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學生：張鳳吟 

 

指導教授：林貴林 

陳丕燊 

國立交通大學物理研究所 

摘 要       

近幾十年來極高能宇宙射線的來源一直是個未解的謎團。目前一些現

有的機制，如震波擴散加速與其他，在解釋這些粒子上仍存在問題。

所以根據電漿加速器的概念，我們提出了新的機制—磁性波電漿尾隨

場加速—來解釋極高能宇宙射線的產生。這篇論文中，我們以哨波作

為電漿尾隨場的驅動脈衝來建立磁性波電漿尾隨場加速的理論及模

擬，電漿模擬的結果證實磁性波電漿尾隨場的存在，同時它的場強符

合我們新推導的相對論性理論預測；在適當的條件下，我們也證明磁

性波電漿尾隨場經過幾百個電漿肌膚深度後仍可以維持高度同調性及

高度加速梯度，這樣的特性使磁性波電漿尾隨場可以應用在加速器實

驗。在天文環境中，粒子與尾隨場的隨機交互作用讓加速粒子能譜遵

守指數律，我們最後說明活躍星系核加速粒子到 1021 電子伏特的可能

性。 
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ABSTRACT 

 
The origin of ultrahigh energy cosmic rays has been puzzled over several 
decades. So far, the existing mechanisms, such as diffusive shock 
acceleration (DSA) and others, still present problems in explaining these 
particles. Based on the concept of plasma wakefield accelerator, we 
proposed a novel mechanism, the so-called magnetowave induced plasma 
wakefield acceleration (MPWA) to elucidate the production of ultrahigh 
energy cosmic rays. In this thesis we establish the general MPWA theory 
and perform a particle-in-cell simulation that provides the evidence of the 
generation of magnetowave induced plasma wakefield. Here we invoke 
the high frequency and high speed whistler mode for the driving pulse. 
The plasma wakefield obtained in the simulation compares favorably with 
our newly developed relativistic theory of MPWA. We show that under 
appropriate conditions, the plasma wakefield maintains very high 
coherence and sustains high-gradient acceleration over hundreds of 
plasma skin depths. In astrophysical setting, the power-law spectrum and 
accelerating gradient are given in the theory. Invoking AGNs as the 
acceleration site, we will show that the particle accelerated to 1021eV is 
possible.  
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Chapter 1

Introduction

1.1 The Origin of Ultrahigh Energy Cosmic Rays

The origin of ultrahigh energy cosmic rays (UHECR) has been a long-standing

mystery in astrophysics. According to the detection of the giant air showers, the

arrival of UHECR with energy up to 1020 eV was confirmed[1, 2, 3] and the most

energetic cosmic particle recorded was about ∼ 3 × 1020 eV by the Fly’s Eye

Observatory[2]. It is amazing that a subatomic particle can carry macroscopic

kinetic energy equal to that of a baseball (142 g) traveling at 96 km/h. Having

such high energy, UHECRs pose a serious challenge on the theoretical models.

Figure 1.1 shows the overall cosmic ray spectrum which simply follows a

power law with index roughly −3. There are two kinks at energy 1015 eV(the

knee) and 1018 (the ankle) eV denoting the changes of the power-law indices.

We believe that the ankle is due to the transition of galactic source to extra-

galactic sources and the change of composition. In addition, beyond energy

5 × 1019 eV, the flux is expected to drop significantly due to the GZK effect

taking place. The GZK effect was proposed in 1967 soon after the discovery

of the cosmic microwave background (CMB) by Greisen, Zatsepin, and Kuzmin

(GZK)[4, 5]. A cosmic protons with energy above the threshold (the GZK cutoff

energy) would lose its energy through interaction with the CMB photons. As

a result its spectrum would be subject to a cutoff. In the observation aspect,

HiRes which uses the fluorescence method clearly exhibits a GZK suppression
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Figure 1.1: The cosmic ray spectrum.

2



signature, while AGASA instead shows a continue spectrum. This discrepancy

deeps the puzzle of UHECR. Fortunately precision measurements[6, 7] on the

yield of air-shower induced fluorescence lend support to the energy calibration

of the HiRes observations[8]. Together with the recent data from the Pierre

Auger Observatory[9] which exhibits a similar location of an ”ankle” and the

GZK suppression as those observed in HiRes, we confirm the validity of the

GZK mechanism. Nevertheless both AGASA and HiRes presented the exist-

ing of super-GZK events, which are not observed by Auger. It implies that

the super-GZK particles should have original energies even higher and be re-

strictively located within 50 ∼ 75Mpc (the GZK attenuation length). However

so far there is no source within this range identified response for the UHECR

production.

There has been many mechanisms caming up with to solve the UHECR

production issues. Thus far, the existing theories can be broadly categorized

into two scenarios, top-down and bottom-up. The bottom-up model relies on

an efficient acceleration mechanism for an ordinary particle, such as a proton,

at some astrophysical site to ultra high energies. While the top-down scenario

is an alterative model to the bottom-up scenario proposed in order to explain

the super-GZK events. It resorts to the decay of some relics of Grand Unified

scale (∼ 1024 eV) from the early universe. The main challenges for the scenarios

are their difficulties of complying with the observed event rates and the energy

spectrum[10], and the fine-tuning of particle lifetimes. Meanwhile the top-down

theories would predict high fluxes of photon and neutrino as the side prod-

ucts. The lack of observation of photons or neutrinos strongly disfavors these

models[11, 12]. Therefore finding a viable bottom-up mechanism to accelerate

ordinary particles beyond 1020 eV becomes more acute.

1.2 Conventional Model

1.2.1 Diffusive Shock Acceleration

The first idea of the cosmic ray acceleration mechanism yielding a power law

spectrum is proposed by Fermi in 1949[13]. He considered that cosmic particles

in interstellar space can diffuse by scattering off the randomly moving mag-
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netic clouds, resulting in an average energy gain per encounter proportional to

the mean velocity square of the magnetic clouds. It is often referred to as the

second-order Fermi acceleration. Particles can be accelerated to high energy by

many turns of the accelerating cycles. However the mechanism is not efficient

because the process is non-relativistic and the energy gain proportionally to β2

is accordingly small. As a variant of Fermi mechanism in strong non-relativistic

shocks, the so-called diffusive shock acceleration(DSA) mechanism, was inde-

pendently proposed by several authors [14, 15, 16, 17] in the late 1970s. It is

referred to as the first order Fermi mechanism. This mechanism was conven-

tionally accepted as the origin of the high energy cosmic ray. According to the

simple picture from Bell[14], the upstream particles injected crossing the shock

front could be turned back by scattering off the magnetic turbulence generated

in downstream and vice versa, resulting in the diffusion of particles on the both

sides of shock front. Different from the Fermi mechanism, each crossing can

gain energy proportional to the first power of shock velocity. It is because the

particles at shock always encounter head-on collisions.

These two mechanisms both produce power law spectrums. Assuming the

energy gain per encounter is Δε/ε = ξ, the energy after n encounters is,

εn = ε0(1 + ξ)n (1.1)

where ε0 is the energy at injection into the accelerator. If the probability of

escape from the acceleration region is Pesc per encounter, then the probability

of remaining in the acceleration region after n encounters is (1 − Pesc)n. The

number of encounters needed to reach energy E is

n = ln
(

ε

ε0

)
/ ln(1 + ξ). (1.2)

Thus, the proportion of particles with energy greater than E is

N(> ε) ∝
∞∑

m=n

(1 − Pesc)m =
(1 − Pesc)n

Pesc
. (1.3)

Substituting the expression of n into Eq. (1.3), we arrive at the power-law

spectrum

N(> ε) ∝ 1
Pesc

(
ε

ε0

)−γ

, (1.4)

with

γ = ln
(

1
1 − Pesc

)
/ ln(1 + ξ) ≈ Pesc

ξ
(1.5)
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From Fermi’s picture, the probability per encounter of escape from the ac-

celeration region Pesc is the ratio of the characteristic time for the acceleration

cycle and the escape from the acceleration region. This resulting spectral index

is not universal, but depends on the properties of the magnetic clouds. For the

strong shock case, it can be shown that at a shock,

γ =
Pesc

ξ
=

3
uu/ud − 1

(1.6)

with
uu

ud
=

(cp/cv + 1)M2

(cp/cv − 1)M2 + 2
(1.7)

given by Rankine-Hugoniot jump conditions at the shock front[18]. Here uu

and ud are the velocities of gas flows in upstream and downstream respectively

and the Mach number M is defined as the ratio of uu to the sound speed in

upstream gas. For an monatomic gas the ratio of specific heats cp/cv = 5/3,

γ ≈ 1 + 4
M2 ∼ 1 for the strong shock with M � 1, which is independent of

the shock properties and is universal. The differential spectrum provided by

diffusive shock acceleration mechanism is given by dN/dE ∝ E−2 at strong

non-relativistic shock.

The above discussions are for non-relativistic shocks. Since the most pow-

erful astrophysics objects often involves ultra relativistic flows, the application

of DSA to ultra relativistic flows has also been massively studied over years

(see [19]). When considering the relativistic shock, the distribution of scat-

tered particles is no longer isotropic but has orientations on angle. As a con-

sequence, the application of DSA becomes more difficult. The average energy

gain ΔE′ = E′
f − E′

i in the rest frame of shock front is shown as order of E′
i

itself, hence in the first shock crossing cycle, a large initial boost in energy can

be achieved, Ei/Ef ∼ Γ2 where Γ is the gamma factor of the bulk velocity of

relativistic flows[20]. The power-index is fitted about −2.23 ± 0.01 [21, 22].

1.2.2 Limitations

With the successful application to supernova remnants for cosmic ray around

the knee (1015) eV, which has been confirmed via the x-ray observation[23], DSA

is conventionally considered as the possible solution of high energy cosmic ray.
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However DAS relies on the random collisions of the high energy particle against

magnetic field domains or the shock media. They restrict the accelerating time

from the shock lateral size and the strength of background magnetic field, and

therefore the maximum energy gain. At very high energy, the collision process in

magnetic turbulence necessarily induces severe synchrotron radiation loss, which

is proportional to the fourth power of γ. Compiling above limitations, DAS has

difficulties to explain UHECRs. Evidently, novel acceleration mechanisms that

can avoid some of the difficulties faced by these conventional models should not

be overlooked.

1.3 Plasma Wakefield Acceleration as a Possible

Mechanism

Plasma wakefield accelerators[24, 25] are known to possess two salient features:

(i) The plasma can support an extremely high ”acceleration gradient,” i.e.,

energy gain per unit distance, which does not depend (inversely) on the parti-

clesinstantaneous energy or momentum. This is essential to avoid the gradual

decrease of efficiency in reaching ultrahigh energies. (ii) The acceleration field

is collinear to the particle momentum. Therefore, bending of the trajectory is

not necessary in this mechanism. This helps to minimize inherent energy losses

that would be severe at ultrahigh energies.

So motivated by these considerations, it was proposed that UHECR can be

produced from the plasma wakefield excited in astrophysical setting[26]. In-

stead of using laser or charged beam which does not exist in astrophysical en-

vironments, Chen et al invoked Alfven shocks as the driving sources to excite

plasma wakefields. This idea of using shocks to excite plasma wakefield has at-

tracted several astrophysical plasma physicists [27, 28]. Chen et al showed that

the power-law spectrum is accounted for the stochastic encounters between the

particles and the randomly generated wakefields. Using the short gamma ray

burst(GRB) as the working source, Chen et al obtained the maximum accel-

erating gradient and predicted the event rate. However, in that paper, their

estimation of accelerating gradient was based upon the theory of laser wake-

field acceleration without taking the background magnetic effect into account.
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Furthermore, this concept has never been validated through computer simula-

tion. Thus, we develop a new mechanism of plasma wakefield (the magnetowave

induced plasma wakefield acceleration (MPWA) invoking the high frequency

and high speed whistler mode as driving pulse, and confirm this concept via

computer simulations[29]. The magnetowave with phase velocity vph < c has

component |B| > |E| in nature. On the other hand the laser and charged beam

have |E| > |B|.
In this thesis, we will discuss the complete theory of MPWA and its appli-

cation to UHECR. The content is the following: in Chap.2, the basic plasma

physics is viewed to give the way for subsequent discussions. The last section of

Chap. 2 introduces the different types of the plasma wakeifled accelerator. In

Chap. 3, we start looking at the plasma wakefield acceleration in magnetized

plasma. With ω � ωc, the magnetic field effect can be ignored. In Chap.4,

we focus on the driving pulse with ω < ωc (MPWA) and introduce a MPWA

condition. The theory of MPWA in linear and nonlinear regimes under the

MPWA condition are presented and the limitation of MPWA is also discussed.

In Chap. 5, the particle in cell(PIC) code to produce MPWA is introduced. We

show that the simulation results are in good agreements with the theoretical

prediction. Finally with the theoretical model established, we apply this mech-

anism to explain the UHECR acceleration. In Chap. 6 we obtain the power-law

spectrum from the stochastic process of the wakefield acceleration and estimate

the accelerating gradient provided by AGN jets. The summary and conclusion

are presented in Chap. 7.
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Chapter 2

Basic Concept of Plasma

It is known that 99 percent of visible matter in the universe is in plasma state.

All the astrophysical objects, such as stars, relativistic jets, accretion disks,

etc.., are made of plasma. Therefore a though understanding of plasma physics

could lead to an understanding of 99 percent of the visible universe. Based on

that, the idea of plasma wakefield acceleration for UHECR is therefore possible.

In this chapter I will briefly introduce the basic concept of plasma. The cgs unit

system is used in the following treatment.

2.1 What is Plasma

Plasma is a partially ionized gas consisting of free negative electrons, positive

ions and neutral atoms. When we heat a liquid, we can see more and more

vapors created as the temperature rises till reaching the boiled point. After

that, all liquid molecules are turned into gas molecules. If we continue to heat

the gas, some atoms or molecules will eventually get ionized. Thus in addition to

the three thermodynamic states, plasma is sometimes referred to as the fourth

state of matter. Because the ionized energy of atoms is of the order 10 eV,

plasma is usually created in a very high temperature. But in fact, the atoms

still have chances to be ionized at the room temperature due to the tail of

thermal distribution. The amount of ionization is very rare so that we can not

feel the plasma around us. To estimate the portion of ionization in thermal

equilibrium, we can use Saha equation[30]
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ni

nn
≈ 2.4 × 1015 T 3/2

ni
e−Ui/kT , (2.1)

where ni and nn are the densities of ionized atoms and of neutral atoms re-

spectively, T is the gas temperature in unit of K, and Ui is the ionization

energy of the gas. If we take the room temperature T=300K, gas density

nn ≈ 3 × 1019cm−3, and Ui ≈ 14.5 eV for nitrogen, we can predict the fraction

of ionization

ni

nn + ni
≈ ni

nn
≈ 10−122

which is extremely low.

2.2 Definition of Plasma

Not any ionized gas can be called a plasma. As mentioned above, there is al-

ways some small fraction of ionization in any gas. So the plasma is defined from

its most important properties, collectiveness and the quasi-neutrality. Since

plasma contains charged particles, the moves of these charges can generate local

concentrations of positive or negative charges which give rise to electric fields.

