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ABSTRACT

Stereo—pair images obtained-from‘two cameras can be utilized to compute world
coordinate points by using triangulation. However, there are some restrictions from
cameras and parameters need to be experimentally obtained, by applying this method.
This thesis proposed that, for stereo vision applications which need to evaluate the
actual depth, artificial neural networks be used to train the system such that the need
for parameters of cameras are eliminated. The training set for our neural network
consists of a variety of points in stereo-pair and their corresponding world coordinates.
The percentage error obtained from the proposed architecture set-up is comparable
with those obtained through traditional depth detection algorithm and that the system

is accurate enough for most stereo vision applications.
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Chapter 1
Introduction

1.1 Preliminary

The human brain can process subtle differences between the images that are
observed at the left and right eyes to perceive a three-dimensional (3-D) in the space
effortlessly. This ability of perceiving 3-D is called stereo vision. Recently,
applications of stereo vision systems which have been proposed in telecommunication
[1], geoscience [2], [3], navigation [4], [5], and robotics [6], [7], [8], [9], [10], [11],
[12]. Although the 3-D reconstruction also can be achieved from a single image, a
priori information is steel needed [13]. Thus, in order to simulate the ability of stereo
vision that is similar to human eyes, a humanoid vision system (HVS) could be
applied.

The HVS consists of two cameras,-So-that-two images of the same scene can be
taken at the same time by the right camera.and the left camera from two different
perspectives. The pair of these two images is called a stereo pair. The main problem in
HVS is the perception of depth, because the depth information obtained from stereo
vision is very useful for robot navigation in complex environments. Stereo vision
consists of matching corresponding points in a stereo pair and estimating depth from
their disparity which means the difference in positions of corresponding points.
Usually in stereo vision systems, the depth is calculated from disparity by using the
triangulation. The process of triangulation is needed to find the intersection of two
known rays in space. This kind of classical technique needs careful calibration of the
imaging system while calibration is an error sensitive process and it cannot always be
performed online [13]. Therefore, there are some other approaches that calculating

depth map without using camera parameter [12], [13]. In this thesis we have estimated
1



depth in a human visual system using neural networks. By using neural networks we
have estimated depth without getting camera parameters and calibrating the imaging

system.

1.2 Organization of the thesis

The rest of the thesis is organized as follows in chapter 2 we have introduced the
intelligent learning algorithm. In chapter 3 we have represented the traditional depth
detection algorithm and ANN depth detection algorithm respectively. In chapter 4
experimental results and discuss are provided. At last, chapter 5 represents the

conclusions and future works.



Chapter 2
Intelligent learning algorithm
2.1 Introduction to ANNSs

The human nervous system consists of a large amount of neurons, including
somas, axons, dendrites and synapses. Each neuron is capable of receiving, processing,
and passing electrochemical signals from one to another. To mimic the characteristics
of the human nervous system, recently investigators have developed an intelligent
algorithm, called artificial neural networks (ANNS), to construct intelligent machines
capable of parallel computation. This thesis will apply ANNSs to the depth detection in

an eyeball system through learning.

X1
X2
X
3 f( . ) y
Xi

Fig. 2.1 Basic element of ANNs

ANNSs can be divided into three layers which contain input layer, hidden layer,
and output layer. The input layer receives signal form the outside world, which just
includes input values without neuron. The neuron’s number of output layer is

depending on the output number. Form the output layer, the response of the net can be



read. The neurons between input layer and output layer are belonging to hidden layer
which does not exist necessarily. Here, each input is multiplied by a corresponding
weight, analogous to synaptic strengths. The weighted inputs are summed to
determine the activation level of the neuron. The connection strengths or the weights
represent the knowledge in the system. Information processing takes place through the
interaction among these units. The Basic element of ANNS, single layer net, is shown

in Fig. 2.1 Basic element of ANNs which obeys the input-output relations

y = f(zWixi+bj (2.1-1)
i=1
where w; is the weight at the input x; and b is a bias term. The activation function f( )

has many types cover linear and nonlinear. Note that the commonly used activation

function is

f(x)= 1 (2.1-2)

C 1+e”

which is a sigmoid function. Base on the basic element, the commonest multilayer
feed-forward net shown in Fig. 2.2 Multilayer feed-forward network, which contains
input layer, output layer, and two hidden layers. Multilayer nets can solve more
complicated problem than single layer nets, i.e. a multilayer nets is possible to solve
some case that a single layer net cannot be trained to perform correctly at all.
However, the training process of multilayer nets may be more difficult. The number of
hidden layer and its neuron in the multilayer net are decided by complicated degree of

the problem wait to solve.



