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摘要 

 

這篇論文之中，我們以緊束模型及梯度近似法研究單層石墨系統在外加調制

磁場和調制電場之下的電子和光譜特性。對於調制磁場而言，電子性質受到它的

強烈影響而改變，這些改變包括能帶維度、能量色散關係、新的能量邊界態、能

帶非對稱性、能帶簡併度以及能帶的非等方性特質。在能帶結構中，費米能為零

的地方將會有局部平坦的能帶出現，而在其他能量對應的則是一維的拋物線能

帶。這兩種能帶在態密度中分別造成零維對稱和一維非對稱的發散峰。對於每一

條拋物線能帶而言，它具有一個原始邊界態和四個額外邊界態。這些邊界態所對

應的能量和調制週期以及調制磁場強度之間的關係都有詳細的討論與分析。另

外，在光學吸收譜中的吸收峰主要來自於原始邊界態和額外邊界態所產生。這兩

種邊界態對應的吸收峰分別遵守不同的光學選擇律，其主要原因是由於它們的波

函數擁有不同的特徵所造成。特別值得注意的是，光學吸收譜可以反應出調制磁

場方向以及外加光的極化方向所造成的非等方性特質。對於調制電場而言，電子

特性以及光學特性也會受到強烈的影響。在能帶結構中，靠近原始邊界態的能帶

具有數個額外邊界態，並且展現出震盪行為和色散關係。另外，原本在沒有外加

場之下的雙重簡併拋物線能帶變成沒有簡併的震盪能帶。態密度中所產生的一維

非對稱峰主要是來自於額外邊界態。值得一提的是，態密度中對應費米能為零的

有限值代表著自由電子的存在。換句話說，藉由調制電場的影響可以將單層石墨

系統從半導體性變成金屬性的系統。對於光學性質而言，同樣的也展現了許多來

自於額外邊界態所產生的吸收峰。然而，這些吸收峰並沒有展現出一個明確的光

學選擇律。 
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Abstract 

The π-electronic structures and optical absorption spectra of a single-layer graphene 

in spatially modulated magnetic and electric fields are studied by the tight-binding 

model and gradient approximation. For modulated magnetic fields, they could 

strongly affect the low-energy electronic properties, i.e., the dimensionality, energy 

dispersions, extra band-edge states, asymmetry, state degeneracy, and anisotropy of 

energy bands. There are partial flat bands at EF=0 and one-dimensional parabolic 

bands at others. The two kinds of bands make density of states (DOS) exhibit a 

delta-function-like structure and asymmetric prominent peaks, respectively. Each 

parabolic band owns one original ( pp
yk ) and four extra ( sp

yk 's) band-edge states, and 

their energy dependences on the period and strength are investigated in detail. In the 

optical absorption spectra, the absorption peaks originating in pp
yk  and sp

yk 's obey 

different selection rules because their wave functions present different features. It is 

noted that the anisotropic absorption spectra are induced by different modulated 

directions and electric polarization directions. For modulated electric fields, they 

could drastically change the low-frequency electronic and optical properties. Each 

energy band displays oscillatory energy dispersions and several band-edge states near 

pp
yk . The doubly degenerate parabolic bands become nondegenerate. DOS shows 

many prominent asymmetric peaks mainly owing to the band-edge states. The finite 

DOS at EF =0 means that there are free carriers, i.e., a modulated electric field could 

change a semiconducting graphene into a semimetallic one. The optical absorption 

spectra demonstrate rich peaks resulting from band-edge states, and reveal the 

anisotropy in the modulated direction. Such absorption peaks could not be ascribed to 

an obvious selection rule. 
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Chapter 1

Introduction

The bulk graphite is extensively studied in both theoretical calculations [1-4] and ex-

perimental measurements [5-9]. Recently, few-layer graphenes with two-dimensional (2D)

hexagonal symmetry and nanoscaled thickness have been produced by the mechanical fric-

tion [10,11] and thermal decomposition [12,13]. Such systems are very appropriate in

studying 2D physical properties. They have aroused a lot of investigations on band struc-

tures [14-31], electronic excitations [32-35], phonon [36], transport properties [37-44], and

optical spectra [14,45-51].

The geometric symmetry configurations have a profound influence on the electronic

properties of few-layer graphenes. The honeycomb structure causes a single-layer graphene

to exhibit two linear bands intersecting at the Fermi level EF = 0. The low-energy bands

could be described by the fermion Dirac equation [16]. Energy bands are isotropic at low

energy (≤ 0.5 eV) [1], and so are the low-frequency physical properties (e.g. Coulomb

excitations) [32,34]. The vanishing density of states (DOS) at the Fermi level means that a

graphene monolayer is an exotic zero-gap semiconductor. The massless Dirac electrons have

been examined by using a combination of optical microscopy, scanning electron microscopy

and atomic-force microscopy [11], and by the angle-resolved photoelectron spectroscopy

[52].

The external electric [10,11] and magnetic fields [10,11,13,14,29,31,45,47,51] strongly

affect the electronic properties of a graphene monolayer. A uniform perpendicular magnetic

field makes the low-frequency energy bands become the dispersionless Landau levels (LLs),
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and thus induces the novel half-integer quantum Hall effect [11,37]. The low-energy LLs

can be represented by a simple square-root form En ∝
√
|n|B0 (n the integer quantum and

B0 the field strength) [16,53]. The dependence on B0 has been identified by the magneto-

optical experiments of cyclotron resonance [47]. Meanwhile, an inhomogeneous magnetic

field might also strongly influence the essential physical properties. Haldane, for example,

concluded that a 2D graphene could exhibit magnetoconductance in the presence of a

vanishing net magnetic field [54].

There are several studies on the optical absorption spectra of a graphene monolayer.

The low-energy absorption spectra do not exhibit any absorption peaks by the theoretical

prediction [14], which is dominated by the density of states. On the other hand, a uni-

form perpendicular magnetic field could lead to many delta-function-like absorption peaks

originating in LLs at low energy. These peaks result from the vertical excitations between

the nth ((n + 1)th) occupied LLs and the (n + 1)th (nth) unoccupied LLs. Such peaks

obey the specific selection rule |4n| = 1 because the wave functions (Ψn’s) own the spatial

symmetry configuration [16]. Ψn is characterized by the product of the nth order Hermite

polynomial and Gaussian function, as seen in a two-dimensional electron gas (2DEG). The

optical selection has been confirmed by the far infrared transmission experiments [45].

The physical properties of a 2DEG in the presence of a spatially modulated magnetic

field have been attracted numerous experimental [55-58] and theoretical [59-67] investiga-

tions. These works primarily focus on the transport properties [55-57,59,60], energy bands

[61-63], electronic excitations [64-67], and optical spectra [58]. The transport measurements

reveal the oscillatory magnetoresistance [55,56]. Energy bands of a 2DEG in the absence

of external fields have parabolic energy dispersions. A periodic magnetic field results in
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drastic changes in the state degeneracy, band-edge states, and curvatures. In contrast,

only few examine the physical properties of a single-layer graphene under a modulated

magnetic field. Given the gap, we are motivated to investigate the magnetoelectronic and

magneto-optical properties of a graphene monolayer in a modulated magnetic field.

The purpose of this dissertation is to investigate how modulated fields affect the physical

properties of a single-layer graphene. At first, for modulated magnetic fields, the magne-

toelectronic properties are calculated by the Peierls tight-binding model. The influence of

such fields, including the energy dispersions, reduction of dimensionality, creation of extra

band-edge states, change of state degeneracy, anisotropy at low energy, and asymmetry

of energy bands, are studied (Chapter 2). Next, after obtaining the magnetoelectronic

properties, the magneto-optical absorption spectra are figured out by the gradient approxi-

mation [14,68-70]. The characteristics of wave functions, and the dependence of absorption

peaks on the period, field strength, modulation direction, and electric polarization direction

are discussed in detail (Chapter 3). In addition to modulated magnetic fields, the effects

of modulated electric fields on the electronic and optical properties are further studied

(Chapter 4). Finally, chapter 5 presents the summary and future research directions. The

abstracts of chapters 2-4 are as follows.

The subject of chapter 2 is “Electronic structure of a two-dimensional graphene

monolayer in a spatially modulated magnetic field: Peierls tight-binding model”.

The magnetoelectronic properties of a 2D monolayer graphene are investigated by the

Peierls tight-binding model. They are dominated by the period, strength, and direction

of a spatially modulated magnetic field. Such a field could induce the reduction in di-

mensionality, change of energy dispersions, anisotropy at low energy, composite behavior
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in state degeneracy, extra band-edge states, and asymmetry of energy bands. There are

partial flat bands at the Fermi level and 1D parabolic bands at others, which make density

of states exhibit delta-function-like structure and asymmetric prominent peaks. Energies

of the extra band-edge states strongly depend on the period, while those of the original

band-edge states exhibit little dependence. Both of them grow as the strength increases.

The modulated and uniform magnetic fields differ from each other in energy dispersion,

state degeneracy, and dimensionality. Important differences between a monolayer graphene

and a 2D electron gas are also found.

The subject of chapter 3 is “Low-frequency magneto-optical excitations in a

graphene monolayer”. The low-frequency optical excitations of a monolayer graphene

in a periodic magnetic field are calculated by the gradient approximation. The original

and extra band-edge states make the optical absorption spectra exhibit a lot of asymmetric

prominent peaks, which, respectively, lead to the principal peaks and subpeaks. The two

kinds of peaks obey two different selection rules because their wave functions present differ-

ent features. The intensity, frequency, and number of the absorption peaks are related to

the period, strength, direction of a modulated magnetic field, and the electric polarization

direction. The anisotropic absorption spectra are induced by the different modulated di-

rections and electric polarization directions. The above mentioned results could be verified

by the optical measurements.

The subject of chapter 4 is “Electronic properties and optical absorption spectra

of a graphene monolayer in the modulated electric field”. The electronic structure

and optical absorption spectra of a monolayer graphene in the presence of a modulated

electric field are investigated by the tight-binding model and gradient approximation. The
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low-energy electronic properties and optical absorption spectra are strongly affected by the

period, field strength, and modulated direction. Such a field strongly influences the energy

dispersions, state degeneracy, dimensionality, band-edge states, and asymmetry of energy

bands. It should be noticed that there are many extra Fermi-momentum states at EF = 0.

The density of states (DOS) exhibits many prominent asymmetric peaks mainly owing to

the band-edge states. The finite DOS at the Fermi level means that there are free carriers,

i.e., a modulated electric field could change a semiconducting graphene into a semimetallic

one. The dependence of the energies related to the band-edge states on the period and field

strength is investigated in detail. The optical absorption spectra display rich peaks and

they vanish at ω = 0. Such absorption peaks could not be ascribed to an obvious selection

rule. In addition, the high-frequency energy bands are hardly affected by the modulated

electric potential, and neither are the DOS and optical absorption spectra. It is worth

noting that the electronic properties and optical absorption spectra could show anisotropic

features in the different modulated directions. The predicted results could be verified by

the experimental measurements.

5



References

[1] P. R. Wallace, Phys. Rev. 71, 622 (1947).

[2] F. L. Shyu, and M. F. Lin, J. Phys. Soc. Jpn. 69, 607 (2000).

[3] E. J. Duplock, M. Scheffler, P. J. D. Lindan, Phys. Rev. Lett. 92, 225502 (2004).

[4] F. Ortmann, W. G. Schmidt, F. Bechstedt, Phys. Rev. Lett. 95, 186101 (2005).

[5] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, A. P. Douvalis, and I. S. Sanders,

Nature 420, 156 (2002).

[6] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Nature 430, 870 (2004).

[7] E. T. Jesen, R. E. Palmer, W. Allison, and J. F. Annett, Phys. Rev. Lett. 66, 492

(1991).

[8] H. Kempa, P. Esquinazi, and Y. Kopelevich, Phys. Rev. B 65, 241101 (2002).

[9] Y. Zhang, J. P. Small, M. E. S. Amori, and P. Kim, Phys. Rev. Lett. 94, 176803

(2005).

[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.

V. Grigorieva, A. A. Firsov, Science 306, 666 (2004).

[11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.

Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

[12] C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N.

Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108,

19912 (2004).

6



[13] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.

N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312, 1191

(2006).

[14] C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. K. Fang and M. F. Lin, Carbon

42, 2975 (2004).

[15] S. Latil and L. Henrard, Phys. Rev. Lett. 97, 036803 (2006).

[16] Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).

[17] E. McCann, Phys. Rev. B 74, 161403 (2006).

[18] C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang, and M. F. Lin, Journal

of Physics: Condensed Matter 18, 5849 (2006).

[19] F. Guinea, A. H. C. Neto, and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006).

[20] E. McCann, K. Kechedzhi, V. I. Falko, H. Suzuura, T. Ando, and B. L. Altshuler,

Phys. Rev. Lett. 97, 146805 (2006).

[21] B. Partoens and F. M. Peeters, Phys. Rev. B 74, 075404 (2006).

[22] M. Koshino and T. Ando, Phys. Rev. B 76, 085425 (2007)

[23] C. L. Lu, C. P. Chang, J. H. Ho, C. C. Tsai, and M. F. Lin, Physica E 32, 585 (2006).

[24] J. H. Ho, Y. H. Lai, S. J. Tsai, J. S. Hwang, C. P. Chang, and M. F. Lin, J. Phys.

Soc. Jpn. 75, 114703 (2006).

[25] E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).

7



[26] J. M. Pereira, F. M. Peeters, and P. Vasilopoulos, Phys. Rev. B 76, 115419 (2007).

[27] N. Nemec and G. Cuniberti, Phys. Rev. B 75, 201404 (2007).

[28] J. H. Ho, Y. H. Lai, Y. H. Chiu, and M. F. Lin, Nanotechnology 19, 035712 (2008).

[29] Y. H. Chiu, Y. H. Lai, J. H. Ho, D. S. Chuu, and M. F. Lin, Phys. Rev. B 77, 045407

(2008).

[30] E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos

Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett.

99, 216802 (2007).

[31] Y. H. Lai, J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Rev. B 77, 085426 (2008).

[32] F. L. Shyu and M. F. Lin, J. Phys. Soc. Jpn. 69, 607 (2000).

[33] J. H. Ho, C. P. Chang and M. F. Lin, Phys. Lett. A 352, 446 (2006).

[34] J. H. Ho, C. L. Lu, C. C. Hwang, C. P. Chang and M. F. Lin, Phys. Rev. B 74,

085406 (2006).

[35] X. F. Wang and T. Chakraborty, Phys. Rev. B 75, 041404 (2007).