The motions of charges also generate currents and then the magnetic fields.

These fields are long-range and could affect the motions of other charged par-

ticles far away. To see the effect, let us imagine two small charged regions of

plasma separated by a distance r. Even if the Coulomb interaction between the

two individual charged particles diminishes as 1/r2, for a given solid angle, one

region can feel a total force from the other region with volume increasing as

r3. Therefore, elements of plasma can experience a force on one another even

at large distances. By ”collectiveness” we mean that plasma motions depend

not only on local conditions but on the state of the plasma in remote regions as

well.

The quasi-neutrality comes from a fundamental characteristic of the plasma,

which is the capability to shield out electric potentials that are applied to

it. Suppose we set up an electric field by inserting a ball charged with posi-

tive charges, the ball would naturally attract an electron cloud with the same

amount of positive charges surrounded. If we assume an electron distribution
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which follows the Boltzman’s equation so that

ne(Φ) = n0e
eΦ/kBT (2.2)

where Φ, is the potential associated with the slight separation of electrons and

ions, n0 is the plasma density at Φ = 0 and T is the electron temperature.

Since an ion is 1800 times heavier than an electron, the ion background can

be regarded as motionless. Therefore the ion density ni, where the subscript i

denotes the ion background, is approximately equal to the plasma density n0.

Considering only the one-dimensional case, the Poisson equation turns into with

Eq. (2.2)

∂2Φ
∂z2

= 4πen0

(
eeΦ/kBT − 1

)
. (2.3)

In the region where |eΦ/kBT | � 1, we can expand the exponential to the first

order,

∂2Φ
∂z2

= 4πen0

(
eΦ

kBT
+ · · ·

)
(2.4)

that gives the solution of Φ

Φ = Φ0e
−|z|/λD (2.5)

with the characteristic length λD defined as

λD =

√
kT

4πne2
= vth/ωp (2.6)

where ωp ≡√4πe2n0/m is the plasma neutral frequency and vth =
√

kBT/m is

the velocity of electron thermal motion. λD is called Debye length, named after

the Dutch physicist Peter Debye. If the plasma is cold, T = 0, then λD = 0

and the shielding is perfect. It allows no electric field being presented outside

the electron cloud. However if T �= 0 , λD is accordingly finite. The potential

will be no longer perfectly shielded but decay exponentially with the distance.

Because of the shielding, the distant particles will not feel the existence of the

charged ball in the plasma. Therefore for remaining the quasi-neutrality, the

condition for a plasma is λD � L, where L is the plasma size. In addition, the

Debye shielding itself is actually a statistic concept. Thus for the validity of

Debye shielding, we should compute the number of particles in a Debye sphere

g and require

g ≡ n
4
3
πλ3

D = 1380T 3/2n1/2 ≫ 1, (2.7)
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where n = ne = ni is the plasma density and g is called the plasma parameter.

Combining the two conditions, we can make the criteria for plasma

1) λ � L.

2) g ≫ 1.

3) ωτ > 1 .

where ω is the frequency of typical plasma collision and τ is the mean time

between collisions. Finally the item 3 requests a low collision rate for plasma.

2.3 Dynamics of Plasma

2.3.1 Fluid Description

Since a typical plasma density might be a huge number of ion-electron pairs

per cm−3, it is impossible to deal with each plasma particle. Fortunately, the

majority of plasma presents a macroscopic behavior. So we are able to treat

plasma as fluids, composed of electrons , ions and neutral atoms. As a result,

the motion of individual particle is neglected and only the averaging motion is

taken into account. The plasma fluid containing an additional electromagnetic

effect is different from an ordinary fluid. Such effect leads to the complexity of

plasma, and the varieties of phenomena could occur in a plasma.

In plasma, Maxwell’s equations can tell us how E and B are associated

with a given state of the plasma. To maintain the self-consistency, we include

equations that describe the plasma response to the E and B field such that

∇ · E = 4πe(ni − ne) = 4πρ

∇× E = −∂B
∂t

∇ · B = 0

c∇× B = 4πe(niui − neue) +
∂E
∂t

= 4πJ +
∂E
∂t

where ρ and J are the charge density and charge current given by the plasma,

and u is the fluid velocity of from averaging the total velocity in the fluid unit.
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These E and B fields above also act back on the plasma species, therefore the

equation of motion regarding the electromagnetic force is described,

mjnj

[
∂uj

∂t
+ (uj · ∇)uj

]
= qj(E +

uj

c
× B) −∇p

where j = i, e stands for fluid of ions and electrons respectively. The mj is the

mass of the fluid element. The equation above is in Eulerian representation,

dealing with the time and space derivatives separately. Sometimes we describe

the fluid in either Eulerian (the coordinate scheme) or Lagragian(the co-moving

scheme) representations. The relation between the two representations is

d

dtLagragin
=
(

∂

∂t
+ v · ∇

)
Eulerian

.

The second term on the right hand side is called the convective term. Finally

combining the above equations and the continuity equation, we obtain the com-

plete set of fluid equations

∇ · E = 4π
∑

j

qjnj , (2.8a)

∇× E = −∂B
∂t

, (2.8b)

∇ · B = 0, (2.8c)

c∇× B = 4π
∑

j

qjnjuj +
∂E
∂t

, (2.8d)

∂nj

∂t
+ ∇ · (njuj) = 0, (2.8e)

mj

[
∂uj

∂t
+ (uj · ∇)uj

]
= qj(E +

uj

c
× B) − ∇pj

nj
, (2.8f)

pj = C(mjnj)γj . (2.8g)

with 11 unknowns (E,B,u, n, p) for each species. Here Eq. (2.8e) is the conti-

nuity equation and the last equation is the equation of state, with C a constant

and γ = Cp/Cv the ratio of specific heats.

2.3.2 Kinetic Description

Beside the fluid theory, the alternative way to describe plasma is the kinetic

theory. In most cases, the fluid equations can solve the plasma problems with

acceptable good accuracy. But for some special cases, such as the instabilities,

the fluid treatment will be inadequate. Thus, we directly look at the distribution
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function fj(r,v, t) for each plasma species (here v is the individual velocity).

By knowing the distribution function, we are able to derive the macroscopic

physical variables from integrating the function over all velocity spaces. This

treatment is called kinetic theory.

The time evolution of distribution function fj(r,v, t) is govern by the Boltzmann

equation,

dfj

dt
=

∂fj

∂t
+ vj · ∇fj +

qj

mj
(E +

vj

c
× B) · ∇vfj = (

δfj

δt
)c, (2.9)

where (δfj/δt)c is the collision term. The plasma density can be obtained from

nj(r, t) =
∫
v

fj(r,v, t)d3v,

and the average velocity uj is given by

uj(r, t) =

∫
v
vfj(r,v, t)d3v,∫
v

fj(r,v, t)d3v

If the plasma is collisionless, the collision term vanishes and Eq. (2.9) takes

the form
∂f

∂t
+ v · ∇f +

q

m
(E +

v
c
× B) · ∇vf = 0, (2.10)

where we drop the subscript j. This is called the Vlasov equation, most com-

monly studied in the kinetic theory. Regardless of the collision term, the zero

moment of Eq. (2.9) is obtained by integrating over the velocity space,∫
∂f

∂t
dv +

∫
v · ∇fdv +

q

m

∫
(E +

v
c
× B) · ∇vfdv = 0 (2.11)

and the next moment is obtained by multiplying mv to the equation and inte-

grating over v such that

m

∫
v

∂f

∂t
dv + m

∫
v(v · ∇)fdv + q

∫
v(E +

v
c
× B) · ∇vfdv

= 0. (2.12)

Taking the above two moments of the Boltzmann’s equation leads to the con-

tinuity equation Eq. (2.8e) and the equation of motion of fluid(2.8f). We show

that the fluid theory can be derived from the kinetic theory; therefore the fluid

and kinetic representations of plasma are equivalent.
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2.4 Waves in the Plasma

We have already established the complete set of fluid equations for plasma. To

solve these equations, we introduce the perturbation theory describing a small

deviation of physical quantities to their equilibrium state. These quantities can

be decomposed into the equilibrium solution plus a small perturbation. After

taking the Fourier expansion, the perturbations are transformed into a super-

position of sinusoidal oscillations in different frequencies. As a result the fluid

equations Eq. (2.8a) to (2.8g) can be linearized in (ω, k) space and the result-

ing equations are easier to solve. In this section, I review the physics of plasma

oscillation and electromagnetic wave in plasma for demonstrating the technique

for solving the fluid equations.

2.4.1 Plasma Oscillation

When the electrons in plasma are displaced by some perturbations from a uni-

form background of ions, electric fields are built up in such a direction as to

restore the neutrality of the plasma by pulling the electrons back to their origi-

nal positions. Because of their inertia, the electrons will overshoot and oscillate

around their equilibrium positions. The process is known as the plasma oscilla-

tion, also known as Langmuir wave, with a characteristic frequency ωp[31]. To

derive the expression for the plasma frequency ωp, we solve the fluid equation

in the simplest case that (1) B = 0, there is no magnetic field; (2) T = 0, hence

∇p = 0, there are no thermal motions; (3) background ions are fixed; (4) the

electron motions only take place along to z direction. The fluid equations in

this simplification are obtained,

mne

[
∂ve

∂t
+ (ve · ∇)ve

]
= −eneE (2.13a)

∂n

∂t
+ ∇ · (neve) = 0 (2.13b)

∇ · E = 4πe(ni − ne), (2.13c)

with electron fluid velocity ue replaced by ve for convenience. Since the plasma

is assumed to be slightly perturbed, the variables in the equations can be sepa-

rated into two parts: the equilibrium part, subscripted by 0, and the perturba-
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tion part by 1 that

ne = n0 + n1,

ve = v0 + v1,

E = E0 + E1.

If the plasma is initially stationary, we have the equilibrium state ∇n0 = v0 =

E0 = 0. The fluid equations are then given by

m
∂v1

∂t
= −eE1, (2.14a)

∂n1

∂t
+ n0∇ · v1 = 0, (2.14b)

∇ · E1 = −4πen1, (2.14c)

where the convective term

(v · ∇)v = (v1 · ∇)v1

vanishes due to the higher order perturbation. For plasma oscillation, it is

assumed that the quantities oscillate sinusoidally and,

n1 = n1e
i(kz−ωt)

v1 = v1e
i(kz−ωt)ẑ

E1 = E1e
i(kz−ωt)ẑ.

So the time derivative ∂/∂t can be replaced by −iω and the space derivative

∇ can be replaced by ik in the equations. Then the differential equations

Eq. (2.14a) to (2.14c) are linearized such that,

−imωv1 = −eE1 (2.15a)

−iωn1 + n0ikv1 = 0 (2.15b)

ik · E1 = −4πen1. (2.15c)

where E1, which is associated with the plasma oscillation, is an electrostatic

field along the k direction. We can rewrite Eq. (2.15a) by applying Eq. (2.15b)

and (2.15c) as (
ω2 − 4πn0e

2

m

)
v1 = 0. (2.16)
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Eq. (2.16) is the dispersion relation for the plasma oscillation. Because there is

no k dependence in this expression, the plasma oscillation does not depend on

the wavelength. Hence the phase velocity defined as ω/k and the group velocity

defined as ∂ω/∂k are both zero. When v1 is finite, a non trivial solution for

Eq. (2.16) requires terms in the parentheses to be 0. Therefore the frequency

ω = ωp ≡
(

4πn0e
2

m

)1/2

. (2.17)

is defined as the plasma frequency. Numerically, with the known physical para-

meter numbers, one can make the approximate formula

fp ≈ 9000
√

n0

which only depends on the plasma density. So far the treatments are all done

in cold plasma case (T = 0). For warn plasma (T �= 0), the pressure term

∇p should be taken into account in Eq. (2.13a). The dispersion relation then

becomes

ω2 = ω2
p +
(

γBkBT

m

)
k2, (2.18)

where (γBkBT/m)1/2 is the electron sound speed and the γB , usually taken

to be 1 in the isothermal sate, is the adiabatic constant for the pressure term

Eq. (2.8g). So that the plasma oscillation starts to propagate asymptotically

with electron sound speed. Such wave is called the electron acoustic wave.

2.4.2 Electromagnetic Wave in Plasma

Next we study the case of electromagnetic waves in plasma. When an elec-

tromagnetic wave travels through a plasma, its associated electromagnetic field

shall push the charged particles from their original states and the resulting

plasma motions will induce the currents that contribute back to the fields them-

selves. As a consequence, the dispersion relation of the electromagnetic wave in

the plasma contains the plasma effect. If there is no magnetic background field,

B0 = E0 = 0, the electric and magnetic fields in plasma, denoted by E1 and

B1, are related to each other according to the Maxwell equations

∇× E1 = −1
c

∂B1

∂t
(2.19)

∇× B1 =
4π

c
J1 +

1
c

∂E1

∂t
(2.20)
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where the term (4π/c)J1 ≡ −(4π/c)en0v1 is the plasma current. Taking the

time derivative on Eq. (2.20), we combine the above two equations and obtain

c2∇× (∇× E1) = 4πen0
∂v1

∂t
+

∂E1

∂t
. (2.21)

Here v1 is directly related to the oscillating electric field because the second

force term v1/c × B1 in Eq. (2.8f) is neglected since it is of the second order.

Assuming a plane wave varying as exp[i(kz − ωt)], the electron velocity v1 is

given by

−iωv1 = − e

m
E1. (2.22)

We then rewrite Eq. (2.21) as

−c2k × (k × E1) = −i4πen0ωv1 − iωE1. (2.23)

Substituting Eq. (2.22) to Eq. (2.23), we obtain

−k(k · E1) + k2E1 = −4πe2n0

mc2
E1 +

ω2

c2
E1. (2.24)

We note that k ·E1 = 0 because the wave is transverse. Then the equation can

be rearranged as (
k2 +

ω2
p

c2
− ω2

c2

)
E1 = 0. (2.25)

, which leads to the dispersion relation for electromagnetic wave in unmagnetized

plasma.

ω2 = ω2
p + k2c2. (2.26)

We can calculate the phase velocity vph by using this dispersion relation and

obtain

vph =
ω

k
=

c√
1 − ωp

ω

> c. (2.27)

The phase velocity is real only when ω > ωp. Therefore a threshold of frequency

exists for the electromagnetic wave to penetrate into the plasma. If the wave

has frequency ω < ωp, it will be reflected by the plasma surface and decays

exponentially in the plasma within a skin depth defined as c/ωp. This concept
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is the working principle for radio station to transmit the signals. Similarly, The

group velocity can be calculated as

vg =
∂ω

∂k
=

c2

vph
. (2.28)

Clearly vg is always smaller that the speed of light c.

2.5 Plasma Wakefield Acceleration

It has been 30 years since T. Tajima and J. Dawson proposed plasma as an

accelerator[24], to transfer electromagnetic energy from a laser pulse into the

kinetic energy of the accelerated electron by letting the short laser pulse excites

large-amplitude plasma waves. In fact the ”plasma wave” we call here is the

plasma oscillation but having a phase velocity exactly equal to the pulse speed.

