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Abstract
The m-electronic structures and optical absorption spectra of a single-layer graphene
in spatially modulated magnetic and electric fields are studied by the tight-binding
model and gradient approximation. For modulated magnetic fields, they could
strongly affect the low-energy electronic properties, i.e., the dimensionality, energy
dispersions, extra band-edge states, asymmetry, state degeneracy, and anisotropy of
energy bands. There are partial flat bands at Ez=0 and one-dimensional parabolic
bands at others. The two kinds of bands make density of states (DOS) exhibit a
delta-function-like structure and asymmetric prominent peaks, respectively. Each

sp

,'s) band-edge states, and

parabolic band owns one original (k;”) and four extra (k

their energy dependences on the period and strength are investigated in detail. In the

optical absorption spectra, the absorption peaks originating in k® and k;”'s obey

different selection rules because their, wave functions present different features. It is
noted that the anisotropic absofption spectra are induced by different modulated
directions and electric polarization directions. For modulated electric fields, they
could drastically change the low-frequency electronic and optical properties. Each

energy band displays oscillatory energy dispersions and several band-edge states near

k;”. The doubly degenerate parabolic bands become nondegenerate. DOS shows

many prominent asymmetric peaks mainly owing to the band-edge states. The finite
DOS at Er =0 means that there are free carriers, i.e., a modulated electric field could
change a semiconducting graphene into a semimetallic one. The optical absorption
spectra demonstrate rich peaks resulting from band-edge states, and reveal the
anisotropy in the modulated direction. Such absorption peaks could not be ascribed to

an obvious selection rule.
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Chapter 1
Introduction

The bulk graphite is extensively studied in both theoretical calculations [1-4] and ex-
perimental measurements [5-9]. Recently, few-layer graphenes with two-dimensional (2D)
hexagonal symmetry and nanoscaled thickness have been produced by the mechanical fric-
tion [10,11] and thermal decomposition [12,13]. Such systems are very appropriate in
studying 2D physical properties. They have aroused a lot of investigations on band struc-
tures [14-31], electronic excitations [32-35], phonon [36], transport properties [37-44], and
optical spectra [14,45-51].

The geometric symmetry configurations have a profound influence on the electronic
properties of few-layer graphenes. The honeyecomb structure causes a single-layer graphene
to exhibit two linear bands intersecting at the Fermilevel £ = 0. The low-energy bands
could be described by the fermion Dirae equation [16]. Energy bands are isotropic at low
energy (< 0.5 eV) [1], and so are the low-frequency physical properties (e.g. Coulomb
excitations) [32,34]. The vanishing density of states (DOS) at the Fermi level means that a
graphene monolayer is an exotic zero-gap semiconductor. The massless Dirac electrons have
been examined by using a combination of optical microscopy, scanning electron microscopy
and atomic-force microscopy [11], and by the angle-resolved photoelectron spectroscopy
[52].

The external electric [10,11] and magnetic fields [10,11,13,14,29,31,45,47,51] strongly
affect the electronic properties of a graphene monolayer. A uniform perpendicular magnetic

field makes the low-frequency energy bands become the dispersionless Landau levels (LLs),



and thus induces the novel half-integer quantum Hall effect [11,37]. The low-energy LLs
can be represented by a simple square-root form F,, \/|n|—&] (n the integer quantum and
By the field strength) [16,53]. The dependence on By has been identified by the magneto-
optical experiments of cyclotron resonance [47]. Meanwhile, an inhomogeneous magnetic
field might also strongly influence the essential physical properties. Haldane, for example,
concluded that a 2D graphene could exhibit magnetoconductance in the presence of a
vanishing net magnetic field [54].

There are several studies on the optical absorption spectra of a graphene monolayer.
The low-energy absorption spectra do not exhibit any absorption peaks by the theoretical
prediction [14], which is dominated by the density of states. On the other hand, a uni-
form perpendicular magnetic field could lead to many delta-function-like absorption peaks
originating in LLs at low energy. Fhese peaks.result, from the vertical excitations between
the nth ((n + 1)th) occupied LLs and the (7 + 1)tk (nth) unoccupied LLs. Such peaks
obey the specific selection rule |An| = T-because the wave functions (¥,,’s) own the spatial
symmetry configuration [16]. W, is characterized by the product of the nth order Hermite
polynomial and Gaussian function, as seen in a two-dimensional electron gas (2DEG). The
optical selection has been confirmed by the far infrared transmission experiments [45].

The physical properties of a 2DEG in the presence of a spatially modulated magnetic
field have been attracted numerous experimental [55-58] and theoretical [59-67] investiga-
tions. These works primarily focus on the transport properties [55-57,59,60], energy bands
[61-63], electronic excitations [64-67], and optical spectra [58]. The transport measurements
reveal the oscillatory magnetoresistance [55,56]. Energy bands of a 2DEG in the absence

of external fields have parabolic energy dispersions. A periodic magnetic field results in



drastic changes in the state degeneracy, band-edge states, and curvatures. In contrast,
only few examine the physical properties of a single-layer graphene under a modulated
magnetic field. Given the gap, we are motivated to investigate the magnetoelectronic and
magneto-optical properties of a graphene monolayer in a modulated magnetic field.

The purpose of this dissertation is to investigate how modulated fields affect the physical
properties of a single-layer graphene. At first, for modulated magnetic fields, the magne-
toelectronic properties are calculated by the Peierls tight-binding model. The influence of
such fields, including the energy dispersions, reduction of dimensionality, creation of extra
band-edge states, change of state degeneracy, anisotropy at low energy, and asymmetry
of energy bands, are studied (Chapter 2). Next, after obtaining the magnetoelectronic
properties, the magneto-optical absorption spectra are figured out by the gradient approxi-
mation [14,68-70]. The characteristics of wave funétions, and the dependence of absorption
peaks on the period, field strength, modulation direction, and electric polarization direction
are discussed in detail (Chapter 3).. In;addition to . modulated magnetic fields, the effects
of modulated electric fields on the electronic and optical properties are further studied
(Chapter 4). Finally, chapter 5 presents the summary and future research directions. The
abstracts of chapters 2-4 are as follows.

The subject of chapter 2 is “Electronic structure of a two-dimensional graphene
monolayer in a spatially modulated magnetic field: Peierls tight-binding model”.
The magnetoelectronic properties of a 2D monolayer graphene are investigated by the
Peierls tight-binding model. They are dominated by the period, strength, and direction
of a spatially modulated magnetic field. Such a field could induce the reduction in di-

mensionality, change of energy dispersions, anisotropy at low energy, composite behavior



in state degeneracy, extra band-edge states, and asymmetry of energy bands. There are
partial flat bands at the Fermi level and 1D parabolic bands at others, which make density
of states exhibit delta-function-like structure and asymmetric prominent peaks. Energies
of the extra band-edge states strongly depend on the period, while those of the original
band-edge states exhibit little dependence. Both of them grow as the strength increases.
The modulated and uniform magnetic fields differ from each other in energy dispersion,
state degeneracy, and dimensionality. Important differences between a monolayer graphene
and a 2D electron gas are also found.

The subject of chapter 3 is “Low-frequency magneto-optical excitations in a
graphene monolayer”. The low-frequency optical excitations of a monolayer graphene
in a periodic magnetic field are calculated by the gradient approximation. The original
and extra band-edge states make the optical-absorption spectra exhibit a lot of asymmetric
prominent peaks, which, respectively, lead to the principal peaks and subpeaks. The two
kinds of peaks obey two different selection rules-because their wave functions present differ-
ent features. The intensity, frequency, and ' number of the absorption peaks are related to
the period, strength, direction of a modulated magnetic field, and the electric polarization
direction. The anisotropic absorption spectra are induced by the different modulated di-
rections and electric polarization directions. The above mentioned results could be verified
by the optical measurements.

The subject of chapter 4 is “Electronic properties and optical absorption spectra
of a graphene monolayer in the modulated electric field”. The electronic structure
and optical absorption spectra of a monolayer graphene in the presence of a modulated

electric field are investigated by the tight-binding model and gradient approximation. The



low-energy electronic properties and optical absorption spectra are strongly affected by the
period, field strength, and modulated direction. Such a field strongly influences the energy
dispersions, state degeneracy, dimensionality, band-edge states, and asymmetry of energy
bands. It should be noticed that there are many extra Fermi-momentum states at Er = 0.
The density of states (DOS) exhibits many prominent asymmetric peaks mainly owing to
the band-edge states. The finite DOS at the Fermi level means that there are free carriers,
i.e., a modulated electric field could change a semiconducting graphene into a semimetallic
one. The dependence of the energies related to the band-edge states on the period and field
strength is investigated in detail. The optical absorption spectra display rich peaks and
they vanish at w = 0. Such absorption peaks could not be ascribed to an obvious selection
rule. In addition, the high-frequency energy bands are hardly affected by the modulated
electric potential, and neither aresthe DOS-and optical absorption spectra. It is worth
noting that the electronic properties and optical absorption spectra could show anisotropic
features in the different modulated directions:~The predicted results could be verified by

the experimental measurements.
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Chapter 2

Electronic structure of a two-dimensional graphene monolayer in

a spatially modulated magnetic field: Peierls tight-binding model
2.1 Introduction

Condensed-matter systems, such as diamond, layered graphenes, carbon nanotubes, car-
bon tori, Cgp-related fullerenes, and carbon onions, are purely made up of carbon atoms.
Such systems have very special symmetric configurations, and their dimensionalities vary
from 3D to 0D. They could exhibit rich electronic properties, e.g., a wide-gap diamond,
a semimetallic bulk graphite, a zero-gap monolayer graphene, a metallic armchair carbon
nanotube, and a small-gap nonarmchair carbonrnanotube. Recently, few-layer graphenes
with 2D hexagonal symmetry and nanescaled thickness could be produced by controlling
film thickness with single-atom aecuracy“f1]. A lot/ of researches have been strongly mo-
tivated, such as growth [2], phonon*[3};. band structure [4-7], electronic excitations [8-11],
optical spectra [12,13], and transport properties [14-20]. These experimental [14-18] and
theoretical [19,20] studies show that they display the novel quantum Hall effect.

A 2D monolayer graphene owns linear bands intersecting at the Fermi level Fr = 0.
Energy bands are isotropic at low energy (<0.5 eV) [21], and so are the low-frequency
physical properties (e.g., Coulomb excitations) [8,10]. They produce a vanishing density of
states at Frp = 0, which makes a monolayer graphene an exotic zero-gap semiconductor.
The two important characteristics, isotropy and semiconductor, originate from the hexag-

onal symmetric configuration. Electronic properties are completely changed by applying

12



a uniform perpendicular magnetic field. Most of energy bands become the dispersionless
Landau levels. The effective-mass model predicts that energies of the low Landau levels are
proportional to the square root of field strength and quantum number [22]. These theoret-
ical predictions have been verified by experimental measurements on transport properties
[16] and optical spectra [12]. An inhomogeneous magnetic field might also strongly affect
the essential physical properties. Haldane first investigated whether a 2D graphene could
exhibit the special magnetoconductance in the presence of a vanishing net magnetic field
[23]. In this work, we mainly focus on the effects of a periodic magnetic field on electronic
properties.

There are numerous experimental [24-27] and theoretical [28-36] researches for a 2D
electron gas (2DEG) under a spatially modulated magnetic field. These works primarily
analyze the transport properties [24-26,28;29],«energy bands [30-32], electronic excitations
[33-36], and optical spectra [27].= The transport measurements [24,25] manifest the oscil-
latory magnetoresistance. Energy bands ‘of a*2DEG have parabolic energy dispersions.
A periodic magnetic field leads to the drastic changes in electronic properties, e.g., the
changes in state degeneracy, band-edge states, and curvatures.

The Peierls tight-binding model is used to calculate the electronic structure of a 2D
graphene in a spatially modulated magnetic field. The Hamiltonian is a huge Hermitian
matrix for a large modulation period (21000 A). The numerical techniques are developed
to attain a band-like Hamiltonian matrix. The dependence of electronic properties on the
direction, period, and strength of the modulated magnetic field would be investigated in
detail, e.g., energy dispersions, state degeneracy, band-edge states, symmetry of energy

bands, and density of states. A comparison with those of a uniform magnetic field is made.
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The important differences between a monolayer graphene and a 2DEG are also discussed.
This paper is organized as follows. The band-like Hamiltonian matrix in a periodic
magnetic field is derived in Sec. II. The main characteristics of the m-electronic structures

are discussed in Sec. III. Finally, Sec. IV contains concluding remarks.

