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National Chiao Tung University

Abstract

Online artifact correction, feature extraction, and pattern recognition are essential
to advance the brain computer interface (BCI) technology so as to be practical for
real-world applications. The BCI system should also be a convenient size, rugged,
lightweight, and have low poweér consumption to meet the requirements of wearability,
portability, and durability. This thesis proposes and implements a moving-windowed
Independent Component Analysis (ICA) on a battery-powered, miniature, embedded
BCI. This thesis also tests the embedded BCI on simulated and real EEG signals.
Experimental results indicated that the efficacy of the window-based ICA
decomposition is comparable with that of the offline version of the same algorithm,
suggesting the feasibility of ICA for real-time analysis of EEG in a BCI. To
demonstrate the feasibility of the wearable embedded BCI, this thesis also implements
a moving-average spectral analysis to the resultant component activations to

continuously estimate subject’s task performance in near real time.
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Chapter 1 Introduction

1.1 Brain Computer Interface

The Brain Computer Interface (BCI) system is a set of sensors and
signal processing components that allows acquiring and analyzing brain
activities with the goal of establishing a reliable communication channel
directly between the brain and an external device such as a computer,
neuroprosthesis, etc. Several existing brain monitoring technologies have
been tested in BCI fields for acquiring data. They can be divided into two
subcategories: 1)  noninvasive  procedures such as  the
electroencephalogram  (EEG), .., magnetoencephalography  (MEG),
functional magnetic resonance - imaging (fMRI), positron emission
tomography (PET), and -near infrared spectroscopy (NIRS) and ii)
invasive approaches such as the electrocorticography (ECoG) where the
signal is recorded from intracranial microelectrodes[1]. Until now,
majority of practical BCI systems exploit EEG signals and ECoG signals
[1]. Indeed, since MEG, fMRI, and PET are expensive and bulky, and as
fMRI, PET, and NIRS present long time constants, because they do not
measure neural activity directly but rely on the homodynamic coupling
between neural activity and regional changes in blood flow, they cannot

be deployed as ambulatory BCI systems|[2].

1.2 Previous Work

Over the past 15 years, BCI technology [2][3] is a research field that

has emerged and grown rapidly. At the beginning, the purpose of BCI is



not only prosthesis but also is to help handicapped people [4], gradually.
Because of the disability of muscle, handicapped people can not do things
independently. For example, handicapped people cannot move, control
devices without aid. Hence, to help these handicapped people, many
researchers have devoted themselves to develop BCI. That is, as long as
handicapped people are still cognitively healthy, they might able to move
on an automatic wheel chair, and control the on/off switches of lamps via
EEG recording and analysis. Through decades, it have been found in
many studies that the cognitive state of a person can be extracted from
brain activity [5][6]. More and more researchers are devoted to the study
of BCI. BCI has helped handicapped to live independently. Recent studies
in primates, human subjects of Serruya et al. [7] and Taylor et al. [8] have
demonstrated that animals can leatn to wutilize their brain activity to
control the displacements. of' computer cursors. Chapin et al. and
Wessberg et al. also demonstrated that-animals can learn to utilize their
brain activity to control one- (1D) to three-dimensional (3D) movements
of simple and elaborate robot arms [9][10]. However, many domestic
researches were focusing on EEG data recording instead of EEG analysis
[11]-[17]. Cheng et al. have developed wireless BCI based on steady-state
visual evoked potential (SSVEP) [18]. They used twelve buttons
illuminated at different rates on a computer monitor to simulate a
telephone. Users could input phone numbers by gazing at these buttons.
The frequency-coded SSVEP was used to judge which button the user
attended to. Another study of Gao et al. used digital signal processor
(DSP) to process EEG signals and wirelessly controlled appliances with

visual evoked stimulus [19]. Pfurtscheller et al. have designed and
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implemented an EEG-based communication device called “Virtual
Keyboard” (VK). Classification of the EEG patterns was based on band
power estimates and hidden Markov models (HMMs) [20][21]. Another
research of Pfurtscheller et al. proposed an EEG-based Pocket BCI
system that converted brain activity into control signals for left and right
directions of a wheelchair [22]. Ashwin et al. described [23] a system that
monitored EEG of epileptic patients to improve the quality of their lives
and also helped healthcare providers to make a better diagnosis for
patients with neurological disorders. The use of Bluetooth connectivity
helps physicians to monitor patient activity while the patient resumes his

or her normal activity.

Independent Component:Analysis (ICA).[24], which had been widely
studied during the last twenty years, is one of popular EEG signal
separation tools. It is a novel 'statistical technique that aims at finding
linear projections of data that maximize their mutual independence. Many
groups are now actively engaged in exploring the potential of blind signal
separation and signal deconvolution for revealing new information about
the brain and body [25]. In general, most of ICAs are applied to feature
extraction [2][26][27], such as blind source separation (BSS) with special

emphasis on physiological data analysis and audio signal processing.

Hill et. al.[28][29][30], for example, demonstrated the use of ICA in
an EEG-based BCI. However, in most of these studies, ICA and other
signal-processing functions were performed offline on a personal
computer, which hinders the wearability, portability and practical use of

the systems in operational environments. Given the recent development



of embedded systems and signal processing techniques, it is now practical
to implement these sophisticated algorithms in real-time embedded
systems for online EEG monitoring and/or BCI. This study details the
design and testing of a near real-time embedded BCI featuring
window-based ICA and spectral analysis for continuously monitoring
cognitive states of participants performing realistic driving tasks in a

virtual reality-based dynamic driving environment.

1.3 Motivation

The BCI system, which allows acquiring and analyzing brain
activities with the goal of establishing a reliable communication channel
directly between the brain and an external device, is composed of sensors
and signal processing compeonents. In a practical BCI system, it is
important to extract significant. features- of preprocessing recorded data

and then to develop fast and reliable signal processing.

online artifact correction, feature extraction, and pattern recognition
are essential to advance the BCI technology so as to be practical for
real-world applications. The BCI system should also be a convenient size,
light weighted, and have low power consumption to meet the
requirements of wearability, portability, and durability. This thesis
proposes and implements a moving-windowed Independent Component

Analysis (ICA) on a battery-powered, miniature, embedded BCI.

1.4 Organization of Thesis

In Chapter 2, it will describe that what is EEG signal and algorithms



implemented in this thesis, which including Independent Component
Analysis and power spectrum analysis. In Chapter3, it will introduce how
to implement a wireless portable EEG signal acquisition in hardware
design. In Chapter 4, it will explain the detail of ICA algorithm and how
to accomplish the real-time ICA (Independent Component Analysis)
signal processing; then the method of real-time ICA will be verified with
test pattern and real EEG signal, the procedures and results of verification
will be described in Chapter 5. Finally it will have conclusion in Chapter

6.



