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應用於仿人眼視覺系統之 

智慧型深度偵測技術 
 

   學生: 張倍榕     指導教授: 陳永平 教授 

 

國立交通大學電機與控制工程學系 

摘        要 

從兩台攝影機同時拍攝同景色的影像可以利用三角測量算出立

體座標點。但是如果要用這種方法求得立體座標需要對攝影機有一些

限制並且有一些參數是需要從實驗中獲得的。本論文提出用類神經網

路去訓練出不需要相機參數的深度偵測系統，訊練資料由不同變化的

目標點於兩張影像中的位置及其所對應的立體座標點構成。最後從誤

差百分比可以知道傳統的深度偵測演算法的誤差遠遠大於本論文所

提供的類神經網路深度偵測系統而且其準確度足以在立體視覺研究

中被應用。 
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ABSTRACT 

 

Stereo–pair images obtained from two cameras can be utilized to compute world 

coordinate points by using triangulation. However, there are some restrictions from 

cameras and parameters need to be experimentally obtained, by applying this method. 

This thesis proposed that, for stereo vision applications which need to evaluate the 

actual depth, artificial neural networks be used to train the system such that the need 

for parameters of cameras are eliminated. The training set for our neural network 

consists of a variety of points in stereo-pair and their corresponding world coordinates. 

The percentage error obtained from the proposed architecture set-up is comparable 

with those obtained through traditional depth detection algorithm and that the system 

is accurate enough for most stereo vision applications. 
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Chapter 1  
Introduction 

1.1 Preliminary 
The human brain can process subtle differences between the images that are 

observed at the left and right eyes to perceive a three-dimensional (3-D) in the space 

effortlessly. This ability of perceiving 3-D is called stereo vision. Recently, 

applications of stereo vision systems which have been proposed in telecommunication 

[1], geoscience [2], [3], navigation [4], [5], and robotics [6], [7], [8], [9], [10], [11], 

[12]. Although the 3-D reconstruction also can be achieved from a single image, a 

priori information is steel needed [13]. Thus, in order to simulate the ability of stereo 

vision that is similar to human eyes, a humanoid vision system (HVS) could be 

applied. 

The HVS consists of two cameras, so that two images of the same scene can be 

taken at the same time by the right camera and the left camera from two different 

perspectives. The pair of these two images is called a stereo pair. The main problem in 

HVS is the perception of depth, because the depth information obtained from stereo 

vision is very useful for robot navigation in complex environments. Stereo vision 

consists of matching corresponding points in a stereo pair and estimating depth from 

their disparity which means the difference in positions of corresponding points. 

Usually in stereo vision systems, the depth is calculated from disparity by using the 

triangulation. The process of triangulation is needed to find the intersection of two 

known rays in space. This kind of classical technique needs careful calibration of the 

imaging system while calibration is an error sensitive process and it cannot always be 

performed online [13]. Therefore, there are some other approaches that calculating 

depth map without using camera parameter [12], [13]. In this thesis we have estimated 
 1



depth in a human visual system using neural networks. By using neural networks we 

have estimated depth without getting camera parameters and calibrating the imaging 

system. 

 

1.2 Organization of the thesis 
The rest of the thesis is organized as follows in chapter 2 we have introduced the 

intelligent learning algorithm. In chapter 3 we have represented the traditional depth 

detection algorithm and ANN depth detection algorithm respectively. In chapter 4 

experimental results and discuss are provided. At last, chapter 5 represents the 

conclusions and future works. 
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Chapter 2  
Intelligent learning algorithm 

2.1 Introduction to ANNs  
The human nervous system consists of a large amount of neurons, including 

somas, axons, dendrites and synapses. Each neuron is capable of receiving, processing, 

and passing electrochemical signals from one to another. To mimic the characteristics 

of the human nervous system, recently investigators have developed an intelligent 

algorithm, called artificial neural networks (ANNs), to construct intelligent machines 

capable of parallel computation. This thesis will apply ANNs to the depth detection in 

an eyeball system through learning.  