An electrostatic field relate to this plasma wave is called plasma wakefield. If

its phase velocity is closed to the speed of light, a test particle with similar

velocity injected to its accelerating phase can surf on the wave and continually

gain energy from it. The characteristic accelerating gradient for the plasma

wakefield is G = eEwb = mcωp ∼
√

n0[cm]−3 Since the mechanism provides a

great accelerating gradient which can accelerate charged particles to very high

energy in a short distance, it is very attractive to accelerator physics, plasma

physics and astrophysics.

Since then there has been several reviews discussing about the plasma based

accelerators [32, 33, 34]. So far there have been three plasma wakefield accelera-

tors utilizing laser pulses: laser wakefield accelerator(LWFA), plasma beat-wave

accelerator(PBWA) and self-modulated LWFA (SM-LWFA)[32]. In the PBWA

[24, 35], two long pulse laser beams with frequencies differed by ωp are used

to resonantly excite the plasma wave. This method was first proposed as an

alternative to the laser wakefield accelerator because of the lack of technol-

ogy for generating ultra-intense picosecond laser pulses at that time. The last

one SM-LWFA is somewhat similar to LWFA with a single short pulse but

operated at higher density[36, 37, 38]. Therefore SM-LWFA involves a longer

length that L > λp and slightly larger laser power P than the critical power

Pc = 17ω2/ω2
p for relativistic optical guiding. In the high density regime, the

pulse becomes self-modulated at the plasma period due to the self-modulation
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instability [39, 40, 41]. Then the plasma wave is generated coinciding with the

modulated regime. Instead of utilizing laser as driving pulses, Chen et al in

1985 proposed another way to excite the plasma wake by using the charged

particle beams [25]. The charged particle which moves relativistically generates

the quasi-perpendicular electric field in the lab frame and the magnetic field

as well according to the relativistic dynamics. Therefore the charged particle

beams behave similar to the laser pulse and the dynamics of plasma wakefield

for the two schemes was also shown to be similar by Ruth and Chen[42].

However, either laser beam or charged particle beam is the external impulse

and could not be found in the astrophysical environment. Motivated by the

ultrahigh energy cosmic ray acceleration issue, Chen, Tajima and Takahashi in

2002 proposed the third type of plasma wakefield acceleration invoking Alfven-

shocks as the driving pulses. Different from the laser and the particle beam,

Alfven wave is a medium wave which only exist with the support from plasma.

Therefore the wakefield driven by Alfven wave is more relevant to the astro-

physical settings. F. Y. Chang et al. [29] extended the concept to the high

frequency mode (whistler wave). According to Maxwell’s equations, these waves

have the B component exceeding the E component since their phase velocities

are less than the speed of light. We categorize such wave as ”magnetowave”.

In the following chapters, I will discuss the plasma wakefield in magnetized

plasma and introduce the theory of magnetowave induced plasma wakefield ac-

celeration (MPWA) in both linear and nonlinear regimes. I will also present a

self-consistent plasma simulation which is performed to validate this theory.
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Chapter 3

Plasma Wakefield in

Magnetized Plamsa I

We have studied the dispersion relation of electromagnetic wave traveling in

plasma (Eq. (2.26)). Once the plasma is imposed a background magnetic field,

the electromagnetic wave presents various different modes at arbitrary angles to

the external magnetic field. Among that, we concentrate on the modes parallel

to the external magnetic field for our purpose to ensure the linear acceleration

that minimizes the energy loss. With the parallel background magnetic field

B0, the electromagnetic wave becomes circularly polarized and its dispersion

relation is given by

ω2 = k2c2 +
ω2

ip

1 ± ωic/ω
+

ω2
p

1 ∓ ωc/ω
, (3.1)

where the upper (lower) signs denote the right-hand (left-hand) circularly

polarized waves. ωc = eB0/mc is the electron cyclotron frequency and the sub-

script i denotes the ion species. Each polarization has two real solutions with

high and low frequency branches and both have a frequency cutoff which forms

a forbidden gap for wave propagation. Figure 3.1 exhibits the solution of all

possible modes and the light curve in vacuum (dashed line) is superimposed.

Above the light curve, there are two curves labeled L and R waves to stand

for the left-handed and right-handed circularly polarized electromagnetic waves

respectively. Whereas the two solutions below the light curve are the whistler
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Figure 3.1: The full solutions of Eq. (3.1) with ωc/ωp = 2. The two curves (R

and L waves) above the light curve (dashed line) would have vph > c and the

two curves (whistler wave and ion cyclotron wave) below the light curve would

have vph < c.

wave and the ion cyclotron wave, having a lower phase velocity than the speed

of light. We call such waves the ”magnetowaves” because of their exceeding B

components in all reference frames. To explain the production of UHECR, Chen

et al proposed Alfven shocks as the driving pulses for plasma wakefield. Since

the Alfven wave is an ion wave, having very low frequency and low phase veloc-

ity, it was the first idea of magnetowave induced plasma wakefield acceleration

(MPWA).

In fact the non-relativistic plasma wakefield in magnetized plasma was first

studied by P. K. Shukla[43] in 1994. Shukla introduced the ponderomotive

force from a circularly polarized electromagnetic pulse that is applicable for all

frequency range to excite the plasma wakefield. However he only addressed the

upper branch issue (the laser case) in his calculation. For R and L waves which

have frequencies ω � ωc, the dispersion relation Eq. (3.1) can be reduced to that

in unmagnetized plasma. Therefore the background magnetic field doesn’t play

a significant role to the wakefield excitation. Whereas the wakefield induced

by the wave with ω < ωc will greatly determined by the ratio of ωc/ω. In the
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following two chapters we will discuss the physics of wakefield induced in the

two branches ω � ωc (the laser limit) and ω < ωc (magnetowaves). The general

theory of MPWA is established in the next chapter.

3.1 General Formulation

In the laser plasma interaction community, the related fields in one dimension

along the z direction are often described by the normalized scalar potential

φ(z, t) ≡ eΦ(z, t)/mc2 for the plasma electrostatic field (plasma wakefield) and

the normalized vector potential a(z, t) ≡ eA(z, t)/mc2 for the laser field. We

have Az = 0 if choosing the Coulomb gauge ∇ · A = 0. The peak of the

normalized vector potential a0, called laser strength parameter by the plasma

community, is often used to determine the strength of the driving laser. Since

the vector potential A is the spacial component of the 4-vector (ρ,A), the

transverse components of A⊥ (Ax, Ay) are Lorentz invariant in any reference

frame boosting along z direction. As a result, the a0 by definition is also a

Lorentz invariant quantity. In MPWA study, we still follow the convention for

laser case. The plasma field φ(z, t) is governed by the set of fluid equations

∂2φ

∂z2
= k2

p

(
n

n0
− 1
)

, (3.2a)

∂n

∂t
+ c

∂

∂z
(nβz) = 0, (3.2b)

d

dt
(γβ⊥) =

da
dt

− iωcβ⊥, (3.2c)

d

dt
(γβz) = c

∂φ

∂z
− e

mc
(βxBy − βyBx), (3.2d)

dγ

dt
= − e

mc
(βxEx + βyEy + βzEz), (3.2e)

with ignoring the ion motions. The influence of background magnetic field only

takes place in the transverse momentum equation (Eq. (3.2c)), see Appendix A.

In these equations, we may neglect the thermal effect due to the assumptions:

(i) the electron quiver motion is much greater than the electron thermal motion

(ii) the plasma temperature is so low that the thermal energy spread is not

sufficient for the plasma to be trapped by the plasma wave. The Lorentz γ of

plasma here defines (1−β2
⊥−β2

z )−1/2 and the ωc in Eq. (3.2c) gives the influence

from the external magnetic field. While the normalized vector potential a(z, t)
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satisfies the wave equation[
∂2

∂z2
− 1

c2

∂2

∂t2

]
a = k2

p

n

n0
β⊥. (3.3)

kp ≡ ωp/c is the plasma wavenumber.

3.2 Laser Wakefield Acceleration

Since the technology of high field laser has been well developed in a laboratory,

laser wakefield acceleration is widely studied because of the possibility to the

next generation of high accelerating gradient accelerators. When the driving

pulse with frequency ω � ωc (or ωc → 0), the dispersion relation of the pulse

approximates to that in unmagnetized plasma case. It is reasonable to study

the LWFA mechanism under this limitation. Based on this consideration, the

right hand side of Eq. (3.2c) can be ignored and Eq. (3.2c) is rewritten as

d

dt
(γβ⊥ − a) = 0. (3.4)

Therefore the transverse canonical momentum γβ⊥ − a is conserved and the

transverse velocity β⊥ = a/γ is easily obtained. Substituting the transverse

velocity expression into Eq. (3.2d), we rewrite the Lorentz force in terms of the

normalized vector potential a

dγβz

dt
= c

∂φ

∂z
− c

1
2γ

∂a2

∂z
(3.5)

where the second term on the right hand side is the ponderomotive force, the

average of the second order Lorentz force. It is on the opposite direction to

the gradient of laser intensity and is independent of the charge sign. Thus the

electrons within the pulse are pushed away from the center and leave a positive

region (ions are only barely moved by the same force), which generates the

plasma wakefield.

3.2.1 Linear Regime

With the full set of fluid equations, we first study LWFA in the non-relativistic

regime where γ ∼ 1. In this regime, β⊥ is equal to a � 1 so that the condition
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for non-relativistic is a � 1. Hence the complete set of fluid equations can be

rewritten as

∂2φ

∂z2
= k2

pN, (3.6a)

∂N

∂t
+ c

∂

∂z
(βz) = 0, (3.6b)

∂βz

∂t
= c

∂φ

∂z
− c

1
2

∂a2

∂z
, (3.6c)

where N ≡ (n − n0)/n0. We eliminate the cβz∂βz/∂z term in Eq. (3.6c) since

βz � 1. It is convenient to write the equations in a co-moving coordinate

system (ζ, τ) [44, 45], in which τ = t and ζ = z − ct. Then the derivatives

∂/∂z and ∂/∂t are replaced by ∂/∂ζ and ∂/∂τ − c∂/∂ζ respectively. If the laser

pulse is sufficiently short, the field a and φ are expected to change very little

during the transit time of the plasma through the pulse and the changes can

be ignored in plasma reaction. Assuming that the laser envelop changes on a

characteristic time scale τe ∼ 2|n0/n|(ω/ωp)/ωp, the quasistatic approximation

(QSA) is applicable. In the QSA, ∂/∂τ which determines the plasma response

to the laser pulse are neglected in the plasma fluid equations . However, ∂/∂τ

is retained in the wave equation because it describes the evolution of the laser

pulse [45, 32]. Thus for a short laser pulse, we can write Eq. (3.6a) to (3.6c) as

∂2φ

∂ζ2
= k2

pN, (3.7a)

∂

∂ζ
(N − βz) = 0, (3.7b)

∂βz

∂ζ
= −∂φ

∂ζ
+

1
2

∂a2

∂ζ
, (3.7c)

Substituting Eq. (3.7a) and (3.7b) into Eq. (3.7c), we arrive at(
∂2

∂ζ2
+ k2

p

)
φ =

k2
p

2
a2 (3.8)

The solutions to the equation are easily calculated with the Green’s function

such that[46]

φ ∼= kp

2

∫ ζ

0

a2(ζ ′) sin[kp(ζ ′ − ζ)]dζ ′ (3.9)

and the related axial field is obtained

Ez

Ewb
= − 1

kp

∂φ

∂ζ
= χa2

0
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where χ = kp/(2a2
0)
∫ ζ

0
a2(ζ ′) cos[kp(ζ ′− ζ)]dζ ′ is the form factor which depends

on the pulse shape. Here Ewb ≡ mcωp/e is the cold wavebreaking limit, charac-

terizing the accelerating gradient G (G = eEz) of the plasma accelerator. Since

kp = ωp/c, the solutions to Eq. (3.8) describe the plasma waves generated at the

frequency ωp and are valid far from wavebreaking, Ez � Ewb. Meanwhile the

wakefields are generated sinusoidally and are efficient when the envelope scale

length is on the order of the plasma wavelength λp = 2πc/ωp[46].

3.2.2 Nonlinear Regime

When the laser power is extremely high such that a0 � 1, the plasma particle

quiver motions become highly relativistic and a variety of nonlinear phenomena

happens in the laser plasma interaction. It includes [45] (a) relativistic optical

guiding of the laser beam[47, 48, 49], (b) the excitation of coherent radiation

at harmonics of fundamental laser frequency, (c) the generation of large plasma

wakefield, (d) frequency shift induced in the laser pulse by plasma waves[50,

51], (e) frequency amplification using an ionized front, and (f) the snow-plow

acceleration[52, 53]. A full set of the fluid equations is required to describe the

nonlinear phenomena. For the study of the generation of large plasma wakefield,

we have the equations from Eq. (3.2a) to (3.2e) in terms of a and φ

∂2φ

∂z2
= k2

p

(
n

n0
− 1
)

, (3.10a)

∂n

∂t
+ c

∂

∂z
(nβz) = 0, (3.10b)

d

dt
(γβ⊥) =

da
dt

, (3.10c)

d

dt
(γβz) = c

∂φ

∂z
− c

2γ

∂a2

∂z
, (3.10d)

dγ

dt
= cβz

∂φ

∂z
+

1
2γ

∂a2

∂t
, (3.10e)

with neglecting ωc. From Eq. (3.10c), the conservation of transverse canonical

momentum gives γβ⊥ = a or γ = (1 + a2)1/2/(1 − β2
z )1/2. So the pulse is

described by the wave equation of a[
∂2

∂z2
− 1

c2

∂2

∂t2

]
a = k2

p

n

n0
β⊥ = k2

p

n

n0

a
γ

, (3.11)
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which leads to the dispersion relation in the relativistic regime

ω2 = k2c2 +
ω2

p

γ
(3.12)

by assuming a plane wave a ∝ exp[i(kz−ωt)] and n = n0 . We may combine this

wave equation of a with the fluid equations to form a self-consistent equation

set.

Insetting Eq. (3.10e) to Eq. (3.10d), we arrive at

d

dt
(γβz − γ) = c(1 − βz)

∂φ

∂z
− 1

2γ

(
c

∂

∂z
+

∂

∂t

)
a2. (3.13)

It is convenient to transform Eq. (3.13) into the new coordinate system (ζ, τ),

then the second term on the right hand side vanishes. Together with the Poisson

equation and the continuity equation, we obtain the complete equations for φ

in (ζ, τ) coordinate with QSA applied

∂

∂ζ
[n(1 − βz)] = 0 (3.14a)

∂

∂ζ
(γβz − γ + φ) = 0 (3.14b)

∂2φ

∂ζ2
= k2

p

[
n

n0
− 1
]

(3.14c)

in which Eq. (3.14c) expresses the potential of plasma wakefield. Equation

(3.14a) and (3.14b) can be solved from the integration over ζ. Since the plasma

keeps stationary until the driving pulse passes through, the boundary conditions

for the two equations γ = 1, n = n0 and βz = 0 are applied and give the solutions

γ(1 − βz) − φ = 1, (3.15a)

n(1 − βz) = n0. (3.15b)

So that the ratio of n/n0 is given,

n

n0
=

1
1 − βz

=
γ

1 + φ
, (3.16)

and its quadratic form can be expressed as

(
n

n0

)2

=
(

1
1 − βz

)2

=
γ2

(1 + φ)2
=

1 + a2

(1 − βz)(1 + βz)(1 + φ)2
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with γ2 = (1 + a2)/(1 − β2
z ). Hence the differential equation of φ is written as

∂2φ

∂ζ2
= k2

p

[
n

n0
− 1
]

= k2
p

βz

1 − βz

=
k2

p

2

[
(1 + a2)
(1 + φ)2

− 1
]

(3.17)

and the plasma wakefield normalized by E0 is obtained as ∂φ/∂ζ. We then

express the plasma quantities in terms of the fields a and φ as

n/n0 = 1 +
1
2
[(1 + a2)/(1 + φ)2 − 1] (3.18a)

γ = [1 + a2 + (1 + φ)2]/[2(1 + φ)] (3.18b)

βz = [1 + a2 − (1 + φ)2]/[1 + a2 + (1 + φ)2]. (3.18c)

Considering the weak field limit φ � 1, Eq. (3.17) becomes(
∂2

∂ζ2
+ k2

p

)
φ =

k2
p

2
a2 (3.19)

after taking the Taylor expansion to the first power. This equation reduces to

that in linear case (Eq. (3.8)).