2.2 Peierls Hamiltonian band matrix

The tight-binding model with nearest-neighbor interactions is used to calculate the
m-electronic structure of 2p, orbitals. In the honeycomb structure of a 2D single-layer
graphene in the absence of an external field, there are two kinds of carbon atoms, a and
b, in a primitive unit cell. The wave function consisting of the two linear tight-binding
functions from periodic 2p, orbitals is expressed as |Vyx) = Cuklax) + Cik|bk), where
lax) = Zz el R

2 x 2 Hermitian matrix . The site energies aré vanishing (( a;x|Holax) = (bu|Ho|bix) = 0),

) and [bx) =3 ¢® R | hagde The Hamiltonian built from |ay) and |by) is a

and the nearest-neighbor hopping-integral is given by
(bjr|Holaac) = yoexp[ik - (R; — R;) ], (2.1)

where 7(=2.56 eV) [21] is the atom-atom interaction between two neighboring atoms at
R; and R;.

A monolayer graphene is assumed to exist in a spatially modulated magnetic field B =
Bsin(Kx)z along the armchair direction (the x-axis in Fig. 2.1(a)), and the periodic length
is [p = 2r /K = 3V'Rp, where parameter Rp is useful in describing the dimensionality
of the Hamiltonian matrix. The magnetic flux, product of the field strength and the
hexagonal area in the unit of flux quantum (@5 = hc/e = 4.1356 x 1071 [T/m?]), is ® =
(3v3BV?/2)/®y. ¥'=1.42 A is the C-C bond length. The modulated magnetic field that
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leads to the Peierls phase is characterized by the vector potential A = —[B cos(Kz)|/K7Y.

The nearest-neighbor hopping integral becomes
<bjk|HB|aik> =% exp{z[k . (Rz — RJ) + — A - dr]} (22)

For three nearest-neighbor atoms, their hopping integrals are, respectively, t1x(n) = vy exp[
(ikyb' /2 + ik, /3 /2) + G, ta(n) = o exp| (ikb' /2 — ik, /36 /2) — G, ], and tz(n) =
Yo exp(—ik,b"), where G, = —i[6(Rp)*®/x]cos[r(n — 5/6)/Rg|sin(r/6Rp)]|. The mod-
ulation period causes the periodic boundary conditions along the z-axis so that the cor-
responding Peierls phase is periodic in a period 2Rg. An enlarged rectangular unit cell
includes 4Rp carbon atoms. The wave function and the Hamiltonian matrix element are,

respectively, given by

2Rp

i) = Coiglaag) + G buse); (2.3a)
n=1

<bmk|HB|ank> - [tlk(n) == t2k(n)]6m,n + t3k(n)5m,n—1- (23b>

cho= C’ZJ 2R5 and Chic = C’lﬁj 215 are derived because of the periodical boundary condition.
To solve the complicated calculations of the huge Hamiltonian matrix, the base functions
are chosen as the following sequence {|aik), |b2rsk), |01k), |G2Rrk)s |a2k)s |D2rp—1k)s |b2k),

|aorg-1x)s -+ |GRs—1k)s [DR12K), |PRE-1k), |GRp+2K)s [@REK)s [DRp+1K),s [PREK); [GRE 1K)}
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The Hamiltonian matrix could be expressed as a 4Rp x 4Rp band-like Hermitian matrix

0 ¢ pi O 0 0
g 0 0 pwry O 0
pr 0 0 0 q 0 0
0 psp, 0 0 0 q 0 0 | 2.4
¢ 0 0 0
q 0 Prp+
0 0 q

0 0 0 0 0 Prp1 ¢ 0
where p,, = t1x(n) + tox(n) and g = t3x. Because the range of k, is much smaller than that
of k, for a large Rp, it is sufficient just.to consider 1D energy dispersions along k,. That
is to say, a modulated magnetic field could effectively reduce the dimensionality by one.
The m-electronic structure strongly depéends on the direction of the modulated magnetic
field, mainly owing to the anisotrepic structure of a 2D monolayer graphene. For the
zigzag direction (Fig. 2.1(b)), the similar calculations could also be done. By the detailed
derivations, the three hopping integrals are ), (n) = 7 exp| (ik,\/30'/2 + ik b /2) + G'],
thi(n) = Yo exp[ (—ik, V3V /2+ik,b /2) — G _,], and t, (n) = o exp| (—ik,b') +G" ], where
G = —i[2(Rp)*®/3n] cos[r(n — 1/2)/Rp]sin(n/2Rp) and G” = —i[(2Rp®/3) cos[(n —

1)m/Rp]]. The Hamiltonian matrix element is further given by

(bmk|HBlank) = tllk(n)(sm,n-i-l + tgk(n)csm,n—l + ték(n)ém,n- (2.5)

With the base functions {’Cle), ’b2RBk>> ‘blk>7 |G,2RBk>, ’b2k>, |a2RB_1k>, \a2k>, ‘b2R3—1k>7 c.

brRs—1k), |aRg12k), [@RE—1Kk)s DR 12K), [ARsK), [PR5+1K), [DREK); [@Rs+1K) }, the 4Rp X 4Rp
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Y

(a) armchair

Y
(b) zigzag

Figure 2.1. The primitive unit cell of a monolayer graphene in the spatially modulated

magnetic field with period Rp along (a) the armchair direction and (b) zigzag direction.
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band-like Hamiltonian matrix for the zigzag direction is

0 Usg, VI 0 s3 0 0 0 0
U2R, 0 0  wvr, 0  sapz—1 O 0 0 0
Uy 0 0  somp, - 0 0
0 Usp, Ssr, O 0
S1 0 333—1 0
0 s, 0 Syt 26
0 0 Sk URg 0
0 0 . SRy 0 0 Vryt1
0 0 0 0  sgg-1 0 URp 0 0 URp
0 0 0 o 0 Sppi1 O Ugpi1  Ugg 0

where s, =t (n), u, = th (n) aid v, =t (n). The Hamiltonian matrices in Eqs. (2.4)

and (2.6), respectively, have two-and three independent matrix elements.
2.3 Magnetoelectronic properties

The unoccupied conduction bands (E¢’s) are symmetric to the occupied valence bands
(E¥’s) about the Fermi level Er = 0. Only the former are discussed in this work. We
first look at the low energy bands resulting from the modulated magnetic field with period
Rp = 1000 along the armchair direction. At B = 0, most of energy bands are parabolic
dispersions with the double degeneracy except two nondegenerate linear bands intersecting
at Er = 0 (the solid circles in Fig. 2.2(a)). There is only one band-edge state in each
energy band; furthermore, all the band-edge states are located at kI = 27/ 33V (the

original band-edge states). The modulated magnetic field leads to drastic changes in band-
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edge states and energy dispersions, as shown in Fig. 2.2(a) by the open circles at B = 20
T. The range of k,, where electronic states could exist, becomes large. The linear bands
are changed into partial flat bands at Er = 0. Also noted that this result is similar
to that of carbon nanotubes in magnetic fields perpendicular to the symmetry axis [37].
The doubly degenerate parabolic bands have weak energy dispersions or low curvatures at
kPP, and their number is largely reduced. Such effects suggest that a magnetic field could
make electronic states flock together. The modulation effects of B on parabolic energy
bands result in four extra band-edge states at k,”’s, the strong energy dispersions close to
k;P’s, and the destruction of the double degeneracy. The two extra band-edge states at
the left- and right-hand sites of kJ? might have different energies; that is, one side of the
parabolic bands might be asymmetric to the other about the original band-edge states.
Each parabolic band exhibits the €ompositesbehavior in state degeneracy, the single and
double degeneracies near k;? and kP respectively.

The number of subbands grows quickly as'state energy E° increases from zero. There
are many middle energy bands near E°'~"~4, as shown in Fig. 2.2(b). At B = 0, they
include complete flat bands at £ = 7, and parabolic bands at the others. Both are doubly
degenerate. The parabolic bands have a low curvature at kI? = m/ 24/30" and the high
curvature at k;” = 0 (not shown). Moreover, in the small or large k,, the modulated
magnetic field could destroy double degeneracy and create extra band-edge states. It
modifies the band curvatures at k7, and makes the complete flat bands change into the
partial flat bands.

The subband number decreases gradually with the further increase of state energy. The

high energy bands, as shown in Fig. 2.2(c) for B = 0, are parabolic dispersions with the
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double degeneracy and one band-edge state at k7 = 0. All the k? states remain unchanged
in the presence of B, as seen in low and middle energy bands. However, the modulated
magnetic field could reduce the number of subbands or widen the range of k,, produce the
extra band-edge states at k¥ # 0, and induce the composite behavior of the single and
double degeneracies.

The strength, period, and direction of the modulated magnetic field strongly affect the
electronic structure, as shown in Figs. 2.3(a)-2.3(b) for the low energy bands. The range of
partial flat bands increases with the increasing B, while their number and curvatures exhibit
the opposite behavior (Figs. 2.3(a) and 2.2(a)). These results further demonstrate that the
ability to flock electronic states is enhanced by the increasing field strength. The longer
the period is, the larger the effective range of k, is (Figs. 2.3(b) and 2.2(a)). The period
could alter state energies and curvatures ofiextra band-edge states at k;F’s. It is also worth
noting that k¥ = 27/ 3v/3V of the doubly degenerate parabolic bands is independent of
period and strength. When the spatially modulated direction is along the zigzag structure,
there are two partial flat bands at Er =0 and many parabolic bands at the others (Fig.
2.3(c)). The former are doubly degenerate; the later are fourfold degenerate near k¥ = 0
and doubly degenerate near k;P. That state degeneracy, subband number, k,’s of band-edge
states, and range of partial flat bands depend on the modulation direction directly reflects
the anisotropic characteristic of a graphene geometry. In addition, the similar effects could
also be found in moderate and high energy bands.

Density of states (DOS), which is closely related to essential features of the electronic
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structure, is defined as

dk,dk, T !
Dloy= Sy - 2.7
) /15th (2m)* 7 [EM(ky, ky) — w]? + T2 (2.7)

o,h=c,v

['(= 107* ~y) is a phenomenological broadening parameter. The integration on k, could
be roughly neglected because of the very small range of k.. The low-frequency DOS at
B = 0 is proportional to w, as shown in Fig. 2.4(a). It vanishes at w = 0 and has no
special structures. However, the modulated magnetic field leads to a symmetric delta-
function-like peak at w = 0 (inset in Fig. 2.4(a)) and considerable asymmetric square-root
divergent peaks. The former comes from the two partial flat bands at Fr = 0, and its
height grows with the increasing field strength. The latter are dominated by the band-edge
states of the 1D parabolic dispersions along Ey (Fig. 2.2(a)). The asymmetric pronounced
peaks could be further divided into .weak Subpeaks and strong principal peaks. They
are, respectively, due to the band-edge states at ky?’s and kIP. There are many pairs of
subpeaks, and each pair of subpéaks is associated with the asymmetry of the 1D parabolic
bands about the kI? states (discussed earlier in Fig." 2.2(a)). The number, frequencies, and
heights of the asymmetric prominent peaks are sensitive to the changes in the strength,
period, and modulation direction. The peak number decreases with the increase of the
strength, while the peak frequencies exhibit a different behavior (Fig. 2.4(a)). The number
of subpeaks increases as the period grows (Fig. 2.4(b)), while it is the other way around
as the frequencies of subpeaks increase. The main features of principal peaks have the
weak dependence on the period. When the modulation direction is orientated relatively
close to the zigzag structure, more principal peaks with lower frequencies are observed
(comparison between the heavy and light solid curves in Fig. 2.4(b)). Density of states
could display the high anisotropy even at very low frequency (w — 0 in the inset of Fig.
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2.4(b)). However, the low-frequency physical properties without B are anisotropic only for
w 2 0.25 v, e.g., electronic excitations and absorption spectra [9]. This result indicates
that the anisotropy of the low-frequency electronic properties could be induced by means
of a spatially modulated magnetic field.

The frequencies of prominent peaks in DOS deserve a closer investigation. Fig. 2.5(a)
shows the relation between the frequencies (ws,’s) of the first six subpeaks and the period
at B = 20 T. These peaks correspond to the extra band-edge states at the left-hand neigh-
borhood of kP (Fig. 2.2(a)). wy’s decline quickly as Rp increases. As to the frequencies
of principal peaks (w,,’s), their dependence on the period is minor for a sufficient large Rp
(z 1000), as shown in Fig. 2.5(b). Both wy,’s and wy,’s are largely enhanced by the in-
creasing field strength (Figs. 2.5(c) and 2.5(d)). There exists a special square-root relation
between w,, and B, i.e., w,, < v B+ In additiom, the low-energy flat Landau levels due to a
uniform magnetic field (By) also“exhibit the square-root dependence on the field strength
[22]. The band-edge state energieg are:closely related to the magneto-optical absorption
frequencies. The predicted results could be verified by the optical spectroscopy.

