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學生：黃旭明 
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摘 要       

 

在這本博士論文中，我們將討論兩個介觀物理的

主題。第一個是銅鍺金合金薄膜在低溫下電子的非彈

性散射時間的研究、第二個是電子在砷化鎵垂直雙量

子點中自旋傳輸的研究。 

  電子非彈性散射時間是一個度量電子處在其基

態時間長短的物理量。根據費米液體理論

（Fermi-liquid theory）的預測，電子在絕對零度

時，電子的非彈性散射時間會是無窮長。然而，多年

來眾多的實驗結果顯示，當溫度低於某個溫度後，電

子的非彈性散射時間會呈現一個不隨溫度改變的定

值。這個奇異的現象吸引了許多理論和實驗學家的注

意。有些理論學家認為不同於費米液體理論的預測，

這個現象是一個新的本徵物理性質。一開始在這 

方面有非常多的爭議，許多研究的結論漸漸地澄清了



這個現象。經過長時間的研究，大部分的人都相信樣

品中磁性雜質的存在將會導致一個不隨溫度變動的

散射率，這等效於實驗上常常被觀測到的不隨溫度變

動的非彈性散射時間。在此之後，大不分的人都會將

觀測到奇異的非彈性散射時間歸因為近藤效應 

（Kondo effect）。我們也做了一些銅鍺金合金 

（Cu93Ge4Au3）薄膜的電子非彈性散射時間研究。我們

的結果顯示了三個非常特異的現象：第一、對於不規

則程度不同的樣品中，所有的樣品都在１０度（１０

Ｋ）跟６度（６Ｋ）之間呈現一個不隨溫度變動的非

彈性散射時間，而且對於所有的樣品在這區間非彈性

散射時間都是相同的。第二、當溫度低於６度（６Ｋ）

時，非彈性散射時間急速的增加而且增加的速率跟樣

品的不規則程度有關。對於一個不規則程度較高的樣

品，非彈性散射時間增加的速率比較快。第三、在１

０度（１０Ｋ）到３０毫度（３０ｍＫ）區間，外加

高達１５Ｔ的磁場依舊對電阻全無影響。所有的證據

顯示動態結構缺陷效應（dynamic structure defeat 

effect）主宰整個系統行為。我們的結果是第一個有

系統分析這個效應的研究。 

  這幾年，因為在量子資訊上潛在的應用，量子點

中電子自旋的傳輸吸引了非常多研究上的注意。我們

也做了兩個垂直量子點的題目。 

  第一個是有關於自旋選擇法則。我們量測了銦鎵

砷（In0.05Ga0.95As）垂直雙量子點的傳輸頻譜。利用大



偏壓法（large source-drain voltage），從雙電子

到三電子傳輸基態跟激發態的頻譜同時可以被觀測

到。在觀測到的頻譜中，從１Ｓ
２
單重態到１Ｓ２Ｐ

三重態的基態過渡在５Ｔ被觀測到。在高於５Ｔ的磁

場下，可以清楚的看到黎蔓分離（Zeeman 

splitting），而ｇ值（g factor）是０.３６。藉由

自旋選擇法則我們可以解釋在從雙電子到三電子的

傳輸中只有兩條黎蔓分離線而不是三條黎蔓分離

線．對於躍遷前後的電子自旋數大於１／２是不被允

許的。因為電子在自旋雙態（doublet state）的遲

逾時間（relaxation time）遠大於電子穿隧傳輸的

時間，所以上自旋（spin up）跟下自旋（spin down）

都可以成為傳輸的起始態。總共會有四個可能的傳輸

貢獻，但只有兩個有效能量可以在傳輸頻譜上被觀測

到。 

  第二個主題是有關於在黎蔓非吻合的量子點中

的自旋傳輸。我們量測了在不同ｇ值的雙量子點的穿

隧電流（tunneling currents）。結果是完全的不同

於相同ｇ值的雙量子點的穿隧電流。特別的，因為兩

個電子點間黎蔓不吻合的穿遂，人們預測兩個分裂的

電流峰將會被觀測到。另外，聲子（phonon）的散射

強烈地影響到傳隧的電流值。在弱的聲子散射只有上

自旋電子可以共振（resonance）地穿遂，而下自旋

電子則不行。除此之外，帶寬（bandwidth）共振穿

遂電流峰在這個黎蔓不吻合的系統中被觀測到。 



Abstract

We report two mesoscopic topics in the thesis. First one is about the

low temperature dephasing time in Cu93Ge4Au3 thin films and second

one is about the spin transport in InxGa1−xAs (GaAs) vertical double

quantum dots.

The electron dephasing time is a time scale that how long an electron

can stay at its eigenstate. Fermi-liquid theory predicts that the life-

time of an electron at the Fermi surface at T = 0 is infinite. However,

many experiments show that the dephasing times are always constant

at low temperature. The anomalous low temperature desphasing time

catches many theorists’ and experimentalists’ interest. Some theorists

propose that the saturating low temperature dephasing time is intrin-

sic physics which is contrast to the Fermi-liquid theory. It makes

a lot of controversy on the phenomenon. Many works were done

to clarify the physics. After a lot of studies on the field, people be-

lieve that magnetic impurities would induce a constant scattering time

which is equal to the observed saturating dephasing time. After that,

people often refer the anomalous low temperature dephasing time to

the Kondo effect. We study the low temperature dephasing time in

Cu93Ge4Au3 thin films. There are three distinct features. First one is

that the dephasing time is a constant value between 10 K and 6 K for

all of measured films with different levels of disorder. Second one is

that the dephasing time increases drastically as temperature is lower

than 6 K. The increasing rates depend on the levels of disorder. For

a more disordered film, the increasing rate is more drastic. Third one

is that the temperature dependent resistance from 10 K down to 30

mK is insensitive to the magnetic filed up to 15 T. All of the results



support that the dynamic structure defeat effect dominates the be-

haviors. Our experiment is the first systematic study on the dynamic

structure defeat effect.

The electron spin transports in quantum dots have caught consider-

able increasing of interest because of potential development on quan-

tum information. We have done two subjects on spin transport in

vertical double quantum dots.

First subject is about the spin-selection rule. We measured electron

transport state spectra of an In0.05Ga0.95As vertical double quantum

dot. Both the ground and excited states of transport spectra from two

electrons to three electrons are measured using a large source-drain

voltage. In the obtained transition spectrum, the ground state tran-

sition from the 1S2 singlet state to the 1S2P triplet state is observed

at 5 T. Zeeman splitting with a g-factor of 0.36 is clearly observed

at magnetic fields higher than 5 T. The observation of two Zeeman

sublevels instead of three for the triplet state is explained by the spin

selection rules for the SZ components between the two-electron and

three-electron spin states. Transition with the total spin difference

between the initial and final states larger than 1/2 is forbidden. Be-

cause the relaxation time between doublet states is much longer than

electron tunneling time, both spin up and spin down can be the initial

states from spin transitions. There are four transitions contributing

to tunneling processes, but only two energy differences lead to the two

Zeeman sublevels in the excitation spectra.

The second subject is related to spin transport in Zeeman mismatch

double quantum dots. We measure tunneling currents in a vertical

double quantum dot with different g factors for the two dots. The

results are substantially different from those in a double quantum

dot with a homogeneous g factor. In particular, two split peaks are

expected to be observed due to the Zeeman mismatch of inter-dot

tunneling. In contrast to the case of a homogeneous g factor, the cou-

pling to phonons strongly affects the tunneling current in the system



with an inhomogeneous g factor. For weak coupling strengths, only

up-spin electrons can resonantly tunnel through the dots while the

down-spin tunneling is spin blockaded. Besides, a bandwidth reso-

nance tunneling peak also appears in the system with mismatched g

factors.
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Chapter 1

Introduction

Low temperature mesoscopic transport is a very interesting topic in research

no matter on the technique application or basic scientific study. The more we

study, the more new and fantastic physics and phenomena are discovery and

invented. In the thesis, I report two mesoscopic topics which I have studied in

the years. The first one is concerning low temperature electron dephasing time

in Cu93Ge4Au3 thin films and the second one is concerning the electron spin

transport in InxGa1−xAs (GaAs) vertical double quantum dots. I will discuss the

first one topic, low temperature dephasing time, in the part 1 from chapter 2 to

chapter 5 and discuss the second topic, spin transport in dotble quantum dots, in

the part 2 from chapter 6 to chapter 9. Last, I would give conclusions and future

works in the chapter 10.
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Part1:

Low Temperature Electron

Dephasing Time

2



Chapter 2

Introduction to Low

Temperature Dephasing Time

The motion of conduction electron in solids has long been a subject of interest and

fascination. In a crystalline or ordered material, where the potential is periodic,

the conduction electron are well described by Bloch theory which the electron

wave function are specially extended throughout the system. The electrical con-

duction in such a system can be described by the Boltzmann transport. The

results of the theory are that at high temperatures the resistivity is dominated

by phonon scattering and at low temperature the resistivity is dominated by the

impurities. The Boltzmann equation predicts, in the low temperature regime, a

resistivity which is given by

ρ(T ) = ρe + AT 5, (2.1)

where A is a constant, and ρe is the residual or impurity resistivity, which is

caused by collision of electron with impurities. Since the impurities are treated

as static, the residual resistivity is temperature independent. It is also well known

that in the formalism of Boltamann transport theory the impurity concentrations

are assumed to be extremely low. In the extremely disordered limit, the scattered

electrons can be described by superpositions of Bloch waves.

In 1958, Anderson(1) pointed out that,when the randomness or disorder in

the potential is sufficient high, i.e., in the strong disorder limit, the electron wave
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functions may be altered from the Bloch forms. He showed that the electron

wave would be localized in regions where the potential is particularly suitable.

Thouless(2; 3) and co-workers(4; 5) had tempted to formulate a scaling descrip-

tion of the localization problem. They predicted that in one dimensional system,

once the residual resistance of a wire exceeded a critical value of the order of ~/e2

(∼ 4KΩ), hence the electronic states would be localized. Several experiments

had been reported to check this prediction.

In 1979, Abrahams, Anderson, Licciardello, and Ramakrishnan(6) based on

those arguments of Thouless and co-works(2; 3; 4), successfully constructed a

scaling theory of localization. They concluded that, in the presence of any amount

of impurities, there would be no extended states in two dimensional systems.

They showed that the conductance would undergo a crossover from a logarithmic

decrease to an exponential decrease with increasing the linear dimension of the

system. In three dimensional system, the scaling theory predicted that the metal-

insulator transition would be continuous.

The localization theory is a single particle description. Considering many

body effects, Al’tshuler and Aronov(7; 8) pointed out that the interaction be-

tween the conduction electrons, in the presence of weak disorder, would have

strong effects on the transport properties. They studied the Coulomb inter-

actions between screened, two dimensional electrons whose motion is diffusive.

They found the interactions between electrons are greatly enhanced in this case,

causing a logarithmic singularity in the density of states in turn results in a non-

ohmic conductivity which is similar to that predicted by localization.(9; 10) This

theory is commonly referred to as electron-electron interaction theory. Such a

singularity in the density of states led to very similar effects on the electronic

transport properties as those predicted by the weak localization theory.

There have been a number of experimental studies in the past several years of

various types of disordered conductors, which have been aimed at testing these

predictions. The behavior of the resistance as a function of temperature agreed

qualitatively with the theory. These experiments have also shown that the be-

havior is strongly dependent on the system dimensionality.(11; 12; 13; 14)

To differentiate between the weak localization effects and the electron-electron

interaction effects, magnetoresistance measurements are extremely important.
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Hikami, Larkin, and Nagaoka,(15) and Al’tshuler and co-worker(9; 10; 16) con-

sidered the effects of a magnetic field on the behavior of resistivity at low tem-

peratures. These studies showed that localization and interaction respond very

differently to a magnetic field. It turns out that localization effects result in an

anisotropic magnetoresistance in a very low magnetic field regime. Interaction ef-

fects, on the contrary, result in an isotropic magnetoresistance, but the magnitude

of this magnetoresistance is important only at significantly high magnetic fields.

It was also found that the effects of spin-orbit scattering and spin-spin scattering

can be very important. If the spin-orbit scattering is strong enough, it can cause

an effect with a sign opposite to that of localization.(17) That is, it cause the resis-

tance to decrease as the temperature is lowered, rather than increase. This effect

is known as anti-localization. A number of very successful measurements have

been performed to test these predictions.(17; 18; 19; 20; 21; 22; 23) In particular,

magnetoresistance measurements have been used to infer the electron inelastic

scattering time, the spin-obit scattering time, and the spin-spin scattering time,

and hence the overall contribution to the zero field behavior from localization an

be determined.

It is well established that one can extract the electron-phonon scattering

time, electron-electron scattering time, spin-orbit scattering time, and spin-spin

scattering time from magnetoresistivity measurements. There have been many

experiments done in this direction to obtain these phase breaking times which

have proved that this is a very reliable method. There have been many experi-

ments using this method to obtain the phase breaking times in different dimen-

sional systems. Bergmann does a lot of works on spin-orbit inelastic scattering

time.(24; 25; 26) Lin and Giordano(27; 28) study the electron-electron scattering

time in 1D and 2D in AuPd films. Their results are good agreement with theoreti-

cal predictions and widely accepted. In experimental side, Lin and Wu(29; 30; 31)

and many scientists study the electron-phonon inelastic scattering time, τep, in

many different systems(32; 33; 34; 35). They point out that the τep ∝ T−p where

p ranges from 2 to 4. In theoretic side, Sergeev and Mitin establish a phonon-drag

theory which can explain experiment results well.(36; 37; 38)

Lin and Giordano perform systematic measurements of inelastic scattering

times in several AuPd films. They point out the the saturated inelastic times
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depend on the sheet resistance, R¤, and conclude that the observed saturation

inelastic scattering time cannot be explained in terms of magnetic scattering. Af-

ter that, more and more experimental works observe the same behaviors. In 1997

Mohanty(39) collects many experimental results and points out that experiment

always observe a constant τφ when temperature is sufficiently low. The satu-

ration of τφ occurs in both one and two dimensional metal and semiconductor

mesoscopic structures. The observation of τφ saturation immediately triggered

many experimental and theoretical groups asking whether the saturation might

be universal in all material systems and dimensions.

The electron dephasing time τφ is one of the most important quantities gov-

erning quantum interference phenomena. Recently, the behavior of the dephasing

time near zero temperature, τ 0
φ has attracted many experimental(39; 40; 41; 42;

43; 44; 45; 46; 47) and theoretical(48; 49; 50; 51; 52; 53; 54; 55; 56) attentions.

One of the central themes of this renewed interest is concerned with whether τ 0
φ

should reach a finite or an infinite value as temperature approach 0 K. The con-

nection of the τ 0
φ behavior with fundamental condensed matter physic problems,

such as the validity of the Fermi-liquid picture, has been intensively addressed.

Conventionally, it is accepted that τ 0
φ should reach an infinite value in the presence

of only electron-electron and electron-phonon scattering.

For a long time, the saturation behavior of τ 0
φ has often been ascribe to a finite

spin-spin scattering time, due to the presence of a tiny amount of magnetic im-

purity in the sample. Such a finite scattering rate will eventually dominate over

the relevant inelastic scattering in the limit of sufficiently low temperatures. The

idea of magnetic scattering induced dephasing immediately became widely ac-

cepted. Hikami greatly shaped the current understanding of the effect of spin-flip

scattering on the weak localization magnetoresistance. According to the descrip-

tion, magnetic scattering can lead to decoherence between the two time-reversed

wave traversing a closed loop, resulting in a suppression of weak localization and

related quantum interference effects. Generally, the spin-spin scattering time is

taken to be essentially independent of temperature, compared with the relatively

strongly temperature-dependent electron-phonon and electron-electron scatter-

ing times. With this Understanding, it is natural to interpret any saturated τ 0
φ

measured in the experiments in terms of a finite spin-spin scattering time.
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The Saclay-MSU group has measured the dephasing time of quasiparticles

in several noble metal narrow wires. They found that the τφ varies as T−2/3

which is the prediction of one dimension Nyquist electron electron scattering

time down to 40 mK. Once, several ppm magnetic impurities are doped into the

wires, measured inelastic scattering times show a weak temperature dependent

at low temperature. They concluded that a saturation of τφ occurs only in wires

that contain a small amount of magnetic impurity.(57; 58)

In contrast to the conclusion reached by the Saclay-MSU group discussed

above, Mohanty et. al.,(45; 59) have tested and argued for a non-magnetic origin

for the saturation behavior of τ 0
φ . Mohanty et. al., first study very pure Au

wires (containing less than 1 ppm of magnetic impurities), finding that there

is always a saturation of τ 0
φ . From these measurements, they find realizes that

both the values of τ 0
φ and the onset temperature of saturation could be tune by

adjusting the sample parameters such as the wire length, resistance, and diffusion

constant. To explore this idea, Webb et. al., repost further measurements on

several carefully fabricated Au wires, whose onset temperature of saturation is

indeed push down to very low temperatures. Webb et. al., argue that τ 0
φ should

still saturate in these wires at a temperature ¿ 40 mK.

To clarify the effect of magnetic scattering on τφ, Webb et. al., ion implant

several ppm of Fe impurities in their pure Au wires. They find that τφ decreases

by more than an order of magnitude upon adding these impurities, but remains

temperature dependent down to 40 mK. Therefore, they concludes that the sat-

uration behavior of τ 0
φ observed in pure Au wires can not be due to magnetic

scattering. In addition, they point out that saturation behavior of τ 0
φ is also of-

ten observed in semiconductor mesoscopic structures. Since such structures are

thought to contain only the smallest concentration of magnetic impurities, they

conclude that the widely observed saturation must be universal and can not be

simply due to magnetic scattering. It should be noted that the sample properties

of the Au wires studied by Webb and co-workers were essentially similar to those

studied by Saclay-MSU group.

Beside of the scattering forms discussed above, dynamic structure defeat is

another source of saturation of τ 0
φ .(60; 61; 62; 63; 64; 65; 66; 67; 68) The simplest

realization of the dynamic structure defeat is that of an atom which may sit in a
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doublet well potential, the two wells being localized along a line directed between

their centers which are separated by a displacement. In the absence of coupling

to a bath of excitations, the lowest two states of the atom are, approximately, the

positional eigenstates associated with harmonic oscillations within either well.

The next level usually has energy above the barrier between the well minima

and therefore is not localized to either well. Atoms may move between the two

positions on quantum-mechanic tunneling. In the process, the atom directly

tunnels through the potential barrier between the wells. Because of the thermal

activated transitions, this process must dominate at sufficiently low temperatures.

The original motivation for studying such a model was the observation of log-

arithmic anomalies in the resistivity of metallic glasses.(11; 69) Most of the works

also only focused on the resistivity, specific heat, and susceptibilty. Only a few

works on electron dephasing time are reported. Lin and co-workers study the

annealing effects in a lot of three-dimensional polycrystalline disordered metal

films.(70) They perform systematic measurements of τϕ on several series of sput-

tered and subsequently annealed AuPd and Sb thick films. Such controlled an-

nealing measurements are crucial for testing theoretical models of dephasing that

invoke the role of magnetic scattering and dynamical defeats.

In the first part of the thesis, I will discuss our experimental observation of

temperature dependence of dephasing time in Cu93Ge4Au3 films. Our results indi-

cate that a very short electron dephasing time possessing very weak temperature

dependence around 6 K, followed by an upturn with further decrease in temper-

ature below 4 K. The low temperature upturn is progressively more pronounced

in more disordered samples. Resistance is logarithmic increase with decreasing

temperature in wide temperature range and it is insensitive to magnetic field up

to 15 T. In the thesis, we will discuss the temperature dependent resistance at

different magnetic field and temperature dependent dephasing time in series of

samples with different levels of disorder on weak localization effect, Kondo effect,

and two-level system effect. Synthesizing all discussion, we can rule out all others

inelastic scattering and make sure out observed low temperature dephasing time

is from two-level system scattering. This is the first systematic work discussing

the disorder dependence with low temperature temperature dephasing times of

dynamic structure defeat effect.
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Chapter 3

Theory and Background

3.1 Weak Localization

The usual Boltzmann transport theory is based on that, between two collision

events, the electrons move along classical trajectories. Every scattering and two

trajectories are treated as independent. For this classical transport theory to be

valid, the scattering centers much be independent of each other. Therefore, the

theory is valid only when the elastic mean free path, le is much larger than the

electron Fermi wavelength λF . On the other hand, if the condition is no longer

satisfied and le ∼ λF the electron eigenstates might become localized. This

phenomenon was first proposed by Anderson.(1) After this proposition, everyone

believes that the electron states are localized states in strong disordered systems

and electron states are extended states in good latticed systems. Concerning a

system that the condition, le > λF is still holds, but the scattering can no longer

be treated as independent. The electron wavefunctions interference can not be

neglected any more and this interference causes the electron states to be weakly

localized.