Chapter 2 Material and Method

2.1 Introduction

The purpose of this research is to implement the algorithm of
independent component analysis for real-time processing applied on
Electroencephalography signal analysis. In order to do this, it needs some
database to test the practicability of algorithm; so it was divided into two
parts to introduce in this chapter. One is how do we to get the data for
signal processing in experimental environment, and the other is what kind
of algorithm will be applied on the data processing system. The diagram

of overview system was shown as. Fig..2-1.

EEG Signal | - : ‘
— EEG EEG A wireless
Acquisition s transmitter

Display h‘ Data

unit processing
unit

wireless
receiver

Fig. 2-1: Diagram of Wireless Brain Computer Interface

2.2 Material

2.2.1 Electroencephalogram

Electroencephalography (EEG) is the measurement of electrical



activity produced by the brain as recorded from electrodes placed on the
scalp. When measuring from the scalps, recorded the EEG signal is about
10-100uV for a typical adult human. And a common system reference
electrode is connected to the other input of each different amplifier. These
amplifiers amplify the voltage between the active electrode and the
reference (typically 1,000—100,000 times, or 60—100 dB of voltage gain).
The EEG is typically described in terms of rhythmic activity and
transients. The rhythmic activity is divided into bands by frequency. The

common band of EEG is shown as Table. 1.

Table 1 : Common band of EEG

Type Erequency (Hz)
Delta Up to 3Hz
Theta 4-7Hz
Alpha 8~ 13Hz
Beta 13 - 30Hz

2.2.2 EEG signal acquisition

An electrode cap was mounted on the subject’s head for signal
acquisition as shown in Fig. 2-2. A standard for the placement of EEG
electrodes proposed by Jasper in 1958, which is known as the 10-20
International System of Electrode Placement [31] 1s used in the electrode
cap. An illustration of the 10-20 system is shown in Fig. 2-2, the
electrodes are named according to the location of an electrode and the

underlying area of cerebral cortex



A B

Masion

Wertex

Preauricular
point

Fig. 2-2: Schematic pictures showed the lateral (A) and top view (B) of
international 10-20 system of electrode placement [31].

The letters F, C, T, P, and O were refer to the frontal, central,
temporal, parietal, and occipital:cortical regions on the scalp, respectively.
The term “10-20” means 10% and 20%. of the total distance between
specified skull locations. The = percentage-based system allowed
differences in skull locations: The physiological data acquisition used 30
sintered Ag/AgCl EEG/EOG electrodes with a unipolar reference at right

earlobe.

The 34 electrodes including 34 EEG channels , and one 8-bit digital
signal produced form VR scene were simultaneously recorded by the
Scan NuAmps Express system (Compumedics Ltd., VIC, Australia)
shown in Fig. 2-3. It was a high-quality 40-channel digital EEG amplifier
capable of 32-bit precision sampled at 1000 Hz. Table 2 showed the
specifications of the NuAmps amplifier. Before acquiring EEG data, the
contact impedance between EEG electrodes and skin was calibrated to be
less than 5kQ by injecting NaCl based conductive gel. The EEG data

were recorded with 16-bit quantization levels at a sampling rate of 500

8



Hz in this study. All EEG data were preprocessed using a low-pass filter
with a cut-off frequency of 50 Hz in order to remove the power line noise
and other high-frequency noise. Similarly, a high-pass filter with a cut-off

frequency at 0.5 Hz was applied to remove baseline drifts.

Fig. 2-3: Photo showed the  setup of the physiological recording
containing the NuAmps EEG amplifier and the electrode cap.

Table 2: Specifications of NuAmps

. 40 unipolar (bipolar derivations can be
Analog inputs
computed)
Sampling frequencies 125, 250, 500, 1000 Hz per channel
Input Range +130mV
Input Impedance Not less than 80 MOhm
Input noise 1 uV RMS (6 pV peak-to-peak)

2.3 Methods of Data Analysis

2.3.1 Independent Component Analysis

Independent component analysis (ICA) is a case of blind source

separation, that is, we assume the signals may be mutually statistically



independent or de-correlated. The goal of ICA is to separate signals
(components) from a set of mixed signals without the aid of information
(or with very little information) from natural sources. It is a
computational method for separating a multivariate signal into additive
subcomponents supposing the mutual statistical independence of the
non-Gaussian source signals. A familiar case of ICA is the “cocktail party
problem”, where the underlying speech signals are separated from a
sample data consisting of people talking simultaneously in a room.
Usually the problem is simplified by assuming no time delays and echoes.
An important note has been considered that if N sources are present, at
least N observations (i.e. microphones) are needed to get the original
signals. Fig. 2-4 shows that-we have N sources and mix them with a

mixing matrix to get observed signals.

X
Sz\‘ /
N sources hrf{j;lf — N observed signals
rji;’r. A X1

Fig. 2-4: N mixed signals and N sources

Its linear equation is represented in equation 2-1, where A is
described in equation 2-2. Where the s is unknown independent
component or the element, and a is unknown mixing coefficient. The
expression of Fig. 2-4 can be rewritten as equation 2-3, where the S is

sources, and X is observed signals. This is called ICA model. After the
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signal separation with ICA, the mixing matrix will be estimated; its

inverse matrix is call un-mixing matrix as described in equation 2-4.

Hence the original sources can be obtained via equation 2-5.
Xi=anSit apsS2 + ..ot ApSn1 + A1nSn

Xz = a2151F 2282 + ...t A251Sp1 T Q2480

Xp1 = an-l,lsl+ an-l,ZSZ + ...t an-l,n-lsn-l + an-l,nsn

Xp = an,lsl+ an,ZSZ + ...t an,n-lsn-l + an,nsn

a, ap a4 a ,
a,; a,, a‘2,n—1 a,,
A= ] . : .
Qv @nis Angge Qo
L a'n,l an,z a'n,n—l a'n,n |
X =AS
_ a-1
W=A

ATX=ATAS>S=WX

(2-1)

(2-2)

(2-3)

(2-4)

(2-5)

One approach with some information on the statistical properties of

the signal S is to use to estimate A and to find solution of equation 2-5.

The statistical method finds the independent components (aka factors,

latent variables or sources) by maximizing the statistical independence of

the estimated components. Non-Gaussianity is motivated by the central

11



limit theorem, is one method for measuring the independence of the
components with kurtosis or approximations of negentropy. Mutual
information is another popular criterion for measuring statistical

independence of signals. The kurtosis of y is classically defined by

kurt(y) = E{y*} - 3(E{y’})* (2-6)

We assume that y is of unit variance, the equation can be simplified
to E{y*} — 3. For a Gaussian y, the E{y"} equals 3(E{y’})* . Thus,
kurtosis is zero for a Gaussian random variables, kurtosis is nonzero for
non-Gaussian random variables. Kurtosis can be negative and positive.
Random variables that have a negative kurtosis are called sub Gaussian,
and those with positive kurtosistjare. called super Gaussian. Super
Gaussian has a spiky probability density function with heavy tail. For
example, brain waves are Super.Gaussian variables while sinusoid and

cosine waves are sub Gaussian variables.
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Fig. 2-5: Typical super Gaussian variables is spiky. For comparison, the

normal Gaussian is given by a dashed line. The other is sub Gaussian.
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A second important measure of non-Gaussianity is given by
negentropy. Negentropy is based on the information-theoretic quantity of

entropy. Entropy H is defined for a discrete random variable Y as
H(Y) =->P(Y = a)logP(Y = a;) (2-7)

where a; are the possible values of Y. The differential entropy is

defined as

H(y) = -f(y)logf(y)dy (2-8)

