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即時獨立成分分析演算法應用於無線嵌入式腦機介面 

學生：蔡依伶    指導教授：林進燈 博士 

 

國立交通大學電機與控制工程研究所 

摘要 

為了增進腦機介面(Brain-Computer Interface, BCI)使其可適用於真實的生活

環境，線上(online)人為校正、特徵擷取、圖像事別等訊號處理技術是不可或缺

的。因此腦機介面系統必須是個便利的大小、堅固耐用、重量輕且低功率消耗來

達到可穿戴、可攜性與持久性的需求。本論文提出一個視窗移動(Moving-Window)

的獨立成分分析法(Independent Component Analysis)並應用於一個以電池供應電

源、微小化的嵌入式腦機介面。本論文也藉由模擬訊號與真實腦波訊號測試此嵌

入式腦機介面。且經由實驗結果指出視窗移動的獨立成分演算法的分離效果與同

樣離線(offline)演算法，提出獨立成分分析演算法在腦機介面上即時分析的可行

性。為了展示可穿戴式嵌入式腦機介面的可行性，本論文也實現了移動與平均

(Moving-average)頻譜分析於獨分成分分析結果的成分作用來達到即時並連續偵

測受測者的任務表現。
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Real-Time ICA Applied on Wireless Embedded 

EEG-Based Brain-Computer Interface 

Student: I-Ling Tsai Advisor: Dr. Chin-Teng Lin 

Department of Electrical and Control Engineering 

National Chiao Tung University 

Abstract 

Online artifact correction, feature extraction, and pattern recognition are essential 

to advance the brain computer interface (BCI) technology so as to be practical for 

real-world applications. The BCI system should also be a convenient size, rugged, 

lightweight, and have low power consumption to meet the requirements of wearability, 

portability, and durability. This thesis proposes and implements a moving-windowed 

Independent Component Analysis (ICA) on a battery-powered, miniature, embedded 

BCI. This thesis also tests the embedded BCI on simulated and real EEG signals. 

Experimental results indicated that the efficacy of the window-based ICA 

decomposition is comparable with that of the offline version of the same algorithm, 

suggesting the feasibility of ICA for real-time analysis of EEG in a BCI. To 

demonstrate the feasibility of the wearable embedded BCI, this thesis also implements 

a moving-average spectral analysis to the resultant component activations to 

continuously estimate subject’s task performance in near real time. 
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1 Chapter 1 Introduction 

1.1 Brain Computer Interface 

The Brain Computer Interface (BCI) system is a set of sensors and 

signal processing components that allows acquiring and analyzing brain 

activities with the goal of establishing a reliable communication channel 

directly between the brain and an external device such as a computer, 

neuroprosthesis, etc. Several existing brain monitoring technologies have 

been tested in BCI fields for acquiring data. They can be divided into two 

subcategories: i) noninvasive procedures such as the 

electroencephalogram (EEG), magnetoencephalography (MEG), 

functional magnetic resonance imaging (fMRI), positron emission 

tomography (PET), and near infrared spectroscopy (NIRS) and ii) 

invasive approaches such as the electrocorticography (ECoG) where the 

signal is recorded from intracranial microelectrodes[1]. Until now, 

majority of practical BCI systems exploit EEG signals and ECoG signals 

[1]. Indeed, since MEG, fMRI, and PET are expensive and bulky, and as 

fMRI, PET, and NIRS present long time constants, because they do not 

measure neural activity directly but rely on the homodynamic coupling 

between neural activity and regional changes in blood flow, they cannot 

be deployed as ambulatory BCI systems[2].  

1.2 Previous Work  

Over the past 15 years, BCI technology [2][3] is a research field that 

has emerged and grown rapidly. At the beginning, the purpose of BCI is 
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not only prosthesis but also is to help handicapped people [4], gradually. 

Because of the disability of muscle, handicapped people can not do things 

independently. For example, handicapped people cannot move, control 

devices without aid. Hence, to help these handicapped people, many 

researchers have devoted themselves to develop BCI. That is, as long as 

handicapped people are still cognitively healthy, they might able to move 

on an automatic wheel chair, and control the on/off switches of lamps via 

EEG recording and analysis. Through decades, it have been found in 

many studies that the cognitive state of a person can be extracted from 

brain activity [5][6]. More and more researchers are devoted to the study 

of BCI. BCI has helped handicapped to live independently. Recent studies 

in primates, human subjects of Serruya et al. [7] and Taylor et al. [8] have 

demonstrated that animals can learn to utilize their brain activity to 

control the displacements of computer cursors. Chapin et al. and 

Wessberg et al. also demonstrated that animals can learn to utilize their 

brain activity to control one- (1D) to three-dimensional (3D) movements 

of simple and elaborate robot arms [9][10]. However, many domestic 

researches were focusing on EEG data recording instead of EEG analysis 

[11]-[17]. Cheng et al. have developed wireless BCI based on steady-state 

visual evoked potential (SSVEP) [18]. They used twelve buttons 

illuminated at different rates on a computer monitor to simulate a 

telephone. Users could input phone numbers by gazing at these buttons. 

The frequency-coded SSVEP was used to judge which button the user 

attended to. Another study of Gao et al. used digital signal processor 

(DSP) to process EEG signals and wirelessly controlled appliances with 

visual evoked stimulus [19]. Pfurtscheller et al. have designed and 
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implemented an EEG-based communication device called “Virtual 

Keyboard” (VK). Classification of the EEG patterns was based on band 

power estimates and hidden Markov models (HMMs) [20][21]. Another 

research of Pfurtscheller et al. proposed an EEG-based Pocket BCI 

system that converted brain activity into control signals for left and right 

directions of a wheelchair [22]. Ashwin et al. described [23] a system that 

monitored EEG of epileptic patients to improve the quality of their lives 

and also helped healthcare providers to make a better diagnosis for 

patients with neurological disorders. The use of Bluetooth connectivity 

helps physicians to monitor patient activity while the patient resumes his 

or her normal activity. 

Independent Component Analysis (ICA) [24], which had been widely 

studied during the last twenty years, is one of popular EEG signal 

separation tools. It is a novel statistical technique that aims at finding 

linear projections of data that maximize their mutual independence. Many 

groups are now actively engaged in exploring the potential of blind signal 

separation and signal deconvolution for revealing new information about 

the brain and body [25]. In general, most of ICAs are applied to feature 

extraction [2][26][27], such as blind source separation (BSS) with special 

emphasis on physiological data analysis and audio signal processing. 

Hill et. al.[28][29][30], for example, demonstrated the use of ICA in 

an EEG-based BCI. However, in most of these studies, ICA and other 

signal-processing functions were performed offline on a personal 

computer, which hinders the wearability, portability and practical use of 

the systems in operational environments. Given the recent development 
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of embedded systems and signal processing techniques, it is now practical 

to implement these sophisticated algorithms in real-time embedded 

systems for online EEG monitoring and/or BCI. This study details the 

design and testing of a near real-time embedded BCI featuring 

window-based ICA and spectral analysis for continuously monitoring 

cognitive states of participants performing realistic driving tasks in a 

virtual reality-based dynamic driving environment. 