Since Eq. (3.17) is fully nonlinear, its analytical solution only exists for a

circularly polarized laser pulse with a square pulse profile as the laser envelop,

aL = a0 for −L < ζ < 0 and aL = 0 otherwise [54, 55, 56]. For simplification,

we rewrite Eq. (3.17)
∂2ϕ

∂ζ ′2
=

1
2

[
α2

ϕ2
− 1
]

(3.20)

with ϕ ≡ 1 + φ, ζ ′ ≡ kpζ and α2 ≡ 1 + a2. It can be integrated by first

multiplying ∂ϕ/∂ζ ′ on both sides∫
∂2ϕ

∂ζ ′2
∂ϕ

∂ζ ′
dζ ′ =

∫
1
2

[
α2

ϕ2
− 1
]

∂ϕ

∂ζ ′
dζ ′.

Then we get (
∂ϕ

∂ζ ′

)2

= −α2

ϕ
− ϕ + C1, (3.21)

where C1 = α2 + 1 is the integration constant determined by the boundary

condition that ∂ϕ/∂ζ ′ = 0 and ϕ(ζ ′) = 1 at ζ ′ = 0. Within the pulse that

−L < ζ < 0, the formal solution for ϕ(ζ ′) is [54, 55, 56]

ζ ′ = −2αE(θi, ki) + 2
(

(α2 − ϕ)(ϕ − 1)
ϕ

)1/2

, (3.22)
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with

θi = arcsin
(

α2(ϕ − 1)
(α2 − 1)ϕ

)1/2

and

ki =
(

α2 − 1
α2

)1/2

.

E(θ, k) here is the incomplete elliptic integration of the second kind and the

second term on the right hand side of Eq. (3.22) indicates that ϕ is allowed

to lie in the range 1 ≤ ϕ ≤ α2. Thus the maximum ϕ = α2 occurs at ζ ′ =

−2αE(ki)(E(ki) = E(π/2, ki)) which gives the optimal pulse length

Lo =
2
kp

αE(ki) � λp

2

for α ∼ 1 (ki � 1 , E(0) = π/2), and

Lo � a0

π
λ

for α � 1 (ki ∼ 1 , E(1) = 1). We notice when ζ ′ = −4αE(ki), ϕ = 1 implies

φ = 0. There is no wakefield excited behind the pulse.

Next with the laser pulse of length L = Lo, the equation of the plasma wakefield

potential behind the pulse (ζ ′ < −L and a = 0) is(
∂ϕ

∂ζ ′

)2

= − 1
ϕ
− ϕ + C2, (3.23)

where C2 = α2 + 1/α2 is given from the boundary condition (∂ϕ/∂ζ ′)Lo = 0

and ϕ(Lo) = α2. The solution of ϕ is therefore

ζ ′ = −kpLo − 2αE(θe, ke) (3.24)

with

θe = arcsin
(

α2(α2 − ϕ)
α4 − 1

)1/2

and

ke =
(

α4 − 1
α4

)1/2

.

Finally the axial electric field Ez (wakefield) related to ϕ is

Ez

Ewb
≡ Ẽz = − ∂ϕ

∂ζ ′
,
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Figure 3.2: Density variation δn = n− n0 (dashed curve) and the axial electric

field Ez normalized by E0 (solid curve). The Gray shaded region is the Gaussian

pulse, a = a0 exp[−(ζ + 5)2/22] with a0 = 1.5.

and the field is given by Eq. (3.23) such that

Ẽ2
z = − 1

ϕ
− ϕ +

1
α2

+ α2

= a2
0 − φ +

1
1 + a2

0

− 1
1 + φ

.

Because Ẽz is π/2 offset with φ, Ẽz reaches the maximum when φ reaches 0.

So that the maximum Ẽz is

Ẽzmax =
a2
0√

1 + a2
0

. (3.25)

We notice that in highly nonlinear regime a0 � 1, Ẽzmax � a0, the acceler-

ating gradient is linearly proportional to a0, while in the linear regime a0 � 1,

Ẽz � a2
0, the accelerating gradient is proportional to the quadratic of a0, which

is consistent with the result in the linear regime Eq. (3.10).

If in general cases with arbitrary laser pulse shapes, numerical calculations

are essential to solve the equation Eq. (3.17). Assuming a circularly polarized

gaussian pulse, a(ζ) = a0 exp[−(ζ−ζ2
0/22)], we plot the solution of Eq. (3.17) in
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Figure 3.3: Density variation δn = n− n0 (dashed curve) and the axial electric

field Ez normalized by E0 (solid curve) for Gaussian pulse a = a0 exp[−(ζ +

5)2/22] with a0 = 0.1.

Fig. 3.2 and 3.3 for a0 = 1.5 and 0.1. Here the solid curve presents the plasma

wakefield and the dashed curve presents the density perturbation δn = n − n0.

In the nonlinear case (a0 = 1.5), the plasma wakefield exhibits a sawtooth-like

shape and the plasma density piles up as a delta function. These were caused

by the totally expelled electrons from a strong laser ponderomotive field. The

plasma density piling up forms parallel charged plates which result in a linearly-

varying electrostatic field between every two plates. As for a0 = 0.1, the plot

as shown in Fig. 3.3 is purely sinusoidal, consistent with the result in the linear

regime.
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Chapter 4

Plasma Wakefield

Acceleration in Magnetized

Plasma II

In Chap. 3 we have discussed the plasma wakefield under ω � ωc. In which

the dispersion relation in Eq. (3.1) approaches a linear relation of ω to k, whose

phase velocities are roughly equal to the speed of light. It is appropriately

utilized as the driving pulse for plasma wakefield excitation. But when ω < ωc,

the phase velocities of modes below the light curve (magnetowaves) are generally

much less than c and vary with different k. Therefore a magnetowave pulse

which is composed of different modes will quickly spread out during traveling.

Nevertheless, we will show that, under a special condition (MPWA condition),

the magnetowave will behaves like the light in vacuum and can be considered as

a new type of driving pulses. In this chapter, we will focus on the magnetowave

modes and establish the general theory of MPWA.

4.1 MPWA Condition

The idea of MPWA is first working on Alfven modes[26]. Alfven wave is a

magnetic tension wave, only existing in magnetized plasma (medium wave) and

having a very low phase velocity. However for an effective plasma accelerator,
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here we instead concentrate on that whistler modes (the higher frequency mode).

The dispersion relation of the whistler wave without considering the ion motion

is given as

ω2 = k2c2 +
ω2

p

1 − ωc/ω
, (4.1)

When the magnetic field is sufficiently strong such that ωc/ω � 1 and

ωcω/ω2
p � 1, the second term on the right hand side of Eq. (4.1) is negligi-

ble. The whistler wave will have an approximately linear dispersion with phase

velocity approaching c. It is instructive to combine the two linearity conditions

into a chain inequality: (ωc/ωp)2 � ωc/ω � 1. Clearly, the range of ω com-

patible with this chain inequality increases with the ratio of ωc/ωp. In other

words, for a larger ωc/ωp, the dispersion relation is approximately linear over a

wider range of wavenumbers, as shown in Fig. 4.1. In the figure, there are three

dispersion relation and phase velocity curves plotted with ωc/ωp equal to 1, 6

and 12 respectively. It is obvious that the curves behave likely to a normal light

wave over a wider wavenumber range while the ratio ωc/ωp is sufficiently larger.

Thus, when ωc/ωp � 1 is satisfied, the modes of whistler wave will contain

coherent phase velocities which enables the whistler pulses to maintain their

shape over a long distance, essential for an efficient plasma wakefield accelera-

tor. Therefore, the requirement for MPWA is ωc/ωp � 1 where the dispersion

relation is quasi-linear and the slope is near c. Such condition is referred to the

”MPWA condition”. In this chapter, the study of MPWA theory is under this

condition.

4.2 Linear Theory

4.2.1 Ponderomotive Force

Once a whistler pulse is generated, the plasma wakefield will be sequentially

excited by the ponderomotive force of the driving pulse. In Chap. 3, we have

introduced the ponderomotive force as the gradient of the laser intensity. If

ωc/ω is not negligible, the effect from background magnetic field should be

taken into account. The non-relativistic ponderomotive force in magnetized

plasma has been studied extensively in the past [57, 58]. Assuming an external
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Figure 4.1: (a) Frequency and (b) phase velocity versus wavenumber for dif-

ferent magnetic field strengths. When ωc/ωp � 1, the dispersion relation is

approximately linear over a wider range of wavenumbers with phase velocity

approaching the speed of light.
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magnetic field in z direction, according to [57], the longitudinal ponderomotive

force acting on a unit volume is given as

fz =
ε(ω) − 1

16π

∂|E⊥|2
∂z

+
k

16πω2

∂
[
ω2(ε(ω) − 1)

]
∂ω

∂|E⊥|2
∂t

− ∂p

∂z
, (4.2)

where p is the kinetic pressure and ε(ω) = N2(ω). N(ω) is the refractive in-

dex for waves propagation along the magnetic field in plasma (for whistler wave

ε = 1 − ω2
p/ω(ω − ωc)). E⊥ is the slow-varying electric component of the wave

Ẽ⊥ = 1/2(E⊥e−iωt + c.c.). Because whistler wave is a right-handed circularly

polarized wave, it’s electric field can be written as E⊥ = E⊥(1, i)eikz. Substi-

tuting ε(ω) and E⊥ into Eq. (4.2) and ignoring the effect of kinetic pressure, we

arrive at

fz =
1
8π

[
− ω2

p

ω(ω − ωc)

]
∂E2

⊥
∂z

+
kω2

p

8π

∂

∂ω
(− ω

ω − ωc
)
∂E2

⊥
∂t

,

= − 1
8π

ω2
p

ω(ω − ωc)
∂E2

⊥
∂z

+
kω2

p

8πω2

[
ωc

(ω − ωc)2

]
∂E2

⊥
∂t

,

= −ω2
p

8π

(
∂z − kωc

ω(ω − ωc)
∂t

)
E2

⊥
ω(ω − ωc)

. (4.3)

When taking the ωc/ω = 0 limit, the expression (4.3) reduces to

fz = −ω2
p

8π

E2
⊥

ω2
= −mc2n0

∂

∂z
(
a2

2
)

which is the ponderomotive force in unmagnetized case.

4.2.2 Linear Formulation

With the ponderomotive force given above, we are able to calculate the plasma

wakefield driven by the whistler pulse. Substituting Eq. (4.3) into the second

term of the right hand side of Eq. (3.2d), the linear plasma wakefield can be

formulated with γ ∼ 1 through the set of 1-D fluid equations (Eq. (3.2a),(3.2b)

and (3.2d))

∂2φ

∂z2
= k2

p

(
n

n0
− 1
)

(4.4a)

∂n

∂t
+ c

∂

∂z
(nβz) = 0 (4.4b)

∂βz

∂t
= c

∂φ

∂z
+

fz

cmn0
. (4.4c)
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Under the MPWA condition where ωc/ωp � 1, the phase velocity vph = ω/k ∼ c

and the whistler pulse with central frequency ω would roughly travel at a group

velocity vg ∼ vph ∼ c. So that we can still rewrite the fluid equations in terms

of the coordinate (ζ, τ) where ζ = z − vgt = z − ct and τ = t. Applying the

QSA, we rearrange these equations as

∂

∂ζ
N − ∂

∂ζ
βz = 0, (4.5)

∂

∂ζ
βz = −∂φ

∂ζ
+

1
2

(
1 +

kωcc

ω(ω − ωc)

)
e2

m2c2ω(ω − ωc)
∂

∂ζ
E2

⊥

= − ∂

∂ζ
φ +

1
2

e2

m2c2(ω − ωc)2
∂

∂ζ
E2

⊥, (4.6)

∂2

∂ζ2
φ = k2

pN, (4.7)

where N ≡ (n − n0)/n0. Combining equations Eq. (4.5), (4.7) and (4.6), we

obtain the equation for φ

(∂2
ζ + k2

p)φ =
1
2

k2
pe2

m2c2(ω − ωc)2
E2

⊥

=
k2

p

2
a2

(1 − ωc/ω)2
(4.8)

From Eq. (4.8), we notice that the denominator of the source term is quadratic

so that this equation is applicable to waves with frequency both upper (R wave)

and lower (whistler wave) branches. However there is a singularity for ω = ωc in

which the plasma will resonate with the cyclotron frequency ωc and eventually

get heated. Therefore the wave propagation is forbidden. When ω is extremely

high compared to ωc, the effect of ωc can be ignored and Eq. (4.8) reduces to

the normal laser plasma wakefield equation in Eq. (3.8). With a fixed pulse

frequency, the wakefield amplitude increases as the background magnetic field

strength increases[43]. But for a whistler wave which has a frequency smaller

than ωc, the plasma wakefield amplitude decreases as the magnetic field in-

creases.

We can solve the analytic solution of Eq. (4.8) readily via the Green’s function

with the boundary conditions φ(ζ → ∞) = 0 and ∂φ(ζ → ∞)/∂ζ = 0 applied.