The electron motion in weak disordered systems is diffusive rather than bal-

listic or hopping. Here we assume that the time of all inelastic scattering are

much longer than the elastic collision time and the electron wavelength is much

short than the mean free path. Under these assumptions, electrons can be treated

wave packets. As shown in Fig. 3.1, an electron diffuses from point A to point B

along different paths 1, 2, 3. The form of the individual path reflects the nature
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3.1 Weak Localization

of diffusive motion of electrons in a system with impurities. According to general

principles of quantum mechanics, the total probability, P , of reaching point B

from point A is

P =

∣∣∣∣∣
∑

i

Ai

∣∣∣∣∣

2

=
∑

i

|Ai|2 +
∑
ij

AiA
∗
j , (3.1)

where Ai is the probability amplitude of path i. In the first part from right

hand side of Eq. 3.1, the first term is the sum of the probabilities corresponding

to separate trajectories and is also the probabilities corresponding to classical

diffusion. The second term is the interference terms that different wave pockets

interfere along the trajectories. In the classical transport, the interfering term is

not important and contributes nothing to the conductivity.

However, there is an exception, when point A and point B coincide, the elec-

trons have two different ways to propagate around the loop, either clockwise or

counterclockwise. As shown in Fig. 3.2 one partial wave goes in the direction of

0 → 1 → 2 → 3 → 4 → 5 → 0, and the other partial wave goes in the opposite

direction 0 → 5 → 4 → 3 → 2 → 1 → 0. If all the propagating processes along

the loop are elastic scattering, the phases of two partial waves are in phase at

point O, and the interference term is full constructed. As a result, the probability

of finding the electron at point O is enhanced, twice higher than the case of out

of phase. In other words, quantum particles are less mobile in a random potential

than that would be expected from Boltzmann transport theory. The enhanced

”localized” probability contributes a decrease in conductivity or, equivalently an

increase in resistance. This is the well known weak localization.

Instead of calculating the quantum corrections to the conductivity following

diagrammatic techniques and the Kubo formula, we estimate the corrections by

probability arguments. We consider an electron diffuses in a random potential

and describe its motion using diffusion equation. At time t, the probability of an

electron staying at the position r is

P (r, t) =
1

(4πDt)d/2
e−r2/4dt, (3.2)
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3.1 Weak Localization

Figure 3.1: A conduction electron diffuses from point A to point B along various

paths.

Figure 3.2: Electron diffuses in opposite directions of a loop and forms a con-

struction at point O.
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3.2 Phase Breaking Mechanics

where D is the diffusion constant and d is the system dimensionality. The prob-

ability of electron localized in origin point is

P (0, t) =
1

(4πDt)d/2
. (3.3)

Considering a condition that a electron diffuses in a path, as shown in Fig. 3.3.

The electron travels a length vF dt during a time interval dt and cross section is

(~/mvF )d−1 in d dimensions space. The corrections to the conductivity, ∆σ/σ,

are proportional to the ratio of the back-scattering volume to the total diffusion

volume. so the magnitudes of the quantum corrections to the conductivity are

given by

∆σ

σ
∼ −

∫ τφ

τe

vF × ( ~
mvF

)d−1

(Dt)d/2
dt = −

∫ τφ

τe

λd−1
F vF

(Dt)d/2
dt, (3.4)

where τe is the elastic scattering time and τφ is the phase-relaxation time. The τφ

means that how long the electron stays at its eigenstate and keeps the electron

wave phase coherence. The negative sign in Eq. 3.4 indicates that the conductiv-

ity is reduced from the Boltzmann conductivity. It comes from the interference

of two partial wave as shown in the interference term of the Eq. 3.1. Integrating

Eq. 3.4, one can get that

∆σ ∼ −e2

~
Lφ, for d = 1,

∆σ ∼ −e2

~
ln(

Lφ

le
), for d = 2, (3.5)

∆σ ∼ −e2

~
1

Lφ

, for d = 3,

where Lφ is the phase-coherence length which is defined by Lφ = (Dτφ)
1/2.

3.2 Phase Breaking Mechanics

From the above discussion, it is clear that the quantum corrections to conductivity

are very sensitive to the phase of the electron wave. There are several kinds of

electron scattering can destroy the phase coherence of the wavefunction. Next,

we will discuss them respectively.
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3.2 Phase Breaking Mechanics

3.2.1 Magnetic Field

It is well known that in quantum mechanics the hamiltonian for a charged particle

in a magnetic field is obtained by replacing the momentum operator ~p by ~p− e ~A,

where ~A is the vector potential, and hence that the basic effect of a magnetic

field is to introduce an extra factor

∆Φ = − e

~

∮
~A(~r, t) · d~r, (3.6)

to phase of the corresponding wave function.

If a magnetic field is applied perpendicular to the closed loop, both of the

partial waves will acquire an extra phase of the same magnitude, but with opposite

sign because the directions of the integration path are opposite. Therefore the

coherence interference of the electron waves is diminished and the corrections to

conductivity is reduced. Assuming the ~A is time independent, the relative change

of the phase of the two partial waves is two times larger than that in Eq. 3.6

∆Φ = −2e

~

∮
~A · d~r =

2e

~
Φ, (3.7)

where the integration is along the closed loop traveled by the two partial waves

and the Φ is the magnetic flux penetrating the closed loop area. If the phase

difference ∆Φ ∼ π, the weak localization effect is entirely suppressed

π =
2e

~
H × (closed loop area). (3.8)

For a diffusive electron, the closed loop area is order of Dτi where D is the

diffusion constant and τi is inelastic scattering time. We get that localization

effect will be entirely suppressed at a magnetic field of order

Hc ≈ ~
eDτi

, (3.9)

which is of order of 1kG in real cases. Here Hc is referred to as the ”critical

magnetic field.” It is important to note that the destroy phase coherence leads to

a negative magnetoresistance with increasing magnetic field.
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3.2 Phase Breaking Mechanics

3.2.2 Spin-Orbit Scattering

A moving charge in a lattice will feel an effective magnetic field

~Beff = −~v

c
× ~E, (3.10)

where ~v is velocity of the moving charge, c is the speed of light, and ~E is the

electric field comes from nucleus electric charges. A simple picture explaining the

spin-orbit scattering effects on weak localization is introduced by Bergmann.(17)

For each spin-orbit scattering, a electron spin rotates a small angle. Because

the rotation operator does not commute, the two final spin states of the two

partial waves are not the same. Therefore, the constructive interference of the

two partial wave is destroyed. To consider two partial waves in spin-state ~S,

we present spin operator ~R. As shown in Fig. 3.4, the operator rotates one

of the initial spin state ~S to final spin state, ~S ′. ~S ′ = ~R · ~S. The operator is

described by Eulerian angle. In the opposite direction, the final spin state is
~S ′′ = ~R−1 · ~S. The spin states of the two partial waves are different. The scalar

product is < ~S ′| ~S ′′ >=< ~S|R2|~S >, so the two partial waves are coherence only

when R2 = 1. The coherence condition corresponds to the spin-orbit scattering

time τso being very large as compared with the inelastic scattering time τi. If the

condition is not satisfied, then the spin-orbit scattering will suppress the coherent

back-scattering and lead to increase of the conductivity.

In the strong spin-orbit coupling limit, Bergmann has shown that phase differ-

ence between two partial waves is most equal to 2π. However, this is a destructive

interference because the spin electron has a rotational periodicity of 4π. This phe-

nomenon of decreased resistivity in the presence of strong spin-orbit scattering is

called weak anti-localization.

Stephan and Bergmann(71) have suggested that the spin-orbit scattering cross

section should also depend on the total orbital angular momentum L and total

spin angular momentum S. They predicted that the spin-orbit scattering cross

section is

σso =
4π

EF

∑

l

l(l + 1)

2l + 1
sin2[δso

l+1/2,l(EF )− δso
l−1/2,l(EF )], (3.11)
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3.2 Phase Breaking Mechanics

Figure 3.3: A electron diffuse in a d-dimensions space.

Figure 3.4: Schema of spin-orbit interaction. The initial spin state is S. After

several scattering of spin-orbit coupling, two final states of two partial waves are

S’ and S”.
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3.3 Correction to Conductivity

where EF is the Fermi energy of the host, δso is the phase shift contributed

by spin-orbit scattering which depends both on the total angular momentum,

j = l ± 1/2 and angular momentum, l.

3.2.3 Spin-Spin Scattering

The presence of localized spins or magnetic impurities introduces a pertubation

part in the Heisenberg coupling

Hs = J ~S1 · ~S2, (3.12)

where J is an exchange constant and ~S1 and ~S2 mean the spins of electron and

ion spins respectively. This perturbation destroys the time-reversal symmetry of

the hamiltonian. The localized moment breaks the coherence of the two partial

waves. It is noticeable that the influence on the weak localization is similar to

that of the inelastic scattering on the weak localization. The spin-spin scattering

time can be expressed as

1

τs

∼ 2πN(EF )niJ
2S2, (3.13)

where N(EF ) is the density of state at the Fermi energy and ni is the density of

the magnetic impurities.(72)

3.3 Correction to Conductivity

It is well known that both localization and electron-electron interaction play fun-

damental roles in disordered systems. It is also clear that, especial since the work

of Thouless, that the behavior is strongly dependent on the dimensionality. The

first theoretical work predicted that the behavior would depend on the resistance

(sheet resistance in two dimensions) and on the electron inelastic scattering time.

Later works have shown that other types of scattering, namely the spin-orbit

scattering and spin-spin scattering (magnetic impurity scattering), are also im-

portant. Moreover, the theory makes explicit predictions for the behavior of the

resistance as a function of both temperature and magnetic field. Next, I would

like to discuss the corrections of several interactions to conductivity.
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3.3 Correction to Conductivity

3.3.1 Localization: Two Dimensions

In two dimensions, it is convenient to consider the resistance per square, R¤
(also known as the sheet resistance), which is just the resistivity divided by the

thickness d, R¤ = ρ/d. For a system in which spin-orbit scattering and spin-spin

scattering are negligible and in the absence of a magnetic field, localization makes

a contribution to the sheet resistance which is of the form

∆R¤(T )

R¤(T0)
= −αe2p

2π2~
R¤(T0)ln(

T

T0

), (3.14)

where α is a constant which depends only on general symmetry and parameter

p is determined by the temperature dependence of the inelastic scattering time.

In generally, the αP is an integer of order unity. T0 is an arbitrary reference

temperature which is about 10 K in our experiments. In general case, when a

magnetic field is present and other types of scattering cannot be neglected, it is

considerably more complicated. It is found at a fixed temperature that

∆R¤(H)

R2
¤(0)

= − e2

2π2~
{Ψ(

1

2
+

H1

H
)−Ψ(

1

2
+

H2

H
)}

+
e2

4π2~
{Ψ(

1

2
+

H3

H
)−Ψ(

1

2
+

H2

H
)}

− e2

2π2~
{ln(

H1

H
)− 3

2
ln(

H2

H
) +

1

2
ln(

H3

H
)}. (3.15)

where Ψ is the digamma function and the ”fields” H1, H2, and H3 are described

by

H1 = He + Hso + Hs,

H2 = Hi +
4

3
Hso +

2

3
Hs, (3.16)

H3 = Hi + 2Hs,

He, Hso, Hs, and Hi mean elastic, spin-orbit, spin-spin, and inelastic scattering

”magnetic field” respectively. Here the magnetic field, H, is assumed to be per-

pendicular to the plane of the film. The respective ”magnetic field” connects to

the corresponding scattering time by the formula
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3.3 Correction to Conductivity

Hx =
~

4eDτx

. (3.17)

Note that the He is generally much larger than any of the other fields in the

problem.

It is important to keep in mind several points concerning these predictions.

First, a film will behavior two dimensionally only when its thickness is less than

the phase breaking length, Lϕ = (Dτϕ)
1
2 , where the phase-breaking time, τϕ, is

the time scale over which phase coherence is maintained. This condition on the

film thickness provides a consistency check on the analysis. Also, the conventional

or classical magnetoresistance which is of order

∆R(H)

R(0)
≈ (ωcτe)

2, (3.18)

Where ωc is the electronic cyclotron frequency, is generally much smaller than

that predicted in Eq. 3.15 in the low magnetic field regime of interest, so it can

be ignored.

Finally, spin-orbit scattering plays a very important role, since it determines

the sign of both the magnetoresistance and the change of the resistance in zero

magnetic field. The magnetoresistance is negative and the zero field resistance

change is positive for weak spin-orbit scattering. In the opposite case, the correc-

tion to the resistance changes sign and is magnitude is reduced by a factor two.

The later case is often referred to anti-localization.

3.3.2 Electron-Electron Interactions: Two Dimensions

It is well known that the behavior of the resistivity resulting from electron-electron

interactions, in zero magnetic field, are very similar in form to that due to lo-

calization. The theory of electron-electron interactions has been studied. In two

dimensions, they found that the correction to conductivity, in the absence of a

magnetic field, as a function of temperature is

∆R¤(T )

R¤(T0)
= − e2

2π2~
(1− 3

4
F )R¤ln(

T

T0

), (3.19)
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3.3 Correction to Conductivity

where F is a screening factor. In a well screened system, F approaches unity and

in the opposite limit, F approaches zero.

In the presence of a magnetic field, the interaction theory predicts an positive,

isotropic magnetoresistance. However, since this prediction is concerned with the

splitting of the electron spins energy bands, it is not noticeable at low magnetic

fields. Therefore, this effect will not be considered in this thesis.

3.3.3 Kondo Effect

Since first experimental observation of increasing resistivity with decreasing tem-

perature in gold, the resistance minimum was a long standing theoretical puzzle.

The later observation, that the minimum depended on the impurity concentra-

tion, indicated it as being an impurity phenomenon. Kodon observed a correlation

between the existence of Curie-Weiss term in the impurity susceptibility (a local

moment) and the occurrence of the resistance minimum. Kondo calculated the

conductivity to higher terms of s− d model and his results can well explain the

experimental observation.

In some cases, the impurity atom may retain its magnetic moment in a metal.

An isolated atom generally has a spin and orbital angular momentum according

to Hund’s rule. For a transition metal ion, one that displays evidence of local

moment behavior as an impurity in a metal, it might be reasonable to describe

it as in an insulator and then consider the effects of the ion magnetic moment

on the conduction electrons. Zener proposed a model of ferromagnetic transition

metals in which it is assumed that the d electrons are localized at the atomic

sites and the s electron are itinerant over the entire crystal. He considered an

exchange interaction between the two kinds of electrons,to which he attributed the

ferromagnetism of the 3d metals. For a single impurity in a metal the interaction

takes the form,

Hsd =
∑

k,k′
Jk,k′(S

+c†k,↓ck′,↑ + S−c†k,↑ck′,↓ + Sz(c
†
k,↑ck′,↑ − c†k,↓ck′,↓)) (3.20)

where Sz and S±(= Sx ± iSy) are the spin operator for a state of spin S. It

represents a Heisenberg exchange interaction between a local moment and the
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3.3 Correction to Conductivity

conduction electrons with a coupling constant Jk,k′ . c†k,σ and ck′,σ are creation

and annihilation operators for the conduction electrons. There are terms in this

interaction in which the spin of the conduction electron is flipped on scattering

with the impurity.

To calculate the resistivity to third order in J, the form becomes

< k′, σ′|T (ε)|k, σ >=< k′, σ′|HsdG(ε)Hsd|k, σ > (3.21)

where T is a matrix of that between states of Slater determinants in which a

conduction electron is scattering from a state (k, σ) to a state (k′, σ). G(ε) is

green function. There are many contributions to this matrix element, the most

important terms are the ones in which the spins of the conduction and localized

electron are flipped. The modification required in the calculation of the T matrix

in the many body case can be stated quite simply; we have to replace the occu-

pation numbers for electrons (holes) in the intermediate k states by Fermi factor

f(εk) (1− f(εk)).

There are four possible processes: from < k, ↑ | to |k′, ↑>, from < k, ↑ | to

|k′, ↓>, from < k, ↓ | to |k′, ↑>, and from < k, ↓ | to |k′, ↓>. First, we consider

the first scattering process, from < k, ↑ | to |k′, ↑>. The contribution is

J2

N2
s

∑

k1,k′1,k2,k′2

< k′, ↑ |S−c†k1,↑ck′1,↓(ε + is−H0)
−1S+c†k2,↓ck′2,↑|k, ↑> (3.22)

The form means that the (k, ↑) conduction electron scatters with spin flip in to

an unoccupied hole state (k2, ↓). The (k2, ↓) electron then scatters into the final

(k′, ↑) state. Intermediate k lines running from left to right carry a hole factor

1 − f(εk), the probability that they are initially unoccupied, and intermediate

lines running from right to left carry a factor f(εk). This is non-vanishing if

k1 = k′, k′1 = k2, k
′
2 = k and gives

J2

N2
s

∑

k2

S−S+ (1− f(εk2))

ε + is− ε(k2)
. (3.23)

The second possible contribution to < k, ↑ | to |k′, ↑> is
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3.3 Correction to Conductivity

J2

N2
s

∑

k1,k′1,k2,k′2

< k′, ↑ |S−c†k2,↑ck′2,↓(ε + is−H0)
−1S+c†k1,↓ck′1,↑|k, ↑> (3.24)

which contributes if k′2 = k′, k2 = k′1, k2 = k giving

J2

N2
s

∑

k2

S−S+ f(εk2)

ε + is− ε(k2)
. (3.25)

In the case an electron in an occupied state (k2, ↓) is scattered with a spin flip

into the state (k′, ↑), and the remaining hole (k2, ↓) is annihilated by the initial

(k, ↑) with another spin flip, leaving the final state (k′, ↑). Collecting the first

order and the second order terms together, we get

< k′, ↑ |T (ε)|k, ↑>= Sz
J

Ns

(1− 2Jg(ε)), (3.26)

where

g(ε) =
1

Ns

∑

k

f(εk)

εk − ε− is
. (3.27)

Figure 3.5 shows the carton of the four scattering processes from (k, ↑) to (k′, ↑).

Figure 3.5: A schema of interaction between s electron and d electron. The s

electron scatters from the (k, ↑) to (k′, ↑).

21



3.3 Correction to Conductivity

Similar terms arise in calculating < k′, ↓ |T (ε)|k, ↓>, < k′, ↑ |T (ε)|k, ↓>, and

< k′, ↓ |T (ε)|k, ↑>. Connecting all these terms together, calculating the scattering

time and integrating all energy we can get the result

R(T ) ∝ ln(kBT ). (3.28)

3.3.4 Two-Level Systems

Most crystalline materials, even after annealing, contain grain boundaries, dislo-

cations, vacancies, interstitial, substitutional impurities. These defects not only

break translational symmetry thereby leading to momentum relaxation, but they

also behave as dynamical impurities. The role of these dynamical impurities may

be even more important in amorphous materials, where the structure is inherently

disordered.

The micro-structure of these dynamical impurities is still unclear: Among

others, dislocation kinks, dangling bonds and interstitial have been suggested as

possible candidates for them. However, it is usual and convenient to describe them

in terms of a very simple two-level system (TLS) model, where the dynamical

impurity is simply some particles in an effective double well potential as shown

in Fig. 3.6. At high temperatures the particle moves thermally from one side to

the other, which processes are, however, suppressed at low temperature, where

tunneling becomes dominant.(73; 74)

The two lowest states being well separated from the higher excited states, at

low temperature it is enough to restrict out considerations to them. These two

state ΦL and ΦR localized at left and right minima of the potential well. The

effective Hamiltonian of the TLS can be expressed as

HTLS =
1

2
∆x(d

†
RdL + d†LdR) +

1

2
∆z(d

†
RdL − d†LdR), (3.29)

where the creation operator d†R,L are associated to the states ΦR,L. ∆x is the

tunneling amplitude of symmetric well and ∆z is the tunneling amplitude of

asymmetric well. The splitting of the states of the TLS is given by ∆ = (∆2
x +

∆2
z)

1/2.
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3.3 Correction to Conductivity

The interaction Hamiltonian coupling the TLS and conduction electron can

take the form

HTLS−e = Hz + Hx, (3.30)

where

Hz = Vz

∑

σ=↑,↓
(d†+d+ − d†−d−)(Φ†

σ,+Φσ,+ − Φ†
σ,−Φσ,−) = Vzτ

z(Φ†
↑T

zΦ↑ + Φ†
↓T

zΦ↓),

(3.31)

where τ z = d†+d+ − d†−d−, and T z denotes Pauli matrices in the spinor indices.