[36] A. H. Castro Neto and F. Guinea, Phys. Rev. B 75, 045404 (2007).

[37] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).

[38] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C.

Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007).

8



[39] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler,

D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys. 2, 177 (2006).

[40] V. P. Gusynin and S. G. Sharapov, Phys. Rev. B 73, 245411 (2006).

[41] V. P. Gusynin, V. A. Miransky, S. G. Sharapov, and I. A. Shovkovy, Phys. Rev. B

74, 195429 (2006).

[42] M. Koshino and T. Ando, Phys. Rev. B 73, 245403 (2006).

[43] J. Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres, Phys. Rev. Lett. 97,

266801 (2006).

[44] N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 73, 125411 (2006).

[45] M. L. Sadowski, G. Martinex, and M. Potemski, C. Berger, and W. A. de Heer, Phys.

Rev. Lett. 97, 266405 (2006).

[46] D. S. L. Abergel and Vladimir I. Fal’ko, Phys. Rev. B 75, 155430 (2007).

[47] R. S. Deacon, K.-C. Chuang, R. J. Nicholas, K. S. Novoselov, and A. K. Geim, Phys.

Rev. B 76, 081406 (2007).

[48] D. S. L. Abergel, A. Russell, and Vladimir I. Fal’ko, Appl. Phys. Lett. 91, 063125

(2007).

[49] C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. F. Lin, Phys. Rev. B 73,

144427 (2006).

[50] C. L. Lu, H. L. Lin, C. C. Hwang, J. Wang, C. P. Chang, and M. F. Lin, Appl. Phys.

Lett. 89, 221910 (2006).

9



[51] Z. Jiang, E. A. Henriksen, L. C. Tung, Y.-J. Wang, M. E. Schwartz, M. Y. Han, P.

Kim, and H. L. Stormer, Phys. Rev. Lett. 98, 197403 (2007).

[52] S. Y. Zhou, G.-H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y.

Kopelevich, D.-H. Lee, Steven G. Louie, and A. Lanzara, Nature. Physics 2, 595

(2006).

[53] J. W. McClure, Phys. Rev. 104, 666 (1956).

[54] F. D. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

[55] S. P. Beaumont and M. G. Blamire, Phys. Rev. Lett. 74, 3009 (1995).

[56] P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. von Klitzing, K. Eberl and H.

Nickel, Phys. Rev. Lett. 74, 3013 (1995).

[57] Mayumi Kato, Akira Endo, Makoto Sakairi, Shingo Katsumoto and Yasuhiro Iye,

Journal of the physical society of Japan 68, 1492 (1999).

[58] S. Cina, D. M. Whittaker, D. D. Arnone, T. Burke, H. P. Hughes, M. Leadbeater,

M. Pepper and D. A. Ritchie, Phys. Rev. Lett. 83, 4425 (1999).

[59] P. Vasilopoulos and F. M. Peeters, Superlattices and Microstructures 7, 393 (1990).

[60] F. M. Peeters and P. Vasilopoulos, Phys. Rev. B 47, 1466 (1993).

[61] I. S. Ibrahim and F. Peeters, Phys. Rev. B 52, 17321 (1995).

[62] Andrey Krakovsky, Phys. Rev. B 53, 8469 (1996).

[63] A. Y. Rom, Phys. Rev. B 55, 11025 (1997).

10



[64] J. M. Luttinger, Phys. Rev. 84, 814 (1951).

[65] S. M. Stewart and C. Zhang, Semicond. Sci. Technol. 10, 1541 (1995).

[66] S. M. Stewart and C. Zhang, Phys. Rev. B 52, R17036 (1995).

[67] S. M. Stewart and C. Zhang, Condens. Matter 8, 6019 (1996).

[68] M. F. Lin and Kenneth W.-K. Shung, Phys. Rev. B 50, 17744 (1994).

[69] Y. C. Huang, M. F. Lin, and C. P. Chang, J. App. Phy. 103, 073709 (2008).

[70] J. Blinowski, N. H. Hau, C. Rigaux, J. P. Vieren, R. L. Toullee, G. Furdin, A. Herold,

and J. Melin, J. Phys. (Paris) 41, 47 (1980).

11



Chapter 2

Electronic structure of a two-dimensional graphene monolayer in

a spatially modulated magnetic field: Peierls tight-binding model

2.1 Introduction

Condensed-matter systems, such as diamond, layered graphenes, carbon nanotubes, car-

bon tori, C60-related fullerenes, and carbon onions, are purely made up of carbon atoms.

Such systems have very special symmetric configurations, and their dimensionalities vary

from 3D to 0D. They could exhibit rich electronic properties, e.g., a wide-gap diamond,

a semimetallic bulk graphite, a zero-gap monolayer graphene, a metallic armchair carbon

nanotube, and a small-gap nonarmchair carbon nanotube. Recently, few-layer graphenes

with 2D hexagonal symmetry and nanoscaled thickness could be produced by controlling

film thickness with single-atom accuracy [1]. A lot of researches have been strongly mo-

tivated, such as growth [2], phonon [3], band structure [4-7], electronic excitations [8-11],

optical spectra [12,13], and transport properties [14-20]. These experimental [14-18] and

theoretical [19,20] studies show that they display the novel quantum Hall effect.

A 2D monolayer graphene owns linear bands intersecting at the Fermi level EF = 0.

Energy bands are isotropic at low energy (.0.5 eV) [21], and so are the low-frequency

physical properties (e.g., Coulomb excitations) [8,10]. They produce a vanishing density of

states at EF = 0, which makes a monolayer graphene an exotic zero-gap semiconductor.

The two important characteristics, isotropy and semiconductor, originate from the hexag-

onal symmetric configuration. Electronic properties are completely changed by applying

12



a uniform perpendicular magnetic field. Most of energy bands become the dispersionless

Landau levels. The effective-mass model predicts that energies of the low Landau levels are

proportional to the square root of field strength and quantum number [22]. These theoret-

ical predictions have been verified by experimental measurements on transport properties

[16] and optical spectra [12]. An inhomogeneous magnetic field might also strongly affect

the essential physical properties. Haldane first investigated whether a 2D graphene could

exhibit the special magnetoconductance in the presence of a vanishing net magnetic field

[23]. In this work, we mainly focus on the effects of a periodic magnetic field on electronic

properties.

There are numerous experimental [24-27] and theoretical [28-36] researches for a 2D

electron gas (2DEG) under a spatially modulated magnetic field. These works primarily

analyze the transport properties [24-26,28,29], energy bands [30-32], electronic excitations

[33-36], and optical spectra [27]. The transport measurements [24,25] manifest the oscil-

latory magnetoresistance. Energy bands of a 2DEG have parabolic energy dispersions.

A periodic magnetic field leads to the drastic changes in electronic properties, e.g., the

changes in state degeneracy, band-edge states, and curvatures.

The Peierls tight-binding model is used to calculate the electronic structure of a 2D

graphene in a spatially modulated magnetic field. The Hamiltonian is a huge Hermitian

matrix for a large modulation period (&1000 Å). The numerical techniques are developed

to attain a band-like Hamiltonian matrix. The dependence of electronic properties on the

direction, period, and strength of the modulated magnetic field would be investigated in

detail, e.g., energy dispersions, state degeneracy, band-edge states, symmetry of energy

bands, and density of states. A comparison with those of a uniform magnetic field is made.

13



The important differences between a monolayer graphene and a 2DEG are also discussed.

This paper is organized as follows. The band-like Hamiltonian matrix in a periodic

magnetic field is derived in Sec. II. The main characteristics of the π-electronic structures

are discussed in Sec. III. Finally, Sec. IV contains concluding remarks.

2.2 Peierls Hamiltonian band matrix

The tight-binding model with nearest-neighbor interactions is used to calculate the

π-electronic structure of 2pz orbitals. In the honeycomb structure of a 2D single-layer

graphene in the absence of an external field, there are two kinds of carbon atoms, a and

b, in a primitive unit cell. The wave function consisting of the two linear tight-binding

functions from periodic 2pz orbitals is expressed as |Ψk〉 = Cak|ak〉 + Cbk|bk〉, where

|ak〉 =
∑

i e
ik·Ri|aik〉 and |bk〉 =

∑
j eik·Rj |bjk〉. The Hamiltonian built from |ak〉 and |bk〉 is a

2× 2 Hermitian matrix . The site energies are vanishing (〈 aik|H0|aik〉 = 〈 bik|H0|bik〉 = 0),

and the nearest-neighbor hopping integral is given by

〈 bjk|H0|aik〉 = γ0 exp[ ik · (Ri −Rj) ], (2.1)

where γ0(=2.56 eV) [21] is the atom-atom interaction between two neighboring atoms at

Ri and Rj.

A monolayer graphene is assumed to exist in a spatially modulated magnetic field B =

B sin(Kx)ẑ along the armchair direction (the x-axis in Fig. 2.1(a)), and the periodic length

is lB = 2π /K = 3b′RB, where parameter RB is useful in describing the dimensionality

of the Hamiltonian matrix. The magnetic flux, product of the field strength and the

hexagonal area in the unit of flux quantum (Φ0 = hc/e = 4.1356 × 10−15 [T/m2]), is Φ =

(3
√

3Bb′2/2)/Φ0. b′=1.42 Å is the C-C bond length. The modulated magnetic field that
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leads to the Peierls phase is characterized by the vector potential A = −[B cos(Kx)]/Kŷ.

The nearest-neighbor hopping integral becomes

〈bjk|HB|aik〉 = γ0 exp{i[k · (Ri −Rj) +
2π

Φ0

∫ Rj

Ri

A · dr ]}. (2.2)

For three nearest-neighbor atoms, their hopping integrals are, respectively, t1k(n) = γ0 exp[

(ikxb
′/2 + iky

√
3b′/2) + Gn ], t2k(n) = γ0 exp[ (ikxb

′/2 − iky

√
3b′/2) − Gn ], and t3k(n) =

γ0 exp(−ikxb
′ ), where Gn = −i[6(RB)2Φ/π] cos[π(n − 5/6)/RB] sin(π/6RB) ]. The mod-

ulation period causes the periodic boundary conditions along the x-axis so that the cor-

responding Peierls phase is periodic in a period 2RB. An enlarged rectangular unit cell

includes 4RB carbon atoms. The wave function and the Hamiltonian matrix element are,

respectively, given by

|Ψk〉 =

2RB∑
n=1

Cn
ak|ank〉+ Cn

bk|bnk〉; (2.3a)

〈bmk|HB|ank〉 = [t1k(n) + t2k(n)]δm,n + t3k(n)δm,n−1. (2.3b)

Cn
ak = Cn+2RB

ak and Cn
bk = Cn+2RB

bk are derived because of the periodical boundary condition.

To solve the complicated calculations of the huge Hamiltonian matrix, the base functions

are chosen as the following sequence {|a1k〉, |b2RBk〉, |b1k〉, |a2RBk〉, |a2k〉, |b2RB−1k〉, |b2k〉,

|a2RB−1k〉, . . . |aRB−1k〉, |bRB+2k〉, |bRB−1k〉, |aRB+2k〉, |aRBk〉, |bRB+1k〉, |bRBk〉; |aRB+1k〉}.
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The Hamiltonian matrix could be expressed as a 4RB × 4RB band-like Hermitian matrix




0 q∗ p∗1 0 . . . . . . 0 0

q 0 0 p2RB
0 . . . . . . 0

p1 0 0 0 q 0 . . . 0

0 p∗2RB
0 0 0 q∗ 0 0

...
. . . q∗ 0 0

. . . . . . 0

... . . .
. . . q

. . . . . . 0 pRB+1

0
...

...
. . . . . . 0

. . . q

0 0 0 0 0 p∗RB+1 q∗ 0




, (2.4)

where pn ≡ t1k(n) + t2k(n) and q ≡ t3k. Because the range of kx is much smaller than that

of ky for a large RB, it is sufficient just to consider 1D energy dispersions along ky. That

is to say, a modulated magnetic field could effectively reduce the dimensionality by one.

The π-electronic structure strongly depends on the direction of the modulated magnetic

field, mainly owing to the anisotropic structure of a 2D monolayer graphene. For the

zigzag direction (Fig. 2.1(b)), the similar calculations could also be done. By the detailed

derivations, the three hopping integrals are t′1k(n) = γ0 exp[ (ikx

√
3b′/2 + ikyb

′/2) + G′
n],

t′2k(n) = γ0 exp[ (−ikx

√
3b′/2+ ikyb

′/2) −G′
n−1], and t′3k(n) = γ0 exp[ (−ikyb

′)+G′′
n ], where

G′
n = − i[2(RB)2Φ/3π] cos[π(n − 1/2)/RB] sin(π/2RB) and G′′

n = −i[(2RBΦ/3) cos[(n −

1)π/RB] ]. The Hamiltonian matrix element is further given by

〈bmk|HB|ank〉 = t′1k(n)δm,n+1 + t′2k(n)δm,n−1 + t′3k(n)δm,n. (2.5)

With the base functions {|a1k〉, |b2RBk〉, |b1k〉, |a2RBk〉, |b2k〉, |a2RB−1k〉, |a2k〉, |b2RB−1k〉, . . .

|bRB−1k〉, |aRB+2k〉, |aRB−1k〉, |bRB+2k〉, |aRBk〉, |bRB+1k〉, |bRBk〉; |aRB+1k〉}, the 4RB × 4RB
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Figure 2.1. The primitive unit cell of a monolayer graphene in the spatially modulated

magnetic field with period RB along (a) the armchair direction and (b) zigzag direction.
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band-like Hamiltonian matrix for the zigzag direction is




0 u∗2RB
v∗1 0 s∗1 0 . . . 0 0 0

u2RB
0 0 v2RB

0 s2RB−1 0 0 0 0

v1 0 0 s2RB

. . . . . . . . . . . . 0 0

0 v∗2RB
s∗2RB

0
. . . . . . 0

...

s1 0
. . . . . . . . . . . . s∗RB−1 0

0 s∗2RB−1

. . . . . . . . . . . . 0 sRB+1

... 0
. . . . . . 0 s∗RB

v∗RB
0

0 0
. . . . . . . . . . . . sRB

0 0 vRB+1

0 0 0 0 sRB−1 0 vRB
0 0 uRB

0 0 0 . . . 0 s∗RB+1 0 v∗RB+1 u∗RB
0




,

(2.6)

where sn ≡ t′1k(n), un ≡ t′2k(n) and vn ≡ t′3k(n). The Hamiltonian matrices in Eqs. (2.4)

and (2.6), respectively, have two and three independent matrix elements.