The solution reads

φ(ζ) =
kp

2
a2
0

(1 − ωc/ωc)2

∫ ∞

ζ

dζ ′
a2(ζ ′)

a2
0

sin[kp(ζ ′ − ζ)]. (4.9)
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Hence

Ez

Ewb
=

1
kp

∂φ

∂ζ
= −kp

2
a2
0

(1 − ωc/ωc)2

∫ ∞

ζ

dζ ′
a2(ζ ′)

a2
0

(ζ ′) cos[kp(ζ − ζ ′)]

= χ(ζ)
a2
0

(1 − ωc/ω)2
, (4.10)

with

χ(ζ) =
kp

2a2
0

∫ ∞

ζ

dζ ′a2(ζ ′) cos[kp(ζ − ζ ′)]. (4.11)

Compared this result to that of the unmagnetized case in Eq. (3.10), Ez(ζ)

has a multiplied factor 1/(1 − ωc/ω)2 from the influence of background mag-

netic field. We may have an extra gain in the accelerating gradient with ωc/ω

approaching unity. For a circularly polarized Gaussian wavepacket of width σ,

i.e., E2
⊥ = E2

⊥0 exp(−ζ2/σ2) , the factor χ(ζ) can be calculated analytically as

following [59]

χ(ζ) =
√

π

2
kpσ exp(−k2

pσ2/2) cos(kpζ). (4.12)

4.3 Nonlinear Theory

4.3.1 MPWA Condition in Relativistic Regime

In astrophysical environment, the amplitude of magnetowave could be very in-

tense and the plasma quiver motions become highly relativistic. In turn, the

electron effective mass will be increased by a factor γ = (1 − β2
⊥ − β2

z )−1/2,

causes the dispersion relation of whistler wave as

ω2 = c2k2 +
ω2

p/γ

1 − ωc/γω
= c2k2 +

ω′2
p

1 − ω′
c/ω

(4.13)

in which ω′
p ≡ ωp/

√
γ and ω′

c ≡ ωc/γ. To ensure the linear dispersion relation

with slope ∼ c, the MPWA condition in the nonlinear regime requires ω′
c/ω′

p � 1

or ωc/ωp � √
γ.

4.3.2 Nonlinear Formulation

Considering the γ factor, the ponderomotive force from whistler waves in rela-

tivistic regime becomes more complicated. It is not intuitive to write down the

equations involving the ponderomotive force. So that we can only treat the full
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fluid equations (Eq. (3.2a) to (3.2e)) such that,

∂2φ

∂z2
= k2

p

(
n

n0
− 1
)

∂n

∂t
+ c

∂

∂z
(nβz) = 0,

d

dt
(γβ⊥) =

da

dt
− iωcβ⊥,

d

dt
(γβz) = c

∂φ

∂z
− e

mc
(βxBy − βyBx),

dγ

dt
= − e

mc
(βxEx + βyEy + βzEz).

Transforming the above equations into the (ζ,τ) coordinate and assuming

the QSA condition, we obtain

∂2φ

∂ζ2
= k2

p(
n

n0
− 1), (4.15a)

∂

∂ζ
[n(1 − βz)] = 0, (4.15b)

∂

∂ζ
(γβ⊥ − a) = i

ωc

c

β⊥
1 − βz

, (4.15c)

−(1 − βz)
∂

∂ζ
γβz =

∂φ

∂ζ
− e

mc2
(βxBy − βyBx) (4.15d)

−(1 − βz)
∂γ

∂ζ
= βz

∂φ

∂ζ
− e

mc2
(βxEx + βyEy) (4.15e)

in which the total time derivative d/dt is replaced by −c(1−βz)∂/∂ζ. Under the

MPWA condition where vph ∼ c, the Maxwell’s equation ∇×E= −(1/c)∂B/∂t

claims

∂ζEx = ∂ζBy

∂ζEy = −∂ζBx.

Hence all B components in Eq. (4.15d) can be replaced by the E components,

−(1 − βz)
∂

∂ζ
(γβz) =

∂φ

∂ζ
− e

mc2
(βxEx − βyEy). (4.16)

Substituting Eq. (4.15e) into Eq. (4.16), we obtain

∂

∂ζ
(φ − γ(1 − βz)) = 0, (4.17)

and together with Eq. (4.15b),

φ − γ(1 − βz) = −1, (4.18a)

n(1 − βz) = n0 (4.18b)
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after integrating over ζ and applying the boundary condition. They are in the

same forms as those in the unmagnetized plasma case (Eq. (3.15a) and (3.15b))

[45]. The main difference between the two cases is on the Lorentz factor γ which

defines (1 − β2
⊥ − β2

z )−1/2.

We can solve the transverse fluid velocity β⊥ directly from Eq. (4.15c). Under

the QSA, the transverse β⊥ is obtained as

β⊥ =
a

|γ − ωc
ω(1 − βz)

| . (4.19)

We note that in magnetized plasma the condition for non-relativistic case where

γ ∼ 1, β⊥ � 1 and βz � 1 requires a � ωc/ω − 1 (a � 1 for unmagnetized

plasma). Thus, the system could be still in non-relativistic regime even with

a0 > 1 so long as ωc/ω is much greater than a0.

With β⊥ solved in terms of a (Eq. (4.19)), we have

γ2β2
⊥ = γ2(1 − β2

z ) − 1 =
a2(

1 − ωc
ωγ(1 − βz)

)2 (4.20)

Therefore by combining Eq. (4.20), (4.18a) and (4.18b) , the Poisson equation

for the plasma wakefield (Eq. (4.15a)) becomes

∂2φ

∂ζ2
=

k2
p

2

⎡
⎢⎣
⎛
⎜⎝ a2

(1 − ωc

ω(1 + φ)
)2

+ 1

⎞
⎟⎠ 1

(1 + φ)2
− 1

⎤
⎥⎦ , (4.21)

which is also valid in all frequency ranges (Appendix B). We discuss the equation

in two limits. For ω � ωc (ωc/ω → 0), this equation reduces to that in the

unmagnetized plasma (Eq. (3.17)) [45]; and for φ � 1, it is easy to show that

Eq. (4.21) returns to the non-relativistic MPWA equation in Eq. (4.8).

4.3.3 Numerical Results

Since Eq. (4.21) is fully nonlinear, there is no analytical solution found to the

equation. Thus the only way to solve the equation is numerical calculation. As-

suming ωc/ω = 5, we plot the solutions of plasma wakefield in Figs. 4.2 and 4.3

with a0 = 1 and a0 = 4 respectively. The plasma is driven by the whistler

gaussian pulse with a width
√

2(c/ωp). The solid curves denote the plasma
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Figure 4.2: Density variation δn/n and axial field Ez for whistler gaussian pulse

located at ζ = −5(c/ωp) and a0 = 1.

wakefield amplitude normalized by Ewb and the dashed curves superimposed in

the figures are the plasma density variation δn/n = n/n0 − 1 in terms of fields

a and φ derived from Eq. (4.18b), (4.18a) and (4.19). In a0 = 1 case, where

a0 < ωc/ω − 1 = 4, the plasma wakefield behaves like sinusoidal. But in the

other case, the plasma starts piling up and the associated axial Ez (the plasma

wakefield) becomes sawtooth-like when a0 = 4.

4.4 Limitation of MPWA

By looking at the successful derivation of MPWA equation, we note that the

right hand side of Eq. (4.21) becomes singular as 1 + φ → ωc/ω. In such

a limit, both the slope of Ez and the plasma density become infinite, which

indicates the occurrence of wavebreaking. Beyond this point, the development

of plasma waves is expected to become turbulent due to the instability, and

our fluid equation analysis will break down. The electric field is expected to

remain finite since the amplitude of a relativistic plasma wave is proportional

to
√

γ = (1 − β2
z,max)

−1/4 where βz,max is the maximum electron velocity in
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Figure 4.3: Density variation δn/n and axial field Ez for whistler gaussian pulse

located at ζ = −5(c/ωp) and a0 = 4.

the wave. The above infinite-density situation would not occur if the strength

parameter a0 is smaller than an upper bound determined by the ratio ωc/ω and

the shape of the whistler pulse[60].

In order to study the sensitivity of ωc/ω ≡ b to the limit of a0, we compare

three results of Eq. (4.21) corresponding to b = 0, 0 < b < 1 and b > 1.

4.4.1 Three Cases

1. b = 0

When b = 0, there is no background magnetic field, Eq. (4.21) can be reduced

to

∂2ϕ

∂ζ ′2
=

1
2

[
α2

ϕ2
− 1
]

, (4.22)

where ϕ ≡ 1 + φ, α2 ≡ 1 + a2
0 and ζ ′ ≡ kpζ. Assuming a circularly polarized

square driving pulse with a(ζ) = a0 for −L ≤ ζ ≤ 0, and a(ζ) = 0 elsewhere,

the equation within the pulse is integrated by multiplying ∂ϕ/∂ζ ′ on both sides
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Figure 4.4: The plots of (a) |E′
z| and (b) |1/E′

z| versus ϕ with b = 0 and a0 = 3,

where ϕ ≡ 1 + φ and α2 ≡ 1 + a2
0.
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of Eq. (4.22). Subjecting the boundary conditions ϕ(ζ ′) = 1 and (∂ϕ/∂ζ ′) = 0

at ζ ′ = 0 to the equation, we arrive at

(
∂ϕ

∂ζ ′

)2

≡ E′2
z = −α2

ϕ
− ϕ + α2 + 1, (4.23)

= (α2 − ϕ)
(

1 − 1
ϕ

)
≥ 0, (4.24)

where E′
z ≡ Ez/Ewb. The quadratic E′

z on the left hand side of Eq. (4.24)

restricts the product of α2 − ϕ and 1 − 1/ϕ to be positive. Hence the two

terms have to be both positive to satisfy the inequality and ϕ is constrained to

be 1 ≤ ϕ ≤ α2. Another possible solution to the inequality with both terms

negative is ruled out because no overlapped ϕ for ϕ < 1 and ϕ > α2 exists.

Thus from the inequality solution of ϕ, the maximum ϕ is α2 at an optimized

length where ∂ϕ/∂ζ ′ = 0. There is no upper bound for α and neither is the

plasma wakefield potential. We can clearly show that in the plots of |E′
z| and

|1/E′
z| versus ϕ (Fig. 4.4(a) and Fig. 4.4(a)).

2. 0 < b < 1

Following the same strategy, we find E′2
z from the integration of Eq. (4.21) in

0 < b < 1 case,

E′2
z = − a2

0

ϕ − b
− 1

ϕ
− ϕ +

a2
0

1 − b
+ 2, (4.25)

= (ϕ − 1)
[

a2
0

(b − ϕ)(b − 1)
+

1
ϕ
− 1
]

≥ 0. (4.26)

Again, in order to satisfy the inequality, one requires a2
0/(b−ϕ)(b−1)+1/ϕ−1 ≥

0. It is easy to show that, for b < 1, the range of ϕ is solved as

1 ≤ ϕ ≤
a2
0

1 − b
+ 1 + b +

√
( a2

0
1 − b

+ 1 + b)2 − 4b

2
, (4.27)

where the square root is always real because of the reason, ( a2
0

1−b+1+b)2−4b >

( a2
0

1−b )
2 + (1 − b)2 > 0. Therefore the maximum of ϕ is determined by a0 and b

and no upper bound on a0 exists. From Eq. (4.27), when B0 (or b) increases,

the maximum ϕ as well as the maximum Ez also enhance accordingly, consistent

with the conclusion by P. K. Shukla in Ref. of [43].
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Figure 4.5: The plots of (a) |E′
z| and (b) |1/E′

z| versus ϕ with b = 5 and a0 = 2.3

(<
√

b − 1(
√

b − 1) = 2.47).
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3. b > 1

Finally we treat the MPWA case which has b > 1. Unlike the two previous

cases, the range of ϕ is solved as

b > ϕ ≥
a2
0

1 − b
+ 1 + b +

√
( a2

0
1 − b

+ 1 + b)2 − 4b

2
(4.28)

or equivalently

1 ≤ ϕ ≤
a2
0

1 − b
+ 1 + b −

√
( a2

0
1 − b

+ 1 + b)2 − 4b

2
. (4.29)

Mathematically, if the square root
√

(a2
0/(1 − b) + 1 + b)2 − 4b in the nu-

merator is real, then there exists two solutions for the range of ϕ. It can be

traced back to the formula of β⊥ (Eq. (4.19)) in which a small a0 allows two

possible solutions for β⊥s, i.e., β⊥ � 1 or β⊥ ∼ 1 when γ → b/(1 − βz). For-

tunately, the boundary conditions, β⊥(0) = βz(0) = 0 and γ(0) = 1, help us to

eliminate the non-physical solution β⊥ ∼ 1. Figure 4.5 is the plots of |Ez′| and

|1/Ez′| versus ϕ, clearly exhibiting the two branches of ϕ. We can see that in

the left branch E′
z is bounded by Eq. (4.29), similar to Fig. 4.4, and in right

branch E′
z will diverge even if a0 is small.

However once the square root
√

(a2
0/(1 − b) + 1 + b)2 − 4b is not real, the ϕ

is no longer determined by the combination of a0 and b, but only bounded by

1 and b, as shown in Fig. 4.6. The two branches have merged together. In this

situation, there is no physical solution. As a result the magnetowave induced

plasma wakefield driven by a constant pulses will has an upper limit on a0 such

that

(
a2
0

1 − b
+ 1 + b)2 > 4b, or a0 < (

√
b − 1)

√
b − 1. (4.30)

4.4.2 Maximum of MPWA

When b � 1, the upper limit of a0 is linear;y proportional to b. Beyond the

upper limit of a0, where a0max = (
√

b− 1)
√

b − 1, the plasma becomes dramati-

cally turbulent and no plasma wake can be generated in this case. Therefore the

plasma wakefield amplitude would also have a maximum, determined by a0max.
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Figure 4.6: The plots of (a) |E′
z| and (b) |1/E′

z| versus ϕ with b = 5 and a0 = 3
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In our analysis, we only take the square driving pulse as the example. Never-

theless, we can still predict the maximum wakefield amplitude in real cases from

the estimation. Assuming b = 20 and a0 = 15.1(< (
√

b − 1)
√

b − 1 = 15.135)

of the pulse, the maximum of ϕ is calculated as 4 from Eq. (4.29) at an opti-

mized distance with ∂ϕ/∂ζ ′ = 0. From the equation that describing the plasma

wakefield behind the pulse,

∂2ϕ

∂ζ ′2
=

1
2

(
1
ϕ2

− 1
)

,

we have (
∂ϕ

∂ζ ′

)2

= − 1
ϕ
− ϕ + C1

with C1 an integration constant, obtained from the boundary condition ∂ϕ/∂ζ ′ =

0 = −1/ϕmax − ϕmax + C1. Hence E′2
z = −1/ϕ − ϕ + 1/ϕmax + ϕmax. The

maximum of E′
z occurs at ϕ = 1 or φ = 0. So that

E′
zmax = Ezmax/Ewb =

√
−1 − 1 + 1/4 + 4 = 1.5

Since the square driving pulse could deposit most of the energy into the plasma,

we may expect a higher upper bound on a0 for a realistic driving pulse profile

and therefor a high maximum Ez. As a conclusion, we may estimate Ezmax of

MPWA to be (1 − 10)Ewb.
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Chapter 5

Particle in Cell Simulation

5.1 Introduction

We have analytically established the general MPWA mechanism in the previous

chapter. In order to confirm the theoretical model of the acceleration gradi-

ent (G = eEz) and investigate the dynamical behavior, a self-consistent study

of MPWA process via computer simulation is necessary. Generally, there are

three schemes classified for the plasma simulation: the fluid scheme, the parti-

cle scheme and the hybrid. The particle scheme integrates the Newton-Lorentz

equations of motion

dr
dt

= v, (5.1a)

dγv
dt

=
e

m

(
E +

v
c
× B
)

(5.1b)

in the self-consistent electric and magnetic field configuration determined by

the solution to Maxwells equation. In our work, we conducted the particle

simulation using particle-in-cell(PIC) method which uses the particle scheme

and is widely performed in plasma simulation.