The electron operators Φ↑,↓,L,R are defined as Φ↑,↓,L,R =
∫

d3keikrL,Rck,↑,↓/(2π)3,

with ck,↑,↓ the annihilation operator of a conduction electron with momentum k

and spins. Similarly

Hx = Vxτ
x(Φ†

↑T
xΦ↑ + Φ†

↓T
xΦ↓), (3.32)

Hz is called screening term and describes the Ohmic dissipative tunneling

system. Hx is called assisted tunneling interaction term and describes the simul-

taneous tunneling of the TLS and scattering of the conduction electrons. The

physical origin of later interaction term, tending to delocalize the TLS, is very

simple: Conduction electron density fluctuations change the barrier height and

thus the tunneling amplitude of the TLS. Although its amplitude is rather small,

this term is marginally relevant and it is responsible for the two-channel Kondo

effect.(48; 53; 56)

The electrical resistivity measures the electronic scattering rate off the TLS.

This subject has been first discussed by Cochrane et. al.,(75) who introduced

an ill-defined model with two sets of conduction electrons heuristically provided.

The first calculation was performed by Kondo(76; 77) up to fourth order in-

troducing the assisted tunneling. The resistivity behavior expected at different

temperatures depends on the ratio of ∆0/TK , and this is illustrated in Fig. 2-7.

In the top curve of the Fig. 2-7, TK < ∆0 so that the Kondo correlated state is

not developed and it goes to the Fermi-liquid state. In the center and bottom
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3.3 Correction to Conductivity

Figure 3.6: A schema of two-level system.

Figure 3.7: Temperature dependence of two-level system in three different cases.
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3.3 Correction to Conductivity

curves of Fig. 2-7 we see the Fermi-liquid behavior developing eventually below

TK , but with a non-Fermi-liquid region possible provided that ∆0 ¿ TK .

At high temperatures, summation of the logarithmic divergent terms gives the

correct logarithmic rise in ρ(T ). At low temperature for zero splitting of the levels,

the non-Fermi-liquid excitation spectrum produces an anomalous saturation of

the resistivity. According to conformal field theory and NCA, δρ(T ) ≈ ∆ρ(0)(1−
aT 1/2) in the weak-coupling limit, where a is a pure number that depends on the

presence of ordinary potential scattering at the impurity site.
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Chapter 4

Experimental and Technical

Considerations

4.1 Introduction

In the measurement of the electron dephasing time at low temperature, we take

several experimental techniques and considerations. We divide them into three

parts and discuss them respectively. First part is techniques of preparing samples.

Second part is low temperature measurement and last part is measuring circuit

noise.

4.2 Sample Preparation

4.2.1 Substrate Cleaning

In our experiments, we use corning glass (number: 7059) as substrates. The

width is 10 mm square and thickness is 0.3 mm. Before depositing films onto the

substrates, we should clean the glass to avoid the unanticipated impurities on the

surface. The cleaning processes are as follows. The substrates are cleaned in turn

in trichloroethylene (TCE), acetone (ACE), and alcohol solvent for five minutes

in an ultrasonic cleaner, and then the substrates are blown-dry with N2 gas. Once

finish the cleaning, a mask will be used to pattern the shape of films. In this series

of experiments, we used two kinds of masks, metal mask and photolithography.
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4.2 Sample Preparation

4.2.1.1 Metal Mask

The width and the length of the films are 0.4 mm and 5.7 mm, respectively. The

film thickness are 195Å ± 5Å or 147Å ± 3Å. Figure 4.1 shows the processes of

the deposition using metal mask. All of the cartons are at front view.

Step A: Preparing a clean glass.

Step B: The metal mask is plastered on the glass using a thin coat of Apiezon

’N’ vacuum grease.

Step C: Depositing the wanted material and thickness onto the mask and

glass. The deposited thickness should be thinner than the mask to avoid the

connecting between the films on glass and on the mask.

Step D: Remove the metal mask carefully. The patterned films are deposited

on the substrate.

4.2.1.2 Photolithography

Because of the difficulty of manufacture of metal mask, the narrowest width which

one can achieve is about 0.1 mm by using metal mask. When one needs narrower

films, the photolithography technique can help us achieve it. The limit of the

width of photolithography technique depends on wavelength of light. Typically,

the narrowest width is about several µm. Figure 4.2 shows the processes of the

photolithography technique. There are five steps to achieve it.

Step A: Coating a photoresist, a liquid polymeric material, onto the substrates.

The coating process is performed by spinning the substrates at speeds several

thousand rpm. Photoresist is deposited onto the substrate surface during the

dynamic movement to ensure coating over the entire substrate surface. The

coating thickness depends on the photoresist and spinning speeds.

Step B: Once the substrate has been coated with photoresist, putting the

photo mask on the substrate and exposing the substrate on an exposure light.

By shining light through the photo mask and onto the substrate, individual areas

of the photoresist are selectively exposed to light. This exposure causes a chemical

change in the photo resist.

Step C: Once exposed, the substrate is then immersed in a developer solution.

Developer solution are typically aqueous and will dissolve away areas of the pho-
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4.2 Sample Preparation

Figure 4.1: Processes of deposition by using metal mask.
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toresist that were exposed to light. Therefore, after successful development, the

photoresist is patterned with the wanted shape.

Step D: Depositing the wanted material and thickness onto the mask and

glass. The deposited thickness should be thinner than the mask to avoid the

connecting between the films on glass and on the mask.

Step E: Remove the photoresist by acetone. The patterned films are deposited

on the substrate.

4.2.2 Sputtering

All of our thin films are fabricated by sputtering deposition. Our source target is

the Cu93Ge4Au3 (atomic rate). Before sputtering, we pump the chamber vacuum

to high vacuum. Once the vacuum reaches the order of 10−6 mbar, we inject 7

sccm argon gas into the chamber and the pressure increases to order of 1× 10−3

mbar. Because our target is a good conductor, we chose a DC voltage source.

The sputtering power ranges from 10 W to 110 W and it affects levels of the

randomness (disorder) of the samples. The room temperature resistivity of our

films range from 15 µΩcm to 95 µΩcm.

Here we would discuss a little bit the operating principles of sputtering. Sput-

tering is a technique used to deposit thin films of a material onto a substrate. By

first creating a gaseous plasma and then accelerating the ions from this plasma

into a source target, the source material is eroded by the arriving ions via energy

transfer and is ejected in the form of neutral particles. As these neutral particles

are ejected they will travel in a straight line unless they come into contact with

other particles or a nearby surface. If a substrate is placed in the path of these

ejected particles it will be coated by a thin film of the source material.

The ”diode sputtering” example given above has proven to be a useful tech-

nique in the deposition of thin films when the cathode is covered with sputtering

target. Diode sputtering however has two major problems. First one is the depo-

sition rate is slow and second one is the electron bombardment of the substrate

is extensive and can cause overheating and structural damage.

The development of magnetron sputtering deals with both of these issues

simultaneously. Figure 4.3 shows the schematic of the magnetron sputtering. By
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Figure 4.2: Processes of deposition by using photolithography.
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4.3 Low Temperature Resistance and Magnetoresistance
Measurement

using magnets behind the cathode to trap the free electrons in a magnetic field

directly above the target surface, these electrons are not free to bombard the

substrate to the same extent as with diode sputtering. At the same time the

extensive, circuitous path carved by these same electrons when trapped in the

magnetic field, enhances their probability of ionizing a neutral gas molecule by

several orders of magnitude. This increase in available ions significantly increases

the rate at which target material is eroded and subsequently deposited onto the

substrate.

The ensuring process might be compared to a find sand blasting in which the

momentum of the bombarding particles is more important than their energy. The

inserted argon gas is chosen because it is a heavy rare gas and is plentiful. It also

has a low ionization potential.

Figure 4.4 shows the film by using photolithography. The width of the film is

50 µm. Silver plaster is used to stick four copper wires with diameter 50µm on

the four electrodes with 0.5 mm square.

The talbe 4.1 shows the sputtering parameters for all films. The pressure is

the chamber pressure during deposition and thinkness is the deposed thinkness

of films. In the system, we use two kinds of mask, metal mask and photomask.

The deposition rates are basically proportion to the sputtering powers.

4.3 Low Temperature Resistance and Magne-

toresistance Measurement

After finishing preparing the samples, we will mount our samples onto the cryo-

stat to do low temperature transport measurement. In low temperature measure-

ments, it is the first step for accurate measurements that electron temperature

is the same as the thermometer temperature, otherwise the hot electron physics

occur. There are two easy ways to confirm that whether the samples are real

cooled down. First one is that the joule heat of the system, I2R, is much smaller

than the cooling power of refrigerator. The accuracy of the method is not high,

because it does not take into account of the joule heat of the conducting wire

and therm-conductivity between sample and sample holder. Second way, which
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Figure 4.3: Principle of planar magnetron sputtering.
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Figure 4.4: The picture of film which is fabricated by photolithography.
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Table 4.1: Sputtering parameters of Cu93Ge4Au3 films.

Sample Power Ar gas Pressure Thickness Deposing rate Mask

(W)(DC) (sccm) (mbar) (Å) (Å/sec)

16-3 110 7 1.7× 10−3 191 5.0 Metal

18-2 80 7 1.6× 10−3 199 4.5 Metal

18-4 80 7 1.6× 10−3 199 4.5 Metal

26-2 10 7 1.7× 10−3 196 0.4 Metal

27-3 60 7 1.6× 10−3 145 3.0 Metal

31-3 90 7 1.6× 10−3 149 4.5 Metal

38-1 90 7 1.6× 10−3 146 4.2 Photo

40-1 20 7 1.6× 10−3 145 0.8 Photo

41-1 30 7 1.6× 10−3 150 1.4 Photo

43-1 90 7 1.7× 10−3 153 4.3 Photo

44-1 90 7 1.7× 10−3 153 4.2 Photo
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is more accurate, is that the ”electron-phonon relaxation energy” is much smaller

than thermo-energy.

kBT À eVep = eLepε, (4.1)

where kB is Boltzmann constant and T is temperature of sample. e is electron

charge, Vep and Lep are the electron-phonon relaxation voltage and length. ε is

the applied voltage across the energy relaxation length. We carefully check it in

both two ways during both resistance and magnetoresistance measurements to

insure the electron temperature is consistent with the thermometer temperature.

In my experiments, we have used three kinds of cryostats which possess dif-

ferent cooling powers and base temperatures. We briefly discuss their operating

principles.

4.3.1 4He Cryostat

As we known, the boiling temperature of liquid helium is 4.2 K at 1 atmospheric

pressure. In general, we dip a cryostat with vacuum shell and the temperature

would goes down to 4.2 K gradually. We add a little bit heat around samples

to increase and stabilize the temperature above 4.2 K. The temperature range

between 1.3 K and 4.2 K is determined by the normal boiling point of 4He. There

are two ways to access this temperature range using pumped liquid 4He. First one

is pumping the vapor above the liquid 4He bath away to decrease its temperature,

but this is very uneconomical because about 40% of the liquid 4He has to be

evaporated to cool it from 4.2K to 1.3K, due to the large change of its specific

heat in this temperature range. The second one is what we use. Figure 4.5 shows

the operating principle of 1K cryostat. In this kind of cryostat a small fraction

of the liquid from main 4.2 K bath flows through a suitable flow impedance into

a small vessel which located in a vacuum cane inside the cryostat. Through

the central tube we pump on the liquid arriving in this evaporation vessel. As

discussed above, one can control the pumping rate modulating the vapor pressure

of the liquid 4He in the vessel to control the temperature. For commercial cryostat

the cooling power is about several mW at 1.3 K.
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Figure 4.5: The operating principle of 1K cryostat.
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4.3.2 3He Cryostat

The accessible lowest temperature with a liquid 4He bath is typically 1.3 K, but

the lowest temperature range can be extended to about 0.3 K if the rare isotope
3He is used instead of the common isotope 4He. The main reason is that 3He has

a substantially larger vapor pressure than 4He at the same temperature. The 3He

cryostat we use is a commercial cryostat. The 3He bath is pumped using cold

charcoal with large surface area. The design is shown in the Fig. 4.6. There is a
3He gas storage at the top of the cryostat. Gas is trapped at the cold area. When

the temperature of the 3He pot is below 3 K, the 3He gas from gas storage will

start to condense at the 3He pot. During the 3He condensation, we should heat

up the charcoal making almost the 3He gas can condense to the 3He pot. After

complete condensation, cooling down the temperature of charcoal to adsorption

pump the 3He bath and cool it down. When all the 3He has been pumped away,

so the 3He pot is empty, we just have to left the charcoal pumping system in to a

space at higher temperature in the cryostat desorb the 3He, which will then enter

the gas phase, condense at the cold surfaces of the cryostat and eventually drip

back down into the 3He pot. The cooling power is about 100 µW at 0.3 K and

the base temperature is about 0.25 K.

4.3.3 Dilution Refrigerator

In the 1K cryostat and 3He cryostat the cooling is occurred using evaporation of
4He and 3He. In the dilution refrigerator the cooling occurs because 3He atoms

from the pure 3He gas dissolve into a diluent liquid with 6.6 percent 3He an 93.4

percent 4He. The simplest way to realize it is that the strong bonds between the
3He atoms are broken and new weaker bonds appear between the 3He atom in

the dilute phase. A net absorption of energy occurs in the process and results in

cooling.

Figure 4.7 shows the main components of a working dilution refrigerator and

a flow diagram for its liquids. The 3He gas coming from the exit of a pump at

room temperature will first be precooled by a liquid 4He bath at 4.2K. It will then

be condensed in a second 4He bath at about 1.5K, which we can obtain by using

a continuously operating 4He refrigerator. The liquified 3He will flow through
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Figure 4.6: The operating principle of 3He cryostat.
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a heat exchanger which is in thermal contact with the still at a temperature of

about 0.7 K. After that the liquid 3He will flow several heat exchangers to precool

it to a low enough temperature before it enter the concentrated phase in mixing

chamber.

A wider tube for the dilute phase in the refrigerator leaves the lower, dilute

mixture phase of the mixing chamber, and then goes the heat exchanger to precool

the incoming 3He. It enters the dilute liquid phase in the still, where we have

a liquid 3He concentration of less than 1%. The vapor above the dilute liquid

phase in the still has a concentration of typically 90% 3He due to the high vapor

pressure of 3He at the temperature of the still. We pump on the still and supply

them to the condensation line. It runs cyclically and gives rise to cooling. The

base temperature of dilution refrigerator is about several mK and the cooling

power is about 1 µW at 10 mK.

4.3.4 Superconducting Magnet

In the series measurements, we measured magnetoresistance at low magnetic fields

and temperature dependent resistance at high magnetic fields. In order to save

energy and keep the measuring system at low temperature, we use superconductor

magnet. The superconductor material is NbTi with Tc ≈ 9K.

Figure 4.8 shows the schema of a superconductor magnet. There are two main

operating mode, sweeping mode and persistent mode. In the sweeping modes,

we should heat up the superconductor wire at ”persistent current switch” to

breaking its superconductivity, so that all of the applied current will go to the

main superconductor solenoid. One can sweep the magnetic field and modulate

its amplitude by the applied current using power supply. While one would like

to keep a magnetic field for a long time, it is better to use the persistent mode to

save energy. The method is that sweeping the magnetic field to the anticipated

amplitude by sweeping mode. Once the magnetic field reaches the expected value,

turn off the heater at the wire at ”persistent current switch” and let the wire to

cool down to become superconductivity. Last, sweep down the current of power

supply and the current in superconductor magnet would permanently flow in the

loop of superconductor wire.
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Figure 4.7: The operating principle of dilution refrigerator.
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Figure 4.8: Operating principle of superconductor magnet.
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4.4 Measuring Circuit and Noise

High accurate measurement is critical for good research. Significant errors can

be generated by noise sources, which include Johnson noise, magnetic fields, and

ground loops. An understanding of these noise source and the methods available

to minimize them is important.

4.4.1 Measuring Circuit

Figure 4.9 is the schema of our measuring circuit. Four-probe measuring method

is used to avoid the contact resistances. Constant currents come from connecting

the AC voltage with a large value resistor which is high accurate and insensitivity

to the environments. The voltage drop is enlarge by a pre-amplifier. The ratio

transformer is used to offset a constant voltage and the lock-in amplifier can read

a small voltage change by weak localization effect. In our experiment, we use

”Linear Research 400 four-wires AC Resistance Bridge” which contains ”AC cur-

rent source”, ”pre-amplifier”, ”ratio transformer”, and ”lock-in” with frequency

15.7 Hz and the analog voltage is extracted by Keithley 182 sensitivity digital

voltmeter. The data is continuously taken by computer (it is not shown in the

schema).

4.4.2 Johnson Noise

The Johnson noise is also called thermal noise. This noise is the voltage associated

with the motion of electrons due to their thermal energy at temperatures above

0 K. This voltage is related to the temperature, noise bandwidth, and the source

resistance. The noise voltage developed by a metallic resistance can be calculated

from the following equation:

V =
√

4kBTBR, (4.2)

where V is rms noise voltage. kB is Boltzmann constant. T is absolute tempera-

ture. B is noise bandwidth. R is resistance of the source. Johnson noise can be

reduced by lowering the temperature of the source resistance and by decreasing

the bandwidth of the measurement. Using the ”Linear Research 400 four-wires
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Figure 4.9: The schema of measuring circuit.
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AC Resistance Bridge”, the thermal noise voltage is about 10−8 V for samples

with resistance 1 KΩ at room temperature.

4.4.3 Eddy Current

Faraday’s low tells us that the change of the magnetic flux, ΦB, would induce a

voltage in a circuit.

VB =
dΦB

dt
=

d( ~B · ~A)

dt
= ~B · d ~A

dt
+ ~A · d ~B

dt
, (4.3)

where VB is the induced voltage. ~A is the loop area. ~B is magnetic field.

There are two main sources to generate the voltage. First one is that the field

is changing with time. Second one is that the relative motion between the circuit

and the field. The voltage can be generated from the motion of a conductor in

a magnetic field, from local AC currents, or from the sweeping of the magnetic

field, such as for magnetoresistance measurements.

To minimize induced voltage, lead must be run close together and be kept

short and rigidly tied down. A twisted pair is used to reduce the loop area and

cancel magnetically induced voltage, because each adjacent twist couples a small

but alternating polarity voltage.

In our experiments, we swept the magnetic fields very slowly to avoid the

noise. The sweeping rates range from 3 Gauss per sec to 0.5 Gauss per second.

4.4.4 Ground Loop

Noise also can come from the ground loop. When there are two connections to

earth, such as when the source and measuring instruments are both connected to a

common ground, a loop is formed as shown in Fig. 4.10. A voltage, Vg = Vm−Vs,

between the source and instrument grounds will cause a current to flow around

the loop. This current will create an unwanted voltage in series with the source

voltage.

A typical example of a ground loop can be seen when a number of instruments

are plugged into power strips on different instrument racks. Frequently, there is a
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4.4 Measuring Circuit and Noise

small difference in potential between the ground points. This potential difference

can cause large currents to circulate and create unexpected voltage drops.

The easiest way too avoid this ground loop noise is ground all equipment at a

single point and use isolated power sources and instruments. This noise also can

be reduced by using a voltage with high common mode impedance.

4.4.5 Filter

To avoid the high frequency noise goes into the samples to heat up electrons by

means of conducting wires, low pass filters are used. we use two kinds of filters in

the series of measurements. The first kind of filters is the RC filter and the other

kind of filters is ferrite bead. Figure 4.11 shows the schema and the frequency

response of low pass filter. Ferrite bead is made of high inductance material.

The schema of ferrite bead is shown in Fig. 4.12. When a constant current

passes through the ferrite bead, it does not work. Following the Faraday’s law

V = −LdI
dt

, once a AC current passes through it, the ferrite bead will create a

voltage to attenuate the current. It acts like a inductor. Combined with resistance

of wire, it works as a low pass filter.
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Figure 4.10: The schema of ground loop noise.
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Figure 4.11: The schema and the frequency response of low pass filter.
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Figure 4.12: The schema of ferrite beat.
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Chapter 5

Results and Discussions

5.1 Introduction

In this chapter, we will discuss our experimental results in Cu93Ge4Au3 thin films.

