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虛擬駕駛環境下腦波頻譜與反應時間之關聯

研究生：陳青甫 指導教授：林進燈教授 

 

國立交通大學電機控制工程學系碩士班 

 

摘   要 

疲勞駕駛不僅危險，並易造成交通事故，故瞌睡偵測系統的開發已成為駕駛安全

上重要課題。本實驗讓受測者在虛擬實境（VR）下，進行事件相關車輛偏移

（event-related lane-departure）實驗，實驗中同時量測受測者的腦電波（EEG）訊

號，以了解受測者駕車行為反應與腦電波能量頻譜（power spectrum）之關聯。所錄

得之腦電波訊號，在去除雜訊後，先以獨立成份分析（ICA）分出不同獨立訊號源，

再將這些訊號源產生的腦波以時頻轉換（time-frequency transform）算出其頻譜。將

所得頻譜依訊號源經過分群（clustering）並依相對應受測者反應時間排序後，觀察到

兩側枕葉區（bilateral occipital）在 alpha 頻帶（band，頻率為 8~12 赫茲）上的腦波

頻譜能量會隨反應時間增加而上升，但若反應時間更長，則其能量會下降；而在 theta

頻帶（頻率為 4~7 赫茲）的腦波頻譜能量則隨受測者反應時間增加持續而上升。實驗

中亦觀察到若受測者反應時間增加，則該受測者通常會出現打瞌睡的行為。因前述腦

區之腦波能量改變現象不論實驗中是否提供動態刺激均可觀察到，故該腦區之腦波特

徵可用於設計瞌睡偵測器，以保障駕駛人安全。 

 

關鍵字：駕駛安全、疲勞駕駛、警覺程度、瞌睡偵測、事件相關車輛偏移實驗、駕駛

行為表現、虛擬實境（VR）、腦電波（EEG）、獨立成份分析（ICA）、時頻轉換

（Time-Frequency transform）、腦波頻譜 
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ABSTRACT 

Drowsy driving is a dangerous behavior and often results in a large number of 

fatal accidents each year; therefore, understanding the neural correlates of drowsy 

driving is crucial for the design and evaluation of devices for drowsiness detection. 

This study investigates the relation between spectral features of electroencephalo-

graphic (EEG) signals and driving performance. Subjects participated in long-haul 

simulated driving experiments on a motion platform, during which driving trajectories 

and 30-channel EEG signals were recorded simultaneously. Driving performance 

was measured by reaction time (RT) as defined in an event-related lane-departure 

paradigm. Following artifact rejection on behavioral and EEG data, independent 

component analysis (ICA) was used to decompose EEG signals into independent 

brain processes, and power spectra were computed from the activation time course 

of each independent component. Independent components with similar features, 

including topographic maps, dipole sources, and power spectra, were then grouped 

into clusters across subjects. 

Across subjects, an independent component with sources in the bilateral oc-

cipital regions showed prominent changes in EEG power spectra as reaction time to 

lane-departure events increased. The alpha-band (8-12 Hz) power increased as 



 

 iv

reaction time increased and started to decrease as reaction time further increased 

(> 3 sec); however, theta-band (4-7 Hz) power increased monotonically as reaction 

time increased. These spectral features were consistent in both motionless and 

motion conditions. Finally, the results of this study may provide useful information, 

such as the selection of optimal electrode locations and frequency bands, for the 

development of drowsiness detection devices. 

 

Index terms: Driving Safety, Drowsy Driving, Vigilance Level, Drowsiness Detection, 

Event-Related Lane Departure Paradigm, Driving Performance, Virtual-Reality (VR), 

Electroencephalographic (EEG) Signals, Independent Component Analysis (ICA), 

Time-Frequency Transform, EEG Power Spectrum 
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Chapter I Introduction 

Drowsy driving is a dangerous behavior and results in a large number of fatal 

accidents each year. When the drivers are drowsy, they have 1) impaired reaction 

time (RT), judgment, and vision, 2) problems with information processing and 

short-term memory, 3) decreased performance, vigilance and motivation, and 4) 

increased moodiness and aggressive behaviors [1]; in addition, they also exhibit 

dangerous behaviors like running off the road, crossing the center line, or wandering 

into other lanes or onto the shoulder during drowsy periods [2]. It was reported that 

in 2008, 54% of adult drivers in the US felt drowsy while driving a vehicle, and 28% 

of them actually fell asleep at the wheel; moreover, of those who had nodded off, 

over 50% said they have done so at least once a month [3]. In order to improve 

driving safety and reduce casualties, it is of great importance to study the neural 

correlates of drowsy driving, develop devices for monitoring the driver’s vigilance 

state, and provide timely and effective feedback to the driver. 

