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student : Feng-Yin Chang Advisors : Dr. Guey-Lin Lin
Dr. Pisin Chen

Institute of Physics
National Chiao Tung University

ABSTRACT

The origin of ultrahigh energy cosmic rays:has been puzzled over several
decades. So far, the existing mechanisms, -such as diffusive shock
acceleration (DSA) and others, still-present problems in explaining these
particles. Based on the concept “‘of plasma“ wakefield accelerator, we
proposed a novel mechanism, the so-called magnetowave induced plasma
wakefield acceleration (MPWA) to elucidate the production of ultrahigh
energy cosmic rays. In this thesis we establish the general MPWA theory
and perform a particle-in-cell simulation that provides the evidence of the
generation of magnetowave induced plasma wakefield. Here we invoke
the high frequency and high speed whistler mode for the driving pulse.
The plasma wakefield obtained in the simulation compares favorably with
our newly developed relativistic theory of MPWA. We show that under
appropriate conditions, the plasma wakefield maintains very high
coherence and sustains high-gradient acceleration over hundreds of
plasma skin depths. In astrophysical setting, the power-law spectrum and
accelerating gradient are given in the theory. Invoking AGNs as the
acceleration site, we will show that the particle accelerated to 10%eV is
possible.



B Eol

Bk 12 E kBB FA Tl - RS RA T bhe g
WEF RSN EBORE ﬁﬁ%éﬁ&mi#%ﬁ{ﬂﬁéﬁﬁ

ER2 B LG f 4 BEA REFL F LA G
g 24 ﬁf’*ﬁx?a@ﬂ'v*!’p BY  mEFr OEET L R X
L R AR R e G EER RAT 0 R

SRV R S I L R R
IR e o

F”’ﬂﬂﬁﬁﬁﬁﬁﬁﬁéé’zﬁaﬁgﬁ—@A o2 g
- 1 ER| IR A F 4 ERA »\;-?,FK%,}; - {ﬂ‘f fops i " ,& A4 4
hoE & nitip: L %#w»ﬁi%i %@’mi“ﬁilﬁﬁ%
o A pRin G AL Sdpee i PR ARG 4 S R B Alberto,
Kevin, Bob, Johnny {r Rick &= § t & 2v ¥l es fodn ;B 3 2 4o e
A - ey K % ¥ Jesse, Pat fo@fieh saChris; g2 A s o
BaAchr oo FAGL S3AFRITCE RS HEEG RIS
F R B f‘i"?ﬁ T A (e WHIE PR
éﬁéhﬁ”ij—éi;ﬁ;éig R 25t ml,‘r.Pﬁga?F' T AN R BN A%

—\

IR R Y RS EE SR PSR g
NESPAEEPHEC > BNAT UG T B B3 F G
3

pal
i



Contents

¢ =2 :}F B s i
B :}F B s ii
i iii
Contents . . . . . .. e iv
Listof Figures . . . . . . . . . . . . vii
1 Introduction 1
1.1 The Origin of Ultrahigh Energy CosmicRays . . . . . . . . . . . . .. ... 1
1.2 Conventional Model . . . . . . . . . . ... 3
1.2.1 Diffusive Shock Acceleration . . . . . . . . . . . ... .. .. 3
122 Limitations . . . . . . .. L E R e 5
1.3 Plasma Wakefield Acceleration as a Possible Mechanism . . . . . . . . . . .. 6
2 Basic Concept of Plasma 8
22 WhatisPlasma . . . . . .5 LT A e e 8
2.2 Definitionof Plasma . . . . S . oL v oL 9
2.3Dynamicsof Plasma . . . . . . . 0nt0o oL Lo 11
2.3.1Fluid Description . . . . . . .. . ..o 11
2.3.2 Kinetic Description . . . . . . . ... Lo 12
24 WavesinthePlasma . . . . . . . . . . . .. 14
2.4.1Plasma Oscillation . . . . . . . . . . . . ... 14
2.4.2 Electromagnetic Wave inPlasma . . . . . . .. . ... ... 16
2.5 Plasma Wakefield Acceleration . . . . . . . . . . . . ..o 18
3 Plasma Wakefield in Magnetized Plamsa | 20
3.1 General Formulation . . . . . . . . . .. 22
3.2 Laser Wakefield Acceleration . . . . . . . . . . . ... 23
32.1LinearRegime . . . . . . . ... 23
3.22NonlinearRegime . . . . . . . . . ..o 25



4 Plasma Wakefield Acceleration in Magnetized Plasma |1 31

4.1 MPWA Condition . . . . . . . . . .. 31
42Linear Theory . . . . . . . . . . . 32
4.2.1 Ponderomotive Force . . . . . . . . .. ..o 32
4.2.2 Linear Formulation . . . . . . . . . . . ..o 34
4.3 Nonlinear Theory . . . . . . . . . . . .o 36
4.3.1 MPWA Condition in Relativistic Regime . . . . . . . . . . .. .. .. 36
4.3.2 Nonlinear Formulation . . . . . . . . . . . . . .. ... .. 36
433 Numerical Results . . . . . . . . . . .. 38
44 Limitation of MPWA . . . . . . . . . . . 39
4A1Three Cases . - . v v v v v e e e e e e 40
442 Maximumof MPWA . . . . . . . . . ... 44
5 Particle in Cell Simulation 47
5.1 Introduction . . . . . . . L i e e e e e e 47
52The”emlda” Code . . . . = . J ool Do e oo 48
5.21Simulation Unit . . .52 . 0l oo o 48
5.2.2 Charge and Current DensitieS < i7=td i o o o L Lo 50
523FieldUpdate . . . . . . ..o Lo 51
524 ParticleUpdate . . . . . . . 05 L Lo 53
5.25ComputationCycle . . . . . . . . . .. 54
5.3 The MPWA Simulation . . . . . . . . . . . . .. . ... 55
5.3.1 Initialization . . . . . . . . ... 55
5.32Results . . . . . . 57
545ummary . . ... . 64
6 Applications to UHECR 65
6.1 Power-Law Spectrum . . . . . . . ..o oL 65
6.2 Possible Sources for UHECRs . . . . . . . . . . . . . . ... 68
6.3 Applicationto AGNs . . . . . . . . .. 70
7CoNnclusions . . . . ... 75
A Transverse Fluid Momentum Equation . . . . . . . ... ... ... .. ... 84



B Differential Equation of Nonlinear MPWA

Vi



List of Figures

1.1

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

The cosmic ray spectrum. . . . . . .. ... ... ... ... ..

The full solutions of Eq. (3.1) with w./w, = 2. The two curves
(R and L waves) above the light curve (dashed line) would have
vpr, > ¢ and the two curves (whistler wave and ion cyclotron
wave) below the light curve would have vy, <ec.. . . .. ... ..
Density variation dn =mn—-nq (dashed curve) and the axial electric
field E, normalized by Ey-(solid:curve). The Gray shaded region
is the Gaussian pulse, a = agexp[—(¢ + 5)2/22] with ap = 1.5. . .
Density variation én = n=ng-(dashed:curve) and the axial electric
field E, normalized by E, (solid curve) for Gaussian pulse a =

agexp[—(¢C+5)3/2?] with ag= 01" . . . . . ... ... ... ...

(a) Frequency and (b) phase velocity versus wavenumber for dif-
ferent magnetic field strengths. When w./w, > 1, the dispersion
relation is approximately linear over a wider range of wavenum-
bers with phase velocity approaching the speed of light. . . . . .
Density variation dn/n and axial field E, for whistler gaussian
pulse located at ( = —5(c/wp) andap=1. . . . . ... ... ...
Density variation dn/n and axial field E, for whistler gaussian
pulse located at ( = —=5(c/wp) andag =4. . . . . ... ... ..
The plots of (a) |E.| and (b) |1/E.| versus ¢ with b = 0 and
ag=3,where p=1+¢anda?=1+ad. . ... ... ... ...
The plots of (a) |E.| and (b) |1/E.| versus ¢ with b = 5 and
ap =23 (<Vb—1(Vb—1)=247). .. ... ... ... ... ..

vii

2

29

30



4.6

5.1
5.2

5.3
5.4

5.5

5.6

5.7

5.8

5.9

5.10

6.1

The plots of (a) |E.| and (b) |1/E.| versus ¢ with b = 5 and
a=3>Vvb—1(vVb—1)=247). . . .. .. ... ...

The general flow chart for the PIC scheme. . . . ... ... ...
The smooth function with different parameters. The solid, dashed
and dotted curves represent the function sm(k) = exp(—k?),
exp(—(2k)?3), and exp(—(4k)?) respectively. . . .. ... ... ..
The masking function with nedl = 2% and nedr= N, — nedl. . . .
The sketch of the geometry in simulation, with an external mag-
netic field By imposed along the z direction. The whistler pulse
is set to propagate parallel to Bg. . . . . . . . ... ... ...
The intensity plot of the driving pulses in k space (in arbitrary

unit) imposed with their associated phase velocities in case a and

The snapshot of the whistler pulse (gray dashed) and the excited
plasma wakefield (solid) incase a'and b-at At = 100w, ' after
pulse released. . . =l Twr e 08 . . . L L L.
The snapshot of the whistler:ptlse (gray dashed) and the excited
plasma wakefield (solid ) iir'case’a‘and b at At = 300w, ' after
pulse released. . . . . it ST L L L Lo
The intensity contours of the driving pulse as a function of (w, k)
from PIC simulation. The light curve and the theoretical disper-
sion curves for the whistler wave with w./w, = 1,6 and 12 are
superimposed. . . . . ...

The total energy (in arbitrary unit) versus simulation time in

The plot of accelerating gradient G versus ag. The simulation
data points agree well with the solid curve obtained by solving
Eq. (4.21). The dashed curve is the extrapolation of the non-

relativistic theoretical result, Eq. (4.10). . . . .. ... ... ...

The famous Hillas plot, showing the astrophysical objects with
their magnetic field strength and sizes. The solid lines represent-

ing Fpar ~ ZBL and Ey,.« = ZBLT are also shown. . . . . . ..

viii

64



6.2 The simplified e~ — p jet geometry with ignoring the divergence
angle. The plasma density and background magnetic field strength

are considered as constant. . . . . . . . ... ...,

ix



Chapter 1

Introduction

1.1 The Origin of Ultrahigh Energy Cosmic Rays

The origin of ultrahigh energy-cosmic rays (UHECR) has been a long-standing
mystery in astrophysics. According to the detection of the giant air showers, the
arrival of UHECR with energyup to 10%° ¢V was confirmed[1, 2, 3] and the most
energetic cosmic particle récorded was about ~ 3% 102 eV by the Fly’s Eye
Observatory[2]. It is amazing that*a subatomi¢ particle can carry macroscopic
kinetic energy equal to that of a baseball (142 g) traveling at 96 km/h. Having
such high energy, UHECRSs pose a serious challenge on the theoretical models.
Figure 1.1 shows the overall cosmic ray spectrum which simply follows a
power law with index roughly —3. There are two kinks at energy 10! eV(the
knee) and 108 (the ankle) eV denoting the changes of the power-law indices.
We believe that the ankle is due to the transition of galactic source to extra-
galactic sources and the change of composition. In addition, beyond energy
5 x 10 eV, the flux is expected to drop significantly due to the GZK effect
taking place. The GZK effect was proposed in 1967 soon after the discovery
of the cosmic microwave background (CMB) by Greisen, Zatsepin, and Kuzmin
(GZK)[4, 5]. A cosmic protons with energy above the threshold (the GZK cutoff
energy) would lose its energy through interaction with the CMB photons. As
a result its spectrum would be subject to a cutoff. In the observation aspect,

HiRes which uses the fluorescence method clearly exhibits a GZK suppression
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Figure 1.1: The cosmic ray spectrum.



signature, while AGASA instead shows a continue spectrum. This discrepancy
deeps the puzzle of UHECR. Fortunately precision measurements[6, 7] on the
yield of air-shower induced fluorescence lend support to the energy calibration
of the HiRes observations[8]. Together with the recent data from the Pierre
Auger Observatory[9] which exhibits a similar location of an ”ankle” and the
GZK suppression as those observed in HiRes, we confirm the validity of the
GZK mechanism. Nevertheless both AGASA and HiRes presented the exist-
ing of super-GZK events, which are not observed by Auger. It implies that
the super-GZK particles should have original energies even higher and be re-
strictively located within 50 ~ 75Mpc (the GZK attenuation length). However
so far there is no source within this range identified response for the UHECR
production.

There has been many mechanisms caming up with to solve the UHECR
production issues. Thus far, the existing theories can be broadly categorized
into two scenarios, top-down_and bottom-up. Fhe bottom-up model relies on
an efficient acceleration mechanism- for|an ordinary particle, such as a proton,
at some astrophysical site t0 ultra high-eénergies. While the top-down scenario
is an alterative model to the bottem-up=seenario proposed in order to explain
the super-GZK events. It resorts to the decay of some relics of Grand Unified
scale (~ 10%* eV) from the early universe. The main challenges for the scenarios
are their difficulties of complying with the observed event rates and the energy
spectrum[10], and the fine-tuning of particle lifetimes. Meanwhile the top-down
theories would predict high fluxes of photon and neutrino as the side prod-
ucts. The lack of observation of photons or neutrinos strongly disfavors these
models[11, 12]. Therefore finding a viable bottom-up mechanism to accelerate

020

ordinary particles beyond 10°° eV becomes more acute.

1.2 Conventional Model

1.2.1 Diffusive Shock Acceleration

The first idea of the cosmic ray acceleration mechanism yielding a power law
spectrum is proposed by Fermi in 1949[13]. He considered that cosmic particles

in interstellar space can diffuse by scattering off the randomly moving mag-



netic clouds, resulting in an average energy gain per encounter proportional to
the mean velocity square of the magnetic clouds. It is often referred to as the
second-order Fermi acceleration. Particles can be accelerated to high energy by
many turns of the accelerating cycles. However the mechanism is not efficient
because the process is non-relativistic and the energy gain proportionally to 32
is accordingly small. As a variant of Fermi mechanism in strong non-relativistic
shocks, the so-called diffusive shock acceleration(DSA) mechanism, was inde-
pendently proposed by several authors [14, 15, 16, 17] in the late 1970s. It is
referred to as the first order Fermi mechanism. This mechanism was conven-
tionally accepted as the origin of the high energy cosmic ray. According to the
simple picture from Bell[14], the upstream particles injected crossing the shock
front could be turned back by scattering off the magnetic turbulence generated
in downstream and vice versa, resulting in the diffusion of particles on the both
sides of shock front. Different from,the Fermi mechanism, each crossing can
gain energy proportional to the first power of Shock velocity. It is because the
particles at shock always encounter-head-on:collisions.