1.3 Motivation   

The BCI system, which allows acquiring and analyzing brain 

activities with the goal of establishing a reliable communication channel 

directly between the brain and an external device, is composed of sensors 

and signal processing components. In a practical BCI system, it is 

important to extract significant features of preprocessing recorded data 

and then to develop fast and reliable signal processing. 

online artifact correction, feature extraction, and pattern recognition 

are essential to advance the BCI technology so as to be practical for 

real-world applications. The BCI system should also be a convenient size, 

light weighted, and have low power consumption to meet the 

requirements of wearability, portability, and durability. This thesis 

proposes and implements a moving-windowed Independent Component 

Analysis (ICA) on a battery-powered, miniature, embedded BCI. 

1.4 Organization of Thesis  

In Chapter 2, it will describe that what is EEG signal and algorithms 
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implemented in this thesis, which including Independent Component 

Analysis and power spectrum analysis. In Chapter3, it will introduce how 

to implement a wireless portable EEG signal acquisition in hardware 

design. In Chapter 4, it will explain the detail of ICA algorithm and how 

to accomplish the real-time ICA (Independent Component Analysis) 

signal processing; then the method of real-time ICA will be verified with 

test pattern and real EEG signal, the procedures and results of verification 

will be described in Chapter 5. Finally it will have conclusion in Chapter 

6. 
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2 Chapter 2 Material and Method 

2.1 Introduction  

The purpose of this research is to implement the algorithm of 

independent component analysis for real-time processing applied on 

Electroencephalography signal analysis. In order to do this, it needs some 

database to test the practicability of algorithm; so it was divided into two 

parts to introduce in this chapter. One is how do we to get the data for 

signal processing in experimental environment, and the other is what kind 

of algorithm will be applied on the data processing system. The diagram 

of overview system was shown as Fig. 2-1. 
 

                  
Fig. 2-1: Diagram of Wireless Brain Computer Interface  

2.2 Material 

2.2.1 Electroencephalogram 

Electroencephalography (EEG) is the measurement of electrical 

EEG Signal 
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activity produced by the brain as recorded from electrodes placed on the 

scalp. When measuring from the scalps, recorded the EEG signal is about 

10-100uV for a typical adult human. And a common system reference 

electrode is connected to the other input of each different amplifier. These 

amplifiers amplify the voltage between the active electrode and the 

reference (typically 1,000–100,000 times, or 60–100 dB of voltage gain). 

The EEG is typically described in terms of rhythmic activity and 

transients. The rhythmic activity is divided into bands by frequency. The 

common band of EEG is shown as Table. 1. 

Table 1 : Common band of EEG 

Type Frequency (Hz) 

Delta Up to 3Hz 
Theta 4 – 7Hz 
Alpha 8 – 13Hz 
Beta 13 - 30Hz 

2.2.2 EEG signal acquisition 

An electrode cap was mounted on the subject’s head for signal 

acquisition as shown in Fig. 2-2. A standard for the placement of EEG 

electrodes proposed by Jasper in 1958, which is known as the 10-20 

International System of Electrode Placement [31] is used in the electrode 

cap. An illustration of the 10-20 system is shown in Fig. 2-2, the 

electrodes are named according to the location of an electrode and the 

underlying area of cerebral cortex 
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A B 

  

Fig. 2-2: Schematic pictures showed the lateral (A) and top view (B) of 
international 10-20 system of electrode placement [31]. 

The letters F, C, T, P, and O were refer to the frontal, central, 

temporal, parietal, and occipital cortical regions on the scalp, respectively. 

The term “10-20” means 10% and 20% of the total distance between 

specified skull locations. The percentage-based system allowed 

differences in skull locations. The physiological data acquisition used 30 

sintered Ag/AgCl EEG/EOG electrodes with a unipolar reference at right 

earlobe.  

The 34 electrodes including 34 EEG channels , and one 8-bit digital 

signal produced form VR scene were simultaneously recorded by the 

Scan NuAmps Express system (Compumedics Ltd., VIC, Australia) 

shown in Fig. 2-3. It was a high-quality 40-channel digital EEG amplifier 

capable of 32-bit precision sampled at 1000 Hz. Table 2 showed the 

specifications of the NuAmps amplifier. Before acquiring EEG data, the 

contact impedance between EEG electrodes and skin was calibrated to be 

less than 5kΩ by injecting NaCl based conductive gel. The EEG data 

were recorded with 16-bit quantization levels at a sampling rate of 500 
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Hz in this study. All EEG data were preprocessed using a low-pass filter 

with a cut-off frequency of 50 Hz in order to remove the power line noise 

and other high-frequency noise. Similarly, a high-pass filter with a cut-off 

frequency at 0.5 Hz was applied to remove baseline drifts. 

 

Fig. 2-3: Photo showed the setup of the physiological recording 
containing the NuAmps EEG amplifier and the electrode cap.   

 

2.3 Methods of Data Analysis  

2.3.1 Independent Component Analysis 

Independent component analysis (ICA) is a case of blind source 

separation, that is, we assume the signals may be mutually statistically 

Table 2: Specifications of NuAmps 

Analog inputs 40 unipolar (bipolar derivations can be 
computed) 

Sampling frequencies 125, 250, 500, 1000 Hz per channel 
Input Range ±130mV 
Input Impedance Not less than 80 MOhm 
Input noise 1 µV RMS (6 µV peak-to-peak) 
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independent or de-correlated. The goal of ICA is to separate signals 

(components) from a set of mixed signals without the aid of information 

(or with very little information) from natural sources. It is a 

computational method for separating a multivariate signal into additive 

subcomponents supposing the mutual statistical independence of the 

non-Gaussian source signals. A familiar case of ICA is the “cocktail party 

problem”, where the underlying speech signals are separated from a 

sample data consisting of people talking simultaneously in a room. 

Usually the problem is simplified by assuming no time delays and echoes. 

An important note has been considered that if N sources are present, at 

least N observations (i.e. microphones) are needed to get the original 

signals. Fig. 2-4 shows that we have N sources and mix them with a 

mixing matrix to get observed signals. 

 

Fig. 2-4: N mixed signals and N sources 

     Its linear equation is represented in equation 2-1, where A is 

described in equation 2-2. Where the s is unknown independent 

component or the element, and a is unknown mixing coefficient. The 

expression of Fig. 2-4 can be rewritten as equation 2-3, where the S is 

sources, and X is observed signals. This is called ICA model. After the 
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signal separation with ICA, the mixing matrix will be estimated; its 

inverse matrix is call un-mixing matrix as described in equation 2-4. 

Hence the original sources can be obtained via equation 2-5. 

x1 = a11s1+ a12s2 + …+ a1n-1sn-1 + a1nsn                  (2-1) 

x2 = a21s1+ a22s2 + …+ a2n-1sn-1 + a2nsn 

              . 

                      . 

xn-1 = an-1,1s1+ an-1,2s2 + …+ an-1,n-1sn-1 + an-1,nsn 

xn = an,1s1+ an,2s2 + …+ an,n-1sn-1 + an,nsn  

A = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
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⎣
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−

−−−−−

−

−

nnnnnn

nnnnnn

nn

nn

aaaa
aaaa

aaaa
aaaa

,1,2,1,

,11,12,11,1

,21,22221

,11,11211

MMLMM       

(2-2)

X = AS (2-3)

W = A-1 (2-4)

A-1 X = A-1AS  S = W X (2-5)

One approach with some information on the statistical properties of 

the signal S is to use to estimate A and to find solution of equation 2-5. 