Several techniques have been developed for drowsiness detection. One of 

them monitors the driver’s behavior or the vehicle’s lane position, such as the 

lane-departure warning system (LDWS) [4][5], and other techniques monitor the 

driver’s physiological activities such as heart-rate variability (HRV) and electroocu-

lography (EOG) [6]. The former mainly integrates image-processing based methods 

to detect lane marking (boundary) and monitor the driver’s activities such as yawn-

ing, head positions, or eye blink duration via optical sensors or video cameras [7][8]; 

however, image- or video-based techniques are sensitive to external weather con-

ditions (e.g., rain or snow) and the driver’s posture inside the car. Although the 

monitoring of physiological signals, such as HRV and EOG, does have the same 

limitation as image- or video-based techniques, the temporal resolution of these 
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physiological signals is low, making them less effective in the tracking of vigilant 

states. Among other physiological signals, electroencephalography (EEG) is the 

most direct and effective measures of vigilant states; however, EEG signals are 

usually recorded from dozens of scalp electrodes and sampled at 100-500 Hz, 

which is less viable for on-line signal processing. Owing to the advances in signal 

acquisition devices and computer speed, recently, real-time analysis and automatic 

detection of EEG patterns of drowsiness have become more viable [9][10][11]. 

Numerous studies have suggested that changes in EEG power spectra are re-

lated to vigilance and drowsiness. For example, Beatty et al. demonstrated aug-

mented occipital theta activities when the radar operators were less vigilant [12]. 

Huang et al. demonstrated tonic EEG power increase in low-frequency bands in the 

occipital cortex during high-error periods in a continuous tracking task [13], and they 

also demonstrated similar tonic EEG power increase in low-frequency bands in the 

occipital cortex in simulated driving experiments [14]. In addition, Lin et al. demon-

strated the correlation between alpha and theta band power and driving error, de-

fined as mean deviation from lane center in each moving window [9][15], in a vir-

tual-realty (VR) environment. To this day, most studies on drowsy driving have 

conducted experiments in static laboratory setting; however, in the real world, driv-

ers receive kinesthetic stimuli, e.g. vibration on the road, in addition to visual and 

auditory stimuli. It does not know the effect of kinesthetic stimuli on the EEG power 

spectra and the accuracy of drowsiness detection, but conducting experiments on 

the road could be costly and dangerous to the subjects; hence, a dynamic laboratory 

setting, e.g. a VR environment with a motion platform, is necessary in investigating 

this issue. 

In this study, subjects participated in simulated nighttime driving experiments 

on a motion platform in a well-controlled VR-based environment [9][15]. An 
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event-related lane-departure paradigm [16][17] was used to continuously monitor 

the subjects’ arousal states, as measured by reaction time to perturbing events on 

the road. Subjects participated in different sessions, during which the motion plat-

form was active (motion condition) or inactive (motionless condition), and their 

driving trajectories, behavioral responses, and 30-channel EEG signals were re-

corded simultaneously. Independent component analysis (ICA) was used to de-

compose the 30-channel EEG signals into temporally independent processes, 

whose sources originated from multiple brain regions, and power spectra were 

computed from the activation time course of each independent component. Finally, 

independent components with similar features, such as topographic maps, dipole 

sources, and power spectra, were grouped into clusters across subjects. 