These two mechanisms=both produce power law spectrums. Assuming the

energy gain per encounter i8 Ae /e =-&-the-energy after n encounters is,
G co(1 + 601 (1.1)

where € is the energy at injection into the accelerator. If the probability of
escape from the acceleration region is P,.4. per encounter, then the probability
of remaining in the acceleration region after n encounters is (1 — Peps:)™. The

number of encounters needed to reach energy E is

n=In (“) JIn(1+€). (1.2)
€0
Thus, the proportion of particles with energy greater than FE is
> - Pesc)n

N(> 6) X Z(l*Pesc)m - (1 Pesc

m=n

(1.3)

Substituting the expression of n into Eq. (1.3), we arrive at the power-law

1 e\’
— 1.4
Pesc (60) ’ ( )

PESC
y=tn () /ms g ~ B (15)

spectrum

N(>e€) x

with




From Fermi’s picture, the probability per encounter of escape from the ac-
celeration region Peg is the ratio of the characteristic time for the acceleration
cycle and the escape from the acceleration region. This resulting spectral index
is not universal, but depends on the properties of the magnetic clouds. For the

strong shock case, it can be shown that at a shock,

PCSC 3
p— = —-——mm--- ].o
L (1.6)
with
1)M?
U (Cp/cv+ ) (1.7)

ug  (cp/cy — 1)M2 42
given by Rankine-Hugoniot jump conditions at the shock front[18]. Here u,
and ug are the velocities of gas flows in upstream and downstream respectively
and the Mach number M is defined as the ratio of u, to the sound speed in
upstream gas. For an monatomic gas the ratio of specific heats ¢,/c, = 5/3,
v =1+ % ~ 1 for the strongshock witlr A/ > 1, which is independent of
the shock properties and is aniversalmThe differential spectrum provided by
diffusive shock acceleration. mechanism is.given by dN/dE o« E~?2 at strong

non-relativistic shock.

The above discussions are for mon-relativistic shocks. Since the most pow-
erful astrophysics objects often involves ultra relativistic flows, the application
of DSA to ultra relativistic flows has also been massively studied over years
(see [19]). When considering the relativistic shock, the distribution of scat-
tered particles is no longer isotropic but has orientations on angle. As a con-
sequence, the application of DSA becomes more difficult. The average energy
gain AE’ = B — Ej in the rest frame of shock front is shown as order of Ej
itself, hence in the first shock crossing cycle, a large initial boost in energy can
be achieved, E;/E; ~ I'> where I is the gamma factor of the bulk velocity of
relativistic flows[20]. The power-index is fitted about —2.23 +0.01 [21, 22].

1.2.2 Limitations

With the successful application to supernova remnants for cosmic ray around
the knee (101°) eV, which has been confirmed via the x-ray observation[23], DSA

is conventionally considered as the possible solution of high energy cosmic ray.



However DAS relies on the random collisions of the high energy particle against
magnetic field domains or the shock media. They restrict the accelerating time
from the shock lateral size and the strength of background magnetic field, and
therefore the maximum energy gain. At very high energy, the collision process in
magnetic turbulence necessarily induces severe synchrotron radiation loss, which
is proportional to the fourth power of . Compiling above limitations, DAS has
difficulties to explain UHECRs. Evidently, novel acceleration mechanisms that
can avoid some of the difficulties faced by these conventional models should not

be overlooked.

1.3 Plasma Wakefield Acceleration as a Possible
Mechanism

Plasma wakefield accelerators[24425] ‘are knéwn to possess two salient features:
(i) The plasma can supportan_ extremely high*.” acceleration gradient,” i.e.,
energy gain per unit distance, which does not depend (inversely) on the parti-
clesinstantaneous energy or momentum: This is essential to avoid the gradual
decrease of efficiency in reathingrultrahightenergies. (ii) The acceleration field
is collinear to the particle momentum. Therefore, bending of the trajectory is
not necessary in this mechanism. This helps to minimize inherent energy losses
that would be severe at ultrahigh energies.

So motivated by these considerations, it was proposed that UHECR can be
produced from the plasma wakefield excited in astrophysical setting[26]. In-
stead of using laser or charged beam which does not exist in astrophysical en-
vironments, Chen et al invoked Alfven shocks as the driving sources to excite
plasma wakefields. This idea of using shocks to excite plasma wakefield has at-
tracted several astrophysical plasma physicists [27, 28]. Chen et al showed that
the power-law spectrum is accounted for the stochastic encounters between the
particles and the randomly generated wakefields. Using the short gamma ray
burst(GRB) as the working source, Chen et al obtained the maximum accel-
erating gradient and predicted the event rate. However, in that paper, their
estimation of accelerating gradient was based upon the theory of laser wake-

field acceleration without taking the background magnetic effect into account.



Furthermore, this concept has never been validated through computer simula-
tion. Thus, we develop a new mechanism of plasma wakefield (the magnetowave
induced plasma wakefield acceleration (MPWA) invoking the high frequency
and high speed whistler mode as driving pulse, and confirm this concept via
computer simulations[29]. The magnetowave with phase velocity vy, < c has
component |B| > |E| in nature. On the other hand the laser and charged beam
have |E| > |B].

In this thesis, we will discuss the complete theory of MPWA and its appli-
cation to UHECR. The content is the following: in Chap.2, the basic plasma
physics is viewed to give the way for subsequent discussions. The last section of
Chap. 2 introduces the different types of the plasma wakeifled accelerator. In
Chap. 3, we start looking at the plasma wakefield acceleration in magnetized
plasma. With w > w,, the magnetic field effect can be ignored. In Chap.4,
we focus on the driving pulse with,wy<swe (MPWA) and introduce a MPWA
condition. The theory of MPWA in linear and nonlinear regimes under the
MPWA condition are presented and the limitation.of MPWA is also discussed.
In Chap. 5, the particle in ¢ell(PIC) codé to produee MPWA is introduced. We
show that the simulation results‘ate-in-geod agreements with the theoretical
prediction. Finally with the theoretical modeliestablished, we apply this mech-
anism to explain the UHECR accelération! Tn Chap. 6 we obtain the power-law
spectrum from the stochastic process of the wakefield acceleration and estimate
the accelerating gradient provided by AGN jets. The summary and conclusion

are presented in Chap. 7.



Chapter 2

Basic Concept of Plasma

It is known that 99 percent of visible matter in the universe is in plasma state.
All the astrophysical objects, such as stars, relativistic jets, accretion disks,
etc.., are made of plasma. Theréfore a thoughfunderstanding of plasma physics
could lead to an understanding of 99 percent.of the visible universe. Based on
that, the idea of plasma wakefield acceleration for UHECR is therefore possible.
In this chapter I will briefly*introduce-the basic concept of plasma. The cgs unit

system is used in the following treatment.

2.1 What is Plasma

Plasma is a partially ionized gas consisting of free negative electrons, positive
ions and neutral atoms. When we heat a liquid, we can see more and more
vapors created as the temperature rises till reaching the boiled point. After
that, all liquid molecules are turned into gas molecules. If we continue to heat
the gas, some atoms or molecules will eventually get ionized. Thus in addition to
the three thermodynamic states, plasma is sometimes referred to as the fourth
state of matter. Because the ionized energy of atoms is of the order 10 eV,
plasma is usually created in a very high temperature. But in fact, the atoms
still have chances to be ionized at the room temperature due to the tail of
thermal distribution. The amount of ionization is very rare so that we can not
feel the plasma around us. To estimate the portion of ionization in thermal

equilibrium, we can use Saha equation[30]



. T3/2
D 2.4 x 1019 — UK, (2.1)
Np Tn;

where n; and n,, are the densities of ionized atoms and of neutral atoms re-
spectively, T is the gas temperature in unit of K, and U; is the ionization
energy of the gas. If we take the room temperature T=300K, gas density
n, ~ 3 x 10cm ™3, and U; =~ 14.5 eV for nitrogen, we can predict the fraction

of ionization

i MM qp122

which is extremely low.

2.2 Definition of Plasma

Not any ionized gas can be called#a plasmas. As mentioned above, there is al-
ways some small fraction of ignizationritrany.gas:*So the plasma is defined from
its most important properties, collectiveness and-the quasi-neutrality. Since
plasma contains charged particles, the.moves of these charges can generate local
concentrations of positive or.negative chatges which give rise to electric fields.
The motions of charges also generate currents”and then the magnetic fields.
These fields are long-range and could affect the motions of other charged par-
ticles far away. To see the effect, let us imagine two small charged regions of
plasma separated by a distance r. Even if the Coulomb interaction between the
two individual charged particles diminishes as 1/r2, for a given solid angle, one
region can feel a total force from the other region with volume increasing as
r3. Therefore, elements of plasma can experience a force on one another even
at large distances. By ”collectiveness” we mean that plasma motions depend
not only on local conditions but on the state of the plasma in remote regions as
well.

The quasi-neutrality comes from a fundamental characteristic of the plasma,
which is the capability to shield out electric potentials that are applied to
it. Suppose we set up an electric field by inserting a ball charged with posi-
tive charges, the ball would naturally attract an electron cloud with the same

amount of positive charges surrounded. If we assume an electron distribution



which follows the Boltzman’s equation so that
ne(®) = nge®/*sT (2.2)

where @, is the potential associated with the slight separation of electrons and
ions, ng is the plasma density at ® = 0 and T is the electron temperature.
Since an ion is 1800 times heavier than an electron, the ion background can
be regarded as motionless. Therefore the ion density n;, where the subscript @
denotes the ion background, is approximately equal to the plasma density ng.
Considering only the one-dimensional case, the Poisson equation turns into with

Eq. (2.2)

0?°®
S = dmeng (eeq’/’“ﬂ” - 1) . (2.3)
In the region where |e®/kpT| < 1, we can expand the exponential to the first
order,
0?® ed
=4 ——L, . 24
52 A (kBT N > (24)

that gives the solution of ®.
P = Ppe Fl/Ap (2.5)

with the characteristic lengthi Xp defined as

L LET
)\D = m = Uth/wp (26)

where w, = \/4me?ny/m is the plasma neutral frequency and vy, = \/kgT/m is

the velocity of electron thermal motion. Ap is called Debye length, named after
the Dutch physicist Peter Debye. If the plasma is cold, 7' = 0, then Ap = 0
and the shielding is perfect. It allows no electric field being presented outside
the electron cloud. However if T' £ 0 , Ap is accordingly finite. The potential
will be no longer perfectly shielded but decay exponentially with the distance.
Because of the shielding, the distant particles will not feel the existence of the
charged ball in the plasma. Therefore for remaining the quasi-neutrality, the
condition for a plasma is Ap > L, where L is the plasma size. In addition, the
Debye shielding itself is actually a statistic concept. Thus for the validity of
Debye shielding, we should compute the number of particles in a Debye sphere
g and require

4
g= ngmﬁg = 1380732012 3> 1, (2.7)

10



where n = n. = n; is the plasma density and g is called the plasma parameter.

Combining the two conditions, we can make the criteria for plasma
1) A> L.
2) g>> 1.
3) wr>1.

where w is the frequency of typical plasma collision and 7 is the mean time

between collisions. Finally the item 3 requests a low collision rate for plasma.

2.3 Dynamics of Plasma

2.3.1 Fluid Description

Since a typical plasma density might! bera huge number of ion-electron pairs
per cm ™3, it is impossible tosdeal with each plasma particle. Fortunately, the
majority of plasma presents a macroscopic behavior. So we are able to treat
plasma as fluids, composed of electrons’,ions and heutral atoms. As a result,
the motion of individual particle is fieglected and only the averaging motion is
taken into account. The plasma fluid containing an additional electromagnetic
effect is different from an ordinary fluid.” Such effect leads to the complexity of
plasma, and the varieties of phenomena could occur in a plasma.

In plasma, Maxwell’s equations can tell us how E and B are associated
with a given state of the plasma. To maintain the self-consistency, we include

equations that describe the plasma response to the E and B field such that

V-E = dme(n; —ne) =4mp
0B
VXxE = ——
8 ot
V-B = 0
OE OE
cVxB = dre(nu; —neue) + e 47T + n

where p and J are the charge density and charge current given by the plasma,

and u is the fluid velocity of from averaging the total velocity in the fluid unit.
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These E and B fields above also act back on the plasma species, therefore the
equation of motion regarding the electromagnetic force is described,

ou; u;
mjn; aﬁer(uj'V)uj = (E+ 7 xB)-Vp

where j = i, e stands for fluid of ions and electrons respectively. The m; is the
mass of the fluid element. The equation above is in Eulerian representation,
dealing with the time and space derivatives separately. Sometimes we describe
the fluid in either Eulerian (the coordinate scheme) or Lagragian(the co-moving

scheme) representations. The relation between the two representations is

d 0
i = = -V .
dt Lagragin ( ot v ) Eulerian

The second term on the right hand side is called the convective term. Finally
combining the above equations and the continuity equation, we obtain the com-

plete set of fluid equations

V.E I= 47qujnj, (2.8a)

J
VB 0 (2.8D)
W B0k (2.8¢)

OE

cVXB= 47qujnjuj + B (2.8d)

J

on;
8llj u; Vp;

m; 5 + (u] V)uj} q]( + p X ) n; s ( 8 )
p; = Clmyn;)". (2.8g)

with 11 unknowns (E,B,u,n,p) for each species. Here Eq. (2.8¢) is the conti-
nuity equation and the last equation is the equation of state, with C' a constant

and v = C,,/C, the ratio of specific heats.

2.3.2 Kinetic Description

Beside the fluid theory, the alternative way to describe plasma is the kinetic
theory. In most cases, the fluid equations can solve the plasma problems with
acceptable good accuracy. But for some special cases, such as the instabilities,

the fluid treatment will be inadequate. Thus, we directly look at the distribution
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function f;(r,v,t) for each plasma species (here v is the individual velocity).
By knowing the distribution function, we are able to derive the macroscopic
physical variables from integrating the function over all velocity spaces. This
treatment is called kinetic theory.