Historically the roots of PIC method can be traced back to the self- consistent

calculation performed by Buneman[61] and Dawson[62] in the late 1950s [63].

It is not until 1970s that the PIC scheme was formalized and coded. In the fol-

lowing decade, the class textbooks were published by Birdsall and Langdon[64],

and Hockney and Eastwood[65]. Figure 5.1 shows the general flow chart of
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PIC algorithm [64]. In PIC simulation, each single particle represents many

particles to simulate the real plasma. Therefore each particle is introduced a

finite-size to suppress the short range coulomb force between two particles[66].

The simulation box was divided into meshes. As an initial condition, particles

are defined in continuum space in both position and velocity which are offset

by half time step for the leap-frog scheme. The fields are defined at discrete

locations in space. Particle density ρ and current density J for the field equa-

tions are accumulated from the particle locations to the nearby discrete mesh

locations. Then the fields are advanced one time step from the updated rho and

J. In sequence particles experience the field force interpolated from the discrete

grids and then update their locations and velocities. Next the boundary condi-

tions for particles are applied and the time step loop repeats iteration.

In the early days before the PIC method was developed, the particle simula-

tion of plasma calculated the Coulomb force between every two particles, taking

an N2 operations for N particles. It becomes extremely inefficient when N is

large. Later on, the PIC method made a great improvement of scaling in N by

imposing the computational meshes on which to compute Poisson equation [63].

Therefore, the PIC method is popularly applied nowadays in the simulation of

plasma devices, plasma accelerators, space plasma and astrophysical jets., etc.

for its accuracy and efficiency.

5.2 The ”em1da” Code

For our work, we used a PIC code called ”em1da”, originally composed by

R.Sydora [67] for 1 and 1/2 dimensional and fully relativistic electromagnetic

problems. In this code, the Heaviside-Lorentz unit system was set up in order

to eliminate the 4π factor in electromagnetism for convenience. I will discuss

the details of the code in the following sections.

5.2.1 Simulation Unit

Usually computer simulations deal with dimensionless quantities for simplifica-

tion. Some basic physical quantities, such as time, length and mass are nor-

malized by the real plasma quantities. In em1da, the charge and mass of a
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Figure 5.1: The general flow chart for the PIC scheme.
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particle are normalized by the electron charge and electron mass and the time

is normalized by a single plasma period (t = ωptr, where the subscript r means

the real quantity). Accordingly the frequencies are normalized by the plasma

frequency ωp which is set to be 1. To find the scaling law of the field strength

E and B, we may rewrite the Poisson equation as

∇ · Er = eδn.

and then multiply e/m and divide by ω2
p on the both sides

∇ ·
(

eEr

mcωp

)
c

ωp
=

δn

n0
.

Finally we obtain

∇ · Er(ωp

c
Ewb

) ≡ ∇ · E =
δn

n0
,

where E = Er/(ωp/c)Ewb is the electric field normalized by (ωp/c)Ewb. Since

Maxwell equations tell us E = βphB in electromagnetic waves, the magnetic

fields are automatically normalized in the same way. At last, we have the

corresponding normalized plasma momentum defined as u = γβ.

5.2.2 Charge and Current Densities

The charge and current densities on the grid are determined by weighting the

charge of each particle between neighboring grid points. In em1da, the charge

and current densities on the grid are obtained using the subtracted dipole

scheme(SUD)[68] which performs with more accuracy and requires less stor-

age and computation. This method follows: Assuming a particle with charge qp

and current qpvp at position zi, the charge and current are distributed to the

nearest grids Zj and its two neighbors, Zj+1 and Zj−1,

|zi − Zj | <
Δ
2

,

ρj =
qp

Δ
,

Jj =
qpvp

Δ
,

ρj±1 = ±qp

Δ

(
zi − Zj

2Δ

)

Jj±1 = ±qpvp

Δ

(
zi − Zj

2Δ

)
.
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where the subscript j denotes the grid j and Δ is the grid length taken to be

unity. For zi = Zj + Δ/2, the charge density at the neighboring grid will be

ρj±1 = ±qp/4Δ.

5.2.3 Field Update

Once the charge density on the grid is given, we can solve the electrostatic

potential and the associating electric field in k space from the Poisson equation,

φk =
sm(k)ρk

k2

Ezk =
sm(k)ρk

k

where the source ρk is multiplied by a smoothing function sm(k),

sm(k) = exp(−(ax · k)smp).

The smoothing function is set up in order to attenuate the short wavelength

components caused by the possible short range collisions between the single

particle that represents many particles. Therefore the smoothing function de-

fines the shape of the finite-size particle. Fig. 5.2 shows the smoothing function

with different coefficients in ax and smp. The solid, dashed and dotted curves

represent the function sm(k) = exp(−k3), exp(−(2k)3), and exp(−(4k)2) re-

spectively. Once φ and Ezk are solved, the electric field in real space can be

quickly computed from the inverse FFT of Ezk.

Next the Maxwell equations of transverse electromagnetic field (E⊥, B⊥) in

k-space are given as

∂E⊥(k, t)
∂t

= −ick × B⊥(k, t) − J⊥(k, t)

∂B⊥(k, t)
∂t

= −ick × E⊥(k, t)

We solve the above equations using the finite difference method with time

central leapfrog scheme to stagger B⊥ at nΔt coinciding with the velocity (see

Sec. 5.2.4) and E⊥ at time level (n − 1)Δt. The equations then become

En+1/2
⊥ (k) = En−1/2

⊥ (k) + icΔtk × Bn
⊥(k) − sm(k) · Jn

⊥(k)Δt

Bn
⊥(k) = Bn−1

⊥ (k) − icΔtk × En+1/2
⊥ (k) (5.2)
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Figure 5.2: The smooth function with different parameters. The solid, dashed

and dotted curves represent the function sm(k) = exp(−k3), exp(−(2k)3), and

exp(−(4k)2) respectively.

after inserting the smoothing function, where n is the time series. En+1/2
⊥ (k)

is solved prior to B⊥ components. After advancing to En+1/2
⊥ (k), E⊥(k) is

transformed back to real space and the outgoing boundary condition is applied

by multiplying a masking function f(Zj) to this field. Fig. (5.3) shows the plot of

the masking function used in the code. ”ncdl” (= 29) and ”ncdr” (= Ng −ncdl)

defines the box edge where the transverse electric field starts to attenuate. The

function f(Zj) is unity until Zj reaching the edge and beyond that, f(Zj) will

quickly drops to the half.

Bn+1
⊥ (k) is updated after we apply the boundary condition to En+1/2

⊥ (k).

Since the Maxwell equations are solved in a discrete time, the stability of the

electromagnetic wave determined by the choice of Δt should be concerned. To

find the Courant-Friedrichs-Levy(CFL) condition for stability, we consider the

vacuum case (J⊥ = 0) and substitute Eq. (5.2) with the assumptions that

E⊥(k, t) = E0(k)e−iω(n−1/2)Δt

B⊥(k, t) = B0(k)e−iωnΔt.

It gives

c2k2 =
sin2(ωΔ/2)

(Δt/2)2
(5.3)
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Figure 5.3: The masking function with ncdl = 29 and ncdr= Ng − ncdl.

which approaches the correct behavior that c2k2 = ω2 as Δt → 0. For finite

Δt, there are real solutions for ω only if

ck(Δt/2) < 1. (5.4)

If the inequality is not satisfied then the solutions of frequencies are complex

and the system is unstable. This condition Eq. (5.4) implies that the time step

Δt is limited by the largest k-mode.

5.2.4 Particle Update

In calculating the integration of particle equation of motion, we construct a

leapfrog scheme with the particle positions defined at (n−1/2)Δt and velocities

at nΔt. So the finite-difference form for the Lorentz-Newtonian equations in

Eq. (5.1a) and (5.1b) becomes

z
n+1/2
i = z

n−1/2
i + vn

ziΔt,

vn+1
i = vn +

qiΔt

mi

[
En+1/2

i +
(vn+1

i + vn
i ) × Bn+1/2

i

2c

]
, (5.5)
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where Bn+1/2
i = (Bn

i + Bn+1
i )/2. The fields are inversely interpolated from

spatial grids to the particle locations with the same weighting,

E(zi) = Ej +
zi − Zj

2
Ej+1 − zi − Zj

2
Ej

B(zi) = Bj +
zi − Zj

2
Bj+1 − zi − Zj

2
Bj .

To effectively solve these equation, we perform a time-splitting method[69]

and define

v−
i = vn

i +
qiΔt

2mi
En+1/2

i , (5.6)

v+
i = vn+1

i − qiΔt

2mi
En+1/2

i (5.7)

to be substituted into Eq. (5.5). It gives

v+
i − v−

i =
qiΔt

2mic
(v+

i + v−
i ) × Bn+1/2

i ,

which represents a rotation of momentum associating with B. Thus by per-

forming this method, the particle is first half-accelerated from vn to v− with

Eq. (5.6) and then rotate according to Eq. (5.8). The last half acceleration is

added in the following to obtain vn+1
i with Eq. (5.6).

5.2.5 Computation Cycle

In summarizing the steps of the code, we list the computation cycle which in-

volved in advancing the electromagnetic fields and particles for one time step[67],

Initialization: z
n−1/2
i ,vn

i ,En−1/2
⊥ and Bn

⊥

Step 1: Advance z
n−1/2
i to zn

i and accumulate the current Jn on the grid j

Step 2: Advance zn
i to z

n+1/2
i and accumulate the charge ρn+1/2 on the grid j

Step 3: Transform (ρn+1/2,Jn) to k-space giving (ρn+1/2(k),Jn(k))

Step 4: Solve the E
n+1/2
z (k) using ρn+1/2(k)

Step 5: Advance En−1/2
⊥ (k) to En+1/2

⊥ (k) by Bn
⊥(k) and Jn(k)

Step 6: Advance Bn
⊥(k) to Bn+1

⊥ (k) by En+1/2
⊥ (k)

Step 7: Transform (En+1/2
⊥ (k),Bn+1

⊥ (k)) back to real space.
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Step 8: Interpolate the field from grids to particles.

Step 9: Advance the particle vn
i to vn+1

i using these fields.

5.3 The MPWA Simulation

To study the MPWA mechanism, we set up a whistler Gaussian wavepacket

propagating parallel to the external magnetic field in plasma, which is a medium

wave and considered to be self-generated in the magnetized plasma.

5.3.1 Initialization

The geometry of the simulation is shown in Fig. 5.4. We deal with the plasma dy-

namics in the phase space (z, px, py, pz) with the external magnetic field imposed

along the z direction. The basic parameter inputs are these in the followings.

The total number of grids as well as the length of simulation box in the z-

direction is Lz = 214Δ = 546c/ωp where Δ is the grid length taken to be unity.

The particles are uniformly distributed with average number per grid as 10.

The particle velocities including thermal and drift are initially zero. Thus the

plasma temperature defined by particle thermal motion is zero for both species.

The mass ratio of ion to electron is 2000 and the skin depth is c/ωp = 30Δ,

which gives a normalization factor 1/30Ewb to the electric and magnetic fields

according to sec. 5.2.1. The smoothing function is set exp(−(2k)3) with ax=2

and smp=3.

Whistler Pulses

To generate the whistler Gaussian wavepacket, it is essential to set a high ωc/ωp

ratio in order to make the dispersion relation more linear over a larger wavenum-

ber range. Consequently, the pulse can travel a long distance with minor dis-

persion. During the initialization stage, the whistler wavepacket was artificially

given

Ex(Zj) = E⊥(nt) · βph exp
(
−Zj − Zpos

2σ2

)
cos(k(Zj − Zpos))
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Figure 5.4: The sketch of the geometry in simulation, with an external magnetic

field B0 imposed along the z direction. The whistler pulse is set to propagate

parallel to B0.
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by the program ignoring the plasma reaction. The phase velocity βph = ω/ck

was calculated from the dispersion relation,

ω2 = k2c2 +
ω2

p

1 − ωc/ω
+

ω2
ip

1 + ωic/ω
. (5.8)

The amplitude of pulse is linearly increased to avoid the possible spurious effect

E⊥(nt) =
E⊥0

Tramp
nt, nt ≤ Tramp (5.9)

until reaching the maximum amplitude E⊥0 at nt = Tramp. The pulse then

starts to self-consistently evolve with time according to Maxwell equations.

In our simulation, two cases with ωc/ωp = 6 (case a) and 12 (case b) are

performed. For the two cases, the time step is set to Δt = 0.1ω−1
p for case a

and Δt = 0.05ω−1
p for case b to resolve the different ωc. Considering the plasma

wavelength λp ∼ 2πc/ωp ∼ 188.5Δ, we set the wavenumber k = 2π/60Δ,

2π/40Δ with the same Gaussian width σ = 80Δ/
√

2 for case a and b respec-

tively. They give ω/ωp = 2.98, vph/c = 0.95 for case a and ω/ωp = 4.64,

vph/c = 0.99 for case b from the dispersion relation. The pulse is initialized

at Z0 = 500Δ = 16.66c/ωp with E⊥0 = 8.05 (0.27Ewb) and Tramp = 100ω−1
p

for case a, while E⊥0 = 20(0.67Ewb) and Tramp = 200ω−1
p for case b. That

implies the associated strength parameters a0 ≡ E⊥0/mcω are 0.09 and 0.14

respectively. Clearly the two cases are both in the linear regime. Thus the ac-

celerating gradient G can be predicted as 0.17 (0.0057eEwb) from Eq. (3.10) for

both cases (or more accurate results, see [43]). Figure 5.5(a) and 5.5(b) are the

whistler pulses in case a and b plotted in k space imposed with their associated

phase velocities to ensure all modes having similar phase velocities.

5.3.2 Results

Plasma Wakefield

In our simulation, the total simulation time is set 500ω−1
p . After the pulse was

released from the initialization (at nt = Tramp), the whistler wavepackets self-

consistently evolve during the time. Evidently, we can see the plasma wakefield

was excited behind the driving pulses in both cases even in the initialization

stage. Figure 5.6(a) and 5.6(b) are the snapshots of the driving pulse and

plasma wakefield at Δt = 100ω−1
p after the pulse released. We can see that
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Figure 5.5: The intensity plot of the driving pulses in k space (in arbitrary unit)

imposed with their associated phase velocities in case a and b.
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Figure 5.6: The snapshot of the whistler pulse (gray dashed) and the excited

plasma wakefield (solid) in case a and b at Δt = 100ω−1
p after pulse released.
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the maximum amplitude of plasma wakefield in both cases is around 0.0057Ewb

and the plasma wavelength is ∼ 2πc/ωp, agreed with the theoretical prediction.

However in case a, because the dispersion relation is not perfectly linear, the

pulse disperses during the propagation. As a result, the amplitude of plasma

wakefield would also decrease due to the pulse dispersion.

Figure 5.7(a) shows that the driving pulse become severely spread at a

late time Δt = 300ω−1
p . The plasma wakefield is generated with a much smaller

amplitude but remains coherent. However this situation can be greatly improved

with a higher ωc/ωp ratio as case b in Fig. 5.7(b). We see that the driving pulse

is barely dispersed even running after a long distance and the corresponding

wakefield amplitude remains constant.