This study aims to 1) identify independent brain processes in different cortical 

regions whose EEG power spectral changes were related or not related to drowsi-

ness, 2) find the trends of different frequency bands in EEG power spectra from 

alertness to drowsiness across subjects and sessions, and identify frequency bands 

that are most suitable for drowsiness detection, and 3) compare the above trends in 

motionless and motion conditions, and find the influence of kinesthetic inputs on 

EEG power spectra. Finally, the results of this study may provide insights into the 

design and assessment of drowsiness detection systems for real-life driving. 
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Chapter II Experiment Design and Setup 

2.1 VR-Based Driving Simulator and Steward Motion Platform 

Simulated driving experiments were conducted in a VR-based driving simulator. 

A real car body was mounted on a six degree-of-freedom (DOF) Steward motion 

platform (Figure 1 and Figure 2), which simulated the vibration caused by uneven 

road surface as well as kinesthetic force during real-life driving. Seven video pro-

jectors were used to generate the 360-degree VR scene of night-time driving in a 

darkened room. This setup provided the subjects with immersive environment and 

enables the experimenters to control the experiment in a different room. 

 

Figure 1: The layout of the screens in the VR environment at Brain Research Center (BRC), National 

Chiao Tung University (NCTU). The texts indicate the position of the screens. 
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Figure 2: A car body mounted on a 6-DOF Steward motion platform. 

 

2.2 Event-Related Lane-Departure Paradigm 

The event-related lane departure paradigm [16][17] was implemented in the 

VR-based driving simulator using WorldToolKit (WTK) R9 Direct and Visual C++. 

The paradigm was designed to quantitatively measure the subject’s reaction time to 

perturbations during continuous driving. Figure 3 shows a bird’s eye view of this task. 

In this setup, every a few seconds, the car is programmed to randomly drift to the 

left or right out of a cruising lane with equal probability. Without these lane-departure 

events, the subject might fall asleep while the car continues to move straight in the 

lane without deviation in a driving simulator, making it difficult to objectively monitor 

the subject vigilance level. Following each deviation, subjects were required to steer 

the cars back to the approximate center of the cruising lane as quick as possible 

using the steering wheel, and were instructed not to make fine adjustment to the 

position of the cars and hold on to the wheel after the car returns to the center of the 

cruising lane. If the subject does not respond promptly, the vehicle will eventually hit 

the virtual curb on either side without crashes and continue to move along the curb 
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even the subject falls asleep. Such experimental design allows the observation of 

continuous transition from complete alertness to deep drowsy states. 

Each lane-departure event is defined as a “trial” which includes three critical 

moments: “deviation onset” is the moment when the car starts to drift away, “re-

sponse onset” represents the moment when the subject perceives the drift and be-

gins to steer the cars back to the cruising lane, and “response offset” is the moment 

when the car returns to the center of the cruising lane, and the subject ceases to 

rotate the steering wheel. The next lane-departure event occurs again 5~10 sec 

after the “response offset.” The reaction time is defined as the interval between de-

viation onset and response onset in a trial. 

 
Figure 3: A bird’s eye view of the event-related lane-departure paradigm. Figure recreated with per-

mission from [16][17]. 

In order to test the effect of kinesthetic inputs on brain activities and drowsiness, 

subjects participated in “motionless” and “motion” sessions on different days. The 

6-DOF motion platform generated kinesthetic stimuli only in the “motion” sessions. 

In the “motionless” sessions, the platform was stationary, and no kinetic stimuli were 

given to the subjects. 

 

2.3 Subjects 

Eleven healthy male subjects with normal or corrected-to-normal vision were 

paid to participate in the experiments. All of them were recruited from NCTU, and 

none of them were BRC members at the time they participated in the experiments. 
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None of them reported psychiatric or sleep disorders. Subjects were given instruc-

tion on how to respond to the events before participating in the experiment for the 

first time. All subjects have participated in the “motionless” session, and seven of 

them also participated in the “motion” session. 

 

2.4 EEG Recording 

The EEG data were recorded at 500 Hz sampling rate from an electrode cap 

(Neuromedical Supplies 32-channel Quik-Cap) based on the international 10-20 

system [18] using a NeuroScan NuAmps amplifier with a band-pass filter (0.1 to 50 

Hz). Two reference channels, A1 and A2, were placed on the left and right mastoids, 

respectively. The impedance of each electrode was ensured to be less than 

5k ohms before the EEG acquisition began. 