A uniform magnetic field differs from a spatially modulated magnetic field in the low-
energy magnetoelectronic structures. In terms of the ability in flocking electronic states,
the former is much stronger than the latter. A uniform magnetic field could make linear
or parabolic bands convert into the dispersionless Landau levels. Such levels are fourfold
degenerate for each k, state. All the Landau states could be regarded as the band-edge
states. They would exhibit zero-dimensional features, but not one-dimensional features.
For example, the magneto-optical absorption spectra display the symmetric and asymmetric

prominent peaks in cases By and B , respectively.
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The electronic structure of a 2DEG could be strongly affected by a spatially modulated
magnetic field [20-32]. It also displays the similar behaviors to a monolayer graphene,
such as the composite behavior in state degeneracy, creation of extra band-edge states,
and change of curvatures. However, there are three significant differences between a 2DEG
and a monolayer graphene. A 2DEG does not exhibit partial flat bands at zero energy.
Its magnetoelectronic structure is independent of the modulation direction. Moreover, the
wave vectors of extra band-edge states are approximately close to k, = 0 and hardly depend
on the state energy. The above-mentioned differences mainly come from the hexagonal

structure of a monolayer graphene.

2.4 Concluding remarks

In summary, the magnetoelectronic structure of a 2D monolayer graphene is studied
by the Peierls tight-binding model. “The specific base functions are chosen to solve a huge
Hamiltonian matrix. The strength;, period;and-diréction of a spatially modulated magnetic
field dominate the main features of electronic properties. Such a field could reduce dimen-
sionality by one, alter energy dispersions, cause anisotropy at low energy, induce composite
behavior in state degeneracy (the composite behavior of single and double degeneracies
for the armchair direction), produce extra band-edge states, and destroy the symmetry of
energy bands about the original band-edge states. Energies of the extra band-edge states
strongly rely on the period, while the opposite is true for those of the original band-edge
states. Both of them grow with the increase of the strength. Density of states owns many
asymmetric prominent peaks, mainly owing to the band-edge states in 1D parabolic bands.

The partial flat bands also make DOS display delta-function-like structures at the Fermi
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level. A spatially modulated magnetic field contrasts sharply with a uniform magnetic
field in energy dispersion, state degeneracy, and dimensionality. The important differences
between a monolayer graphene and a 2DEG arise from the hexagonal symmetry. They are
the existence of the partial flat bands at zero energy, dependence on the modulation di-
rection, and wave vectors of the band-edge states. The experimental measurements on the
magneto-optical absorption spectra could be utilized to examine the predicted electronic

properties.
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Chapter 3

Low-frequency magneto-optical excitations

in a graphene monolayer
3.1 Introduction

Recently, the few-layer graphenes have been produced by the mechanical friction [1, 2]
and thermal decomposition [3, 4]. They have attracted a lot of theoretical and experimen-
tal investigations on band structures [5-22], optical spectra [5, 23-29], electronic excitations
[30-33], phonon spectra [34], and transport properties [35-42]. It is very appropriate to use
these systems to study two-dimensional (2D) physical phenomena. A monolayer graphene
is an exotic zero-gap semiconductor with'a vanishing density of states (DOS) at the Fermi
level Er = 0, mainly owing to the hexagonal symmetry configuration. The massless Dirac
electrons have been inspected by-using a-¢ombination of optical microscopy, scanning elec-
tron microscopy and atomic-force mierescopy [2],-and by the angle-resolved photoelectron
spectroscopy [43]. The electronic properties of a monolayer graphene could be effectively
tuned by external electric [1, 2] and magnetic fields [1, 2, 4, 5, 20, 22, 23, 25, 29]. A uni-
form perpendicular magnetic field (By) creates many Landau levels (LLs) and thus induces
the novel half-integer quantum Hall effect [2, 35]. In this work, we mainly study the low-
frequency optical excitations of a monolayer graphene in a spatially modulated magnetic
field (B). The dependence on B (period, strength; direction) and the polarization of an
electromagnetic field is investigated. The comparison with the absorption spectra resulting

from By is also made.
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A 2D monolayer graphene owns many doubly degenerate parabolic bands except two
nondegenerate linear bands intersecting at Er = 0. Energy bands are isotropic at low
energy (< 0.5 eV) [44], and so are the other physical properties [5]. Moreover, there is only
one band-edge state in each energy dispersion. Electronic properties are strongly affected
by the uniform and periodic magnetic fields. The low-energy LLs due to By display the
novel dependence on the quantum number (n) and field strength (By); that is, their energies
obey the square root form F,, o \/W—&)‘ The dependence on By has been identified by the
magneto-optical experiments of cyclotron resonance [25]. Compared to a uniform magnetic
field, the ability of a periodic magnetic field in flocking electronic states together is weaker.
However, the latter could induce the rich magnetoelectronic structures [20]. The linear
bands are changed into the partial flat bands at Er = 0. The energy dispersions of the
low-energy parabolic bands around the original band-edge state would become weaker.
Each parabolic band shows four extra band-edge states and the composite behavior in
state degeneracy (the double and-single degeneracies at different wave vectors). The low-
energy bands depend on the modulated direction of B; furthermore, they belong to the
one-dimensional energy dispersions. The main features of magnetoelectronic properties are
expected to be directly reflected in optical excitations.

There are several studies on optical absorption spectra of a monolayer graphene. From
the theoretical prediction, the linear valence and conduction bands do not exhibit any
absorption peaks at low frequency [5]. This result is dominated by the DOS. On the other
hand, the low-energy LLs in a uniform magnetic field could lead to a number of prominent
symmetric absorption peaks [5]. Each peak comes from the vertical transition between

the occupied LL of n (n + 1) and the unoccupied LL of n + 1 (n). The magneto-optical
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excitations need to obey the specific selection rule |An| = 1, since the magnetoelectronic
wave functions (¥,,’s) own the spatial symmetry configuration. W, is characterized by the
Hermite polynomial, as seen in a 2D electron gas (2DEG). The optical selection rule has
been verified by the far infrared transmission measurements [23]. Whether |An| = 1 is
destroyed by a spatially modulated magnetic field will be examined in this work.

The Peierls tight-binding model, with the nearest-neighbor atomic interactions, is used
to calculate the m-electronic structure of a monolayer graphene in a periodic magnetic field
[20]. To explain the selection rules of optical excitations, the characteristics of magnetoelec-
tronic wave functions are analyzed in detail. The optical transition elements are evaluated
by the gradient approximation [5, 45-47]. This work shows that the magneto-optical ab-
sorption spectra present a lot of asymmetric pronounced peaks. Such peaks result from
the original and extra band-edge states of parabelic bands. Their characters are closely
related to the polarization direction and the strength, period and direction of B. There
exist some important differences for. the ‘absorption spectra in the presence of B and By.
The predicted results could be examined by the optical absorption spectroscopy.

In the next section, the m-electronic wave functions in the presence of a spatially mod-
ulated magnetic field are studied by the Peierls tight-binding model. In Sec. 3.3, the
magneto-absorption spectra are calculated at different polarization directions. Meanwhile,
the effects due to the field strength, period and direction are also discussed. Finally, con-

cluding remarks are presented in Sec. 3.4.

3.2 m-electronic wave functions

A monolayer graphene is assumed to exist in a periodic magnetic field B = Bsin(Kx)2
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along the armchair direction (the x-axis in Fig. 3.1(a)). The periodic length in a unit of
the lattice constant at B = 0 (3V) is Ig = 27 /K = 3V'Rp, where b/ = 1.42 A is the C-C
bond length. There are 4Rp carbon atoms in a primitive unit cell (2Rp a atoms and 2Rp
b atoms). The magnetoelectronic structure formed by the 2p, orbitals is described by the
4Rp tight-binding functions. |a,k) and |b,k) for m = 1,2..2Rp are, respectively, those
associated with the periodical a and b atoms. The 7-electronic wave function is expressed

as

2Rp—1 2Rp
) = D (A5 lawa) + Bs b)) + D (A2 ) + B bua)) s (3.1)
m=1 m=2

where o (e) represents an odd (even) integer. The superscripts ¢ and v indicate the unoccu-
pied conduction band and occupied,valence band; respectively. ASY (BSY) is the amplitude
of the tight-binding function due te.the a (b)-atoms: with odd indices. The Hamiltonian
matrix in the subspace spanned by the tight=binding functions is a 4Rp x 4Rp band-like
Hermitian matrix. Only the nearest-neighber atomic hopping integrals vy (=2.56 eV) [44]
is taken into account. The magnetic field would induce an extra Peierls phase between
two nearest-neighbor atoms at R, and R,,. Such a phase is defined as (2}%(: fR;’: A - dr,
where A = —Bcos(Kx)/K7 is the vector potential, and &g = h/e is the flux quantum.
To get the band-like Hamiltonian matrix, the 4Rp tight-binding functions are arranged
as the following sequence {|aix), |bargk), |D1k), |G2REK) s |Q2Kk)s [D2RE 1K), |D2k), |G2RE— 1K), - - -
larg—1k)s [DRp+2x), [DRE—1k), |@Rs+2K)s |@RsK)s [DRE+1k)s [DRSK); |@Rs+1K) }- By the detailed

calculations, the nonvanishing Hamiltonian matrix elements are

<bm/k|HB|CLmk> = [tlk(m) + tgk(m)]ém/,m + tgkdm/,m_l. (32)
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The three hopping integrals are, respectively, ti(m) = ypexp| (ik.b'/2 + ik,/3V'/2) +
Gm], ta(m) = ~oexp[ (ikb' /2 — ik, /3 /2) — Gy ], and tze = Yoexp(—ik,b') (G =
—i[6(Rp)*® /7] cos[r(m — 5/6)/Rg]sin(w/6Rp)). The similar equations could be obtained
for the periodic magnetic field along the zigzag direction.

The energy dispersions E°V (k,n)’s are obtained by diagonalizing the Hamiltonian,
where n represents the subband index measured from the Fermi level. The low-energy
bands are drastically changed by the modulated magnetic field, as shown in Fig. 3.1(b) at
Rp = 750 and B = 4 T along the armchair direction. The unoccupied conduction bands
are symmetric to the occupied valence bands about Er = 0. The dependence of energy
bands on k, is negligible compared with that on k,. A periodic magnetic field, with a suf-
ficient large period, could effectively reduce the dimensionality by one. The k,-dependent
energy bands exhibit partial flat pands atydsps= 0 and parabolic bands at others. Each
parabolic band owns one original band-edge state (kgp) and four extra band-edge states
(kP’s). The former is situated at the fixed“wave vector k?P = 2 /3+/3V, which is the same
with that in the B = 0 case [20]. However, the latter depend on the period and strength
of B. The parabolic bands close to kI? and k;P’s are, respectively, doubly degenerate and
nondegenerate. The very weak energy dispersions near kI” mean that the ability of the
periodic and uniform magnetic fields in flocking electronic states together is similar. Such
energy bands could be regarded as the quasi-Landau levels (QLLs), as indicated from the
characteristics of wave functions.

The main features of wave functions could be utilized to define the quantum number
of QLLs. Carbon atoms, with odd and even indices, make equal contributions to wave

functions. The tight-binding functions associated with these atoms in Eq. (3.1) have
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Figure 3.1. (a) The primitive unit cell of a monolayer graphene in a periodic magnetic
field with a period Rp = 750 along the armchair direction. (b) The energy bands for the

field strength B =4 T.
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the opposite amplitudes; that is, AS" = —A%Y and BSY = —BS”. Only discussing the
amplitudes ASY and BS' is appropriate in understanding the wave functions. We first
see the wave function of the lowest unoccupied QLL (n = 1 or n® = 0) at kIP. The
position-dependent AS and B¢, as shown in Figs. 3.2(a) and 3.2(g) by the solid circles,
mainly come from the 2p, orbitals centered at one-fourth (z; = a,,/2Rp = 1/4) and
three-fourths (xo = b,,/2Rp = 3/4) of a primitive unit cell, respectively. The positions
x1 and w9 correspond to the maximum field strength. The wave function of the lowest
unoccupied QLL is similar to that of the highest occupied QLL (n” = 0 by the open circles
in Figs. 3.2(a) and 3.2(g)). Their main difference lies in the interchange of the localization
positions of A%Y and BSY. Such interchange might include the sign change of the values.
The distribution width of the localization function (Ig), that is, the full width at half-
maximum, is comparable to the magnetie-length (\/%), e.g., lp ~ 200 Aat B=4T.
Also note that the two LLs at Ep = 0 due to a uniform magnetic field could display the
similar characteristics [22].