2.3 Magnetoelectronic properties

The unoccupied conduction bands (Ec’s) are symmetric to the occupied valence bands

(Eν ’s) about the Fermi level EF = 0. Only the former are discussed in this work. We

first look at the low energy bands resulting from the modulated magnetic field with period

RB = 1000 along the armchair direction. At B = 0, most of energy bands are parabolic

dispersions with the double degeneracy except two nondegenerate linear bands intersecting

at EF = 0 (the solid circles in Fig. 2.2(a)). There is only one band-edge state in each

energy band; furthermore, all the band-edge states are located at kpp
y = 2π/3

√
3b′ (the

original band-edge states). The modulated magnetic field leads to drastic changes in band-
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edge states and energy dispersions, as shown in Fig. 2.2(a) by the open circles at B = 20

T. The range of ky, where electronic states could exist, becomes large. The linear bands

are changed into partial flat bands at EF = 0. Also noted that this result is similar

to that of carbon nanotubes in magnetic fields perpendicular to the symmetry axis [37].

The doubly degenerate parabolic bands have weak energy dispersions or low curvatures at

kpp
y , and their number is largely reduced. Such effects suggest that a magnetic field could

make electronic states flock together. The modulation effects of B on parabolic energy

bands result in four extra band-edge states at ksp
y ’s, the strong energy dispersions close to

ksp
y ’s, and the destruction of the double degeneracy. The two extra band-edge states at

the left- and right-hand sites of kpp
y might have different energies; that is, one side of the

parabolic bands might be asymmetric to the other about the original band-edge states.

Each parabolic band exhibits the composite behavior in state degeneracy, the single and

double degeneracies near ksp
y and kpp

y respectively.

The number of subbands grows quickly as state energy Ec increases from zero. There

are many middle energy bands near Ec ' γ0, as shown in Fig. 2.2(b). At B = 0, they

include complete flat bands at Ec = γ0 and parabolic bands at the others. Both are doubly

degenerate. The parabolic bands have a low curvature at kpp
y = π/2

√
3b′ and the high

curvature at ksp
y = 0 (not shown). Moreover, in the small or large ky, the modulated

magnetic field could destroy double degeneracy and create extra band-edge states. It

modifies the band curvatures at kpp
y , and makes the complete flat bands change into the

partial flat bands.

The subband number decreases gradually with the further increase of state energy. The

high energy bands, as shown in Fig. 2.2(c) for B = 0, are parabolic dispersions with the
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Figure 2.2. Energy bands near (a) Ec = 0, (b) Ec = γ0, and (c) Ec = 3γ0 for the armchair

modulation direction at (RB = 1000 and B = 20 T). Those without B are also shown for

comparison.
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double degeneracy and one band-edge state at kpp
y = 0. All the kpp

y states remain unchanged

in the presence of B, as seen in low and middle energy bands. However, the modulated

magnetic field could reduce the number of subbands or widen the range of ky, produce the

extra band-edge states at ksp
y 6= 0, and induce the composite behavior of the single and

double degeneracies.

The strength, period, and direction of the modulated magnetic field strongly affect the

electronic structure, as shown in Figs. 2.3(a)-2.3(b) for the low energy bands. The range of

partial flat bands increases with the increasing B, while their number and curvatures exhibit

the opposite behavior (Figs. 2.3(a) and 2.2(a)). These results further demonstrate that the

ability to flock electronic states is enhanced by the increasing field strength. The longer

the period is, the larger the effective range of ky is (Figs. 2.3(b) and 2.2(a)). The period

could alter state energies and curvatures of extra band-edge states at ksp
y ’s. It is also worth

noting that kpp
y = 2π/3

√
3b′ of the doubly degenerate parabolic bands is independent of

period and strength. When the spatially modulated direction is along the zigzag structure,

there are two partial flat bands at EF = 0 and many parabolic bands at the others (Fig.

2.3(c)). The former are doubly degenerate; the later are fourfold degenerate near kpp
y = 0

and doubly degenerate near ksp
y . That state degeneracy, subband number, ky’s of band-edge

states, and range of partial flat bands depend on the modulation direction directly reflects

the anisotropic characteristic of a graphene geometry. In addition, the similar effects could

also be found in moderate and high energy bands.

Density of states (DOS), which is closely related to essential features of the electronic
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Figure 2.3. The low energy bands along the armchair direction at (a) (RB = 1000, B = 40

T) & (b) (RB = 2000, B = 20 T), and those along (c) the zigzag direction at (RB = 1000,

B = 20 T).
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structure, is defined as

D(ω) =
∑

σ,h=c,ν

∫

1stBZ

dkxdky

(2π)2

Γ

π

1

[Eh(kx, ky)− ω]2 + Γ2
. (2.7)

Γ(= 10−4 γ0) is a phenomenological broadening parameter. The integration on kx could

be roughly neglected because of the very small range of kx. The low-frequency DOS at

B = 0 is proportional to ω, as shown in Fig. 2.4(a). It vanishes at ω = 0 and has no

special structures. However, the modulated magnetic field leads to a symmetric delta-

function-like peak at ω = 0 (inset in Fig. 2.4(a)) and considerable asymmetric square-root

divergent peaks. The former comes from the two partial flat bands at EF = 0, and its

height grows with the increasing field strength. The latter are dominated by the band-edge

states of the 1D parabolic dispersions along k̂y (Fig. 2.2(a)). The asymmetric pronounced

peaks could be further divided into weak subpeaks and strong principal peaks. They

are, respectively, due to the band-edge states at ksp
y ’s and kpp

y . There are many pairs of

subpeaks, and each pair of subpeaks is associated with the asymmetry of the 1D parabolic

bands about the kpp
y states (discussed earlier in Fig. 2.2(a)). The number, frequencies, and

heights of the asymmetric prominent peaks are sensitive to the changes in the strength,

period, and modulation direction. The peak number decreases with the increase of the

strength, while the peak frequencies exhibit a different behavior (Fig. 2.4(a)). The number

of subpeaks increases as the period grows (Fig. 2.4(b)), while it is the other way around

as the frequencies of subpeaks increase. The main features of principal peaks have the

weak dependence on the period. When the modulation direction is orientated relatively

close to the zigzag structure, more principal peaks with lower frequencies are observed

(comparison between the heavy and light solid curves in Fig. 2.4(b)). Density of states

could display the high anisotropy even at very low frequency (ω → 0 in the inset of Fig.
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2.4(b)). However, the low-frequency physical properties without B are anisotropic only for

ω & 0.25 γ0, e.g., electronic excitations and absorption spectra [9]. This result indicates

that the anisotropy of the low-frequency electronic properties could be induced by means

of a spatially modulated magnetic field.

The frequencies of prominent peaks in DOS deserve a closer investigation. Fig. 2.5(a)

shows the relation between the frequencies (ωsp’s) of the first six subpeaks and the period

at B = 20 T. These peaks correspond to the extra band-edge states at the left-hand neigh-

borhood of kpp
y (Fig. 2.2(a)). ωsp’s decline quickly as RB increases. As to the frequencies

of principal peaks (ωpp’s), their dependence on the period is minor for a sufficient large RB

(& 1000), as shown in Fig. 2.5(b). Both ωsp’s and ωpp’s are largely enhanced by the in-

creasing field strength (Figs. 2.5(c) and 2.5(d)). There exists a special square-root relation

between ωpp and B, i.e., ωpp ∝
√

B. In addition, the low-energy flat Landau levels due to a

uniform magnetic field (B0) also exhibit the square-root dependence on the field strength

[22]. The band-edge state energies are closely related to the magneto-optical absorption

frequencies. The predicted results could be verified by the optical spectroscopy.

A uniform magnetic field differs from a spatially modulated magnetic field in the low-

energy magnetoelectronic structures. In terms of the ability in flocking electronic states,

the former is much stronger than the latter. A uniform magnetic field could make linear

or parabolic bands convert into the dispersionless Landau levels. Such levels are fourfold

degenerate for each ky state. All the Landau states could be regarded as the band-edge

states. They would exhibit zero-dimensional features, but not one-dimensional features.

For example, the magneto-optical absorption spectra display the symmetric and asymmetric

prominent peaks in cases B0 and B , respectively.
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Figure 2.4. The low-frequency density of states (a) along the armchair direction at RB =

1000 and different B’s; (b) at B = 20 T and different RB’s or directions. The insets show

those near EF = 0.
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Figure 2.5. Energies (ωsp’s) of extra band-edge states at the left-hand neighborhood of

kpp
y and those (ωpp’s) of the original band-edge states. (a) and (b) are their dependence on

the period; (c) and (d) correspond to the dependence on the strength.
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The electronic structure of a 2DEG could be strongly affected by a spatially modulated

magnetic field [20-32]. It also displays the similar behaviors to a monolayer graphene,

such as the composite behavior in state degeneracy, creation of extra band-edge states,

and change of curvatures. However, there are three significant differences between a 2DEG

and a monolayer graphene. A 2DEG does not exhibit partial flat bands at zero energy.

Its magnetoelectronic structure is independent of the modulation direction. Moreover, the

wave vectors of extra band-edge states are approximately close to ky = 0 and hardly depend

on the state energy. The above-mentioned differences mainly come from the hexagonal

structure of a monolayer graphene.

2.4 Concluding remarks

In summary, the magnetoelectronic structure of a 2D monolayer graphene is studied

by the Peierls tight-binding model. The specific base functions are chosen to solve a huge

Hamiltonian matrix. The strength, period, and direction of a spatially modulated magnetic

field dominate the main features of electronic properties. Such a field could reduce dimen-

sionality by one, alter energy dispersions, cause anisotropy at low energy, induce composite

behavior in state degeneracy (the composite behavior of single and double degeneracies

for the armchair direction), produce extra band-edge states, and destroy the symmetry of

energy bands about the original band-edge states. Energies of the extra band-edge states

strongly rely on the period, while the opposite is true for those of the original band-edge

states. Both of them grow with the increase of the strength. Density of states owns many

asymmetric prominent peaks, mainly owing to the band-edge states in 1D parabolic bands.

The partial flat bands also make DOS display delta-function-like structures at the Fermi
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level. A spatially modulated magnetic field contrasts sharply with a uniform magnetic

field in energy dispersion, state degeneracy, and dimensionality. The important differences

between a monolayer graphene and a 2DEG arise from the hexagonal symmetry. They are

the existence of the partial flat bands at zero energy, dependence on the modulation di-

rection, and wave vectors of the band-edge states. The experimental measurements on the

magneto-optical absorption spectra could be utilized to examine the predicted electronic

properties.
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Chapter 3

Low-frequency magneto-optical excitations

in a graphene monolayer

3.1 Introduction

Recently, the few-layer graphenes have been produced by the mechanical friction [1, 2]

and thermal decomposition [3, 4]. They have attracted a lot of theoretical and experimen-

tal investigations on band structures [5-22], optical spectra [5, 23-29], electronic excitations

[30-33], phonon spectra [34], and transport properties [35-42]. It is very appropriate to use

these systems to study two-dimensional (2D) physical phenomena. A monolayer graphene

is an exotic zero-gap semiconductor with a vanishing density of states (DOS) at the Fermi

level EF = 0, mainly owing to the hexagonal symmetry configuration. The massless Dirac

electrons have been inspected by using a combination of optical microscopy, scanning elec-

tron microscopy and atomic-force microscopy [2], and by the angle-resolved photoelectron

spectroscopy [43]. The electronic properties of a monolayer graphene could be effectively

tuned by external electric [1, 2] and magnetic fields [1, 2, 4, 5, 20, 22, 23, 25, 29]. A uni-

form perpendicular magnetic field (B0) creates many Landau levels (LLs) and thus induces

the novel half-integer quantum Hall effect [2, 35]. In this work, we mainly study the low-

frequency optical excitations of a monolayer graphene in a spatially modulated magnetic

field (B). The dependence on B (period, strength; direction) and the polarization of an

electromagnetic field is investigated. The comparison with the absorption spectra resulting

from B0 is also made.
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A 2D monolayer graphene owns many doubly degenerate parabolic bands except two

nondegenerate linear bands intersecting at EF = 0. Energy bands are isotropic at low

energy (. 0.5 eV) [44], and so are the other physical properties [5]. Moreover, there is only

one band-edge state in each energy dispersion. Electronic properties are strongly affected

by the uniform and periodic magnetic fields. The low-energy LLs due to B0 display the

novel dependence on the quantum number (n) and field strength (B0); that is, their energies

obey the square root form En ∝
√
|n|B0. The dependence on B0 has been identified by the

magneto-optical experiments of cyclotron resonance [25]. Compared to a uniform magnetic

field, the ability of a periodic magnetic field in flocking electronic states together is weaker.

However, the latter could induce the rich magnetoelectronic structures [20]. The linear

bands are changed into the partial flat bands at EF = 0. The energy dispersions of the

low-energy parabolic bands around the original band-edge state would become weaker.

Each parabolic band shows four extra band-edge states and the composite behavior in

state degeneracy (the double and single degeneracies at different wave vectors). The low-

energy bands depend on the modulated direction of B; furthermore, they belong to the

one-dimensional energy dispersions. The main features of magnetoelectronic properties are

expected to be directly reflected in optical excitations.

There are several studies on optical absorption spectra of a monolayer graphene. From

the theoretical prediction, the linear valence and conduction bands do not exhibit any

absorption peaks at low frequency [5]. This result is dominated by the DOS. On the other

hand, the low-energy LLs in a uniform magnetic field could lead to a number of prominent

symmetric absorption peaks [5]. Each peak comes from the vertical transition between

the occupied LL of n (n + 1) and the unoccupied LL of n + 1 (n). The magneto-optical
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excitations need to obey the specific selection rule |∆n| = 1, since the magnetoelectronic

wave functions (Ψn’s) own the spatial symmetry configuration. Ψn is characterized by the

Hermite polynomial, as seen in a 2D electron gas (2DEG). The optical selection rule has

been verified by the far infrared transmission measurements [23]. Whether |∆n| = 1 is

destroyed by a spatially modulated magnetic field will be examined in this work.

The Peierls tight-binding model, with the nearest-neighbor atomic interactions, is used

to calculate the π-electronic structure of a monolayer graphene in a periodic magnetic field

[20]. To explain the selection rules of optical excitations, the characteristics of magnetoelec-

tronic wave functions are analyzed in detail. The optical transition elements are evaluated

by the gradient approximation [5, 45-47]. This work shows that the magneto-optical ab-

sorption spectra present a lot of asymmetric pronounced peaks. Such peaks result from

the original and extra band-edge states of parabolic bands. Their characters are closely

related to the polarization direction and the strength, period and direction of B. There

exist some important differences for the absorption spectra in the presence of B and B0.