The time evolution of distribution function f;(r, v, t) is govern by the Boltzmann

equation,

@:%A—Vj'ij-F%(EJrﬁXB)'vaj:(%

dt ot i c ot Je: (2:9)

where (0 f;/6t). is the collision term. The plasma density can be obtained from

n;(r,t) = / fj(r,v,t)d?’v,
v
and the average velocity u; is given by

B fv vfi(r,v,t)d3v,
u; (I‘,t) - fv fj(r,v,t)d3v

If the plasma is collisionless, the cdollisionterm: vanishes and Eq. (2.9) takes

the form

of q v B
E+V-Vf+E(E+ExB)-va_O, (2.10)

where we drop the subscript#j..This is called the Vlasov equation, most com-
monly studied in the kinetic theory.| Regardless of the collision term, the zero

moment of Eq. (2.9) is obtained by integrating over the velocity space,
/a—fdv+/v-Vfdv+i/(E+XxB).vvfdv:o (2.11)
ot m c

and the next moment is obtained by multiplying mv to the equation and inte-

grating over v such that

m/vg—{dv—l—m/v(v~V)fdv+q/v(E+%xB)-vadv
=0 (2.12)

Taking the above two moments of the Boltzmann’s equation leads to the con-
tinuity equation Eq. (2.8¢) and the equation of motion of fluid(2.8f). We show
that the fluid theory can be derived from the kinetic theory; therefore the fluid

and kinetic representations of plasma are equivalent.
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2.4 Waves in the Plasma

We have already established the complete set of fluid equations for plasma. To
solve these equations, we introduce the perturbation theory describing a small
deviation of physical quantities to their equilibrium state. These quantities can
be decomposed into the equilibrium solution plus a small perturbation. After
taking the Fourier expansion, the perturbations are transformed into a super-
position of sinusoidal oscillations in different frequencies. As a result the fluid
equations Eq. (2.8a) to (2.8g) can be linearized in (w, k) space and the result-
ing equations are easier to solve. In this section, I review the physics of plasma
oscillation and electromagnetic wave in plasma for demonstrating the technique

for solving the fluid equations.

2.4.1 Plasma Oscillatiod

When the electrons in plasma are displaced by some perturbations from a uni-
form background of ions, glectric fields are built up in such a direction as to
restore the neutrality of the plasma by pullitig the €lectrons back to their origi-
nal positions. Because of theit inertia, the electrons will overshoot and oscillate
around their equilibrium positions: ‘The process is known as the plasma oscilla-
tion, also known as Langmuir wave, with a characteristic frequency w,[31]. To
derive the expression for the plasma frequency wy, we solve the fluid equation
in the simplest case that (1) B = 0, there is no magnetic field; (2) 7' = 0, hence
Vp = 0, there are no thermal motions; (3) background ions are fixed; (4) the
electron motions only take place along to z direction. The fluid equations in

this simplification are obtained,

Mne ag; + (Ve V)ve| = —enE (2.13a)
@+v.( ve) = 0 (2.13b)
ot fleVe) = '

V-E = dre(n; —ne), (2.13¢)

with electron fluid velocity u. replaced by v, for convenience. Since the plasma
is assumed to be slightly perturbed, the variables in the equations can be sepa-

rated into two parts: the equilibrium part, subscripted by 0, and the perturba-
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tion part by 1 that

Ne = MNg+mni,
Ve = Vo+Vi,
E = Ej+E;.

If the plasma is initially stationary, we have the equilibrium state Vng = vg =

Ep = 0. The fluid equations are then given by

ov
ma—t1 = —cE;, (2.14a)
on
V-E; = —4rweny, (2.14c)

where the convective term
(v -Vv=(vi"V)v,

vanishes due to the higher-orderperturbation. For plasma oscillation, it is

assumed that the quantities oscillate sinusoidally and,

ni "= nlez(kz—wt)
vi = ez(kz-wt)i
E, = Elei(kz_Wt)i.

So the time derivative 9/0t can be replaced by —iw and the space derivative
V can be replaced by ik in the equations. Then the differential equations
Eq. (2.14a) to (2.14c) are linearized such that,

—tmwv; = —elEy (2.15a)
—twny + ngtkvy =0 (2.15b)
ik - By = —4mwen;. (2.15¢)

where FE7, which is associated with the plasma oscillation, is an electrostatic
field along the k direction. We can rewrite Eq. (2.15a) by applying Eq. (2.15b)
and (2.15¢) as

m

4 2
(w2 _ TThoe ) v = 0. (2.16)
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Eq. (2.16) is the dispersion relation for the plasma oscillation. Because there is
no k dependence in this expression, the plasma oscillation does not depend on
the wavelength. Hence the phase velocity defined as w/k and the group velocity
defined as Ow/0k are both zero. When vy is finite, a non trivial solution for
Eq. (2.16) requires terms in the parentheses to be 0. Therefore the frequency

4 o\ 1/2
w=wp = ( W:fe ) . (2.17)

is defined as the plasma frequency. Numerically, with the known physical para-

meter numbers, one can make the approximate formula

f» ~ 9000y/ng

which only depends on the plasma density. So far the treatments are all done
in cold plasma case (T" = 0). For warn plasma (T" # 0), the pressure term
Vp should be taken into account in Eq. (2.13a). The dispersion relation then

becomes

w? = W2+ (PYB—ﬁfz) E% (2.18)

where (ypkpT/m)'/? is the electron sound speed-and the vz, usually taken
to be 1 in the isothermal sate;:is“the adiabatic constant for the pressure term
Eq. (2.8g). So that the plasma oscillation Starts to propagate asymptotically

with electron sound speed. Such wave is called the electron acoustic wave.

2.4.2 Electromagnetic Wave in Plasma

Next we study the case of electromagnetic waves in plasma. When an elec-
tromagnetic wave travels through a plasma, its associated electromagnetic field
shall push the charged particles from their original states and the resulting
plasma motions will induce the currents that contribute back to the fields them-
selves. As a consequence, the dispersion relation of the electromagnetic wave in
the plasma contains the plasma effect. If there is no magnetic background field,
By = Ey = 0, the electric and magnetic fields in plasma, denoted by E; and

B, are related to each other according to the Maxwell equations

1 0B,
VxE = (2.19)
4 18E1
B, =— -—— 2.2
V x 1 - J1 + c Ot ( 0)
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where the term (47/¢)J1 = —(47/c)engvy is the plasma current. Taking the

time derivative on Eq. (2.20), we combine the above two equations and obtain

19 OE
AV x (VxEp) = 47ren0% + 8—; (2.21)

Here v is directly related to the oscillating electric field because the second
force term vi/c x By in Eq. (2.8f) is neglected since it is of the second order.
Assuming a plane wave varying as expli(kz — wt)], the electron velocity vy is

given by
_ e
—lwWwV] = —*El. (222)
m
We then rewrite Eq. (2.21) as
—%k x (k x E1) = —idmengwvi — iwE;. (2.23)
Substituting Eq. (2.22) to Eqs1(2.23), werebtain

2

) 2
SR NG %El. (2.24)

~k(k-E By ==
( 1) + KBy s

We note that k - E; = 0 because the wave is transverse. Then the equation can

be rearranged as

w2
<k2 + 75 7 |EBi=0. (2.25)

, which leads to the dispersion relation for electromagnetic wave in unmagnetized

plasma.
w? = wz + k2c2. (2.26)

We can calculate the phase velocity v, by using this dispersion relation and

obtain

w c

Uph = & = ————= > C. (2.27)
The phase velocity is real only when w > w,,. Therefore a threshold of frequency
exists for the electromagnetic wave to penetrate into the plasma. If the wave

has frequency w < wp, it will be reflected by the plasma surface and decays

exponentially in the plasma within a skin depth defined as ¢/w,. This concept
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is the working principle for radio station to transmit the signals. Similarly, The

group velocity can be calculated as

ow 2
Y9 = ok = ooh” (2.28)

Clearly v, is always smaller that the speed of light c.

2.5 Plasma Wakefield Acceleration

It has been 30 years since T. Tajima and J. Dawson proposed plasma as an
accelerator[24], to transfer electromagnetic energy from a laser pulse into the
kinetic energy of the accelerated electron by letting the short laser pulse excites
large-amplitude plasma waves. In fact the ”plasma wave” we call here is the
plasma oscillation but having a phase velocity exactly equal to the pulse speed.
An electrostatic field relate to this plasma wave is called plasma wakefield. If
its phase velocity is closed to.the speed of light, a test particle with similar
velocity injected to its accelérating phase can. surf.on the wave and continually
gain energy from it. Thexcharacteristic accelerating gradient for the plasma
wakefield is G = eEy, = micw, ~ /1y [em]=® Since the mechanism provides a
great accelerating gradient which ean accelerate eharged particles to very high
energy in a short distance, it is veryrattractive to accelerator physics, plasma
physics and astrophysics.

Since then there has been several reviews discussing about the plasma based
accelerators [32, 33, 34]. So far there have been three plasma wakefield accelera-
tors utilizing laser pulses: laser wakefield accelerator(LWFA), plasma beat-wave
accelerator(PBWA) and self-modulated LWFA (SM-LWFA)[32]. In the PBWA
[24, 35], two long pulse laser beams with frequencies differed by w, are used
to resonantly excite the plasma wave. This method was first proposed as an
alternative to the laser wakefield accelerator because of the lack of technol-
ogy for generating ultra-intense picosecond laser pulses at that time. The last
one SM-LWFA is somewhat similar to LWFA with a single short pulse but
operated at higher density[36, 37, 38]. Therefore SM-LWFA involves a longer
length that L > ), and slightly larger laser power P than the critical power
P. = 17ws /wg for relativistic optical guiding. In the high density regime, the

pulse becomes self-modulated at the plasma period due to the self-modulation
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instability [39, 40, 41]. Then the plasma wave is generated coinciding with the
modulated regime. Instead of utilizing laser as driving pulses, Chen et al in
1985 proposed another way to excite the plasma wake by using the charged
particle beams [25]. The charged particle which moves relativistically generates
the quasi-perpendicular electric field in the lab frame and the magnetic field
as well according to the relativistic dynamics. Therefore the charged particle
beams behave similar to the laser pulse and the dynamics of plasma wakefield
for the two schemes was also shown to be similar by Ruth and Chen[42].
However, either laser beam or charged particle beam is the external impulse
and could not be found in the astrophysical environment. Motivated by the
ultrahigh energy cosmic ray acceleration issue, Chen, Tajima and Takahashi in
2002 proposed the third type of plasma wakefield acceleration invoking Alfven-
shocks as the driving pulses. Different from the laser and the particle beam,
Alfven wave is a medium wave which only exist with the support from plasma.
Therefore the wakefield driven' by Alfven wavesis more relevant to the astro-
physical settings. F. Y. Chang et-ali {29]:extended the concept to the high
frequency mode (whistler wave). According to Maxwell’s equations, these waves
have the B component exceeding the-f~e¢emponent since their phase velocities
are less than the speed of lighti. We categorize such wave as "magnetowave”.
In the following chapters, I will discuss ithe plasma wakefield in magnetized
plasma and introduce the theory of magnetowave induced plasma wakefield ac-
celeration (MPWA) in both linear and nonlinear regimes. I will also present a

self-consistent plasma simulation which is performed to validate this theory.
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Chapter 3

Plasma Wakefield in
Magnetized Plamsa I

We have studied the dispersion relation.ofselectromagnetic wave traveling in
plasma (Eq. (2.26)). Once the plasma‘issimposed a background magnetic field,
the electromagnetic wave presents various different thodes at arbitrary angles to
the external magnetic field.wAmongthat, we concentrate on the modes parallel
to the external magnetic field for-our purpose to ensure the linear acceleration
that minimizes the energy loss. With"the parallel background magnetic field
By, the electromagnetic wave becomes circularly polarized and its dispersion

relation is given by

2 w2

2 2 2 Wip P
=k 3.1
w C +1iw16/w+1:!:wc/w7 ( )

where the upper (lower) signs denote the right-hand (left-hand) circularly
polarized waves. w. = eBg/mec is the electron cyclotron frequency and the sub-
script ¢ denotes the ion species. Each polarization has two real solutions with
high and low frequency branches and both have a frequency cutoff which forms
a forbidden gap for wave propagation. Figure 3.1 exhibits the solution of all
possible modes and the light curve in vacuum (dashed line) is superimposed.
Above the light curve, there are two curves labeled L and R waves to stand
for the left-handed and right-handed circularly polarized electromagnetic waves

respectively. Whereas the two solutions below the light curve are the whistler
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Figure 3.1: The full solutions of Eq. (3.1) with w./w, = 2. The two curves (R
and L waves) above the light cuive (dashed:line) would have v,;, > ¢ and the
two curves (whistler wave azid ion-¢yclotron wave), below the light curve would

have v, < c.

wave and the ion cyclotron wave; having“a‘lower phase velocity than the speed
of light. We call such waves the ”tagnetowaves” because of their exceeding B
components in all reference frames. To explain the production of UHECR, Chen
et al proposed Alfven shocks as the driving pulses for plasma wakefield. Since
the Alfven wave is an ion wave, having very low frequency and low phase veloc-
ity, it was the first idea of magnetowave induced plasma wakefield acceleration
(MPWA).

In fact the non-relativistic plasma wakefield in magnetized plasma was first
studied by P. K. Shukla[43] in 1994. Shukla introduced the ponderomotive
force from a circularly polarized electromagnetic pulse that is applicable for all
frequency range to excite the plasma wakefield. However he only addressed the
upper branch issue (the laser case) in his calculation. For R and L waves which
have frequencies w > w,, the dispersion relation Eq. (3.1) can be reduced to that
in unmagnetized plasma. Therefore the background magnetic field doesn’t play
a significant role to the wakefield excitation. Whereas the wakefield induced

by the wave with w < w, will greatly determined by the ratio of w./w. In the
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following two chapters we will discuss the physics of wakefield induced in the
two branches w > w, (the laser limit) and w < w,. (magnetowaves). The general

theory of MPWA is established in the next chapter.

3.1 General Formulation

In the laser plasma interaction community, the related fields in one dimension
along the z direction are often described by the normalized scalar potential
@(z,t) = e®(z,t) /mc? for the plasma electrostatic field (plasma wakefield) and
the normalized vector potential a(z,t) = eA(z,t)/mc? for the laser field. We
have A, = 0 if choosing the Coulomb gauge V - A = 0. The peak of the
normalized vector potential ag, called laser strength parameter by the plasma
community, is often used to determine the strength of the driving laser. Since
the vector potential A is the spacial component of the 4-vector (p,A), the
transverse components of A |, (A4,, A,) are Lorentz invariant in any reference
frame boosting along z direction. —Ag a:result, the ao by definition is also a
Lorentz invariant quantity.-In"MPWA study, we still follow the convention for

laser case. The plasma field'@(z,#)-is-governed by the set of fluid equations

227‘3 2 (nﬁo _ 1) , (3.20)
%7; + C%(nﬁz) =0, (3.2b)
S0BL) = G i, (3.20)
S8 =52~ (5,8, - 6,B.). (3:24)
O e (BuBa 4 B, + .E) (3.2¢)

with ignoring the ion motions. The influence of background magnetic field only
takes place in the transverse momentum equation (Eq. (3.2c)), see Appendix A.
In these equations, we may neglect the thermal effect due to the assumptions:
(i) the electron quiver motion is much greater than the electron thermal motion
(ii) the plasma temperature is so low that the thermal energy spread is not
sufficient for the plasma to be trapped by the plasma wave. The Lorentz - of
plasma here defines (1— 3% —32)71/2 and the w, in Eq. (3.2c) gives the influence

from the external magnetic field. While the normalized vector potential a(z,t)
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satisfies the wave equation

0? 1 92 9 M

k, = wp/c is the plasma wavenumber.