Input laver
Output layer

1st hidden layer

Fig. 2.2 Multilayer feed-forward network

In addition to the architecture, the'method-of setting the values of the weights is
an important matter of different neural-net. For convenience, the training for a neural
network mainly classified into supervised learning and unsupervised learning.
Training of supervised learning is mapping a given set of inputs to a specified set of
target outputs. The weights are then adjusted according to various learning algorithms.
Another type, unsupervised learning, can self-organize neural nets group similar input
vectors together without the used of training data to specify what a typical member of
each group looks like or to which group each vector belongs. For unsupervised
learning, a sequence of input vector is provided, but no target vectors are specified.
The net modifies the weights so that the most similar input vectors are assigned to the
same output unit. In addition, there are nets whose weights are fixed without iterative
training process, called structure learning, which change the network structure to

achieve reasonable responses. In this thesis, the neural network learns the behavior by
5



many input-output pairs, hence that is belongs to supervised learning.

2.2 Back-Propagation Network

In supervise learning, the back propagation learning algorithm, is widely used in
most application. The back propagation, BP, algorithm was proposed in 1986 by
Rumelhart, Hinton and Williams, which is based on the gradient steepest descent
method for updating the weights to minimize the total square error of the output. The
training by BP mainly is applied to multilayer feed-forward network which involves
three stages: the feed-forward of the input training pattern, the calculation and
back-propagation of the associated error,.and_the adjustment of the weights. Fig. 2.3
Back-propagation network shows a. back#proepagation network contains input layer

with Ninp, neurons, one hidden-layer with-Npig neurons, and output layer with Noy

:
neurons. In Fig. 2.3 Back-propagation  network, x:[x1 X, - XNmJ ,

h:[h1 h, - hNhid]T, and y:[yl Y, - yNDm]T respectively represent the

input, hidden, and out note of the network. In addition, vj; is the weight form the i-th
neuron in the input layer to j-th neuron in the hidden layer and wyy, is the weight form

the g-th neuron in the hidden layer to h-th neuron in the output layer.



Fig. 2.3 Bagck-propagation network

The learning algorithm of BP is elaborated.on below:

Step 1: Input the training data 'of-input x:[x1 X Xy T and desired

;
output t:[t1 t, - tNmp] Set the maximum tolerable error Enax and

leaning rate 7 which between 0.1 and 1.0 to reduce the computing time
or increase the precision.
Step 2: Set the initial weight and bias value of the network at random.

Step 3: Calculate the output of the m-th neuron in hidden layer
Ninp
h, = fh(kamxk},m:LZ ..... N, (2.1-3)
k=1

where fy( * )is the activation function of the neuron and the output of the

i-th neuron in output layer

Nhig
y, = fy[Zwmnhmj,n:1,2,...,N0ut (2.1-4)
q=1



where f,( e )is the activation function of the neuron.
Step 4: Calculate the error function between network output and desired output.
Nhig

=280 18 o t[Sun )| ero

n=1

where y, is the network output and d, is the desired output.
Step 5: According to gradient steepest descent method, determining the

correction of weights.

o0E O0E oy Ny
AW, =— =-7 L= h,=hd,,h
mn 776Wmn 6yn 6W n yn [ [Z mn mj:l m mn "~ 'm
(2.1-6)
and
NDU[
av, = OB - SOE 0y, O
OV, oy oh @y,
out Nhld inp
_UZ{ d yn (Z mn mJ :| (kamx ]X _775kmn
(2.1-7)

Nhig
where & :(dn-yn) (z - mﬂ

=1

S = NZ[d Y ) NZ Wiy ) } [kamka

Step 6: Propagate the correction backward to update the weights.