The statistical method finds the independent components (aka factors, 

latent variables or sources) by maximizing the statistical independence of 

the estimated components. Non-Gaussianity is motivated by the central 
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limit theorem, is one method for measuring the independence of the 

components with kurtosis or approximations of negentropy. Mutual 

information is another popular criterion for measuring statistical 

independence of signals. The kurtosis of y is classically defined by 

kurt(y) = E{y4} – 3(E{y2})2 (2-6)

We assume that y is of unit variance, the equation can be simplified 

to E{y4} – 3. For a Gaussian y, the E{y4} equals 3(E{y2})2 . Thus, 

kurtosis is zero for a Gaussian random variables, kurtosis is nonzero for 

non-Gaussian random variables. Kurtosis can be negative and positive. 

Random variables that have a negative kurtosis are called sub Gaussian, 

and those with positive kurtosis are called super Gaussian. Super 

Gaussian has a spiky probability density function with heavy tail. For 

example, brain waves are super Gaussian variables while sinusoid and 

cosine waves are sub Gaussian variables. 

 

Fig. 2-5: Typical super Gaussian variables is spiky. For comparison, the 

normal Gaussian is given by a dashed line. The other is sub Gaussian. 
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A second important measure of non-Gaussianity is given by 

negentropy. Negentropy is based on the information-theoretic quantity of 

entropy. Entropy H is defined for a discrete random variable Y as 

H(Y) = -∑P(Y = ai)logP(Y = ai) (2-7)

where ai are the possible values of Y. The differential entropy is 

defined as 

H(y) = -∫f(y)logf(y)dy (2-8)

Another often used version is called negentropy. Negentropy J is 

defined as follows 

J(y) = H(ygauss) – H(y) (2-9)

The J can be simplified as equation 2-10 or 2-11. 

J(y)
12
1

≈ E{y3}2+ 
48
1 kurt(y) 2 (2-10)

J(y) ∑
=

≈
P

i 1
ki[E{Gi(y)}-E{Gi(v)}]2 (2-11)

where ki are some positive constants, and v is a Gaussian variable of 

zero mean and unit variance. G as common used is showed by equation 

2-12, 2-13 and 2-14. 
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G1(u) = 
1

1
a

logcosha1u (2-12)

G2(u) = -exp(-u2/2) (2-13)

G3 = tanh(a1u), (2-14)

where 21 1 ≤≤ a  is some suitable constant. 

Typical algorithms for ICA use centering, whitening and 

dimensionality reduction as preprocessing steps in order to simplify and 

reduce the complexity of the problem for the actual iterative algorithm. 

Without loss of generality, we can assume that both the mixture variables 

and the independent components have zero mean: If this is not true, then 

the observed signals can always be centered by subtracting the sample 

mean, which makes the model zero-mean. Whitening and dimension 

reduction can be achieved with principal component analysis or singular 

value decomposition. Whitening ensures that all dimensions are treated 

equally a priori before the algorithm is run. Algorithms for ICA include 

Infomax, FastICA and JADE, but there are many others also. 

Most ICA methods are not able to extract the actual number of source 

signals, the order of neither the source signals, nor the signs or the scales 

of the sources. ICA is important to blind signal separation and has many 

practical applications. It is closely related to (or even a special case of) 

the search for a factorial code of the data, i.e., a new vector-valued 

representation of each data vector such that it gets uniquely encoded by 
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the resulting code vector (loss-free coding), but the code components are 

statistically independent. 

2.3.2 Power Spectrum Analysis 

Analysis of changes in spectral power and phase can characterize the 

perturbations in the oscillatory dynamics of ongoing EEG. Applying such 

measures to the activity time courses of separated independent 

component sources can avoid the confounds caused by misallocation of 

positive and negative potentials from different sources to the recording 

electrodes, and by misallocation to the recording electrodes activity that 

originates in various and commonly distant cortical sources. The spectral 

analysis for each ICA component decomposed from multi-channel of the 

EEG signals. 

The time-frequency analysis, or alternatively short-time Fourier 

transform (STFT), which is a Fourier-related transform used to determine 

the sinusoidal frequency and phase content of local sections of a signal as 

it changes over time. The FFT processes for each ICA component data 

decomposed from multi-channel of the EEG signals and the processes are 

described as following Fig. 2-6.  

Fig. 2-6 shows the diagram of moving-average power spectral 

analysis [32] for a Each 32-point window was extended to 64 points by 

zero-padding to calculate its power spectrum by using a 64-point fast 

Fourier transform (FFT), resulting in power-spectrum density estimation 

with a frequency resolution near 1 Hz. Then we averaged the power 

spectrum of all the subepochs within each epoch. Previous studies [33] 
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[34] show that the transient amplitudes of EEG power spectrum involved 

in wake-sleep regulation are very different. The cortex produces low 

amplitude and fast oscillations during waking, and generates 

high-amplitude, slow cortical oscillations during the onset of sleep. Their 

reports also showed that the EEG spectral amplitudes correlated with the 

wake-sleep transition more linearly in the logarithmic scale than in the 

linear scale. The previous study [35] based on the same task and 

empirical results also confirm this phenomenon. Therefore, the averaged 

power spectrum of each epoch was normalized to logarithmic scale to 

linearize these multiplicative effects. The resultant power-spectrum time 

series of single ICA component consisted 25 frequency bins (from 0.98 to 

39.1 Hz) stepping at 2 seconds time intervals.  

 

Fig. 2-6: Diagram of moving-average power spectral analysis 
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3 Chapter 3 
Hardware Frameworks of 
Portable Data Acquisition 

3.1  Introduction  

In our experimental environment, a portable acquisition system is 

used to record EEG signals of human and to transmit the data to PC via 

Bluetooth wireless(Fig. 3-1). The hardware framework of portable data 

acquisition is divided into four parts as (1) four-channel front-end circuits, 

(2) analog to digital converter, (3) digital controller, and (4) wireless 

transmission to achieve the portability and facility. 

              
Fig. 3-1: Diagram of wireless and portable module 

3.2 Portable Data Acquisition System  

The portable data acquiring system has been used to demonstrate the 

feasibility of building the BCI system. The functions of the BCI system 

include amplifier, filter, analog-to-digital converter, wireless controller, 

and data encoding. The total gain is about 5000 times and the bandwidth 

is 1~50Hz in this system, which depend on the feature of EEG signal, 

EEG Signal  
 

Battery-powered and wearable module 
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resolution of analog-to-digital converter and the range of operating 

voltage. The diagram of the portable front-end circuit system is shown as 

Fig. 3-2 and Fig. 3-3 shows the demo board of portable data acquisition 

system. 