 

. . . . . . 
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Fig. 2.1 Basic element of ANNs 

ANNs can be divided into three layers which contain input layer, hidden layer, 

and output layer. The input layer receives signal form the outside world, which just 

includes input values without neuron. The neuron’s number of output layer is 

depending on the output number. Form the output layer, the response of the net can be 
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read. The neurons between input layer and output layer are belonging to hidden layer 

which does not exist necessarily. Here, each input is multiplied by a corresponding 

weight, analogous to synaptic strengths. The weighted inputs are summed to 

determine the activation level of the neuron. The connection strengths or the weights 

represent the knowledge in the system. Information processing takes place through the 

interaction among these units. The Basic element of ANNs, single layer net, is shown 

in Fig. 2.1 Basic element of ANNs which obeys the input-output relations  

1

n

i i
i

y f w x b
=

⎛= ⎜
⎝ ⎠
∑ ⎞+ ⎟  (2.1-1) 

where wi is the weight at the input xi and b is a bias term. The activation function f(․) 

has many types cover linear and nonlinear. Note that the commonly used activation 

function is  

( ) - x

1f x =
1+e

 (2.1-2) 

which is a sigmoid function. Base on the basic element, the commonest multilayer 

feed-forward net shown in Fig. 2.2 Multilayer feed-forward network, which contains 

input layer, output layer, and two hidden layers. Multilayer nets can solve more 

complicated problem than single layer nets, i.e. a multilayer nets is possible to solve 

some case that a single layer net cannot be trained to perform correctly at all. 

However, the training process of multilayer nets may be more difficult. The number of 

hidden layer and its neuron in the multilayer net are decided by complicated degree of 

the problem wait to solve. 
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1st hidden layer 

..

. . . . 

.......

Fig. 2.2 Multilayer feed-forward network  

In addition to the architecture, the method of setting the values of the weights is 

an important matter of different neural net. For convenience, the training for a neural 

network mainly classified into supervised learning and unsupervised learning. 

Training of supervised learning is mapping a given set of inputs to a specified set of 

target outputs. The weights are then adjusted according to various learning algorithms. 

Another type, unsupervised learning, can self-organize neural nets group similar input 

vectors together without the used of training data to specify what a typical member of 

each group looks like or to which group each vector belongs. For unsupervised 

learning, a sequence of input vector is provided, but no target vectors are specified. 

The net modifies the weights so that the most similar input vectors are assigned to the 

same output unit. In addition, there are nets whose weights are fixed without iterative 

training process, called structure learning, which change the network structure to 

achieve reasonable responses. In this thesis, the neural network learns the behavior by 
 5



many input-output pairs, hence that is belongs to supervised learning. 

 

 

2.2 Back-Propagation Network 
In supervise learning, the back propagation learning algorithm, is widely used in 

most application. The back propagation, BP, algorithm was proposed in 1986 by 

Rumelhart, Hinton and Williams, which is based on the gradient steepest descent 

method for updating the weights to minimize the total square error of the output. The 

training by BP mainly is applied to multilayer feed-forward network which involves 

three stages: the feed-forward of the input training pattern, the calculation and 

back-propagation of the associated error, and the adjustment of the weights. Fig. 2.3 

Back-propagation network shows a back-propagation network contains input layer 

with Ninp neurons, one hidden layer with Nhid neurons, and output layer with Nout 

neurons. In Fig. 2.3 Back-propagation network, 1 1      
inp

T

Nx x xx ⎡ ⎤= ⎣ ⎦ , 

, and 1 2      
hid

T

Nh h hh ⎡ ⎤= ⎣ ⎦ 1 2      
out

T

Ny y yy ⎡ ⎤= ⎣ ⎦  respectively represent the 

input, hidden, and out note of the network. In addition, vij is the weight form the i-th 

neuron in the input layer to j-th neuron in the hidden layer and wgh is the weight form 

the g-th neuron in the hidden layer to h-th neuron in the output layer. 
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Fig. 2.3 Back-propagation network  

 The learning algorithm of BP is elaborated on below: 

Step 1: Input the training data of input 1 1      
inp

T

Nx x xx ⎡ ⎤= ⎣ ⎦  and desired 

output      
T

t  t tt ⎡ ⎤= . Set the maximum tolerable error E  and 1 2 inpN⎣ ⎦ max

leaning rate η  which between 0.1 and 1.0 to reduce the computing time 

. 

Step 3: Calculate the output of the m-th neuron in hidden layer  

d  (2.1-3) 

neuron and the output of the 

i-th neuron in output layer 

ut  (2.1-4) 

or increase the precision. 

Step 2: Set the initial weight and bias value of the network at random

1
1 2

inpN

m h k m k hi
k

h = f v x , m = , ,...,N
=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑

where fh(․)is the activation function of the 

1
1 2

hidN

n y mn m o
q

y = f w h , n = , ,...,N
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑
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where fy(․)is the activation function of the neuron.  

Step 4: Calculate the error function between network output and desired output. 

( ) ( )
1 1 12 2n n n y mn m

n n q= = =

1 1out out hid
2

N N N
2E d - y d f w hw

⎡ ⎤⎛ ⎞
= = −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑  (2.1-5) 

Step ient steepest descent method, determining the 

correction of weights. 

where yn is the network output and dn is the desired output. 