Another often used version is called negentropy. Negentropy J is

defined as follows

J (Y) = H(Ygauss) i H(y) (2'9)

The J can be simplified as equation2-10 or 2-11.
1 332, 1 2 2-10
~— + —
IW=~SEy T+ kurt(y) (2-10)
P
I L KEGEI-EGERT (2-11)

where k; are some positive constants, and v is a Gaussian variable of
zero mean and unit variance. G as common used is showed by equation

2-12,2-13 and 2-14.
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1
Gi(u) = a—logcoshalu (2-12)

1

G,(u) = -exp(-u*/2) (2-13)
G; = tanh(au), (2-14)

where 1<a, <2 is some suitable constant.

Typical algorithms for ICA wuse centering, whitening and
dimensionality reduction as preprocessing steps in order to simplify and
reduce the complexity of the problem for the actual iterative algorithm.
Without loss of generality, we can,assume that both the mixture variables
and the independent components have zero mean: If this is not true, then
the observed signals can always be centered by subtracting the sample
mean, which makes the model zero-mean. Whitening and dimension
reduction can be achieved with principal component analysis or singular
value decomposition. Whitening ensures that all dimensions are treated
equally a priori before the algorithm is run. Algorithms for ICA include

Infomax, FastICA and JADE, but there are many others also.

Most ICA methods are not able to extract the actual number of source
signals, the order of neither the source signals, nor the signs or the scales
of the sources. ICA is important to blind signal separation and has many
practical applications. It is closely related to (or even a special case of)
the search for a factorial code of the data, i.e., a new vector-valued

representation of each data vector such that it gets uniquely encoded by

14



the resulting code vector (loss-free coding), but the code components are

statistically independent.

2.3.2 Power Spectrum Analysis

Analysis of changes in spectral power and phase can characterize the
perturbations in the oscillatory dynamics of ongoing EEG. Applying such
measures to the activity time courses of separated independent
component sources can avoid the confounds caused by misallocation of
positive and negative potentials from different sources to the recording
electrodes, and by misallocation to the recording electrodes activity that
originates in various and commonly distant cortical sources. The spectral
analysis for each ICA component decomposed from multi-channel of the

EEG signals.

The time-frequency analysis, “or*-alternatively short-time Fourier
transform (STFT), which is a Fourier-related transform used to determine
the sinusoidal frequency and phase content of local sections of a signal as
it changes over time. The FFT processes for each ICA component data
decomposed from multi-channel of the EEG signals and the processes are

described as following Fig. 2-6.

Fig. 2-6 shows the diagram of moving-average power spectral
analysis [32] for a Each 32-point window was extended to 64 points by
zero-padding to calculate its power spectrum by using a 64-point fast
Fourier transform (FFT), resulting in power-spectrum density estimation
with a frequency resolution near 1 Hz. Then we averaged the power

spectrum of all the subepochs within each epoch. Previous studies [33]
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[34] show that the transient amplitudes of EEG power spectrum involved
in wake-sleep regulation are very different. The cortex produces low
amplitude and fast oscillations during waking, and generates
high-amplitude, slow cortical oscillations during the onset of sleep. Their
reports also showed that the EEG spectral amplitudes correlated with the
wake-sleep transition more linearly in the logarithmic scale than in the
linear scale. The previous study [35] based on the same task and
empirical results also confirm this phenomenon. Therefore, the averaged
power spectrum of each epoch was normalized to logarithmic scale to
linearize these multiplicative effects. The resultant power-spectrum time
series of single ICA component consisted 25 frequency bins (from 0.98 to

39.1 Hz) stepping at 2 seconds time intervals.

A A A A A
| \ | | | &
| I I T I | L
- 7 : Time
| 192 ok TOniE
4 shey feapons
60 [ 1 :
- A ':-' i \‘/\/\(
| T
\ | N :
[ 32 | 64 -pts S )
: . L Averaged b l:‘w
—

Fig. 2-6: Diagram of moving-average power spectral analysis
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Chapter 3
Hardware Frameworks of
Portable Data Acquisition

3.1 Introduction

In our experimental environment, a portable acquisition system is
used to record EEG signals of human and to transmit the data to PC via
Bluetooth wireless(Fig. 3-1). The hardware framework of portable data
acquisition is divided into four parts as (1) four-channel front-end circuits,
(2) analog to digital converter, (3) digital controller, and (4) wireless

transmission to achieve the portability and facility.

EEG Signal | #
> EEG _.’ . wireless
Acquisition £ transmitter

Battery-powered and wearable module

Fig. 3-1: Diagram of wireless and portable module

3.2 Portable Data Acquisition System

The portable data acquiring system has been used to demonstrate the
feasibility of building the BCI system. The functions of the BCI system
include amplifier, filter, analog-to-digital converter, wireless controller,
and data encoding. The total gain is about 5000 times and the bandwidth

is 1~50Hz in this system, which depend on the feature of EEG signal,
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resolution of analog-to-digital converter and the range of operating
voltage. The diagram of the portable front-end circuit system is shown as
Fig. 3-2 and Fig. 3-3 shows the demo board of portable data acquisition

system.

EEG —» Preamplifier High-pass Filter » Low-pass Filter

4

ere.les.s <4 Dataenconding |« Rl R < Gain Amplifier
transmission converter

Fig. 3-2: Diagram of portable front-end system

Fig. 3-3: Photo of portable front-end system
3.2.1 Four-Channel Front-End Circuits

The function of this front-end system in the analog part is to amply the
EEG signal which can be converted to digital signal operatively. So the
gain of this system is set to 5,000 times. First, the EEG signal was
operated by Instrumental Amplifier which is regarded as preamplifier,
and the output signal is operated by two operational amplifiers which are
regarded as band-pass filter, finally, the EEG signal is operated by an

operational amplifier which is regarded as gain amplifier.
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a. Preamplifier:

Instrumental Amplifier (IA) is a differential amplifier and which
has a high common-mode rejection ratio (CMRR). A high CMRR is
important in applications where the signal of interest is represented
by a small voltage fluctuation superimposed on a (possibly large)
voltage offset, or when relevant information is contained in the
voltage difference between two signals. Thus, AD620 is chosen as
the Instrumental amplifier, and it also can provide the function of
gain. The IA circuit design is shown in Fig. 3-4. The R1 decides the

gain of preamplifier, and the gain is set to 10 times.