 

Fig. 3-2: Diagram of portable front-end system 

 

Fig. 3-3: Photo of portable front-end system 

3.2.1 Four-Channel Front-End Circuits 

The function of this front-end system in the analog part is to amply the 

EEG signal which can be converted to digital signal operatively. So the 

gain of this system is set to 5,000 times. First, the EEG signal was 

operated by Instrumental Amplifier which is regarded as preamplifier, 

and the output signal is operated by two operational amplifiers which are 

regarded as band-pass filter, finally, the EEG signal is operated by an 

operational amplifier which is regarded as gain amplifier. 
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a.  Preamplifier: 

Instrumental Amplifier (IA) is a differential amplifier and which 

has a high common-mode rejection ratio (CMRR). A high CMRR is 

important in applications where the signal of interest is represented 

by a small voltage fluctuation superimposed on a (possibly large) 

voltage offset, or when relevant information is contained in the 

voltage difference between two signals. Thus, AD620 is chosen as 

the Instrumental amplifier, and it also can provide the function of 

gain. The IA circuit design is shown in Fig. 3-4. The R1 decides the 

gain of preamplifier, and the gain is set to 10 times. 

 

Fig. 3-4: Circuits of preamplifier 

b. Band-Pass Filter 

  In this thesis, it designs to use two operational amplifiers to 

achieve the function of band-pass filter, and OPA4137 was chosen to 

be the amplifier. OPA4137 can be supplied by single (+4.5V to +36V) 

or dual (±2.25 to ±18V) power. In the high-pass filter, the cutoff 

frequency is 1Hz and was decided by passive components R2, R3, C1 
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and C2, and the 3dB cutoff frequency 
2 3 1 2

1
2Lf R R C Cπ

= . 

 

Fig. 3-5: High-pass filter circuits 

 For a band-pass filter, the low-pass filter is designed as shown in 

Fig. 3-6. The passive components R7, R8, C3, and C4 decide the 3dB 

cutoff frequency 
7 8 3 4

1
2Hf R R C Cπ

=   and thinking about the effect of 

AC 60Hz and the frequency range of EEG signals which this research 

want to observe, the 3dB cutoff frequency is set to be 50Hz. It 

combines the high-pass and low-pass filter to be a band-pass filter, and 

their simulation results of circuits are shown as Fig. 3-7  

 

Fig. 3-6: Low-pass filter circuits 
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Fig. 3-7: Simulation results of band-pass filter 

c. Gain Amplifier 

This part is to amplify the analog signal to attend the range 

which ADC can convert. This amplifier also chooses OPA4137 to be 

the operating amplifier, and the gain of gain amplifier is 50 times 

which was decided by R6 and R7 shown in Fig. 3-8. 

 

Fig. 3-8: Circuits of gain amplifier  

-3dB 

46.895Hz 1.000Hz 
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Fig. 3-9: Analog acquisition module 

3.2.2 Analog to Digital Converter  

In this system, by passing the signal through wireless, it needs an 

analog to digital converter to convert the continuous signal to discrete 

number. To suit with the filtered and amplified signal from front-end 

circuit, AD7575 was chosen to be an ADC converter on this data 

acquisition system. The AD7575 is a high speed 8-bit ADC with a built-in 

track/hold functions. The successive approximation conversion technique 

is used to achieve a fast conversion time of 5 ms, while the built-in 

track/hold allows full-scale signals up to 50 kHz (386 mV/ms slew rate) 

to be digitized, the specification of AD7575 is shown as Table 3. The 

AD7575 is designed for easy interfacing to all popular 8-bit 

microprocessors using standard microprocessor control signals (CS and 

RD) to control starting of the conversion and reading of the data. It 

provides two kinds of fast digital interface to allow the AD7575 to 

interface easily to the fast versions of most microprocessors. The 

interface timing diagram used in this thesis is shown as Fig. 3-10. 
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Table 3: Specification of ADC 
   AD7575 

Conversion time 5 ( μs) 
 11.74 X 7.4 (mm)

Operating voltage
IDD  

+5 V 
6 mA (MAX) 

Analog input 
voltage 

2.5V 

Power 15 mW 
 

 
Fig. 3-10: Timing diagram of AD7575 

3.2.3 Digital Controller 

For the data acquisition system, it needs a controller to organize the 

working of ADC and encode the digital data to wireless transmission 

which received from ADC. Complex Programmable Logic Device 

(CPLD) was a programmable logic device with complexity between that 

of PALs and FPGAs. The building block of a CPLD is the macro cell, 

which contains logic implementing disjunctive normal form equations 

and more specialized logic operations. In this research, 

EPM7128STC100-7 [36] which is a product of ALTERA was selected as 

the main controller of this system. It provides high-performance, 

EEPROM-based programmable logic devices (PLDs) based on 
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second-generation MAX® architecture. It has Built-in JTAG 

boundary-scan test (BST) circuitry with 128 macro cells. Complete EPLD 

family with logic densities 2,500 usable gates. EPM7128STC100-7 can 

supply 5ns pin-to-pin logic delays with up to 175.4MHz counter 

frequencies (including interconnect) and PCI-compliant devices. 

 

Fig. 3-11: Digital controller  

3.3 Wireless Transmission 

For a portable device, wireless communication is an important issue 

to resolve great inconvenience of using with wire transmission. Bluetooth 

is a wireless protocol utilizing short-range communication technology to 

facilitate data transmission over short distances from fixed and/or mobile 

devices. The intent behind the development of Bluetooth was the creation 

of a single digital wireless protocol, capable of connecting multiple 

devices and overcoming issues arising from synchronization of these 

devices. This thesis chooses BM0203 to be Bluetooth module; BM0203 

is an integrated Bluetooth module to ease the design gap and uses CSR 

BuleCore4-External [37] as the major Bluetooth chip. CSR 

BlueCore4-External is a single chip radio and baseband IC for Bluetooth 
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2.4GHz systems including enhanced data rates (EDR) to 3Mbps. It 

interfaces to 8Mbit of external Flash memory. When used with the CSR 

Bluetooth software stack, it provides a fully compliant Bluetooth system 

to v2.0 of the specification for data and voice communications. All 

hardware and device firmware of BM0203 is fully compliant with the 

Bluetooth v2.0+EDR specification. 

 

Fig. 3-12: Photo of Bluetooth Module 

3.4 Data Processing Platform  

In this data processing platform, the selected core processor is 

ADSP-BF533 (Blackfin 533) developed by Analog Devices Inc. [38]. 

The system diagram of the board we designed is shown in Fig. 3-13 and 

the photo of the board is shown in Fig. 3-14. The Blackfin processor 

provides both microcontroller (MCU) and DSP functionality in a unified 

architecture, allowing flexible partitioning between the needs of control 

and signal processing. If the application demands, the Blackfin processor 

can act as 100% MCU (with code density on par with industry standards), 

100% DSP (with clock rates at the leading edge of DSP technology), or a 

combination of the two. The maximum high performance of BF533 

processor can be up to 500MHz. It has two 16-bit MACs, two 40-bit 
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ALUs, four 8-bit video ALUs, and 40-bit shifter. One of its features is 

RISC-like register and instruction model for ease of programming and 

compiler-friendly support. The board is designed to support the 

development and porting of open-source μClinux applications and 

includes the full complement of memory along with serial and network 

interfaces. Besides an ADSP-BF533 500 MHz Blackfin processor, the 

board includes: 

 16 MB SDRAM (64M x 16 bits) and 4 MB FLASH memory: 

 RS-232 serial interface 

 6 Keypads and 240*320 pixels LCD 

 JTAG interface for debug and FLASH programming 

 Bluetooth transmitting/ receiving module 

 

Fig. 3-13: System diagram of the board 
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Fig. 3-14: Photo of the board (upside and downside) 
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4 Chapter 4 
Real-Time ICA Signal Processing 

4.1 Introduction 

In this chapter, it was to describe why EEG signals use ICA, what 

kind of ICA was implemented, and how to approach real-time and 

window-based signal process on the EEG-based BCI system (Fig. 4-1). 