There are two important differences between the second and first (lowest) unoccupied
QLLs at kfP. The former, as shown in Figs. 3.2(b) and 3.2(h), is doubly degenerate.
Moreover, it is composed of two tight-binding functions centered at x; and zy. AS (BY)
has two subenvelope functions AS (1) (BS(x1)) and AS (xs) (B (23)) located at 1 = 1/4
and xo = 3/4, respectively. The oscillatory AS (z1) (BS (z2)) owns one zero point, while the
monotonic A¢ (z9) (B¢ (x1)) has none zero point. Their contributions to wave functions are
nearly comparable. The number of zero point (n), which stands for the spatial symmetry

of the carrier density, could be chosen to characterize the wave functions. The effective

quantum number (n¢) is defined by the larger number of zero point; that is, n® = 1
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is chosen for the second unoccupied QLL. Such a choice does not influence the specific
selection rules of the optical absorption spectra. In addition, the twofold degenerate QLLs
have the similar wave functions, their difference is only the sign change of the subenvelope
functions. By the definition of n¢ the first unoccupied QLL without zero point is thus
defined as the n® = 0 state. The number of zero point will become larger with the increase
of state energy, i.e., n¢ also increases gradually as the unoccupied QLLs are away from
Er = 0 (Figs. 3.2(a)~3.2(e), and 3.2(g)~3.2(k)). The nth unoccupied QLL owns two
modes of subenvelope functions with n = n — 1 and n = n — 2, respectively. That n¢
is just equal to n — 1 is very convenient in defining the unoccupied QLLs (Fig. 3.1(b)).
Furthermore, the second occupied QLL could also reveal the similar features to those in
the second unoccupied QLL, as shown in Figs. 3.2(f) and 3.2(1). They have the same
effective quantum number (n” = p¢ = 1) and:localization positions. Their main difference
is the same as that of n® = 0 case. The other nth occupied and unoccupied QLLs also
demonstrate the similar behavior. Accordingly, it is reasonable only to discuss the mth
unoccupied QLLs.

The monolayer graphene owns many low-energy dispersionless LLs in the presence of a
uniform perpendicular magnetic field. The wave functions of LLs could be represented by
the linear combination of those from the harmonic oscillator [7, 46]. After the well fitting,
the nth QLLs and LLs show the similar characteristics, e.g., the same oscillatory behavior,
effective quantum number, and distribution width. Such similarities imply that the wave

functions of the former could be approximately expressed as those of the latter. Therefore,
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A%Y and BSY of the nth QLL in Eq. (3.1) are written as

A% o ey (11) ; BSY o< e ™Yoy (25) for n = 1. (3.3a)
ASY o R [pe (21) £ Ppew_1 (2)] 5 BEY o 59 [ppen_1 (21) & @pew (22)] for 1 > 1.
(3.3b)
The subenvelope function ¢, () is the product of the nth-order Hermite polynomial and
Gaussian function [7, 46].

The wave functions would be strongly modified as the wave vectors gradually move
away from the original band-edge state. The wave functions at the left- and right-side
wave vectors around kP have the similar characteristics, and thus only the former are
discussed in the following part. For example, AS(zy) (BS(z1)) and AS(z2) (BS(xs)) of
the second unoccupied QLL at k; (indicated'in Fig. 3.1(b)) are centered at, respectively,
x1 = 3/10 and z5 = 7/10, as shown in Figs." 3:3(a) and 3.3(i). They still maintain the
same characteristics with those at kP, jwhile the distance between them (|z) — x5 = 2/5)
is shorter than that (|z; —zs| = 1/2).at k7. Atk, = ko, the doubly degenerate QLL is
going to separate into two subbands. z; ~ 7/20 and x5 ~ 13/20 are so close that A¢(x;)
(BS(xq)) and AS(zo) (BS(x2)) nearly overlap, as shown in Figs. 3.3(b) and 3.3(j). Besides,
one of the tight-binding functions has the opposite sign to that at ki, i.e., AS (BS) might
change its sign at some appropriate wave vectors. ks and k, are, respectively, the band-edge
states (k;P’s) of the higher and lower subbands. Their wave functions display the similar
behavior (Figs. 3.3(c) and 3.3(k); 3.3(d) and 3.3(1)). The second unoccupied QLL at k3 is
divided into two nondegenerate subbands, i.e., the 1a and 13 subbands. The subenvelope
functions of the la state, as shown in Figs. 3.3(c) and 3.3(k) by the solid circles, exhibit
more overlap behavior. It implies that there would be strong overlap in the subenvelope
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functions at k;P’s. Such a behavior would dominate the optical excitation strength. The
centered positions x; and x5 are close to half of a primitive unit cell, i.e., they correspond
to the nearly zero magnetic field strength. In other words, the carriers will move from
the position of the maximum magnetic field strength to that of the minimum magnetic
field strength. The 13 (the open circles in Figs. 3.3(c) and 3.3(k)) and la subbands have
the similar overlap behavior. However, AS(x;) (BS(x1)) and AS(zs) (BS(22)) of the former
display the stronger overlap than those of the latter. It results from the fact that k3 is the
extra band-edge state of the 13 subband, but not that of the 1a subband. Furthermore, the
two states reveal the different linear combinations of A¢(xy) (BS(z1)) and AS(z2) (BS(x2)).
AS (B:) of the 1o and 10 states could be roughly regarded as, respectively, the combination
of 1 (x1) — o (x2) (¢o (z1) + 1 (22)) and of 1 (21) + @o (z2) (o (1) — ¢1 (22)); that is,
they might show the different spatial symmetries. ‘['he wave functions of the extra band-
edge states have the dissimilar -characteristies to those of the original band-edge state.
Since the former exhibit the overlap. behavior; the localized feature of QLLs is thoroughly
destroyed at k,;P’s. Such properties would b€ reflected on the optical absorption spectra.
The wave functions of the 2« (23) subband (Figs. 3.3(g), 3.3(h), 3.3(0), and 3.3(p)) also
display the similar features as those of the la (13) subband, i.e., the similar localization
positions, linear combination, and the overlap behavior of the subenvelope functions. The
other nth o and [ subbands also present the similar characteristics. The above-mentioned
characteristics of wave functions could be utilized to investigate the selection rules of the

optical absorption spectra.

3.3 Magneto-optical absorption spectra
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The main features of electronic properties can be directly manifested by the optical
excitations. When a monolayer graphene is excited from the occupied valence to unoccupied
conduction bands (the inter-m-band excitation) by an electromagnetic field, there are only
inter-m-band excitations at zero temperature. The optical selection rules Ak,= 0 and
Ak,= 0 due to the vertical transitions are mainly determined by the zero momentum of

photon. Based on the Fermi’s golden rule, the optical absorption function is given by

2

~

E-P

Me

W%kﬁ»

Alw) Z /15th (;:)2 ‘<\1}C (k,m)

f(Ee(k,n)) — f (£ (k7)) ]
Ee(k,n) — B (k7)) —w — il |’

« Im [ (3.4)

where f (E (k,n)) is the Fermi-Dirac distributien function. E is the unit vector of an electric
polarization. The parallel and pe¥pendicular polarization directions, E | T and EL T, are

taken into account. The velocity matrix element M = <\IIC (k,m) ‘E -P/m,

WWhﬁw
is calculated from the gradient approximation. It is approximated by taking the gradient
of the Hamiltonian matrix element versus the wave vector k, or k,. Similar approxima-
tions have been successful in studying the optical properties of the carbon nanotubes [45],
nanographite ribbons [46], graphite [5], and graphite intercalation compounds [47]. More-

over, by substituting Eq. (3.1) into the velocity matrix element, M is expressed as
2Rp
> [(A5+ 497 x (By + B2) + (B; + BY)" x (A + AL)] Vi (i | Hp| i)

m,m’=1

(3.5)
The indices o (e) and o' (¢) are, respectively, the odd (even) integers of m and m'. For

convenience, the value of (AS + AS)" x (BY + BY) + (BS + BS)* x (A% + AY) is represented
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by M§}. The absolute values of Vi, (@i |Hp| byk) for two polarization directions are

cv __
M;" =

b0 [cos <\/§b’ky/2 + Gm) — 1} ‘ for E || 7; (3.6a)

M;v _ ‘\/gb/% sin <\/§b/ky/2 4+ Gm) ‘ for :/E\) 1z (36b>

The optical properties are closely related to the number and strength of excitation
channels. The joint density of states (D) reflects the number of excitation channels.
Dy is defined by setting the velocity matrix element in Eq. (3.4) to one. When the
optical excitations come from the band-edge states, D; would exhibit the prominent peak
structures. The low-frequency D; at B = 0 has no special structures. It vanishes at w =0
and linearly grows with the increasing frequency (not shown; [5]). The low-energy 2D
linear bands do not induce any optical absorption peaks. D is strongly affected by the
periodic magnetic field. Fig. 3.4(a):shows.Dy’s for-Rp = 750 and different field strengths
along the armchair direction. They display. & lot of peak structures. The peak height is
enhanced with the increase of the field strength. The peaks at w = 0 mainly result from
the excitation channel between the two QLILs at Er = 0. The other peaks are dominated
by the excitation channels from the original band-edge and extra band-edge states. The
similar results for different Rg’s and the zigzag direction at B = 4 T are also shown in Fig.
3.4(Db).

The optical absorption spectrum quite differs from the joint density of states after
introducing the velocity matrix element. The low-frequency spectral functions for Rg = 750
at different B’s along the armchair direction with E || Z are shown in Fig. 3.5(a). The
periodic magnetic field has a strong effect on the spectral function. Each A(w) exhibits

rich asymmetric peaks (in the square-root divergent form at I' — 0). These peaks could
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be further divided into the principal peaks (wp’s) and the subpeaks (wg’s) according to
the optical excitations resulting from the original band-edge and extra band-edge states,
respectively. As the field strength rises, the peak height and frequency of the principal
peaks (subpeaks) increase, and the peak number decreases. These results mean that the
ability in flocking electronic states together is enhanced as the field strength grows. What
is worth mentioning is that wg’s could be further classified into two subgroups wg’s and
wY%’s because of the two kinds of subbands a and 3. w’s and w%’s primarily come from
the excitations of a () to 8 («) and « () to « (), respectively. The peak heights of the
former are very low compared with those of the latter. The zero velocity matrix elements
between two QLLs at Fr = 0 make A(w) vanish at w = 0. The optical excitation channel
caused by the two QLLs is forbidden.

In addition to the field strength, the optical absorption spectrum is also influenced by
the modulated period. Fig. 3.5(b) shows the optical Spectra of B = 4 T for different Rp’s
along the armchair direction. The subpeaks w%’s (w%’s) strongly depend on the period,
i.e., they present different peak heights and frequencies at different Rp’s. Concerning the
case of principal peaks, their peak heights rise with the increase of the period, and their
frequencies present the weak dependence on Rg. As the period grows, the electronic states
tend to flock together in QLLs, and some states of the nondegenerate subbands become
QLLs. Moreover, the energy dispersions of QLLs near k¥ and the energy difference between
two subbands near k;F’s are reduced. The changes of energy bands could account for the
dependence of optical absorption peaks on Rp.

The low-energy optical absorption spectra could exhibit the anisotropic feature in the

presence of a modulated magnetic field. A(w) of Rgp = 750 at B = 4 T along the zigzag
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direction is shown in Fig. 3.5(b) by the thin solid curve. wpi’s of the two modulated
directions own the same energy, while the other wp,’s do not (Fig. 3.5(b)). The peak
height of each principal peak from the zigzag direction is lower than that from the armchair
direction. As to the subpeaks, their peak heights and frequencies are dissimilar to those
from the armchair direction. The above-mentioned differences directly reflect the fact that
the energy bands of the two modulated directions are anisotropic [20], and the ability
in flocking electronic states together for the armchair direction is stronger than that for
the zigzag direction at the same period and field strength. These important differences
imply that the low-frequency optical absorption spectra in a modulated magnetic field
could induce the anisotropic behavior. This result quite differs from those of a monolayer
graphene in the absence of an external field [5] or in the presence of a uniform perpendicular
magnetic field [5].

Besides the field strength, period, and. direetion-of a modulated magnetic field, the
polarization direction of an EM wave also affects the optical absorption spectra. A (w)’s
of the perpendicular polarization direction reveal somewhat different characteristics from
those of the parallel polarization direction, especially in the subpeaks. Fig. (3.6) shows
the similar plots to E L 7 as those of E | z in Fig. (3.5). The principal peaks which
correspond to two polarization directions display similar features at the same Rp’s and
B’s, e.g., approximately the same absorption frequency, peak height, and peak number.
That is to say, wp’s show very weak dependence on the electric polarization direction.
However, the intensity of subpeaks relies strongly on the polarization direction. As to
E L 7, the subpeaks of w%’s are much stronger than those of w%’s. The opposite is true for

the E | T case. Such an important difference might be attributed to the characteristics of
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the velocity matrix elements, which will be discussed in the following paragraph.