The predicted results could be examined by the optical absorption spectroscopy.

In the next section, the π-electronic wave functions in the presence of a spatially mod-

ulated magnetic field are studied by the Peierls tight-binding model. In Sec. 3.3, the

magneto-absorption spectra are calculated at different polarization directions. Meanwhile,

the effects due to the field strength, period and direction are also discussed. Finally, con-

cluding remarks are presented in Sec. 3.4.

3.2 π-electronic wave functions

A monolayer graphene is assumed to exist in a periodic magnetic field B = B sin(Kx)ẑ
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along the armchair direction (the x-axis in Fig. 3.1(a)). The periodic length in a unit of

the lattice constant at B = 0 (3b′) is lB = 2π /K = 3b′RB, where b′ = 1.42 Å is the C-C

bond length. There are 4RB carbon atoms in a primitive unit cell (2RB a atoms and 2RB

b atoms). The magnetoelectronic structure formed by the 2pz orbitals is described by the

4RB tight-binding functions. |amk〉 and |bmk〉 for m = 1, 2...2RB are, respectively, those

associated with the periodical a and b atoms. The π-electronic wave function is expressed

as

|Ψc,v
k 〉 =

2RB−1∑
m=1

(Ac,v
o |amk〉+ Bc,v

o |bmk〉) +

2RB∑
m=2

(Ac,v
e |amk〉+ Bc,v

e |bmk〉) , (3.1)

where o (e) represents an odd (even) integer. The superscripts c and v indicate the unoccu-

pied conduction band and occupied valence band, respectively. Ac,v
o (Bc,v

o ) is the amplitude

of the tight-binding function due to the a (b) atoms with odd indices. The Hamiltonian

matrix in the subspace spanned by the tight-binding functions is a 4RB × 4RB band-like

Hermitian matrix. Only the nearest-neighbor atomic hopping integrals γ0 (=2.56 eV) [44]

is taken into account. The magnetic field would induce an extra Peierls phase between

two nearest-neighbor atoms at Rm′ and Rm. Such a phase is defined as 2π
Φ0

∫ Rm

Rm′
A · dr ,

where A = −B cos(Kx)/Kŷ is the vector potential, and Φ0 = h/e is the flux quantum.

To get the band-like Hamiltonian matrix, the 4RB tight-binding functions are arranged

as the following sequence {|a1k〉, |b2RBk〉, |b1k〉, |a2RBk〉, |a2k〉, |b2RB−1k〉, |b2k〉, |a2RB−1k〉, . . .

|aRB−1k〉, |bRB+2k〉, |bRB−1k〉, |aRB+2k〉, |aRBk〉, |bRB+1k〉, |bRBk〉; |aRB+1k〉}. By the detailed

calculations, the nonvanishing Hamiltonian matrix elements are

〈bm′k|HB|amk〉 = [t1k(m) + t2k(m)]δm′,m + t3kδm′,m−1. (3.2)

35



The three hopping integrals are, respectively, t1k(m) = γ0 exp[ (ikxb
′/2 + iky

√
3b′/2) +

Gm ], t2k(m) = γ0 exp[ (ikxb
′/2 − iky

√
3b′/2) − Gm ], and t3k = γ0 exp(−ikxb

′ ) (Gm =

−i[6(RB)2Φ/π] cos[π(m− 5/6)/RB] sin(π/6RB)). The similar equations could be obtained

for the periodic magnetic field along the zigzag direction.

The energy dispersions Ec,v (k, ñ)’s are obtained by diagonalizing the Hamiltonian,

where ñ represents the subband index measured from the Fermi level. The low-energy

bands are drastically changed by the modulated magnetic field, as shown in Fig. 3.1(b) at

RB = 750 and B = 4 T along the armchair direction. The unoccupied conduction bands

are symmetric to the occupied valence bands about EF = 0. The dependence of energy

bands on kx is negligible compared with that on ky. A periodic magnetic field, with a suf-

ficient large period, could effectively reduce the dimensionality by one. The ky-dependent

energy bands exhibit partial flat bands at EF = 0 and parabolic bands at others. Each

parabolic band owns one original band-edge state (kpp
y ) and four extra band-edge states

(ksp
y ’s). The former is situated at the fixed wave vector kpp

y = 2π/3
√

3b′, which is the same

with that in the B = 0 case [20]. However, the latter depend on the period and strength

of B. The parabolic bands close to kpp
y and ksp

y ’s are, respectively, doubly degenerate and

nondegenerate. The very weak energy dispersions near kpp
y mean that the ability of the

periodic and uniform magnetic fields in flocking electronic states together is similar. Such

energy bands could be regarded as the quasi-Landau levels (QLLs), as indicated from the

characteristics of wave functions.

The main features of wave functions could be utilized to define the quantum number

of QLLs. Carbon atoms, with odd and even indices, make equal contributions to wave

functions. The tight-binding functions associated with these atoms in Eq. (3.1) have
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Figure 3.1. (a) The primitive unit cell of a monolayer graphene in a periodic magnetic

field with a period RB = 750 along the armchair direction. (b) The energy bands for the

field strength B = 4 T.
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the opposite amplitudes; that is, Ac,v
o = −Ac,v

e and Bc,v
o = −Bc,v

e . Only discussing the

amplitudes Ac,v
o and Bc,v

o is appropriate in understanding the wave functions. We first

see the wave function of the lowest unoccupied QLL (ñ = 1 or nc = 0) at kpp
y . The

position-dependent Ac
o and Bc

o, as shown in Figs. 3.2(a) and 3.2(g) by the solid circles,

mainly come from the 2pz orbitals centered at one-fourth (x1 = am/2RB = 1/4) and

three-fourths (x2 = bm/2RB = 3/4) of a primitive unit cell, respectively. The positions

x1 and x2 correspond to the maximum field strength. The wave function of the lowest

unoccupied QLL is similar to that of the highest occupied QLL (nv = 0 by the open circles

in Figs. 3.2(a) and 3.2(g)). Their main difference lies in the interchange of the localization

positions of Ac,v
o and Bc,v

o . Such interchange might include the sign change of the values.

The distribution width of the localization function (lB), that is, the full width at half-

maximum, is comparable to the magnetic length (
√
~/eB), e.g., lB ≈ 200 Å at B = 4 T.

Also note that the two LLs at EF = 0 due to a uniform magnetic field could display the

similar characteristics [22].

There are two important differences between the second and first (lowest) unoccupied

QLLs at kpp
y . The former, as shown in Figs. 3.2(b) and 3.2(h), is doubly degenerate.

Moreover, it is composed of two tight-binding functions centered at x1 and x2. Ac
o (Bc

o)

has two subenvelope functions Ac
o (x1) (Bc

o (x1)) and Ac
o (x2) (Bc

o (x2)) located at x1 = 1/4

and x2 = 3/4, respectively. The oscillatory Ac
o (x1) (Bc

o (x2)) owns one zero point, while the

monotonic Ac
o (x2) (Bc

o (x1)) has none zero point. Their contributions to wave functions are

nearly comparable. The number of zero point (n), which stands for the spatial symmetry

of the carrier density, could be chosen to characterize the wave functions. The effective

quantum number (nc) is defined by the larger number of zero point; that is, nc = 1
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Figure 3.2. The wave functions contributed by the (a)∼(f) Ac,v
o and (g)∼(l) Bc,v

o atoms

with odd integer indices for original band-edge states of the low-energy bands.
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is chosen for the second unoccupied QLL. Such a choice does not influence the specific

selection rules of the optical absorption spectra. In addition, the twofold degenerate QLLs

have the similar wave functions, their difference is only the sign change of the subenvelope

functions. By the definition of nc, the first unoccupied QLL without zero point is thus

defined as the nc = 0 state. The number of zero point will become larger with the increase

of state energy, i.e., nc also increases gradually as the unoccupied QLLs are away from

EF = 0 (Figs. 3.2(a)∼3.2(e), and 3.2(g)∼3.2(k)). The ñth unoccupied QLL owns two

modes of subenvelope functions with n = ñ − 1 and n = ñ − 2, respectively. That nc

is just equal to ñ − 1 is very convenient in defining the unoccupied QLLs (Fig. 3.1(b)).

Furthermore, the second occupied QLL could also reveal the similar features to those in

the second unoccupied QLL, as shown in Figs. 3.2(f) and 3.2(l). They have the same

effective quantum number (nv = nc = 1) and localization positions. Their main difference

is the same as that of nc = 0 case. The other ñth occupied and unoccupied QLLs also

demonstrate the similar behavior. Accordingly, it is reasonable only to discuss the ñth

unoccupied QLLs.

The monolayer graphene owns many low-energy dispersionless LLs in the presence of a

uniform perpendicular magnetic field. The wave functions of LLs could be represented by

the linear combination of those from the harmonic oscillator [7, 46]. After the well fitting,

the ñth QLLs and LLs show the similar characteristics, e.g., the same oscillatory behavior,

effective quantum number, and distribution width. Such similarities imply that the wave

functions of the former could be approximately expressed as those of the latter. Therefore,
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Ac,v
o and Bc,v

o of the ñth QLL in Eq. (3.1) are written as

Ac,v
o ∝ e±ikyyϕ0 (x1) ; Bc,v

o ∝ e±ikyyϕ0 (x2) for ñ = 1. (3.3a)

Ac,v
o ∝ e±ikyy [ϕnc,v (x1)± ϕnc,v−1 (x2)] ; Bc,v

o ∝ e±ikyy [ϕnc,v−1 (x1)± ϕnc,v (x2)] for ñ > 1.

(3.3b)

The subenvelope function ϕn (x) is the product of the nth-order Hermite polynomial and

Gaussian function [7, 46].

The wave functions would be strongly modified as the wave vectors gradually move

away from the original band-edge state. The wave functions at the left- and right-side

wave vectors around kpp
y have the similar characteristics, and thus only the former are

discussed in the following part. For example, Ac
o(x1) (Bc

o(x1)) and Ac
o(x2) (Bc

o(x2)) of

the second unoccupied QLL at k1 (indicated in Fig. 3.1(b)) are centered at, respectively,

x1 = 3/10 and x2 = 7/10, as shown in Figs. 3.3(a) and 3.3(i). They still maintain the

same characteristics with those at kpp
y , while the distance between them (|x1 − x2| = 2/5)

is shorter than that (|x1 − x2| = 1/2) at kpp
y . At ky = k2, the doubly degenerate QLL is

going to separate into two subbands. x1 ≈ 7/20 and x2 ≈ 13/20 are so close that Ac
o(x1)

(Bc
o(x1)) and Ac

o(x2) (Bc
o(x2)) nearly overlap, as shown in Figs. 3.3(b) and 3.3(j). Besides,

one of the tight-binding functions has the opposite sign to that at k1, i.e., Ac
o (Bc

o) might

change its sign at some appropriate wave vectors. k3 and k4 are, respectively, the band-edge

states (ksp
y ’s) of the higher and lower subbands. Their wave functions display the similar

behavior (Figs. 3.3(c) and 3.3(k); 3.3(d) and 3.3(l)). The second unoccupied QLL at k3 is

divided into two nondegenerate subbands, i.e., the 1α and 1β subbands. The subenvelope

functions of the 1α state, as shown in Figs. 3.3(c) and 3.3(k) by the solid circles, exhibit

more overlap behavior. It implies that there would be strong overlap in the subenvelope
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functions at ksp
y ’s. Such a behavior would dominate the optical excitation strength. The

centered positions x1 and x2 are close to half of a primitive unit cell, i.e., they correspond

to the nearly zero magnetic field strength. In other words, the carriers will move from

the position of the maximum magnetic field strength to that of the minimum magnetic

field strength. The 1β (the open circles in Figs. 3.3(c) and 3.3(k)) and 1α subbands have

the similar overlap behavior. However, Ac
o(x1) (Bc

o(x1)) and Ac
o(x2) (Bc

o(x2)) of the former

display the stronger overlap than those of the latter. It results from the fact that k3 is the

extra band-edge state of the 1β subband, but not that of the 1α subband. Furthermore, the

two states reveal the different linear combinations of Ac
o(x1) (Bc

o(x1)) and Ac
o(x2) (Bc

o(x2)).

Ac
o (Bc

o) of the 1α and 1β states could be roughly regarded as, respectively, the combination

of ϕ1 (x1)− ϕ0 (x2) (ϕ0 (x1) + ϕ1 (x2)) and of ϕ1 (x1) + ϕ0 (x2) (ϕ0 (x1)− ϕ1 (x2)); that is,

they might show the different spatial symmetries. The wave functions of the extra band-

edge states have the dissimilar characteristics to those of the original band-edge state.

Since the former exhibit the overlap behavior, the localized feature of QLLs is thoroughly

destroyed at ksp
y ’s. Such properties would be reflected on the optical absorption spectra.

The wave functions of the 2α (2β) subband (Figs. 3.3(g), 3.3(h), 3.3(o), and 3.3(p)) also

display the similar features as those of the 1α (1β) subband, i.e., the similar localization

positions, linear combination, and the overlap behavior of the subenvelope functions. The

other ñth α and β subbands also present the similar characteristics. The above-mentioned

characteristics of wave functions could be utilized to investigate the selection rules of the

optical absorption spectra.

3.3 Magneto-optical absorption spectra
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Figure 3.3. Same plots as Fig. 2, but shown for the second and third conduction bands

at different ky’s.
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The main features of electronic properties can be directly manifested by the optical

excitations. When a monolayer graphene is excited from the occupied valence to unoccupied

conduction bands (the inter-π-band excitation) by an electromagnetic field, there are only

inter-π-band excitations at zero temperature. The optical selection rules ∆kx= 0 and

∆ky= 0 due to the vertical transitions are mainly determined by the zero momentum of

photon. Based on the Fermi’s golden rule, the optical absorption function is given by

A(ω) ∝
∑

c,v,ñ,ñ′

∫

1stBZ

dk

(2π)2

∣∣∣∣∣

〈
Ψc (k, ñ)

∣∣∣∣∣
Ê ·P
me

∣∣∣∣∣ Ψv (k, ñ′)

〉∣∣∣∣∣

2

× Im

[
f (Ec (k, ñ))− f (Ev (k, ñ′))

Ec (k, ñ)− Ev (k, ñ′)− ω − iΓ

]
, (3.4)

where f (E (k, ñ)) is the Fermi-Dirac distribution function. Ê is the unit vector of an electric

polarization. The parallel and perpendicular polarization directions, Ê ‖ x̂ and Ê ⊥ x̂, are

taken into account. The velocity matrix element M cv =
〈
Ψc (k, ñ)

∣∣∣Ê ·P/me

∣∣∣ Ψv (k, ñ′)
〉

is calculated from the gradient approximation. It is approximated by taking the gradient

of the Hamiltonian matrix element versus the wave vector kx or ky. Similar approxima-

tions have been successful in studying the optical properties of the carbon nanotubes [45],

nanographite ribbons [46], graphite [5], and graphite intercalation compounds [47]. More-

over, by substituting Eq. (3.1) into the velocity matrix element, M cv is expressed as

2RB∑

m,m′=1

[(Ac
o + Ac

e)
∗ × (Bv

o′ + Bv
e′) + (Bc

o + Bc
e)
∗ × (Av

o′ + Av
e′)]∇k 〈amk |HB| bm′k〉 .