First, checking if window-based ICA method is correct is needed and at 

the same time makes sure window-based ICA does achieve real-time. 

For the real-time ICA implementation, both the iteration and the 

convergence tolerance of training weights have to be limited through the 

following methods. Finally, it will obtain the execution time and iteration 

running on DSP, and the information of execution time and iteration will 

help to find out the boundary of setting in real-time operation. 

 

Fig. 4-1: Diagram of wireless signal processing 

4.2 EEG Data for ICA 

It considers electrical recordings of brain activity as given by an 

electroencephalogram (EEG). The EEG data recorded by electrical 

Window-based and 
Real-time Signal 
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potentials on the scalp consists of many signals in different locations. 

These signals are presumably generated by mixing some underlying 

components of brain activity, so if want to monitor the physiology state of 

subject, the corresponding component will be found (Fig. 4-2). This 

situation is similar to the cocktail-party problem: If there are some 

microphones were put around the place, and the voice which was 

recorded by microphones will be the mixed signal which maybe mix with 

the conversation of people, jazz music and so on. So the observed signal 

from microphone is like to the EEG signal recorded by electrode, and the 

target was to separate the observed signal into several independent 

components, such as conversation, music and so on in the cocktail-party; 

and component in the brain which have physiology pattern, such as the 

reaction of visual stimulus, sensorymotor stimulus, drowsiness and 

attention focus. In order to find out the original components of brain 

activity, ICA can resolve the problem of blind source separation, and can 

also reveal interesting information on brain activity by its independent 

components. 

As shown in Fig. 4-3 the brain activity recorded at one electrode on 

the scalp is the mixture of electrical potentials from many different 

locations in the brain. 
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Fig. 4-2: Functions of brain’s area 

 

Cocktail Party

 

 

Fig. 4-3: EEG signal was recorded at one point which is a mixed signal 

CSF

EEG
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4.3 Information Maximization ICA  

Information Maximization ICA is also called Infomax ICA. 

Information maximization theory is an optimization principle for neural 

networks and other information processing systems. First, Jeanny Herault 

and Christian Jutten [39] proposed a feedback architecture for 

independent component analysis from neural network in 1986, and ICA 

was most clearly stated by Pierre Comon [24] in 1994. Infomax-based 

ICA was described by Bell and Sejnowski [40] in 1995, they derived a 

new self-organizing learning algorithm that maximizes the information 

transferred in a network of nonlinear units. The algorithm does not 

assume any knowledge of the input distributions, and is defined here for 

the zero-noise limit.  

Single layer feed-forward neural network in Fig. 4-4, was proposed 

by Bell and Sejnowski [40] to learn the separating matrix W by 

minimizing the mutual information between components of y(t)=g(u(t)), 

where g is a nonlinear function approximating the cumulative density 

function (CDF) of the sources. They formulated blind source separation 

algorithms in terms of information maximization. 

 

Fig. 4-4: Blind separation network for two-source mixtures. 

Information maximization is how to maximize the mutual information 
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that the output y of a neural network processor and with its input vector x. 

This is shown as  

]|[][],[ xyHyHyxI −=                 (4-1) 

Where H[y] is the entropy of equation 4-2 can be differentiated as follows, 

with respect to a parameter, w, involved in the mapping from x to y: 
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The joint entropy of the outputs is 
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Weights can be adjusted to maximize H(y). As before, they only affect the 

E[ln |J|] term above: 
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The resulting learning rules are familiar in equation 4-5. 

 TT xyWW )21(][ 1 −+∝Δ −           (4-5) 

But this learning rule is too complex to calculate because of the inverse 

matrix.  Multiplied by WTW change the rescale of the rule, the new 

learning rules as follow: 

WuuIWuyIW TT ))(())21(( ϕ+=−+=Δ       (4-6) 

Thus, the simplification much uncomplicated than before, and this 

learning rule is suitable to separate blind sources. The update rule for W 
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in discrete time t ← t+1 defined in equation as follows: 

WltWtW Δ+=+ )()1( .             (4-7) 

The flowchart of Infomax ICA is shown as  

Fig. 4-5. Centering the data can simplify the ICA algorithm, and the 

mean can be added back to the data. Whitening means that we remove 

any correlations in the data, i.e. the different channels are forced to be 

uncorrelated. Then initialize the weight, and after random permutation, 

find the maximization entropy output. If the weight change is smaller 

than the desired weight change then the training is stopped. 

Centering

Whitening

Initialize weight

Random permutation of data

Apply weight change

Weight converged?

ICA components

NY

Start

End

Centering

Whitening

Initialize weight

Random permutation of data

Apply weight change

Weight converged?

ICA components

NY

Start

End  

Fig. 4-5: Flowchart of Infomax ICA training 
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4.4 Real-Time Signal Processing 

4.4.1 Window-Based ICA 

Real-time signal processing is convenient to embedded BCI system; 

it makes the system to give some information in time. For common use of 

ICA in signal processing, it gathers a period of data, from several minutes 

even to an hour to get ICA components. In that way, it shows the system 

can not get instant results. And this type of using wastes the time, the 

quantity of data was too large to real time process. The more data to run 

ICA, the more time will the processor execute. So the window-based and 

real-time ICA processing was proposed; it will improve the facility and 

efficiency of portable embedded BCI system.  

For window-based signal processing, it uses a concept of window 

and overlap on ICA algorithm to shorten the execution time in one time 

of ICA algorithm running on embedded BCI system, and keeps the 

previous information in present ICA training that will make ICA 

components still hold on the order. There are more data to execute with 

ICA algorithm, it takes more time to get ICA components; but if there is 

less data, it would not decompose the observed signal well to get clear 

source. So the time length of ICA window is set to five seconds, the time 

length of overlapping is three seconds, in this manner, every two seconds 

will get ICA components on time. Fig. 4-6 displays the different of 

window-based and common-use ICA method (which is called offline ICA 

in this thesis).  
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Fig. 4-6: Method of window-based and offline ICA 

4.4.2 Verification of Window-Based ICA 

To verify the method proposed in this thesis, it uses four mixed 

signals which randomly mixed three super-Gaussian signal and one 

random signal. Fig. 4-7 shows the original signal for verification of 

window-based ICA. The four random mixed signals were displayed on 

Fig. 4-8. The sample rate of these mixed and original signals is 64Hz, and 

the total time length of them is 1 minute. These mixed signals are the 

input of ICA algorithm which was separately executed on a PC platform 

using an offline method and a window-based method; and on an 

embedded BCI system platform using window-based method. Fig. 4-10, 

Fig. 4-12 and Fig. 4-14 show the ICA components obtained from the PC 

platform, offline and window-based, and from the DSP platform with 

window-based, respectively. In the figures it also shows the 

corresponding power spectrum to ICA components. And the total length 

of ICA components is displayed in Fig. 4-9, Fig. 4-11 and Fig. 4-13, 

respectively. 