{ w(n+1)=w(n)+Aw

v(n+1)=v(n)+Av

(2.1-8)

Step 7: Check whether the whole training data set have learned already.
Networks learn whole training data set once called a learning circle. If the

network not goes through a learning circle, return to Step 1; otherwise, go



to Step 8.
Step 8: Check whether the network converge. If E<Enax, terminate the training
process; otherwise, begin another learning circle by going to Step 1.

BP learning algorithm can be used to model various complicated nonlinear
functions. Recently years The BP learning algorithm is successfully applied to many
domain applications, such as: pattern recognition, adaptive control, clustering problem,
etc. In the thesis, the BP algorithm was used to learn the input-output relationship for

depth function.



Chapter 3

Intelligent depth detection for a

humanoid vision system

3.1 Humanoid Vision System Description

The HVS is built with two cameras and five motors to emulate human eyeballs

as shown in Fig. 3.1. These five motors, FAULHABER DC-servomotors, are used to

drive the two cameras to implement the eye movement, one for the conjugate tilt of

two eyes, two for the pan of two eyes, and two for the pan and tilt of the neck

correspondingly. The control of DC—servomotors is executed by the motion control

card, MCDC 3006 S, in a positioning resolution of 0.18°. With these 5 degrees of

freedom, the HVS would track the target whose.position is determined from the image

processing of the two cameras.” In addition, these two cameras, QuickCam™

Communicate Deluxe, have specifications-listed below. [19]

1.3-megapixel sensor with RightLight™2 Technology
Built-in microphone with RightSound™ Technology

Video capture: Up to 1280 x 1024 pixels (HD quality) (HD Video 960 x
720 pixels)

Frame rate: Up to 30 frames per second
Still image capture: 5 megapixels (with software enhancement)
USB 2.0 certified

Optics: Manual focus

In this proposed system structure, the baseline 2d is set as constant equal to

10.5cm. The control and image process are both implemented in personal computer

with 3.62 GHz CPU.

10



Fig. 3.1 Humanoid vision system
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3.2 Depth Detection
3.2.1 Traditional depth detection algorithm

Before introducing depth computing, the triangulation for one camera will be
introduced first [20]. Fig. 3.2 illustrates the relation of a world point with world
coordinates (X, Y, Z), which is projected onto camera coordinates (X, y) and onto
image coordinates (u, v) in the image plane. The mapping between the camera
coordinates (x, y) and the world coordinates (X, Y, Z) is formed by means of similar

triangles as

ik

where f is the focal length of the camera. The origin of the camera frame is located at
the intersection of the optical axis.with the image plane, while the origin of the image
frame is located at the top left-corner of the.image.-The transformation between the
image frame and the camera frame is:given-by

{ u = round (K,X)+ U

v=round (k,y)+V,

(3.1-2)

where k, and k, are the scale factors in m™' of the horizontal and vertical pixels,

respectively. Besides, (u,,V,) are the image coordinates of the origin of the camera
frame and the function round( ) rounds the element to its nearest integer.

It is known that mapping a 3-D scene onto an image plane is a multiple-to-one
transformation, i.e., an image point may represent different locations in world
coordinate. To derive the world coordinate information uniquely, two cameras should
be used. With thetriangulation theory and the disparity of a pair of corresponding
object points in two camera’s frames, the real location of an object can be

reconstructed.

12
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Front View

Fig. 3.3 Configuration of a HVS with binocular cameras

A HVS is implemented by two cameras with fixed focal length as shown in Fig.
3.3. The baseline of the two cameras is 2d, where d is the length from the center of
baseline to the camera, left or right. Let the pan angles of the left and right cameras be
denoted by a1 and ag, respectively. Since the cameras may not be placed precisely,
there often exists a small tilt angle 24, and a small roll angle 2¢, between two
cameras. Choose the stereo reference frame at Os, which divides the tilt angle, roll
angle, and baseline equally, with Z—axis pointing towards the fixating point F. For the

left camera coordinate frame L, it is related to the stereo reference frame by a

translation vector d.=(-d,0,0) and a rotation matrix £ =2(a, .5, .4, ), Where

14



aL, A= and A =g are respectively the Euler angles of pan, tilt and roll of frame L