A series of films with different levels of disorder are prepared by DC sputtering

deposition of different depositing rates. We measure resistance both as a func-

tion of temperatures and magnetic fields. Low magnetic field magnetoresistances

(< 1 T) are measured and fitted in weak localization theory to extract electron

inelastic scattering times. Roughly speaking, the measured inelastic scattering

time can be divided into three different temperature regions. At the temperatures

higher than 10 K, electron-phonon scattering dominates the inelastic scattering

times. The inelastic scattering time is a constant value at the temperature region

between 10 K and 6 K. When temperature is below 6 K, the inelastic scattering

time increases as temperature decreasing. The increasing rates are sample de-

pendence. The increasing rates of inelastic scattering times below 6 K are more

drastic in more disordered samples. We have discussed the measured inelastic

scattering time in electron-electron scattering time, electron-phonon scattering

time, and spin-spin scattering time (Kondo effect). The measured inelastic scat-

tering time is 2 order of magnitude smaller than the electron-electron interaction

scattering time of theoretical predictions. The Kondo effect fails to explain the

results quantitatively. Further discussions support that the dynamic structure

defeat scattering dominates the measured inelastic scattering times at low tem-

peratures. The temperature dependent resistances for a wide range, from above
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5.2 Sample Background

10 K to 30 mK, at different magnetic fields are also measured. The results show

that the the temperature dependent resistances are logarithmic increasing as tem-

perature decreasing. In particular, the lnT dependence is insensitive to magnetic

field up to 15 T. Moreover, the logarithmic temperature dependent resistance

appears in both thin films (150 Å) and thick films (5000 Å ∼ 6000 Å). All of

the experimental results support that the dynamic structure (two-level system)

scattering dominates the inelastic scattering time.

5.2 Sample Background

Our samples are Cu93Ge4Au3 films. The host material is copper, and 4% germa-

nium are doped to increase the impurity scattering to enhance the weak local-

ization effect. That increases the change of magnetoresistances and increases the

accuracy of measurements. 3% gold are doped to increase the spin-orbit inter-

action. In the limit of strong spin-orbit scattering, the inelastic scattering time

becomes the only free parameter in the comparison of the experimental magne-

toresistances with the weak localization theory and it makes the extraction of

inelastic scattering time highly reliable. The target is a commercial one. The

target is chosen to be a medium purity (99.99%). Figure 5.1 shows the spectro-

graphic analysis of our source target and indicates that there are low levels of

magnetic impurities, 4 ppm iron, 0.3 ppm manganese, and 0.003 ppm chromium.

5.3 Magnetoresistance

We have measured the magnetoresistance of all films in small magnetic fields (< 1

T). Figure 5.2 shows perpendicular magnetoresistances at several temperatures.

The color dots are the measured data and the black dots are the theoretical

prediction of weak localization. The magnetoresistances are positive at all our

measured temperature range (< 20 K), and it indicates that spin-orbit interaction

is strong in our system. The behaviors of magnetoresistances which are predicted

by weak localization theory are shown in Eq. 3.15. Typically, the He À Hso, Hi,

and Hs, so the H1 ≈ He. In the limit of the strong spin-orbit interaction, the

Hso À Hi and Hs, so the H2 ≈ Hso. It is noticeable that the Hso is only material
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Figure 5.1: Spectrographic analysis
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Table 5.1: Physical parameters of samples

Sample Thickness ρ(300K) ρ(10K) D(10K) R¤(10K) αP+1-0.75F

(Å) (µΩ cm) (µΩ cm) (cm2/s) (Ω)

16-3 191 31.2 27.7 6.79 14.17 1.21

18-2 199 72.0 65.7 2.94 33.01 1.36

18-4 199 57.4 50.9 3.79 25.57 1.38

26-2 196 50.9 45.6 4.24 23.26 1.49

27-3 145 60.2 55.4 3.49 38.20 1.32

31-3 149 31.6 27.6 7.00 18.52 1.28

38-1 146 25.2 24.1 8.00 16.53 1.21

40-1 145 94.6 94.3 2.05 65.06 1.32

41-1 150 23.8 22.1 8.73 14.76 2.02

43-1 153 15.2 13.7 14.1 8.96 1.35

44-1 153 16.1 14.5 13 .0 9.47 1.12
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5.3 Magnetoresistance

dependence and independent of temperatures and magnetic fields and therefore

there is only one free parameter for fitting the data with the theoretical predic-

tions. The results show that the measured data go well with the prediction of

weak localization theory. It makes us strongly believe that the extracted inelastic

scattering is highly reliable. Second, we observe that the magnetoresistances are

larger at lower temperatures. This can be understood in the following way. The

magnetoresistances of weak localization arise from the inelastic scattering time.

As the temperature is reduced, the inelastic scattering time increases.

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

 

R
 (B

)/R
2  (0

) (
10

-6
-1
)

B (T)

 0.37 K
 0.97 K
 5.0 K
 10.0 K
 14.0 K

Figure 5.2: Magnetoresistances of Cu 38-1 at several temperatures.

The Fig. 5.3 shows the dephasing time which is extracted from the magne-

toresisances of Fig. 5.2 as a function of temperature. The inelastic scattering
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Figure 5.3: Dephasing time of Cu 38-1 as a function of temperature.
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Figure 5.4: Dephasing time of Cu 38-1 as a function of temperature in double-

logarithmic scales.
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5.3 Magnetoresistance

times are several pico-second. It is about 1.3 ps at 20 K and 4 ps at 0.3 K.

Roughly speaking, the inelastic scattering times increase as temperature decreas-

ing, except the inelastic scattering between 10 K and 6 K. It behaviors a weak

temperature dependence and the inelastic scattering time is about 2.7 ps.

The phonon vibration is strong at high temperature and typically, electron-

phonon scattering dominates the inelastic scattering times at high temperature.

It is found that the electron-phonon scattering time dominates the inelastic scat-

tering time above 10 K and is only important above 10 K.

Figure 5.4 shows the same data with Fig. 5.3 but in double-logarithmic scales.

It shows that the dephasing time above 10 K can be well described by the electron-

phonon interaction. It gives the results that τep ∝ T−2 nsec K−2.

As a first check of the temperature dependence of the measured dephasing

time below 5 K, we use an effective power law, τϕ ∝ T−p, and compare it with

dephasing time to extract the value of p. It shows that the p is about 0.1 for the

sample, Cu 38-1.

From fig. 5.5 to Fig. 5.7 show a series of magnetoresistances of samples with

different levels of disorder. The magnetoresistances are larger at lower tempera-

tures for all samples. This is consistent with the prediction of weak localization

theory. The weak localization theory can describe all of the magnetoresistances

well and all of the errors are less than 1%. One more interesting thing in the series

of magnetoresistances is that intervals between two magnetoresistances which are

measured below 5 K are larger for samples with higher levels of disorder. It is a

mimic of sample dependent increasing rates of inelastic scattering times below 5

K.

Figure 5.8 shows the extracted inelastic times of all samples with different

sheet resistances as a function of temperature. The respective sheet resistances

of 9 K are shown in the insect. Except sample 43-1 and sample 44-1, all of

the dephasing times of each samples have been vertically shifted 2 ps one by

one for clarity. There are two more distinct features in the serious of inelastic

scattering times. First one is that the inelastic scattering times possess a very

weak temperature dependence between 10 K and 5 K for all samples and the

inelastic scattering times have a very similar magnitude, 2 ps ∼ 3 ps, in this

plateau regime. Second one is that the dephasing times increase with decreasing
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Figure 5.5: Magnetoresistances of Cu 18-2 at several temperatures.
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Figure 5.6: Magnetoresistances of Cu 40-1 at several temperatures.
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Figure 5.7: Magnetoresistances of Cu 43-1 at several temperatures.
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5.3 Magnetoresistance

temperature below 5 K and the increasing rates are sample dependent. The

increasing rate is faster for a sample with larger sheet resistance, more disordered

film. If we use the effective power law, τep ∝ T−p, to check the dephasing time

below 5 K. We found that the p are larger for the samples with larger sheet

resistances. For the sample with largest sheet resistance, the p is about 0.57±0.06.

For the sample with smallest sheet resistance, the p is close to 0.

Figure 5.9 shows the extracted dephasing time of all samples. It is a long

standing problem that the low temperature electron dephasing time should be

infinite or finite when temperature is close to absolute zero kelvin. Our results

seem indicate that it depends on the sheet resistance or the intrinsic physics

appear in our system. Next, I will discuss the results in several well known

physical mechanics respectively to clarify the physics.

5.3.1 Electron-Electron Inelastic Scattering Time

B. L. Altshuler(8) and co-workers(78; 79) considered the scattering of electron-

electron collisions involving small energy transfer. For two-dimension case, the

electron-electron relaxation time is given as:

1

τee

=
kBT

2πν(0)D~2
ln(πν(0)D~), (5.1)

where kB is Boltzmann constant, D is electron diffusion constant, and T is tem-

perature. ν(0) = 1
e2R¤D

. R¤ is sheet resistance which is defined by R¤ = RW
L

.

W and L mean that the width and length of samples. The electron-electron

scattering rate is almost linear with R¤.

Typically, the electron-electron inelastic scattering dominates the inelastic

scattering time at low temperature. The The theory predicts that 1
τee

≈ 1.1 ×
10−9T sec−1 for sample with R¤ = 30Ω. As we discussed above, the temperature

dependent inelastic scattering times are samples dependence below 5 K. For the

most disordered sample, the τϕ ∝ T−0.6. The temperature dependence of the

theoretical prediction is much stronger than our measured results. Moreover The

electron-electron scattering rate is 2 to 3 orders smaller than our experimental

results.
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Figure 5.8: Temperature dependence of dephasing times of all samples. All of

the dephasing time are shifted 2 ps one by one, except sample 43-1 and sample

44-1. The respective sheet resistances of 9 K are shown in the insect.
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Figure 5.9: Dephasing times at 0.4 K and 6 K.
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The discussions of above support that the electron-electron interaction which

is often believed that dominating the low temperature inelastic scattering is not

important in our system. We would neglect the electron-electron interaction in

all of the following discussions.

5.3.2 Electron-Phonon Inelastic Scattering Time

The electron-phonon scattering time in the clean limit is given by

1

τep

≈ λep(
kBT 3

~θ2
D

) (5.2)

where λep is a material-dependent constant that measures the strength of the

electron-phonon coupling and θD is the Debye temperature. In the presence of

strong impurity scattering, however, the situation is less straightforward. The-

oretically, the electron-phonon interaction in disordered metals has been exten-

sively studied by a number of authors for a few decades, but different predictions

were made. In particular, different values of the exponent of temperature rang-

ing from 2 to 4 have been predicted. Recently, Sergeev and Mitin(37; 38) have

generalized the Pippard-Rammer-Schmid model to take into consideration an

additional ”static” potential. They introduced an electron mean free path with

respect to the static potential, L, in addition to the total electron mean free path,

l. They found that even a relatively weak static potential drastically changes the

effective electron-phonon coupling and the electron-phonon scattering rate, 1/τep.

Sergeev and Mitin calculated the inelastic electron scattering rate of an electron

at Fermi surface due to the interaction with longitudinal phonon. In the dirty

limit and T ¿ θD, the equation is given by

1

τep,l

=
7πζ(3)

2

βl(kBT )3

~3(kF νl)2
(
2π3(qT,ll)

35ζ(3)
+

3π

7ζ(3)(qT,lL)
) (5.3)

where ζ(n) is the Riemann zeta function. qT ≈ kBT/~νs is the wave number and

νs is sound velocity. l is the mean free path. βl = (2EF /3)2(ν/2ρiν
2
l ) where ν is

the electronic density of states and ρi is the mass density.

In the dirty limit and T ¿ θD, the inelastic scattering rate of electron at

Fermi surface due to the interaction with transverse phonons equation is given

by
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1

τep,t

=
3π2βt(kBT )2

~2(kF νt)(kF l)
(1− 1

L
)(

1

L
+ (1− 1

L
)
π2(qT,tl)

2

10
), (5.4)

where βt = βl(
νl

νt
)2 For the disordered metal case, the longitudinal phonon domi-

nates over the transverse phonon scattering rates.

Experimentally, the temperature dependence of electron-phonon scattering

time reported by various measurements on different material systems are not

always in agreement with one another. Wu and Lin(29; 30; 31) study electron-

phonon scattering time in superconducting Titanium alloys. Their results indi-

cate that in the dirty limit condition, the τep ∝ T−2 are always observed in many

experiments.

The electron-phonon inelastic scattering time is only important above 10 K

that is already discussed above. We use a effective power law, τ = AT−m to

fit the measured high temperature inelastic time. The m = 2 is the best fitting

between data and the power law and A ≈ 0.53 ± 0.1 nsec K2. The measured

electron-phonon scattering time can be given in the form

τep ≈ (0.53± 0.1)T−2 ns T−2. (5.5)

The electron-phonon scattering time is 530 ps which is 2 orders longer than the

measured inelastic scattering time at 1 K. The electron-phonon scattering effect

can be ignored at temperature below 10 K.

5.3.3 Nagaoka-Suhl Theory and Numerical Renormaliza-

tion Group

Concerning the observation of a very weak temperature dependent inelastic scat-

tering time, one immediately suspects that the behavior might be due to spin-spin

scattering in the presence of dilute magnetic impurities in the samples. As a quick

check, we found that Cu could form Kondo alloys with Cr, Mn, or Fe. The Fig.

5.1 shows that there are several ppm magnetic impurities (Cr, Mn, and Fe) in

the target.

As discussed in the Chapter 3, the Kondo effect is an interaction between con-

duction electron and local magnetic impurity. Electron spin is flipped through
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the interaction with magnetic momentum of local magnetic impurity by Heisen-

berg coupling. There is a characteristic temperature which scales the behavior of

the Kondo system. The Temperature is called Kondo temperature which means

that magnetic momentum of magnetic impurity is screened by the spin of con-

duction electrons below the characteristic temperature. The environment would

not experience the spin of magnetic impurities and the system would go back to

the Fermi-liquid system again.

Two kinds of processes contribute to inelastic scattering rates. First one is

single-to-single scattering which is also known as spin-flip scattering. Second

one is single-to-many particle scattering, since additional electron-hole pairs can

carry off phase information. As temperature approaches Kondo temperature

from above, total inelastic scattering rate increases. As temperature is decreased

past Kondo temperature, total inelastic scattering rate decreases, since below

Kondo temperature the formation of a Kondo singlet between the impurity and its

screening cloud begins to suppress spin-flip scattering. For temperature is much

below the Kondo temperature, the singlet is inert with spin-flip rate ∼ e−T/TK and

other conduction electrons experience only potential scattering (elastic scattering)

off it. The system forms a Fermi-liquid and a weak residual interaction between

electrons of opposite spins yields a dephasing rate τ−1 ≈ (T/TK)2 which vanishes

as temperature approach 0 K.

In a Kondo system, the magnetic scattering rate, τm, is maximum at Kondo

temperature, TK . Around Kondo temperature it often appears a plateau in the

inelastic scattering time.

Nagaoka and Suhl first calculated the spin-spin scattering time above Kondo

temperature. They give it in the form

1

τm

=
cm

π~νF

π2S(S + 1)

π2S(S + 1) + ln2(T/TK)
, (5.6)

where cm is the concentration of magnetic impurities in ppm. νF is the density

of states at Fermi level. S is the electron spin and TK is Kondo temperature.

To unravel the intriguing inelastic scattering mechanism responsible for our

measured inelastic scattering time, we carry out further quantitative analysis
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below. Assume that the measured inelastic scattering times between 0.3 K and

20 K are given by

1

τϕ

=
1

τep

+
1

τee

+
1

τQ

, (5.7)

where τep and τee mean the electron-phonon and electron-electron scattering time

respectively. τQ means others yet-to-be identified inelastic scattering time. As

discussed above, the electron-electron scattering is very weak in our system and

we neglect it in the following discussions. The electron-phonon scattering time is

given in Eq. 5.4.

Figure 5.10 and Figure 5.11 show the extracted τQ of two representative sam-

ples as a function of temperature. Both two scattering rates (red solid dots)

clearly reveal a maximum at characteristic temperatures which is 7 K and 5 K.

The maximum scattering rates, τM
Q , are 45 × 1010 sec−1 and 30 × 1010 sec−1 re-

spectively. The black solid lines are the prediction of NS theory. In the fitting, we

adjusted the free parameters (TK , cm, and the local spin S) so it seems that the

NS theory can explain the τQ well above the characteristic temperatures. How-

ever, inspection of the fitted values indicates that such agreement is spurious,

because such good fits can only be achieved by using unrealistic values for the

adjusting parameters. For examples, a local spin of S = 0.12 and 0.082 had to

be used for the film 27-3 and 38-1 respectively. Using S = 1
2

or any larger value

can never reproduce our data.

Second, based on the Nagaoka-Shul (NS) expression, one can get that the

spin-spin scattering time at Kondo temperature is

1

τm

=
cm

π~νF

. (5.8)

For the Cu as a host material metal, the formula can be written as

1

τm

≈ cm

0.6
ns−1. (5.9)

If we assume the measured τM
Q to τm(T = TK), an unreasonably large value of

cm = 200 ∼ 300 ppm will be inferred. Such a level of cm is obviously too high to be

realistic. Although accidentally formed CuO on the film surface have S = 1 spin
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Figure 5.10: Temperature dependence of dephasing times of yet-to-be identified.

The dots are the measured data of sample 27-3 and the line is the prediction of

NS theory.
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Figure 5.11: Temperature dependence of dephasing times of yet-to-be identified.

The dots are the measured data of sample 38-1 and the line is the prediction of

NS theory.
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or some unavoidable magnetic impurities are formed during fabricated precesses,

one would not expect a huge cm > 200 ppm to result from such oxidation and

fabricated processes.

Third, the Kondo temperature of Cu95Au5 (Fe 100 ppm) is 13 K, Cu (Fe) is

25 K and Au (Fe) is 0.4 K. There are no known Cu-based Kondo alloys which

have values of TK around 5 K and 7 K.

From the above three discussions, we rule out that the observed inelastic

scattering, τ−1
Q is not from the scattering of spin-spin (conduction electron and

magnetic impurities) interaction.

The NS theory can only express the Kondo physics above Kondo temperature.

Recently, G. Zarand and co-workers(80) use the numerical renormalization group

(NRG) method to calculate the conduction electrons scattering by a magnetic

impurity at zero temperature. The new theory can describe the physics for all

temperatures, ranging from well above Kondo temperature down to zero tem-

perature. The theory is able to predict the full energy, spin, and magnetic field

dependence of the inelastic scattering cross section. They found an almost linear

temperature dependence of inelastic scattering cross section below Kondo temper-

ature and crosses over to a temperature square dependent behavior at extremely

low temperature. The results show that in the case of zero magnetic fields, most

of the scattering is inelastic scattering at temperature above the Kondo temper-

ature. Decreasing the temperature, the total scattering increases and it finally

saturates at slight below Kondo temperature. This behavior must be contrasted

to inelastic scattering, which slowly increases as temperature decreases, has a

broad maximum around Kondo temperature, then suddenly drops and vanishes.

For a very low temperature region, the inelastic scattering rate is proportion to

T 2 which is in agreement with Fermi liquid theory. The inelastic scattering is

almost linear in temperature for 0.1Tk < T < TK . At temperature much larger

than Kondo temperature, the inelastic scattering rate is simply dominated by

spin-flip scattering and is therefore expected to scale as ∼ 1/ln2(TK/T ). The

theory emphasizes that the NS theory is appropriate only for T À TK .

Micklitz and co-workers(81; 82; 83) calculated new theories for spin S = 1
2

impurities and have confirmed that the τ−1
m ∝ ln−2(T/TK) for T À TK and

the scattering rate τ−1
m is maximum at T = TK . The inelastic scattering rate is
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5.4 Low Temperature Resistance

linear with temperature for 0.1TK < T < TK . While temperature is much lower

than Kondo temperature the τ−1
m ∼ T 2 which is consistent with the prediction

of Fermi-liquid theory. The prediction is quite consistent with the prediction

of G. Zarand. One distinct point is that their corrected peak scattering rate is

about 8% lower than the NS prediction. So the estimation of concentration of

magnetic impurities, cm, discussed above will not be substantially altered even

if one applies the new theory. It is noteworthy that as shown in Fig. 5.10 and

Fig. 5.11, the measured inelastic scattering rates are larger then prediction of NS

theory which is also larger than predictions by G. Zarand and Micklitz.

Recently, N. O. Birge(40) and C. Bäuerle(84; 85; 86) measured inelastic scat-

tering time of quasi-one-dimension gold wires containing magnetic impurities

which are added into gold wires by ion implant method. Their results support the

predictions of the NRG theories. It is noteworthy that the behavior of inelastic

scattering is mainly dominated by the concentration of magnetic impurities below

the Kondo temperature. As we discuss above, the increasing rates of measured

inelastic scattering time below Kondo temperature is sample dependent. For a

sample with higher level of disorder the increasing rate is faster. The fastest

increasing rate of inelastic scattering time is about T−0.5 in our measured results.

The temperature dependent of measured inelastic scattering time is much weaker

than the prediction of NRG theory. As shown in Fig. 5.9, the measured inelastic

scattering times are about 8 times difference for strongest and weakest disordered

samples at 0.4 K. On the other hand, based on the prediction of NRG theory the

inelastic scattering rate is proportion to concentration of magnetic impurities.

One would not expect almost 1 order difference of magnetic impurities between

different films which are deposited by using the same source target and the same

fabricating processes.