5: According to grad

( )
1

mn n n y mn m m mn m
qmn n mnw y w =∂ ∂ ∂ ⎢ ⎥

hidN
nyE Ew d - y f w h h = h hη η η δ

⎡ ⎤⎛ ⎞∂∂ ∂ ′Δ = − = − = ⎢ ⎥⎜ ⎟
⎝ ⎠
∑

 (2.1-6) 

and 

⎣ ⎦

( )

1

1 1 1
n n y mn m mn h k m k k kmn k

n q k= = =

       

out

inpout hid

N
n m

km
nkm n m km

NN N

y hE Ev
v y h v

d - y f w h w f v x x x

η η

η ηδ

=

⎛ ⎞∂ ∂∂ ∂
Δ = − = − ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎡ ⎤ ⎛ ⎞⎛ ⎞′ ′= =⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

∑ ∑ ∑

 (2.1-7) 

where ( )
1

hidN

mn n n y mn m
q

d - y f w hδ
=

⎡ ⎤⎛ ⎞′= ⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑

( )

 and 

d - y f w h w f v xδ
⎡ ⎤ ⎛ ⎞⎛ ⎞′ ′= ⎜ ⎟⎢ ⎥⎜ ⎟

1 1 1n q k= = =

inpout hid NN N

kmn n n y mn m mn h k m k⎜ ⎟∑ ∑ ∑ . 

Step 6: Propagate the correction backward to update the weights. 

1
  

w n w n w⎧ + = + Δ⎪
⎨

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

( ) ( )

( ) ( )1v n v n v+ = + Δ⎪⎩

7: Check whether the whole training data set have learned already. 

Networks learn whole training data set once called a learning circle. If the 

network no

 (2.1-8) 

Step  

t goes through a learning circle, return to Step 1; otherwise, go 
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to Step 8. 

: Check whether the network converge. If E<EStep 8 ining 

, the BP algorithm was used to learn the input-output relationship for 

epth function. 

 

max, terminate the tra

process; otherwise, begin another learning circle by going to Step 1. 

BP learning algorithm can be used to model various complicated nonlinear 

functions. Recently years The BP learning algorithm is successfully applied to many 

domain applications, such as: pattern recognition, adaptive control, clustering problem, 

etc. In the thesis

d
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Chapter 3  
Intelligent depth detection for a 

humanoid vision system 
3.1 Humanoid Vision System Description 

The HVS is built with two cameras and five motors to emulate human eyeballs 

as shown in Fig. 3.1. These five motors, FAULHABER DC−servomotors, are used to 

drive the two cameras to implement the eye movement, one for the conjugate tilt of 

two eyes, two for the pan of two eyes, and two for the pan and tilt of the neck 

correspondingly. The control of DC−servomotors is executed by the motion control 

card, MCDC 3006 S, in a positioning resolution of 0.18°. With these 5 degrees of 

freedom, the HVS would track the target whose position is determined from the image 

processing of the two cameras. In addition, these two cameras, QuickCamTM 

Communicate Deluxe, have specifications listed below. [19]

 1.3-megapixel sensor with RightLight™2 Technology  

 Built-in microphone with RightSound™ Technology 

 Video capture: Up to 1280 x 1024 pixels (HD quality) (HD Video 960 x 
720 pixels) 

 Frame rate: Up to 30 frames per second 

 Still image capture: 5 megapixels (with software enhancement) 

 USB 2.0 certified 

 Optics: Manual focus 

In this proposed system structure, the baseline 2d is set as constant equal to 

10.5cm. The control and image process are both implemented in personal computer 

with 3.62 GHz CPU.  
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Fig. 3.1 Humanoid vision system  
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3.2 Depth Detection 

3.2.1 Traditional depth detection algorithm 
Before introducing depth computing, the triangulation for one camera will be 

introduced first [20]. Fig. 3.2 illustrates the relation of a world point with world 

coordinates (X, Y, Z), which is projected onto camera coordinates (x, y) and onto 

image coordinates (u, v) in the image plane. The mapping between the camera 

coordinates (x, y) and the world coordinates (X, Y, Z) is formed by means of similar 

triangles as  

x Xf
y YZ

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (3.1-1) 

where f is the focal length of the camera. The origin of the camera frame is located at 

the intersection of the optical axis with the image plane, while the origin of the image 

frame is located at the top left corner of the image. The transformation between the 

image frame and the camera frame is given by 

( )

( )
0

0

  
u

v

u round k x u

v round k y v

⎧ = +⎪
⎨

= +⎪⎩
 (3.1-2) 

where ku and kv are the scale factors in m−1 of the horizontal and vertical pixels, 

respectively. Besides, ( , ) are the image coordinates of the origin of the camera 

frame and the function round(․) rounds the element to its nearest integer. 