 

Figure 4: The layout of electrodes on the EEG caps used in the experiments. The blue electrodes are 

the ones in the international 10-20 system, and the green ones are additional electrodes on the 

cap. 
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Chapter III Data Analysis 

In this study , all data analyses and signal processing were implemented by 

scripts running in MathWorks MATLAB (R2007a) and the EEGLAB Toolbox (version 

5.03) developed by the Swartz Center for Computational Neuroscience, the Univer-

sity of California San Diego (UCSD) [19]. Figure 5 shows the flowchart of data 

analysis and signal processing. 

Raw EEG data Integration of EEG 
and behavioral data

0.5 Hz high pass 
filter

Artifact Removal 
(EEG and 

behavioral data)
ICA decomposition

Clustering Component re-
selectionDipole fitting

250 Hz down-
sampling

50 Hz low pass filter

Epoch extraction

Computation of  
tonic power spectra

(by DFT)

 
Figure 5: The flowchart of data analysis and signal processing. 

 

3.1 Integration of EEG and Behavioral Data 

During each experiment, the stimulus computer that generated the VR scene 

recoded the trajectories of the car as well as the events with time points in a “log” file. 

The stimulus computer also sent synchronized triggers (which were also recorded in 

the “log” file) to the Neuroscan EEG acquisition system. At the same time, the 

Neuroscan system recoded the EEG data with the time stamps of those trigger in an 

“ev2” file. Since the numbers of time points in both recorded files were different, the 

first step was to integrate these two files into a new file with aligned event timing and 

behavioral data. The new event file was then imported by EEGLAB in MATLAB. 
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3.2 Epoch Extraction 

An epoch is a segment of multi-channel EEG signals time-locked to a specific 

type of behavioral event. Since there may be more than one event in a trial, the 

continuous EEG signals in a trial can be extracted into different types of epochs. In 

order to observe the fluctuation in EEG signals to specific events, the continuous 

30-channel EEG signals were extracted into eight-second epochs, time-locked to 1 

sec before and 7 sec after each deviation onset. 

The “tonic” and “phasic” activities in the recorded data are defined as below [13]. 

The “tonic” activities in EEG data refer to the longer-term changes in baseline 

arousal levels. In this study, tonic activities were measured from the cruising period 

before the deviation onset in each epoch. The “phasic” EEG activities refer to tran-

sient event-related brain dynamics time-locked to the deviation onset or response 

onset/offset. 

 

3.3 Artifact Removal 

3.3.1 Removal of Behavioral Artifacts 

Two types of abnormal trials in the recorded behavioral data (vehicle trajecto-

ries and RTs) were rejected before further analysis. First, those trials with RTs 

shorter than 0.3 sec were rejected due to the subject’s unintentional responses or 

the jitters of the steering wheel. Second, when the car returned to the lane center, 

the trajectories in some trials exhibited “overshoot” or zigzag patterns, making it dif-

ficult to clearly define the exact timing of response offset, and thus hard to interpret 

EEG data; therefore, those trials that did not show “flat” trajectories between the 

current response offset and the next deviation onset were rejected. Figure 6 dem-

onstrates the removal of abnormal trials in behavioral data. Trials 163 and 164 show 

typical patterns of trajectory of a lane-departure event and were included in the data 
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analysis, and trials 159, 160, and 162 were rejected because the subject continued 

to turn the wheel after response offsets (as indicated in blue dots). In some trials, the 

steering wheel was not turned into the exact central position (zero angle) after the 

subject cease to steer, but the computer program misinterpreted the nonzero angle 

as rotation and made the car continue to drift. For example, trial 161 shows a linear 

drift during the pre-deviation period, which could be assumed that the subject was 

not actually steering, and thus this trial was not rejected. 