REF ouT

IN

Fig. 3-4: Circuits of preamplifier
b. Band-Pass Filter

In this thesis, it designs to use two operational amplifiers to
achieve the function of band-pass filter, and OPA4137 was chosen to
be the amplifier. OPA4137 can be supplied by single (+4.5V to +36V)
or dual (£2.25 to +£18V) power. In the high-pass filter, the cutoff

frequency 1s 1Hz and was decided by passive components R2, R3, C1
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and C2, and the 3dB cutoff frequency f, =
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C1 c2 3
—| S
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Fig. 3-5: High-pass filter circuits

For a band-pass filter, the low-pass filter is designed as shown in

Fig. 3-6. The passive components,R7, R8, C3, and C4 decide the 3dB
1

27, R R CC;

AC 60Hz and the frequency range of EEG signals which this research

cutoff frequency f, = and thinking about the effect of

want to observe, the 3dB cutoff frequency is set to be 50Hz. It
combines the high-pass and low-pass filter to be a band-pass filter, and

their simulation results of circuits are shown as Fig. 3-7

onT

Fig. 3-6: Low-pass filter circuits
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1.000Hz ' ' 46.895Hz

Fig. 3-7: Simulation results of band-pass filter

c.Gain Amplifier
This part is to amplify the analog signal to attend the range
which ADC can convett. This amplifier also chooses OPA4137 to be
the operating amplifier, and the gain of gain amplifier is 50 times

which was decided by R6.and R7 shown in Fig. 3-8.

+5
IN +
i ouT
R6 s
F—"A g
5
R7

Fig. 3-8: Circuits of gain amplifier
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Fig. 3-9: Analog acquisition module

3.2.2 Analog to Digital Converter

In this system, by passing the signal through wireless, it needs an
analog to digital converter to convert the continuous signal to discrete
number. To suit with the _ﬁltéred:qnd é}nipliﬁed signal from front-end
circuit, AD7575 was chosen to .b:e' én ADC converter on this data
acquisition system. The AD757579% high speed 8-bit ADC with a built-in
track/hold functions. The successive approximation conversion technique
is used to achieve a fast conversion time of 5 ms, while the built-in
track/hold allows full-scale signals up to 50 kHz (386 mV/ms slew rate)
to be digitized, the specification of AD7575 is shown as Table 3. The
AD7575 is designed for easy interfacing to all popular 8-bit
microprocessors using standard microprocessor control signals (CS and
RD) to control starting of the conversion and reading of the data. It
provides two kinds of fast digital interface to allow the AD7575 to
interface easily to the fast versions of most microprocessors. The

interface timing diagram used in this thesis is shown as Fig. 3-10.
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Table 3: Specification of ADC

AD7575
Conversion time 5(us)
11.74 X 7.4 (mm)
Operating voltage +5V
Ipp 6 mA (MAX)
Analog input 2.5V
voltage
Power 15 mW
) | |
—{ g [ — ]

— = tz -
[———— Tooygy ————

wusY \ I
—i=| T3 [ —|-| ty [ —= t7 |-
HIGH IMPEDAMNCE NEW HIGH IMPEDAMCE
DATA BUS OLD DATA DATA BUS

Fig. 3-10: Timing diagram of AD7575

3.2.3 Digital Controller

For the data acquisition system, it needs a controller to organize the
working of ADC and encode the digital data to wireless transmission
which received from ADC. Complex Programmable Logic Device
(CPLD) was a programmable logic device with complexity between that
of PALs and FPGAs. The building block of a CPLD is the macro cell,
which contains logic implementing disjunctive normal form equations
and more specialized logic operations. In this research,
EPM7128STC100-7 [36] which is a product of ALTERA was selected as
the main controller of this system. It provides high-performance,

EEPROM-based programmable logic devices (PLDs) based on
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second-generation MAX® architecture. It has Built-in JTAG
boundary-scan test (BST) circuitry with 128 macro cells. Complete EPLD
family with logic densities 2,500 usable gates. EPM7128STC100-7 can
supply 5ns pin-to-pin logic delays with up to 175.4MHz counter

frequencies (including interconnect) and PCI-compliant devices.

LT T T Lo
iol 1' lzl Ia[ |4| lsl 's| 17

Fig. 3-11 :.Digi‘:cal cqnf;oller

3.3 Wireless Transmission

For a portable device, wireless communication is an important issue
to resolve great inconvenience of using with wire transmission. Bluetooth
is a wireless protocol utilizing short-range communication technology to
facilitate data transmission over short distances from fixed and/or mobile
devices. The intent behind the development of Bluetooth was the creation
of a single digital wireless protocol, capable of connecting multiple
devices and overcoming issues arising from synchronization of these
devices. This thesis chooses BM0203 to be Bluetooth module; BM0203
is an integrated Bluetooth module to ease the design gap and uses CSR
BuleCore4-External [37] as the major Bluetooth chip. CSR

BlueCore4-External is a single chip radio and baseband IC for Bluetooth
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2.4GHz systems including enhanced data rates (EDR) to 3Mbps. It
interfaces to 8Mbit of external Flash memory. When used with the CSR
Bluetooth software stack, it provides a fully compliant Bluetooth system
to v2.0 of the specification for data and voice communications. All
hardware and device firmware of BM0203 is fully compliant with the

Bluetooth v2.0+EDR specification.

Fig. 3-12: Photo of Bluetooth Module

3.4 Data Processing Platform

In this data processing platform, the selected core processor is
ADSP-BF533 (Blackfin 533) developed by Analog Devices Inc. [38].
The system diagram of the board we designed is shown in Fig. 3-13 and
the photo of the board is shown in Fig. 3-14. The Blackfin processor
provides both microcontroller (MCU) and DSP functionality in a unified
architecture, allowing flexible partitioning between the needs of control
and signal processing. If the application demands, the Blackfin processor
can act as 100% MCU (with code density on par with industry standards),
100% DSP (with clock rates at the leading edge of DSP technology), or a
combination of the two. The maximum high performance of BF533

processor can be up to S00MHz. It has two 16-bit MACs, two 40-bit
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ALUs, four 8-bit video ALUs, and 40-bit shifter. One of its features is
RISC-like register and instruction model for ease of programming and
compiler-friendly support. The board is designed to support the
development and porting of open-source pClinux applications and
includes the full complement of memory along with serial and network

interfaces. Besides an ADSP-BF533 500 MHz Blackfin processor, the

board includes:

4 16 MB SDRAM (64M x 16 bits) and 4 MB FLASH memory:

4 RS-232 serial interface
4 6 Keypads and 240*320 pixels LCD
-4 JTAG interface for debug and,FLASH programming

- Bluetooth transmitting/ receiving module

TFT LCD
240%320

BLUETOOTH «—  BF-533 | — KEIBPAD

! |

SPI
POWER S’?BT\HABM FLASH
4MB

Fig. 3-13: System diagram of the board
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Fig. 3-14: Photo of the board (upside and downside)
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Chapter 4
Real-Time ICA Signal Processing

4.1 Introduction

In this chapter, it was to describe why EEG signals use ICA, what
kind of ICA was implemented, and how to approach real-time and
window-based signal process on the EEG-based BCI system (Fig. 4-1).
First, checking if window-based ICA method is correct is needed and at

the same time makes sure window-based ICA does achieve real-time.