and 2(a,B,¢) is the general rotation matrix expressed as

a)ll(a7ﬂ1¢) wlZ(a’ﬂ’¢) ‘013(0"ﬂ:¢)
Q(a.B.8)=| 0, (a.p.9) o,(a.f.8) ©y(a.B.p) (3.1-3)
a)sl(avﬂv¢) a)sz(aaﬂ1¢) a)sa(a’ﬂ,¢)

with

on(a.f,¢)= cosa cos¢

o2, f,¢)= sina sinf3 cos¢ —cosf3sing
mn3(af,§)= sina cosff cosg +sinfFsing
w2, f,¢)= cosa sing

wz2( e, §)= sina sinf3sing +Cosf3 cos ¢
@23(a. B, )= sina cossing —sings cos ¢
wn(a,f.9)= —sina

w2, ¢)= cosa sinf

w35 e, f,¢)= COSax COSf3

The transformation equation of the object point B from frame L to the reference frame

is described as
pL:'Q_(ps_dL) (3-1'4)

where p.=[X, Y. Z.]" is the position vector of B in frame L and ps=[X; Ys Zs]" is the

position vector of B in the reference frame. From (3.1-1) and (3.1-4), we have

XL f|_ XL
{VL}ZZ_{YL} (319

where

Xy :(Xs+d)wll(aL’ﬂ0'¢0)+st12(aL’ﬂO’¢O)+Zsa)l3(aL’ﬂ0’¢0)
Yo :(xs +d)a’zl(aL'ﬂo’¢o)+Ysa)22(auﬁo'¢0)+Zsa)zs(auﬂo’%)
15



Z :(Xs +d)a)31(OlL,ﬁo,¢o)+Ysa)32(0(,_,,30,¢0)+Zsa)33(OtL,ﬂO,¢0)

Therefore, the relation between image coordinate of frame L and world coordinates
are
u, = round (k,X_)+U,
(3.1-6)
v, =round (k,y,_)+V,

Similarly, for the right camera coordinate frame R, the transformation equation of B is

described as
pR:‘QQ(ps_dR) (3-1'7)
where pr=[Xr Yr Zg]" is the position vector of B in frame R, dz=(d,0,0) is the

translation vector, and the rotation matrix (2 =2(ag, 5.4 ) With o, fr=/% and

dr=—a being the Euler angles of panytiltzand roll of frame R, respectively. Using
(3.1-1) and (3.1-7), the relation between the right ecamera coordinates and the world

coordinates are given by

XR fR XR
Ak @.19)

where

Xg = ( X,—d )a)ll (O‘R ) _ﬁO’_¢0)+Ysa)12 (aR7_ﬂ07_¢0)+ Ly, (aRi_ﬂO’_¢O)

Yr = (Xs —d )a)Zl ((ZR ) _ﬂov_¢o)+Ysa)22 (‘ZR ' _ﬂo'_¢o)+ Z (aR ' _ﬂo’_¢0)

Zg :(xs _d)a’sl(are’_ﬂo'_%)"‘Ysa)sz (aR’_ﬂO'_¢O)+Zsa)33 (aR7_ﬂO’_¢O)
Accordingly, the relation between image coordinate of frame R and world coordinates
can be express as

u, = round (k,x_)+U,
(3.1-9)
v, =round (k,y,)+V,
Since the angles £, and ¢, are small, the absolute value of the terms @iz, w21, @23 @32
for both the left and the right frames are usually much smaller compared to the other

terms. Further define stereo disparity, usg, as the disparity of B between the left image

16



frame and right image frame, expressed as

Uy =U, —Ug (3.1-10)
which will be applied to the determination of the depth of B.