0u 0v

It is known that mapping a 3-D scene onto an image plane is a multiple-to-one 

transformation, i.e., an image point may represent different locations in world 

coordinate. To derive the world coordinate information uniquely, two cameras should 

be used. With thetriangulation theory and the disparity of a pair of corresponding 

object points in two camera’s frames, the real location of an object can be 

reconstructed. 
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Fig. 3.2 Relation of a world point projected onto an image plane  

 

 13



 

YL

βL

βR

YR

ZR

ZS

Side View

ZL

XL

θθ L
R

XR

 

L R

0 0

s

ereo reference fram

t

Fig. 3.3 Configuration of a HVS with binocular cameras  

A HVS is implemented by two cameras with fixed focal length as shown in Fig. 

3.3. The baseline of the two cameras is 2d, where d is the length from the center of 

baseline to the camera, left or right. Let the pan angles of the left and right cameras be 

denoted by α  and α , respectively. Since the cameras may not be placed precisely, 

there often exists a small tilt angle 2β  and a small roll angle 2φ  between two 

cameras. Choose the stereo reference frame at O , which divides the tilt angle, roll 

angle, and baseline equally, with Z−axis pointing towards the fixating point F. For the 

left camera coordinate frame L, it is related to the st e by a 

ranslation vector dL=(−d,0,0) and a rotation matrix ( )L L L L, ,α β φ=Ω Ω , where 

Front View

Y YR L
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αL, β LL=β0 and φ , tilt and roll of frame L 

and 

=φ0 are respectively the Euler angles of pan

( ), ,α β φΩ  

( )

is the general rotation matrix expressed as 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11 12 13

21 22 23

31 32 33

, , , , , ,
, , , , , , , ,

, , , , , ,

ω α β φ ω α β φ ω α β φ
α β φ ω α β φ ω α β φ ω α β φ

ω α β φ ω α β φ ω α β φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ω  (3.1-3) 

with 

φ +sinβ sinφ 

sβ sinφ −sinβ cosφ 

ω33(α,β,φ)= cosα cosβ   

B from frame L to the reference frame 

is described as 

 is the 

position vector of B in the reference frame. From (3.1-1) and (3.1-4), we have  

ω11(α,β,φ)= cosα cosφ 

ω12(α,β,φ)= sinα sinβ cosφ −cosβ sinφ 

ω13(α,β,φ)= sinα cosβ cos

ω21(α,β,φ)= cosα sinφ 

ω22(α,β,φ)= sinα sinβ sinφ +cosβ cosφ 

ω23(α,β,φ)= sinα co

ω31(α,β,φ)= −sinα 

ω32(α,β,φ)= cosα sinβ 

 

The transformation equation of the object point 

( )L L s Lp p d= −Ω  (3.1-4) 

where pL=[XL YL ZL]T is the position vector of B in frame L and ps=[Xs Ys Zs]T

L LL

L LL

x Xf
y YZ

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (3.1-5) 

where 

( ) ( ) ( ) ( )11 0 0 12 0 0 13 0 0, , , , , ,L s L s L s Lx X d Y Zω α β φ ω α β φ ω α β φ= + + +  

( ) ( ) ( ) ( )21 0 0 22 0 0 23 0 0, , , , , ,L s L s L s Ly X d Y Zω α β φ ω α β φ ω α β φ= + + +  
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( ) ( ) ( ) ( )31 0 0 32 0 0 33 0 0, , , , , ,L s L s L s LZ X d Y Zω α β φ ω α β φ ω α β φ= + + +  

Therefore, the relation between image coordinate of frame L and world coordinates 

are 

  
L u Lu round k x u⎧ = +⎪

⎨  (3.1-6) 

 the right camera coordinate frame R, the transformation equation of B is 

described as 

p p d= −Ω  (3.1-7) 

T B in frame =(d,0,0) is th

translation vector, and the rotation matrix 

( )

( )
0

0L v Lv round k y v= +⎪⎩

Similarly, for

( )R R s R

where pR=[XR YR ZR]  is the position vector of R, dR e 

( )R R R R, ,α β φ=Ω Ω with α , β =−β0 and 

lation between the right camera coordinates and the world 

coordinates are given by 

R R

φR=−φ0 being the Euler angles of pan, tilt and roll of frame R, respectively. Using 