(3.5)

The indices o (e) and o′ (e′) are, respectively, the odd (even) integers of m and m′. For

convenience, the value of (Ac
o + Ac

e)
∗× (Bv

o′ + Bv
e′)+(Bc

o + Bc
e)
∗× (Av

o′ + Av
e′) is represented
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by M cv
AB. The absolute values of ∇k 〈amk |HB| bm′k〉 for two polarization directions are

M cv
x =

∣∣∣b′γ0

[
cos

(√
3b′ky/2 + Gm

)
− 1

]∣∣∣ for Ê ‖ x̂; (3.6a)

M cv
y =

∣∣∣
√

3b′γ0 sin
(√

3b′ky/2 + Gm

)∣∣∣ for Ê ⊥ x̂. (3.6b)

The optical properties are closely related to the number and strength of excitation

channels. The joint density of states (DJ) reflects the number of excitation channels.

DJ is defined by setting the velocity matrix element in Eq. (3.4) to one. When the

optical excitations come from the band-edge states, DJ would exhibit the prominent peak

structures. The low-frequency DJ at B = 0 has no special structures. It vanishes at ω = 0

and linearly grows with the increasing frequency (not shown; [5]). The low-energy 2D

linear bands do not induce any optical absorption peaks. DJ is strongly affected by the

periodic magnetic field. Fig. 3.4(a) shows DJ ’s for RB = 750 and different field strengths

along the armchair direction. They display a lot of peak structures. The peak height is

enhanced with the increase of the field strength. The peaks at ω = 0 mainly result from

the excitation channel between the two QLLs at EF = 0. The other peaks are dominated

by the excitation channels from the original band-edge and extra band-edge states. The

similar results for different RB’s and the zigzag direction at B = 4 T are also shown in Fig.

3.4(b).

The optical absorption spectrum quite differs from the joint density of states after

introducing the velocity matrix element. The low-frequency spectral functions for RB = 750

at different B’s along the armchair direction with Ê ‖ x̂ are shown in Fig. 3.5(a). The

periodic magnetic field has a strong effect on the spectral function. Each A(ω) exhibits

rich asymmetric peaks (in the square-root divergent form at Γ → 0). These peaks could
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Figure 3.4. The optical joint density of states for a spatially modulated magnetic field

along the armchair direction at (a) RB = 750 and different B’s; (b) B = 4 T and different

RB’s. That along the zigzag direction at B = 4 T and RB = 750 is also shown in (b).
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be further divided into the principal peaks (ωP ’s) and the subpeaks (ωS’s) according to

the optical excitations resulting from the original band-edge and extra band-edge states,

respectively. As the field strength rises, the peak height and frequency of the principal

peaks (subpeaks) increase, and the peak number decreases. These results mean that the

ability in flocking electronic states together is enhanced as the field strength grows. What

is worth mentioning is that ωS’s could be further classified into two subgroups ωa
S’s and

ωb
S’s because of the two kinds of subbands α and β. ωa

S’s and ωb
S’s primarily come from

the excitations of α (β) to β (α) and α (β) to α (β), respectively. The peak heights of the

former are very low compared with those of the latter. The zero velocity matrix elements

between two QLLs at EF = 0 make A(ω) vanish at ω = 0. The optical excitation channel

caused by the two QLLs is forbidden.

In addition to the field strength, the optical absorption spectrum is also influenced by

the modulated period. Fig. 3.5(b) shows the optical spectra of B = 4 T for different RB’s

along the armchair direction. The subpeaks ωa
S’s (ωb

S’s) strongly depend on the period,

i.e., they present different peak heights and frequencies at different RB’s. Concerning the

case of principal peaks, their peak heights rise with the increase of the period, and their

frequencies present the weak dependence on RB. As the period grows, the electronic states

tend to flock together in QLLs, and some states of the nondegenerate subbands become

QLLs. Moreover, the energy dispersions of QLLs near kpp
y and the energy difference between

two subbands near ksp
y ’s are reduced. The changes of energy bands could account for the

dependence of optical absorption peaks on RB.

The low-energy optical absorption spectra could exhibit the anisotropic feature in the

presence of a modulated magnetic field. A(ω) of RB = 750 at B = 4 T along the zigzag
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Figure 3.5. The optical absorption spectra with the electric polarization parallel to the

modulated direction. They are calculated for the armchair direction at (a) RB = 750 and

different B’s; (b) B = 4 T and different RB’s. That for the zigzag direction is also evaluated

at (b) B = 4 T and RB = 750. 48



direction is shown in Fig. 3.5(b) by the thin solid curve. ωP1’s of the two modulated

directions own the same energy, while the other ωPn’s do not (Fig. 3.5(b)). The peak

height of each principal peak from the zigzag direction is lower than that from the armchair

direction. As to the subpeaks, their peak heights and frequencies are dissimilar to those

from the armchair direction. The above-mentioned differences directly reflect the fact that

the energy bands of the two modulated directions are anisotropic [20], and the ability

in flocking electronic states together for the armchair direction is stronger than that for

the zigzag direction at the same period and field strength. These important differences

imply that the low-frequency optical absorption spectra in a modulated magnetic field

could induce the anisotropic behavior. This result quite differs from those of a monolayer

graphene in the absence of an external field [5] or in the presence of a uniform perpendicular

magnetic field [5].

Besides the field strength, period, and direction of a modulated magnetic field, the

polarization direction of an EM wave also affects the optical absorption spectra. A (ω)’s

of the perpendicular polarization direction reveal somewhat different characteristics from

those of the parallel polarization direction, especially in the subpeaks. Fig. (3.6) shows

the similar plots to Ê ⊥ x̂ as those of Ê ‖ x̂ in Fig. (3.5). The principal peaks which

correspond to two polarization directions display similar features at the same RB’s and

B’s, e.g., approximately the same absorption frequency, peak height, and peak number.

That is to say, ωP ’s show very weak dependence on the electric polarization direction.

However, the intensity of subpeaks relies strongly on the polarization direction. As to

Ê ⊥ x̂, the subpeaks of ωa
S’s are much stronger than those of ωb

S’s. The opposite is true for

the Ê ‖ x̂ case. Such an important difference might be attributed to the characteristics of
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the velocity matrix elements, which will be discussed in the following paragraph.

The optical excitations of each low-energy absorption peak could be clearly identified.

For example, the transition channels of the first four principal peaks resulting from the

original band-edge state denoted as ωP1,· · · , and ωP4 in Figs. (3.5) and (3.6) are indicated

in Fig. 3.1(b). Each prominent peak comes from two different excitation channels. The

first peak ωP1 is mainly due to the transition from the first occupied QLL of nv = 0 to the

second unoccupied QLL of nc = 1. Peaks ωP2, ωP3, and ωP4 correspond to the excitations

of nv = 1 to nc = 2, nv = 2 to nc = 3, and nv = 3 to nc = 4, respectively. Because of the

symmetry between the conduction and valence bands about the Fermi level, another kind

of excitation channel, nv = n+1 to nc = n, exhibits the same optical absorption spectrum.

As a result, the selection rule could be simply represented by |∆n| = |nc − nv| = 1. It

means that the two kinds of transitions originating in QLLs, nv = n − 1 to nc = n and

nv = n to nc = n− 1 at kpp
y , lead to the nth principal peak with frequency ωPn.

The subpeaks originating in the extra band-edge states display more complex behavior.

The excitation channels of the first eight subpeaks (ωa
S1,· · · , ωa

S4; ωb
S1,· · · , ωb

S4 in Figs. (3.5)

and (3.6)) are shown in Fig. 3.1(b). ωa
S and ωb

S could be further divided into two classes in

terms of the difference between nc and nv. For example, the peak ωa
S1 is primarily due to

the transition from the first occupied QLL (the occupied 1α subband) to the unoccupied

1α subband (the first unoccupied QLL) at ksp,1α
y . ksp,nα

y (ksp,nβ
y ) is the band-edge state

of the nth α (β) subband. The peak ωa
S3 mainly comes from the excitations of 1α to 2β

(2β to 1α) at ksp,1α
y and ksp,2β

y , and the excitations of 1β to 2α (2α to 1β) at ksp,1β
y and

ksp,2α
y . The difference between nc and nv of ωa

S1 (ωa
S3) is |∆n| = 1, and such a difference

is also observed in the principal peaks. The transitions from 1α to 1β (1β to 1α) at ksp,1α
y
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Figure 3.6. Same plot as Fig. 5, but shown for the electric polarization perpendicular to

the modulated direction.
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and ksp,1β
y and from 2α to 2β (2β to 2α) at ksp,2α

y and ksp,2β
y , lead to, respectively, the

peaks ωa
S2, and ωa

S4. nc and nv of the peak ωa
S2 (ωa

S4) own the same effective quantum

number, i.e., |∆n| = 0, which is very distinct from the selection rule of the principal peaks.

The excitation frequencies of nα to nβ (nα to (n + 1) β; nβ to (n + 1) α) are identical to

those of nβ to nα ((n + 1) β to nα; (n + 1) α to nβ) at the same band-edge state. This

is caused by the symmetry between the conduction and valence bands about EF = 0.

It is worth noting that, in the low-energy spectra, the transition channels of nα to nβ

at two band-edge states ksp,nα
y and ksp,nβ

y (nα to (n + 1) β at ksp,nα
y and ksp,n+1β

y ; nβ to

(n + 1) α at ksp,nβ
y and ksp,n+1α

y ) have nearly the same excitation frequencies. Therefore,

the peaks corresponding to these excitations are undistinguishable in Figs. (3.5) and (3.6).

Furthermore, the transition channels of ωa
S’s could be divided into two classes. They are

the excitations of α (β) to β (α) subbands with |∆n| = 1 and |∆n| = 0 except for the first

peak ωa
S1 originating in the transition channel from the first occupied QLL (the occupied

1α subband) to the unoccupied 1α subband (the first unoccupied QLL).

ωb
S’s also present the similar behavior as that of ωa

S’s. The peak ωb
S1 is mainly due to the

transition from the first occupied QLL (the occupied 1β subband) to the unoccupied 1β

subband (the first unoccupied QLL) at ksp,1β
y . The excitation of 1α to 1α at ksp,1α

y results

in the peak ωb
S2. The excitation energy of 1α to 2α (2α to 1α) at ksp,1α

y almost equals

that of 1α to 2α (2α to 1α) at ksp,2α
y and of 1β to 1β at ksp,1β

y . These transition channels

with approximately the same energy lead to the peak ωb
S3. The peak ωb

S4 comes from the

excitations of 1β to 2β (2β to 1β) at ksp,1β
y and ksp,2β

y and from the excitations of 2α to

2α at ksp,2α
y . ωb

S’s are also simply classified into two categories. They mainly originate in

the transition channels from α to α (β to β) with |∆n| = 1 and |∆n| = 0 except for the
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first peak ωb
S1 corresponding to the excitation of the first occupied QLL (the occupied 1β

subband) to the unoccupied 1β subband (the first unoccupied QLL). The excitations of

the two subgroups ωa
S’s and ωb

S’s form all transition channels with |∆n| = 1 and |∆n| = 0.

That is to say, the selection rule of subpeaks is characterized by |∆n| = 1 and |∆n| = 0.

Such a rule quite differs from that of principal peaks. The reason could be ascribed to the

overlap behavior of wave functions at the extra band-edge states.

The velocity matrix element could govern the transition channels of the optical ab-

sorption spectra, i.e., the selection rules might be determined by the characteristics of

M cv. In Eq. (3.5), M cv is decided by the product of M cv
AB and ∇k 〈amk |HB| bm′k〉. M cv

AB

depends on the effective quantum number, not on the polarization direction. The value

of ∇k 〈amk |HB| bm′k〉 (Eqs. (3.6a) and (3.6b)), on the other hand, is strongly related to

the polarization direction. In the case of principal peaks, Ac,v
o,e (x1) (Ac,v

o,e (x2)) and Bc,v
o,e (x1)

(Bc,v
o,e (x2)) of the nth QLLs own the effective quantum number n−1 (n−2) and n−2 (n−1),

respectively, as shown in Fig. (3.2). As for the nth occupied and unoccupied QLLs, M cv
AB

is proportional to [ϕn−1 (x1) + ϕn−2 (x2) × ϕ∗n−2 (x1) + ϕ∗n−1 (x2)] (by the definition of Eq.

(3.3)). Its value vanishes because of the orthogonality of ϕn (x). The optical excitations

between the occupied and unoccupied QLLs with the same effective quantum number at

kpp
y are forbidden. Ac,v

o,e (x1) of the nth QLL (Ac,v
o,e (x2) of the (n + 1)th QLL) and Bc,v

o,e (x1) of

the (n + 1)th QLL (Bc,v
o,e (x2) of the nth QLL) exhibit the same effective quantum number.

M cv
AB has a finite value between the nth occupied and (n + 1)th ((n− 1)th) unoccupied

QLLs. In addition, by the numerical analysis, the absolute values of ∇k 〈amk |HB| bm′k〉 at

kpp
y for two polarization directions are almost equal. It indicates that the principal peaks

of Ê ⊥ x̂ and Ê ‖ x̂ have nearly the same peak height under |∆n| = 1. Concerning other
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|∆n| cases, all the values of M cv for both polarization directions are disappeared due to

the orthogonality of ϕn (x). The selection rule is thus simply expressed as |∆n| = 1. This

consequence is as same as that of the LLs originating in a uniform perpendicular magnetic

field [7, 23, 25]. That the main features of wave functions at kpp
y resemble those of B0

is the most important reason. However, there are certain important differences between

QLLs and LLs. The former show the asymmetric square-root peaks, and the latter own the

symmetric delta-function-like peaks. The peak height of QLLs is lower than that of LLs.