The optical excitations of each low-energy absorption peak could be clearly identified.
For example, the transition channels of the first four principal peaks resulting from the
original band-edge state denoted as wp,- - -, and wpy in Figs. (3.5) and (3.6) are indicated
in Fig. 3.1(b). Each prominent peak comes from two different excitation channels. The
first peak wp; is mainly due to the transition from the first occupied QLL of n” = 0 to the
second unoccupied QLL of n® = 1. Peaks wps, wpsz, and wp, correspond to the excitations
of n =1ton®=2,n"=2ton®=3, and n” = 3 to n® = 4, respectively. Because of the
symmetry between the conduction and valence bands about the Fermi level, another kind
of excitation channel, n” = n+1 to n® = n, exhibits the same optical absorption spectrum.
As a result, the selection rule could be simply represented by |An| = |n®—n"| = 1. It
means that the two kinds of transitions eriginating in QLLs, n” = n — 1 to n® = n and
n” =nton®=n—1at kl?, lead to'the nthprincipal peak with frequency wp,.

The subpeaks originating in the extra band-edge states display more complex behavior.
The excitation channels of the first eight subpeaks (wg,, -+, wl,; Wl -+, wb, in Figs. (3.5)
and (3.6)) are shown in Fig. 3.1(b). w% and w% could be further divided into two classes in
terms of the difference between n® and n’. For example, the peak w$, is primarily due to
the transition from the first occupied QLL (the occupied la subband) to the unoccupied
la subband (the first unoccupied QLL) at kP'®. kP (k37"7) is the band-edge state
of the nth « () subband. The peak w; mainly comes from the excitations of la to 23
(23 to la) at kP! and k7%, and the excitations of 16 to 2o (2a to 15) at kP'7 and
ks The difference between n® and n* of wg, (wgs) is [An| = 1, and such a difference

is also observed in the principal peaks. The transitions from la to 15 (15 to 1a) at k;p’lo‘
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and k7' and from 2a to 203 (20 to 2a) at kP?* and kP27, lead to, respectively, the
peaks wl,, and wg,. n¢ and n of the peak wg, (wg,) own the same effective quantum
number, i.e., |An| = 0, which is very distinct from the selection rule of the principal peaks.
The excitation frequencies of na to nf3 (na to (n+ 1) 5; nf to (n + 1) a) are identical to
those of nf to na ((n+ 1) 5 to na; (n+ 1)« to nf) at the same band-edge state. This
is caused by the symmetry between the conduction and valence bands about Fr = 0.
It is worth noting that, in the low-energy spectra, the transition channels of na to ng
at two band-edge states kP and k2" (na to (n+1) 3 at kP and kPP ng to
(n+1)a at k;p“ﬁ and k;”’”“‘”‘) have nearly the same excitation frequencies. Therefore,
the peaks corresponding to these excitations are undistinguishable in Figs. (3.5) and (3.6).
Furthermore, the transition channels of w¢’s could be divided into two classes. They are
the excitations of « (3) to § («) subbandsswith. |[An| = 1 and |An| = 0 except for the first
peak wg, originating in the transition channel from the first occupied QLL (the occupied
la subband) to the unoccupied lezsubband (the first unoccupied QLL).

wY%’s also present the similar behavior as'that of w%’s. The peak w%, is mainly due to the
transition from the first occupied QLL (the occupied 15 subband) to the unoccupied 13
subband (the first unoccupied QLL) at k;p’w . The excitation of 1o to la at kP! results
in the peak w%,. The excitation energy of la to 2a (2o to la) at k;p’la almost equals
that of la to 2a (2a to lav) at k;”’m and of 16 to 10 at k;”’w. These transition channels
with approximately the same energy lead to the peak w%,. The peak w%, comes from the
excitations of 13 to 24 (20 to 13) at k;p’lﬁ and k';’p’Q/B and from the excitations of 2« to
2ac at k;p’%‘. wY’s are also simply classified into two categories. They mainly originate in

the transition channels from « to a (8 to ) with [An| = 1 and |An| = 0 except for the

52



first peak wY, corresponding to the excitation of the first occupied QLL (the occupied 13
subband) to the unoccupied 13 subband (the first unoccupied QLL). The excitations of
the two subgroups w%’s and w?%’s form all transition channels with |An| =1 and |An| = 0.
That is to say, the selection rule of subpeaks is characterized by |An| =1 and |An| = 0.
Such a rule quite differs from that of principal peaks. The reason could be ascribed to the
overlap behavior of wave functions at the extra band-edge states.

The velocity matrix element could govern the transition channels of the optical ab-
sorption spectra, i.e., the selection rules might be determined by the characteristics of
M. In Eq. (3.5), M is decided by the product of M4y and Vi (amx |Hp|bmx). M5y
depends on the effective quantum number, not on the polarization direction. The value
of Vi (amk |Hp| bmk) (Egs. (3.6a) and (3.6b)), on the other hand, is strongly related to
the polarization direction. In the case of principal peaks, AgY (v1) (ASY (v2)) and Bgy (21)
(Bge (w2)) of the nth QLLs own the effective quantumumber n—1 (n—2) and n—2 (n—1),
respectively, as shown in Fig. (3.2).. Assfor the nth occupied and unoccupied QLLs, M§}
is proportional to [p,_1 (21) + @n_2 (22) X @5 5 (1) + ¢ (x2)] (by the definition of Eq.
(3.3)). Its value vanishes because of the orthogonality of ¢, (). The optical excitations
between the occupied and unoccupied QLLs with the same effective quantum number at
kPP are forbidden. Agy (r1) of the nth QLL (AgY (w2) of the (n + 1)th QLL) and BgY (1) of
the (n + 1)th QLL (Bg? (22) of the nth QLL) exhibit the same effective quantum number.
Mg} has a finite value between the nth occupied and (n + 1)th ((n — 1)th) unoccupied
QLLs. In addition, by the numerical analysis, the absolute values of Vi, (@, |Hp| byk) at
kPP for two polarization directions are almost equal. It indicates that the principal peaks

of E L 7 and E || 7 have nearly the same peak height under |An| = 1. Concerning other
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|An| cases, all the values of M for both polarization directions are disappeared due to
the orthogonality of ¢, (z). The selection rule is thus simply expressed as |An| = 1. This
consequence is as same as that of the LLs originating in a uniform perpendicular magnetic
field [7, 23, 25]. That the main features of wave functions at kP resemble those of By
is the most important reason. However, there are certain important differences between
QLLs and LLs. The former show the asymmetric square-root peaks, and the latter own the
symmetric delta-function-like peaks. The peak height of QLLs is lower than that of LLs.
The peak frequency of QLLs is weakly dependent on the modulated period. Furthermore,
the low-frequency optical absorption spectra of QLLs could reveal the anisotropic features
in the different modulated directions.

The velocity matrix elements at extra band-edge states display different characteristics
from those at kIP based on the overlap sbehawior of wave functions. At kF’s, ASY (1)
(Bge (w1)) and Age (z2) (Bgye (v2)) have the partial ovérlap (Fig. (3.3)). Ag% (w1) (A (22))
and BgY (v1) (Bgy (w2)) of the nth QLLs ownthe effective quantum number n — 1 (n —
2) and n — 2 (n — 1), respectively. M3 "of |An| = 0 does not disappear because of
On-1(x1) X @i (22) # 0 and @, o (1) X @5 _5(x2) # 0. Thus the optical absorption
spectra present the subpeaks with |[An| = 0. Obviously, such peaks are mainly owing to
the overlap behavior of wave functions at extra band-edge states. M{j also has a finite
value for |An| = 1, while it vanishes in the |An| # 0 and |An| # 1 cases. In addition to the
value of M ¢, that of Vi, (amx |Hp| k) also dominates the subpeak intensity. It strongly
depends on the polarization direction, i.e., the peak height of E || z is very different from
that of E L 7. Eqs. (3.6a) and (3.6b) are the absolute values of Vy (amk |Hp| bai) for

E | © and E L 7, respectively. By the numerical calculation, M¢" is much larger than
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Mg (Mg ~ 0) between the occupied a (3) to unoccupied a () states with |An| = 0
and |An| = 1. However, M and M;" display the opposite behavior for the transition
channels from the occupied a () to unoccupied 3 («) states with |An| =0 and |An| = 1.
The difference might be ascribed to the fact that M;" and M are the sine and cosine
functions, respectively. Mg"’s (M;"’s) of the excitation channels from a (8) to a () and
from «a (B) to B («) at extra band-edge states have, respectively, the maximum (minimum)
and minimum (maximum) values. That makes w%’s and wY%’s exhibit different peak heights
for two polarization directions. The subpeaks could reflect the anisotropic feature of the
electric polarization direction, while the opposite is true for the principal peaks.

The frequency of principal peaks in the optical absorption spectra deserves a closer
investigation. The relation between the frequencies of the first four principal peaks and the
period along the armchair direction is shownsin Fig., 3.7(a). Energies of wp’s present very
weak dependence on the period as Rz becomeslarge enough. However, wp’s strongly rely on
the field strength, i.e., their energies grow with the increase of B, as shown in Fig. 3.7(b).
As to the zigzag direction, wp’s exhibit different frequencies from those of the armchair
direction, i.e., they have the anisotropic behavior in the modulated direction. However,
they display similar dependence of energies on the field strength and period (not shown in
the zigzag direction). The predicted results could be verified by the optical spectroscopy

23, 25, 29].

3.4 Summary and conclusions

A monolayer graphene is assumed to exist in a periodic magnetic field. The low-

frequency optical absorption spectra are studied by the Peierls tight-binding model and
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Figure 3.7. The optical absorption frequencies from original band-edge states for a spa-
tially modulated magnetic field along the armchair direction. Their dependences on (a)

the period and (b) the field strength.
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gradient approximation. The low-energy bands are drastically changed by the modulated
magnetic field. They display the partial flat bands at Er = 0 and parabolic bands at others.
Each parabolic band owns one original band-edge state and four extra band-edge states.
Such electronic states could induce the asymmetric prominent peaks in the optical absorp-
tion spectra. The parabolic bands close to kI and k;P’s are, respectively, doubly degenerate
and nondegenerate. The former could be regarded as the quasi-Landau levels based on the
characteristics of wave functions. The latter are divided into two different kinds of sub-
bands, i.e., the o and 3 subbands. Their wave functions display different features from
those of QLLs. The wave functions associated with the carbon atoms a (b) of the first QLL
have one tight-binding function AgY (z1) (BgY (72)) centered at x; (x2). The other QLLs
exhibit two tight-binding functions Ag? (z;) (Bgy (21)) and Ay (v2) (Bge (72)) situated at
x1 and x9. The two positions 7 ,= 1/4 andiag =+3/4 correspond to the maximum field
strength. The wave functions of:QQLLs present the similar characteristics to those of LLs
which result from a uniform magnetic field,“e:g.. the same oscillatory behavior, effective
quantum number, and distribution width.” However, the wave functions at k;F’s display
different features. The o and 3 subbands own the different spatial symmetries, and their
two tight-binding functions exhibit overlap behavior. The different spatial symmetries and
overlap behavior would induce the anisotropic features and extra excitations in the optical
absorption spectra.