3.2 Laser Wakefield Acceleration

Since the technology of high field laser has been well developed in a laboratory,
laser wakefield acceleration is widely studied because of the possibility to the
next generation of high accelerating gradient accelerators. When the driving
pulse with frequency w > w. (or w. — 0), the dispersion relation of the pulse
approximates to that in unmagnetized plasma case. It is reasonable to study
the LWFA mechanism under this limitation. Based on this consideration, the

right hand side of Eq. (3.2¢) can be, ignored and Eq. (3.2¢) is rewritten as

om0 (3.4)

Therefore the transverse canonical momentum v3; — a is conserved and the

transverse velocity 8, = a/v. is éasilyrobtained. . Substituting the transverse

velocity expression into Eq. (3.2d), we rewrite the Lorentz force in terms of the
normalized vector potential a

dvf3. 0¢ 1 0a?

it~ 0z “2y 02

(3.5)

where the second term on the right hand side is the ponderomotive force, the
average of the second order Lorentz force. It is on the opposite direction to
the gradient of laser intensity and is independent of the charge sign. Thus the
electrons within the pulse are pushed away from the center and leave a positive
region (ions are only barely moved by the same force), which generates the

plasma wakefield.

3.2.1 Linear Regime

With the full set of fluid equations, we first study LWFA in the non-relativistic

regime where v ~ 1. In this regime, 3, is equal to @ < 1 so that the condition
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for non-relativistic is @ < 1. Hence the complete set of fluid equations can be

rewritten as

826

ON 0

E + C&(ﬁz) = 0; (36b)
2

00 _ c% - c18i (3.6¢)

ot 0z 2 0z’

where N = (n — ng)/ng. We eliminate the ¢3,08./0z term in Eq. (3.6¢) since
B, < 1. It is convenient to write the equations in a co-moving coordinate
system (C,7) [44, 45], in which 7 = ¢ and ( = z — ¢t. Then the derivatives
0/0z and 9/0t are replaced by 9/9¢ and 9/01 — c0/I(¢ respectively. If the laser
pulse is sufficiently short, the field a and ¢ are expected to change very little
during the transit time of the plasma through the pulse and the changes can
be ignored in plasma reaction. Assuming that the laser envelop changes on a
characteristic time scale 7. ~ 2|ng/n|(w/wp) /W, the quasistatic approximation
(QSA) is applicable. In thesQSA; 9/d7 which determines the plasma response
to the laser pulse are negleeted in the plasma fluidequations . However, 9/07
is retained in the wave equation jbecause it describes the evolution of the laser

pulse [45, 32]. Thus for a shortlaseér pulse, we¢an write Eq. (3.6a) to (3.6¢) as

gz;b k:2 (3.7a)
;C (V=) =0, (3.7b)

08, _ 99  10da®
ac ~ ac T2ac

(3.7¢)
Substituting Eq. (3.7a) and (3.7b) into Eq. (3.7c), we arrive at
* o b2
<a<2+k)¢—2 (3.8)

The solutions to the equation are easily calculated with the Green’s function

such that[46]

k C ! . ! !
022 [ a(sinlk (¢~ Q)¢ (39)
0
and the related axial field is obtained
Bo_ 19,
Ewb B kp 8< B

24



where x = k,/(2a3) OC a?(¢") cos[ky(¢" —¢)]d¢’ is the form factor which depends
on the pulse shape. Here E,,;, = mcw,/e is the cold wavebreaking limit, charac-
terizing the accelerating gradient G (G = eE,) of the plasma accelerator. Since
k, = wp/c, the solutions to Eq. (3.8) describe the plasma waves generated at the
frequency w, and are valid far from wavebreaking, ., < E,;. Meanwhile the
wakefields are generated sinusoidally and are efficient when the envelope scale

length is on the order of the plasma wavelength \, = 2mc/w,[46].

3.2.2 Nonlinear Regime

When the laser power is extremely high such that ag < 1, the plasma particle
quiver motions become highly relativistic and a variety of nonlinear phenomena
happens in the laser plasma interaction. It includes [45] (a) relativistic optical
guiding of the laser beam[47, 48, 49], (b) the excitation of coherent radiation
at harmonics of fundamental laserifrequencys(c) the generation of large plasma
wakefield, (d) frequency shift-inducedninsthe laser pulse by plasma waves[50,
51], (e) frequency amplification using an‘ienizedfront, and (f) the snow-plow
acceleration[52, 53]. A fullsset of the fliid equations is required to describe the
nonlinear phenomena. For thestudy of the generation of large plasma wakefield,

we have the equations from Eq./(3:2a) to (3:2e)in terms of a and ¢

% 2 (:O - 1) , (3.10a)
%7;‘ + c%(nm — 0, (3.10b)
4 p) =2 (3100
)=t - 9 (3.10d)
Z_Cﬁzg(i'5+21fy86(f’ (3.10e)

with neglecting w.. From Eq. (3.10c), the conservation of transverse canonical

1/2.

momentum gives 73, = a or v = (1 + a®)'/2/(1 — 3?) So the pulse is

described by the wave equation of a

[82 182] n an a

2 _
92~ @aE) 2= Fen, P =R (310
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which leads to the dispersion relation in the relativistic regime

W2
W=k + 2L (3.12)
Y
by assuming a plane wave a « expli(kz—wt)] and n = ng . We may combine this
wave equation of a with the fluid equations to form a self-consistent equation
set.
Insetting Eq. (3.10e) to Eq. (3.10d), we arrive at

d 1o (.20,
(VB =) =l B:)5, 27(caz+3t)a' (3.13)

It is convenient to transform Eq. (3.13) into the new coordinate system (¢, 7),
then the second term on the right hand side vanishes. Together with the Poisson

equation and the continuity equation, we obtain the complete equations for ¢

in (¢, 7) coordinate with QSA applied

s T (3.142)
%(7ﬁz =5 46) =0 (3.14b)
% g2 [nio - 1] (3.14¢)

in which Eq. (3.14c) expresses/the potential of plasma wakefield. Equation
(3.14a) and (3.14b) can be solved from the integration over ¢. Since the plasma
keeps stationary until the driving pulse passes through, the boundary conditions

for the two equations v = 1, n = ng and 3, = 0 are applied and give the solutions

Y(1=5)—¢=1, (3.15a)
n(l — B;) = ne. (3.15b)

So that the ratio of n/ng is given,

n 1 Y

nOil_Bz

and its quadratic form can be expressed as

(:) N (1—1@)2 e fw N (1—ﬁz><iiz><1+¢>2

26



with 72 = (1 +a?)/(1 — 3?). Hence the differential equation of ¢ is written as
@ = k2 o 1
ac2 ? | ng

2 B

kp 1- Bz

kp [(1+a?)

= 2Tt 3.17

 [mrer 47

and the plasma wakefield normalized by Ey is obtained as 9¢/9¢. We then

express the plasma quantities in terms of the fields a and ¢ as

/o =1+ %[(1 +a?)/(1+6) — 1] (3.180)
= [ta+ (1482201 + ) (3.18)
B.=[1+a*—(1+¢)?/[1+a*+ (1+9¢)?. (3.18c¢)

Considering the weak field limit ¢ < 1, Eq. (3.17) becomes
<3§; + kg) i %3@2 (3.19)
after taking the Taylor expansion to the first'power. This equation reduces to
that in linear case (Eq. (3.8)).
Since Eq. (3.17) is fullynonlinear, its-analytical solution only exists for a
circularly polarized laser pulSe with a square pulse profile as the laser envelop,
ar, = ag for —L < ¢ < 0 and ay, =0 otherwise [54, 55, 56]. For simplification,

we rewrite Eq. (3.17)

P 1[a?

with ¢ = 1+ ¢, ¢/ = ky¢ and a® = 1 + a® It can be integrated by first

multiplying /¢’ on both sides

2 2

a2 oc 2l o
Then we get
9o\ 2
- )

where C; = o? + 1 is the integration constant determined by the boundary
condition that dp/9¢" = 0 and ¢(¢’) = 1 at ¢’ = 0. Within the pulse that
—L < ¢ <0, the formal solution for ¢(¢’) is [54, 55, 56]

9 1/2
¢ = —2aE(0;, k) + 2 ((O‘_‘P;(‘p_l)) : (3.22)
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with

0*(p — 1))”2

01‘ = arcsin (Mp

and

E(0,k) here is the incomplete elliptic integration of the second kind and the

second term on the right hand side of Eq. (3.22) indicates that ¢ is allowed

2 2

to lie in the range 1 < ¢ < o*. Thus the maximum ¢ = o occurs at (' =
—2aE(k;)(E(k;) = E(r/2,k;)) which gives the optimal pulse length
2 A
L,=—aE(k;)~ -2
(PR =5

fora~1(k; <1, E(0)=mn/2), and

Rl
™

for a > 1 (k; ~ 1, E(1) =1): We notice when'¢" = —4aFE(k;), ¢ = 1 implies
¢ = 0. There is no wakefield excited behind the pulse.
Next with the laser pulse ofdength &= Lq..the equation of the plasma wakefield
potential behind the pulse ((".<:—L and a = 0) is
2

(g?) = —é —p+Cy, (3.23)
where Co = o + 1/a? is given from the boundary condition (9¢/0¢")z, = 0
and p(L,) = o. The solution of ¢ is therefore

¢ =—k,L, —2aE(0,, k. 3.24
P

with

2/ 2 1/2
0, — arcsin [ “L4" = #)
at —1

at—1 1/2
(%)

Finally the axial electric field F, (wakefield) related to ¢ is

and

3

E ~
z Ez = - 87(10 P
Ewb aCI
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Figure 3.2: Density variation dti'="n — ng (déshed curve) and the axial electric
field E, normalized by Ey (selid ¢urve). The Gray shaded region is the Gaussian
pulse, a = ag exp[—(¢ + 5)%/2%] with ap =1:5.

and the field is given by Eq.7(8:23):such that

_ 1 1
E2 = —— o5 +a
%) (0%
1 1
— 2 _ I
- % ¢+1—|—a3 1+¢

Because E, is /2 offset with ¢, E, reaches the maximum when ¢ reaches 0.
So that the maximum Ez is

2
~ ag

Ezmax = T
V1+ad

We notice that in highly nonlinear regime ag > 1, Eomax ™ agp, the acceler-

(3.25)

ating gradient is linearly proportional to ag, while in the linear regime ag < 1,
E, ~ a, the accelerating gradient is proportional to the quadratic of ag, which
is consistent with the result in the linear regime Eq. (3.10).

If in general cases with arbitrary laser pulse shapes, numerical calculations
are essential to solve the equation Eq. (3.17). Assuming a circularly polarized

gaussian pulse, a(¢) = ag exp[— (¢ — (2 /2?)], we plot the solution of Eq. (3.17) in
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Figure 3.3: Density variation dn =shl=ng (dashed curve) and the axial electric
field E. normalized by Ey (solid curye)-for. Gaussian pulse a = agexp[—(¢ +

5)2/22%] with ag = 0.1.

Fig. 3.2 and 3.3 for ag = 1'5 and 0.‘1.‘ Herethe solid curve presents the plasma
wakefield and the dashed curve présents the density perturbation dn = n — ny.
In the nonlinear case (ap = 1.5), the'plasma wakefield exhibits a sawtooth-like
shape and the plasma density piles up as a delta function. These were caused
by the totally expelled electrons from a strong laser ponderomotive field. The
plasma density piling up forms parallel charged plates which result in a linearly-
varying electrostatic field between every two plates. As for ag = 0.1, the plot
as shown in Fig. 3.3 is purely sinusoidal, consistent with the result in the linear

regime.

30



Chapter 4

Plasma Wakefield
Acceleration in Magnetized

Plasma 11

In Chap. 3 we have discussed thel plasma wakefield under w > w.. In which
the dispersion relation in Eq-«(3.1) dpproaches a linear relation of w to k, whose
phase velocities are roughly equal to-the speed of light. It is appropriately
utilized as the driving pulse for plasma wakefield excitation. But when w < w,
the phase velocities of modes below the light curve (magnetowaves) are generally
much less than ¢ and vary with different k. Therefore a magnetowave pulse
which is composed of different modes will quickly spread out during traveling.
Nevertheless, we will show that, under a special condition (MPWA condition),
the magnetowave will behaves like the light in vacuum and can be considered as
a new type of driving pulses. In this chapter, we will focus on the magnetowave

modes and establish the general theory of MPWA.

4.1 MPWA Condition

The idea of MPWA is first working on Alfven modes[26]. Alfven wave is a
magnetic tension wave, only existing in magnetized plasma (medium wave) and

having a very low phase velocity. However for an effective plasma accelerator,
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here we instead concentrate on that whistler modes (the higher frequency mode).
The dispersion relation of the whistler wave without considering the ion motion
is given as )

2 2 2 Yy
=k _ 4.1
w c+1—wc/w’ (4.1)

When the magnetic field is sufficiently strong such that w./w > 1 and
wew/w? > 1, the second term on the right hand side of Eq. (4.1) is negligi-
ble. The whistler wave will have an approximately linear dispersion with phase
velocity approaching c. It is instructive to combine the two linearity conditions
into a chain inequality: (w./wp)? > w./w > 1. Clearly, the range of w com-
patible with this chain inequality increases with the ratio of w./wp,. In other
words, for a larger w,./w,, the dispersion relation is approximately linear over a
wider range of wavenumbers, as shown in Fig. 4.1. In the figure, there are three
dispersion relation and phase velocity cutves, plotted with w./w, equal to 1, 6
and 12 respectively. It is obvious thatsthe-curves behave likely to a normal light
wave over a wider wavenumber range while theratic w./wy is sufficiently larger.
Thus, when w./w, > 1 is-satisfied, the modes ofs whistler wave will contain
coherent phase velocities which enables-the whistler pulses to maintain their
shape over a long distance, essential for an efficient plasma wakefield accelera-
tor. Therefore, the requirement for MPWA is w./w, > 1 where the dispersion
relation is quasi-linear and the slope is near c. Such condition is referred to the
"MPWA condition”. In this chapter, the study of MPWA theory is under this

condition.