(3.1-1) and (3.1-7), the re

R RR

R RR

x Xf
y YZ

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (3.1-8) 

where 

( ) ( ) ( ) ( )11 0 0 12 0 0 13 0 0, , , , , ,R s R s R s Rx X d Y Zω α β φ ω α β φ ω α β φ= − − − + − − + − −  

( ) ( ) ( ) ( )21 0 0 22 0 0 23 0 0, , , , , ,R s R s R s Ry X d Y Zω α β φ ω α β φ ω α β φ= − − − + − − + − −  

( ) ( ) ( ) ( )31 0 0 32 0 0 33 0 0, , , , , ,R s R s R s RZ X d Y Zω α β φ ω α β φ ω α β φ= − − − + − − + − −  

Accordingly, the relation between image coordinate of frame R and world coordinates 

can be express as  

  
L u Lu round k x u⎧ = +⎪

⎨  (3.1-9) 

 the disparity of B between the left image 

( )

( )
0

0L v Lv round k y v= +⎪⎩

Since the angles β0 and φ0 are small, the absolute value of the terms ω12, ω21, ω23, ω32 

for both the left and the right frames are usually much smaller compared to the other 

terms. Further define stereo disparity, usd, as
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frame and right image frame, expressed as  

sd L Ru u u= −  (3.1-10) 

whic

osition vector of B in the left and right 

camera frames are

L

R  (3.1-12) 

h will be applied to the determination of the depth of B. 

In the HVS, if two cameras are placed precisely in parallel, then the pan, tilt, and 

roll angles between these two cameras are zeros, i.e., αL=αR =0, βL =βR=β0 =0, and φL 

=φR=φ0=0. From (3.1-4) and (3.1-7), the p

 respectively obtained as 

L sp p d= −  (3.1-11) 

R sp p d= −

with L R I=Ω =Ω . Based on the same process from (3.1-5) to (3.1-9), the disparity is 

found as  

( ) ( )sd L R u L u Ru u u round k x round k x= − = −  (3.1-13) 

Since the term on the right can be approximated as  

)( ) (u L u R

L L R R
uL u R

L R

k k
Z Z

≈ −

round k x round k x
f X f X

−
 (3.1-14) 

where ZL= ZR= Z, the disparity can be written as  

uL
sd L Ru u u L L u R R Rk f X k f X

Z
−  (3.1-15) 

Rearranging it leads to 

= − ≈

uL L L u R R R

sd

Z
u

k f X k f X−
≈  (3.1-16) 

which gives the depth of B after usd, XL, XR, fL, fR, kuL, and kuL are obtained. In general 

case, for arbitrary object point, it is hard to obtain the XL and XR values. Therefore, the 

traditional depth computation is usu se er t ssumption that both cameras 

have the sam

ally u d und he a

e focal length, i.e., = = , and then (3.1-16) can be 

simplified as 

uL Lk f u R Rk f uk f
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( ) ( )2u L R uuL L L u R R R k f X X k f dk f X k f XZ
u u u

−−
≈ = =  (3.1-17) 

where X

sd sd sd

cameras. Clearly, with (3.1-17), only 

 and usd are required to find the depth Z. 

3.2

e used to train the system 

for elim

 training algorithm, which is the most commonly adopted for 

MLP

L−XR=2d is the separation of two uk f , 

d

 

.2 ANN depth detection algorithm 
Stereo pair obtained from two cameras can be utilized to compute the depth of a 

point by using the traditional depth computation introduced in previous section. 

However, to apply the computation, parameters of each camera need to be 

experimentally obtained in advance. Therefore, ANN can b

inating the complicate computation process.  

It is well known that multilayer neural networks can approximate any arbitrary 

continuous function to any desired degree of accuracy [14]. A number of investigators 

have it for different proposes in stereo vision. For example they have been used for 

camera calibration [15], establishing correspondence between stereo pair based on 

features [16] and generating depth map in stereo vision [12][15]. In this thesis, a feed 

forward neural network was used for depth estimation. The ANN computation system 

doesn’t need to calibrate the cameras in HVS. This can be very helpful in rapid 

prototyping application. The proposed thesis employs a Multi-Layer Perceptron (MLP) 

network trained by BP

 network. 

In the problem, the thesis proposed a multilayer ANN model because camera 

calibration problem is a nonlinear problem and cannot be solved with a single 

network [17]. Further, according to the neural network literature [18] more than one 

hidden layer is rarely needed. The more layers that a neural network have, the more 

parameter values need to be set because the number of neurons in each layer must be 
 18



determined. Therefore, to reduce the number of permutations, a network with one 

hidd

ctual depth, after training; 

give the world coordinates for any matched pair of points. 

 

en layer was selected. 