The optical absorption spectra reveal a plenty of prominent asymmetric peaks. These
peaks could be further divided into the principal peaks wp’s and subpeaks wg’s, which
mainly come from the excitations of the original band-edge and extra band-edge states,

respectively. The optical absorption spectra are strongly affected by the periodic magnetic
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field and the polarization direction of an EM wave. The peak height of principal peaks grows
as the field strength and period increase. The energy of each wp rises with the increase of
B, and it would be weakly dependent on the period as R becomes large enough. As to
the subpeaks, wg’s could be classified into two subgroups, w%’s and w4’s, because of the two
kinds of subbands a and 3. They originate in the excitations of a ((3) to 5 («) and « () to «
(B), respectively. Both of them strongly rely on the field strength and period. Furthermore,
the optical absorption spectra could reveal the anisotropic behavior in the modulated and
polarization directions. The principal peaks of the armchair and zigzag directions exhibit
somewhat different frequencies, and the peak height of the former is higher than that of the
latter. However, they display weak dependence on the polarization direction. Concerning
the subpeaks, their peak heights and frequencies present strong dependence on both the
modulated and polarization directions. Suchsamisotropy of the optical absorption spectra
could reflect the anisotropic behavior of energy bands along the two different modulated
directions and the different spatial symmetries of wave functions at the extra band-edge
states. wp’s and w,’s obey the different selection rules. The former is simply represented
by |An| = 1, and this result is the same with that of the LLs originating in a uniform
perpendicular magnetic field. The most important reason is that the main features of wave
functions at kP resemble those of By. Nevertheless, the low-energy absorption spectra of
QLLs and LLs still have some different characteristics. The former show the asymmetric
square-root peaks, and the latter own the delta-function-like peaks. The peak frequency of
QLLs is weakly dependent on the modulated period. The peak intensity of LLs is stronger
than that of QLLs. Moreover, the low-frequency optical absorption spectra of QLLs could

exhibit the anisotropic features in the different modulated directions. As to the subpeaks,

o8



ws’s display a different selection rule from that of principal peaks, i.e., |[An| = 1 and
|An| = 0. Such an important difference mainly comes from the overlap behavior of the
wave functions at k,P’s. The overlap behavior induces the excitations with |An| = 0, which
is forbidden in the principal peaks. Besides, the subpeaks present the anisotropy in both
modulated direction and electric polarization direction. The selection rule and anisotropic
features of optical absorption spectra originating in a modulated magnetic field are very
different from those in a uniform perpendicular magnetic field or in the absence of an

external field. Such important differences could be verified by the optical measurements.
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Chapter 4

Electronic properties and optical absorption spectra of

a graphene monolayer in the modulated electric field
4.1 Introduction

The bulk graphite is one of the most extensively studied materials in both theoretical
[1-4] and experimental [5-9] fields. Recently, the few-layer graphenes have been success-
fully produced [10-13]. Such systems are very appropriate in studying the two-dimensional
physical properties. They have given rise to amounts of investigations, e.g., band structure
[14-31], electronic excitations [32-35], transport properties [36-43], and optical spectra [14,
44-50]. A graphene monolayer is an exetic zero=gap semiconductor with a vanishing density
of states at the Fermi level Er =0, which mainly originates in the hexagonal honeycomb
structure [1]. The low-energy optical abserption-spectrum of a single-layer graphene in the
absence of an external field does not‘exhibit anyabsorption peaks. The low-frequency elec-
tronic structures and optical absorption spectra could be drastically changed by applying a
modulated magnetic field [28,29]. Such a field could alter energy dispersions, create extra
band-edge states, induce composite behavior in state degeneracy, destroy the symmetry
of energy bands about the original band-edge state, and cause anisotropy at low energy
[29]. The optical absorption spectra could reveal two kinds of selection rule at the original
band-edge and extra band-edge states, which is primarily owing to the characteristics of
their wave functions [29]. In addition, the optical absorption spectra might display the

anisotropic behavior in the modulation direction and electric polarization.
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In this work, the m-electronic structure and optical absorption spectra of a graphene
monolayer in a spatially modulated electric field are studied by the tight-binding model and
gradient approximation [14, 51-53]. The dependence of the low-energy electronic properties
on the period, field strength, and modulation direction would be investigated in detail,
such as energy dispersions, state degeneracy, band-edge states, and density of states. The
relation between the optical absorption spectra and the modulated electric field is also
studied.

This paper is composed of five sections. The band-like Hamiltonian matrix in a modu-
lated electric potential is obtained in Sec. II. The main features of the electronic properties
and of the optical absorption spectra are, respectively, discussed in Secs. III. and IV.

Finally, Sec. V involves concluding remarks.
4.2 Hamiltonian matrix

The m-electronic structure of 2p; orbitals‘is-calculated by the tight-binding model with
nearest-neighbor interactions. In the absence of an external field, there are two carbon
atoms, a and b, in a primitive unit cell of a single-layer graphene. The m-electronic
Bloch function consisting of the two linear tight-binding functions is expressed as |Vy) =
Caxlax) + Cu|bi), where |ay) =37, ™ Bmla,) and [b) =37, e™ R byy). The Hamilto-
nian built from |ax) and |by) is a 2 x 2 Hermitian matrix. The site energies of a and b
atoms are the same and assumed to be zero, i.e., ( amx|Ho|amk) = (bnx|Ho|bnk) = 0. The

nonvanishing Hamiltonian matrix element is given by

(buk|Holamk) = voexplik - (R, — R,) | = Z tix, (4.1)

i=1,2,3

where 70(=2.56 eV) [1] is the atom-atom interaction between two nearest-neighbor atoms
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at R,, and R,,. The three hopping integrals are, respectively, t1x = 7o exp[(ik.b'/2 +
ik, /30 /2)], tar = Yo exp|(ik.b'/2 — iky,/3V /2)], and tay = Yo exp(—ik,b' ), where b = 1.42
A is the C-C bond length.

A single-layer graphene is assumed to exist in a modulated electric potential V' (z) =
Vo cos(2mx/lg) along the armchair direction, as shown in Fig. 4.1(a). V; is the strength of a
modulated electric potential. The Hamiltonian is H = Hy+U, where Hj is the Hamiltonian
without the external field. [ = 3V Ry is the periodic length, where parameter R is useful
in describing the dimensionality of the Hamiltonian matrix. An enlarged rectangular unit
cell includes 4R carbon atoms (2Rp a atoms and 2Rp b atoms). The wave function

composed of the 4Ry Bloch functions is presented as

2REg

[Wy") = Z axcl i) + Ciiclbnic)- (4.2)

When the period is large enoughs the effects of the electric potential on the three nearest-

neighboring hopping integrals are negligible. The site energies would be changed into

(ank|H|ank) = Vocos[(n — 1)7/Rg| = Vy; (4.3a)

(b H|bute) = Vo cos [(n — 2/3)7/Rp] = Vier ). (4.3b)

For convenience, the base functions are chosen as the following sequence

{lawk), |b2rgk)s |bik)s |a2rpk), |aox), |berg—1x), |b2k), |@2rg—1k)s- - |@Rg—1k)s |DRg+2K),

1brs—1k)s |QRg+2k)s |ARsK)s |ORE+1k)s |OREK); |@Rp+1k) }- The Hamiltonian matrix becomes
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a band-like Hermitian matrix

Vi q" pr 0 ... L. 0 0

q Vergt1z O p 0 ... .. 0

p 0 Vigs: 0 ¢ 0 . 0

0 p* 0 0 q" 0 0

, (4.4)

g 0 0

q 0 p

0 0 Vrpti3 q
0 0 0O 0 0 »p q VRg+1

where p =ty + tox and g = t3y.

The m-electronic structure is strongly; affected by the direction of a modulated electric
potential, which mainly results from the anisotropic¢ structure of a 2D monolayer graphene.
For the zigzag direction (Fig. 4.1(b)), the similar equations could be also derived. The three
hopping integrals are ), = o exp(ikgy/30' /2 + ik, /2), th, = Yo exp(—ik,/3b' /2 +ik,b [2),
and thy, = v exp(—ik,b'), respectively. The Hamiltonian matrix elements are further given

by

<bmk’H’ank> = tllkém,nJrl + t/2k5m,nfl + tzlgkdm,na (45&)

(ank|Hlank) = (bpx|H|bnk) = Vocos[(n — )7/ Rg| = V. (4.5b)

With the base functions {|aik), [b2rgk);s [b1k)s |@2rgK), |b2k);s |G2r—1k), |G2k)s |b2Rg—1K); - - -

1brp—1k), |GRg+2K), |GRE—1k), |ORE+2K), |GREK)s [ORE+1K)s [DREK); |@RE+1k) ), the 4Rp X 4RE
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Figure 4.1. The primitive unit cells of a monolayer graphene in a modulated electric field

along the (a) armchair direction and (b) zigzag direction.
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band-like Hamiltonian matrix for the zigzag direction is

Vi
tox
b
0
thi

0

/%
t2k

Vary,

0
.
0

/%
tlk

o0 o0 ... 0
0 #t 0 & 0 0
Vit

1%
tlk ‘/QRE

VRE tll*k
tllk VRE+1
0 0 # 0 t o0

0 ... Oudh,. 0

4.3 m-electronic properties

/
tlk

/

tSk
/

t2k

VRE+1

(4.6)

By diagonalizing the band-liké: Hamiltonian anatrix, the energy bands are obtained.

Since the unoccupied conduction bands (E’s) and occupied valence bands (E"’s) are sym-

metric about the Fermi level (Er = 0), only the former are discussed. Because the range

of the first Brillouin zone along the modulated direction (k, < 7w/ (30’ Rg)) is much shorter

than the other one (k, < 7/v/3V), the energy dispersions along the modulated direction

are not shown here, and thus only the k,-dependent energy bands are discussed.

The low-energy bands without an external field are shown by the small solid circles in

Fig. (4.2) at Rg = 500 (=~ 200 nm). There are two nondegenerate linear bands intersecting

at Fr = 0 and many parabolic bands with double degeneracy at other energies. Each

energy band owns two original band-edge states kP = 2/ 3v/3b and kPP = 0. It should be
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noticed that the two band-edge states are the Fermi-momentum states (kp’s) of the linear
conduction and valence bands. Although the range of the wave vector along the modulated
direction is narrow, the k,-dependence of energy bands is still considerable. That is to say,
the energy bands of a monolayer graphene at Vj = 0 exhibit two-dimensional dispersions.
There are only four Fermi-momentum states at Er = 0 ( including two spin states ).

The modulated electric field leads to drastic changes in the energy dispersions, state
degeneracy, band-edge states, and dimensionality. The energy bands of V5 = 0.1v, at
Rpg = 500 are shown by the large solid circles in Fig. (4.2). They display oscillatory energy
dispersions near kJ?. The doubly degenerate parabolic bands become singly degenerate.
Each energy band might have several band-edge states, and most of them are not located
at kIP. Such band-edge states could induce the prominent peaks in the density of states
(DOS) and optical absorption spectra. Forseenvenience, these band-edge states are further
divided into two categories, u and v states, as indicated in Fig. (4.2). The two p (v)
states at the left- and right-hand sitessof ‘k2”“might have different energies; that is, one
side of the parabolic bands might be asymmetric to the other about the original band-edge
state. Concerning the states near the Fermi-level, the different Fermi-momentum states
exist at Fp = 0. The energy dispersions near kr’s are linear for the k,-dependence, while
they are completely flat for the k,-dependence (not shown). The dispersionless feature
means that the number of kr’s is finite. The k,-dependence could be neglected in the lower
parabolic bands. As a result, the low-frequency energy bands, with E¢ < V), are regarded
as one-dimensional bands.

The strength, period, and direction of a modulated electric field strongly affect the

electronic structure. The modulation effects are diminished by decreasing the field strength,
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Figure 4.2. The low-energy bands for Rg = 500 along the armchair direction at V = 0
and Vo = 0.1 7.
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as shown in Fig. 4.3(a) at Rg = 500 V; = 0.05 7p. The range of k, and the number of
oscillatory bands are reduced. As the period lessens, the energy spacing between two band-
edge states is enlarged, as shown in Fig. 4.3(b) at Rp = 250 V5 = 0.1 . However, the
range of k, is weakly dependent on Rg. As to the zigzag direction, the energy bands display
the similar features to those of the armchair direction (Fig. 4.3(c)). It is noticeable that
the band-edge states of two modulated directions might have different energies, i.e., the
modulated electric field could induce the anisotropic properties in the electronic structure.

Density of states (DOS) is closely related to the essential features of the electronic

structure. It is defined as

dkydk, T 1
D)= 3. /MBZ (@2r 2 70— Bk, )P 1 T2 4.7

o, h=c,v

where I' (= 5 x 107 7p) is a phenomenoélégidal:broadening parameter. The low-frequency
DOS without fields is proportional to w, as shown by the crosses in Fig. 4.4(a). It has no
special structures. The vanishing DOS at @ = 0 indicates that a monolayer graphene is
a zero-gap semiconductor. On the other hand, the ' modulated electric field leads to many
asymmetric peaks and a finite DOS at w = 0 (Figs. 4.4(a) and 4.4(b)). The peak structures
primarily come from the band-edge states of parabolic bands (Figs. 4.2(b)). Such peaks
could be further classified into the prominent square-root divergent and inconspicuous
peaks. They, respectively, mainly originate in the p and v states, as shown in Fig. 4.4(a).
Furthermore, there are some pairs of prominent peaks (indicated by the arrows in Fig.
4.4(a)), and each pair is associated with the asymmetry of the 1D parabolic bands about
kPP (discussed earlier in Fig. (4.2)). The frequency, number, and height of peaks are
sensitive to the changes in the field strength and period. The value of DOS at w = 0
grows as the field strength increases, and it is weakly dependent on the period. The peak
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heights are, respectively, enhanced and reduced by increasing Vy and Rg. The peak number
increases as the period increases, and it is weakly related to the field strength. The 1D
linear bands have finite Fermi-momentum states, so the monolayer graphene in the presence
of a modulated electric field is a semimetal. The free carriers in a semimetallic graphene
are deduced to cause the low-frequency plasmon [54]. The experimental measurements on
the energy loss spectra could be utilized to examine the predicted electronic properties.
The frequencies of asymmetric peaks in DOS deserve a closer investigation. The fre-
quency of the peak resulting from the p (v) state is denoted as w, (w,). The relation
between the first four w,’s (w,’s) and the field strength at Rx = 500 is shown in Fig. 4.5(a)
(Fig. 4.5(b)). w,’s and w,’s correspond to the band-edge states at the left-hand neigh-
borhood of kP (Fig. (4.2)). Both w,’s and w,’s are weakly related to the field strength.
Figs. 4.5(c) and 4.5(d), respectively, showsthesdependence of w,’s and w,’s on the period
at Vo = 0.1 79. The former presents'somewhat oscillatory behavior, and the latter declines

as R increases. Such dependence might bereflected by the optical absorption spectra.