For the real-time ICA implementation, both the iteration and the
convergence tolerance of training weights have to be limited through the
following methods. Finally; it-will obtain the execution time and iteration
running on DSP, and the information-ef-execution time and iteration will

help to find out the boundary of setting in real-time operation.

Display Data'
it a O e receiver
unit

Window-based and

Real-time Signal

Fig. 4-1: Diagram of wireless signal processing

4.2 EEG Data for ICA

It considers electrical recordings of brain activity as given by an

electroencephalogram (EEG). The EEG data recorded by electrical
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potentials on the scalp consists of many signals in different locations.
These signals are presumably generated by mixing some underlying
components of brain activity, so if want to monitor the physiology state of
subject, the corresponding component will be found (Fig. 4-2). This
situation is similar to the cocktail-party problem: If there are some
microphones were put around the place, and the voice which was
recorded by microphones will be the mixed signal which maybe mix with
the conversation of people, jazz music and so on. So the observed signal
from microphone is like to the EEG signal recorded by electrode, and the
target was to separate the observed signal into several independent
components, such as conversation, music and so on in the cocktail-party;
and component in the brain which have physiology pattern, such as the
reaction of visual stimulus,.'sensorymotor: stimulus, drowsiness and
attention focus. In order to find out-the original components of brain
activity, ICA can resolve the problem.of blind source separation, and can
also reveal interesting information on brain activity by its independent

components.

As shown in Fig. 4-3 the brain activity recorded at one electrode on
the scalp is the mixture of electrical potentials from many different

locations in the brain.
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Based on Diagrams from
Head injury - A Practical Guide By Trevor Powel
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Fig. 4-2: Functions of brain’s area

Fig. 4-3: EEG signal was recorded at one point which is a mixed signal
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4.3 Information Maximization ICA

Information Maximization ICA 1is also called Infomax ICA.
Information maximization theory is an optimization principle for neural
networks and other information processing systems. First, Jeanny Herault
and Christian Jutten [39] proposed a feedback architecture for
independent component analysis from neural network in 1986, and ICA
was most clearly stated by Pierre Comon [24] in 1994. Infomax-based
ICA was described by Bell and Sejnowski [40] in 1995, they derived a
new self-organizing learning algorithm that maximizes the information
transferred in a network of nonlinear units. The algorithm does not
assume any knowledge of the input distributions, and is defined here for

the zero-noise limit.

Single layer feed-forward neural-network in Fig. 4-4, was proposed
by Bell and Sejnowski [40] to. learn ‘the separating matrix W by
minimizing the mutual information between components of y(t)=g(u(t)),
where g is a nonlinear function approximating the cumulative density
function (CDF) of the sources. They formulated blind source separation

algorithms in terms of information maximization.

Fig. 4-4: Blind separation network for two-source mixtures.
Information maximization is how to maximize the mutual information
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that the output y of a neural network processor and with its input vector x.

This is shown as

IIx, yI=H[y]-H[y|X] (4-1)

Where HJ[y] is the entropy of equation 4-2 can be differentiated as follows,

with respect to a parameter, W, involved in the mapping from X to y:

O 1oy 0
a—wl(y,x)—aWH(Y). (4-2)

The joint entropy of the outputs is

H(y) = -E[lnP(y)] = E[ln [ J [] - E[In P(X)] (4-3)

Weights can be adjusted to maximize H(y). As before, they only affect the

E[ln |J|] term above:
oH(y) © 0 0 LINg
AWog——== =——In| J|]= ——In}detW |[+—1 , -
R R " i IaWn]i:[W.l (4-4)

The resulting learning rules are familiar in equation 4-5.
AW oc [WTTH + (1-2y)x (4-5)

But this learning rule is too complex to calculate because of the inverse
matrix. Multiplied by W'W change the rescale of the rule, the new

learning rules as follow:
AW = (1 +(1=2Y)u")W = (I + p(u)u™ )W (4-6)

Thus, the simplification much uncomplicated than before, and this

learning rule is suitable to separate blind sources. The update rule for W
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in discrete time t «— t+1 defined in equation as follows:
W({t+1)=W )+ 1AW . (4-7)

The flowchart of Infomax ICA is shown as

Fig. 4-5. Centering the data can simplify the ICA algorithm, and the
mean can be added back to the data. Whitening means that we remove
any correlations in the data, i.e. the different channels are forced to be
uncorrelated. Then initialize the weight, and after random permutation,
find the maximization entropy output. If the weight change is smaller

than the desired weight change then the training is stopped.

| Start |

v

| Centering |

v
| Whitening |

| Initialize weight |
!

| Random permutation of data

| Apply weight change

eight converged?

| ICA components |

A 4

| End |

Fig. 4-5: Flowchart of Infomax ICA training
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4.4 Real-Time Signal Processing

4.4.1 Window-Based ICA

Real-time signal processing is convenient to embedded BCI system,;
it makes the system to give some information in time. For common use of
ICA 1n signal processing, it gathers a period of data, from several minutes
even to an hour to get ICA components. In that way, it shows the system
can not get instant results. And this type of using wastes the time, the
quantity of data was too large to real time process. The more data to run
ICA, the more time will the processor execute. So the window-based and
real-time ICA processing was proposed; it will improve the facility and

efficiency of portable embedded BClisystem.

For window-based signal processing, it-uses a concept of window
and overlap on ICA algorithm to shorten the execution time in one time
of ICA algorithm running on embedded BCI system, and keeps the
previous information in present ICA training that will make ICA
components still hold on the order. There are more data to execute with
ICA algorithm, it takes more time to get ICA components; but if there is
less data, it would not decompose the observed signal well to get clear
source. So the time length of ICA window is set to five seconds, the time
length of overlapping is three seconds, in this manner, every two seconds
will get ICA components on time. Fig. 4-6 displays the different of
window-based and common-use ICA method (which is called offline ICA

in this thesis).

34



Data ICA

Offline | N
Times
Data
< SH > :
< - ICA (Window: 5s, Overlap :3s)
Window | |
-Based «3S 5 Times
«25, Every 2s updates ICA result
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Fig. 4-6: Method of window-based and offline ICA

4.4.2 Verification of Window-Based ICA

To verify the method proposed in this thesis, it uses four mixed
signals which randomly mixed three super-Gaussian signal and one
random signal. Fig. 4-7 shows the original signal for verification of
window-based ICA. The four random-mixed signals were displayed on
Fig. 4-8. The sample rate of these. mixed and original signals is 64Hz, and
the total time length of them is 1 minute. These mixed signals are the
input of ICA algorithm which was separately executed on a PC platform
using an offline method and a window-based method; and on an
embedded BCI system platform using window-based method. Fig. 4-10,
Fig. 4-12 and Fig. 4-14 show the ICA components obtained from the PC
platform, offline and window-based, and from the DSP platform with
window-based, respectively. In the figures it also shows the
corresponding power spectrum to ICA components. And the total length
of ICA components is displayed in Fig. 4-9, Fig. 4-11 and Fig. 4-13,

respectively.
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Fig. 4-8: Mixed signals for ICA verification
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Fig. 4-9: Result of offline ICA component performed on PC platform
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Fig. 4-10: Result of offline ICA component and spectrum performed on