In the HVS, if two cameras are placed precisely in parallel, then the pan, tilt, and
roll angles between these two cameras are zeros, i.e., ai=ar =0, A ===/ =0, and &
=gr=¢p=0. From (3.1-4) and (3.1-7), the position vector of B in the left and right
camera frames are respectively obtained as

po=ps—d, (3.1-11)

Pz =P —dg (3.1-12)
with 2 =2 =1 . Based on the same process from (3.1-5) to (3.1-9), the disparity is

found as
Uy =U, —Us =round (k,x_)=round (k,xs.) (3.1-13)

Since the term on the right can be approximated as
round (k,x_)—round (k x5
f X, k foXq (3.1-14)

~k
uL ZL uR ZR

where Z = Zg= Z, the disparity can be written as

kuL fLXL _kuRfRXR

Ug =U . —Ug = (31-15)
Z
Rearranging it leads to
7 ~ kuLfLXL_kuRfRXR (3.1-16)

usd
which gives the depth of B after usg, X, Xr fi, fr, kuL, and k,_ are obtained. In general
case, for arbitrary object point, it is hard to obtain the X_ and Xg values. Therefore, the
traditional depth computation is usually used under the assumption that both cameras

have the same focal length, i.e., k, f, = kzfs= k,f, and then (3.1-16) can be

simplified as

17



7~ kuLfLXL_kuRfoR — kuf (XL_XR) — kuf(Zd)
usd usd usd

(3.1-17)
where X —Xgr=2d is the separation of two cameras. Clearly, with (3.1-17), only k,f,

d and ugq are required to find the depth Z.

3.2.2 ANN depth detection algorithm

Stereo pair obtained from two cameras can be utilized to compute the depth of a
point by using the traditional depth computation introduced in previous section.
However, to apply the computation, parameters of each camera need to be
experimentally obtained in advance. Therefore, ANN can be used to train the system
for eliminating the complicate computation process.

It is well known that multilayer neural networks can approximate any arbitrary
continuous function to any desired.degree of accuracy [14]. A number of investigators
have it for different proposes in stereo vision.-For'example they have been used for
camera calibration [15], establishing correspondence between stereo pair based on
features [16] and generating depth map in stereo vision [12][15]. In this thesis, a feed
forward neural network was used for depth estimation. The ANN computation system
doesn’t need to calibrate the cameras in HVS. This can be very helpful in rapid
prototyping application. The proposed thesis employs a Multi-Layer Perceptron (MLP)
network trained by BP training algorithm, which is the most commonly adopted for
MLP network.

In the problem, the thesis proposed a multilayer ANN model because camera
calibration problem is a nonlinear problem and cannot be solved with a single
network [17]. Further, according to the neural network literature [18] more than one
hidden layer is rarely needed. The more layers that a neural network have, the more

parameter values need to be set because the number of neurons in each layer must be
18



determined. Therefore, to reduce the number of permutations, a network with one
hidden layer was selected.

The network model had been used in Fig. 3.4 for simulation consists of four
input neurons, five hidden neurons and three output neurons. The input neurons’
corresponding to the image coordinates of matched points found in the stereo images
(ur, vi) and (ur, vr). These points are generated by the same world point on both images
and formed the input data for the neural network. The output neurons corresponding
to the world coordinates of a point which are mapped as (u;, vi) and (ur, v¢) on the two
images. The network is trained in an interesting range of actual depth, after training;

give the world coordinates for any matched pair of points.

Input layer Output layer

Hidden layer

Fig. 3.4 ANN model used for this thesis
The algorithm requires training a set of matched image points whose

corresponding world point is known. The set of matched points and the world

19



coordinates thus obtained and formed the training data set for the ANN. Once the
network is trained, we present it with arbitrary matched points and it directly gives us
the depth corresponding to the matched pair.

The main problem to using the MLP network is how to choose optimum
parameters. Presently, there is no standard technique for automatically setting the
parameters of MLP network. That is to say, the best architecture and algorithm for the
problem can only be evaluated by experimentation and there are no fixed rules to
determine the ideal network model for a problem. Therefore, experiments were
performed on the neural network to determine the parameter according to its
performance. Parameters with the number of neurons in the hidden layer (one hidden
layer is employed in this thesis) will be issued in next Chapter for getting more

precise detection result.

20



Chapter 4
Experimental Results and Discussion
4.1 Experimental Settings

The board consisting of a set of grid points is placed in front of the HVS for
depth detection as shown in Fig.4.1 and Fig.4.2, one for the left camera and the other
for the right. With the use of these two cameras, the HVS captures images of a
specified cross at various distances, ranging from 65 tol65 cm. To verify the
usefulness of the proposed ANN depth detection algorithm, the experiment is
implemented by changing the distance Z between the HVS and the board, where Z
starts from 65 cm to 165 cm at an increment of 10 cm.