4.4 Optical absorption spectra

The optical excitations can directly present the main features of electronic properties.

Based on the Fermi’s golden rule, the optical absorption function is given by

2

A~

E-P

Me

T (k, ﬁ’)>

Aw o 3 /1 » (2‘:2 ‘<\p (k. 7)

f(Ee (k,n)) — f (B (k7)) }
Ee(k,n)— B (k,n') —w—il'|’

x Im { (4.8)

where f (E (k, 7)) is the Fermi-Dirac distribution function, and E is the unit vector of an
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electric polarization. With an electric polarization E_L 7, the electromagnetic field excites
electrons from the occupied valence to unoccupied conduction bands (the inter-m-band
excitations) at zero temperature. The optical selection rule due to the vertical transitions
is Ak,= 0, which is mainly determined by the zero momentum of photon. The velocity

matrix element M = <\I/C (k,m) ‘E -P/m,

v (k,n’ )> is evaluated within the gradient
approximation [14, 51-53]. It is approximated by taking the gradient of the Hamiltonian
matrix element versus the wave vector k.

The joint density of states (D) can reflect all the possible inter-m-band excitation
channels. D; is obtained by setting the velocity matrix element in Eq. (4.8) to one, and
strongly affected by the modulated electric field. Fig. 4.6(a) shows the low-energy D,’s
for Rg = 500 at different field strengths along the armchair direction. In the V5 = 0 case,
Dy has no special structures (by the crosses.in Fig. 4.6(a)). It grows linearly with the
increasing frequency and vanishes at w = 0: As the“field strength increases, D; exhibits
many prominent peaks. Such peaks mainlyresult from the transition channels between two
i (v) states, and they are enhanced by increasing the field strength. Some excitations from
these states have nearly the same energy, and thus their peaks would be undistinguishable.
It is worth noticing that most of the conspicuous peaks with stronger intensity primarily
originate in the channels from p to pg ., (ph,, to ug) and from vy to vs | (vi,, to vg),
as indicated in Fig. 4.6(a). The peak heights of such channels are relatively higher than
those of other channels. Because the occupied valence and unoccupied conduction bands
are symmetric about the Fermi level, the excitations from u, to pug ., (v; to v, ;) and

from pp ., to us (vy

v .1 to v2) own the same frequency. Besides, the excitation between p

and p;, has nearly the same energy as that between v, and vy ;. Based on the above-
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mentioned reasons, the peaks resulting from the excitations of p; to uy, ¢, py, 1 to uy, vy
to v, and v, to vy, might be undistinguishable. In addition to the period, D;’s also
strongly depend on the modulated period and direction, as shown in Fig. 4.6(b). The peak
height rises with the increase of the period. The peak number is approximately an inverse
proportion to the period. As to the zigzag direction, D; also shows rich peaks, while their
height and frequency are different from those of the armchair direction.

The optical absorption spectra might be very different from the joint density of states
after including the velocity matrix element. For Rg = 500, A(w)’s of different field strength
along the armchair direction are shown in Fig. 4.7(a). In the absence of field strengths,
A(w) grows linearly with the increase of frequency (by the crosses in Fig. 4.7(a)). It
vanishes at w = 0 and has no special structures. On the other hand, A(w) would be
strongly modulated in the presence of fieldsstrengths. Most of the transition channels from
py — ps g (vn — ve, ) leading to the prominent pedks in Fig. 4.6(a) could also result in
the conspicuous peaks in the optical abserptionspectra (Figs. 4.7(a) and 4.7(b)). However,
such optical absorption peaks do not reveal ‘an absolute relation between their height and
the field strength. It is noted that some channels corresponding to the inconspicuous
peaks in D;’s could exhibit the manifest peaks in the optical absorption spectra, as labeled
by the open circles in Fig. 4.7(a). The optical absorption spectra of V5 = 0.1 7y at
different modulated periods and at Rr = 500 along the zigzag direction are shown in Fig.
4.7(b). A(w)’s at different Rg’s along the armchair direction present similar features to the
optical absorption spectra in Fig. 4.7(a). Nevertheless, A(w) of the zigzag direction shows
different peak frequencies and peak heights from those of the armchair direction, i.e., the

anisotropic property in the modulated direction could be reflected by the optical absorption
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spectra. Furthermore, the optical absorption spectra for both modulated directions could
not indicate a certain selection rule. The fact that the velocity matrix element between two
band-edge states does not follow a positive relation with modulated electric fields might

cause no obvious selection rules in the optical absorption spectra.

4.5 Conclusions

In summary, the electronic structure and optical absorption spectra of a monolayer
graphene in the presence of a modulated electric field are investigated by the tight-binding
model and gradient approximation. The low-energy electronic and optical properties are
strongly affected by the field strength and period, while the high-energy electronic and
optical properties weakly related to those. The similar results are obtained in different
modulation directions. The modulated electrie. field could modify the energy dispersions,
destroy the state degeneracy, réduce the dimensionality, create the two kinds of extra

band-edge states (¢ and v) about A??

Py 'and“induce the asymmetry of energy bands. It

should be noticed that there are many extra Fermi-momentum states at Er = 0. Density
of states exhibits many prominent square-root divergent and inconspicuous peaks. They
are, respectively, mainly owing to the p and v states. Their frequencies (w,’s and w,’s) are
weakly related to the field strength. On the other hand, w),’s display oscillatory dependence
on the period, while w,’s decrease with the increase of Rg. The finite value of DOS at Fermi
level indicates the existence of free carriers. That is to say, a semiconducting graphene
monolayer becomes a semimetallic one by applying a modulated electric potential. The
free electrons are expected to cause the low-frequency plasmon. The joint density of states

presents many conspicuous peaks resulting from the p and v states. The peak heights
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originating in the excitations of up to us ., (pn,, to us) and vy to v5,, (vp,, to vg) are
relatively stronger than those of other excitations. The peak intensity is enhanced by
the increase of the field strength and period. Most of the prominent peaks in D;’s could
also show significant peaks in the optical absorption spectra. Nevertheless, the optical
absorption peaks do not have apparent relations with the field strength and period. Such
absorption peaks could not be ascribed to an obvious selection rule. It is worth noting
that the optical absorption spectra could display the anisotropic feature in the modulation
direction. The experiment of energy-loss spectra and optical measurements could be used

to verify the above-mentioned theoretical prediction.

82



References

[1] P. R. Wallace, Phys. Rev. 71, 622 (1947).

2] F. L. Shyu, and M. F. Lin, J. Phys. Soc. Jpn. 69, 607 (2000).

[3] E. J. Duplock, M. Scheffler, P. J. D. Lindan, Phys. Rev. Lett. 92, 225502 (2004).
[4] F. Ortmann, W. G. Schmidt, F. Bechstedt, Phys. Rev. Lett. 95, 186101 (2005).

[5] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, A. P. Douvalis, and I. S. Sanders,

Nature 420, 156 (2002).
[6] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. lijima, Nature 430, 870 (2004).

[7] E. T. Jesen, R. E. Palmer, W. Allison, and J. F. Annett, Phys. Rev. Lett. 66, 492

(1991).
[8] H. Kempa, P. Esquinazi, and Y. Kepélevich, Phys. Rev. B 65, 241101 (2002).

9] Y. Zhang, J. P. Small, M. E."S:*Amori, and P. Kim, Phys. Rev. Lett. 94, 176803

(2005).

[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.

V. Grigorieva, A. A. Firsov, Science 306, 666 (2004).

[11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, 1. V.

Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

[12] C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N.
Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108,
19912 (2004).

33



[13] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.
N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312, 1191

(2006).

[14] C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. K. Fang and M. F. Lin, Carbon

42, 2975 (2004).

[15] S. Latil and L. Henrard, Phys. Rev. Lett. 97, 036803 (2006).

[16] Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).

[17] E. McCann, Phys. Rev. B 74, 161403 (2006).

[18] C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang, and M. F. Lin, Journal

of Physics: Condensed Matteri18; 5849 (2006).

[19] F. Guinea, A. H. C. Neto, and N. M.-R. Peres, Phys. Rev. B 73, 245426 (2006).

[20] E. McCann, K. Kechedzhi, Vi1 Falko, Hi Suzuura, T. Ando, and B. L. Altshuler,

Phys. Rev. Lett. 97, 146805 (2006).

[21] B. Partoens and F. M. Peeters, Phys. Rev. B 74, 075404 (2006).

[22] M. Koshino and T. Ando, Phys. Rev. B 76, 085425 (2007)

[23] C. L. Lu, C. P. Chang, J. H. Ho, C. C. Tsai, and M. F. Lin, Physica E 32, 585 (2006).

[24] J. H. Ho, Y. H. Lai, S. J. Tsai, J. S. Hwang, C. P. Chang, and M. F. Lin, J. Phys.

Soc. Jpn. 75, 114703 (2006).

[25] E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).

84



[26] J. M. Pereira, F. M. Peeters, and P. Vasilopoulos, Phys. Rev. B 76, 115419 (2007).

[27] N. Nemec and G. Cuniberti, Phys. Rev. B 75, 201404 (2007).

[28] J. H. Ho, Y. H. Lai, Y. H. Chiu, and M. F. Lin, Nanotechnology 19, 035712 (2008).

[29] Y. H. Chiu, Y. H. Lai, J. H. Ho, D. S. Chuu, and M. F. Lin, Phys. Rev. B 77, 045407

(2008).

[30] E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos
Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett.

99, 216802 (2007).

[31] Y. H. Lai, J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Rev. B 77, 085426 (2008).

[32] F. L. Shyu and M. F. Lin, J.%Phys.See.<Jpn..69, 607 (2000).

[33] J. H. Ho, C. P. Chang and-M. E./Lin; Phys. Lett. A 352, 446 (2006).

(34] J. H. Ho, C. L. Lu, C. C. Hwang, €:/P.'Chang and M. F. Lin, Phys. Rev. B 74,

085406 (2006).

[35] X. F. Wang and T. Chakraborty, Phys. Rev. B 75, 041404 (2007).

[36] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).

[37] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C.

Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007).

[38] K.S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. 1. Katsnelson, U. Zeitler,

D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys. 2, 177 (2006).

85



[39]

[40]

[43]

[44]

[45]

[46]

[49]

V. P. Gusynin and S. G. Sharapov, Phys. Rev. B 73, 245411 (2006).

V. P. Gusynin, V. A. Miransky, S. G. Sharapov, and 1. A. Shovkovy, Phys. Rev. B

74, 195429 (2006).

M. Koshino and T. Ando, Phys. Rev. B 73, 245403 (2006).

J. Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres, Phys. Rev. Lett. 97,

266801 (2006).

N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 73, 125411 (2006).

M. L. Sadowski, G. Martinex, and M. Potemski, C. Berger, and W. A. de Heer, Phys.

Rev. Lett. 97, 266405 (2006).

D. S. L. Abergel and Vladimir I. Fal'’ko, Phys, Rev. B 75, 155430 (2007).

R. S. Deacon, K.-C. Chuang, R.-"J. Nicholas, K.:S. Novoselov, and A. K. Geim, Phys.

Rev. B 76, 031406 (2007).

D. S. L. Abergel, A. Russell, and Vladimir I. Fal’ko, Appl. Phys. Lett. 91, 063125

(2007).

C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. F. Lin, Phys. Rev. B 73,

144427 (2006).

C. L. Lu, H. L. Lin, C. C. Hwang, J. Wang, C. P. Chang, and M. F. Lin, Appl. Phys.

Lett. 89, 221910 (2006).

Z. Jiang, E. A. Henriksen, L. C. Tung, Y.-J. Wang, M. E. Schwartz, M. Y. Han, P.
Kim, and H. L. Stormer, Phys. Rev. Lett. 98, 197403 (2007).

36



[51] M. F. Lin and Kenneth W.-K. Shung, Phys. Rev. B 50, 17744 (1994).