PC platform.
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platform.
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Fig. 4-14: Result of window-based ICA component and spectrum

performed on DSP platform
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Table 4 : Correlation table of window-based and offline ICA

Correlation Different type Different platform
platform PC PC and DSP
Type window-based and offline window-based
Domain Time Frequency Time
Component 0.1621 0.9632 0.8761
1(red)
Component -0.0769 0.9799 0.9998
2(pink)
Component -0.2791 0.999 0.9995
3(green)
Component 0.5746 0.9536 0.9998
4(yellow)

For window-based ICA, the window concept is applied and that is
different with offline ICA. The results of ICA components will not
change in offline ICA (Fig. 4-9), because it only has one window to
process. But also in window-based ICA, the ICA components will not

change each other by the windowupdated (Fig. 4-11 and Fig. 4-13).

The verification of window-based ICA and offline ICA is in the same
platform, there is not high correlation between window-based ICA and
offline ICA running on the PC platform in time domain (Table 4), but in
the Fig. 4-10 and Fig. 4-12, it shows that property of signal is
decomposed and it is easy to identify the four signals, and the responding
correlations are above 95% in frequency domain (Table 4). Because of
cutting the window and fewer information of data, it makes the
component have a negative sign different between window-based and
offline processing. The figures also exhibit the corresponding power

spectrum to ICA components, it presents that they have similarity

40



between their spectrum analysis of window-based and offline ICA
running in PC platform. On the comparison of different platform, the
result of ICA components has high correlation, their property was
decomposed, and their spectrum analyses are almost the same. No matter
window-based ICA running on the PC platform or DSP platform, the
correlation of ICA components are high to 87%. Regardless of
window-based and offline ICA processing on both platform, the ICA
components will be identified clearly and the property of power spectrum
is changeless. So this window-based ICA method will be applied on an

embedded BCI system and it also will obtain good ICA components.

4.4.3 Real-Time ICA

Due to the window-based ICA was accomplished for an embedded
BCI system, the next concern problem-was execution time, whether the
ICA algorithm can be run in ‘the. limited time to get I[CA components.
Table 5 shows that the execution time on the embedded BCI system with
DSP in once ICA training loop is 10.275 seconds, and it means that DSP

would not finish the ICA training inside two seconds.

41



Table 5 : Comparison of execution time

DSP(BF533) ARM]52] ARM and
DSP[52]
CPU 528MHz 168Hz ARM:168MHz
DSP:192MHz
ICA version Infomax ICA Fast ICA Fast ICA
Channel 4 2 2
Test Signal 4 super-Gaussian | Super-Gaussian | As Left
& random signal
Sample Rate 64 - -
Length 5s - -
Total Data Length | 1280 points 256 points 256 points
Processing Time | 10.275s 29.548805s 2.297103s

To get window-based ICA ;components in real-time operation, the
training flow of Infomax. ICA ralgorithm' (Fig. 4-5) was reviewed;
considering changeless of ICA algorithm for precise ICA components, the
executed iteration and the convergence tolerance of the training loop can
be limited. First, the condition of convergence tolerance was limited. In
the ICA training loop, this thesis sets up three settings, and make them
run on DSP to get their execution time for real-time operation. Fig. 4-15
shows the three setting, the setting 1 is normal setting, which means that
the setting was the same with above simulation which was descried in
4.4.2. And the weight error tolerance of setting 2 and 3 is set as shown in
Fig. 4-15. To do this, every setting will obtain the execution time and
iteration running on DSP, the information of execution time and iteration

will help to find out the boundary of setting in real-time operation.
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Simulated Data Window-based Result & Time

ICA

(3 super-Gaussian &

i (Compare 3 Settings)
1 random signal)

e H

Set up the weight error-tolerance
to stop learning

Window-based | Setting 1 Setting 2 Setting 3
ICA

Weight error 0.00002 0.0002 0.002
tolerance (normal)

Fig. 4-15: window-based ICA setting for real-time processing

4.4.4 Verification of Real-Time ICA

For testing the three window-based ICA settings, the test pattern as
previously shown in Fig. 4-8 and EEG signal are used to obtain their ICA
components. The sample rate 'of data is also 64Hz and the total data
length is 1 minute. This thesis regards-Setting 1 as the control group, and
Setting 2 and 3 as the experimental groups, and the variation was error
tolerance of convergence (Fig. 4-15). The result of ICA components
which work on DSP were shown from Fig. 4-16 to Fig. 4-19. In the
figures, the pink line represents Setting 1, and the blue line represents
Setting 2 (Fig. 4-16 ~ Fig. 4-18) and 3 (Fig. 4-17 ~ Fig. 4-19), respectively.
Fig. 4-16 and Fig. 4-17 illustrate the total ICA components of one minute.
Fig. 4-18 and Fig. 4-19 display ICA components of six seconds and
corresponding spectrum to ICA component of total length. The testing

results of EEG signals are shown as Fig. 4-20 and Fig. 4-21.

In the situation of weight error tolerance limited, the ICA

components will not change each other by the time passed in Setting 2

43



and 3 (Fig. 4-16 and Fig. 4-17). In the Table 6, there are 3 ICA
components which were obtained from Setting 2 is similar with that
which were obtained from Setting 1; their correlations are up to 87% in
time domain. In Setting 3, the correlation of 2 ICA components is up to

93.7% in time domain.
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Fig. 4-16: Result of window-based ICA Components performed on DSP

(Setting 1 shown as the red line and Setting 2 shown as the blue one)
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Fig. 4-17: Result of window-based ICA Components performed on DSP
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Table 6 : Correlation table.of windew-based ICA in time domain

Correlation with Setting 2 Setting 3
Setting 1
Platform DSP
Type Window-based
Domain Time
Component 1(red) 0.5481 0.5343
Component 2(purple) 0.8717 0.5765
Component 3(green) 0.9839 0.9397
Component 4(yellow) 0.9952 0.9801

And the corresponding spectrum analysis of Setting 2 and 3 are
almost the same as that of Setting 1 (Fig. 4-18 and Fig. 4-19). In
frequency domain (Table 7), the correlations of 4 ICA components are up

to 90.4% in Setting 3 and setting 2.