5.4 Low Temperature Resistance

Figure 5.12 shows measured resistance of a representative sample as a function

of temperature from 300 K down to 0.3 K. The high temperature resistance is

mainly dominated by electron-phonon scattering. It can be described by the

Bloch-Grüneisen equaiton.
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5.4 Low Temperature Resistance

ρBG(T ) = βBGT (
T

θD

)4

∫ θD/T

0

x5dx

(ex − 1)(1− e−x)
. (5.10)

where βBG is electron-phonon coupling constant and θD is the Debye temperature.

The equation predicts that the resistance decreases as temperature decreasing, be-

cause of the decreasing of phonon. The inset of the Fig. 5.12 shows the measured

resistance between 20 K to 0.3 K. Clearly, the resistance increases as temperature

decreasing and the resistance rise is logarithmic below 5 K. The logarithmic rise

might come from several quantum transports which will be discussed below.

The Fig. 5.13 shows the resistances as a function of temperature of four

representative samples with different levels of disorder. It shows that all of the

resistances are logarithmic increase as temperature decreasing and the increasing

is samples dependent. For a sample with higher levels of disorder, the increasing

is larger.

5.4.1 Kondo Effect

As discussed in Chapter 3, the Kondo effect is an interaction between spin of

conduction electron and magnetic moment of local magnetic impurities. The

correction to resistance is ∆RK(T ) ∝ −BK ln(T/TK), where BK dependent on

the coupling strength of the s-shell electron and d-shell electron. The correction is

very sensitive to the external magnetic field. The external magnetic field reduces

the correction to resistance. In order to identify the physics of the behavior, high

magnetic field and low temperature measurement is necessary.

Figure 5.14 shows the temperature dependent resistance of 0 T and 9 T. Both

resistances are logarithmic increase as temperature decreasing from 1 K down to

50 mK. The increasing rate is insensitivity to high magnetic fields. The increas-

ing rate of 9 T is about 5% smaller than the increasing rate of 0 T. It indicates

that the dominating mechanics are not spin-based. The slope should be obvi-

ously suppressed in the presence of high magnetic field, if the Kondo effect is real

important in the system. Second, assume that the concentration of the magnetic

impurities is as high as the estimation, 200 ppm ∼ 300 ppm, from the theoretical

prediction, the interaction between local magnetic impurities should be strong.

The RKKY interaction between the randomly distributed impurity spins compete
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Figure 5.12: Temperature dependent resistance of samples 18-4.
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5.4 Low Temperature Resistance

with the Kondo effect and causes a freezing of the impurity spins into a disordered

configuration call a spin glass. This is reflected by the appearance of a typical

broad maximum in resistance since the spin scattering rate again decreases at the

lowest temperature due to the freezing process. However, as shown in Fig. 5.14,

there is definitely no sign of a saturated resistance signifying the presence of the

Kondo effect, and there is no maximum peak of resistance signifying the presence

of the spin-glass effect. It indicates that the concentration of the magnetic im-

purities are not as high as we estimate from NS theory or the magnetic impurity

scattering is not important at all in our system. All of the evidences suggest that

the magnetic scattering could not be the dominating mechanic in our systems.

5.4.2 Weak Localization

As we discussed in chapter 3. The correction of weak localization to resistance is

dimensional dependence. The correction is logarithmic increase in two-dimension

system which means the thickness of the samples is thinner than electron inelastic

scattering length, lϕ. The lϕ is usually about submicro meter which is larger than

the thickness of samples. The correction of weak localization to resistance is given

as

∆R¤(T )

R2
¤(T0)

= −(αP + 1− 3
4
F )e2

2π2~
ln(T/T0), (5.11)

where the P is dependent on the inelastic scattering time and the αP is close to

1. 1 − 3
4
F is the correction of electron-electron interaction effect and F is the

screening factor. For a full screened system, F is equal to 1. In the opposite

limit, full unscreened system, the F is close to 0. For disordered metal films

in the limit of strong spin-orbit interaction, the screening factor is small and

the electron-electron interaction effect dominates the resistance rise while the

weak localization contribution is negligibly small. For all films, we obtained

αP +1− 3
4
F = 1.33±0.13. This is systematically larger than prediction of theory

and strongly implies that there must be extra mechanism which also contributes

to the logarithmic increase in temperature.

To further illuminate this anomalous logarithmic increasing resistances, we

have also made a few thick films (compare with inelastic scattering length) from
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5.4 Low Temperature Resistance

the same sputtering under similar deposition conditions and measured the resis-

tances. Figure 5.15 shows the measured resistance as a function of temperature

at different magnetic fields which is up to 15 T. The insect shows that the log-

arithmic increase is wide range from above 10 K. There are two distinct points.

First one is that all the resistances are logarithmic rise from 10 K down to 30 mK

for all applied magnetic fields. Second one is that the resistances are insensitive

to high magnetic fields.
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Figure 5.15: Temperature dependent resistance of thick sample at 0 T, 5 T, 10

T, and 15 T.

For a three-dimension sample, the weak localization theory predicts that the

correction of temperature dependent resistance is −√T . The measured results

strongly show the lnT behavior for a wide range. It indicates that other mechanics
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5.5 Two-Level System

dominate over the three dimensions electron-electron interaction effect. Also the

resistance is also insensitivity to the high magnetic fields.

5.5 Two-Level System

It has been reported that scattering of electrons off two-level system can cause a

logarithmic increase. R. W. Cochrane and co-workers(75) calculated a mechanism

of structure origin, due to scattering by two-level system. They obtain an analytic

expression of the following form:

R = R0 − Aln(T 2 + ∆2), (5.12)

where ∆ is the energy difference between the two atomic tunneling states and A

is a constant depending on the number of contributing sites and the strength of

the Coulomb interaction. In contrast to the Kondo effect, it has been reported

that the resistance due to two-level system scattering is very insensitivity to the

external magnetic field. Recent observations in structurally disordered diamagnet

ThAsSe show that the electrical resistance displays a logarithmic correction for

a wide range in temperature, which is not affected by strong magnetic field up

to 16 T.(62; 68) Our observations of temperature dependent resistances which

are shown in Fig. 5.14 and Fig. 5.15 are consistent with both experimental and

theoretical reports and also support the possibility of two-level system in our

system.

Theoretically, A. Zawadowski and co-workers(48) considered the dephasing

in metals by two-level system in two-channel Kondo region. In the two-channel

Kondo regime, the single-to-single-particle and single-to-many-particle scattering

rates are known to respectively decrease and increase with decreasing temper-

ature. The single-to-single-particle scattering rates is proportional to T 1/2. It

is approaching to 0 as temperature is closing to 0. The key point of dephasing

is that the single-to-many-particle scattering would cause dephasing, so one can

take the single-to-many-particle scattering time as the total dephasing time a

low temperature. The theory predicts that there is a broad peak around Kondo

temperature. Adding to a power-law decay due to other sources of dephasing
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5.5 Two-Level System

(electron-electron interaction or electron-phonon interaction), the total dephas-

ing rates would have a broad shoulder around Kondo temperature that is the

same as we observe in the experiments.

Y. M. Galperin(87) calculated the dephasing time using a model based on

tunneling states of dynamical structure defeats. He predicts that an inelastic

scattering time possessing a very weak temperature dependence in a certain tem-

perature interval and then crossing over to a slow increase with decreasing tem-

perature. Based on the theory, the dephasing rates is proportional to diffusion

constant.

Experimentally, Lin and co-workers measured low temperature electron de-

phasing time in a series of highly disordered three-dimension AuPd films.(44) For

all films, saturation of dephasing times, τ 0
ϕ, are observed below about several K.

The saturating temperature is sample dependent and ranges from 0.005 ns to

0.5 ns. Particularly, the τ 0
ϕ is proportional to diffusion constant. On the other

hand, Z. Ovadyahu and co-workers(64; 65; 66) measured resistances and electron

dephasing times in two dimensional In2O3−x and Au-doped In2O3−x. The resis-

tances are logarithmical increase as temperature decreasing. The dephasing times

are inversely proportional to temperature, except there is a plateau (weak tem-

perature dependent) around several K. Particularly, the plateaus range and width

depend on the concentration of doped Au. For an un-doped In2O3−x films, no

plateau is observed in the reports. It indicates that the appearance of the plateau

comes from the breaking of the structural symmetry, a mimic of two-level system.

Until now, we discussed temperature dependent resistance at several high

magnetic fields and low temperature electron inelastic scattering time for a series

of films with different levels of disorder. The resistances are logarithmic rise

from above 10 K down to 30 mK and the behavior is dimensional independent

(independent of thickness of films). Particularly, the temperature dependence is

insensitivity to magnetic fields up to 15 T. Many theorists predicted a plateau

(weak temperature dependent) of inelastic scattering time, that is the same as

our results, around Kondo temperature in two-level system. Based on the above

discussions, we strongly convince that instead of the spin-flip (Kondo) effect,

which is always inferred to the effect of observed saturation of dephasing time,

the two-level system dominates the physical behavior of the system.(88)
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5.5 Two-Level System

Recently, Imry and co-workers consider a two-level model with loosely bound

heavy impurities. In the tunneling model Imry and co-workers take the scatter

to reside in a double-minimum potential. The minima are separated by a vector
~b, the tunneling matrix element between the two minima is Ω0, and their energy

separation is 2B. The separation 2∆ between the ground state and excited state

in the well, respectively, is given by

2∆ = 2
√

Ω2
0 + B2. (5.13)

The above labelling of the states reflects their spatial symmetry for B = 0. First,

they assume that all of the energy splitting of two local minimum potential are

uniform and the inelastic scattering is given by

1

τin

=
4(αβ)2nsνF σ0

cosh2(∆/(kBT ))
, (5.14)

where ns isthe concentration of the soft impurities. α and β are the normalized

weights in the two wells. αβ = Ω0/(2∆). The combination 2|αβ| is a symmetry

parameter, ranging from unity for a symmetric well (B = 0) to zero for a very

asymmetric one.

The parameters of the various two-level system within the system, are often

distributed. Reasonable distributions are a uniform distribution for B in the range

0 ≤ B ≤ Bmax, and a 1/Ω0 distribution for Ω0, between Ωmin and Ωmax. The

latter distribution follows by taking Ω0 to be the exponential of a large negative,

uniformly distributed quantity in the corresponding range. One generally expects

Ωmax ¿ Bmax. The combined distribution function reads

P (B, Ω0) =
1

Ω0Bmaxln(Ωmax/Ωmin)
. (5.15)

one averages over the distribution of Eq. 5.15, and the inelastic scattering is given

by

τin ∝ e−2Ωmin/(kBT ) for kBT ¿ Ωmin;

τin ∝ T for Ωmin ¿ kBT ¿ Ωmax;

τin ∝ const for Ωmax ¿ kBT. (5.16)
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5.5 Two-Level System

Recently, our results catch some theorists’ attentions. B. Dóra and M. Gulácsi

study a nonuniversal contribution to the dephasing rate of conduction electrons

due to local vibrational modes.(89) The inelastic scattering rate exhibits strong

oscillations at frequencies comparable to the phonon excitation energy, and then

saturates to a finite, coupling dependent value. At the extreme strong coupling

limit, close to the complete softening of the phonons, the s-matrix vanishes and

the inelastic cross section reaches its maximal value. This phonon mediated

scattering mechanism is expected to be rather insensitive to the applied magnetic

field, in contrast to Kondo-type impurities, and can contribute to the dephasing

time in certain alloys containing dynamical defects.

However, the microscopic parameter, the level of symmetry of two wells, ∆,

B, and Ω are difficult to know. The more detail discussions of the measured

results need further works of theory.

After comparing with all existence theories, it indicates that our system is

dominated only by the dynamic structure defeat daphasing. However, the fabri-

cating processes and the microstructures of sample strongly affect the behaviors

of the inelastic scattering. Only a few works on the effect, many of ideas are

still not clear. For example, the dependence of increasing rate and sheet resis-

tance and an explicit way to define the levels of disorder, the number of two-level

system. At this field, we have to study more to clear the physics in the future.
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Spin Transport in Vertical

Double Quantum Dots
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Chapter 6

Introduction to Quantum

Information and Quantum Dot

Civilization has always advanced as people discovered new ways of exploiting

various physical resources, such as materials, forces, and energies. In the twenti-

eth century, information was added to the list when the invention of computers

allowed complex information processing to be performed outside human brains.

The history of information technology has involved a sequence of changes from

one type of physical realization to another, from gears to relays to valves to

transistors to integrated circuits and so on. Now, developments of quantum in-

formation processing have reached the stage where one bit of information can

be encoded in quantum systems, for example using two different polarizations of

light, or two different electronic states of an atom. Matter on this scale obeys the

laws of quantum mechanics. In a quantum computer, the information is loaded

as a string of quantum bits (qubits). A qubit in a quantum object, for example,

an atom (an ion) which can occupy different quantum states. Two of these states

are used to store digital information. An atom in the ground state corresponds

to the value ”0” of the qubit. The same atom in the excited state corresponds to

the value ”1” of this qubit.

The main advantage of the quantum computer is not connected with the

density of qubits. The difference is that quantum physics allows one to operate

with a superposition of quantum states. For one atom, one can produce an infi-

nite number of superpositional states using just two basic quantum states, which
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correspond to ”0” and ”1”. For example, if two states have energies, E0 and

E1. Utilization of superpositional states allows one to work with quantum states

which simultaneously represent many different numbers. This is call ”quantum

parallelism”. It can take thousands and thousands years for the most powerful

digital computers to find the prime factors of a 200-digital number. A quantum

computer can operate simultaneously on many numbers and only the few de-

sired numbers are reserved. The undesired numbers are removed by destructive

interference.

Entanglement is the other one of the distinct properties of quantum system

that makes quantum information processing so different from classical information

technology. Quantum entanglement is a quantum mechanical phenomenon in

which the quantum states of two or more objects are somehow linked together so

intimately that one object cannot be adequately described without full mention of

its counterpart X even though the individual objects may be spatially separated.

Entanglement makes possible quantum teleportation.(90; 91)

Until now, there are many systems can operate as a qubit, such as: electrons

on the surface of liquid helium,(92) Josephson Junction,(93; 94) nuclear spin

resonance,(95) electron spin in semiconductor quantum dot.(96; 97; 98; 99) In my

work, I focus on the electron spin in semiconductor quantum dot(s). Effects of

quantum confinement on the electronic properties of semiconductor heterostruc-

tures are well known prior to the study of quantum dots. Growth techniques such

as molecular beam epitaxy, allows fabrication of quantum wells and heterostruc-

ture with energy levels that are quantized along the growth direction. For proper

choice of growth parameters, the electrons are fully confined in the z-direction.

The electron motion is free in the x-y plane. This forms a two dimensional elec-

tron gas. Quantum dots are emerged when this growth technology is combined

with electron-beam lithography to produce confinement in all three directions.

Many of works have done to check the basic physics and properties of quantum

dots in different systems.(100; 101; 102) Some of results are using as appliances,

such as spin filters. Recently, spin states in quantum dots is expected to be a

qubits and many of works are performed in progress. For example, Marcus(103;

104) and Tarucha(105) manipulate the electron spins by the technique of ESR.

Kono and co-workers(92) operate the electrons on the surface of liquid helium by
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microwave. Following, I would discuss some of my works on the electron tunneling

in semiconductor vertical double quantum dots in the years.
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Chapter 7

Theory and Background

7.1 Quantized Charge Tunneling

The circumstances under Coulomb charging are important. First we consider the

electronic properties of a small conductor depicted in Fig. 7.1 which is coupled

to three terminals. Particle exchange can occur with only two of the terminals,

as indicated by the arrows. These source and drain terminals connect the small

conductor to macroscopic current and voltage meters. The third terminal pro-

vides an electrostatic or capacitive coupling and can be used as a gate electrode.

If we first assume that there is no coupling to the source and drain contacts, then

the small conductor acts as an island for electrons. The number of electrons on

this island is an integer.

When tunneling occurs, the charge on the island suddenly changes by the

quantized amount e. The associated change in the Coulomb energy is conveniently

expressed in terms of the capacitance C of the island. An extra charge e changes

the electrostatic potential be the charging energy Ec = e2/C. This charging

energy becomes important when it exceeds the thermal energy kBT . A second

requirement is that the barriers are sufficiently opaque such that the electrons

are located either in the source, in the drain, or on the island. This requirements

translates to a lower bound for the tunnel resistances Rt of the barriers. To

see this, consider the typical time to charge or discharge the island ∆t = RtC.

Furthermore, for the charge to be quantized, the energy uncertainty ∆E must

be much smaller than the charging energy. The Heisenberg uncertainty relation
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7.1 Quantized Charge Tunneling

Figure 7.1: Schema of a quantum dot.
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7.2 Two Dimensional Electron Gas

∆E∆t = (e2/C)RtC ≥ h then implies that Rt should be much larger than

the resistance quantum h/e2 = 25.8 kΩ. To summarize, the two conditions for

observing effects to the discrete nature of charge are

Rt À h/e2, (7.1)

e2/C À kBT. (7.2)

The first criterion can be met be weakly coupling the dot to the source and

drain leads. The second criterion can be met by making the dot sufficiently

small.(106)

While the tunneling of a single charge changes the electrostatic energy of

the island by a discrete values, a voltage Vg applied to the gate can change

the island’s electrostatic energy in a continuous manner. In terms of charge,

tunneling changes island’s charge by an integer while the gate voltage induces an

effective continuous charge q = CgVg that represents, in some sense, the charge

that the dot would like to have. The charge is continuous even on the scale of

the elementary charge e. If we sweep Vg the build up of the induced charges onto

the dot. This competition between continuously induced charge and discrete

compensation leads to so-called Coulomb oscillations in a measurement of the

current, as a function of gate voltage at a fixed source drain voltage.

7.2 Two Dimensional Electron Gas

In the section we will briefly introduce basic properties of a two dimensional

electron gas (2DEG) in a GaAs/AlGaAs heterostructure. On the GaAs substrate

a layer of typically 100nm AlGaAs in grown. Somewhere halfway in the AlGaAs

layer there is a thin layer where the Ga atoms are replaced by Si donor atoms.

With a proper amount of Si one finds that at low temperature the only mobile

electrons are located at the GaAs/AlGaAs interface. These free electrons are

attracted by the GaAs since they can lower their energy in this smaller band gap

material. They are also held as close as possible to their ionized Si+ donors and

thus they form a thin conducting layer near the GaAs/AlGaAs interface.
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7.3 Two Dimensional Harmonic Oscillator

7.3 Two Dimensional Harmonic Oscillator

In experimentally realized dots, the motion in the z direction is always frozen

out into the lowest electric subband. Since the corresponding extent of the wave

function is much less than the one in the x-y plane, we can treat the dots in the

two-dimensional limit of thin disks. For quantum dots, a harmonic oscillator is a

very good approximation to describe the confinement of the electrons.

The familiar spectrum of a one-dimensional harmonic oscillator En = (n +
1
2
)~ω becomes En,l = (2n + |l| + 1)~ω in two dimensions. Here n(= 0, 1, 2, ...) is

the radial quantum number, l(= 0,±1,±2, ...) is the angular momentum quantum

number of the oscillator and ω is the oscillator frequency.

The electronic states are expected to be significantly modified by a magnetic

field, B, applied perpendicular to the plane of the dot. The eigenenergies En,l

as a function of B can be solved analytically for a two dimensional parabolic

potential V (r) = 1
2
m∗ω2

0r
2

En,l(B) = (2n + |l|+ 1)~ 2

√
1

4
ω2

c + ω2
0 −

1

2
l~ωc, (7.3)

where ~ω0 is the electrostatic confinement energy, ~ωc = ~eB
m∗ is the cyclotron

energy and m∗ = 0.067me is the effective mass in GaAs. ~ωc = 1.7 meV at 1

T.(107; 108)

Figure 7.2 shows the single-particle energy as a function of magnetic fields for

~ω0 = 3 meV. It shows that the orbital degeneracies at B = 0 T are lifted in the

presence of magnetic fields. As magnetic field is initially increased from 0 T, a

single-particle state with a positive or negative l shifts to lower or higher energy,

respectively. At B = 0 the lowest energy state has (n, l) = (0, 0) and is two-fold

spin degenerate. The next state has a double orbital degenracy E0,1 = E0,−1. We

denote these degenerate states of the second shell. Including spin degenracy this

shell can contain up to 4 electrons, so it will be filled when there are 6 electrons

on the dots. In the third shell states with quantum numbers (1,0), (0,2), (0, -2)

are degenerate. With spin this shell may contain up to 6 electrons, leading to the

magic number 12. Note that the degeneracy of the (1,0) state with the (0,2) and

(0,-2) states is lifted if the potential has a non-parabolic component.(109)
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7.3 Two Dimensional Harmonic Oscillator

Figure 7.2: Calculated single-particle energy as a function of magnetic fields for

a parabolic potential with ~ω0 = 3 meV.
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7.4 Constant Interaction Model

7.4 Constant Interaction Model

Here, we introduce the constant interaction, CI, model that describes the elec-

tronic states of the dot.(99; 110) The CI model is based on two important as-

sumptions. First, the Coulomb interactions of an electron on the dot with its

environment and with other electrons on the dot are parametrized by a constant

capacitance C. Second, the discrete energy spectrum of a single particle on the

dot is not affected by the interactions. The CI model approximates the total

energy U(N) of an N electrons dot by

U(N) =
(e(N −N0)− CgVg)

2

2C
+

∑
N

En,l(B) (7.4)

where N0 is the number of electrons on the dot at zero gate voltage. The term

CgVg is a continuous variable and represents the charge that is induced on the

dot by the gate voltage Vg through the capacitance Cg. The total capacitance

between the dot and the source, drain, and gate is C = Cs + Cd + Cg. The last

term is a sum over Eq. 7.3 .