[52] Y. C. Huang, M. F. Lin, and C. P. Chang, J. App. Phy. 103, 073709 (2008).

[53] J. Blinowski, N. H. Hau, C. Rigaux, J. P. Vieren, R. L. Toullee, G. Furdin, A. Herold,

and J. Melin, J. Phys. (Paris) 41, 47 (1980).

[54] M. F. Lin, D. S. Chuu, and K. W. -K. Shung, Phys. Rev. B 56, 1430 (1997).

87



Chapter 5
Summary and future research

The dissertation aims to investigate the physical properties of a single-layer graphene in
the presence of modulated magnetic and periodic electric fields. The m-electronic properties
(including the energy dispersions, band-edge states, symmetry of energy bands, changes of
degeneracy, reduction of dimensionality, anisotropy of modulated direction, wave functions,
and density of states) are calculated by the tight-binding model. The Hamiltonian matrix
is very huge for a large period, and becomes a band-like Hamiltonian matrix with a appro-
priate arrangement of specific base functions. By diagonalizing the band-like Hamiltonian
matrix, the energy bands are obtained. The optical absorption spectra are evaluated by
the gradient approximation, and they could-directly reflect the electronic properties.

In a spatially modulated magnetic field, the magnétoelectronic structure of a graphene
monolayer is drastically changed. ‘Forthe modulatéed magnetic field along the armchair di-
rection, there are partial flat bands at E'r"=0and parabolic bands at others. The two kinds
of bands, respectively, make the density of states exhibit a delta-function-like structure at
Fermi level and asymmetric prominent peaks at others. Each parabolic band owns one
original band-edge and four extra band-edge states. The strength, period, and direction
of a modulated magnetic field dominate the main features of electronic properties. Such a
field could reduce dimensionality by one, alter energy dispersions, cause anisotropy at low
energy, induce composite behavior in state degeneracy, produce extra band-edge states,
and destroy the symmetry of energy bands about the original band-edge state. Energies of

the original band-edge state are weakly dependent on the period, while those of the extra
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band-edge states are strongly related to the period. Nevertheless, both of them grow with
the increase of the strength. As to the zigzag direction, energy bands display different state
degeneracies, and DOS shows different peak frequencies and peak intensity. It means that
the electronic properties are anisotropic in the modulation direction. In addition, a spa-
tially modulated magnetic field contrasts sharply with a uniform perpendicular magnetic
field in energy dispersion, state degeneracy, and dimensionality. The important differences
between a single-layer graphene and a 2DEG mainly lie in the partial flat bands at zero
energy, dependence on the modulation direction, and wave vectors of band-edge states,
which results from the hexagonal symmetry.

The main features of wave functions shed light on understanding the optical absorption
spectra. For the armchair direction, the doubly degenerate energy bands close to kI¥ are
regarded as the quasi-Landau levels because:their wave functions present similar charac-
teristics to those of LLs resulting from a uniform magnetic field, e.g., the same effective
quantum number, oscillatory behayvior, .and-distribution width. Concerning the nondegen-
erate energy bands at k;F’s, their wave functions exhibit different features from those of
QLLs. The a and # subbands display different spatial symmetries, and their wave functions
show overlap behaviors. The different spatial symmetries and overlap behaviors would in-
duce the anisotropic features and extra excitations in the optical absorption spectra. As to
the zigzag direction, the characteristics of wave functions are similar to those of armchair
direction.

The optical absorption spectra present a plenty of prominent asymmetric peaks. These
peaks could be classified into the principal peaks wp’s and subpeaks wg’s, which primarily

come from the original band-edge and extra band-edge states, respectively. The optical
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excitations are strongly affected by the modulated magnetic field and the polarization di-
rection of an EM wave. The peak height of wp’s grows by increasing the field strength
and period. The energy of each principal peak rises with the increase of B, and it would
be weakly related to the period as Rg becomes large enough. The selection rule of wp’s
is simply represented by |An| = 1, which is the same with that of the LLs resulting from
a uniform perpendicular magnetic field. The underlying cause is that the main features
of wave functions at kI” resemble those of By. Nevertheless, the low-energy absorption
spectra of QLLs and LLs still have some differences, e.g., the peak type, peak intensity,
and anisotropic behavior. As to the subpeaks, wg’s could be further divided into two sub-
groups, w%’s and w4’s, because of the two kinds of subbands a and 3. They originate in the
excitations of a (f3) to § («) and of a () to a (), respectively. The two kinds of subpeaks
are strongly related to the field strength and-period. w,’s display a different selection rule
from that of principal peaks, i.es |An| = L-and |An] = 0. Such an important difference
is mainly owing to the fact that the wave fimetions.overlap at k;?’s. The overlap behavior
induces the extra excitations with |An| =0, which is forbidden in the principal peaks.
Furthermore, the optical absorption spectra could reveal anisotropy in the modulated di-
rection and electric polarization direction. The selection rule and anisotropic features of
the optical absorption spectra originating in a modulated magnetic field are very different
from those in a uniform perpendicular magnetic field or in the absence of an external field.

In addition to modulated magnetic fields, modulated electric potentials could also
strongly influence the electronic properties of a graphene monolayer. The low-frequency en-
ergy bands are drastically changed by a modulated electric field, whereas the high-frequency

energy bands weakly dependent on that. The similar results are obtained in different modu-
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lation directions. The modulated electric field could modify the energy dispersions, destroy
the state degeneracy, reduce the dimensionality, create the two kinds of extra band-edge
states (1 and v) about kP, and induce the asymmetry of energy bands. The two kinds of
band-edge states make DOS exhibit the prominent square-root divergent and the inconspic-
uous peaks. Their peak frequencies (w,’s and w,’s) are weakly related to the field strength.
However, w,,’s show oscillatory dependence on the period, and w,’s diminish with the in-
crease of Rp. It should be noticed that there are many extra Fermi-momentum states
at Fp = 0. The finite value of DOS at Fermi level corresponding to Fermi-momentum
states indicates the existence of free carriers. That is to say, a semiconducting single-layer
graphene changes into a semimetallic one by applying a modulated electric potential. The
free electrons are expected to result in the low-frequency plasmon.

The optical absorption spectracould refleetsthe electronic properties. The joint density
of states presents many conspicuous peaks resulting from the extra band-edge states. The
peak heights originating in the excitations of 12 to us, | (ur,, to ug) and v) to v, (v, to
v¢) are relatively stronger than those of other excitations. The peak intensity is enhanced
by the increase of the field strength and period. Most of the prominent peaks in Dj’s
could also show significant peaks in the optical absorption spectra. However, the optical
absorption peaks do not have manifest relations with the field strength and period. These
absorption peaks could not be ascribed to an obvious selection rule. It is worth noting
that the optical absorption spectra could display the anisotropic feature in the modulation
direction.

Related to the single-layer and bilayer graphenes in the presence of external fields, some

suggestions for future research are as follows:
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electronic properties of a graphene monolayer under a uniform magnetic field and a

modulated electric potential.

optical properties of a graphene monolayer under a uniform magnetic field and a

modulated electric potential.

optical properties of a graphene monolayer under a uniform magnetic field and a

modulated magnetic field.

Coulomb excitations of a graphene monolayer under a modulated magnetic field.

Coulomb excitations of a graphene monolayer under a modulated electric potential.

transport properties of a graphene monolayer under a modulated magnetic field.

transport properties of a graphene monelayer'under a modulated electric field.

electronic properties of a bilayer graphene under a modulated magnetic field.

optical properties of a bilayer graphene under a modulated magnetic field.

electronic properties of a bilayer graphene under a modulated electric field.

optical properties of a bilayer graphene under a modulated electric field.
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Appendix: Band-like Hamiltonian matrix

For example, a 8 x 8 real symmetric matrix is expressed as follows

52130000
26 323000

136433200

003 46¢6 76

0003576 8

000036 835

The matrix elements are denoted asiA;;, and symmietric about the diagonal (A4;; = A;;). All
the nonzero elements centralize around the didgonal-and the elements are zero at others.
Such a matrix is called as a real-symmetricThand-like matrix. Because of the symmetry,
we can choose the matrix elements above the diagonal (including the diagonal elements)

to describe A. The matrix becomes

0 0 0 Ay Ay Azs Ay Asg 000333 3 3
oo | 00 A dw As Aw A Aw | |00 123450
E 0 Apn Aoy Ay Ay Asg Agr Arg B 0 23 45 6 78
An Am Asy Au Ass Agg A Ass 566666 65

(A.2)

Accordingly, for a n x n real symmetric band-like matrix, if there are m lines symmetric
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about the diagonal (including the diagonal), the matrix can be reduced into a m x n matrix

O cee e e Al - o Ap_miin
Al = L0
0 Ay - Am_sm - An_sn (A.3)
0 0 Az Ay - Apom - N
0 Ap Ay Ay - Apim - o Ap_in
Ay Ag Ass Ay e Apm -+ e Ann

Such a matrix can save much time in qun caleulations.
In chapter 2, a monolayer graphene is assumed to exist in a spatially modulated mag-
netic field B = Bsin(Kz)z along the armchair direction. The wave function and the

Hamiltonian matrix element are, réspectively, given by

2Rp

i) =D Ciclan) + Chiclba); (A.4a)
n=1

<bmk’HB|ank> = [tlk(n> + tQk(n)}dm,n + t3k<n)6m,n71- (A4b>

Cn. = O™ and O = O are derived because of the periodical boundary condition.
For the three nearest-neighbor atoms, their hopping integrals are, respectively, tix(n) =
Yo exp| (ik, b /2+ikyv/3V [2)+ G ], tar(n) = o exp| (ikyb' /2—ik, /3 /2)—G,, |, and t(n) =
vo exp(—ik,b' ), where G,, = —i[6(Rp)?® /x| cos[r(n — 5/6)/Rp|sin(r/6Rp)]. The normal
arrangement of bases is {|aix), |bik), |a2k), |bok), |ask), |bsk)s |aax), |bak)s --- |aG2rp—3K),
b2 —3k), |a2rp—2k)s |b2rg-2k), |A2Rs—1k)s |D2rE—1K), G2RsK); |D2rpK) ). The 4Rp X 4Rp
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Hamiltonian matrix is

0O ppo 0 O 0 q
pi 0 ¢ 0 0 0
0 ¢ 0 p O 0 0
0O 0 p5 0 O 0 0 0
H= 0 0 0 : (A.5)
P2Rp—1
Parp-1 ¢ 0
0 I q . D2Rp
¢ 0 0 0 0 e 0  psg, O

where p,, = t1k(n) + tax(n) and ¢ = t3x. Most of the matrix elements are centerlized about
the diagonal except the two eleménts Hyopyo— @ and Hop, 1 = ¢*. To get the band-
like Hamiltonian matrix, the base functions aré assighed as the following sequence {|ay),

lborgk)s [D1k)s a2r5K), |G2k)s |D2rg=1)s2lboiy s Ha@srp=1k)s - - |ars—1k), |bRp+2k), |bRE—1K),

lars12k)s |0REK)s |ORs+1K), |PREK); |@Rs+1k) T The Hamiltonian matrix is expressed as

0 ¢ pi O 0 0
qg 0 0 por, O cee 0
D1 0 0 0 q 0 0
0 pi, 0 0 0 ¢ 0 0 "
¢ 0 0 0
q 0 Prp+1
0 0 q
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However, the matrix elements are complex number, and this matrix is not a real symmetric
band-like matrix. To solve this problem, both the Hamiltonian and wave funtions are
divided into the real and imaginary parts, i.e., H = U +1V and ¥, = X +1¢Y. The relation

between the Hamiltonian matrix and eigen energy becomes

U -v||x Re(H) —Im(H) | | X X

V U Y Im(H) Re(H) Y Y
(A.7)

It implies that the original Hamiltonian matrix elements will be a 2 x 2 matrix. For

. . _ Re(q) —Im(q)
example, the matrix element ¢ in Eq. (A.6) is thus represented as ,

Im(q) Re(q)
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Re(q)  Im(q) ' ,
and ¢* would be . Eq. (A.6) is rewritten as follows

ple —pim 00

P00 0 0

0 0 0 0 pRe _plm
e T A g)

0 0 pim phe

0 0 qRe _qlm

0 0 0 0 qu qRe

Orrpi, (pry  a™ ™ 00

0 C .. 0 —pg’; pgeB _qlm qRe 0 0

where the superscripts Re and Im, respectively, indicate the Real and imaginary parts.
The 4Rp X 4Rp complex band-like matrix in Eq. (A.6) enlarges to be a 8Rp X 8 Rp real
symmetric band-like matrix in Eq. (A.8). There are six symmetric lines about the diagonal

(including the diagonal) in the matrix, and it can be thus reduced as a 6 x 8 R matrix.
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