Dispersion Relation

Next we show the intensity contours of the driving pulses in the two cases in

ω − k space. Here each time step was set to ωΔt = 0.1 for both cases. Owing

to the restriction of storage memory, we shrink the simulation box size from

Lz = 214Δ to Lz = 212Δ. The Ex component of the driving pulses in k space

was sampled every time step after the pulse released. The number of sampling

is N = 500 and therefore the sampling time is NΔt = 50ω−1
p . So that we have

Ex(tn, kl) recorded in the time series tn, where kl = l(2π/L) and tn = nΔt.

Ex(ωm, kl) is obtained from the Fourier transformation of Ex(tn, kl),

Ex(kl, ωm) =
N−1∑
n=0

Ex(kl, tn) exp(−iωmtn),

where ωm = m2π/(50ω−1
p ). The result is illustrated in Fig. 5.8 where the

two contours represent the cases for ωc/ωp = 6, 12 and are superimposed with

the theoretical curves for the whistler wave dispersion relations deduced from

Eq. (5.8). The dotted line shows the light curve. It is obvious to see the contours

agree well with the two theoretical curves. we confirm that our driving pulses

were indeed whistler waves.

Energy Conservation

Without the energy supplying and dissipating process, the total energy of the

system should be conserved. It is possible to check the stability of the system

60



200 220 240 260 280 300 320

�0.3

�0.2

�0.1

0.0

0.1

0.2

0.3

z �c�Ωp�

E
z�

E
w

b
��

10
�

E
x�

E
w

b

t�300�ΩpΩc�Ωp�6

(a) case a

200 220 240 260 280 300 320

�0.3

�0.2

�0.1

0.0

0.1

0.2

0.3

z �c�Ωp�

E
z�

E
w

b
��

10
�

E
x�

E
w

b
��

0.
5�


t�300�ΩpΩc�Ωp�12

(b) case b

Figure 5.7: The snapshot of the whistler pulse (gray dashed) and the excited

plasma wakefield (solid) in case a and b at Δt = 300ω−1
p after pulse released.
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Figure 5.8: The intensity contours of the driving pulse as a function of (ω, k)

from PIC simulation. The light curve and the theoretical dispersion curves for

the whistler wave with ωc/ωp = 1, 6 and 12 are superimposed.

by investigating the conservation of total energy. Hence during the simulation,

the kinetic energy of particles, electrostatic field energy and the electromagnetic

field are calculated at every time step and stored. The total energy is the sum

of the particle kinetic energies and field energies. Figure 5.9 shows the plot of

the total energy versus the simulation time in the case b with the vertical axes

in arbitrary unit. We can see that, at beginning, the total energy rises up due

to the pulse initialization. After the pulse was released at Tramp = 200ω−1
p , the

total energy maintains a constant value.
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Figure 5.9: The total energy (in arbitrary unit) versus simulation time in case

b.

Accelerating Gradient

Finally, we validate the functional dependence of the acceleration gradient given

by the solution of Eq. (4.21). In this simulation, the ωc/ωp ratio is set to be

12. The wavepackets are initialized with a fixed wavenumber k = 2π/60Δ so

that the frequency of the pulse is solved as ω/ωp = 3.1. The pulse electric field

E⊥0 is varied from 10 to 80 (in unit of 1/30Ewb) and the strength parameter a0

varies accordingly. We plot the acceleration gradient G versus the varying a0 ,

as shown in Fig. 5.10. The points are the simulation data and the solid curve

is the theoretical curve obtained by solving Eq. (4.21),

∂2φ

∂ζ2
=

k2
p

2

⎡
⎢⎣
⎛
⎜⎝ a2

(1 − ωc

ω(1 + φ)
)2

+ 1

⎞
⎟⎠ 1

(1 + φ)2
− 1

⎤
⎥⎦ .

In addition the dashed curve is the extrapolation of the non-relativistic result,

Eq. (4.10),

G =
a2
0

(1 − ωc

ω
)2

χeEwb,

, which is valid only in the a0 � ωc/ω−1 (∼ 3) limit. We see that the simulation

data points agree well with the theoretical curve of relativistic MPWA equation.
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Figure 5.10: The plot of accelerating gradient G versus a0. The simulation data

points agree well with the solid curve obtained by solving Eq. (4.21). The dashed

curve is the extrapolation of the non-relativistic theoretical result, Eq. (4.10).

5.4 Summary

To summarize the study of plasma simulation, we have successfully demon-

strated a whistler gaussian pulse that can be self-generated in the magnetized

plasma and travels a sufficient distance. The corresponding plasma wakefield

is excited behind the pulse with amplitude in agreement with the theoretical

prediction. We also confirm the relativistic MPWA equation Eq. (4.21) via the

self-consistent plasma simulation.
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Chapter 6

Applications to UHECR

Now, we have completely established the MPWA theory via analytical and par-

ticle simulation approaches. This theory does not rely on any outer source

for plasma wakefield excitations and involves a linear acceleration process in

the advantage of minimizing the energy loss due to particle bending. Now

we are ready to apply this theory to explain the production of UHECRs. By

looking at the cosmic ray spectrum, we notice that there are two crucial facts

for an acceleration model: the differential power-law spectrum dN/dE ∝ E−3

and the high efficiency in energy gain. The conventional model diffusive shock

acceleration(DSA) gives the injection power index ∼ −2 for non-relativistic

and ∼ −(2.2 − 2.3) [21, 22] for relativistic shocks. We will show that, the

MPWA mechanism can also produce a power law spectrum through the sto-

chastic processes with index −2 in an idea case and have a high accelerating

gradient for particles to gain energy up to 1021 eV.

6.1 Power-Law Spectrum

From our knowledge of a terrestrial plasma accelerator, the wakefields are coher-

ently excited by the driving beam and the accelerating particle rides on the same

wave crest over a macroscopic distance. Since the speed of the driving beam as

well as the wakefield phase velocity can not exceed the speed of light, the acceler-

ating particle will eventually escape the acceleration phase (the so-called phase

slippage) and the maximum acceleration distance is then determined. However
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for the astrophysical settings, the driving pulses such as the magneto-shocks,

are not so organized. Instead, they will be produced randomly by the progenitor

and a test particle would then face random encounters of accelerating and decel-

erating phases of the induced plasma wakefield. Meanwhile, some degradations

such as the dispersion of the driving magneto-shocks or phase slippage between

the test particle and the wakefield, would eventually throw the test particle out

of the acceleration phase into the deceleration phase, and vise versa. Thus fi-

nally the test particle gets accelerated and decelerated stochastically during the

particle-wakefield interactions. The particle energy distribution function f(ε, t)

is then governed by the Chapman-Komogorov equation[70, 71]

∂

∂t
f(ε) =

∫ ∞

−∞
d(Δε)W (ε − Δε)f(ε − Δε, t) −

∫ ∞

−∞
d(Δε)W (ε)f(ε, t)

−ν(ε)f(ε) (6.1)

, where W (ε,Δ) is the transition rate of a particle from energy ε to ε±Δε. The

first term at the right hand side is the probability rate of a particle ”sinking”

into energy ε from an initial energy ε − Δε and the second term is that of

particle ”leaking” out of energy ε. The last term proportional to f(ε, t) governs

all possible dissipations, such as collision or radiation, or both. In an ideal

condition, we may ignore the dissipation term in Eq. (6.1) and have a purely

random acceleration-deceleration particle-wakefield interaction equation. If we

assume that the energy gain per phase encounter Δε is much less then the final

energy, i.e., Δε � ε, we can expand the W (ε − Δε)f(ε − Δε, t) to the second

order, that is,

W (ε − Δε,Δε)f(ε − Δε, t)

=
(

W (ε,Δε) − ∂

∂ε
W (ε,Δε)Δε +

∂2

∂ε2
W (ε,Δε)Δε2 + . . .

)

×
(

f(ε, t) − ∂

∂ε
f(ε, t)Δε +

∂2

∂ε2
f(ε, t)Δε2 + . . .

)

= W (ε,Δε)f(ε, t) − ∂

∂ε
W (ε,Δε)f(ε, t)Δε +

∂2

∂ε2
W (ε,Δε)f(ε, t)

Δε2

2
(6.2)

Inserting Eq. (6.2) to Eq. (6.1), we can reduce the Chapman-Kolmogorov equa-

tion to the Fokker-Planck equation
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∂

∂t
f(ε) =

∂

∂ε

∫ ∞

−∞
d(Δε)ΔεW (ε,Δε)f(ε, t)

− ∂2

∂ε2

∫ ∞

−∞
d(Δε)

Δε2

2
W (ε,Δε)f(ε, t) (6.3)

In comparison with the Fokker-Planck equation describing the particle Brown-

ian motion in the fluid, the first term ΔεW (ε,Δε) of Eq. (6.3) may correspond

to the the drift term and the second term is the diffusion term.

Now we can make an assumption of the transition rate W (ε,Δε) for a purely

stochastic process under the following properties of the particle wakefield inter-

action: 1) in the acceleration and deceleration processes, the probability of

gaining and losing energy should be equal; 2) moreover, unlike the shock diffu-

sive acceleration in which the energy gain is proportional to the particle recent

energy, the wakefield amplitude is independent of particle energy, that is, the

chance of gaining amount of energy, Δε, is independent of ε; 3) and finally,

under a pure stochastic white noise, the chance of gaining or losing any energy

amount Δε is the same. Based on these arguments, we have the properties of

the W (ε,Δε):

a) W is an even function,

b) W is independent of ε,

c) W is independent of Δε.

It is then reasonable to deduce that[71]

W (ε,Δε) =
1

2cτ2G
, (6.4)

where τ is the typical interaction time between the test particle and random

plasma wakefield and G is the maximum acceleration gradient. The stationary

solution for Eq. (6.3) is easily obtained by putting the temporal term ∂f/∂t = 0.

Since W is an even function, the first term on the right hand side of Eq. (6.3)

should vanish because it has only one power of Δε. Sequently the remaining

equation becomes

∂2

∂ε2

∫ ∞

−∞
d(Δε)

Δε2

2
W (ε,Δε)f(ε) = 0. (6.5)
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To ensure the positivity of particle energies before and after each encounter, the

integration limits are reduced from (−∞,∞) to [−ε, ε] and Eq. (6.5) becomes

∂2

∂ε2

∫ ε

−ε

d(Δε)
Δε2

2
W (ε,Δε)f(ε, t) = 0 (6.6)

Substituting Eq. (6.4) into the above equation, we can solve the equation and

arrive at the power-law distribution function,

f(ε) =
ε0
ε2

, (6.7)

where ε0 is taken to be the initial energy of the proton. The power law index

is exactly −2 in the ideal case caused by the stochastic process[71]. However

the actual observed spectrum would be expected to be degraded somehow due

to the various inevitable energy loss mechanisms. The resulting spectrum is

as the form, f(ε) ∝ 1/ε−(2+β) with β > 0. Phenomenologically, the allowed

range for β can be determined by performing fittings to the measured UHECR

spectrum[72].

6.2 Possible Sources for UHECRs

On the cosmic ray spectrum, there are two kinks indicating the changes of the

power law indices. The one at 1018 eV (the ”ankle”) is commonly believed

caused by the source transition from galactic to extragalactic. Based on that,

the UHECR origin is conventionally considered to be extragalactic. However

the actual source of UHECRs so far is not yet understood. Relying on the

Fermi mechanism, A. M. Hillas in 1984 proposed his famous plot to identify

the possible sources capable of accelerating particle to 1020−21 eV[73]. If a

particle with charge Ze gains energy gradually from many irregular collisions

with magnetic turbulence, it will eventually escape the acceleration site when

its Larmor radius exceeds the accelerator of size L. As a result the maximum

energy of the particle is constrained by

Emax ∼ ZBL. (6.8)

Figure 6.1 shows the astrophysical objects plotted with their magnetic field

strength and sizes.
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Figure 6.1: The famous Hillas plot, showing the astrophysical objects with their

magnetic field strength and sizes. The solid lines representing Emax ∼ ZBL

and Emax = ZBLΓ are also shown.
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The green line is for the iron nuclei with an energy 1020eV and the solid

and dotted lines in red are for protons energies of with 1021 eV and 1020 eV re-

spectively. It is shown that several objects are possible candidates for UHECR.

However regarding the parallel magnetic field background, our MPWA mecha-

nism is not subject to the concept. Nevertheless it still provide a good thought

on the candidate sources of UHECRs.

Since the GRB and AGN are two most powerful objects in the universe, they

have been discussed in several literature as the candidate sources for UHECR

(for GRB [74, 75]; for AGN[76, 77]). With such high energies, the UHECRs are

expected to deviate only slightly from their original trajectories by the extra-

galactic magnetic fields. Consequently the anisotropy of cosmic ray direction

corresponding to the astrophysical objects can be a clue of the possible sources.

So far the observations show that the observed direction of most UHECRs are

uniformly distributed. The Pierre Auger Collaboration recently reported a pos-

sible correlation of UHECR with the nearby extragalactic AGN[78, 79]. This

finding however has not been confirmed by HiRes[80]. Hence the source for

UHECR remains an open issue.Here we invoke AGN as the site for the MPWA

production of UHECR to illustrate the effectiveness of our mechanism.

6.3 Application to AGNs

An AGN is powered by the gravitational energy released from the accretion disk

formed by its central super massive black hole(SBH) and typically releases its

energy through relativistic jets that extend a distance far greater than the size

of its core with negligible diverging angle. The typical Lorentz factor for the

relativistic jet is ∼ 10. Since the constitution of jets is still debated, we assume

that the jets are consist of electrons and protons, with the total length from

few kpc to Mpc. Based on that, we can reasonably simplify the geometry by

modeling the jet as a cylinder(see Fig. 6.2) which contains a constant plasma

density and magnetic field strength over a large distance. The accelerating

gradient is then estimated with those characteristic parameters evaluated near

the AGN central engine.

The maximum luminosity an AGN can achieve is restricted by the Eddington
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10-4pc

e & p jet

accretion disk

Figure 6.2: The simplified e−−p jet geometry with ignoring the divergence angle.

The plasma density and background magnetic field strength are considered as

constant.
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limit at which the outward radiation pressure is equal to the inward gravitational

force.

LEdd =
4πGMmpc

σT

∼= 1.3 × 1031

(
M

M�

)
W = 3.3 × 104

(
M

M�

)
L�,

where σT = 8π/2(α�/mc) is the Thompson scattering cross section for electron.

With a central SBH mass ∼ 108M�, the maximum luminosity of AGN is ∼
1046erg/s and the size of jet is roughly the size of the accretion disk ∼ 3Rs ∼
10−4pc, where Rs is the Schwarzschild Radius

Rs =
2GM

c2
. (6.9)

For an AGN jet having the maximum luminosity implies the plasma density

n � 1010

(
L

LE

)(
Vfreefall

Vinfall

)
M8cm−3 ∼ 1010cm−3 (6.10)

and the magnetic field,

B � 104

(
L

LE

)1/2(
Vfreefall

Vinfall

)1/2

M
−1/2
8 G ∼ 104G (6.11)

near the core with M8 defining as M/(108M�), Vfreefall, the free fall (or Kap-

lerian) speed, being of the order the inward drift speed Vinfall[81]. The corre-

sponding plasma and electron cyclotron frequencies are obtained, ωp ∼ 5.6 ×
108 ∼ 109 rad/s and ωc ∼ 1011rad/s and the ratio of ωc/ωp is about 102. The

temperature is estimated as the black body temperature in the core as

T � 3 × 105

(
L

LE

)1/4

M
−1/4
8 ∼ 105K. (6.12)

and the Debye length is given by

λD =

√
T

4πne2
� 10−3m (6.13)

which is much smaller compared to the plasma wavelength λp = 2πc/ωp ∼ 3 m.