The electro-chemical potential of the dot is defined as µdot = U(N)−U(N−1).

Electrons can flow from source to drain when µdot is between the electro-chemical

potentials, µsource and µdrain, of the leads. From eq. 7.4 we get the electro-

chemical potential of the dot

µdot(N) = (N −N0 − 1

2
)Ec − e

Cg

C
Vg + EN (7.5)

The addition energy is given by

∆µ(N) = µdot(N + 1)− µdot(N) = Ec + EN+1 − EN (7.6)

with EN the topmost filled single-particle state for an N electron dot.

The electro-chemical potential is changed linearly by the gate voltage with a

proportionality factor α = eCg

C
. This α factor also relates the peak spacing to the

addition energy. We define the spacing between the N th Coulomb peak at V N
g

and the next peak at V N+1
g as ∆Vg(N + 1) = V N+1

g − V N
g . The addition energy

follows from ∆µ(N) = α∆Vg(N).
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7.4 Constant Interaction Model

Figure 7.3: determine the α factor from the slope of the sides of the Coulomb

diamond.
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7.5 Low Source-Drain Voltage Region

Figure 7.3 shows how to determine the α factor from the slope of the sides

of the Coulomb diamond: α = |eV Max
SD

∆Vg
|. Since the gate voltage changes the dot

area, the α factor changes with N .

7.5 Low Source-Drain Voltage Region

For a quantum dot system in equilibrium, electron transport is only possible when

a level corresponding to transport between successive ground states is in the bias

window, i.e. µs ≥ µ(N) ≥ µD for at least one value of N. If this condition is

not met, the number of electrons on the dot remains fixed and no current flows

through the dot. This is known as Coulomb blockade. An example of such a level

alignment is shown in Fig. 7.4a. Coulomb blockade can be lifted by changing the

voltage applied to the gate electrode, as can be seen from Eq. 7.5. As shown in

Fig. 7.4b When ν(N) is in the bias window one extra electron can tunnel onto

the dot from the source, so that the number of electrons increases from N − 1 to

N . After it has tunneled to the drain, another electron can tunnel onto the dot

from the source. This cycle is known as single-electron tunneling.

By sweeping the gate voltage and measuring current, a trace is obtained as

shown in Fig. 7.4c. At the positions of the peaks, an electrochemical poten-

tial level corresponding to transport between successive ground states is aligned

between the source and drain electrochemical potentials and a single-electron tun-

neling current flows. In the valleys between the peaks, the number of electrons

on the dot is fixed due to Coulomb blockade. By tuning the gate voltage from

one valley to the next one, the number of electrons on the dot can be precisely

controlled. The distance between the peaks corresponds to ∆µ, and therefore

provides insight into the energy spectrum of the dot.

7.6 Large Source-Drain Voltage Region

We now look at the region where the source-drain voltage is so high that multiple

dot levels can participate in electron tunneling. Typically the electrochemical

potential of only one of the reserviors is changed in experiments, and the other

one is kept fixed. Here, we take the drain reservior to be ground. When a negative
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Figure 7.4: Schematic diagrams of the electrochemical potential levels of a quan-

tum dot in the low-bias regime.
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7.6 Large Source-Drain Voltage Region

voltage is applied between the source and the drain, µS increases. The levels of

the dot also increase, due to the capacitive coupling between the source and the

dot. Again, a current can flow only when a level corresponding to a transition

between ground states fall within the bias window. As shown in Fig. 7.5a when

VSD is increased further such that also a transition involving an excited state

falls within the bias window, there are two paths available for electrons tunneling

through the dot. In general, this will lead to a change in current, enable us to

perform energy spectroscopy of the excited states. Increasing VSD even more

eventually leads to a situation where the bias window is larger than the addition

energy as shown in Fig. 7.5b. Here, the electron number can alternate between

N − 1, N , and N + 1, leading to a double-electron tunneling current.

Next, we would show how the current spectrum as a function of bias and gate

voltage can be mapped out. First, the electrochemical potentials of all relevant

transitions are calculated by applying Eq. 7.6. Considering two successive ground

states, GS(N) and GS(N+1), and the excited states ES(N) and ES(N+1), which

are separated from the GSs by ∆E(N) and ∆E(N + 1) respectively.

As shown in Fig. 7.6, each transition indicates the gate voltage at which its

electrochemical potential is aligned with µS and µD at VSD = 0. Analogous to

low bias case, sweeping the gate voltage show electron tunneling only at the gate

voltage indicated by GS(N) ↔ GS(N + 1). For all other gate voltages the dot

is in Coulomb blockade. For each transition a V-shaped region is outlined in

the schema, where its electrochemical potential is within the bias window. The

slopes of the two edges of the V-shape depend on the capacitances. The transition

between the N-electron GS and the (N+1)-electron GS (black solid lines) defines

the regions of Coulomb blockade (outside the V-shape) and tunneling (within the

V-shape). The other solid lines indicate where the current changes due to the

onset of transitions involving excited states.

A measurement as shown in Fig. 7.6 is very useful for finding the energies of

the excited states, where a line of a transition involving one excited state touches

the Coulomb blockade region, the bias window exactly equals the energy level

spacing. Here, we show the level diagrams at these special positions for both

ES(N) ↔ GS(N + 1) and GS(N) ↔ ES(N + 1).
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7.6 Large Source-Drain Voltage Region

Figure 7.5: Schematic diagrams of the electrochemical potential levels of a quan-

tum dot in the high-bias regime.
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7.6 Large Source-Drain Voltage Region

Figure 7.6: Schematic diagrams of the differential conductance as a function of

source-drain voltage and gate voltage.
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We briefly discuss the transition ES(N) ↔ ES(N +1), that was neglected in

the discussion thus far. The visibility of such a transition depends on the relative

magnitudes of the tunnel rates and the relaxation rates. When the relaxation is

much faster than the tunnel rates, the dot will effectively be in its ground state

all the time and the transition ES(N) ↔ ES(N + 1) can therefore never occur.

In the opposite limit where the relaxation is much slower than the tunneling, the

transition ES(N) ↔ ES(N + 1) participates in the electron transition and will

be visible in a plot like in Fig. 7.6. Thus, the visibility of transition can give

information on the relaxation rates between different levels.(111)

If the voltage is swept across multiple electron transitions and for both signs

of the bias voltage, the Coulomb blockade regions appear as diamond shapes in

the plot. These are the well-known Coulomb diamonds.

7.7 Double Quantum Dots

In the section we introduce the stability (or honeycomb) diagram that visualizes

the equilibrium charges states of two serially coupled dots.(112; 113; 114; 115)

The double dot is modeled as a network of tunnel resistors and capacitors as

shown in Fig. 7.7. The number of electrons on dot 1(2) is N1(2). Each dot is

capacitively coupled to a gate voltage Vg1(2) through a capacitor Cg1(2) and to

the source (S) or drain (D) contacts through a tunnel barrier represented by a

tunnel resistor RL(R) and a capacitor CL(R) connected in parallel. The dots are

coupled to each other by a tunnel barrier represented by a tunnel resistor Rm

and a capacitor Cm in parallel. The bias V is applied to the source contact

with the drain contact grounded. In this section we consider the linear transport

regime, V ≈ 0. If only concerning cross capacitances (such as between Vg1 and

dot 2), other voltage sources and stray capacitances are negligible, the double dot

electrostatic energy reads

U(N1, N2) =
1

2
N2

1 EC1 +
1

2
N2

2 EC2 + N1N2ECm + f(Vg1, Vg2), (7.7)

where EC1(2) is the charging energy of the individual dot 1(2), ECm is the electro-

static coupling energy, and −|e| is the electron charge. The coupling energy ECm
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7.7 Double Quantum Dots

Figure 7.7: Network of tunnel resistors and capacitors representing two quantum

dots coupled in series.
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7.7 Double Quantum Dots

is the change in the energy of one dot when an electron is added to the other dot.

f(Vg1, Vg2) is defined as:

f(Vg1, Vg2) =
1

−|e|{Cg1Vg1(N1EC1 + N2ECm) + Cg2Vg2(N1ECm + N2EC2)}

+
1

e2
{1

2
C2

g1V
2
g1EC1 +

1

2
C2

g2V
2
g2EC2 + Cg1Vg1Cg2Vg2ECm},

These energies can be expressed in terms of the capacitances as follows:

EC1 =
e2

C1

(
1

1− C2
m

C1C2

), (7.8)

EC2 =
e2

C2

(
1

1− C2
m

C1C2

),

ECm =
e2

Cm

(
1

C1C2

C2
m
− 1

),

Here C1(2) is the sum of all capacitances attached to dot 1(2) including Cm,

C1(2) = CS(D)+Cg1(2)+Cm . Note that Ec1(2) can be interpreted as the charging

energy of the single, uncoupled dot 1(2) multiplied by a correction factor that

accounts for the coupling. When Cm = 0, and hence Ecm = 0, Eq.7.7 reduces to

U(N1, N2) =
(−N1|e|+ Cg1Vg1)

2

2C1

+
(−N2|e|+ Cg2Vg2)

2

2C2

. (7.9)

This is the sum of the energies of two independent dots. In the case when

Cm becomes the dominant capacitance (Cm/C1(2) → 1), the electrostatic energy

is given by

U(N1, N2) =
{−(N1 + N2)|e|+ Cg1V g1 + Cg2V g2}2

2(C̃1 + C̃2)
. (7.10)

This is the energy of a single dot with a charge N1 + N2 and a capacitance of

C̃1 + C̃2, where C̃1(2) = C1(2) − Cm is the capacitance of dot 1(2) to the outside

world. Thus a large interdot capacitance Cm effectively leads to one big dot.

The electrochemical potential µ1(2)(N1, N2) of dot 1(2) is defined as the energy

needed to add the N1(2)th electron to dot 1(2), while having N2(1) electrons on
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7.7 Double Quantum Dots

dot 2(1). Using the expression for the total energy Eq. 7.7, the electrochemical

potentials of the two dots are

µ1(N1, N2) ≡ U(N1, N2)−B(N1 − 1, N2)

= (N1 − 1

2
)EC1 + N2ECm − 1

|e|(Cg1Vg1EC1 + Cg2Vg2ECm), (7.11)

µ2(N1, N2) ≡ U(N1, N2)−B(N1, N2 − 1)

= (N2 − 1

2
)EC2 + N1ECm − 1

|e|(Cg1Vg1ECm + Cg2Vg2EC2). (7.12)

The change in µ1(N1, N2) if, at fixed gate voltages, N1 is changed by 1, µ1(N1 +

1, N2)− µ1(N1, N2) = EC1, is called the addition energy of dot 1 and equals the

charging energy of dot 1 in this classical regime. Similarly, the addition energy of

dot 2 equals EC2, and µ1(N1, N2+1)−µ1(N1, N2) = µ2(N1+1, N2)−µ2(N1, N2) =

ECm. In the next section we will discuss the addition energy in the quantum

regime, where also the spacing between discrete energy levels plays a role.

From the electrochemical potentials in Eq. 7.11 and Eq. 7.12 we construct a

charge stability diagram, giving the equilibrium electron numbers N1 and N2 as

a function of Vg1 and Vg2. We define the electrochemical potentials of the source

and drain leads to be zero if no bias voltage is applied, µS = µD = 0. Hence the

equilibrium charges on the dots are the largest values of N1 and N2 for which

both µ1(N1, N2) and µ2(N1, N2) are less than zero. If either is larger than zero,

electrons escape to the leads. This constraint, plus the fact that N1 and N2 must

be integers, creates hexagonal domains in the (Vg1, Vg2) phase space in which the

charge configuration is stable.

For completely decoupled dots (Cm = 0) the diagram looks as in Fig. 7.8a.

The gate voltage Vg1(2) changes the charge on dot 1(2), without affecting the

charge on the other. If the coupling is increased, the domains become hexagonal

as shown in Fig. 7.8b. The vertices of the square domains have separated into

triple points. When Cm becomes the dominant capacitance (Cm/C1(2) ≡ 1), the

triple point separation reaches it maximum as shown in Fig. 7.8c. The double

dot behaves like one dot with charge N1 + N2, as see from Eq. 7.10.
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7.7 Double Quantum Dots

Figure 7.8: Schematic stability diagram of the double dot system for (a) small,

(b) intermediate, and (c) large interdot coupling. The equilibrium charge on

each dot in each domain is denoted by (N1, N2). The two kinds of triple points

corresponding with the electron transfer process (•) and the hole transfer process

(◦) are illustrated in (d).
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7.7 Double Quantum Dots

We are considering the linear region of conductance, implying µS−µD ≈ 0. In

order to obtain a measurable current, the tunnel barriers need to be sufficiently

transparent. At the same time, however, the tunnel barriers need to be sufficiently

opaque to ensure a well-defined electron number on each dot. For double dots

coupled in series, a conductance resonance is found when electrons can tunnel

through both dots. This condition is met whenever three charge states become

degenerate, i.e. whenever three boundaries in the honeycomb diagram meet in

one point. In Fig. 7.8d two kinds of such triple points are distinguished, (•) and

(◦), corresponding to different charge transfer processes. At the triple point (•),
the dots cycle through the sequence

(N1, N2) ≡ (N1 + 1, N2) ≡ (N1, N2 + 1) ≡ (N1, N2),

which shittle one electron through the system. This process is illustrated by the

counterclockwise path e and the diagram of an electron sequentially tunneling

from the left lead to the right lead in Fig. 7.8d. At the other triple point (◦), the

sequence is

(N1 + 1, N2 + 1) ≡ (N1 + 1, N2) ≡ (N1, N2 + 1) ≡ (N1 + 1, N2 + 1),

corresponding to the clockwise path h in Fig. 7.8d. This can be interpreted as

the sequential tunneling of a hole in the direction opposite to the electron. The

energy difference between both processes determines the separation between the

triple point (•) and (◦) and is given by ECm as defined in Eq.7.8.

As shown in Fig. 7.9 the dimensions of the honeycomb cell can be related to

the capacitances using Eq. 7.11 and Eq. 7.12. From

µ1(N1, N2; Vg1, Vg2) = µ1(N1 + 1, N2; Vg1 + ∆Vg1, Vg2), (7.13)

we obtain

∆Vg1 =
|e|
Cg1

, (7.14)

and similarly we can derive
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7.7 Double Quantum Dots

Figure 7.9: Schematic stability diagram showing the Coulomb peak sapcings.
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∆Vg2 =
|e|
Cg2

. (7.15)

From

µ1(N1, N2; Vg1, Vg2) = µ1(N1, N2 + 1; Vg1 + ∆V m
g1 , Vg2), (7.16)

we obtain

∆V m
g1 =

|e|Cm

Cg1C2

= ∆Vg1
Cm

C2

, (7.17)

and similarly we can derive

∆V m
g2 =

|e|Cm

Cg2C1

= ∆Vg2
Cm

C1

. (7.18)
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Chapter 8

Experimental and Technical

Considerations

8.1 Introduction

A quantum dot is an artificially structured system that can be filled with elec-

trons or holes. The dot can be coupled via tunneling barriers to reservoirs, with

which electron can be exchanged. By attaching current and voltage probes to

these reservoirs, we can measure the electronic properties. The dot is also cou-

pled capacitively to one or more gate electrodes, which can be used to tune

the electrostatic potential of the dot with respect to the reservoirs. There are

many kinds of systems which can act as quantum dot. For examples: carbon

nanotubes,(116) normal metal,(117) semiconductor nanowires,(118) semiconduc-

tor lateral(119; 120) or vertical dots.(121) In my work, I focus on the semicon-

ductor heterostructure vertical double quantum dots.

The vertical quantum dots are fabricated from heterostructures of GaAs (In-

GaAs) and AlGaAs grown by molecular beam expitaxy. By doping the Al-

GaAs layer with Si, free electrons are introduced. These accumulate at the

GaAs/AlGaAS interface, typically 50 ∼ 100 nm below the surface, forming a

two-dimensional electron gas (2DEG), a thin (∼ 10nm) sheet of electrons that

can only move along the interface. The 2DEG can have a high mobility and

relatively low electron density (typically 105 cm2/Vs and 1 ∼ 5 × 1015 m−2, re-

spectively).
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8.2 Sample Fabrication

Electron-beam lithography enables fabrication of gate structures with dimen-

sions down to a few tens of nanometers. In the section of experiment on quantum

dot, we would discuss the method of fabrication and consideration of measure-

ment.

8.2 Sample Fabrication

As shown in Fig. 8.1, there are eight processes for fabricating a quantum dot.

Step (a): Designed and growed the anticipated structure of 2DEG.

Step (b): Depositing the source and drain contacts. The depositing material

is Ti/Au.

Step (c): Dry etching: undercut the 2DEG by plasma.

Step (d): Wet etching: etch the 2DEG to make the ”pillar” narrow by solvent

of acid.

Step (e): Depositing the side gate.

Step (f): Undercut the edge of 2DEG. This step is a preparation for next step.

Step (g): Depositing the insulator.

Step (h): Depositing the contact of back gate.

Because a quantum dot is so small to all of the process should be done in high

level cleaning room. It needs several exquisite fabrications and also proficient and

careful operation in many delicate machines such as e-bean lithography, plasma

etching, STM, e-bean evaporator, wire bonding, etc.

Figure 8.2 shows the fabricated quantum dot and its wiring from the micro-

scopic scale to macroscopic scale. The diameter of the quantum dot is 0.5 µm.

8.3 Amplitude and Lineshape of Coulomb Os-

cillations

The tunneling amplitude and line shape of coulomb oscillations depends on the

temperature of electron. In the quantum Coulomb regime, kBT ¿ ∆E ¿ e2/C,

tunneling occurs through a single level.(122) The temperature dependence of

single peak conductance is given by
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Figure 8.1: The processes for fabricating quantum dot.
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8.3 Amplitude and Lineshape of Coulomb Oscillations

Figure 8.2: The fabricated quantum dot and wirings.
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G

G∞
=

∆E

4kBT
cosh−2(

δ

2kBT
). (8.1)

With the assumption that ∆E is independent of E and N . δ measures the

distance to the center of the peak in units of energy, which expressed in gate

voltage is δ = e(Cg/C)|Vg,res−Gg|, with Vg,res the gate voltage at resonance. The

lineshape in the classical and quantum regimes are virtually the same, except

for the different ”effective temperature”. However, the peak maximum Gmax =

G∞(∆E/4kBT ) decreases linearly with increasing temperature in the quantum

regime, while it is constant in the classical regime. The distinguishes a quantum

peak from a classical peak. Figure 8.3 show several lineshapes in quantum regime

at different temperatures. The parameter are ∆E = 0.01e2/C and kBT/∆E =

0.5, 1, 7.5, and 15 for line a, b, c, and d respectively. One important we should

know is that the full width at half maximum determines the temperature of

electrons.

8.4 Low Temperature Measurement

To observe the effects of the atom-like orbits and the charging energy on transport,

the thermal energy kBT must be well below the energy scales of the dots, which

correspond to temperatures of order 1 K (≈86 µeV). Therefore, our experiments

were performed in a dilution refrigerator that can cool down to 10 mK. The

effective electron temperature that we achieved in semiconductor quantum dots

was about 100 mK. Special care must be taken to avoid spurious heating of the

electrons in the device. Below we give a brief enumeration of the issues involving

in doing these sensitive measurements. The noise of measurement is less than 30

fA.