45



narrrial

ICA Result on DSP iteration

Arnplitude

=) =]
Power(dB)

[

e

1 2 3 4 5 B ] g 10 18 20 i 30
Times Frequency (Hz)
ICA Result on DSP
20 -
£ o
= ot ol 5 [
£ 0 H o -1
2 H
;(E i ”,/_A\Jv\_,ﬁ_/‘v
o0 | L L | L 1 L L | | | |
1 2 ] E] [ B 0 g 10 15 20 25 30
Times Frequency (Hz)
ICA Result on DSP
0 ‘ i : ‘ : =
2 oLUMAAMIMMAM A 3
£ 0 J 5 2
2 i : i
< o
10 L . L 4] s s | | | |
el T =) (<] ] 1o 15 20 5 3l
Times Frequency (Hz)
ICA Result on DSP
10y , , iY

Arnplitude
=]
%
Power(dB)
=
[

Z a 4 a B U a [ 12 P} 2 aU
Times Frequency (Hz)

Fig. 4-18: Results of window-based ICA Components performed on DSP:
(left) 4-channel ICA components and (right) corresponding spectrum of

Setting 1:(red line)-and 2 (blue one).

normal

ICA Result on DSP iteration=3
1 T T T o
2 g
= J 5 -0
g :
< o
-0t -20
5 10 15 20 25 30
Times Frequency (Hz)
ICA Result on DSP
-5
: g
= z -10
<L o
=20 -15
a 1 2 3 4 5 B 5 10 15 20 25 30
Times Frequency (Hz)
ICA Result on DSP
1 o
. g
= z -20
e T
<L o
-0 -40
a 1 2 =) 4 5 B a 10 15 20 25 30
Times Frequency (Hz)
ICA Result on DSP
0 0 ' i y i ' '
2 )
£ : | -
5 :
<L o

-1 -40
1} 1 2 3 4 5 B o 8 10 15 20 25 0

Times Frequency (Hz)

Fig. 4-19: Result of window-based ICA Components performed on DSP:
(left) 4-channel ICA components and (right) corresponding spectrum of

Setting 1 (red line) and 3 (blue one).

46



Table 7 : Correlation table of window-based ICA in frequency domain

Correlation with Setting 2 Setting 3
Setting 1
Platform DSP
Type Window-based
Domain Frequency
Component 1(red) 0.9987 0.9955

Component 2(purple) 0.9909 0.9579
Component 3(green) 0.9674 0.9049
Component 4(yellow) 0.9964 0.9871

normal
ICA Result tteration=18
il T T T T I
T 10+ ol
E
<L
-0 | | | | |
0 10 20 30 40 50 80
Times
10 T
iy
=]
2
2 oy (hpifs "H'll
£
L
0 | | | | |
0 10 20 30 40 a0 0
Times
10 T
[}
=]
=3
= ol / R {0
£
L
a0 | | | | |
0 10 20 30 40 a0 B0
Times
10 T
i}
E
2 0y H} ) l|||'.|+'
E
£
0 | | L | |
0 10 20 30 40 a0 0

Fig. 4-20: EEG signal results of window-based ICA Components use
performed on DSP (Setting 1 shown as the red line and Setting 2 shown

as the blue one)
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For executing time and iteration, three testing setting of
window-based ICA are tested by two kinds of signals (Test pattern and
EEG). The Setting 2 and Setting 3 also give good result of ICA
component as above, and then how long will they operate on DSP is
concerned. The results of test pattern is the same with above (Fig. 4-8),
and the testing result to the two types of signals is shown in Table 8.
From Table 8, it is found that there is no difference between test pattern

and EEG in execution time and iteration.
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Table & : Execution time of once window-based ICA

window-based ICA Setting 1 | Setting 2 | Setting 3
Test pattern Average Time | 10.275s 3.782s 0.7s
(1 min) Average 47 18.7 3

Platform :DSP | Iterations

EEG signal Average Time | 8.7798s 3.2896s 0.7654s
(1 min) Average 48.8571 17.89 3.6429
Platform :DSP | Iterations

Finally, to achieve window-based and real-time ICA processing, in
this condition of the five iterations limited, the average execution time
was 1.06 seconds which is under two seconds. So the variables to control
the executing time and performance of ICA components were that the
restricted iteration is five steps and:the weight error tolerance is 0.0002
which is the same as Setting 2.-The tesult.is shown in Fig. 4-22, and
Table 9 shows the correlation result in time domain and frequency
domain. The correlation between normal setting (Setting 1) and final
setting in time domain, there are the 2 ICA components up to 94%. And
that in frequency domain, there are 4 ICA components up to 91%, it
means that after test pattern are processed by real-time window-based
ICA; the ICA components still have same property with that was

processed by normal ICA.
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Fig. 4-22: Result of window-based. ICA-Components performed on DSP:
(left) 4-channel ICA components and' (right) corresponding spectrum of
Setting 1 (red-line) and final setting (blue one).

Table 9 : Correlation table of final setting for window-based ICA

Correlation with Setting 1 Time Domain Frequency Domain
Platform DSP
Type Window-based
Iteration Limit 5
Weight Error Tolerance 0.0002

Average Execution Time 1.06s
Component 1(red) 0.5378 0.9963
Component 2(purple) 0.5563 0.9675
Component 3(green) 0.9489 0.9156
Component 4(yellow) 0.9832 0.989
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Chapter 5 Experiment Results

5.1 Introduction

This thesis uses two settings to test ICA which was proposed in the
previous chapter. One is test signal and the other is real EEG signal. The
result of test signal was presented in Chapter 4; this chapter will present
the result of real EEG signal. There are four subjects who have good
drowsiness performance during task experiment to verify that the
window-based and real-time ICA applied on this signal procedure, the
final result would be similar to that of offline signal procedure on PC

platform.

5.2 ICA Verification-on' EEG Signal

5.2.1 Description of EEG Data

There were three major parts of the architecture: (1) a 3D highway
driving scene based on the VR technology, (2) a real vehicle mounted on
a 6-DOF motion platform, (3) a physiological signal measurement system
with 36-channel EEG/EOG/ECG sensors. The subjects were asked to sit
in a real car mounted on the 6-DOF motion platform with their hands

holding the steering wheel to control the simulated car in the VR scene.

Subjects participated in a Virtual-Reality (VR)-based highway
driving experiment (Fig. 5-1), in which they were instructed to put forth
their best effort to keep their lane position. An actual automobile was

mounted on a 6- DOF Stewart platform, which provides translational and
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rotational movement and vibratory feedback to simulate actual driving
conditions. The 360° projection of driving scenery is updated
synchronously with deviations caused by wheel/paddle movement by the
subjects or by road conditions. Every 3-7 seconds the car was linearly
pulled towards the curb or into the opposite lane, with equal probability.
Subjects were instructed to compensate for the drift by steering a vehicle
wheel. The EEG data were recorded at Fpl, Fpz, Fp2 and midway
between Fpz and nasion, referentially against a right-mastoid reference by
a Neuroscan amplifier (Fig. 2-3). The EEG data were sent to a PC for
further analysis. Driving performance was measured by the distance of
lane deviation (Fig. 5-2), which was small when the subject was alert, and
vice versa. The driving parameters (lane-position and wheel rotation)

were in sync with the EEG acquisition system;,

Under this experiment,-the signal-procedure was shown in Fig. 5-3.
The final result will show the correlation between the ICA power and
subject’s behavior, the red color represent positive correlation and the
blue color represent negative correlation. Finally, several subjects have
presented that ICA power spectra at theta (4~7Hz) band and/or alpha
(8~11 Hz) band are associated with human drowsiness, and the
relationship between EEG log power and subject task performance is

largely linear.
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Fig. 5-1: Overview of surrounded VR scene. The VR-based four-lane
highway scenes are projected into surround screen with seven projectors
processing.