The peak frequency of QLLs is weakly dependent on the modulated period. Furthermore,

the low-frequency optical absorption spectra of QLLs could reveal the anisotropic features

in the different modulated directions.

The velocity matrix elements at extra band-edge states display different characteristics

from those at kpp
y based on the overlap behavior of wave functions. At ksp

y ’s, Ac,v
o,e (x1)

(Bc,v
o,e (x1)) and Ac,v

o,e (x2) (Bc,v
o,e (x2)) have the partial overlap (Fig. (3.3)). Ac,v

o,e (x1) (Ac,v
o,e (x2))

and Bc,v
o,e (x1) (Bc,v

o,e (x2)) of the nth QLLs own the effective quantum number n − 1 (n −

2) and n − 2 (n − 1), respectively. M cv
AB of |∆n| = 0 does not disappear because of

ϕn−1 (x1) × ϕ∗n−1 (x2) 6= 0 and ϕn−2 (x1) × ϕ∗n−2 (x2) 6= 0. Thus the optical absorption

spectra present the subpeaks with |∆n| = 0. Obviously, such peaks are mainly owing to

the overlap behavior of wave functions at extra band-edge states. M cv
AB also has a finite

value for |∆n| = 1, while it vanishes in the |∆n| 6= 0 and |∆n| 6= 1 cases. In addition to the

value of M cv
AB, that of ∇k 〈amk |HB| bm′k〉 also dominates the subpeak intensity. It strongly

depends on the polarization direction, i.e., the peak height of Ê ‖ x̂ is very different from

that of Ê ⊥ x̂. Eqs. (3.6a) and (3.6b) are the absolute values of ∇k 〈amk |HB| bm′k〉 for

Ê ‖ x̂ and Ê ⊥ x̂, respectively. By the numerical calculation, M cv
x is much larger than
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M cv
y (M cv

y ' 0) between the occupied α (β) to unoccupied α (β) states with |∆n| = 0

and |∆n| = 1. However, M cv
x and M cv

y display the opposite behavior for the transition

channels from the occupied α (β) to unoccupied β (α) states with |∆n| = 0 and |∆n| = 1.

The difference might be ascribed to the fact that M cv
x and M cv

y are the sine and cosine

functions, respectively. M cv
x ’s (M cv

y ’s) of the excitation channels from α (β) to α (β) and

from α (β) to β (α) at extra band-edge states have, respectively, the maximum (minimum)

and minimum (maximum) values. That makes ωa
S’s and ωb

S’s exhibit different peak heights

for two polarization directions. The subpeaks could reflect the anisotropic feature of the

electric polarization direction, while the opposite is true for the principal peaks.

The frequency of principal peaks in the optical absorption spectra deserves a closer

investigation. The relation between the frequencies of the first four principal peaks and the

period along the armchair direction is shown in Fig. 3.7(a). Energies of ωP ’s present very

weak dependence on the period as RB becomes large enough. However, ωP ’s strongly rely on

the field strength, i.e., their energies grow with the increase of B, as shown in Fig. 3.7(b).

As to the zigzag direction, ωP ’s exhibit different frequencies from those of the armchair

direction, i.e., they have the anisotropic behavior in the modulated direction. However,

they display similar dependence of energies on the field strength and period (not shown in

the zigzag direction). The predicted results could be verified by the optical spectroscopy

[23, 25, 29].

3.4 Summary and conclusions

A monolayer graphene is assumed to exist in a periodic magnetic field. The low-

frequency optical absorption spectra are studied by the Peierls tight-binding model and
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Figure 3.7. The optical absorption frequencies from original band-edge states for a spa-

tially modulated magnetic field along the armchair direction. Their dependences on (a)

the period and (b) the field strength.
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gradient approximation. The low-energy bands are drastically changed by the modulated

magnetic field. They display the partial flat bands at EF = 0 and parabolic bands at others.

Each parabolic band owns one original band-edge state and four extra band-edge states.

Such electronic states could induce the asymmetric prominent peaks in the optical absorp-

tion spectra. The parabolic bands close to kpp
y and ksp

y ’s are, respectively, doubly degenerate

and nondegenerate. The former could be regarded as the quasi-Landau levels based on the

characteristics of wave functions. The latter are divided into two different kinds of sub-

bands, i.e., the α and β subbands. Their wave functions display different features from

those of QLLs. The wave functions associated with the carbon atoms a (b) of the first QLL

have one tight-binding function Ac,v
o,e (x1) (Bc,v

o,e (x2)) centered at x1 (x2). The other QLLs

exhibit two tight-binding functions Ac,v
o,e (x1) (Bc,v

o,e (x1)) and Ac,v
o,e (x2) (Bc,v

o,e (x2)) situated at

x1 and x2. The two positions x1 = 1/4 and x2 = 3/4 correspond to the maximum field

strength. The wave functions of QLLs present the similar characteristics to those of LLs

which result from a uniform magnetic field, e.g., the same oscillatory behavior, effective

quantum number, and distribution width. However, the wave functions at ksp
y ’s display

different features. The α and β subbands own the different spatial symmetries, and their

two tight-binding functions exhibit overlap behavior. The different spatial symmetries and

overlap behavior would induce the anisotropic features and extra excitations in the optical

absorption spectra.

The optical absorption spectra reveal a plenty of prominent asymmetric peaks. These

peaks could be further divided into the principal peaks ωP ’s and subpeaks ωS’s, which

mainly come from the excitations of the original band-edge and extra band-edge states,

respectively. The optical absorption spectra are strongly affected by the periodic magnetic
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field and the polarization direction of an EM wave. The peak height of principal peaks grows

as the field strength and period increase. The energy of each ωP rises with the increase of

B, and it would be weakly dependent on the period as RB becomes large enough. As to

the subpeaks, ωS’s could be classified into two subgroups, ωa
S’s and ωb

S’s, because of the two

kinds of subbands α and β. They originate in the excitations of α (β) to β (α) and α (β) to α

(β), respectively. Both of them strongly rely on the field strength and period. Furthermore,

the optical absorption spectra could reveal the anisotropic behavior in the modulated and

polarization directions. The principal peaks of the armchair and zigzag directions exhibit

somewhat different frequencies, and the peak height of the former is higher than that of the

latter. However, they display weak dependence on the polarization direction. Concerning

the subpeaks, their peak heights and frequencies present strong dependence on both the

modulated and polarization directions. Such anisotropy of the optical absorption spectra

could reflect the anisotropic behavior of energy bands along the two different modulated

directions and the different spatial symmetries of wave functions at the extra band-edge

states. ωP ’s and ωs’s obey the different selection rules. The former is simply represented

by |∆n| = 1, and this result is the same with that of the LLs originating in a uniform

perpendicular magnetic field. The most important reason is that the main features of wave

functions at kpp
y resemble those of B0. Nevertheless, the low-energy absorption spectra of

QLLs and LLs still have some different characteristics. The former show the asymmetric

square-root peaks, and the latter own the delta-function-like peaks. The peak frequency of

QLLs is weakly dependent on the modulated period. The peak intensity of LLs is stronger

than that of QLLs. Moreover, the low-frequency optical absorption spectra of QLLs could

exhibit the anisotropic features in the different modulated directions. As to the subpeaks,
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ωs’s display a different selection rule from that of principal peaks, i.e., |∆n| = 1 and

|∆n| = 0. Such an important difference mainly comes from the overlap behavior of the

wave functions at ksp
y ’s. The overlap behavior induces the excitations with |∆n| = 0, which

is forbidden in the principal peaks. Besides, the subpeaks present the anisotropy in both

modulated direction and electric polarization direction. The selection rule and anisotropic

features of optical absorption spectra originating in a modulated magnetic field are very

different from those in a uniform perpendicular magnetic field or in the absence of an

external field. Such important differences could be verified by the optical measurements.
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Chapter 4

Electronic properties and optical absorption spectra of

a graphene monolayer in the modulated electric field

4.1 Introduction

The bulk graphite is one of the most extensively studied materials in both theoretical

[1-4] and experimental [5-9] fields. Recently, the few-layer graphenes have been success-

fully produced [10-13]. Such systems are very appropriate in studying the two-dimensional

physical properties. They have given rise to amounts of investigations, e.g., band structure

[14-31], electronic excitations [32-35], transport properties [36-43], and optical spectra [14,

44-50]. A graphene monolayer is an exotic zero-gap semiconductor with a vanishing density

of states at the Fermi level EF = 0, which mainly originates in the hexagonal honeycomb

structure [1]. The low-energy optical absorption spectrum of a single-layer graphene in the

absence of an external field does not exhibit any absorption peaks. The low-frequency elec-

tronic structures and optical absorption spectra could be drastically changed by applying a

modulated magnetic field [28,29]. Such a field could alter energy dispersions, create extra

band-edge states, induce composite behavior in state degeneracy, destroy the symmetry

of energy bands about the original band-edge state, and cause anisotropy at low energy

[29]. The optical absorption spectra could reveal two kinds of selection rule at the original

band-edge and extra band-edge states, which is primarily owing to the characteristics of

their wave functions [29]. In addition, the optical absorption spectra might display the

anisotropic behavior in the modulation direction and electric polarization.
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In this work, the π-electronic structure and optical absorption spectra of a graphene

monolayer in a spatially modulated electric field are studied by the tight-binding model and

gradient approximation [14, 51-53]. The dependence of the low-energy electronic properties

on the period, field strength, and modulation direction would be investigated in detail,

such as energy dispersions, state degeneracy, band-edge states, and density of states. The

relation between the optical absorption spectra and the modulated electric field is also

studied.

This paper is composed of five sections. The band-like Hamiltonian matrix in a modu-

lated electric potential is obtained in Sec. II. The main features of the electronic properties

and of the optical absorption spectra are, respectively, discussed in Secs. III. and IV.

Finally, Sec. V involves concluding remarks.

4.2 Hamiltonian matrix

The π-electronic structure of 2pz orbitals is calculated by the tight-binding model with

nearest-neighbor interactions. In the absence of an external field, there are two carbon

atoms, a and b, in a primitive unit cell of a single-layer graphene. The π-electronic

Bloch function consisting of the two linear tight-binding functions is expressed as |Ψk〉 =

Cak|ak〉 + Cbk|bk〉, where |ak〉 =
∑

i e
ik·Rm|amk〉 and |bk〉 =

∑
j eik·Rn|bnk〉. The Hamilto-

nian built from |ak〉 and |bk〉 is a 2 × 2 Hermitian matrix. The site energies of a and b

atoms are the same and assumed to be zero, i.e., 〈 amk|H0|amk〉 = 〈 bnk|H0|bnk〉 = 0. The

nonvanishing Hamiltonian matrix element is given by

〈 bnk|H0|amk〉 = γ0 exp[ ik · (Rm −Rn) ] ≡
∑

i=1,2,3

tik, (4.1)

where γ0(=2.56 eV) [1] is the atom-atom interaction between two nearest-neighbor atoms
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at Rm and Rn. The three hopping integrals are, respectively, t1k = γ0 exp[(ikxb
′/2 +

iky

√
3b′/2)], t2k = γ0 exp[(ikxb

′/2− iky

√
3b′/2)], and t3k = γ0 exp(−ikxb

′ ), where b′ = 1.42

Å is the C-C bond length.

A single-layer graphene is assumed to exist in a modulated electric potential V (x) =

V0 cos(2πx/lE) along the armchair direction, as shown in Fig. 4.1(a). V0 is the strength of a

modulated electric potential. The Hamiltonian is H = H0+U , where H0 is the Hamiltonian

without the external field. lE = 3b′RE is the periodic length, where parameter RE is useful

in describing the dimensionality of the Hamiltonian matrix. An enlarged rectangular unit

cell includes 4RE carbon atoms (2RE a atoms and 2RE b atoms). The wave function

composed of the 4RE Bloch functions is presented as

|Ψc,v
k 〉 =

2RE∑
n=1

Cn
ak|ank〉+ Cn

bk|bnk〉. (4.2)

When the period is large enough, the effects of the electric potential on the three nearest-

neighboring hopping integrals are negligible. The site energies would be changed into

〈 ank|H|ank〉 = V0 cos [(n− 1)π/RE] ≡ Vn; (4.3a)

〈 bnk|H|bnk〉 = V0 cos [(n− 2/3)π/RE] ≡ Vn+1/3. (4.3b)

For convenience, the base functions are chosen as the following sequence

{|a1k〉, |b2REk〉, |b1k〉, |a2REk〉, |a2k〉, |b2RE−1k〉, |b2k〉, |a2RE−1k〉,. . . |aRE−1k〉, |bRE+2k〉,

|bRE−1k〉, |aRE+2k〉, |aREk〉, |bRE+1k〉, |bREk〉; |aRE+1k〉}. The Hamiltonian matrix becomes
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a band-like Hermitian matrix



V1 q∗ p∗ 0 . . . . . . 0 0

q V2RE+1/3 0 p 0 . . . . . . 0

p 0 V4/3 0 q 0 . . . 0

0 p∗ 0
. . . 0 q∗ 0 0

...
. . . q∗ 0

. . . . . . . . . 0

... . . .
. . . q

. . . . . . 0 p

0
...

...
. . . . . . 0 VRE+1/3 q

0 0 0 0 0 p∗ q∗ VRE+1




, (4.4)

where p ≡ t1k + t2k and q ≡ t3k.

The π-electronic structure is strongly affected by the direction of a modulated electric

potential, which mainly results from the anisotropic structure of a 2D monolayer graphene.

For the zigzag direction (Fig. 4.1(b)), the similar equations could be also derived. The three

hopping integrals are t′1k = γ0 exp(ikx

√
3b′/2+ikyb

′/2), t′2k = γ0 exp(−ikx

√
3b′/2+ikyb

′/2),

and t′3k = γ0 exp(−ikyb
′), respectively. The Hamiltonian matrix elements are further given

by

〈bmk|H|ank〉 = t′1kδm,n+1 + t′2kδm,n−1 + t′3kδm,n, (4.5a)

〈 ank|H|ank〉 = 〈 bnk|H|bnk〉 = V0 cos [(n− 1)π/RE] ≡ Vn. (4.5b)

With the base functions {|a1k〉, |b2REk〉, |b1k〉, |a2REk〉, |b2k〉, |a2RE−1k〉, |a2k〉, |b2RE−1k〉, . . .

|bRE−1k〉, |aRE+2k〉, |aRE−1k〉, |bRE+2k〉, |aREk〉, |bRE+1k〉, |bREk〉; |aRE+1k〉}, the 4RE × 4RE
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Figure 4.1. The primitive unit cells of a monolayer graphene in a modulated electric field

along the (a) armchair direction and (b) zigzag direction.
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band-like Hamiltonian matrix for the zigzag direction is




V1 t′∗2k t′∗3k 0 t′∗1k 0 . . . 0 0 0

t′2k V2RE
0 t′3k 0 t′1k 0 0 0 0

t′3k 0 V1 t′1k
. . . . . . . . . . . . 0 0

0 t′∗3k t′∗1k V2RE

. . . . . . 0
...

t′1k 0
. . . . . . . . . . . . t′∗1k 0

0 t′∗1k
. . . . . . . . . . . . 0 t′1k

... 0
. . . . . . VRE

t′∗1k t′∗3k 0

0 0
. . . . . . . . . . . . t′1k VRE+1 0 t′3k

0 0 0 0 t′1k 0 t′3k 0 VRE
t′2k

0 0 0 . . . 0 t′∗1k 0 t′∗3k t′∗2k VRE+1




. (4.6)

4.3 π-electronic properties

By diagonalizing the band-like Hamiltonian matrix, the energy bands are obtained.