4.2 Linear Theory

4.2.1 Ponderomotive Force

Once a whistler pulse is generated, the plasma wakefield will be sequentially
excited by the ponderomotive force of the driving pulse. In Chap. 3, we have
introduced the ponderomotive force as the gradient of the laser intensity. If
we/w is not negligible, the effect from background magnetic field should be
taken into account. The non-relativistic ponderomotive force in magnetized

plasma has been studied extensively in the past [57, 58]. Assuming an external
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Figure 4.1: (a) Frequency and (b) phase velocity versus wavenumber for dif-
ferent magnetic field strengths. When w./w, > 1, the dispersion relation is
approximately linear over a wider range of wavenumbers with phase velocity

approaching the speed of light.
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magnetic field in z direction, according to [57], the longitudinal ponderomotive

force acting on a unit volume is given as

cw) ~1IBL kO [W(ew) —1)] IEL* 9p

fa = 167 0z 16mw? Ow ot 0z’

(4.2)

where p is the kinetic pressure and e(w) = N?(w). N(w) is the refractive in-
dex for waves propagation along the magnetic field in plasma (for whistler wave
e=1-wl/w(w—w)). EL is the slow-varying electric component of the wave
E; = 1/2(E_ e ™! 4 c.c.). Because whistler wave is a right-handed circularly
polarized wave, it’s electric field can be written as E; = E (1,7)e**. Substi-
tuting e(w) and E; into Eq. (4.2) and ignoring the effect of kinetic pressure, we
arrive at

fz = i [_ %2:

81 | w(w—we)

OE? N kwy 9 T )aEi
0z 8T dw' w—w. Ot
1 wied 9E2  kw? we OE?

( 2] ot

871 w(w=w.) 02 -| 812 [(w — w.)

w,

9 (o e Al (43)
(o SO .

8T Wity W =)’

When taking the w./w =0limit; the expression (4.3) reduces to

fo=—g-—F5 =—mc nofz(?)

which is the ponderomotive force in unmagnetized case.

4.2.2 Linear Formulation

With the ponderomotive force given above, we are able to calculate the plasma
wakefield driven by the whistler pulse. Substituting Eq. (4.3) into the second
term of the right hand side of Eq. (3.2d), the linear plasma wakefield can be
formulated with v ~ 1 through the set of 1-D fluid equations (Eq. (3.2a),(3.2b)
and (3.2d))

0% o n

on 0

i ca(nﬁz) =0 (4.4b)
05. 0o I

ot 0z  cmng (4.4c)



Under the MPWA condition where w./wy, > 1, the phase velocity vy, = w/k ~ ¢
and the whistler pulse with central frequency w would roughly travel at a group
velocity vg ~ vpp ~ c. So that we can still rewrite the fluid equations in terms
of the coordinate (¢,7) where ( = z — vyt = z —ct and 7 = t. Applying the

QSA, we rearrange these equations as

8N8

SN = o0 =0, (4.5)
e = g?+;@+w£%ﬁa>m%%i—wa§Ei

= C¢+2W§CEL, (4.6)
a<2¢ kN (4.7)

where N = (n — ng)/no. Combining equations Eq. (4.5), (4.7) and (4.6), we

obtain the equation for ¢

2 2 1 k12762 2
— —»E
(ac + kp)¢ 9 m202(w s wc)2 1
fsar & (4.8)
2001 — w. /WP

From Eq. (4.8), we noticethat'the denominator of the source term is quadratic
so that this equation is applicable to-waves with frequency both upper (R wave)
and lower (whistler wave) branches. However there is a singularity for w = w, in
which the plasma will resonate with the cyclotron frequency w,. and eventually
get heated. Therefore the wave propagation is forbidden. When w is extremely
high compared to w,, the effect of w. can be ignored and Eq. (4.8) reduces to
the normal laser plasma wakefield equation in Eq. (3.8). With a fixed pulse
frequency, the wakefield amplitude increases as the background magnetic field
strength increases[43]. But for a whistler wave which has a frequency smaller
than w., the plasma wakefield amplitude decreases as the magnetic field in-
creases.

We can solve the analytic solution of Eq. (4.8) readily via the Green’s function
with the boundary conditions ¢(¢ — c0) = 0 and 9¢(¢ — 00)/I¢ = 0 applied.

The solution reads

kp

o0 = Y [ sl (¢ - ) (19)
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E. 9 k 2 (P ,
Ew,,:;:pa? _ —;(l_jj/%)z/c dc“cfg)(c)cos[kp(c—cn
2
= X(C)dﬁ, (4.10)
with
x<<>—2’“;% /< ac'a®(¢") coslkp(C — )] (4.11)

Compared this result to that of the unmagnetized case in Eq. (3.10), E.(¢)
has a multiplied factor 1/(1 — w./w)? from the influence of background mag-
netic field. We may have an extra gain in the accelerating gradient with w./w
approaching unity. For a circularly polarized Gaussian wavepacket of width o,
ie., B2 = E% exp(—(?/0?) , the factor x(¢) can be calculated analytically as
following [59]

x(¢) = gkpa exp(—kﬁaz/Q) cos(ky(). (4.12)

4.3 Nonlinear Theory

4.3.1 MPWA Conditionin-Relativistic Regime

In astrophysical environment, the amplitude of magnetowave could be very in-

tense and the plasma quiver motions become highly relativistic. In turn, the

electron effective mass will be increased by a factor v = (1 — 82 — 32)~1/2,
causes the dispersion relation of whistler wave as
2 2
w w
w? =2k + pi/V =K+ —2 (4.13)
1—we/yw 1—w/w

in which w), = w,/\/7 and w, = w./7. To ensure the linear dispersion relation

with slope ~ ¢, the MPWA condition in the nonlinear regime requires w;, /w;, > 1
or we/wpy > /7.
4.3.2 Nonlinear Formulation

Considering the v factor, the ponderomotive force from whistler waves in rela-
tivistic regime becomes more complicated. It is not intuitive to write down the

equations involving the ponderomotive force. So that we can only treat the full
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fluid equations (Eq. (3.2a) to (3.2¢)) such that,

0 0

8—? +o-(n:) = 0,

%(vm) = C;j iwef1,

d 09

%(’Yﬂz) = C& - 7(/690 y ﬁyBx)y
dy

*i(ﬂmEm + ﬂyEy + 5zEz)'

Transforming the above equations into the ({,7) coordinate and assuming

the QSA condition, we obtain

ng = kﬁ(n% - 1), (4.152)
aag[ (1-6.)]=0, (4.15b)
g{(vﬁl — @)= z% : [—ﬁ,@z’ (4.15c¢)
~(1- %) Cvﬂz s, -aB) (50

- 6z) < = Z‘f = (BB, + 6,B,) (4.15¢)

in which the total time derivativeid/dt is replaced by —c(1—03,)0/0¢. Under the
MPWA condition where vy, ~ ¢, the Maxwell’s equation VxE= —(1/¢)0B/0t
claims

OcE;, = O0O¢By

0E, = —0:B,.

Hence all B components in Eq. (4.15d) can be replaced by the E components,

(U= )5 (08) = 5 =~ (Baa — B, ). (4.16)
Substituting Eq. (4.15¢) into Eq. (4.16), we obtain
C(aﬁ (1 - 4.)) =0, (4.17)
and together with Eq. (4.15b),
¢—~(1-8:)=-1, (4.18a)
n(l—B.) =mng (4.18b)
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after integrating over ¢ and applying the boundary condition. They are in the
same forms as those in the unmagnetized plasma case (Eq. (3.15a) and (3.15Db))
[45]. The main difference between the two cases is on the Lorentz factor v which
defines (1 — 32 — p2)=1/2.

We can solve the transverse fluid velocity 3, directly from Eq. (4.15¢). Under
the QSA, the transverse 3, is obtained as

a
B = [o—— (4.19)

T OB
We note that in magnetized plasma the condition for non-relativistic case where
v~1, 61 <1and 8, < 1 requires ¢ € w./w — 1 (a < 1 for unmagnetized

plasma). Thus, the system could be still in non-relativistic regime even with

ap > 1 so long as w./w is much greater than ag.

With ) solved in terms of a«(Eq: (4.19)); we have

a2

2
(1 2 _L)
wy(I=B;)
Therefore by combining Eqr (4.20),(4:18a) :and i(4:18b) , the Poisson equation

V0L =156 =1% (4.20)

for the plasma wakefield (Eq. (4.15a)) becomes

¢ k2 a® 1 B
DS i F eSO 2y
w(l+¢)

which is also valid in all frequency ranges (Appendix B). We discuss the equation
in two limits. For w > w, (w./w — 0), this equation reduces to that in the
unmagnetized plasma (Eq. (3.17)) [45]; and for ¢ < 1, it is easy to show that
Eq. (4.21) returns to the non-relativistic MPWA equation in Eq. (4.8).

4.3.3 Numerical Results

Since Eq. (4.21) is fully nonlinear, there is no analytical solution found to the
equation. Thus the only way to solve the equation is numerical calculation. As-
suming w./w = 5, we plot the solutions of plasma wakefield in Figs. 4.2 and 4.3
with ag = 1 and ap = 4 respectively. The plasma is driven by the whistler

gaussian pulse with a width v/2(c/w,). The solid curves denote the plasma
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Figure 4.2: Density variation dn/n and axialfield F. for whistler gaussian pulse

located at ¢ = —5(c/w,) and ap = 1!

wakefield amplitude normalized by Eip and'the dashed curves superimposed in
the figures are the plasma dépsity variation on/mn.= n/ng — 1 in terms of fields
a and ¢ derived from Eq. (4.18b), (4:18a) and (4.19). In ap = 1 case, where
ap < we/w — 1 = 4, the plasma wakefield behaves like sinusoidal. But in the
other case, the plasma starts piling up and the associated axial E, (the plasma

wakefield) becomes sawtooth-like when ag = 4.

4.4 Limitation of MPWA

By looking at the successful derivation of MPWA equation, we note that the
right hand side of Eq. (4.21) becomes singular as 1 + ¢ — w./w. In such
a limit, both the slope of E, and the plasma density become infinite, which
indicates the occurrence of wavebreaking. Beyond this point, the development
of plasma waves is expected to become turbulent due to the instability, and
our fluid equation analysis will break down. The electric field is expected to
remain finite since the amplitude of a relativistic plasma wave is proportional

to 7 = (1 — B2 ax) "/ Where (. max is the maximum electron velocity in

zZ,max
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Figure 4.3: Density variationdn/n andsaxialfield+E, for whistler gaussian pulse

located at ¢ = —5(c/w,) and ag = 4!

the wave. The above infinite-density situation would not occur if the strength
parameter ag is smaller than an upper bound.determined by the ratio w./w and

the shape of the whistler pulse[60].
In order to study the sensitivity of w./w = b to the limit of ag, we compare

three results of Eq. (4.21) corresponding to b=0,0 < b < 1 and b > 1.

4.4.1 Three Cases

.b=0

to

2

When b = 0, there is no background magnetic field, Eq. (4.21) can be reduced
o a”

acr? L@z 1}’

where ¢ =1+ ¢, a® =1+a and ¢’ = k,(. Assuming a circularly polarized

1

2

(4.22)

square driving pulse with a(¢) = ag for —L < ¢ < 0, and a({) = 0 elsewhere,

the equation within the pulse is integrated by multiplying d¢/9¢" on both sides
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Figure 4.4: The plots of (a) |E.| and (b) [1/E’| versus ¢ with b =0 and ag = 3,
where ¢ =1+ ¢ and o = 1 + a3.
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of Eq. (4.22). Subjecting the boundary conditions ¢(¢') =1 and (9¢/d¢") =0

at ¢’ = 0 to the equation, we arrive at

Oy 2 a?

L) =E? = —— —p+a’+1, 4.23

(84’) o 7 (4.23)
= (®— o) (1—30) > 0, (4.24)

where E, = E,/E,. The quadratic E., on the left hand side of Eq. (4.24)
restricts the product of a? — ¢ and 1 — 1/¢ to be positive. Hence the two
terms have to be both positive to satisfy the inequality and ¢ is constrained to
be 1 < ¢ < a?. Another possible solution to the inequality with both terms
negative is ruled out because no overlapped ¢ for ¢ < 1 and ¢ > o2 exists.
Thus from the inequality solution of ¢, the maximum ¢ is o? at an optimized
length where dp/9¢’ = 0. There is no upper bound for « and neither is the
plasma wakefield potential. We,can clearly show that in the plots of |E’| and
[1/E.| versus ¢ (Fig. 4.4(a) dnd Fig, 4%4(&a)):

2. 0<b<1

Following the same strategy; we find E2“from the integration of Eq. (4.21) in

0 < b <1 case,

2 1 2
E? = —¢afb_;_¢+1ci)b+2’ (4.25)
= (p-1) S B S ) (4.26)
b—p)b-1) » -

Again, in order to satisfy the inequality, one requires a3/(b—¢)(b—1)+1/p—1 >
0. It is easy to show that, for b < 1, the range of ¢ is solved as

2 2
2 Qg 2 _
b+1+b+\/(1 p+1+0b)>—4b
2 )

1§90§1

(4.27)

where the square root is always real because of the reason, (%ﬁb+1+b)2—4b >
(1(17_3,5)2 + (1 = b)? > 0. Therefore the maximum of ¢ is determined by ag and b
and no upper bound on ag exists. From Eq. (4.27), when By (or b) increases,
the maximum ¢ as well as the maximum FE, also enhance accordingly, consistent

with the conclusion by P. K. Shukla in Ref. of [43].
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Figure 4.5: The plots of (a) |EZ| and (b) |1/E.| versus ¢ with b =5 and ag = 2.3
(< Vb —1(vVb—1) =247).
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3.b>1

Finally we treat the MPWA case which has b > 1. Unlike the two previous

cases, the range of ¢ is solved as

a? a’
Ty T+ (2 +1+0)°—4b
b>p> 5 (4.28)
or equivalently
a? a?
Tyt 1A=\ [(7 2 +1+0)2—4b
l<ep< (4.29)

Mathematically, if the square root \/(a2/(1 —b) + 1+ b)2 — 4b in the nu-
merator is real, then there exists two solutions for the range of p. It can be
traced back to the formula of 8, (Eq. (4.19)) in which a small ag allows two
possible solutions for £, s, i.e., 8. &ibhor8, ~ 1 when v — b/(1 — 3,). For-
tunately, the boundary conditions; 3, (0) = 5.(0) = 0 and v(0) = 1, help us to
eliminate the non-physical solution-3=r>1. Figure. 4.5 is the plots of |E./| and
|1/E.1| versus ¢, clearly exhibiting the-two branches of . We can see that in
the left branch FE. is bounded by Eq=(4:29)5 similar to Fig. 4.4, and in right

branch E! will diverge even if‘gg:is small.