In the next section, there are different cases used to show the restriction of
traditional depth detection algorithm'and the flexibility and features of the ANN depth

detection algorithm proposed in-the thesis.

21



Fig. 4.1 The board at Z=105cm captured form left camera

Fig. 4.2 The board at Z=105cm captured form right camera

22



4.2 Experimental Results
4.2.1 Restrictions on Traditional depth detection

algorithm

It is known that the traditional depth detection algorithm (3.1-17) is only suitable
for the case that both cameras have the same focal length and their optic axes are
parallel. However, in practical situation, the two cameras of an HVS generally have a
little difference in their focal length or a little deflection between their optic axes. As a
result, (3.1-17) is inappropriately used to detect the depth of a scene. To show these
restrictions on an HV'S, experiments will be set for demonstration.

The tradition depth detection algorithm (3.1-17) is derived from (3.1-16) under
the assumption that k, f, =k, fz.2and 2d =X = X . Here, let’s find the real values
of k, f, and k,;f; to see whether they are the same or not. For simplicity, define
@ =k, f, and @, =k,f, and letp2d =X =X ,~i.e., the two optic axes are in
parallel. Then, (3.1-16) becomes

UgyZ =k, fL X —ke o X
:@LXL _@RXR

(4.1-1)
= @ (X, - Xg)+(Dq —;,) Xq
= 200 + (D - B;) X4
which can be further rearranged as
U, Z - X (D -
@ — sd R( L R) (4.1‘2)

- 2d

where the baseline 2d is fixed. Next, let’s show the way to calculate @&, for the left
camera in the HVS. By setting the shortest focal length for each camera, which is

fixed but not exactly known, two images are obtained in Fig. 4.5 for Z=95 cm and

2d=10.5 cm. To calculate @, the term X, (&, — @) in (4.1-2) has to be eliminated.

By choosing the same 12 points in both images Fig. 4.5 (a) and (b), enclosed in the
23



dashed square, the addition of X (@ —@) of these twelve points will vanish when

they are vertically symmetric to the center line Iz in the right image. Hence,

18 (uy)Z
Q==Y 14" 4.1-3
- 12%: 2d (4.1-3)

where (usg); is the disparity of the i-th point. Fig. 4.3 shows the result of & for

different distance Z from 45 cm to 105 cm to verify that @ is around the average
value @, =142.918 with 0.24116% variation. In a similar way, the value of @,

corresponding to the case of the shortest focal length, Z=85 cm and 2d=10.5 cm, can

be obtained as

1 & (ugy ).Z
@, =Y i~ 4.1-4
R 12Z 2d ( )

i=1

where the 12 points are chosen from  the images shown in Fig. 4.6, vertically

symmetric to the center line I, in-the leftlimage. Fig. 4.4 shows the result of @& for

different distance Z. It is obvious that @ 'is approximate to @, with 0.27821%
variation. Since @, is indeed near to @, the-traditional depth detection algorithm

(3.1-17) is applicable and adopts the average of @ and @, ask.f.
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Fig. 4.3 @ for different'distance’Z,from 45 cm to 105 cm
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Fig. 4.4 @x for different distance Z from 45 cm to 105 cm
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(@) (b)
Fig. 4.5 The same 12 points using to calculate @, for Z=95cm

(a) (b)

Fig. 4.6 The same 12 points using to calculate @, for Z=95cm

(a)
(b)

Fig. 4.7 Two adjacent points P; and P, in the center line of the training area for Z=135
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Human eyes always focus on the center of entire eyeshot. Based on this
characteristic, two adjacent points P; and P, in the center line of the training area,
within eyeshot center of HVS, on the experimental board was shown in Fig. 4.7 are
chosen as the testing points. P; and P, used to acquire test the error between depth
detection result and actual depth.