The network model had been used in Fig. 3.4 for simulation consists of four 

input neurons, five hidden neurons and three output neurons. The input neurons’ 

corresponding to the image coordinates of matched points found in the stereo images 

(ul, vl) and (ur, vr). These points are generated by the same world point on both images 

and formed the input data for the neural network. The output neurons corresponding 

to the world coordinates of a point which are mapped as (ul, vl) and (ur, vr) on the two 

images. The network is trained in an interesting range of a

 

Fig. 3.4 ANN model used for this thesis  

The algorithm requires training a set of matched image points whose 

corresponding world point is known. The set of matched points and the world 

Y 

vr

ur

Input layer Output layer  

ul

vl

Hidden layer 

Z 

X 
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coordinates thus obtained and formed the training data set for the ANN. Once the 

network is trained, we present it with arbitrary matched points and it directly gives us 

the d

 thesis) will be issued in next Chapter for getting more 

precise detection result.  

 

epth corresponding to the matched pair. 

The main problem to using the MLP network is how to choose optimum 

parameters. Presently, there is no standard technique for automatically setting the 

parameters of MLP network. That is to say, the best architecture and algorithm for the 

problem can only be evaluated by experimentation and there are no fixed rules to 

determine the ideal network model for a problem. Therefore, experiments were 

performed on the neural network to determine the parameter according to its 

performance. Parameters with the number of neurons in the hidden layer (one hidden 

layer is employed in this
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Chapter 4  
Experimental Results and Discussion 

4.1 Experimental Settings 
The board consisting of a set of grid points is placed in front of the HVS for 

depth detection as shown in Fig.4.1 and Fig.4.2, one for the left camera and the other 

for the right. With the use of these two cameras, the HVS captures images of a 

specified cross at various distances, ranging from 65 to165 cm. To verify the 

usefulness of the proposed ANN depth detection algorithm, the experiment is 

implemented by changing the distance Z between the HVS and the board, where Z 

starts from 65 cm to 165 cm at an increment of 10 cm. 

In the next section, there are different cases used to show the restriction of 

traditional depth detection algorithm and the flexibility and features of the ANN depth 

detection algorithm proposed in the thesis. 
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Fig. 4.1 The board at Z=105cm captured form left camera 

 

 
Fig. 4.2 The board at Z=105cm captured form right camera 
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4.2 Experimental Results 

4.2.1 Restrictions on Traditional depth detection 

algorithm 
It is known that the traditional depth detection algorithm (3.1-17) is only suitable 

for the case that both cameras have the same focal length and their optic axes are 

parallel. However, in practical situation, the two cameras of an HVS generally have a 

little difference in their focal length or a little deflection between their optic axes. As a 

result, (3.1-17) is inappropriately used to detect the depth of a scene. To show these 

restrictions on an HVS, experiments will be set for demonstration. 

The tradition depth detection algorithm (3.1-17) is derived from (3.1-16) under 

the assumption that  and uL L u R Rk f k f= 2 Ld X X R= − . Here, let’s find the real values 

of  and  to see whether they are the same or not. For simplicity, define 

 and  and let 

uL Lk f u R Rk f

L uLk fΦ = L R RR uRk fΦ = 2 Ld X X= − , i.e., the two optic axes are in 

parallel. Then, (3.1-16) becomes 

( ) ( )
( )

       
        

        2

sd uL L L u R R R

L L R R

L L R L R

L L R R

u Z k f X k f X
X X

RX X

d X

Φ Φ
Φ Φ

Φ Φ Φ

≈ −
= −

= − + −

= + −

XΦ
 (4.1-1) 

which can be further rearranged as 

( )
2

sd R L
L

u Z X
d
Φ Φ

Φ
− −

= R  (4.1-2) 

where the baseline 2d is fixed. Next, let’s show the way to calculate  for the left 

camera in the HVS. By setting the shortest focal length for each camera, which is 

fixed but not exactly known, two images are obtained in 

LΦ

Fig. 4.5 for Z=95 cm and 

2d=10.5 cm. To calculate , the term LΦ ( )R L RX Φ Φ−  in (4.1-2) has to be eliminated. 