However once the square root \/(ag /(I — b) + 1 + b)2 — 4b is not real, the ¢
is no longer determined by the combination of ag and b, but only bounded by
1 and b, as shown in Fig. 4.6. The two branches have merged together. In this
situation, there is no physical solution. As a result the magnetowave induced
plasma wakefield driven by a constant pulses will has an upper limit on ay such
that

2

(la_ob F140)2>4b, or ap< (Vb —1)Vb— 1L (4.30)

4.4.2 Maximum of MPWA

When b > 1, the upper limit of ag is linear;y proportional to b. Beyond the
upper limit of ag, where agmax = (\/5 —1)v/b — 1, the plasma becomes dramati-
cally turbulent and no plasma wake can be generated in this case. Therefore the

plasma wakefield amplitude would also have a maximum, determined by agmax-
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Figure 4.6: The plots of (a) |EZ| and (b) |1/E%| versus ¢ with b =5 and ag = 3
(> Vb —1(vVb—1) =247).
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In our analysis, we only take the square driving pulse as the example. Never-
theless, we can still predict the maximum wakefield amplitude in real cases from
the estimation. Assuming b = 20 and ag = 15.1(< (Vb — 1)v/b— 1 = 15.135)
of the pulse, the maximum of ¢ is calculated as 4 from Eq. (4.29) at an opti-
mized distance with dp/9¢" = 0. From the equation that describing the plasma
wakefield behind the pulse,

we have

with C an integration constant, obtained from the boundary condition 9p/9(’ =
0= _1/90771(136 — Pmaz T Cl- Hence E;;Q = _1/90 —p+ 1/<pmam + Pmaz- The

maximum of E’, occurs at ¢ = 1 orih =0L:So that

E oz = Eemagf Bl = \/"1 = L+1/4+4=15

Since the square driving pulse could deposit most ofithe energy into the plasma,
we may expect a higher upper bound on'ag for a realistic driving pulse profile
and therefor a high maximum ‘E;i-As a conclusion, we may estimate E,,,q. 0Of

MPWA to be (1 — 10)Eyp.
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Chapter 5

Particle in Cell Simulation

5.1 Introduction

We have analytically establishedithe general MRWA mechanism in the previous
chapter. In order to confirm the theoreticalimodel of the acceleration gradi-
ent (G = eE,) and investigate the dynamical behavior, a self-consistent study
of MPWA process via coniputer;simulationis necéssary. Generally, there are
three schemes classified for the plasma simulation: the fluid scheme, the parti-
cle scheme and the hybrid. The particle scheme integrates the Newton-Lorentz

equations of motion

dr
- .1
pm v, (5.1a)
dyv e v
= - E(E+ZXB> (5.1b)

in the self-consistent electric and magnetic field configuration determined by
the solution to Maxwells equation. In our work, we conducted the particle
simulation using particle-in-cell(PIC) method which uses the particle scheme
and is widely performed in plasma simulation.

Historically the roots of PIC method can be traced back to the self- consistent
calculation performed by Buneman[61] and Dawson[62] in the late 1950s [63].
It is not until 1970s that the PIC scheme was formalized and coded. In the fol-
lowing decade, the class textbooks were published by Birdsall and Langdon[64],
and Hockney and Eastwood[65]. Figure 5.1 shows the general flow chart of
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PIC algorithm [64]. In PIC simulation, each single particle represents many
particles to simulate the real plasma. Therefore each particle is introduced a
finite-size to suppress the short range coulomb force between two particles[66].
The simulation box was divided into meshes. As an initial condition, particles
are defined in continuum space in both position and velocity which are offset
by half time step for the leap-frog scheme. The fields are defined at discrete
locations in space. Particle density p and current density J for the field equa-
tions are accumulated from the particle locations to the nearby discrete mesh
locations. Then the fields are advanced one time step from the updated rho and
J. In sequence particles experience the field force interpolated from the discrete
grids and then update their locations and velocities. Next the boundary condi-
tions for particles are applied and the time step loop repeats iteration.

In the early days before the PIC method was developed, the particle simula-
tion of plasma calculated the Coulomb;foree between every two particles, taking
an N2 operations for N particles. It becomes éxtremely inefficient when N is
large. Later on, the PIC me¢thod madeé |a-great, improvement of scaling in N by
imposing the computational meshes on which to compute Poisson equation [63].
Therefore, the PIC methodris popularly-applied nowadays in the simulation of
plasma devices, plasma accelerators, space plasma and astrophysical jets., etc.

for its accuracy and efficiency.

5.2 The emlda” Code

For our work, we used a PIC code called "emlda”, originally composed by
R.Sydora [67] for 1 and 1/2 dimensional and fully relativistic electromagnetic
problems. In this code, the Heaviside-Lorentz unit system was set up in order
to eliminate the 47 factor in electromagnetism for convenience. I will discuss

the details of the code in the following sections.

5.2.1 Simulation Unit

Usually computer simulations deal with dimensionless quantities for simplifica-
tion. Some basic physical quantities, such as time, length and mass are nor-

malized by the real plasma quantities. In emlda, the charge and mass of a
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Figure 5.1: The general flow chart for the PIC scheme.
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particle are normalized by the electron charge and electron mass and the time
is normalized by a single plasma period (¢t = wpt,, where the subscript r means
the real quantity). Accordingly the frequencies are normalized by the plasma
frequency w, which is set to be 1. To find the scaling law of the field strength

FE and B, we may rewrite the Poisson equation as
V- E, =edn.

and then multiply e/m and divide by wg on the both sides
v-(eE" )C_‘S".
mewp ) wp Mg

E
V.irzv.E:(Ln’

(&Ewb) no
c

where E = E,/(wp/c)Eywsp is the electric field normalized by (wp/c)Ews. Since

Finally we obtain

Maxwell equations tell us E =13,,B in electromagnetic waves, the magnetic
fields are automatically normalized in the ‘same-way. At last, we have the

corresponding normalized plasma momentum definéd as u = v3.

5.2.2 Charge and Current Densities

The charge and current densities on"the grid are determined by weighting the
charge of each particle between neighboring grid points. In emlda, the charge
and current densities on the grid are obtained using the subtracted dipole
scheme(SUD)[68] which performs with more accuracy and requires less stor-
age and computation. This method follows: Assuming a particle with charge g,
and current g,v, at position z;, the charge and current are distributed to the

nearest grids Z; and its two neighbors, Z;,, and Z;_1,

A

‘Zl ZJ‘<5,
R
p] Av
qpV
5 = W
q
pj+1 = izp

) _ ApVyp [ Zi — 4j
Lo = % ( - )



where the subscript j denotes the grid j and A is the grid length taken to be
unity. For z; = Z; + A/2, the charge density at the neighboring grid will be

pj:l:l = :Eqp/4A.

5.2.3 Field Update

Once the charge density on the grid is given, we can solve the electrostatic

potential and the associating electric field in k space from the Poisson equation,

sm(k
o = 0

sm(k
B, — (k)/)k

where the source py is multiplied by a smoothing function sm(k),
sm(k) = exp(—(ax - k)S™P).

The smoothing function is setup in order to attenuate the short wavelength
components caused by the*possible short range ¢ollisions between the single
particle that represents many ‘particles. “Fherefore the smoothing function de-
fines the shape of the finitessize particle.-Fig..5.2 shows the smoothing function
with different coefficients in ag and smp. The'selid, dashed and dotted curves
represent the function sm(k) = exp(=k?), exp(—(2k)3), and exp(—(4k)?) re-
spectively. Once ¢ and E,; are solved, the electric field in real space can be
quickly computed from the inverse FFT of E.j.

Next the Maxwell equations of transverse electromagnetic field (E;, B, ) in

k-space are given as

aElT(tk,t) = —ick xB(k,t) = J (k1)
5]337(:‘»75) = —ick x E (k1)

We solve the above equations using the finite difference method with time
central leapfrog scheme to stagger B at nAt coinciding with the velocity (see

Sec. 5.2.4) and E at time level (n — 1)At. The equations then become

E"2(k) = EVY2(K) +icAtk x BT (k) — sm(k) - 7 (k) At

Bl (k) = B'l(k)—icAtk x ETT?(k) (5.2)

51



g | -
5
04t ]
0.2? o4k’ N
00;‘ T S S RS S SR ““\““;
0.0 0.1 0.2 0.3 04 0.5 0.6
k

Figure 5.2: The smooth function with different parameters. The solid, dashed
and dotted curves represent the function sm(k) = exp(—k?), exp(—(2k)?), and
exp(—(4k)?) respectively.

after inserting the smoothing function, where n istthe time series. ET_l/ 2(k)
is solved prior to B, components. ~After advancing to E?_H/ *(k), Ey (k) is
transformed back to real space-andthe eutgoing boundary condition is applied
by multiplying a masking function f(Z;)-to this'tield. Fig. (5.3) shows the plot of
the masking function used in the code. "nedl” (= 22) and "nedr” (= Ny — nedl)
defines the box edge where the transverse electric field starts to attenuate. The
function f(Z;) is unity until Z; reaching the edge and beyond that, f(Z;) will
quickly drops to the half.

B’Iﬂ(k) is updated after we apply the boundary condition to ET'I/ 2 (k).
Since the Maxwell equations are solved in a discrete time, the stability of the
electromagnetic wave determined by the choice of At should be concerned. To
find the Courant-Friedrichs-Levy(CFL) condition for stability, we consider the

vacuum case (J = 0) and substitute Eq. (5.2) with the assumptions that

E|(k,t) = Ey(k)e whr1/2at
B, (k,t) = Bo(k)e_i“’”m.
It gives
R SW (5.3)
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Figure 5.3: The masking function with ncdl = 2% and ncdr= Ny — ncdl

which approaches the correct behavierthat. c?k* = w? as At — 0. For finite

At, there are real solutionsfor w onlyif
ek(At/2) <. (5.4)

If the inequality is not satisfied then the selutions of frequencies are complex
and the system is unstable. This condition Eq. (5.4) implies that the time step
At is limited by the largest k-mode.

5.2.4 Particle Update

In calculating the integration of particle equation of motion, we construct a
leapfrog scheme with the particle positions defined at (n—1/2)At and velocities
at nAt. So the finite-difference form for the Lorentz-Newtonian equations in

Eq. (5.1a) and (5.1b) becomes

sz/Q = z?fl/z + vl At,
A n+1 n BT-L-H/Q
vt = vy i E?H/g + Az +VZ2) = ) (5.5)
m; C
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where B?H/Q = (B} + BI"™')/2. The fields are inversely interpolated from

spatial grids to the particle locations with the same weighting,

Zi—Zj Zi—Z‘

E(ZZ) = Ej + Ej+1 —

E;

Zi — Zi —

7
-B,.

j
Bji1—

To effectively solve these equation, we perform a time-splitting method[69]

and define

_ n o GAL_ni1/2
Vi = Vv + 2mi Ez 9 (56)
1At n
vio= V?+1 _ %iat E; +1/2 (5.7)
Zmi

to be substituted into Eq. (5.5). It gives

At
vj -V, = i

= oo (Vi F Vi) X BT,
m;c

which represents a rotation oftmomentum associating with B. Thus by per-
forming this method, the particle is first: half-aceelerated from v™ to v~ with
Eq. (5.6) and then rotate according to Eq: (5.8).| The last half acceleration is
added in the following to obtain v —with Eq. (5.6).

5.2.5 Computation Cycle

In summarizing the steps of the code, we list the computation cycle which in-

volved in advancing the electromagnetic fields and particles for one time step[67],
Initialization: z?fl/Z, vy, E?_ﬁl/Zand B

Step 1: Advance z?_lm to z* and accumulate the current J” on the grid j

n+1/2

Step 2: Advance 2" to z; and accumulate the charge p"*/2 on the grid j
Step 3: Transform (p"*+1/2 J") to k-space giving (p"*t1/2(k),J"(k))

Step 4: Solve the E2 /2 (k) using p"1/2(k)

Step 5: Advance E"2(k) to ETT/?(k) by B" (k) and J" (k)

Step 6: Advance B7 (k) to B (k) by ETT/ (k)

Step 7: Transform (EZH/Q(k),BT’l(k)) back to real space.
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Step 8: Interpolate the field from grids to particles.

n+1

Step 9: Advance the particle vi* to v;'" " using these fields.

5.3 The MPWA Simulation

To study the MPWA mechanism, we set up a whistler Gaussian wavepacket
propagating parallel to the external magnetic field in plasma, which is a medium

wave and considered to be self-generated in the magnetized plasma.

5.3.1 Initialization

The geometry of the simulation is shown in Fig. 5.4. We deal with the plasma dy-
namics in the phase space (2, g, py, p-) with the external magnetic field imposed
along the z direction. The basic parameter inputs are these in the followings.
The total number of grids as_well as the length of simulation box in the z-
direction is L, = 2! A = 546¢/wp where Alis.the grid length taken to be unity.
The particles are uniformly distributed with average number per grid as 10.
The particle velocities including thermal and drift=are initially zero. Thus the
plasma temperature defined by:particle thermalmotion is zero for both species.
The mass ratio of ion to electron,is 2000 and the skin depth is c¢/w, = 304,
which gives a normalization factor 1/30E,,;, to the electric and magnetic fields
according to sec. 5.2.1. The smoothing function is set exp(—(2k)?3) with ax=2

and smp=3.

Whistler Pulses

To generate the whistler Gaussian wavepacket, it is essential to set a high w./w,
ratio in order to make the dispersion relation more linear over a larger wavenum-
ber range. Consequently, the pulse can travel a long distance with minor dis-
persion. During the initialization stage, the whistler wavepacket was artificially

given

B2(2) = Bolut) - oy (- 25 225 ) cos(k(2, - Zpa)
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v

Figure 5.4: The sketch of the geometry in simulation, with an external magnetic
field By imposed along the z direction. The whistler pulse is set to propagate
parallel to By.
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by the program ignoring the plasma reaction. The phase velocity G, = w/ck

was calculated from the dispersion relation,

2 w2

2 2 2 “p ip
=k . 5.8
w ¢ +17wc/w+1+wic/w (5.8)

The amplitude of pulse is linearly increased to avoid the possible spurious effect

E
E;(nt) = =—=%nt, nt < Tramp (5.9)

Tramp
until reaching the maximum amplitude F,1¢ at nt = Tiamp. The pulse then
starts to self-consistently evolve with time according to Maxwell equations.