The average error is computed by mean absolute error that can be written as

€., = Mean UZ ~Z

} (4.1-5)

where ena is the mean absolute error of the network. Z and Z denote the depth that
is actually measured and the corresponding depth given by the network respectively.
Therefore, to represent distinct situation of ey,, four different conditions are schemed
as shown in the Fig. 4.8 to Fig. 4.11. The first case represent two cameras of HVS are
placed in parallel with the same focal length:The'second case is respect to distinct
focal length. The third case is respect to insignificant-deflection between optic axes of
two cameras. And for the last case distinct-focal length and insignificant deflection are

included.
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Case |

Traditional depth computation error plot(casel), (Error range: 0.017387%~1.7834%)

— Average ‘

Fig. 4.8 e,, of two cameras placed in parallel-with the same focal length

Case Il
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Traditional depth computation error plot(casell), (Error range: 15.1465%~18.9796%)
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Fig. 4.10 e, of two cameras with insignificant deflection between optic axes



Case IV

Traditional depth computation error plot(caselV), (Error range: 155.1946%~2653.9037%)

2500

2000

1500

(%
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Fig. 4.11 e,, of two cameras with distinctfocal length and insignificant
deflection
These figures show that the e, of the actual depth range in 65 t0165 cm of case |
is between 0.017387% and 1.7834%,-case. ll-is between 15.1465% and 18.9796%,
case Il is between 58.3189% and 1145.9954% and case 1V is between 155.1946%
and 2653.9037%. The maximum of percentage error results of these case are greater
than 15% except case I. This is mean that the algorithm only is used in the situation
similar to case I, or else need to rewrite the formula with more parameter to fit all

situation able to appear.
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4.2.2 Flexibility of ANN Depth Detection Algorithm

The existence of restrictions on Traditional depth detection algorithm is already
confirmed and shown in previous subsection. In order to unrestricted, the ANN depth
detection algorithm proposed in this thesis.

The ANN architecture for depth detection will evaluate by experimentation. Here,
the number of neuron in the output layer need to be decides first. One case is three
neurons which respectively corresponding to the world coordinates (X, Y, Z) of the
world object point in the output layer and another one is just one neuron for depth Z.
The case IV in the previous subsection is used to treat as the general case in the
problem. The training data of the neural network is the same 12 points in left and right
of each image, with different distance Z from 65cm to 165cm at an increment of 20cm.
To check the accuracy of the. trainedr=network, we presented the network with
stereo-pair points that were not:completely-tncluded in the training set but were from
within our range of interest of distance. The-testing-data is the two same points; they
are adjacent, as introduced in the previous subsection in the left and right image with
different distance Z from 65cm to 165cm at an increment of 10cm. After the training
process had finished, each neural network is tested with the training and testing data
sets.

Fig. 4.12 shown the en, in each depth simulated from the net that consists of four
input neurons, five hidden neurons and three output neurons. As the diagram indicates,
the ema ranges from 0.48455% to 2.4771%. The maximum ema, 2.4771%, represents
the error of its corresponding net. Each different number of neuron creates ten distinct
nets and the en, Of ten nets shown in Fig. 4.13 with five hidden neurons. The average
of ema from ten nets with the same number of neurons H, in hidden layer, ema n,

represent the error of H, neurons where H, starts form 1 to 10. Fig. 4.14 and Fig. 4.15
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show each ena 1n With one and three output neurons respectively. It is clearly to find

that the error range of one output neuron is always greater than three output neurons.

For accuracy, the three output neuron is chosen in the proposed architecture.

NN(XY2)-Error plot, neural number=5, (Error range: 0.48455%~2.4771%)

Fig. 4.12 ep, in each depth simulated from the net
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BP(XY2Z) minimun error=2.2748% (neural no.=5) Average=2.9542%, Variance=0.23892%

3.8 T T T T T T T T

training net

Fig. 4.13 en,of ten nets with five hidden neurons

BP(Z) minimun error=20.3715% (neural number=3)
80 T T

—O— error average

70 b

60 b

50 b

%

401 .

30 b

20 2 | |
0 5 10 15

neural number in hidden layer

Fig. 4.14 Each ena_nn With one output neuron
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BP(XY2Z) minimun error=2.9542% (neural number=>5)

50 T T

451 R

40+

35+

30
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151

10+

0 ! |
0 5 10 15

neural number in hidden layer

Fig. 4.15 Eaeh ema qn With.three output neurons

After decide the number of output-neuron, the number in the hidden layer is
proceeded to be resolved. From Fig. 4:15 also tells us that the best choice for neuron
number in the hidden layer in the problem is five. Therefore, we may reasonably
conclude that the better MLP network architecture for detecting depth should be
consists of four input neurons, five hidden neurons and three output neurons.