 
Figure 6: A segment of the driving trajectory in a representative session. X- and y- axes: experiment 

duration (in seconds) and the lane position of the car (in units), respectively; gray curve: driving 

trajectory; red, green, and blue dots: driving events: deviation onsets, response onsets, and 

response offsets, respectively; vertical dotted lines: the beginning of each epoch (one second 

before deviation onset); numbers below the red dots: indices of trials (red: rejected trial; blue: 

remained trials after artifact removal) and corresponding RTs (black). 
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3.3.2 Removal of EEG Artifacts 

In this study, the event-related lane departure task required frequent manual 

responses using the steering wheel, and sometimes involved body movements to 

counterbalance with the forces of motion platform during “motion” sessions. These 

movements often resulted in severe noise in the EEG signals. In addition, a few 

electrodes lost skin contacts in some periods or throughout the experiment and re-

sulted in signals with extreme values in the recorded data. These artifacts could not 

be dissociated from other brain processes using independent component analysis 

(ICA), and must be removed before further analysis. Figure 7 demonstrates an 

example of artifact removal on the recorded EEG data. The following criteria were 

applied to artifact removal in EEG data: 1) channels with extreme values due to poor 

skin contact throughout the entire or most parts of the session, and 2) epochs with 

severe fluctuations across most EEG channels. In Figure 7, epochs 154-156 were 

rejected due to large fluctuations in channels Fp1, Fp2, F3, and F4; in addition, 

epoch 158 was rejected because it not only showed large fluctuations on channels 

Fp1, Fp2, F3, and F4, but also showed widespread noise across all channels. 
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Figure 7: An example of artifacts removal of the recorded EEG signals. This figure is a screen snap-

shot of the eegplot() function in the EEGLAB toolbox. Horizontal and vertical axes: latency of 

epochs (in milliseconds, 0: deviation onset of each epoch) and channels, respectively; hori-

zontal traces: the recorded EEG signals; vertical lines: deviation onset, response onset, re-

sponse offset, and boundaries of epochs; numbers on top: trial indices (horizontal) and event 

types (vertical). 

 

3.4 Independent Component Analysis (ICA) 

3.4.1 Background and Algorithm of Independent Component Analysis 

ICA algorithms are a family of related methods for unmixing linearly mixed 

signals using only recorded time course information (that is, “blind” to detailed 

models of the signal sources as required by earlier signal processing approaches) 

[20]. Four main assumptions underlie ICA decomposition of EEG time series: 1) 

signal conduction times are equal, and summation of currents at the scalp sensors 

is linear, 2) spatial projections of components are fixed across time and conditions, 3) 
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source activations are temporally independent of one another across the input data, 

and 4) statistical distributions of the component activation values are not Gaussian 

[21]. Given a matrix, W, a vector w, a random vector, [ ]TNxx K1=x , and the linear 

transform, w+= Wxu , the objective of ICA decomposition is to find the elements in 

[ ]TNuu K1=u  are statistically independent. ICA imposes that the multivariate prob-

ability density function (p.d.f.) of u factorized as ( ) ( )∏
=

=
N

i
iu uff

i
1

uu , and makes the 

mutual information between the ui go to 0: ( ) jiuuI ji , 0, ∀= . In Informax ICA, which 

was adopted in this study, the input signals are scaled and shifted to make each of 

the unknown independent components, iu , have the same form of cumulative 

density function (c.d.f.) with the form ( )uFu . Next, ICA is performed by maximizing 

the entropy H(y) of a non-linearly transform vector )(uy uF=  and thus yields sto-

chastic gradient ascent rules for adjusting W and w: 

   [ ] yxyWW ˆ,ˆ1
∝Δ+∝Δ

−
wTT         

 (1) 

where [ ]TNyy ˆˆˆ 1K=y , and  
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Instead of using the original c.d.f. of the original signals, the applied c.d.f. in ICA 

training is ( ) 1
1

−−+= iu
i ey ; henceforth, ii yy 21ˆ −=  and thus resulting a simple form 

in this algorithm. These results were obtained even though the p.d.f. of the original 

signals may not exactly match by the gradient of the logistic function [22]. 