8.4.1 Filter

A significant source of heating is the noise coming from the measurement elec-

tronics. Filters, used to attenuate the noise that arrives at the samples, have to be

effective over a very large band width. Figure 8.4 shows the schema of the filters

we used in the measurement of quantum dot. A thin resistive wire go through
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8.4 Low Temperature Measurement

Figure 8.3: The lineshape of Coulomb oscillation in quantum regime at different

temperature. The parameter are ∆E = 0.01e2/C and kBT/∆E = 0.5, 1, 7.5,

and 15 for line a, b, c, and d respectively.
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8.4 Low Temperature Measurement

a copper power medium. In the filters, we use manganin wires as the resistive

wires. The manganin wire is made of Cu (86%), Mn (12%), and Ni (2%) and

the resistance is about 105 Ω/m. The network is equal to a RC filter. The filters

are installed at low temperature to minimize the thermal noise of the resistors

contained in the filters. The filters are integrated with the sample holder in such

a way that all sample wires are carefully shielded once they are filtered. Except

of power supplier of magnet, all of the instruments are located in the shielding

room to attenuate the high frequency noise from outside.

8.4.2 Shielding Room and Power

In order to avoid the external noise coming into the measuring system, all of

electric meters and cryostat are put in shielding room and all of the experiments

are operated in shielding room. The shielding room we used is a commercial

product. The attenuate amplitude is about 100 dB for the frequency ranging

from 500 KHz to 1 GHz. Besides, the current is filtered by LC filters before

enters the shielding room. The attenuate amplitude of the LC filter is 60 dB for

frequency ranging from 500 KHz to 1 GHz. The Fig. 8.5 shows the connection

of filters of power.
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Figure 8.4: The transection of filter.
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8.4 Low Temperature Measurement

Figure 8.5: The schema of the power in shielding room.
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Chapter 9

Results and Discussions

9.1 Introduction

The study of individual spin is motivated by an interest in fundamental physics,

but also by possible applications.(123; 124; 125; 126) First of all, miniaturized

spintronics is developing towards single spins. A second area of applications

is quantum information science. Here spin states are qubits. By entangling

two spins, quantum logic can be performed such as the controlled-NOT opera-

tion. The original proposed be Loss and DiVincenzo has been the guide in this

field.(124) Many of works have done in progress.(127; 128; 129; 130; 131; 132)

We have done two topics in the series of work on the quantum dot. First one is

the spin selection rule. The second one is spin transport in double quantum dots

with Zeeman mismatch.

9.2 Spin Selection Rule

A study of spin-dependent transport has attracted considerable attention over

the past several decades, because the advantages of two intrinsic states and a

long relaxation time result in the great potential of application of spintronics

and quantum information. A confined semiconductor quantum dot is a popular

material to study, because it can be regarded as an artificial atom, since its elec-

tronic properties resemble the ionization energy and discrete excitation spectrum
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9.2 Spin Selection Rule

of atoms.(133) However, the spins in the confined semiconductor quantum dot

often couple with other environmental freedom components; thus, to understand

spin states is an important issue in the study. For single electron states, it is

already well studied using a two-dimensional harmonic potential.(134) In non-

single-particle electron systems, electron states are often characterized by the

total electron number and electron spin in the presence of Coulomb interaction.

Electron spin states have been identified in several systems, such as the two-

singlet state replaced by a spin-polarized phase, at which electrons occupy some

orbit states in the first and second Landau levels,(135) and a quantum two-level

system based on the two-electron spin state in a double quantum dot.(104)

In spin-dependent transport, both spin states and effective transition processes

are important. Recently, the Zeeman splitting peaks in a few-electron quantum

have been investigated.(136) The excited state of Zeeman splitting depends on

whether the total spin is raised or lowered. On the other hand, one-electron Zee-

man splitting is clearly resolved at both zero-to-one and one-to-two electron tran-

sitions in a lateral quantum dot. The spin of the electrons transmitted through

the dot is expected to be that of an electrically tunable, bipolar spin filter.(137)

In this study, we investigated the single-electron transport in a vertical double

quantum dot and two-electron spin states and transitions. We observed spin-

selection-rule-induced blockade. We also observed that a spin excitation spectrum

is missing owing to the spin selection rule between the spin doublet and spin triplet

states.

Figure 9.1 shows the structure of vertical double quantum dots. Double

quantum dots are prepared from semiconductor multibarrier heterostructures

surrounded by metal gate electrodes. In0.05Ga0.95As dots are located between

Al0.22Ga0.78As heterostructure barriers. From bottom to top, the dots consist of

an n-doped GaAs substrate, undoped layers of 75 ÅAl0.22Ga0.78As, 120 Å In0.05Ga0.95As,

60 ÅAl0.22Ga0.78As, 120 Å In0.05Ga0.95As, and 75 ÅAl0.22Ga0.78As, and an n-

doped GaAs top layer. The electrons in the dots are confined in all directions.

By decreasing the gate voltage Vg, we can reduce the effective dot area and hence

tune the effective electron number one by one down to zero in the dots.

A sample is mounted on the mixing chamber of a dilution refrigerator with a

base temperature of 20 mK. We apply magnetic fields up to 15 T vertical to the
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Figure 9.1: The structure of vertical double quantum dots.
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heterostructures.

The inherent asymmetry in the tunneling barriers of few electron dots induces

intrinsically different tunneling currents for forward and reverse source-drain bi-

ases in a nonlinear transport regime.(138) We set the tunneling rate of the in-

coming barrier to be much smaller than that of the outgoing barrier. As a result,

more excited state spectra are shown and the intensity of the current increases.

Figure 9.2 shows the differential conductance as a function of source-drain

voltage and gate voltage. The three colors, blue, red, and white, represent neg-

ative, positive, and zero differential conductances, respectively. It shows several

parallelograms which are commonly known as Coulomb diagrams, in the white

regions. In order to measure the electron transportation via ground state and ex-

cited states of quantum dots as a function of magnetic fields, we apply a constant

source-drain voltage and sweep gate voltage and magnetic fields.

Figure 9.3 shows the measured differential conductance, dIsd/dVg at large

bias region as a function of Vg and magnetic field B. The three colors, blue,

red, and white, represent negative, positive, and zero differential conductances,

respectively. As shown in Fig. 9.3, we label electron number states as (N1, N2)

in different regions, where N1 and N2 are the total numbers of electrons in Dot

1 and Dot 2, respectively. The middle stripe denotes the third electron transport

spectrum, which shows the transport states of the (1, 1) ↔ (1, 2) transition.

At different regimes, the electron tunneling processes are different. We label

A, B, C, and D for different tunneling regions. Figure 9.4 indicates the tunneling

processes of different regimes. We clearly observe that the color in the region A is

lighter than that of the region B. It means that the differential conductance, i.e,

the transition rate, in the region A is smaller than that in the region B. At low

temperatures, high-order transport processes can dominate tunneling processes.

In the region A, even though only the energy state of right dot locates within the

transport window, electron tunnels through the left dot to the state of right dot

via high-order transport processes. The tunneling process is commonly known as

co-tunneling event.(139) The tunneling in the region B and region D are normal

resonance tunneling processes. The regime C is in Coulomb blockage region.

M. Wagner and co-workers(140; 141) consider a case of that two interacting

electrons confined to a quantum dot in a perpendicular magnetic field. They
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Figure 9.2: Coulomb diamond.
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Figure 9.3: The measured differential conductance as a function of gate voltage

and magnetic fields.
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Figure 9.4: The schematic diagram of tunneling through the dots.
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investigate the ground state of the two-electron system as a function of dot size

and magnetic field strength. The important feature of the ground state to be

discussed here is that its angular momentum, l, does depend on the Coulomb

interaction. If neglecting the Coulomb interaction, the l = 0 state is always the

ground state. If including the Coulomb interaction, the state l = 0 remains as

a ground state only for low magnetic fields. As the magnetic field increases, the

state rise in energy while the state l = −1,−2, ... drop, thus leading to a sequence

of different ground states l = 0,−1,−2, ... as the magnetic field is swept. The

reason for these changes of symmetry of the ground is found in the competition

of the various energies contributing to the energy of the relative motion. On the

one hand, a higher angular momentum l means higher rotational energy, but on

the other hand, the average distance between the two electrons is then increased

and hence the Coulomb energy get smaller.

From now on, we will focus our discussion only on the transport spectrum of

region A in Fig. 9.3. It is the transportation of (N1, N2) = (1, 1) ↔ (1, 2). At

zero magnetic fields, the ground state of right dot follows the Pauli exclusion rule

indicating that two electrons have opposite spins of the same angular momen-

tum quantum number l = 0. The total electron spin is zero, indicating the spin

singlet state. As discussed above, the Coulomb interaction and single-particle

states become important when a magnetic field changes the size of on electron

state. In the presence of a magnetic field, the electron state shrinks in the redial

direction. When two electrons occupy the same angular momentum state, the

average distance between the two electrons decreases with magnetic field, and

hence, the Coulomb interaction increases. At a critical magnetic field Bc, the

Coulomb interaction is reduced by an exchange energy. One electron occupies

the l = 0 angular momentum state and the other one occupies the l = 1 state.

The two electrons can take on parallel spins. The ground state is considered

the spin triplet state, in which one electron is in the angular momentum state

l = 0 and the other electron in the angular momentum state l = 1, to reduce

the Coulomb interaction. We mark the singlet-triplet transition point by a ar-

row. The spin singlet-triplet transition is observed at 5 T which agrees with the

literature well.(142)
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As the magnetic field further increasing, we observe two Zeeman splitting

lines. The Zeeman splitting energies are labeled as ∆EZ . Figure 9.5 shows the

extracted Zeeman splitting energy as a function of magnetic fields. The Zeeman

energy of the two lines is linear with magnetic fields up to 15 T and the effective

Zeeman g-factor is 0.36± 0.02. One interesting point is that there should be four

states, one spin singlet state and three spin triplet states, if we only consider

two lowest angular momentum states, l = 0 and l = 1. Instead of observing two

Zeeman sub-levels, we should observe four transition lines.
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Figure 9.5: The extracted Zeeman energy as a function of magnetic fields.

D. Weinmann and co-workers(143) reported the spin blockade in linear and

nonlinear transport through quantum dots. The transport properties of a quan-
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9.2 Spin Selection Rule

tum dot that is weakly coupled to leads are investigated by using the exact quan-

tum states of a finite number of interacting electrons. The results show that, in

addition to the Coulomb blockade, spin selection rules strongly influence the low

temperature transport and lead to experimentally observable effects. Transition

probabilities between states that correspond to successive electron numbers van-

ish if the total spins differ by |∆S| > 1/2. In nonlinear transport, this can lead to

negative differential conductances. The linear conductance peaks are suppressed

if transitions between successive ground states are forbidden.

Figure 9.6 shows the schematic of spin transition model. The x-axis is the

magnetic filed and y-axis is the energy of right dot. There is only one electron

in the right dot at low energy region and are two electrons in the right dot at

higher energy region. In the N2 = 1 case, two spin states, | ↑> and | ↓>, are

generate in the presence of magnetic field. In the N2 = 2 case, there are three

spin sub-levels,| ↑↑>, | ↓↓>, and (| ↑↓> −| ↓↑>)/
√

2, generate in the presence of

magnetic field and one singlet state,(| ↑↓> −| ↓↑>)/
√

2. The energy of singlet

state are lower than triplet states at low magnetic field and situation is opposite

at high magnetic field. The energy of singlet state increases rapidly and becomes

much higher than the triplet states after the magnetic field is high than the Bc.

Assuming that the | ↑> is the initial state, only | ↑↑〉, and (| ↑↓〉+ | ↓↑〉)/
√

(2)

could be the final states. The transition from | ↑〉 to | ↓↓〉 is forbidden because

of the spin selection rule. The total spin difference between N-1 and N electrons

cannot be more than 1/2. There are two transition processes for the initial | ↑〉
state, and the Zeeman energy difference is gµBB

R. Hanson and co-workers(144) have measured the spin relaxation time of a

single electron confined in a semiconductor quantum dot. They observed a lower

bound at a spin relaxation time of 50 µs at 7.5 T. The relaxation time is longer

than the electron tunneling time of 1 µs at 15 T in the (1, 1) ↔ (1, 2) transport.

The doublet transition is much slower than the tunneling; therefore, wether the

initial state is | ↑〉 or | ↓〉, both electrons with spin up or spin down can tunnel

through the dot before the spin relaxation occurs. Both | ↓〉 and | ↑〉 can be the

initial states. As shown in Fig. 9.6, there are four transition processes which is

indicted by blue lines. We should take care that although there are four possible
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9.2 Spin Selection Rule

Figure 9.6: The schematic diagram of spin selection rule.
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9.2 Spin Selection Rule

transitions but only two effective Zeeman splitting energies. The Zeeman splitting

energy is gµBB.

To confirm the accuracy of the result, we also measure the transport spectra of

GaAs double quantum dots by the same method. Figure 9.7 shows the differential

conductance as a function of source-drain voltage and gate voltage. We can

observe two clear Zeeman sub-levels from the transition spectra of Nt = 2 ↔
Nt = 3. Figure 9.8 shows the extracted Zeeman energy, ∆EZ . This result

shows the Zeeman energy is almost linear with magnetic field and the effective

g = 0.25± 0.02, which agrees with literatures well.(137; 145)

The optical detection of conduction-electron spin resonance was previously

performed in a bulk InxGa1−xAs system, where x ranges from 0 to 0.1. The

measured g factor of pure bulk GaAs is −0.44, and the g factor decreases if Ga

is replaced by In. The g factor of bulk In0.05Ga0.95As is -0.6.(146) It is often

found that the absolute g value in confined electron systems is reduced from the

bulk modulus.(130; 137; 144; 145) The ratio of the g factor of pure bulk GaAs

to that of pure bulk In0.05Ga0.95As is 0.72, which is near the ratio of our confined

quantum dots of 0.69. The results support that our measured g value is high

accurate.

We measured the (1, 1) ↔ (1, 2) electron transport state spectra of an In0.05Ga0.95As

vertical double quantum dot by a large-source-drain-voltage method. A spin

singlet-triplet transition is observed at 5 T, followed by the observation of two

clear Zeeman splitting lines at magnetic fields higher than 5 T. Zeeman splitting

energies are linear with magnetic fields up to 15 T. Doublet spin relaxation is

much slower than electron tunneling; therefore, both | ↑> and | ↓> can be the

initial electron states. On the basis of the spin selection rule, the transitions

| ↑>→ | ↓↓> and | ↓>→ | ↑↑> are forbidden, because the total spin difference

between the initial and final states is larger than 1/2. There are four transitions

in tunneling processes, but only two energy differences lead to the two Zeeman

sublevels in the obtained excitation spectrum.(147)
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9.2 Spin Selection Rule

Figure 9.7: The differential conductance of GaAs as a function of source-drain

voltage and gate voltage.
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Figure 9.8: The extracted Zeeman energy of GaAs as a function of magnetic field.
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9.3 Spin Transport in Double Quantum Dots with Zeeman Mismatch

9.3 Spin Transport in Double Quantum Dots

with Zeeman Mismatch

The study and control of electron spins is gaining increasing attention, because of

potential applications in quantum information and spintronic devices.(125; 148)

For the implementation of quantum information processing, there are two cru-

cial requirements: fast and coherent control of individual spins and controlled

exchange coupling with the environment.(124; 149) For example, nuclear spins

are manipulated with the use of a combination of static and radio-frequency

magnetic fields and one can rotate electron spins arbitrarily.(150) There are

several approaches for controlling spin-based quantum information in semicon-

ductors. Because of easy operation and fast tuning, electric-field control of the

electron’s g-factor has been achieved. Application of an electric field across the

heterostructure leads to a displacement of the electron’s wavefunction in the quan-

tum well, and hence gate-voltage-mediated control of coherent spin precession was

demonstrated.(151) Gigahertz-frequency voltage control and optical detection of

the electron spin in a capacitively gated heterostructure semiconductor has also

been demonstrated.(152)

Early reports suggested that the quantum information process can be reached

in the use of electrical gates to bring electrons into contact with an inhomoge-

neous magnetic field or an inhomogeneous g-factor environments.(124; 149) It

is a challenge to create a inhomogeneous magnetic field through two quantum

dots. Recently, inhomogeneous magnetic field between two neighboring quantum

dots is proposed in electric dipole spin resonance experiment.(103) However, the

technics are not easy. In contrast to create an inhomogeneous an inhomogeneous

magnetic field through a small area it is much easier to engine g factors in dou-

ble quantum dots. A double quantum dots with different g factors in presence

of homogeneous magnetic field is equal to the environment with inhomogeneous

magnetic field.

It is known that spin up and spin down states are always on site at the same

time in quantum dots with the same g factor. In quantum dots with different

g factors, the tunneling processes are expected as only spin-up states resonance,
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9.3 Spin Transport in Double Quantum Dots with Zeeman Mismatch

spin-down states resonance, or spin blockade by suitable tuning source-drain volt-

age and gate voltage. The behavior of the tunneling is much more complicated

and not yet studied. In the letter, we report electron tunneling in a vertical

double quantum dots with different g-factors.

Figure 9.9: The structure of vertical double quantum dots with different g factors.

The vertical double quantum dots is fabricated by the standard processes.

The figure 9.9 shows our quantum dots structure. Two quantum dots locate

between Al0.03Ga0.97As heterostructure barriers and were surrounded by metal

gate electrode. From bottom to top, the dots consist of 100Å Al0.03Ga0.97As,
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9.3 Spin Transport in Double Quantum Dots with Zeeman Mismatch

Figure 9.10: The schema of the potential barrels of the dots.
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9.3 Spin Transport in Double Quantum Dots with Zeeman Mismatch

100Å GaAs, 65Å Al0.03Ga0.97As, 75Å In0.04Ga0.96As, 100Å Al0.03Ga0.97As. The

geometric barrier potential high is also shown in Fig. 9.10. Measurements were

performed in a dilution refrigerator at 20 mK and up to 15 T magnetic fields

perpendicular to heterostructure. The effective electron temperature is about

100 mK which is known from Coulomb blockade width.

Figure 9.11 shows the differential conductance, dISD/dVSD, as a function of

source-drain voltage and gate voltage. The ”non-closed” Coulomb diamond is

always observed in weakly coupled doublet dot structure with energy offset.(114;

153; 154) ”Bottom-line” of the Coulomb diamond defines the current threshold

for the sequential tunneling from N = 0 region. By appropriately tuning side

gate voltage, Vg, and source-drain voltage, VSD, electron number in the left dot

is always one or zero and the left dot acts as a turnstile.(121) The arrows in Fig.

9.11 mark several tunneling peaks where electrons from left dot elastically tunnel

to different states of right dot. As shown in Fig. 9.12, there are two tunneling

lines, L1 and L2, at low bias region. Besides the resonance tunneling transition,

L1, there is an other high order tunneling transition, L2, in which electrons

directly tunnel through the left dot to the states of right dot, even though the

states of left dot are not within the transport window.(139) In this co-tunneling

process, the current is much weaker than resonance tunneling. The slopes of the

tunneling lines indicate ratios of voltage drop across respective barrel to applied

source-drain voltage. The experimental results show that the voltage drop ratio

of first barrel to second barrel is 0.5.

Stoof and Nazarov give a detailed description of photon assisted tunneling in

a double quantum dot. The basic idea is that electrons can absorb fixed quanta of

energy hf from a classical oscillating field. An as voltage drop V = Vaccos(2πft)

across a tunnel barrier modifies the tunnel rate through the barrier as

Γ̃(E) =
∞∑

n=−∞
J2

n(α)Γ(E + nhf) (9.1)

where Γ̃ and Γ are the tunnel rates at energy E with and without an ac voltage,

respectively. J2
n(α) is the square of the nth order Bessel function evaluated at

α = eVac

hf
, which describes the probability that an electron absorbs or emits n

photons of energy hf .
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9.3 Spin Transport in Double Quantum Dots with Zeeman Mismatch

Figure 9.11: Differential conductance, dIsd/dVsd, as a function of source-drain

voltage and gate voltage. The arrows mark the resonance tunneling peaks of

from ground state of left dots to different states of right dot.
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Figure 9.12: Resonance tunneling and co-tunneling peaks.
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9.3 Spin Transport in Double Quantum Dots with Zeeman Mismatch

Figure 9.13 shows differential conductance of chose inter-dot tunneling at high

bias region. The ”bottom-line”, L3, is transition peak from ground state of left

dot to right dot state. Because of decreasing of carrier concentration in source

reservoir at high bias, the slope of L3 is half of L1. Figure 9.14 shows the photon-

assisted tunneling spectrum along the arrow shown in Fig. 9.13. The applied

power intensities are from 0 dBm up to -15 dBm and the microwave frequency is

39.327 GHz. Each curve has been consecutively shift up by a constant value. The

current through the system vs source-drain voltage consists of a series of peaks

corresponding to photon-assisted tunneling between two dots.(155) The source-

drain voltage difference between two neighboring absorption (emission) resonance

peaks is 0.836 mV. It deduces that the α factor, the ratio of source-drain voltage

to gate voltage, between two dots is 0.193, α2, and between source and left dot

is 0.1, α1.