By choosing the same 12 points in both images Fig. 4.5 (a) and (b), enclosed in the 
 23



dashed square, the addition of ( )R L RX Φ Φ−  of these twelve points will vanish when 

they are vertically symmetric to the center line lR in the right image. Hence,  

( )12

1

1
12 2

sd i
L

i

u Z
d

Φ
=

= ∑  (4.1-3) 

where (usd)i is the disparity of the i-th point. Fig. 4.3 shows the result of ΦL for 

different distance Z from 45 cm to 105 cm to verify that ΦL is around the average 

value LΦ =142.918 with 0.24116% variation. In a similar way, the value of  

corresponding to the case of the shortest focal length, Z=85 cm and 2d=10.5 cm, can 

be obtained as 

RΦ

( )12

1

1
12 2

sd i
R

i

u Z
d

Φ
=

= ∑  (4.1-4) 

where the 12 points are chosen from the images shown in Fig. 4.6, vertically 

symmetric to the center line lL in the left image. Fig. 4.4 shows the result of ΦR for 

different distance Z. It is obvious that LΦ  is approximate to RΦ  with 0.27821% 

variation. Since LΦ  is indeed near to RΦ , the traditional depth detection algorithm 

(3.1-17) is applicable and adopts the average of LΦ  and RΦ  as kuf. 
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Fig. 4.3 ΦL for different distance Z from 45 cm to 105 cm 
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Fig. 4.4 ΦR for different distance Z from 45 cm to 105 cm 
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 (a) 

lR

(b) 

Fig. 4.5 The same 12 points using to calculate LΦ  for Z=95cm 

 

(a) (b) 

Fig. 4.6 The same 12 points using to calculate RΦ  for Z=95cm  

 

lL

P1

P2

P1

P2

(a) 
(b) 

Fig. 4.7 Two adjacent points P1 and P2 in the center line of the training area for Z=135 
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Human eyes always focus on the center of entire eyeshot. Based on this 

characteristic, two adjacent points P1 and P2 in the center line of the training area, 

within eyeshot center of HVS, on the experimental board was shown in Fig. 4.7 are 

chosen as the testing points. P1 and P2 used to acquire test the error between depth 

detection result and actual depth. 

The average error is computed by mean absolute error that can be written as 

 ˆ
mae mean Z Z⎡= −⎣

⎤
⎦           (4.1-5) 

where ema is the mean absolute error of the network. Z and Ẑ  denote the depth that 

is actually measured and the corresponding depth given by the network respectively. 

Therefore, to represent distinct situation of ema, four different conditions are schemed 

as shown in the Fig. 4.8 to Fig. 4.11. The first case represent two cameras of HVS are 

placed in parallel with the same focal length. The second case is respect to distinct 

focal length. The third case is respect to insignificant deflection between optic axes of 

two cameras. And for the last case distinct focal length and insignificant deflection are 

included. 
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Case I 

65 75 85 95 105 115 125 135 145 155 165
-10

-8

-6

-4

-2

0

2

4

6

8

10
Traditional depth computation error plot(caseI),  (Error range: 0.017387%~1.7834%)
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Fig. 4.8  of two cameras placed in parallel with the same focal length avee

Case II 
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Fig. 4.9  of two cameras with distinct focal length avee

Case III 
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Fig. 4.10  of two cameras with insignificant deflection between optic axes avee
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Case IV 

65 75 85 95 105 115 125 135 145 155 165
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Traditional depth computation error plot(caseIV),  (Error range: 155.1946%~2653.9037%)

(cm)

(%
)

 
Fig. 4.11  of two cameras with distinct focal length and insignificant 

deflection 

avee

These figures show that the ema of the actual depth range in 65 to165 cm of case I 

is between 0.017387% and 1.7834%, case II is between 15.1465% and 18.9796%, 

case III is between 58.3189% and 1145.9954% and case IV is between 155.1946% 

and 2653.9037%. The maximum of percentage error results of these case are greater 

than 15% except case I. This is mean that the algorithm only is used in the situation 

similar to case I, or else need to rewrite the formula with more parameter to fit all 

situation able to appear.  
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4.2.2 Flexibility of ANN Depth Detection Algorithm 
The existence of restrictions on Traditional depth detection algorithm is already 

confirmed and shown in previous subsection. In order to unrestricted, the ANN depth 

detection algorithm proposed in this thesis. 

The ANN architecture for depth detection will evaluate by experimentation. Here, 

the number of neuron in the output layer need to be decides first. One case is three 

neurons which respectively corresponding to the world coordinates (X, Y, Z) of the 

world object point in the output layer and another one is just one neuron for depth Z. 

The case IV in the previous subsection is used to treat as the general case in the 

problem. The training data of the neural network is the same 12 points in left and right 

of each image, with different distance Z from 65cm to 165cm at an increment of 20cm. 

To check the accuracy of the trained network, we presented the network with 

stereo-pair points that were not completely included in the training set but were from 

within our range of interest of distance. The testing data is the two same points; they 

are adjacent, as introduced in the previous subsection in the left and right image with 

different distance Z from 65cm to 165cm at an increment of 10cm. After the training 

process had finished, each neural network is tested with the training and testing data 

sets.  