Fig. 5-2: Photo of the four-lane highway scene.
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Fig. 5-3: Diagram of EEG signal processing
5.2.2 Signal Processing Procedure on Drowsy Estimation

In this experiment, the EEG signals gathered from NuAmps(Fig. 2-3),
their sample was 250 Hz. And to implement the window-based and
real-time ICA in this case, the sample rate performs on EEG-based BCI
was 64 Hz. So it is to prove that the drowsiness phenomenon still exist

even the sample rate was from 250 Hz down to 64Hz.

The diagram of the signal processing is shown in Fig. 5-4. The

4-channel EEG data was first recorded via NuAmps. Then change the
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sampling rate to 64Hz. It consists of down sampling, independent
component analysis, moving-average spectrum analysis and correlation
analysis. The independent component analysis is applied to the down
sampled EEG signals to obtain the independent components. The
moving-average power spectrum was to calculate the frequency response
of ICA components. Finally, the correlation coefficients between the
subjects’ driving error and the power spectra of all ICA components at
each frequency band were calculated to assess the relationship between

subject performance and EEG log spectra.

4 channel EEG data For real-time processing:

Sample Rate:64Hz 1. Weight Error-tolerance limit

$
/\ 2. Iteration limit
Independent Component Analysis
(Window-based, Infomax; 320
pom@nnel) '

Moving-Average Spectrum Analysis : ,
( 64-points Short Time FFT) Al T

I} " [ i ] ¥
L WL 2

The Power of Theta band The behavior of subject

Correlation Result

Fig. 5-4: Diagram of EEG signal processing for verification

5.3 Verification of Real EEG Signals

5.3.1 Down Sampling

There was four subjects participated in a VR(virtual-Reality)-based

highway driving experiment. Their EEG data was recorded at Fpl, Fpz,
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Fp2 and midway between Fpz and nasion, referentially against a
right-mastoid reference by a NuAmps. Their EEG data have good
drowsiness phenomenon at sample rate 250Hz, it means that their EEG
power spectra at theta (4~7Hz) band, and /or alpha (8~12Hz) band were
associated with human drowsiness, and the relationship between EEG
power and subject task performance was largely high. Fig. 5-5 illustrates
the signal procedure was run with Matlab on PC platform. The
correlation results of ICA component power and subject’s behavior were
shown in Fig. 5-6-Fig. 5-9. These figures represent the correlation
between ICA power and subject’s behavior. The results indicate that it
still has good drowsiness phenomenon when the data sample is 64 points

per second.

EEG Raw Data ( 250Hz or 64Hz)

3s ICA (oftline)
“—

———

2s - Moving-Average Spectrum Analysis

(Window:3s , Overlap :1s)

Power 1 Power 2 Power 3

e e ccscne

-

Correlation with driving error

Fig. 5-5: Diagram of offline signal processing procedure
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Fig. 5-9: Correlation of ICA power and subject’s behavior (Subject 4).
Sample rate (left) is 250Hz and (right) 64Hz.

5.3.2 Moving-Average Spectrum Analysis

First, the function of movmg ayerage spectrum analysis was verified
in different platform, pc and -]58]? platfmrm, The test signal is 5 Hz sin
wave generated by Matlab (Flg ; IIE}), Whlch sample rate is 64 Hz and
data lengths are 5 minutes. 'Flg wi“‘ll and- F 1g ' 5-12 show the result on PC
and DSP platform separatefly From the result of moving-average
spectrum analysis, there are no differences between the function

performed on PC and DSP platform by time passed.
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Fig. 5-11: Result of Moving-Average Spectrum Analysis on PC platform
(5Hz signal)
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Fig. 5-12: Result of Moving-Average Spectrum Analysis on DSP platform
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5.3.3 Real EEG Signal Result

In this part, the real-time ICA-setting (Table 9) will apply on
real-time ICA processing (Fig:5-13).in thi's.drowsiness signal procedure
(Fig. 5-4). And the purpose is to verify that the EEG signals processed by
real-time ICA, and the results of ICA components will still have
drowsiness pattern as same as offline analysis. Fig. 5-14-Fig. 5-17 show
that the ICA setting can extract the interesting pattern of drowsiness index,
it represents that it will have high correlation with subject’s behavior in
theta band (4-7 Hz) or alpha band (8-12 Hz). No matter what kind of
drowsy patterns (alpha or theta patterns) will have high correlation with

subject’s behavior (Table 10).
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In this thesis, ICA and m@mng_ spec‘&:al analy51s implemented on the

wearable embedded BCI W@Te g:oﬁilhgausly a,pphed to the ongoing EEG

-_'. i '\.'r_-u.

while the participants were ’p_erf@lam@ane Iieepmg driving tasks. Table

10 shows the correlation coefﬁmems_betpveen the smoothed time series of

and subject driving performance and the theta and alpha power of most

task-performance-related components.

Table 10 : Correlation of 4 subjects

Subject S1 S2 S3 S4
. Theta 0.7316 0.8978 0.1835 0.8506
Offline
Alpha 0.019 0.8686 0.8271 0.3693
Window-based Theta 0.8395 0.7574 0.4728 0.6952
Alpha 0.6848 0.7527 0.7823 0.4621
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Chapter 6 Conclusions

The ICA applied to power spectrum of ICA components can
successfully remove most of EEG artifacts and also estimate people’s
drowsiness degree. In order to achieve the target of window-based and
real-time EEG signal processing on the DSP-based BCI system, this
thesis proposes the window-based ICA described in Chapter 4 and can
achieve good results of subject’s drowsiness state. Due to updating results
in time (inside 2s), the execution time of signal processing (ICA and
spectrum analysis) has to be limited. Even if the iteration is restricted,
there is still the good outcome of all ICA components and EEG-based
drowsiness estimation. This result will be “applied to live drowsiness

estimation.

The unavailability of a BCI ‘capable of window-based signal
processing and artifact correction or separation has long limited the use of
BCI in operational environments. This study implemented a
moving-windowed window-based ICA and spectral estimation on a
miniaturized, battery-powered and light-weight embedded BCI. The
empirical results showed that the efficacy of window-based signal
separation was comparable to that of the offline implementation. The
remaining issue is to develop an algorithm to automatically select the

performance-related independent component(s).

The window-based ICA algorithm can be implemented with FPGA
or DSP to achieve the capability of real-time processing. In the future, the
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next importance issue of window-based ICA is focused on the

informative component selected automatically during the restricted time.

In conclusion, this study demonstrated the feasibility of
window-based signal processing and source separation on a wearable
miniature embedded BCI. This demonstration could lead to a practical
wearable BCI for the monitoring of the brain functions of unconstrained

participants performing normal tasks in the workplace and home.
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