Since the unoccupied conduction bands (Ec’s) and occupied valence bands (Ev’s) are sym-

metric about the Fermi level (EF = 0), only the former are discussed. Because the range

of the first Brillouin zone along the modulated direction (kx ≤ π/ (3b′RE)) is much shorter

than the other one (ky ≤ π/
√

3b′), the energy dispersions along the modulated direction

are not shown here, and thus only the ky-dependent energy bands are discussed.

The low-energy bands without an external field are shown by the small solid circles in

Fig. (4.2) at RE = 500 (≈ 200 nm). There are two nondegenerate linear bands intersecting

at EF = 0 and many parabolic bands with double degeneracy at other energies. Each

energy band owns two original band-edge states kpp
y = 2π/3

√
3b′ and kpp

x = 0. It should be
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noticed that the two band-edge states are the Fermi-momentum states (kF ’s) of the linear

conduction and valence bands. Although the range of the wave vector along the modulated

direction is narrow, the kx-dependence of energy bands is still considerable. That is to say,

the energy bands of a monolayer graphene at V0 = 0 exhibit two-dimensional dispersions.

There are only four Fermi-momentum states at EF = 0 ( including two spin states ).

The modulated electric field leads to drastic changes in the energy dispersions, state

degeneracy, band-edge states, and dimensionality. The energy bands of V0 = 0.1γ0 at

RE = 500 are shown by the large solid circles in Fig. (4.2). They display oscillatory energy

dispersions near kpp
y . The doubly degenerate parabolic bands become singly degenerate.

Each energy band might have several band-edge states, and most of them are not located

at kpp
y . Such band-edge states could induce the prominent peaks in the density of states

(DOS) and optical absorption spectra. For convenience, these band-edge states are further

divided into two categories, µ and ν states, as indicated in Fig. (4.2). The two µ (ν)

states at the left- and right-hand sites of kpp
y might have different energies; that is, one

side of the parabolic bands might be asymmetric to the other about the original band-edge

state. Concerning the states near the Fermi-level, the different Fermi-momentum states

exist at EF = 0. The energy dispersions near kF ’s are linear for the ky-dependence, while

they are completely flat for the kx-dependence (not shown). The dispersionless feature

means that the number of kF ’s is finite. The kx-dependence could be neglected in the lower

parabolic bands. As a result, the low-frequency energy bands, with Ec ≤ V0, are regarded

as one-dimensional bands.

The strength, period, and direction of a modulated electric field strongly affect the

electronic structure. The modulation effects are diminished by decreasing the field strength,
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Figure 4.2. The low-energy bands for RE = 500 along the armchair direction at V0 = 0

and V0 = 0.1 γ0.
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as shown in Fig. 4.3(a) at RE = 500 V0 = 0.05 γ0. The range of ky and the number of

oscillatory bands are reduced. As the period lessens, the energy spacing between two band-

edge states is enlarged, as shown in Fig. 4.3(b) at RE = 250 V0 = 0.1 γ0. However, the

range of ky is weakly dependent on RE. As to the zigzag direction, the energy bands display

the similar features to those of the armchair direction (Fig. 4.3(c)). It is noticeable that

the band-edge states of two modulated directions might have different energies, i.e., the

modulated electric field could induce the anisotropic properties in the electronic structure.

Density of states (DOS) is closely related to the essential features of the electronic

structure. It is defined as

D(ω ) =
∑

σ, h=c,v

∫

1stBZ

dkxdky

(2π )2

Γ

π

1

[ω − Eh(kx, ky)]2 + Γ2
, (4.7)

where Γ (= 5× 10−4 γ0) is a phenomenological broadening parameter. The low-frequency

DOS without fields is proportional to ω, as shown by the crosses in Fig. 4.4(a). It has no

special structures. The vanishing DOS at ω = 0 indicates that a monolayer graphene is

a zero-gap semiconductor. On the other hand, the modulated electric field leads to many

asymmetric peaks and a finite DOS at ω = 0 (Figs. 4.4(a) and 4.4(b)). The peak structures

primarily come from the band-edge states of parabolic bands (Figs. 4.2(b)). Such peaks

could be further classified into the prominent square-root divergent and inconspicuous

peaks. They, respectively, mainly originate in the µ and ν states, as shown in Fig. 4.4(a).

Furthermore, there are some pairs of prominent peaks (indicated by the arrows in Fig.

4.4(a)), and each pair is associated with the asymmetry of the 1D parabolic bands about

kpp
y (discussed earlier in Fig. (4.2)). The frequency, number, and height of peaks are

sensitive to the changes in the field strength and period. The value of DOS at ω = 0

grows as the field strength increases, and it is weakly dependent on the period. The peak
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Figure 4.3. The low-energy bands along the armchair direction at (a) RE = 500, V0 = 0.05

γ0, (b) RE = 250, V0 = 0.1 γ0, and (c) those along the zigzag direction at RE = 500,

V0 = 0.1 γ0.
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heights are, respectively, enhanced and reduced by increasing V0 and RE. The peak number

increases as the period increases, and it is weakly related to the field strength. The 1D

linear bands have finite Fermi-momentum states, so the monolayer graphene in the presence

of a modulated electric field is a semimetal. The free carriers in a semimetallic graphene

are deduced to cause the low-frequency plasmon [54]. The experimental measurements on

the energy loss spectra could be utilized to examine the predicted electronic properties.

The frequencies of asymmetric peaks in DOS deserve a closer investigation. The fre-

quency of the peak resulting from the µ (ν) state is denoted as ωµ (ων). The relation

between the first four ωµ’s (ων ’s) and the field strength at RE = 500 is shown in Fig. 4.5(a)

(Fig. 4.5(b)). ωµ’s and ων ’s correspond to the band-edge states at the left-hand neigh-

borhood of kpp
y (Fig. (4.2)). Both ωµ’s and ων ’s are weakly related to the field strength.

Figs. 4.5(c) and 4.5(d), respectively, show the dependence of ωµ’s and ων ’s on the period

at V0 = 0.1 γ0. The former presents somewhat oscillatory behavior, and the latter declines

as RE increases. Such dependence might be reflected by the optical absorption spectra.

4.4 Optical absorption spectra

The optical excitations can directly present the main features of electronic properties.

Based on the Fermi’s golden rule, the optical absorption function is given by

A(ω) ∝
∑

c,v,ñ,ñ′

∫

1stBZ

dk

(2π)2

∣∣∣∣∣

〈
Ψc (k, ñ)

∣∣∣∣∣
Ê ·P
me

∣∣∣∣∣ Ψv (k, ñ′)

〉∣∣∣∣∣

2

× Im

[
f (Ec (k, ñ))− f (Ev (k, ñ′))

Ec (k, ñ)− Ev (k, ñ′)− ω − iΓ

]
, (4.8)

where f (E (k, ñ)) is the Fermi-Dirac distribution function, and Ê is the unit vector of an
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Figure 4.4. (a) The low-frequency density of states for RE = 500 at different field

strengths, and (b) for V0 = 0.1 γ0 at different periods. DOS along the zigzag direction

for RE = 500 at V0 = 0.1 γ0 is also shown in (b).
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Figure 4.5. Energies of the first four µ and four ν band-edge states at the left-hand

neighborhood of kpp
y . (a) and (b) are their dependence on the field strength; (c) and (d)

are the dependence on the period.
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electric polarization. With an electric polarization Ê ⊥ x̂, the electromagnetic field excites

electrons from the occupied valence to unoccupied conduction bands (the inter-π-band

excitations) at zero temperature. The optical selection rule due to the vertical transitions

is ∆ky= 0, which is mainly determined by the zero momentum of photon. The velocity

matrix element M cv =
〈
Ψc (k, ñ)

∣∣∣Ê ·P/me

∣∣∣ Ψv (k, ñ′)
〉

is evaluated within the gradient

approximation [14, 51-53]. It is approximated by taking the gradient of the Hamiltonian

matrix element versus the wave vector ky.

The joint density of states (DJ) can reflect all the possible inter-π-band excitation

channels. DJ is obtained by setting the velocity matrix element in Eq. (4.8) to one, and

strongly affected by the modulated electric field. Fig. 4.6(a) shows the low-energy DJ ’s

for RE = 500 at different field strengths along the armchair direction. In the V0 = 0 case,

DJ has no special structures (by the crosses in Fig. 4.6(a)). It grows linearly with the

increasing frequency and vanishes at ω = 0. As the field strength increases, DJ exhibits

many prominent peaks. Such peaks mainly result from the transition channels between two

µ (ν) states, and they are enhanced by increasing the field strength. Some excitations from

these states have nearly the same energy, and thus their peaks would be undistinguishable.

It is worth noticing that most of the conspicuous peaks with stronger intensity primarily

originate in the channels from µv
n to µc

n+1 (µv
n+1 to µc

n) and from νv
n to νc

n+1 (νv
n+1 to νc

n),

as indicated in Fig. 4.6(a). The peak heights of such channels are relatively higher than

those of other channels. Because the occupied valence and unoccupied conduction bands

are symmetric about the Fermi level, the excitations from µv
n to µc

n+1 (νv
n to νc

n+1) and

from µv
n+1 to µc

n (νv
n+1 to νc

n) own the same frequency. Besides, the excitation between µv
n

and µc
n+1 has nearly the same energy as that between νv

n and νc
n+1. Based on the above-
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mentioned reasons, the peaks resulting from the excitations of µv
n to µc

n+1, µv
n+1 to µc

n, νv
n

to νc
n+1, and νv

n+1 to νc
n, might be undistinguishable. In addition to the period, DJ ’s also

strongly depend on the modulated period and direction, as shown in Fig. 4.6(b). The peak

height rises with the increase of the period. The peak number is approximately an inverse

proportion to the period. As to the zigzag direction, DJ also shows rich peaks, while their

height and frequency are different from those of the armchair direction.

The optical absorption spectra might be very different from the joint density of states

after including the velocity matrix element. For RE = 500, A(ω)’s of different field strength

along the armchair direction are shown in Fig. 4.7(a). In the absence of field strengths,

A(ω) grows linearly with the increase of frequency (by the crosses in Fig. 4.7(a)). It

vanishes at ω = 0 and has no special structures. On the other hand, A(ω) would be

strongly modulated in the presence of field strengths. Most of the transition channels from

µv
n → µc

n+1 (νv
n → νc

n+1) leading to the prominent peaks in Fig. 4.6(a) could also result in

the conspicuous peaks in the optical absorption spectra (Figs. 4.7(a) and 4.7(b)). However,

such optical absorption peaks do not reveal an absolute relation between their height and

the field strength. It is noted that some channels corresponding to the inconspicuous

peaks in DJ ’s could exhibit the manifest peaks in the optical absorption spectra, as labeled

by the open circles in Fig. 4.7(a). The optical absorption spectra of V0 = 0.1 γ0 at

different modulated periods and at RE = 500 along the zigzag direction are shown in Fig.

4.7(b). A(ω)’s at different RE’s along the armchair direction present similar features to the

optical absorption spectra in Fig. 4.7(a). Nevertheless, A(ω) of the zigzag direction shows

different peak frequencies and peak heights from those of the armchair direction, i.e., the

anisotropic property in the modulated direction could be reflected by the optical absorption
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Figure 4.6. The optical joint density of states for a modulated electric field along the

armchair direction at (a) RE = 500 and different V0’s; (b) V0 = 0.1 γ0 and different RE’s.

DJ for the zigzag direction is also evaluated at (b) V0 = 0.1 γ0 and RE = 500.
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spectra. Furthermore, the optical absorption spectra for both modulated directions could

not indicate a certain selection rule. The fact that the velocity matrix element between two

band-edge states does not follow a positive relation with modulated electric fields might

cause no obvious selection rules in the optical absorption spectra.

4.5 Conclusions

In summary, the electronic structure and optical absorption spectra of a monolayer

graphene in the presence of a modulated electric field are investigated by the tight-binding

model and gradient approximation. The low-energy electronic and optical properties are

strongly affected by the field strength and period, while the high-energy electronic and

optical properties weakly related to those. The similar results are obtained in different

modulation directions. The modulated electric field could modify the energy dispersions,

destroy the state degeneracy, reduce the dimensionality, create the two kinds of extra

band-edge states (µ and ν) about kpp
y , and induce the asymmetry of energy bands. It

should be noticed that there are many extra Fermi-momentum states at EF = 0. Density

of states exhibits many prominent square-root divergent and inconspicuous peaks. They

are, respectively, mainly owing to the µ and ν states. Their frequencies (ωµ’s and ων ’s) are

weakly related to the field strength. On the other hand, ωµ’s display oscillatory dependence

on the period, while ων ’s decrease with the increase of RE. The finite value of DOS at Fermi

level indicates the existence of free carriers. That is to say, a semiconducting graphene

monolayer becomes a semimetallic one by applying a modulated electric potential. The

free electrons are expected to cause the low-frequency plasmon. The joint density of states

presents many conspicuous peaks resulting from the µ and ν states. The peak heights
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Figure 4.7. Same plot as Fig. 6, but shown for the optical absorption spectra.
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originating in the excitations of µv
n to µc

n+1 (µv
n+1 to µc

n) and νv
n to νc

n+1 (νv
n+1 to νc

n) are

relatively stronger than those of other excitations. The peak intensity is enhanced by

the increase of the field strength and period. Most of the prominent peaks in DJ ’s could

also show significant peaks in the optical absorption spectra. Nevertheless, the optical

absorption peaks do not have apparent relations with the field strength and period. Such

absorption peaks could not be ascribed to an obvious selection rule. It is worth noting

that the optical absorption spectra could display the anisotropic feature in the modulation

direction. The experiment of energy-loss spectra and optical measurements could be used

to verify the above-mentioned theoretical prediction.
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Chapter 5

Summary and future research

The dissertation aims to investigate the physical properties of a single-layer graphene in

the presence of modulated magnetic and periodic electric fields. The π-electronic properties

(including the energy dispersions, band-edge states, symmetry of energy bands, changes of

degeneracy, reduction of dimensionality, anisotropy of modulated direction, wave functions,

and density of states) are calculated by the tight-binding model. The Hamiltonian matrix

is very huge for a large period, and becomes a band-like Hamiltonian matrix with a appro-

priate arrangement of specific base functions. By diagonalizing the band-like Hamiltonian

matrix, the energy bands are obtained. The optical absorption spectra are evaluated by

the gradient approximation, and they could directly reflect the electronic properties.