Fig. 4.12 shown the ema in each depth simulated from the net that consists of four 

input neurons, five hidden neurons and three output neurons. As the diagram indicates, 

the ema ranges from 0.48455% to 2.4771%. The maximum ema, 2.4771%, represents 

the error of its corresponding net. Each different number of neuron creates ten distinct 

nets and the ema of ten nets shown in Fig. 4.13 with five hidden neurons. The average 

of ema from ten nets with the same number of neurons Hn in hidden layer, ema_Hn, 

represent the error of Hn neurons where Hn starts form 1 to 10. Fig. 4.14 and Fig. 4.15 
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show each ema_Hn with one and three output neurons respectively. It is clearly to find 

that the error range of one output neuron is always greater than three output neurons. 

For accuracy, the three output neuron is chosen in the proposed architecture. 
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Fig. 4.12 ema in each depth simulated from the net  

 32



1 2 3 4 5 6 7 8 9 10
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

training net

%

BP(XYZ) minimun error=2.2748% (neural no.=5)  Average=2.9542%, Variance=0.23892%

 

 

Average

 

Fig. 4.13 ema of ten nets with five hidden neurons 
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Fig. 4.14 Each ema_Hn with one output neuron 
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Fig. 4.15 Each ema_Hn with three output neurons 

After decide the number of output neuron, the number in the hidden layer is 

proceeded to be resolved. From Fig. 4.15 also tells us that the best choice for neuron 

number in the hidden layer in the problem is five. Therefore, we may reasonably 

conclude that the better MLP network architecture for detecting depth should be 

consists of four input neurons, five hidden neurons and three output neurons. 

In order to eliminate the net that doesn’t train the training data successfully, a 

threshold value T of ema from training data need to be set. If the ema form training data 

of the net is large than T, the net will not be enrolled. The setting value H must be 

large than the ema from training data such that the network could. 

The error results can be seen for different case introduced in subsection from 

proposed net is shown from Fig. 4.16 to Fig. 4.19. They can be noted that even in the 

worst case, the error in depth computation was still well below 4%. 
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Case I 
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Fig. 4.16 Each ema_Hn from proposed net of Case I  

Case II 
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Fig. 4.17 Each ema_Hn from proposed net of Case II 
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Fig. 4.18 Each ema_Hn from proposed net of Case III 

Case IV 
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Fig. 4.19 Each ema_Hn from proposed net of Case IV 

The training data is obtained from stereo pair manually. The reason for 

decreasing the number of inputs was to determine whether the desired depth values 

could still be achieved with acceptable accuracy. Therefore, if the training data is only 

obtained from Z=65 and 165cm, the testing error average is 53.0081% as shown in 

Fig. 4.20. Fig. 4.21 and Fig. 4.22 are shown the testing error of training data is 

obtained from Z=65, 115, 165cm and Z=65, 95, 135, 165cm respectively. The Fig. 

4.22 indicates that the training data with four distinct depths can get the result with 

error around 5%. 
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Fig. 4.20 The testing error of training data is obtained from Z=65 and 165cm 
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Fig. 4.21 The testing error of training data is obtained from Z=65, 115, 165cm  
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Fig. 4.22 The testing error of training data is obtained from Z=65, 95, 135, 165cm  

The algorithm is different form traditional detection depth algorithm in the sense 

that no extrinsic or intrinsic camera parameters are found for any of the camera. The 

system is trained such that it learns to directly find the depth of objects.  
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Chapter 5 
Conclusion 

The proposed algorithm in this thesis has shown that it is possible to use a neural 

network to compute actual depth with good accuracy. The thesis used an ANN to train 

the system such that, when the system is presented with a matched pair of points, it 

automatically computes the depth of the corresponding object point. The algorithm 

differs from traditional depth detection algorithm to the problem. That is, there are 

restrictions for using Traditional depth detection algorithm and the network is trained 

to compute the correct depth of two matched points without any calibration. The 

algorithm that is used in this thesis is very simple in concept, independent of the 

camera model used and the quality of image obtained and yields very good results. 

The experimental results in the thesis show that an acceptable accuracy can be 

obtained but it seems that is not very easy to reach high accuracy by using only neural 

networks. Neural networks have a good generalization capability in the range that 

they are trained. 

If the depth of the world object can easy be obtain from the HVS, the HVS can 

be applied to an autonomous mobile robot using stereo vision for navigation, real time 

track nearest object in front region or locate the interesting object. 

The future work for the learning algorithm is to simulate human learning 

behavior. Just like human learning structure, the learning network will learn in turn 

stroke by stroke, not in case of learn once for all.  
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