 

 15

3.4.2 Independent Component Activations and Topographic Maps 

After artifact rejections, the remained channels and epochs were concatenated 

into a matrix, x, of size [channels × epochs] and subjected to ICA decomposition 

using the runica() function of the EEGLAB toolbox. ICA finds an “unmixing” ma-

trix, W, which decomposes or linearly unmixes the multi-channel EEG data, x, into a 

sum of maximally temporally independent and spatially fixed components u, where 

u = Wx. Each row of the output data matrix, u (or rows of icaact in the EEGLAB 

dataset), is the activation time course of each independent component. Each col-

umn of the inverse of matrix, W (or icawinv in the EEGLAB dataset), indicates the 

activation weights distributed across electrodes for each independent component, 

which can be rendered as a two-dimensional (2-D) topographic map on the scalp.  

Figure 8 shows 2-D topographic maps of 30 independent components in a rep-

resentative session. Components 2, 3, 4, 6, 7, 8, 9, 10, 11, 14, 18, and 21 are con-

sidered as potentially related to brain processes, and others are considered 

non-brain artifacts (blinks, eye movements, muscle artifacts, single-channel noise, 

etc.).
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Figure 8: Topographic maps of ICA decomposition in a representative session. 

 

3.5 Dipole Fitting 

Dipole fitting is one of the methods to solve the inverse problem: given an EEG 

scalp distribution of activity observed at given scalp electrodes, any number of brain 

source distributions can be found that would produce it [23]. After applying ICA de-

composition, many i have scalp maps that nearly perfectly match the projection of a 

single equivalent dipole on the cortex, and this finding is consistent with their pre-

sumed generation via partial synchrony of local field potential (LFP) processes 

within a connected domain or patch of cortex. The problem of finding the location of 

a single equivalent dipole generating a given dipolar scalp map is well posed; 

however, the location of the equivalent dipole for synchronous LFP activity in a 

“cortical patch” will in general not be in the center of the active cortical patch, espe-
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cially the patch is radially oriented (e.g. on a gyrus, thus aimed toward the super-

vening scalp surface), the equivalent dipole location tends to be deeper than the 

cortical source patch [23]. In this study, the dipole source location of each inde-

pendent component was estimated using the resulting weight matrix of ICA de-

composition and the 3-D positions of electrodes. Dipole fitting was implemented 

using the dipfit plugin in EEGLAB, which finds the optimal dipole location and 

moments (vectors) that maximally account for the independent component activities 

with minimum residual variance. 

 

3.6 Computation of Tonic Power Spectra 

3.6.1 Time-Frequency Transform 

Time-frequency transform is a spectrotemporal decomposition technique that 

evaluates event-related perturbations in the power spectra (as well as phase and 

coherence perturbations; not discussed in this study) of single-channel EEG signals 

or activation time courses of single IC [19]. Figure 9 shows the procedure of 

time-frequency transform. For each single-channel epoch, the time series are 

chronically divided into designated numbers of overlapped sub-windows, and the 

power of each sub-window is then computed by discrete Fourier transform (DFT) 

using timefreq() function in EEGLAB and fft() function in MATLAB in this 

study. Finally, a matrix with size [frequency bins × time windows] was obtained for 

each epoch. The same procedures were applied to all epochs for all EEG channels 

or IC activations. 
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…
…
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Figure 9: The procedures of time-frequency transform of a single-trial and single-channel EEG sig-

nals or ICA activation time courses in an epoch. In this research, time-frequency transform was 

applied only on ICA component activations and using DFT to compute power spectra. Assume 

this epoch is -1~0 sec (0: deviation onset), and the output is set to 100 time points. The inter-

vals of each sub-window were reported by the function timefreq(). 

3.6.2 Tonic Power Spectra 

The goal of this study is to investigate the relation between the changes in tonic 

EEG power spectra of independent component activations and the fluctuation of 

driving performance (as measured by reaction time). In order to minimize the effects 

of phasic EEG power fluctuations during lane departure events, tonic power spectra 

were computed only from the cruising period before each deviation onset [14]. 