In our simulation, two cases with w./w, = 6 (case a) and 12 (case b) are
performed. For the two cases, the time step is set to At = 0.1w,, L for case a
and At = 0.05w,, ! for case b to resolve the different w.. Considering the plasma
wavelength A\, ~ 2mc/w, ~ 188.5A, we set the wavenumber k£ = 27/60A,
27 /40A with the same Gaussian width o = 80A/ /2 for case a and b respec-
tively. They give w/w, = 298, vpn/c = 0.95:for case a and w/w, = 4.64,
vpn/c = 0.99 for case b from the dispersion relation. The pulse is initialized
at Zp = 500A = 16.66¢/wy with E g = 8.05 (0.27E,,,) and Tyamp = 100cup_1
for case a, while E o = 20(0.67E p)-andrTimy = 200%71 for case b. That
implies the associated strength parameters ag'= Eo/mcw are 0.09 and 0.14
respectively. Clearly the two cases ‘are both in the linear regime. Thus the ac-
celerating gradient G can be predicted as 0.17 (0.0057eFy;,) from Eq. (3.10) for
both cases (or more accurate results, see [43]). Figure 5.5(a) and 5.5(b) are the
whistler pulses in case a and b plotted in k space imposed with their associated

phase velocities to ensure all modes having similar phase velocities.

5.3.2 Results
Plasma Wakefield

In our simulation, the total simulation time is set 500w,, L. After the pulse was
released from the initialization (at nt = Tiamp), the whistler wavepackets self-
consistently evolve during the time. Evidently, we can see the plasma wakefield
was excited behind the driving pulses in both cases even in the initialization
stage. Figure 5.6(a) and 5.6(b) are the snapshots of the driving pulse and
plasma wakefield at At = 100w, L after the pulse released. We can see that
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Figure 5.5: The intensity plot of the driving pulses in k space (in arbitrary unit)

imposed with their associated phase velocities in case a and b.
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Figure 5.6: The snapshot of the whistler pulse (gray dashed) and the excited

plasma wakefield (solid) in case a and b at At = 100w, L after pulse released.
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the maximum amplitude of plasma wakefield in both cases is around 0.0057E,;,
and the plasma wavelength is ~ 27c/w,,, agreed with the theoretical prediction.
However in case a, because the dispersion relation is not perfectly linear, the
pulse disperses during the propagation. As a result, the amplitude of plasma
wakefield would also decrease due to the pulse dispersion.

Figure 5.7(a) shows that the driving pulse become severely spread at a
late time At = 300w,, L. The plasma wakefield is generated with a much smaller
amplitude but remains coherent. However this situation can be greatly improved
with a higher w./w, ratio as case b in Fig. 5.7(b). We see that the driving pulse
is barely dispersed even running after a long distance and the corresponding

wakefield amplitude remains constant.

Dispersion Relation

Next we show the intensity contours ofithe. driving pulses in the two cases in
w — k space. Here each time, step was set. to WAt = 0.1 for both cases. Owing
to the restriction of storage memory,=wel shrink'the simulation box size from
L, =2"Ato L, = 2'2A. *“The E, component; of the driving pulses in k space
was sampled every time step after‘the pulsereleased. The number of sampling
is N = 500 and therefore the Ssampling time is N'At = 50w, 1. So that we have
E.(tn, ki) recorded in the time series ¢, where k; = [(2n/L) and t,, = nAt.

E.(wm, ki) is obtained from the Fourier transformation of E, (¢, k),

N—-1
Ex(klawm) = Z E;c(klatn) eXp(_Z.wmtn)v
n=0

where w,, = m27/(50w,!). The result is illustrated in Fig. 5.8 where the
two contours represent the cases for w./w, = 6,12 and are superimposed with
the theoretical curves for the whistler wave dispersion relations deduced from
Eq. (5.8). The dotted line shows the light curve. It is obvious to see the contours
agree well with the two theoretical curves. we confirm that our driving pulses

were indeed whistler waves.

Energy Conservation

Without the energy supplying and dissipating process, the total energy of the
system should be conserved. It is possible to check the stability of the system
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Figure 5.7: The snapshot of the whistler pulse (gray dashed) and the excited

plasma wakefield (solid) in case a and b at At = 300w, L after pulse released.
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Figure 5.8: The intensity contours:of the driving pulse as a function of (w, k)
from PIC simulation. The light curve and the theoretical dispersion curves for

the whistler wave with w./w, = 1,6 and 12 are superimposed.

by investigating the conservation of total energy. Hence during the simulation,
the kinetic energy of particles, electrostatic field energy and the electromagnetic
field are calculated at every time step and stored. The total energy is the sum
of the particle kinetic energies and field energies. Figure 5.9 shows the plot of
the total energy versus the simulation time in the case b with the vertical axes
in arbitrary unit. We can see that, at beginning, the total energy rises up due
to the pulse initialization. After the pulse was released at T}.qmp = 200w 1, the

p

total energy maintains a constant value.
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Figure 5.9: The total energy (in arbitrary unit) versus simulation time in case

b.

Accelerating Gradient

Finally, we validate the functional dependence of the acceleration gradient given
by the solution of Eq. (4.21): I this-simulation, the w./w, ratio is set to be
12. The wavepackets are initialized with a fixed wavenumber k = 27/60A so
that the frequency of the pulse is solvedias‘w/w, = 3.1. The pulse electric field
E| is varied from 10 to 80 (in unit of 1/30E,,;) and the strength parameter ag
varies accordingly. We plot the acceleration gradient G versus the varying ag ,
as shown in Fig. 5.10. The points are the simulation data and the solid curve

is the theoretical curve obtained by solving Eq. (4.21),

O a? 1
aC2 9 I 2 1+¢)2
(1 w(l+ gb)) ( )

In addition the dashed curve is the extrapolation of the non-relativistic result,

Eq. (4.10),

a
7&C2X6Ewb7
(1-—)
w
, which is valid only in the ap < we/w—1 (~ 3) limit. We see that the simulation

data points agree well with the theoretical curve of relativistic MPWA equation.
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Figure 5.10: The plot of accelerating gradient G-wersus ag. The simulation data
points agree well with the solid curve ebtained by solving Eq. (4.21). The dashed

curve is the extrapolation of|tlie non-relativistic theoretical result, Eq. (4.10).

5.4 Summary

To summarize the study of plasma simulation, we have successfully demon-
strated a whistler gaussian pulse that can be self-generated in the magnetized
plasma and travels a sufficient distance. The corresponding plasma wakefield
is excited behind the pulse with amplitude in agreement with the theoretical
prediction. We also confirm the relativistic MPWA equation Eq. (4.21) via the

self-consistent plasma simulation.

64



Chapter 6

Applications to UHECR

Now, we have completely established the MPWA theory via analytical and par-
ticle simulation approaches. This theory does not rely on any outer source
for plasma wakefield excitation$ and involves'a linear acceleration process in
the advantage of minimizing the energy loss due to particle bending. Now
we are ready to apply this-theory to explain the production of UHECRs. By
looking at the cosmic ray spectrum; we notice that there are two crucial facts
for an acceleration model: the:differential powerslaw spectrum dN/dE oc E~3
and the high eflficiency in energy*gain:=The conventional model diffusive shock
acceleration(DSA) gives the injection power index ~ —2 for non-relativistic
and ~ —(2.2 — 2.3) [21, 22] for relativistic shocks. We will show that, the
MPWA mechanism can also produce a power law spectrum through the sto-
chastic processes with index —2 in an idea case and have a high accelerating

gradient for particles to gain energy up to 10%! eV.

6.1 Power-Law Spectrum

From our knowledge of a terrestrial plasma accelerator, the wakefields are coher-
ently excited by the driving beam and the accelerating particle rides on the same
wave crest over a macroscopic distance. Since the speed of the driving beam as
well as the wakefield phase velocity can not exceed the speed of light, the acceler-
ating particle will eventually escape the acceleration phase (the so-called phase

slippage) and the maximum acceleration distance is then determined. However
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for the astrophysical settings, the driving pulses such as the magneto-shocks,
are not so organized. Instead, they will be produced randomly by the progenitor
and a test particle would then face random encounters of accelerating and decel-
erating phases of the induced plasma wakefield. Meanwhile, some degradations
such as the dispersion of the driving magneto-shocks or phase slippage between
the test particle and the wakefield, would eventually throw the test particle out
of the acceleration phase into the deceleration phase, and vise versa. Thus fi-
nally the test particle gets accelerated and decelerated stochastically during the
particle-wakefield interactions. The particle energy distribution function f(e,t)

is then governed by the Chapman-Komogorov equation[70, 71]

%f(e) = /O:O d(Ae)W (e — Ae) f(e — Ae,t) — /0:0 d(Ae)W (e) f(e, )
—v(e)f(e) (6.1)

, where W (e, A) is the transition raté.of a'pacticle from energy € to € = Ae. The
first term at the right hand side is thejprobability rate of a particle ”sinking”
into energy e from an initial energy'e'— Aé and-the second term is that of
particle ”leaking” out of energy €. Thelast term proportional to f(e,t) governs
all possible dissipations, such:as: ¢ollisionior radiation, or both. In an ideal
condition, we may ignore the dissipation term.in Eq. (6.1) and have a purely
random acceleration-deceleration particle-wakefield interaction equation. If we
assume that the energy gain per phase encounter Ae is much less then the final
energy, i.e., Ae < ¢, we can expand the W(e — Ae) f(e — A€, t) to the second
order, that is,
W(e — Ae, Ae) f(e — Ae, t)

2
= (W(e, Ae) — gW(e, Ae)Ae + a—W(e, Ae)Aé® + .. )

Oe 0€?
0 o?
X (f(e,t) - af(e,t)Ae + @f(e,t)Ae2 +.. >
0 0? Ae?
= Wi(e Ae)f(e,t) — &W(G, Ae)f(e, t)Ae + ?W(e, Ae) f (e, t)T
(6.2)

Inserting Eq. (6.2) to Eq. (6.1), we can reduce the Chapman-Kolmogorov equa-
tion to the Fokker-Planck equation
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) a [
al@ = 3 [ _ dA)AW (e, Ac)f(e,)
N (;962/: d(Ag)ATEW(e,Ae)f(@t) (6.3)

In comparison with the Fokker-Planck equation describing the particle Brown-
ian motion in the fluid, the first term AeW (e, Ae) of Eq. (6.3) may correspond

to the the drift term and the second term is the diffusion term.

Now we can make an assumption of the transition rate W (e, Ae) for a purely
stochastic process under the following properties of the particle wakefield inter-
action: 1) in the acceleration and deceleration processes, the probability of
gaining and losing energy should be equal; 2) moreover, unlike the shock diffu-
sive acceleration in which the energy gain is proportional to the particle recent
energy, the wakefield amplitude.is independent of particle energy, that is, the
chance of gaining amount of energy, A€, is:independent of €; 3) and finally,
under a pure stochastic white noise, the chance.of gaining or losing any energy
amount Ae is the same. Based on thésé arguments, we have the properties of

the W (e, Ae):
a) W is an even function,
b) W is independent of ¢,
¢) W is independent of Ae.

It is then reasonable to deduce that[71]

1

W(@AG) = %2y’

(6.4)

where 7 is the typical interaction time between the test particle and random
plasma wakefield and G is the maximum acceleration gradient. The stationary
solution for Eq. (6.3) is easily obtained by putting the temporal term 9f /9t = 0.
Since W is an even function, the first term on the right hand side of Eq. (6.3)
should vanish because it has only one power of Ae. Sequently the remaining

equation becomes

2 00 62
%/ d(Ae)ATW(e, Ae) f(e) = 0. (6.5)

— 00
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To ensure the positivity of particle energies before and after each encounter, the

integration limits are reduced from (—o0, 00) to [—¢, €] and Eq. (6.5) becomes
82 € A 2
9 / AA)EEW (e, Ae) f(e,t) = 0 (6.6)
oe? J_. 2

Substituting Eq. (6.4) into the above equation, we can solve the equation and

arrive at the power-law distribution function,

=7 (6.7)

where ¢g is taken to be the initial energy of the proton. The power law index
is exactly —2 in the ideal case caused by the stochastic process[71]. However
the actual observed spectrum would be expected to be degraded somehow due
to the various inevitable energy loss mechanisms. The resulting spectrum is
as the form, f(e) o< 1/e~(t#) with 3 > 0. Phenomenologically, the allowed
range for § can be determined by petforniing fittings to the measured UHECR
spectrum|72].

6.2 Possible Sources for UHECRSs

On the cosmic ray spectrum, there are two kinks indicating the changes of the
power law indices. The one at 10'8"eV"(the "ankle”) is commonly believed
caused by the source transition from galactic to extragalactic. Based on that,
the UHECR origin is conventionally considered to be extragalactic. However
the actual source of UHECRs so far is not yet understood. Relying on the
Fermi mechanism, A. M. Hillas in 1984 proposed his famous plot to identify
the possible sources capable of accelerating particle to 1020721 eV[73]. If a
particle with charge Ze gains energy gradually from many irregular collisions
with magnetic turbulence, it will eventually escape the acceleration site when
its Larmor radius exceeds the accelerator of size L. As a result the maximum

energy of the particle is constrained by
Eax ~ ZBL. (6.8)

Figure 6.1 shows the astrophysical objects plotted with their magnetic field

strength and sizes.
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Figure 6.1: The famous Hillas plot, showing the astrophysical objects with their

magnetic field strength and sizes. The solid lines representing F,,q. ~ ZBL

and F.x = ZBLI are also shown.
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The green line is for the iron nuclei with an energy 102°e¢V and the solid
and dotted lines in red are for protons energies of with 10%! eV and 1020 eV re-
spectively. It is shown that several objects are possible candidates for UHECR.
However regarding the parallel magnetic field background, our MPWA mecha-
nism is not subject to the concept. Nevertheless it still provide a good thought
on the candidate sources of UHECRs.

Since the GRB and AGN are two most powerful objects in the universe, they
have been discussed in several literature as the candidate sources for UHECR
(for GRB [74, 75]; for AGN[76, 77]). With such high energies, the UHECRs are
expected to deviate only slightly from their original trajectories by the extra-
galactic magnetic fields. Consequently the anisotropy of cosmic ray direction
corresponding to the astrophysical objects can be a clue of the possible sources.
So far the observations show that the observed direction of most UHECRs are
uniformly distributed. The Pierre AugersCollaboration recently reported a pos-
sible correlation of UHECR with the nearby extragalactic AGN[78, 79]. This
finding however has not be¢en’ confirnied| by HiRes[80]. Hence the source for
UHECR remains an open issue.Here we invoke-AGN as the site for the MPWA

production of UHECR to illustrate the-etfeetiveness of our mechanism.

6.3 Application to AGNs

An AGN is powered by the gravitational energy released from the accretion disk
formed by its central super massive black hole(SBH) and typically releases its
energy through relativistic jets that extend a distance far greater than the size
of its core with negligible diverging angle. The typical Lorentz factor for the
relativistic jet is ~ 10. Since the constitution of jets is still debated, we assume
that the jets are consist of electrons and protons, with the total length from
few kpc to Mpc. Based on that, we can reasonably simplify the geometry by
modeling the jet as a cylinder(see Fig. 6.2) which contains a constant plasma
density and magnetic field strength over a large distance. The accelerating
gradient is then estimated with those characteristic parameters evaluated near
the AGN central engine.