Data 

ICA (Window: 5s , Overlap :3s) 

Times…..... 
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Times
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Every 2s updates ICA result 2s 
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Fig. 4-7: Original signals for ICA verification 

 

Fig. 4-8: Mixed signals for ICA verification 
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Fig. 4-9: Result of offline ICA component performed on PC platform 

 

Fig. 4-10: Result of offline ICA component and spectrum performed on 

PC platform. 



 

 38

 

Fig. 4-11: Result of window-based ICA component performed on PC 

platform. 

 

Fig. 4-12: Result of window-based ICA component and spectrum 

performed on PC platform. 
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Fig. 4-13: Result of window-based ICA component performed on DSP 

platform 

 

Fig. 4-14: Result of window-based ICA component and spectrum 

performed on DSP platform 
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Table 4 : Correlation table of window-based and offline ICA  

Correlation Different type Different platform 
platform PC PC and DSP 

Type window-based and offline window-based 
Domain Time Frequency Time 

Component 
1(red) 

0.1621 0.9632 0.8761 

Component 
2(pink) 

-0.0769 0.9799 0.9998 

Component 
3(green) 

-0.2791 0.999 0.9995 

Component 
4(yellow) 

0.5746 0.9536 0.9998 

 For window-based ICA, the window concept is applied and that is 

different with offline ICA. The results of ICA components will not 

change in offline ICA (Fig. 4-9), because it only has one window to 

process. But also in window-based ICA, the ICA components will not 

change each other by the window updated (Fig. 4-11 and Fig. 4-13). 

The verification of window-based ICA and offline ICA is in the same 

platform, there is not high correlation between window-based ICA and 

offline ICA running on the PC platform in time domain (Table 4), but in 

the Fig. 4-10 and Fig. 4-12, it shows that property of signal is 

decomposed and it is easy to identify the four signals, and the responding 

correlations are above 95% in frequency domain (Table 4). Because of 

cutting the window and fewer information of data, it makes the 

component have a negative sign different between window-based and 

offline processing. The figures also exhibit the corresponding power 

spectrum to ICA components, it presents that they have similarity 
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between their spectrum analysis of window-based and offline ICA 

running in PC platform. On the comparison of different platform, the 

result of ICA components has high correlation, their property was 

decomposed, and their spectrum analyses are almost the same. No matter 

window-based ICA running on the PC platform or DSP platform, the 

correlation of ICA components are high to 87%. Regardless of 

window-based and offline ICA processing on both platform, the ICA 

components will be identified clearly and the property of power spectrum 

is changeless. So this window-based ICA method will be applied on an 

embedded BCI system and it also will obtain good ICA components. 

4.4.3 Real-Time ICA 

Due to the window-based ICA was accomplished for an embedded 

BCI system, the next concern problem was execution time, whether the 

ICA algorithm can be run in the limited time to get ICA components. 

Table 5 shows that the execution time on the embedded BCI system with 

DSP in once ICA training loop is 10.275 seconds, and it means that DSP 

would not finish the ICA training inside two seconds.  
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Table 5 : Comparison of execution time 

 DSP(BF533) ARM[52] ARM and 
DSP[52] 

CPU 528MHz 168Hz ARM:168MHz
DSP:192MHz 

ICA version Infomax ICA Fast ICA Fast ICA 
Channel 4 2 2  
Test Signal 4 super-Gaussian Super-Gaussian 

& random signal
As Left 

Sample Rate 64 - - 
Length 5s - - 
Total Data Length 1280 points 256 points 256 points 
Processing Time 10.275s 29.548805s 2.297103s 
  

To get window-based ICA components in real-time operation, the 

training flow of Infomax ICA algorithm (Fig. 4-5) was reviewed; 

considering changeless of ICA algorithm for precise ICA components, the 

executed iteration and the convergence tolerance of the training loop can 

be limited. First, the condition of convergence tolerance was limited. In 

the ICA training loop, this thesis sets up three settings, and make them 

run on DSP to get their execution time for real-time operation. Fig. 4-15 

shows the three setting, the setting 1 is normal setting, which means that 

the setting was the same with above simulation which was descried in 

4.4.2. And the weight error tolerance of setting 2 and 3 is set as shown in 

Fig. 4-15. To do this, every setting will obtain the execution time and 

iteration running on DSP, the information of execution time and iteration 

will help to find out the boundary of setting in real-time operation.   
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Window-based 
ICA

Simulated Data

(3 super-Gaussian & 
1 random signal)

Result & Time

(Compare 3 Settings)

Window-based 
ICA

Setting 1 Setting 2 Setting 3

Weight error 
tolerance

0.00002
(normal)

0.0002 0.002

Window-based 
ICA

Setting 1 Setting 2 Setting 3

Weight error 
tolerance

0.00002
(normal)

0.0002 0.002

Set up the weight error-tolerance
to stop learning

 

Fig. 4-15: window-based ICA setting for real-time processing 

4.4.4 Verification of Real-Time ICA 

For testing the three window-based ICA settings, the test pattern as 

previously shown in Fig. 4-8 and EEG signal are used to obtain their ICA 

components. The sample rate of data is also 64Hz and the total data 

length is 1 minute. This thesis regards Setting 1 as the control group, and 

Setting 2 and 3 as the experimental groups, and the variation was error 

tolerance of convergence (Fig. 4-15). The result of ICA components 

which work on DSP were shown from Fig. 4-16 to Fig. 4-19. In the 

figures, the pink line represents Setting 1, and the blue line represents 

Setting 2 (Fig. 4-16、Fig. 4-18) and 3 (Fig. 4-17、Fig. 4-19), respectively. 

Fig. 4-16 and Fig. 4-17 illustrate the total ICA components of one minute. 

Fig. 4-18 and Fig. 4-19 display ICA components of six seconds and 

corresponding spectrum to ICA component of total length. The testing 

results of EEG signals are shown as Fig. 4-20 and Fig. 4-21. 

In the situation of weight error tolerance limited, the ICA 

components will not change each other by the time passed in Setting 2 
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and 3 (Fig. 4-16 and Fig. 4-17). In the Table 6, there are 3 ICA 

components which were obtained from Setting 2 is similar with that 

which were obtained from Setting 1; their correlations are up to 87% in 

time domain. In Setting 3, the correlation of 2 ICA components is up to 

93.7% in time domain.  

 

Fig. 4-16: Result of window-based ICA Components performed on DSP 

(Setting 1 shown as the red line and Setting 2 shown as the blue one) 
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Fig. 4-17: Result of window-based ICA Components performed on DSP 

(Setting 1 shown as the red line and Setting 3 shown as the blue one) 

Table 6 : Correlation table of window-based ICA in time domain 

Correlation with 
Setting 1 

Setting 2 Setting 3 

Platform DSP 
Type Window-based  

Domain Time 
Component 1(red) 0.5481 0.5343 

Component 2(purple) 0.8717 0.5765 
Component 3(green) 0.9839 0.9397 
Component 4(yellow) 0.9952 0.9801 

And the corresponding spectrum analysis of Setting 2 and 3 are 

almost the same as that of Setting 1 (Fig. 4-18 and Fig. 4-19). In 

frequency domain (Table 7), the correlations of 4 ICA components are up 

to 90.4% in Setting 3 and setting 2.  
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Fig. 4-18: Results of window-based ICA Components performed on DSP: 

(left) 4-channel ICA components and (right) corresponding spectrum of 

Setting 1 (red line) and 2 (blue one). 

