s,,...,8) -

Forj=1..m:

Generate Z, from N, (0, 1,).

Generate R, ~W,(n -1 I,), i=1.. K.

R =Bdiag(R,,...,Ry) .

Compute T,=GX - (Gsl’ RV 2G')1/2 Z,.

(End j loop)

Lol A . -
Compute i, =—> T, and X, =———> (T, —p )T, —fi,)".
m4 m-1<

Compute |T,| and |@,[, whereT, =X,"*(T, - ji,), j =1...,m, and
60 = 2}1/2(00 - l"iT) .
Let 7, =1 if |T,|>|0,|;else z, =0;

% r; isaMonte Carlo estimate of the generalized p-value for testing (A.3).
j=1
Let q be the 100(1-a)th " percentile of i‘

{HTH 1.0,} il 1=%...,m, then the
confidence region of ® and the simultaneous confidence interval of 6, |1=1,...,d,
can be obtained through (A.6) and (A.9), respectively.

The expected area and coverage probability of the confidence region

We will compute the coverage probabilities and the expected surface areas or the
expected d-dimensional volumes of the generalized confidence regionsunder d > 2.

Remark 3: Suppose we have a confidence region of p which satisfies the
following inequality: (n—p)V*'(n-p)<c®, where Vis a dxd positive definite
matrix. The ellipsoid center is p, and the axes of the dllipsoid are J_r|c|\/E in the

direction of &, where g'’s are the eigenvaluesof V and &, ’s are the corresponding

eigenvectors, | =1,...,d . Thus the expected d-dimensional volume of p can be
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d/2.d
computed b LE V|], where |V| is the determinant of V and I'()is
PSS Taxdr2) VI M 0
gamma function. Specially, for d=2 and d =3, the expected area and volume can be
4rc®
3

According to Remark 3, the d-dimensional volume of the confidence region in (A.6)

reduced to zc® E[\/M ] and E[\/M ], respectively.

derived by generalized method are

d/2 d

79%.q
(|7 1o}
WE[ =] (A.10)

The algorithm for computing the d-dimensional volume as well as coverage probability
isgiven asfollows.

Algorithm 2: For agiven (n,...,n), (ug,...ny¢), (Z,...2¢) and G:

For | =1,...,L:

Generate X" ~N,(w,, Z,/n), i=1..,K.

Generate U" ~W,(n -1 &7n), i=1..,K:

Use Algorithm 1 to compute d-dimensional volume H, of the confidence region in the

di2 . dQ)

o i W
r(l+d/2)

iteration, H, = Tl

UseAlgorithm 1 to compute coverage probability, set 6, =1 if

50w, e 3 -0

(End | loop)

L L
%Z H, and %25, are Monte Carlo estimates of the d-dimensional volume and
1=1

=1

coverage probability of the generalized confidence region, respectively.
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