In a system of quantum dots with the same g factor, it is always one reso-

nance peak because both spin states are on site at the same time. Considering a

double quantum dots system with different g factors, the tunneling is much more

complicated. The single tunneling peak splits into two peaks due to mismatch of

Zeeman splitting of two dots. The tunneling current depends both on relative po-

sition of the states of two dots and the strength of coupling with environment. In

the limit of weak coupling with environment, the tunneling takes place only when

spin-up states on site, no other peaks appear due to either spin up or spin down

blockade. In the appearance of phonon (and/or photon) coupling, it is expected

that two resonance peaks, spin up and spin down resonance tunneling, appears

and the energy splitting of the two peaks equals to the Zeeman energy difference

of the two dots. In the limit of strong coupling, the current is dominated by the

barrier that is the same as the case of quantum dots with the same g factor.

Assuming that Zeeman splitting in the left dot is larger than that in the

right dot and neglecting high order tunneling processes. As shown in Fig. 9.15,

by appropriate tuning VSD and Vg, it is expected different tunnelings dominate

different regions. First of all, two parallel tunneling lines, Z1 and Z2 which

are the Zeeman splitting lines of left dot are observed.(137) The difference of

Zeeman energy of two dots does not affect the appearance of this two lines.

Besides, as shown in Fig. 9.16, there are several distinctive lines A, B,C, and
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Figure 9.13: The inter-dot tunneling peak of chose state.
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Figure 9.14: The current through the system vs source-drain voltage consists of a

series of peaks corresponding to photon-assisted tunneling line between two dots.

136



9.3 Spin Transport in Double Quantum Dots with Zeeman Mismatch

D. The schema A ∼ schema D show he respective tunneling processes. Schema

A shows spin up states line up and only electrons with spin up could do the

resonance tunneling. However, in the schema B, even though spin down states

line up, Coulomb blockade takes place because the spin down states are not in the

transport window. On the other hand, in the schema C and D, both spin up and

spin down states of the two dots are within the transport window. In the schema

C, the spin up states line up, and electrons with spin up could tunnel through

the dots resonantly. On the contrast, although spin down states of both two dots

are also within the transport window, it is not on-site. Once, electrons with spin

down enter the state of the left dot, spin blockade occurs. A phonon emission is

necessary for spin down electrons of left dot to release extra energy to tunnel to

the spin down states of right dot. The current of the schema C depends on the

phonon-assisted relaxation time. Similar to schema C, in schema D, although spin

down states are line up, it would be blockade once spin up electrons occupy the

left dot. Spin-up electrons need absorbing energy tunneling to right dot. Phonon

absorbing time dominates the tunneling process. The phonon-assisted times are

critical time scales for these two tunneling processes. It is well known that the

phonon emission time is often shorter than phonon absorbtion time. Therefore,

it is expected that the current at A ≥ C ≥ D ≥ B.

T. Fujisawa and co-workers, studied the phonon mission assisted relaxation

time. Their results deduce that the energy relaxation time from 2P state to 1S

state is 10ns at 1 T and they predict that the energy relaxation time between

Zeeman splitting states is larger than 1 ms at 5 T and larger than 100 µs at 9

T.(126) It indicates that the current due to phonon-assisted tunneling is order of

fA.

Figure 9.17 ∼ Fig. 9.20 show the experimental results of differential conduc-

tance, dIsd/dVsd, as a function of source-drain voltage and gate voltage at several

different magnetic fields. There are two characteristic splitting energies, δ1 and

δ2, where δ1 is Zeeman splitting energy of left dot and δ2 is characteristic energy

of inter-dots tunneling.(121; 137) As discussed above, the α1 and α2 connect the

gate voltages to the splitting energies. As shown in Fig. 9.21 and Fig. 9.22, the

two splitting energies are both linear with magnetic fields. The results show the
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Figure 9.15: Splitting of tunneling peak due to Zeeman mismatch.
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Figure 9.16: The respective Schematic figures of tunneling peak due to Zeeman

mismatch.
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resonant tunneling time is about 10 ns which is much short than the phonon-

assisted relaxation time. It indicates that the barriers dominate over the phonon

assisted effect. The system is in the limit of the weak phonon coupling.

Recently, Y. Tokura evaluates the resonant tunneling current via series quan-

tum dots by Bloch equation and finds that the resonant current is always singly

peaked whose peak bias condition depends on the gate voltage.(156; 157) Table

1 shows current peaks and full width at half maximum (FWHM) in two cases.

Case A is that only spin up state of let dot is within transport window and case

B is that both spin up and down states of left dot are within transport window.

For a weak tunneling region, Ω ¿ γL, γR, the peak current in case A is much

larger than current in the case B. For strong tunneling region, the peak current

saturates and current in case B is about 10% larger than current in case A. On the

other hand, for a weak tunneling region, FWHM in case A is smaller than in case

B. By increasing Ω, the FWHM increase almost linearly. For strong tunneling

region, the FWHM are almost the same for case A and case B.

In our results, the effective FWHM of the tunneling peaks are about 0.1 meV

which are 1 order larger than thermal noise and the FWHM are mainly controlled

by bandwidths of coupling. Ω−1+γ−1
L is about 4.6×10−2 ns which is much shorter

than γ−1
R which is about 10 ns. Based on the prediction of the theory, both of

the current values and FWHM are about 10% different in two cases and this is

consistent with our experimental results.

The theory deduces that the current peak positions for two cases are inde-

pendent of gate voltage for a given region.(157) When gate voltage increase from

case A to case B, the current peak position shifts by (EZL − EZR)/2, which is

equivalent to the shift in source-drain voltage by (EZL−EZR)/(4eη). EZL (EZR)

means the Zeeman energy of left (right) dot and e is the electron charge. 2η

means the ratio of voltage drop between two dots to source-drain voltage which

is 0.193 in this experiment.

Figure 9.21 and Fig. 9.22 show the extracted δ1 and δ2 as function of magnetic

field. The δ1 and δ2 respectively mean the Zeeman energy of left dot and Zeeman

mismatch energy. The results show that the g factor of left dot (In0.04Ga0.96As)

is 0.89 and the g factor difference of two dots is 0.56. It deduces that the g factor

of right dot (GaAs) is 0.33. This large g factor of GaAs only was observed in
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Figure 9.17: The measured results of differential conductance at 13 T.
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Figure 9.18: The measured results of differential conductance at 10 T.
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Figure 9.19: The measured results of differential conductance at 9 T.
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Figure 9.20: The measured results of differential conductance at 7 T.
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Figure 9.21: The extracted Zeeman energy, δ1.
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Figure 9.22: The extracted Zeeman energy, δ2.
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the recent experiments.(103) Weisbuch and co-workers studied g factor of Bulk

InxGa1−xAs where x ranges from 0 to 0.1. The results show that g factor is

-0.44 for GaAs and -0.779 for In0.09Ga0.91As.(158) While increasing 1% In, the

g factor would decrease 0.0376. It seems that the observed large g factor, -

0.89, would correspond to g factor of In0.11Ga0.89As. Possible reasons might be

from the reports of highly nonuniform composition distribution with an In-rich

core in In0.5Ga0.5As alloy quantum dots or size dependence effect of quantum

well.(159; 160)

Creating a non-uniform magnetic field between two quantum dots is a step

to realize quantum information processing and this is achieved recently in EDSR

experiment.(103; 124; 149) However, the associated splitting energy is small and

technics are difficult. A vertical double quantum dots with different g factors

is equal to the non-uniform magnetic field through two quantum dots and it is

much easier to achieve in experiment. The tunneling current is measured in the

inhomogeneous g factor quantum dots. The tunneling currents strongly depend

on the coupling strength with phonon. In the weak coupling case, phonon-assisted

relaxation time is too long that only the resonance tunneling of spin-up states

is observed and the Zeeman mismatch peaks are not observed. The bandwidth

resonance tunneling current through the system is also observed. The results show

that the peak shifting between only one Zeeman sublevel within the transport

window and both two Zeeman sublevels within the transport window is half of

Zeeman energy difference.
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Chapter 10

Conclusions and Future Works

We studied two topics in mesoscopic transport. First one is about the low tem-

perature electron dephasing time and second one is about the spin transport in

vertical quantum dots.

In the topic of low temperature dephasing time, we have studied the low tem-

perature dephasing time in Cu93Ge4Au3 thin films (∼ 200 Å) with different levels

of disorder. The results show that the electron-phonon inelastic scattering domi-

nates the dephasing rates above 10 K. The scattering times are inverse proportion

to square of temperature, τϕ ∼ AT−2. A is 0.53±0.1 nsec K2 and independent of

levels of disorder. The dephasing times are a constant values between 10 K and

5 K and it is the same for all samples. From the analysis of the concentration

of magnetic impurities and temperature dependent resistances at high magnetic

field, it indicates that the plateau is not from the Kondo effect. The most distinc-

tive phenomenon is that the dephasing times below 5 K increase as temperature

decreasing and the dephasing increasing rates depend on levels of disorder. The

τϕ ∝ T−0.5 for the most disordered film and dephasing time is almost no increas-

ing for the weakest disordered film. The well studied electron-electron inelastic

scattering rate is 2 orders weaker than our results and the Kondo effect can not

explain the sample dependent scattering rate. The measured temperature de-

pendent dephasing times do not agree with the prediction of Kondo effect. On

the other hand, resistances are also measured. All of the films show that resis-

tances increase logarithmically from 10 K down to 30 mK and are insensitive to

magnetic field up to 15 Tesla. Moreover, this behavior does not dependent on
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the dimensionality of samples. All of the results support that the less studied

dynamic structure defeat scattering dominates the behavior of the system.

In the topic of spin transport in vertical quantum dots, we have studied two

subjects. First one is about spin selection rule and the second one is about spin

tunneling in Zeeman mismatch doublet quantum dots.

In the subject of spin selection rule, we measured the transport spectrum of

(1, 1) ↔ (1, 2) in In0.05Ga0.95As and GaAs vertical double quantum dots, where

(N(L), N(R)) mean the electron number in left dot and right dot respectively.

At low magnetic field, the ground state of 2 electron system is 1S2. Two elec-

trons occupy the 1S state with anti-parallel spins. We observe spin singlet-triplet

transition at 5 Tesla which is the same with the literatures. The triplet states

become ground state when magnetic field is higher than 5 Tesla and the energy

of singlet state increases drastically. We observe two Zeeman sublevels instead

of three Zeeman sublevels for triplet at magnetic field from 6 Tesla to 15 Tesla.

Spin selection rule predicts that the total spin difference between N electrons and

N+1 electrons can not be larger than 1/2. Assume that the initial spin state

is spin up, the transitions from the state of | ↑> to the states of | ↑↑> and

(| ↑↓> +| ↓↑>)/
√

2 are allowed, but the transition from the state of | ↑> to the

state of | ↓↓> is forbidden. The measured result shows that the tunneling rate

is about 1νs which is much short than the relaxation time, which is longer than

50νs, from state of spin down to spin up. It means that the state of spin down

also can be the initial state. The transitions from the state of | ↓> to the states

of | ↓↓> and (| ↑↓> +| ↓↑>)/
√

2 are allowed, but the transition from the state of

| ↓> to the state of | ↑↑> is forbidden. There are totally four possible transport

processes contributing to the spectrum. However, the adding energy of from | ↑>
to (| ↑↓> +| ↓↑>)/

√
2 is equal to that from | ↓> to | ↓↓> and the adding energy

of from | ↑> to | ↑↑> is equal to that from | ↓> to (| ↑↓> +| ↓↑>)/
√

2. There

are four transition processes, but only two energy values could be observed. The

results show that the g factors are 0.36± 0.02 and 0.25± 0.02 for In0.05Ga0.95As

and GaAs respectively.

In the subject of spin tunneling in Zeeman mismatch double quantum dots.

The tunneling behavior has been well studied in double quantum dots with the

same g factors for two dots. The spin-up states and spin-down states are always
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on-site at the same time, so only one resonance tunneling peak would appear. In

the double quantum dots with different g factors for two dots, the spin-up states

and spin-down states would not line up at the same time. By appropriately

tuning the respective position of energy states of two dots, it is expected that

two resonance tunneling peaks appear and the distance of two peaks is equal

to the difference of Zeeman energies of two dots. Further analysis the system,

we found that the phonon-assisted relaxation dominate the tunneling processes.

The phonon-assisted relaxation time is so long that make it is difficult to observe

the splitting of two Zeeman mismatch peaks. Only the resonance tunneling peak

of spin-up is observed. Instead of the splitting of two Zeeman mismatch peaks,

we observe the bandwidth tunneling peak in the Zeeman mismatch system. The

results show that the position of bandwidth tunneling peak depends on the states

which is within the transport window. Two splitting peaks are observed in the

experiments and the distance of the two peaks is equal to half of difference of two

Zeeman energies.

In the first part of my future work, I plan to continuous the previous work and

make a full understanding of the spin transport through mismatch spin states.

Second, we also plan to study the photon-assisted resonant tunneling by using

microwave. The understanding of the influence of external microwave helps us

analysis and know the potential transport processes. It also helps us to know

another crucial problem, the coherence time of spin entanglement. Combine

these two parts, the results would make us understand the spin transport a lot

and further realize the quantum computing in the future.
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[113] C. Urbina D. Estéve H. Pothier, P. Lafarge and M. H. Devoret. Europhys.

Lett., 17:249, 1992. 97

[114] E. I. Levin I. M. Ruzin, V. Chandrasekhar and L. I. Glazman. Phys. Rev.

B, 45:13469, 1992. 97, 131

[115] S. Tarucha T. Fujisawa. Appl. Phy. Lett., 68:526, 1996. 97

[116] M. Suzuki Y. Aoyagi S. Moriyama, T. Fuse and K. Ishibashi. Phy. Rev.

Lett., 94:186806, 2005. 105

[117] K. Honkala M. Walter, P. Frondelius and H. Hakkinen. Phy. Rev. Lett.,

99:096102, 2007. 105

[118] K. Ensslin A. Pfund, I. Shorubalko and R. Leturcq. Phy. Rev. Lett.,

99:036801, 2007. 105

[119] J. S. Greidanus L. H. Willems van Beveren S. de Franceschi L. M. K. Van-

dersypen S. Tarucha J. M. Elzerman, R. Hanson and L. P. Kouwenhoven.

Phys. Rev. B, 67:161308(R), 2003. 105

[120] L. H. Willems van Beveren L. M. K. Vandersypen J. M. Elzerman, R. Han-

son and L. P. Kouwenhoven. Phys. Rev. Lett., 84:4617, 2004. 105

[121] Y. Tokura K. Ono, D. G. Austing and S. Tarucha. Physica B, 314:450,

2002. 105, 131, 137

158



REFERENCE

[122] C. W. J. Beenakker. Phys. Rev. B, 44:1646, 1991. 106

[123] A. V. Khaetskii and Y. V. Nazarov. Phys. Rev. B, 61:12639, 2000. 114

[124] D. Loss and D. P. DiVincenzo. Phys. Rev. A, 57:120, 1998. 114, 128, 147

[125] R. A. Buhrman J. M. Daughton S. von Molnar M. L. Roukes A.

Y. Chtchelkanova S. A. Wolf, D. D. Awschalom and D. M. Treger. Sci-

ence, 294:1488, 2001. 114, 128

[126] Y. Tokura Y. Hirayama T. Fujisawa, D. G. Austing and S. Tarucha. Nature

(London), 419:278, 2002. 114, 137

[127] P. Hawrylak C. Gould P. Zawadzki S. Jullian Y. Feng M. Ciorga, A.

S. Sachrajda and Z. Zasilewsli. Phys. Rev. B, 61:R16315, 2000. 114

[128] H. Ohon. Science, 281:951, 1998. 114

[129] J. S. Weiner L. N. Pfeiffer S. J. pearton K. W. Baldwin R. C. Ashoori, H.

L. Stormer and K. W. West. Phys. Rev. Lett., 68:3088, 1992. 114

[130] C. M. Marcus V. Umansky M. Hanson R. M. Potok, J. A. Folk and A. C.

Gossard. Phys. Rev. Lett., 91:016802, 2003. 114, 125

[131] D. G. Austing S. Sasaki and S. Tarucha. Appl. Phys. Lett., 77:2183, 2000.

114

[132] Y. Hirayama H. D. Cheong T. Fujisawa, T. Hayashi and Y. H. Jeong. Appl.

Phys. Lett., 84:2343, 2004. 114

[133] M. W. S. Danoesastro M. Eto D. G. Austing T. Honda L. P. Kouwenhoven,

T. H. Oosterkamp and S. Tarucha. Science, 278:1788, 1997. 115

[134] T. Honda R. J. van der Hage S. Tarucha, D. G. Austing and L. P. Kouwen-

hoven. Phys. Rev. Lett., 77:3613, 1996. 115

[135] M. Pioro-Ladriere M. Korkusinski J. Kyriakidis A. S. Sachrajda M. Ciorga,

A. Wensauer and P. Hawrylak. Phys. Rev. Lett., 88:256804, 2002. 115

159



REFERENCE

[136] G. Shinkai T. Fujisawa and T. Hayashi. Phys. Rev. B, 76:041302(R), 2007.

115

[137] L. H. Willems van Beveren J. M. Elzerman I. T. Vink R. Hanson, L. M.

K. Vandersypen and L. P. Kouwenhoven. Phys. Rev. B, 70:241304(R),

2004. 115, 125, 134, 137

[138] D. G. Austing S. Tarucha D. V. Melnikov, T. Fujisawa and J.-P. Leburton.

arXiv:0707.4271v1. 117

[139] J. M. Elzerman W. G. van der Wiel S. Tarucha S. De. Franceschi, S. Sasaki

and L. P. Kouwenhoven. Phys. Rev. Lett., 86:878, 2001. 117, 131

[140] M. Eto. Jpn. J. Appl. Phys., 36:3924, 1997. 117

[141] U. Merkt M. Wagner and A. V. Chaplik. Phys. Rev. B, 45:1951, 1992. 117

[142] J. W. Janssen L. P. Kouwenhoven D. G. Austing T. Honda W. G. van der

Wiel, T. H. Oosterkamp and S. Tarucha. Physica B, 258:173, 1998. 121

[143] W. HaLusler D. Weinmann and B. Kramer. Phys. Rev. Lett., 74:984, 1995.

122

[144] L. M. K. Vandersypen L. H. Willems van Beveren J. M. Elzerman R. Han-

son, B. Witkamp and L. P. Kouwenhoven. Phys. Rev. Lett., 91:196802,

2003. 123, 125

[145] I. T. Vink F. H. L. Koppens L. P. Kouwenhoven L. H. Willems van Beveren,

R. Hanson and L. M. K. Vandersypen. New J. Phys., 7:182, 2005. 125

[146] C. Weisbuch and C. Hermann. Phys. Rev. B, 15:816, 1997. 125

[147] K. Kono J. J. Lin S. Tarucha S. M. Huang, H. Akimoto and K. Ono. Jpn.

J. Appl. Phys., 47:3257, 2008. 125

[148] N. Samarth D. D. Awschalom and D. Loss, editors. Semiconductor Spin-

tronics and Quantum Computation. Springer-Verlag, Berlin, Germany,

2002. 128

160



REFERENCE

[149] D. P. DiVincenzo and D. Loss. J. Magn. Magn. Mater., 200:202, 1999. 128,

147

[150] H. A. Engel and D. Loss. Phys. Rev. Lett., 86:20, 2001. 128

[151] K. Ensslin D. C. Driscoll A. C. Gossard G. Salis, Y. Kato and D. D.

Awschalom. Nature, 414:619, 2001. 128

[152] D. C. Driscoll A. C. Gossard J. Levy Y. Kato, R. C. Myers and D. D.

Awschalom. Science, 299:1201, 2003. 128

[153] T. Honda D. G. Austing and S. Tarucha. Jpn. J. Appl. Phys., 36:1667,

1997. 131

[154] M. Kemerink and L. W. Molenkamp. Appl. Phys. Lett., 65:1012, 1994. 131

[155] W. G. van der Wiel K. Ishibashi R. V. Hijman S. Tarucha T. H. Oost-

erkamp, T. Fujisawa and L. P. Kouwenhoven. Nature, 395:873, 1998. 134

[156] T. H. Stoof and Yu. V. Nazarov. Phys. Rev. B, 53:1050, 1996. 140

[157] T. Tokura. to be Published. 140

[158] C. Weisbuch and C. Hermann. Phys. Rev. B, 51:816, 1977. 147

[159] M. Bayer R. Kotlyar, T. L. Reinecke and A. Forchel. Phys. Rev. B,

63:85310, 2001. 147

[160] O. Baklenov A. L. Holmes Jr. N. Liu, J. Tersoff and C. K. Shih. Phys. Rev.

Lett., 84:334, 2000. 147

161