 

Fig. 4-19: Result of window-based ICA Components performed on DSP: 

(left) 4-channel ICA components and (right) corresponding spectrum of 

Setting 1 (red line) and 3 (blue one). 
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Table 7 : Correlation table of window-based ICA in frequency domain 

Correlation with 
Setting 1 

Setting 2 Setting 3 

Platform DSP 
Type Window-based  

Domain Frequency 
Component 1(red) 0.9987 0.9955 

Component 2(purple) 0.9909 0.9579 
Component 3(green) 0.9674 0.9049 
Component 4(yellow) 0.9964 0.9871 

 

 

Fig. 4-20: EEG signal results of window-based ICA Components use 

performed on DSP (Setting 1 shown as the red line and Setting 2 shown 

as the blue one) 
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Fig. 4-21: EEG signal Results of window-based ICA Components use 

performed on DSP (Setting 1 shown as the red line and Setting 3 showed 

as the blue one) 

For executing time and iteration, three testing setting of 

window-based ICA are tested by two kinds of signals (Test pattern and 

EEG). The Setting 2 and Setting 3 also give good result of ICA 

component as above, and then how long will they operate on DSP is 

concerned. The results of test pattern is the same with above (Fig. 4-8), 

and the testing result to the two types of signals is shown in Table 8. 

From Table 8, it is found that there is no difference between test pattern 

and EEG in execution time and iteration. 
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Table 8 : Execution time of once window-based ICA 

window-based ICA Setting 1 Setting 2 Setting 3 
Average Time 10.275s 3.782s 0.7s Test pattern  

(1 min) 
Platform :DSP 

Average 
Iterations 

47 18.7 3 

Average Time 8.7798s 3.2896s 0.7654s EEG signal  
(1 min) 
Platform :DSP 

Average 
Iterations 

48.8571 17.89 3.6429 

 Finally, to achieve window-based and real-time ICA processing, in 

this condition of the five iterations limited, the average execution time 

was 1.06 seconds which is under two seconds. So the variables to control 

the executing time and performance of ICA components were that the 

restricted iteration is five steps and the weight error tolerance is 0.0002 

which is the same as Setting 2. The result is shown in Fig. 4-22, and 

Table 9 shows the correlation result in time domain and frequency 

domain. The correlation between normal setting (Setting 1) and final 

setting in time domain, there are the 2 ICA components up to 94%. And 

that in frequency domain, there are 4 ICA components up to 91%, it 

means that after test pattern are processed by real-time window-based 

ICA; the ICA components still have same property with that was 

processed by normal ICA.  
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Fig. 4-22: Result of window-based ICA Components performed on DSP: 
(left) 4-channel ICA components and (right) corresponding spectrum of 

Setting 1 (red line) and final setting (blue one). 

Table 9 : Correlation table of final setting for window-based ICA 

Correlation with Setting 1 Time Domain Frequency Domain 
Platform DSP 

Type Window-based  
Iteration Limit 5 

Weight Error Tolerance 0.0002 
Average Execution Time 1.06s 

Component 1(red) 0.5378 0.9963 
Component 2(purple) 0.5563 0.9675 
Component 3(green) 0.9489 0.9156 
Component 4(yellow) 0.9832 0.989 
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5 Chapter 5 Experiment Results 

5.1 Introduction 

This thesis uses two settings to test ICA which was proposed in the 

previous chapter. One is test signal and the other is real EEG signal. The 

result of test signal was presented in Chapter 4; this chapter will present 

the result of real EEG signal. There are four subjects who have good 

drowsiness performance during task experiment to verify that the 

window-based and real-time ICA applied on this signal procedure, the 

final result would be similar to that of offline signal procedure on PC 

platform. 

5.2 ICA Verification on EEG Signal 

5.2.1 Description of EEG Data 

There were three major parts of the architecture: (1) a 3D highway 

driving scene based on the VR technology, (2) a real vehicle mounted on 

a 6-DOF motion platform, (3) a physiological signal measurement system 

with 36-channel EEG/EOG/ECG sensors. The subjects were asked to sit 

in a real car mounted on the 6-DOF motion platform with their hands 

holding the steering wheel to control the simulated car in the VR scene. 

Subjects participated in a Virtual-Reality (VR)-based highway 

driving experiment (Fig. 5-1), in which they were instructed to put forth 

their best effort to keep their lane position. An actual automobile was 

mounted on a 6- DOF Stewart platform, which provides translational and 
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rotational movement and vibratory feedback to simulate actual driving 

conditions. The 360o projection of driving scenery is updated 

synchronously with deviations caused by wheel/paddle movement by the 

subjects or by road conditions. Every 3-7 seconds the car was linearly 

pulled towards the curb or into the opposite lane, with equal probability. 

Subjects were instructed to compensate for the drift by steering a vehicle 

wheel. The EEG data were recorded at Fp1, Fpz, Fp2 and midway 

between Fpz and nasion, referentially against a right-mastoid reference by 

a Neuroscan amplifier (Fig. 2-3). The EEG data were sent to a PC for 

further analysis. Driving performance was measured by the distance of 

lane deviation (Fig. 5-2), which was small when the subject was alert, and 

vice versa. The driving parameters (lane position and wheel rotation) 

were in sync with the EEG acquisition system. 

Under this experiment, the signal procedure was shown in Fig. 5-3. 

The final result will show the correlation between the ICA power and 

subject’s behavior, the red color represent positive correlation and the 

blue color represent negative correlation. Finally, several subjects have 

presented that ICA power spectra at theta (4~7Hz) band and/or alpha 

(8~11 Hz) band are associated with human drowsiness, and the 

relationship between EEG log power and subject task performance is 

largely linear. 
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Fig. 5-1: Overview of surrounded VR scene. The VR-based four-lane 
highway scenes are projected into surround screen with seven projectors 

processing. 

 

Fig. 5-2: Photo of the four-lane highway scene. 
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Fig. 5-3: Diagram of EEG signal processing 

5.2.2 Signal Processing Procedure on Drowsy Estimation 

In this experiment, the EEG signals gathered from NuAmps(Fig. 2-3), 

their sample was 250 Hz. And to implement the window-based and 

real-time ICA in this case, the sample rate performs on EEG-based BCI 

was 64 Hz. So it is to prove that the drowsiness phenomenon still exist 

even the sample rate was from 250 Hz down to 64Hz.  

The diagram of the signal processing is shown in Fig. 5-4. The 

4-channel EEG data was first recorded via NuAmps. Then change the 
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sampling rate to 64Hz. It consists of down sampling, independent 

component analysis, moving-average spectrum analysis and correlation 

analysis. The independent component analysis is applied to the down 

sampled EEG signals to obtain the independent components. The 

moving-average power spectrum was to calculate the frequency response 

of ICA components. Finally, the correlation coefficients between the 

subjects’ driving error and the power spectra of all ICA components at 

each frequency band were calculated to assess the relationship between 

subject performance and EEG log spectra. 