In order to eliminate the net that doesn’t train the training data successfully, a
threshold value T of e, from training data need to be set. If the ey, form training data
of the net is large than T, the net will not be enrolled. The setting value H must be
large than the en, from training data such that the network could.

The error results can be seen for different case introduced in subsection from
proposed net is shown from Fig. 4.16 to Fig. 4.19. They can be noted that even in the

worst case, the error in depth computation was still well below 4%.
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Case |

BP(XYZ) minimum error=1.9753% (neural no.=5) Averayc—c.crou /v
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Fig. 4.16 Each enaHn from-proposed net of Case |

Case Il
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Case Il

O/O

%

BP(XY2Z) minimum error=1.7435% (neural no.=5) Average=<.11b97%
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—— Avwerage for ANN
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training net
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Fig. 4.17 Each ema 1n from proposed net of Case Il

BP(XYZ) minimum error=1.4234%

(neural no.=5) Average=1.5308%
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1.7

1.6

1.5

1.45

1.4

T T
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Fig. 4.18 Each ema_nn from proposed net of Case 11|

Case IV

BP(XYZ) minimum error=2.2748% (neural no.=5) Aver.,. -.—_....
3.8 T T T T T T

training net

Fig. 4.19 Each ema wn from proposed net of Case 1V

The training data is obtained from stereo pair manually. The reason for
decreasing the number of inputs was to determine whether the desired depth values
could still be achieved with acceptable accuracy. Therefore, if the training data is only
obtained from Z=65 and 165cm, the testing error average is 53.0081% as shown in
Fig. 4.20. Fig. 4.21 and Fig. 4.22 are shown the testing error of training data is
obtained from Z=65, 115, 165cm and Z=65, 95, 135, 165cm respectively. The Fig.
4.22 indicates that the training data with four distinct depths can get the result with

error around 5%.
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BP(XYZ) minimun error=21.7075% (neural no.=5) Average=53.0081%,
100 T T T T T T T

90 B

80 B

%
)
=)

T
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40+ i
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training net

Fig. 4.20 The testing error ofitrainingdata'is obtained from Z=65 and 165cm

BP(XYZ) minimun error=12.3236% (neural no.=5) Average=31.1636%,
55 T T T T T T

10 1 1 1 1 1 1 1 1
1

training net

Fig. 4.21 The testing error of training data is obtained from Z=65, 115, 165cm
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BP(XY2Z) minimun error=2.9263% (neural no.=5) Average=5.412%,
16 T T T T T T T

%

training net

Fig. 4.22 The testing error of training data is obtained from Z=65, 95, 135, 165cm
The algorithm is different form traditional-detection depth algorithm in the sense
that no extrinsic or intrinsic camera parameters are found for any of the camera. The

system is trained such that it learns to directly find the depth of objects.
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Chapter 5
Conclusion

The proposed algorithm in this thesis has shown that it is possible to use a neural
network to compute actual depth with good accuracy. The thesis used an ANN to train
the system such that, when the system is presented with a matched pair of points, it
automatically computes the depth of the corresponding object point. The algorithm
differs from traditional depth detection algorithm to the problem. That is, there are
restrictions for using Traditional depth detection algorithm and the network is trained
to compute the correct depth of two matched points without any calibration. The
algorithm that is used in this thesis is very simple in concept, independent of the
camera model used and the quality of image obtained and yields very good results.

The experimental results in the thesis show that an acceptable accuracy can be
obtained but it seems that is not:very easy 10 reach high accuracy by using only neural
networks. Neural networks have’.a good generalization capability in the range that
they are trained.

If the depth of the world object can easy be obtain from the HVS, the HVS can
be applied to an autonomous mobile robot using stereo vision for navigation, real time
track nearest object in front region or locate the interesting object.

The future work for the learning algorithm is to simulate human learning
behavior. Just like human learning structure, the learning network will learn in turn

stroke by stroke, not in case of learn once for all.
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