In a spatially modulated magnetic field, the magnetoelectronic structure of a graphene

monolayer is drastically changed. For the modulated magnetic field along the armchair di-

rection, there are partial flat bands at EF = 0 and parabolic bands at others. The two kinds

of bands, respectively, make the density of states exhibit a delta-function-like structure at

Fermi level and asymmetric prominent peaks at others. Each parabolic band owns one

original band-edge and four extra band-edge states. The strength, period, and direction

of a modulated magnetic field dominate the main features of electronic properties. Such a

field could reduce dimensionality by one, alter energy dispersions, cause anisotropy at low

energy, induce composite behavior in state degeneracy, produce extra band-edge states,

and destroy the symmetry of energy bands about the original band-edge state. Energies of

the original band-edge state are weakly dependent on the period, while those of the extra
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band-edge states are strongly related to the period. Nevertheless, both of them grow with

the increase of the strength. As to the zigzag direction, energy bands display different state

degeneracies, and DOS shows different peak frequencies and peak intensity. It means that

the electronic properties are anisotropic in the modulation direction. In addition, a spa-

tially modulated magnetic field contrasts sharply with a uniform perpendicular magnetic

field in energy dispersion, state degeneracy, and dimensionality. The important differences

between a single-layer graphene and a 2DEG mainly lie in the partial flat bands at zero

energy, dependence on the modulation direction, and wave vectors of band-edge states,

which results from the hexagonal symmetry.

The main features of wave functions shed light on understanding the optical absorption

spectra. For the armchair direction, the doubly degenerate energy bands close to kpp
y are

regarded as the quasi-Landau levels because their wave functions present similar charac-

teristics to those of LLs resulting from a uniform magnetic field, e.g., the same effective

quantum number, oscillatory behavior, and distribution width. Concerning the nondegen-

erate energy bands at ksp
y ’s, their wave functions exhibit different features from those of

QLLs. The α and β subbands display different spatial symmetries, and their wave functions

show overlap behaviors. The different spatial symmetries and overlap behaviors would in-

duce the anisotropic features and extra excitations in the optical absorption spectra. As to

the zigzag direction, the characteristics of wave functions are similar to those of armchair

direction.

The optical absorption spectra present a plenty of prominent asymmetric peaks. These

peaks could be classified into the principal peaks ωP ’s and subpeaks ωS’s, which primarily

come from the original band-edge and extra band-edge states, respectively. The optical
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excitations are strongly affected by the modulated magnetic field and the polarization di-

rection of an EM wave. The peak height of ωP ’s grows by increasing the field strength

and period. The energy of each principal peak rises with the increase of B, and it would

be weakly related to the period as RB becomes large enough. The selection rule of ωP ’s

is simply represented by |∆n| = 1, which is the same with that of the LLs resulting from

a uniform perpendicular magnetic field. The underlying cause is that the main features

of wave functions at kpp
y resemble those of B0. Nevertheless, the low-energy absorption

spectra of QLLs and LLs still have some differences, e.g., the peak type, peak intensity,

and anisotropic behavior. As to the subpeaks, ωS’s could be further divided into two sub-

groups, ωa
S’s and ωb

S’s, because of the two kinds of subbands α and β. They originate in the

excitations of α (β) to β (α) and of α (β) to α (β), respectively. The two kinds of subpeaks

are strongly related to the field strength and period. ωs’s display a different selection rule

from that of principal peaks, i.e., |∆n| = 1 and |∆n| = 0. Such an important difference

is mainly owing to the fact that the wave functions overlap at ksp
y ’s. The overlap behavior

induces the extra excitations with |∆n| = 0, which is forbidden in the principal peaks.

Furthermore, the optical absorption spectra could reveal anisotropy in the modulated di-

rection and electric polarization direction. The selection rule and anisotropic features of

the optical absorption spectra originating in a modulated magnetic field are very different

from those in a uniform perpendicular magnetic field or in the absence of an external field.

In addition to modulated magnetic fields, modulated electric potentials could also

strongly influence the electronic properties of a graphene monolayer. The low-frequency en-

ergy bands are drastically changed by a modulated electric field, whereas the high-frequency

energy bands weakly dependent on that. The similar results are obtained in different modu-
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lation directions. The modulated electric field could modify the energy dispersions, destroy

the state degeneracy, reduce the dimensionality, create the two kinds of extra band-edge

states (µ and ν) about kpp
y , and induce the asymmetry of energy bands. The two kinds of

band-edge states make DOS exhibit the prominent square-root divergent and the inconspic-

uous peaks. Their peak frequencies (ωµ’s and ων ’s) are weakly related to the field strength.

However, ωµ’s show oscillatory dependence on the period, and ων ’s diminish with the in-

crease of RE. It should be noticed that there are many extra Fermi-momentum states

at EF = 0. The finite value of DOS at Fermi level corresponding to Fermi-momentum

states indicates the existence of free carriers. That is to say, a semiconducting single-layer

graphene changes into a semimetallic one by applying a modulated electric potential. The

free electrons are expected to result in the low-frequency plasmon.

The optical absorption spectra could reflect the electronic properties. The joint density

of states presents many conspicuous peaks resulting from the extra band-edge states. The

peak heights originating in the excitations of µv
n to µc

n+1 (µv
n+1 to µc

n) and νv
n to νc

n+1 (νv
n+1 to

νc
n) are relatively stronger than those of other excitations. The peak intensity is enhanced

by the increase of the field strength and period. Most of the prominent peaks in DJ ’s

could also show significant peaks in the optical absorption spectra. However, the optical

absorption peaks do not have manifest relations with the field strength and period. These

absorption peaks could not be ascribed to an obvious selection rule. It is worth noting

that the optical absorption spectra could display the anisotropic feature in the modulation

direction.

Related to the single-layer and bilayer graphenes in the presence of external fields, some

suggestions for future research are as follows:
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(1) electronic properties of a graphene monolayer under a uniform magnetic field and a

modulated electric potential.

(2) optical properties of a graphene monolayer under a uniform magnetic field and a

modulated electric potential.

(3) optical properties of a graphene monolayer under a uniform magnetic field and a

modulated magnetic field.

(4) Coulomb excitations of a graphene monolayer under a modulated magnetic field.

(5) Coulomb excitations of a graphene monolayer under a modulated electric potential.

(6) transport properties of a graphene monolayer under a modulated magnetic field.

(7) transport properties of a graphene monolayer under a modulated electric field.

(8) electronic properties of a bilayer graphene under a modulated magnetic field.

(9) optical properties of a bilayer graphene under a modulated magnetic field.

(10) electronic properties of a bilayer graphene under a modulated electric field.

(11) optical properties of a bilayer graphene under a modulated electric field.
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Appendix: Band-like Hamiltonian matrix

For example, a 8× 8 real symmetric matrix is expressed as follows

A =




5 2 1 3 0 0 0 0

2 6 3 2 3 0 0 0

1 3 6 4 3 3 0 0

3 2 4 6 5 4 3 0

0 3 3 5 6 6 5 3

0 0 3 4 6 6 7 6

0 0 0 3 5 7 6 8

0 0 0 0 3 6 8 5




. (A.1)

The matrix elements are denoted as Aij, and symmetric about the diagonal (Aij = Aji). All

the nonzero elements centralize around the diagonal, and the elements are zero at others.

Such a matrix is called as a real symmetric band-like matrix. Because of the symmetry,

we can choose the matrix elements above the diagonal (including the diagonal elements)

to describe A. The matrix becomes

A′ =




0 0 0 A14 A25 A36 A47 A58

0 0 A13 A24 A35 A46 A57 A68

0 A12 A23 A34 A45 A56 A67 A78

A11 A22 A33 A44 A55 A66 A77 A88




=




0 0 0 3 3 3 3 3

0 0 1 2 3 4 5 6

0 2 3 4 5 6 7 8

5 6 6 6 6 6 6 5




.

(A.2)

Accordingly, for a n × n real symmetric band-like matrix, if there are m lines symmetric
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about the diagonal (including the diagonal), the matrix can be reduced into a m×n matrix

A′ =




0 · · · · · · · · · · · · A1,m · · · · · · An−m+1,n

...
...

...

...

... 0 · · · ...

...
... 0 A14 · · · Am−3,m · · · An−3,n

0 0 A13 A24 · · · Am−2,m · · · · · · An−2,n

0 A12 A23 A34 · · · Am−1,m · · · · · · An−1,n

A11 A22 A33 A44 · · · Am,m · · · · · · An,n




.

(A.3)

Such a matrix can save much time in our calculations.

In chapter 2, a monolayer graphene is assumed to exist in a spatially modulated mag-

netic field B = B sin(Kx)ẑ along the armchair direction. The wave function and the

Hamiltonian matrix element are, respectively, given by

|Ψk〉 =

2RB∑
n=1

Cn
ak|ank〉+ Cn

bk|bnk〉; (A.4a)

〈bmk|HB|ank〉 = [t1k(n) + t2k(n)]δm,n + t3k(n)δm,n−1. (A.4b)

Cn
ak = Cn+2RB

ak and Cn
bk = Cn+2RB

bk are derived because of the periodical boundary condition.

For the three nearest-neighbor atoms, their hopping integrals are, respectively, t1k(n) =

γ0 exp[ (ikxb
′/2+iky

√
3b′/2)+Gn ], t2k(n) = γ0 exp[ (ikxb

′/2−iky

√
3b′/2)−Gn ], and t3k(n) =

γ0 exp(−ikxb
′ ), where Gn = −i[6(RB)2Φ/π] cos[π(n − 5/6)/RB] sin(π/6RB) ]. The normal

arrangement of bases is {|a1k〉, |b1k〉, |a2k〉, |b2k〉, |a3k〉, |b3k〉, |a4k〉, |b4k〉, . . . |a2RB−3k〉,

|b2RB−3k〉, |a2RB−2k〉, |b2RB−2k〉, |a2RB−1k〉, |b2RB−1k〉, |a2RBk〉; |b2RBk〉}. The 4RB × 4RB
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Hamiltonian matrix is

H =




0 p1 0 0 · · · · · · · · · 0 q

p∗1 0 q∗ 0 0 · · · · · · · · · 0

0 q 0 p2 0
. . . 0 · · · 0

0 0 p∗2 0 0
. . . 0 0 0

...
. . . . . . 0 0

. . . . . . . . . 0

...
. . . p2RB−1

. . .
...

...
. . . . . . . . . . . . p∗2RB−1

. . . q∗ 0

0
...

...
. . . . . . . . . q

. . . p2RB

q∗ 0 0 0 0 · · · 0 p∗2RB
0




, (A.5)

where pn ≡ t1k(n) + t2k(n) and q ≡ t3k. Most of the matrix elements are centerlized about

the diagonal except the two elements H1,2RB
= q and H2RB ,1 = q∗. To get the band-

like Hamiltonian matrix, the base functions are assigned as the following sequence {|a1k〉,

|b2RBk〉, |b1k〉, |a2RBk〉, |a2k〉, |b2RB−1k〉, |b2k〉, |a2RB−1k〉, . . . |aRB−1k〉, |bRB+2k〉, |bRB−1k〉,

|aRB+2k〉, |aRBk〉, |bRB+1k〉, |bRBk〉; |aRB+1k〉}. The Hamiltonian matrix is expressed as



0 q∗ p∗1 0 . . . . . . 0 0

q 0 0 p2RB
0 . . . . . . 0

p1 0 0 0 q 0 . . . 0

0 p∗2RB
0 0 0 q∗ 0 0

...
. . . q∗ 0 0

. . . . . . 0

... . . .
. . . q

. . . . . . 0 pRB+1

0
...

...
. . . . . . 0

. . . q

0 0 0 0 0 p∗RB+1 q∗ 0




. (A.6)
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However, the matrix elements are complex number, and this matrix is not a real symmetric

band-like matrix. To solve this problem, both the Hamiltonian and wave funtions are

divided into the real and imaginary parts, i.e., H = U + iV and Ψn = X + iY . The relation

between the Hamiltonian matrix and eigen energy becomes

HΨn =




U −V

V U







X

Y


 =




Re(H) −Im(H)

Im(H) Re(H)







X

Y


 = En




X

Y


 .

(A.7)

It implies that the original Hamiltonian matrix elements will be a 2 × 2 matrix. For

example, the matrix element q in Eq. (A.6) is thus represented as




Re(q) −Im(q)

Im(q) Re(q)


,
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and q∗ would be




Re(q) Im(q)

−Im(q) Re(q)


. Eq. (A.6) is rewritten as follows




0 0 qRe qIm pRe
1 pIm

1 0 . . . . . . 0

0 0 −qIm qRe −pIm
1 pRe

1 0 . . .
...

qRe −qIm 0 0 0 0

qIm qRe 0 0

pRe
1 −pIm

1 0 0
. . .

...
...

pIm
1 pRe

1 0 0
. . . . . . 0 0

0 0
. . . . . . . . . 0 0 pRe

RB
−pIm

RB

...
...

. . . 0 0 pIm
RB

pRe
RB

. . . 0 0 qRe −qIm

0 0 0 0 qIm qRe

... . . . 0 pRe
RB

pIm
RB

qRe qIm 0 0

0 . . . . . . 0 −pIm
RB

pRe
RB

−qIm qRe 0 0




,

(A.8)

where the superscripts Re and Im, respectively, indicate the Real and imaginary parts.

The 4RB × 4RB complex band-like matrix in Eq. (A.6) enlarges to be a 8RB × 8RB real

symmetric band-like matrix in Eq. (A.8). There are six symmetric lines about the diagonal

(including the diagonal) in the matrix, and it can be thus reduced as a 6× 8RB matrix.
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