 

Fig. 5-4: Diagram of EEG signal processing for verification 

5.3 Verification of Real EEG Signals  

5.3.1 Down Sampling 

There was four subjects participated in a VR(virtual-Reality)-based 

highway driving experiment. Their EEG data was recorded at Fp1, Fpz, 

4 channel EEG data 
Sample Rate:64Hz 

Independent Component Analysis 
(Window-based, Infomax, 320 

points/channel) 

Moving-Average Spectrum Analysis 
    ( 64-points Short Time FFT) 

The Power of Theta band 

 
 

 

The behavior of subject 

 

 For real-time processing: 
1. Weight Error-tolerance limit 
2. Iteration limit 

 

Correlation Result 
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Fp2 and midway between Fpz and nasion, referentially against a 

right-mastoid reference by a NuAmps. Their EEG data have good 

drowsiness phenomenon at sample rate 250Hz, it means that their EEG 

power spectra at theta (4~7Hz) band, and /or alpha (8~12Hz) band were 

associated with human drowsiness, and the relationship between EEG 

power and subject task performance was largely high. Fig. 5-5 illustrates 

the signal procedure was run with Matlab on PC platform.  The 

correlation results of ICA component power and subject’s behavior were 

shown in Fig. 5-6-Fig. 5-9. These figures represent the correlation 

between ICA power and subject’s behavior. The results indicate that it 

still has good drowsiness phenomenon when the data sample is 64 points 

per second. 

 

Fig. 5-5: Diagram of offline signal processing procedure 

 

EEG Raw Data ( 250Hz or 64Hz)  

ICA (offline) 

Moving-Average Spectrum Analysis 
(Window:3s , Overlap :1s) 

Times 

Power 1 Power 2 Power 3 …..... 

2s 

3s 

Correlation with driving error 
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Fig. 5-6: Correlation of ICA power and subject’s behavior ( Subject 1). 
Sample rate (left) is 250Hz and (right) 64Hz.  

 

Fig. 5-7: Correlation of ICA power and subject’s behavior (Subject 2). 
Sample rate (left) is 250Hz and (right) 64Hz. 

 

Fig. 5-8: Correlation of ICA power and subject’s behavior ( Subject 3). 
Sample rate (left) is 250Hz and (right) 64Hz. 
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Fig. 5-9: Correlation of ICA power and subject’s behavior (Subject 4). 
Sample rate (left) is 250Hz and (right) 64Hz. 

5.3.2 Moving-Average Spectrum Analysis 

First, the function of moving-average spectrum analysis was verified 

in different platform, pc and DSP platform. The test signal is 5 Hz sin 

wave generated by Matlab (Fig. 5-10), which sample rate is 64 Hz and 

data lengths are 5 minutes. Fig. 5-11 and Fig. 5-12 show the result on PC 

and DSP platform separately. From the result of moving-average 

spectrum analysis, there are no differences between the function 

performed on PC and DSP platform by time passed. 
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Fig. 5-10: 5Hz signal (64Hz sample rate) 

 

Fig. 5-11: Result of Moving-Average Spectrum Analysis on PC platform 

(5Hz signal) 
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Fig. 5-12: Result of Moving-Average Spectrum Analysis on DSP platform 

(5Hz signal) 

5.3.3 Real EEG Signal Result 

In this part, the real-time ICA setting (Table 9) will apply on 

real-time ICA processing (Fig. 5-13) in this drowsiness signal procedure 

(Fig. 5-4). And the purpose is to verify that the EEG signals processed by 

real-time ICA, and the results of ICA components will still have 

drowsiness pattern as same as offline analysis. Fig. 5-14-Fig. 5-17 show 

that the ICA setting can extract the interesting pattern of drowsiness index, 

it represents that it will have high correlation with subject’s behavior in 

theta band (4-7 Hz) or alpha band (8-12 Hz). No matter what kind of 

drowsy patterns (alpha or theta patterns) will have high correlation with 

subject’s behavior (Table 10). 
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Fig. 5-13: Diagram of real-time signal processing procedure 

 

 

Fig. 5-14: Correlation of ICA power and subject’s behavior (Subject 1) 

 

EEG Raw Data (Sample Rate : 64Hz)
Real –Time ICA (Window: 5 s, Overlap 3s ) : 
Iteration limit is 5  
Tolerance of weight error is 0.002 

Moving-Average Spectrum Analysis 
(Window: 3 secs , Overlap :1 secs) 

Times 

…..... 

Power 1 Power 2 Power 3 …..... 

2s 

5s 

Correlation with driving error 
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Fig. 5-15: Correlation of ICA power and subject’s behavior (Subject 2) 

 
Fig. 5-16: Correlation of ICA power and subject’s behavior (Subject 3) 
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Fig. 5-17: Correlation of ICA power and subject’s behavior (Subject 4) 

In this thesis, ICA and moving spectral analysis implemented on the 

wearable embedded BCI were continuously applied to the ongoing EEG 

while the participants were performing lane-keeping driving tasks. Table 

10 shows the correlation coefficients between the smoothed time series of 

and subject driving performance and the theta and alpha power of most 

task-performance-related components. 

Table 10 : Correlation of 4 subjects 

Subject S1 S2 S3 S4 
Theta 0.7316 0.8978 0.1835 0.8506 Offline 
Alpha 0.019 0.8686 0.8271 0.3693 
Theta 0.8395 0.7574 0.4728 0.6952 Window-based 
Alpha 0.6848 0.7527 0.7823 0.4621 

 



 

 64

 

6 Chapter 6 Conclusions  

The ICA applied to power spectrum of ICA components can 

successfully remove most of EEG artifacts and also estimate people’s 

drowsiness degree. In order to achieve the target of window-based and 

real-time EEG signal processing on the DSP-based BCI system, this 

thesis proposes the window-based ICA described in Chapter 4 and can 

achieve good results of subject’s drowsiness state. Due to updating results 

in time (inside 2s), the execution time of signal processing (ICA and 

spectrum analysis) has to be limited. Even if the iteration is restricted, 

there is still the good outcome of all ICA components and EEG-based 

drowsiness estimation. This result will be applied to live drowsiness 

estimation.  

The unavailability of a BCI capable of window-based signal 

processing and artifact correction or separation has long limited the use of 

BCI in operational environments. This study implemented a 

moving-windowed window-based ICA and spectral estimation on a 

miniaturized, battery-powered and light-weight embedded BCI. The 

empirical results showed that the efficacy of window-based signal 

separation was comparable to that of the offline implementation. The 

remaining issue is to develop an algorithm to automatically select the 

performance-related independent component(s).  

The window-based ICA algorithm can be implemented with FPGA 

or DSP to achieve the capability of real-time processing. In the future, the 
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next importance issue of window-based ICA is focused on the 

informative component selected automatically during the restricted time. 

In conclusion, this study demonstrated the feasibility of 

window-based signal processing and source separation on a wearable 

miniature embedded BCI. This demonstration could lead to a practical 

wearable BCI for the monitoring of the brain functions of unconstrained 

participants performing normal tasks in the workplace and home. 
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