Thus we ensure the validity of plasma collective effect in AGN jets.

With these characteristic parameters, it is possible to estimate the accelerat-

ing gradient of MPWA produced in jets. First we calculate the average strength

parameter a0 = eE0/mecω from the following relation

a2
0 = 4π

e2

m2
ec

2ω2

(
E2

0

4π

)
= 4π

e2

m2
ec

2ω2
ηuAGN (6.14)
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where uAGN is the total energy density in the jets and η the energy fraction

imparted into the magnetowave modes. The energy density uAGN can be easily

computed from the total luminosity,

uAGN =
L · t

(10−4pc)2 · c · t ∼ 1046

1039
= 107erg/cm3. (6.15)

Our calculation so far only consider the toy model ignoring the jet divergence.

But in fact the jet divergence happens and the magnetic field and plasma density

descend as 1/r2. As a result the ωc/ωp ratio decreases as a function of 1/r since

ωc ∝ B0 ∝ 1/r2 and ωp ∝ √
n ∝ 1/r. When the magnetowaves with phase

velocity vph ∼ c propagate into a low ωc/ωp (vphi) region, the mode conversion

process will take place[82] and the magnetowaves will be converted into the

normal electromagnetic waves to keep traveling.

Based on that argument, it is possible to estimate the luminosity of magne-

towave from the observed radio wave luminosity of AGN, since the frequency

of magnetowave is in the range of radio wave if we take the magnetowave fre-

quency ω ∼ ωc/2 for convenience. According to [83, 84], the observed differential

luminosity to classify the low and high luminosity classes is

∂2

∂ν∂Ω
L178MHz = 1025WHz−1sr−1, (6.16)

at frequency 178 MHz. We are safe to take the frequency as the lower bound of

magnetowave frequency. Therefore the total magnetowave luminosity is given

by

Lmag = 1025 × 107 × ωc

2 · 2π
erg · s ∼ 1042erg · s (6.17)

and we can deduce the energy fraction η of the order of (10−3 − 10−4) from the

ratio of the magnetowave luminosity to the total AGN luminosity ∼ 1046erg · s.
The a0 in turn can be calculated from Eq. (6.14)

a0 =

√
4πη

(
ε2AGN

4π

)(
e

mecω

)2

=
√

10−3 ∼ 10−4 ∼ 0.1. (6.18)

Since a0 ∼ 0.1 � ωc/ω − 1 = 1, the MPWA process is in the linear regime and

the accelerating gradient G can be calculated from Eq.(4.10)

G =
a2
0

(1 − ωc

ω )2
χeEwb ∼ O(102)(eV/cm) (6.19)
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with the form factor χ of order 1 and Ewb ∼ 105 V/cm for n0 ∼ 1010cm−3 . We

notice that the accelerating gradient G is obtained with the parameters taken

in the jet rest frame.

For protons to reach energy ε = 1021 eV in our frame, it only requires energy

gain 1020 eV in the jet frame with Γ of bulk motion typically being 10. Thus

under the most optimized condition, the minimum distance for the protons to

accomplish ε = 1020 eV is 1018 cm (� 0.3 pc) in the jet frame, corresponding

to ε = 1021 eV for 3 pc in our frame. It is quite tiny compared to the typical

AGN jet length.
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Chapter 7

Conclusions

We have established a novel acceleration mechanism for UHECR which is based

on the wakefield excited by magnetowaves in astrophysical jets. The magne-

towave itself is a medium wave and has a lower phase velocity than the speed of

light. To have a good accelerating performance, we focus on the high frequency

and high phase velocity whistler wave. It was shown that a high ωc/ωp ratio

is the condition for MPWA, with which the dispersion relation of the whistler

pulse tends to be linear with a slope close to the speed of light. We have formu-

lated the nonlinear magnetowave induced plasma wakefield and confirmed it via

the computer simulation. On the application to UHECR production, the mag-

netowaves are generated randomly. We expect a power spectrum for UHECR

resulting from the stochastic particle wakefield interactions. Regarding AGN

as the working source, we have estimated the accelerating gradient by putting

physical parameters of AGN and finally concluded an optimized acceleration

length required for particles to ZeV.

To summarize the content of the thesis, in chapter 2, we have introduced

the basic concept of plasma from its definition, dynamics and the dielectric

properties for waves. Plasma is a partially ionized gas. Having the quasi-

neutrality and collective behaviors, the plasma can be defined following the

three criteria, λ � L, g ≫ 1 and ωτ > 1. Plasma can be described by using

fluid and kinetic approaches which are equivalent for solving problems. Since

most problems in plasma can be solved regarding plasma as a fluid, we have used
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the complete set of fluid equations to study the physics of plasma, particularly

electrostatic wave and electromagnetic wave in plasma. In the last part, we

introduced the plasma wakefield acceleration and the three types of driving

pulses for wakefield excitation.

In chapter 3 and 4, we have studied the plasma wakefield acceleration in

magnetized plasma in high and low frequency branches. In chapter 3, we dis-

cuss the case with ω/ωc � c in which the dispersion relation approaches the

unmagnetized case and the magnetized effect can be ignored. We compared the

results of plasma wakefield with a0 � 1 (linear) and a0 ≥ 1 (nonlinear) respec-

tively. In the linear regime, the plasma wake goes like a sinusoidal wave with

the maximum amplitude linearly proportional to a2
0. Whereas, in the nonlinear

regime, the plasma within the pulse is totally expelled from the laser center and

piled up to form a peak that leads to a sawtooth-like wakefield with amplitude

proportional a0. Taking the driving pulse as a square circularly polarized pulse,

we analytically derived the plasma wakefield from the second order differential

equation. The maximum of plasma wakefield amplitude was a0/
√

1 + a2
0, so the

accelerating gradient G ∝ a2
0 while a0 � 1 and G ∝ a0 while a0 � 1.

In chapter 4, we studied the case for pulse frequency ω < ωc (MPWA theory).

To implement the acceleration mechanism in this range, the MPWA condition

ωc/ωp � 1 was made. We concentrated on the whistler modes and calculated

the plasma wakefield in linear and nonlinear regime. With introducing the pon-

deromotive force, we have derived the linear plasma wakefield, whose amplitude

contains an additional factor (1−ωc/ω) to the ordinary G obtained without an

external magnetic field. In the nonlinear regime, we made the MPWA condi-

tion contain γ factors. The plasma wakefield was solved from a full complete

set of relativistic fluid equations and was also shown a sawtooth-like behavior.

When the strength of background magnetic field B0 increases, G decreases be-

cause ωc/ω > 1, opposed to the laser case. Since there exists a singularity at

1 + φ → ωc/ωp, we would make an upper limit on a0. Beyond that the plasma

becomes unstable. Then considering the upper limit on a0, we have predicted

the maximum accelerating gradient that MPWA can reach.

In chapter 5, we performed the particle-in-cell simulation to verify this

MPWA theory. A code named ”em1da” written by R. Sydora was used. In
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our simulation, we compared two cases with different ωc/ωp ratios, 6 and 12.

With successfully self-generated whistler wavepackets, we have confirmed the

excitation of plasma wakefield and the validity of our MPWA theory. We have

also showed that the whistler wavepacket sustains a longer distance with a higher

ωc/ωp, i.e., it is less vulnerable to the dispersion. This aspect is especially im-

portant for MPWA to be a viable mechanism for terrestrial accelerator since

it is essential for an accelerated particle to continuously gain energy from the

plasma wakefield in order to attain a high energy[85].

Finally with the MPWA theory established, we apply the mechanism to

UHECR. In chapter 6, we have shown that the power law spectrum can be

deduced from the stochastic interactions between the test particle and the

accelerating-decelerating phases of the wakefield. Without taking the dissipat-

ing process into account, the power law index is ideally given as -2. Next we

discussed the possible sources for UHECR generation and the most recent ob-

servations from Pierre Auger and HiRes. So far this issue is still not settled. We

invoked the AGN as a possible source and modeled the jet as a cylinder. From

the parameters estimated near the AGN core and the observed luminosity of

radio waves, we have obtained the accelerating gradient of MPWA in AGN jet.

It enables a particle to possibly gain energy above 1021 eV in a short distance

compared to the total jet length.

In this thesis we have shown the validity of MPWA for UHECR production

with a power law spectrum and a linear accelerating gradient. But as a fist step

we only simulated the process with a Gaussian magnetowave profile. However

it is desirable to investigate our mechanism with magneto-shocks instead, which

is astrophysically more relevant. Then the investigation of the generation of

magnetoshocks in the plasma outflows becomes crucial to the next step. In ad-

dition, due to the involvement of the background magnetic field, MPWA should

be taken as a fundamental phenomena in plasma physics. We have derived the

plasma wakefield with the full relativistic fluid equations, but the other non-

linear phenomena of plasma magnetowave interaction should be investigated

in detail. It would be extremely exciting if proof-of-principle experiments on

MPWA can be pursued. With regard to the possible physical mechanism to

excite the whistler magnetowave driving pulse for experimentation, it has been
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shown that a fast ion-acoustic wave can decay into a whistler wave plus an

ion-acoustic wave[86]. It is therefore conceivable that such a decay process, or

conversely the fusion of two ion-acoustic waves, can produce whistler wave. In-

spired by this, one wonders if a similar process can occur between a light wave

and a whistler wave. If so, then perhaps a laser pulses could be converted into

a whistler wave pulse in a magnetized plasma under suitable conditions.
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Appendix A

Transverse Fluid

Momentum Equation

When an electromagnetic wave in magnetized plasma propagates parallel to the

external magnetic field B0 along z direction, the plasma motions associated with

the EM fields can be described as,

dγβx

dt
= − e

mc
Ex − βyωc +

e

m

βz

c
By (A.1)

dγβy

dt
= − e

mc
Ey + βxωc − e

m

βz

c
Bx, (A.2)

where γ = (1−β2
x −β2

y −β2
z )−1 is the Lorentz factor of the plasma motions and

ωc ≡ eB0/mc is the electron cyclotron frequency. It is convenient to further

express the above equations in terms of the normalized vector potential a that

is related to E⊥ and B⊥ from Maxwell equations,

dγβx

dt
=

∂ax

∂t
+ cβz

∂ax

∂z
− βyωc =

dax

dt
− βyωc (A.3a)

dγβy

dt
=

∂ay

∂t
+ cβz

∂ay

∂z
+ βxωc =

day

dt
+ βxωc, (A.3b)

where the total time derivative d/dt = ∂/∂t + cβz∂/∂z. Since the electro-

magnetic wave becomes circularly polarized when travels along the magnetic

field, we assume a right-handed polarized wave that have β⊥ = βx + iβy and

a = ax+iay. Then we multiply Eq. (A.3b) by i and add the result to Eq. (A.3a),

we obtain the simplified form of the equation of motion for β⊥

d

dt
(γβ⊥ − a) = −iωcβ⊥. (A.4)
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To solve the equation, we decompose the plasma responses to the driving

pulse into slow and fast parts and assume that β⊥ = β⊥s exp[ikζ] to respond

to the electric field E⊥s exp[ikζ]. E⊥s is the envelop of the driving pulse and

exp[ikζ] is the fast oscillation part. Assuming that βz varies according to the

scale of the pulse envelop, βz = βzs, we arrive at

∂

∂ζ
(γβ⊥ − a) = i

ωc

c

β⊥s

1 − βzs
eikζ

by inserting β⊥ into Eq. (A.4). Sequently β⊥ is solved from integration by part

and it reads,

γβ⊥ − a =
ωc

kc

β⊥
1 − βz

+ i
ωc

k2c

∂

∂ζ

(
β⊥s

1 − βzs

)
eikζ + · · ·

where the second term on the right hand is expected to be suppressed compared

to the first term (quasistatic approximation). Finally we obtain the relation

between β⊥ and a,

β⊥ =
a

|γ − ωc
ω(1 − βz)

| . (A.5)

Having this relation substituted into into the wave equation of a in Eq. (3.3),

we arrive at [
∂2

∂z2
− 1

c2

∂2

∂t2

]
a = k2

pβ⊥ = k2
p

a
γ − ωc

ω⎡
⎣−k2 +

ω2

c2
− ω2

p

c2

1

γ − ωc

ω

⎤
⎦a = 0.

by putting n = n0 and a ∝ exp[i(kz − ωt)] for a plane wave. Therefore the

relativistic dispersion relation of magnetowave is obtained,

ω2 = c2k2 +
ω2

p/γ

1 − ωc/γω
. (A.6)
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Appendix B

Differential Equation of

Nonlinear MPWA

The integration of the complete fluid equations for MPWA in (ζ, τ) coordinate

system leads to

φ − γ(1 − βz) = −1, (B.1a)

n(1 − βz) = n0, (B.1b)

which is similar to the form in unmagnetized case. Therefore the relation be-

tween n, n0, γ and φ is given

n

n0
=

γ

1 + φ
=

1
1 − βz

. (B.2)

We have the Poisson equation (Eq. (4.15a)) rewritten as

∂2φ

∂ζ2
= k2

p(
n

n0
− 1)

= k2
p(

1
1 − βz

− 1)

= k2
p(

βz

1 − βz
). (B.3)

The main difference between with and without magnetic field cases is on the

γ factor. With β⊥ solved in terms of a (Eq. (4.19))

β⊥ =
a

|γ − ωc
ω(1 − βz)

| , (B.4)
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we have

γ2β2
⊥ = γ2(1 − β2

z ) − 1 =
a2(

1 − ωc
ωγ(1 − βz)

)2

and

γ2(1 − β2
z ) =

a2(
1 − ωc

ω(1 + φ)

)2 + 1 (B.5)

Squaring Eq. (B.1a), we get

γ2(1 − βz)2 = (1 + φ)2. (B.6)

So that the combination of Eq. (B.5) and (B.6) results in⎛
⎜⎜⎝ a2

1 − ωc/γω

1 − βz

+ 1

⎞
⎟⎟⎠
(

(1 − βz)2

1 − β2
z

)
= (1 + φ)2

which can be rearranged as

1 + βz

1 − βz
= 1 + 2

βz

1 − βz
=

⎛
⎜⎜⎝ a2

1 − ωc/ω

1 + φ

+ 1

⎞
⎟⎟⎠ 1

(1 + φ)2
. (B.7)

The Poisson equation is finally obtained,

∂2φ

∂ζ2
=

k2
p

2

⎡
⎢⎣
⎛
⎜⎝ a2

(1 − ωc

ω(1 + φ)
)2

+ 1

⎞
⎟⎠ 1

(1 + φ)2
− 1

⎤
⎥⎦ . (B.8)
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