The maximum luminosity an AGN can achieve is restricted by the Eddington
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10**pc
BH

accretion disk

Figure 6.2: The simplified e —p jet geometry with ignoring the divergence angle.
The plasma density and background magnetic field strength are considered as

constant.
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limit at which the outward radiation pressure is equal to the inward gravitational
force.

4rGMmpe

or

M M
~ 13x103(— |W=33x10*(—)L
. <M®> . (MGJ) ©

where op = 87 /2(afi/mc) is the Thompson scattering cross section for electron.

Lpsga =

4

With a central SBH mass ~ 103M,, the maximum luminosity of AGN is ~
10%%erg/s and the size of jet is roughly the size of the accretion disk ~ 3Ry ~
10~ *pc, where R, is the Schwarzschild Radius

2GM
2

R, = . (6.9)

For an AGN jet having the maximum luminosity implies the plasma density

L
n ~ 10'° () (Vfreefau) Mgem ™3 ~ 10"%cm ™3 (6.10)
Lg Vinfan
and the magnetic field,
LN v g, )
B~10* () <M> Mg V26 ~10tG (6.11)
Lg Vinfan

near the core with Mg definiing As M/ (105Me) ), Vircefanl, the free fall (or Kap-
lerian) speed, being of the order:the inward drift speed Vipgan[81]. The corre-
sponding plasma and electron cyclotron” frequencies are obtained, w, ~ 5.6 x
10% ~ 10° rad/s and w. ~ 10''rad/s and the ratio of w./w, is about 10%. The
temperature is estimated as the black body temperature in the core as

T ~ 3 x 10° <LLE> v Mg * ~10°K. (6.12)

and the Debye length is given by

T -3
Ap =1/ s > 107 m (6.13)

which is much smaller compared to the plasma wavelength A\, = 27¢/w, ~ 3 m.

Thus we ensure the validity of plasma collective effect in AGN jets.
With these characteristic parameters, it is possible to estimate the accelerat-
ing gradient of MPWA produced in jets. First we calculate the average strength

parameter ag = eEy/mecw from the following relation

2 2 2
9 e E§ e
=4dr——| = | =47r——— 6.14
%o ngcQwZ ( 47 ) szcQwQ facn (6.14)
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where uagn is the total energy density in the jets and 7 the energy fraction
imparted into the magnetowave modes. The energy density uagy can be easily
computed from the total luminosity,

Lt 1016
10~4pc)2-c-t 1039

uAGN = ¢ =10"erg/cm?. (6.15)

Our calculation so far only consider the toy model ignoring the jet divergence.
But in fact the jet divergence happens and the magnetic field and plasma density
descend as 1/72. As a result the w./w, ratio decreases as a function of 1/r since
we o< By o< 1/r? and w, o< v/n o 1/r. When the magnetowaves with phase
velocity vp, ~ ¢ propagate into a low w./wp (vpni) region, the mode conversion
process will take place[82] and the magnetowaves will be converted into the
normal electromagnetic waves to keep traveling.

Based on that argument, it is possible to estimate the luminosity of magne-
towave from the observed radio wave_luminosity of AGN, since the frequency
of magnetowave is in the range of radio wave if we take the magnetowave fre-
quency w ~ w,./2 for convenience! According to [83s84], the observed differential
luminosity to classify the low and high lutninosity; ¢lasses is

872L178MHZ =T0PWH:ztsr! (6.16)
ovof ’
at frequency 178 MHz. We are safe totake the frequency as the lower bound of
magnetowave frequency. Therefore the total magnetowave luminosity is given

by

Limag = 10% x 107 x 2w;7rerg s ~ 10*erg - s (6.17)

and we can deduce the energy fraction 7 of the order of (1073 — 10~*) from the

046

ratio of the magnetowave luminosity to the total AGN luminosity ~ 10*°erg - s.

The ap in turn can be calculated from Eq. (6.14)

€2 e 2
4 AGN
m7< 47 > (mecw)

= V103 ~10-% ~0.1. (6.18)

ao

Since ag ~ 0.1 € we/w — 1 =1, the MPWA process is in the linear regime and

the accelerating gradient G can be calculated from Eq.(4.10)
2

G = (1_“7(;)2@@ ~ 0(10)(eV /cm) (6.19)
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with the form factor x of order 1 and E,; ~ 10° V/cm for ng ~ 101%m=3 . We
notice that the accelerating gradient G is obtained with the parameters taken
in the jet rest frame.

For protons to reach energy € = 10%! eV in our frame, it only requires energy
gain 1020 eV in the jet frame with I' of bulk motion typically being 10. Thus
under the most optimized condition, the minimum distance for the protons to
accomplish € = 10%° eV is 10'® ecm (~ 0.3 pc) in the jet frame, corresponding
to € = 102! eV for 3 pc in our frame. It is quite tiny compared to the typical

AGN jet length.
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Chapter 7

Conclusions

We have established a novel acceleration mechanism for UHECR, which is based
on the wakefield excited by magnetowaves in astrophysical jets. The magne-
towave itself is a medium wave.and has a lower’phase velocity than the speed of
light. To have a good accelefating pérformance, we focus on the high frequency
and high phase velocity whistler wave. It was shown that a high w./w, ratio
is the condition for MPWA;, with wihich the-dispersion relation of the whistler
pulse tends to be linear with'a slope' close to the speed of light. We have formu-
lated the nonlinear magnetowave‘induced plasma wakefield and confirmed it via
the computer simulation. On the application to UHECR production, the mag-
netowaves are generated randomly. We expect a power spectrum for UHECR
resulting from the stochastic particle wakefield interactions. Regarding AGN
as the working source, we have estimated the accelerating gradient by putting
physical parameters of AGN and finally concluded an optimized acceleration
length required for particles to ZeV.

To summarize the content of the thesis, in chapter 2, we have introduced
the basic concept of plasma from its definition, dynamics and the dielectric
properties for waves. Plasma is a partially ionized gas. Having the quasi-
neutrality and collective behaviors, the plasma can be defined following the
three criteria, A < L, g >> 1 and wr > 1. Plasma can be described by using
fluid and kinetic approaches which are equivalent for solving problems. Since

most problems in plasma can be solved regarding plasma as a fluid, we have used
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the complete set of fluid equations to study the physics of plasma, particularly
electrostatic wave and electromagnetic wave in plasma. In the last part, we
introduced the plasma wakefield acceleration and the three types of driving
pulses for wakefield excitation.

In chapter 3 and 4, we have studied the plasma wakefield acceleration in
magnetized plasma in high and low frequency branches. In chapter 3, we dis-
cuss the case with w/w. > ¢ in which the dispersion relation approaches the
unmagnetized case and the magnetized effect can be ignored. We compared the
results of plasma wakefield with ag < 1 (linear) and ag > 1 (nonlinear) respec-
tively. In the linear regime, the plasma wake goes like a sinusoidal wave with
the maximum amplitude linearly proportional to a3. Whereas, in the nonlinear
regime, the plasma within the pulse is totally expelled from the laser center and
piled up to form a peak that leads to a sawtooth-like wakefield with amplitude
proportional ag. Taking the driving,pulse;as a square circularly polarized pulse,
we analytically derived the plasma wakefield from the second order differential
equation. The maximum of plasma-wakefield amplitude was ag/ m , 80 the
accelerating gradient G o aj while ag <1 and-G o ap while ag > 1.

In chapter 4, we studied the casefor-pulse-frequency w < w. (MPWA theory).
To implement the acceleration mechanism in:this range, the MPWA condition
we/wp > 1 was made. We concentrated’on the whistler modes and calculated
the plasma wakefield in linear and nonlinear regime. With introducing the pon-
deromotive force, we have derived the linear plasma wakefield, whose amplitude
contains an additional factor (1 —w./w) to the ordinary G obtained without an
external magnetic field. In the nonlinear regime, we made the MPWA condi-
tion contain v factors. The plasma wakefield was solved from a full complete
set of relativistic fluid equations and was also shown a sawtooth-like behavior.
When the strength of background magnetic field By increases, G’ decreases be-
cause w./w > 1, opposed to the laser case. Since there exists a singularity at
1+ ¢ — wc/wp, we would make an upper limit on ag. Beyond that the plasma
becomes unstable. Then considering the upper limit on ag, we have predicted
the maximum accelerating gradient that MPWA can reach.

In chapter 5, we performed the particle-in-cell simulation to verify this

MPWA theory. A code named "emlda” written by R. Sydora was used. In
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our simulation, we compared two cases with different w./wj, ratios, 6 and 12.
With successfully self-generated whistler wavepackets, we have confirmed the
excitation of plasma wakefield and the validity of our MPWA theory. We have
also showed that the whistler wavepacket sustains a longer distance with a higher
We/wp, 1.€., it is less vulnerable to the dispersion. This aspect is especially im-
portant for MPWA to be a viable mechanism for terrestrial accelerator since
it is essential for an accelerated particle to continuously gain energy from the
plasma wakefield in order to attain a high energy|[85].

Finally with the MPWA theory established, we apply the mechanism to
UHECR. In chapter 6, we have shown that the power law spectrum can be
deduced from the stochastic interactions between the test particle and the
accelerating-decelerating phases of the wakefield. Without taking the dissipat-
ing process into account, the power law index is ideally given as -2. Next we
discussed the possible sources for UHECGR, generation and the most recent ob-
servations from Pierre Auger and HiRes. So far this issue is still not settled. We
invoked the AGN as a possible source:and modeled the jet as a cylinder. From
the parameters estimated mear the AGN - €ore -and-the observed luminosity of
radio waves, we have obtained the-aceelerating gradient of MPWA in AGN jet.
It enables a particle to possibly gain energy above 102! eV in a short distance
compared to the total jet length.

In this thesis we have shown the validity of MPWA for UHECR production
with a power law spectrum and a linear accelerating gradient. But as a fist step
we only simulated the process with a Gaussian magnetowave profile. However
it is desirable to investigate our mechanism with magneto-shocks instead, which
is astrophysically more relevant. Then the investigation of the generation of
magnetoshocks in the plasma outflows becomes crucial to the next step. In ad-
dition, due to the involvement of the background magnetic field, MPWA should
be taken as a fundamental phenomena in plasma physics. We have derived the
plasma wakefield with the full relativistic fluid equations, but the other non-
linear phenomena of plasma magnetowave interaction should be investigated
in detail. It would be extremely exciting if proof-of-principle experiments on
MPWA can be pursued. With regard to the possible physical mechanism to

excite the whistler magnetowave driving pulse for experimentation, it has been
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shown that a fast ion-acoustic wave can decay into a whistler wave plus an
ion-acoustic wave[86]. It is therefore conceivable that such a decay process, or
conversely the fusion of two ion-acoustic waves, can produce whistler wave. In-
spired by this, one wonders if a similar process can occur between a light wave
and a whistler wave. If so, then perhaps a laser pulses could be converted into

a whistler wave pulse in a magnetized plasma under suitable conditions.
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Appendix A

Transverse Fluid

Momentum Equation

When an electromagnetic wayé in magnetized plasma propagates parallel to the
external magnetic field By along z direction, the plasma motions associated with

the EM fields can be described as,

o o N ¢ B
B PR, (A1)
df, ¢ b

y _ _ A2
dt E +ﬁmwc m c wy ( )

where v = (1 -2 — 7 — 32) ! is the Lorentz factor of the plasma motions and
we = eBy/mc is the electron cyclotron frequency. It is convenient to further
express the above equations in terms of the normalized vector potential a that

is related to E; and B, from Maxwell equations,

dy By o da, - dag

o = o cﬁz 8 — Byw, = 7 — Bywe (A.3a)
dyB,  Oay Oay _day

dt = ot +cB—— 92 +ﬁx We = dt + BrWwe, (A'3b)

where the total time derivative d/dt = 9/0t + ¢3,0/0z. Since the electro-
magnetic wave becomes circularly polarized when travels along the magnetic
field, we assume a right-handed polarized wave that have 3, = 8, 4+ i3, and
a = az+iay. Then we multiply Eq. (A.3b) by 7 and add the result to Eq. (A.3a),

we obtain the simplified form of the equation of motion for 5,

%(VﬁL —a) = —iws,. (A.4)
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To solve the equation, we decompose the plasma responses to the driving
pulse into slow and fast parts and assume that 5, = (4 exp[ik(] to respond
to the electric field F s exp[ik(]. E s is the envelop of the driving pulse and
explik(] is the fast oscillation part. Assuming that 3, varies according to the

scale of the pulse envelop, (8, = (3.5, we arrive at

2 . o & ﬂls ikC

by inserting 5, into Eq. (A.4). Sequently 3, is solved from integration by part

and it reads,

o We ﬂl_ ‘wcﬁ ﬂj_s ik¢ )
V81 a_kcl—ﬂz+zk208C<1—st>e +

where the second term on the right hand is expected to be suppressed compared

to the first term (quasistatic approximation). Finally we obtain the relation

between §, and a,
a

EEvr R

Having this relation substituted into.into the wave equation of a in Eq. (3.3),

Ba= . (A.5)

we arrive at

0z2 % ot? “e

9? 1. 02
[vane
_k2+w72_w712’#
2 2., _ W
w

a = 0.

by putting n = ng and a  exp[i(kz — wt)] for a plane wave. Therefore the
relativistic dispersion relation of magnetowave is obtained,

wa /7y

2 _ 2.2
=ck"+ ———.
w c +1—wc/7w

(A.6)
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Appendix B

Differential Equation of
Nonlinear MPWA

The integration of the complete fluid equations for MPWA in ({,7) coordinate

system leads to

QA=) = -1 (B.1a)

n(l'— B.) = nos (B.1b)
which is similar to the form in unmagnetized case. Therefore the relation be-
tween n, ng, v and ¢ is given

n ¥ 1

R A— . B.2
We have the Poisson equation (Eq. (4.15a)) rewritten as
0%¢ n
— = k(—-1
o¢? P (no )
1
2
- 1
k(1= 7 )
2, B
. B.3
B (B3)

The main difference between with and without magnetic field cases is on the

~ factor. With 3, solved in terms of a (Eq. (4.19))

a

BL = (B.4)

3

Iy w(lw_cgz)|
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we have

PR =1~ 1= - ;
1 — We
< w’YC‘-ﬂz))
and
2
’72(1_&3): e 3 +1

1— —e
w(l+¢)
Squaring Eq. (B.1a), we get

V(1= 5.)=(1+09)*

So that the combination of Eq. (B.5) and (B.6) results in

) (M) = (1+9¢)?

1_ﬁz

which can be rearranged as

1+ﬁz_ BZ - a2 1
Tp T T T ) ey
1+¢

The Poisson equation is finally obtained,
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