Figure 10 shows the procedures for computing tonic power spectra, spectral nor-

malization, and statistical tests. For each subject (session), logarithmic (log) tonic 
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power spectra were computed from a 1-sec window before the “deviation onset” in 

each 8-sec epoch extracted from each IC activation time courses using DFT (win-

dow size: 256 ms; 44 frequency bins between 2.93 and 44.92 Hz, the 2.93-Hz bin 

was excluded in plotting power images since this frequency bin was beyond the 

range in this study; 100 time steps between -742.976 and -253.204 sec where 0 sec: 

deviation onset). The average power spectra were then obtained by averaging 

across time points to get a mean baseline. Detailed output frequency bins and time 

points are shown in Table A1 and Table A2). 

For each IC of each subject, the tonic power spectra of all epochs (trials) were 

sorted by their RTs, and then normalized by subtracting the mean power spectra of 

the “alert trials” with the shortest RT (first 10% of all RT-sorted trials). In this study, 

the mean power spectra of the alert trials are defined as the “alert baseline power 

spectra.” Finally, moving average (window size: 10% of total trials; stepping at one 

trial) was applied to the sorted, normalized power spectra. A two-tailed t-test 

(ttest2() function in MATLAB) was used to assess if the mean power spectra in 

each moving window was statistically different from those of the alert trials (p < 10-4, 

corrected with a Bonferroni multiple comparison method). 

 
Figure 10: The flowchart of computing tonic power spectra. 



 

 20

 

3.7 Independent Component Clustering 

3.7.1 Clustering and Re-Selection of Independent Components 

In order to characterize the common pattern of spectral activities of similar ICs 

from different subjects and sessions, these ICs were manually grouped into several 

IC clusters according to their 2-D topographic maps. Next, initial clustering results 

were further refined iteratively based on dipole source locations and alert baseline 

power spectra of ICs in each IC cluster. Components that showed abnormal pat-

terns in their topographic maps, dipole source locations, or power spectra deviated 

from the cluster’s mean were considered outliers. These outliers were rejected from 

the cluster, and the mean alert baseline power spectra were recomputed from the 

remaining components in the cluster. In this study, eight IC clusters of brain-related 

processes were obtained. 

3.7.2 Group Trend of Tonic Power Spectra 

In order to find the group trend of tonic power spectra, all trials (epochs) in the 

same IC cluster were grouped and sorted by reaction time, which was used as a 

common behavioral index to compare the EEG power spectra at similar alertness 

levels across subjects. The procedures for computing group tonic power spectra 

from clustered data and statistical tests were slightly different from those applied to 

single-subject data. In single-subject data, the power spectra of each trial were 

normalized by the mean power spectra of “alert trials” in the same subject; in the 

clustered data, the power spectrum of each trial in a moving window was normalized 

by the mean power spectra of alert trials from its original session, not the mean 

power of “alert trials” in this cluster. For example, if a trial was from session 3, the 

power spectra of this trial were normalized by the alert baseline power spectra in 

that session. In single-subject data, the significance level was estimated by com-
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paring the mean power spectra of trials in a moving window with the alert baseline 

power spectra from the same session; in the clustered data, the significance level (p 

<10-10, corrected) was estimated by comparing the mean power spectra of trials 

from multiple sessions in a moving window with the weighted baseline (alert) power 

spectra from the trials’ original sessions. For example, in a moving window with trials 

30% from session 1, 30% from session 3, and 40% from session 5, the significance 

level of this window was estimated by comparing its mean power spectra with the 

weighted baseline (alert) power from sessions 1, 3, and 5 in consideration of the 

proportion of trials. 
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Chapter IV Results 

4.1 Motionless Datasets 

4.1.1 Behavioral Data 

Table 1 shows the distribution of behavioral data of individual subjects in the 

“motionless” condition. The shaded rows show the numbers of trials remained after 

EEG and behavioral artifact removal. Subjects are sorted in descending order by 

their drowsiness levels, defined as the percentage of remained trials with RT > 3 sec. 

In total, 48.66% of original trials in all subjects remained due to severe artifacts in 

the driving experiments. The car drifted to the left (right) in 49.68% (50.32%) of all 

the remained trials. 

TABLE 1: BEHAVIORAL DATA OF MOTIONLESS DATASETS 
Subject 
Index 

Trials Data 
Length 
(sec)* 

Trials 
Re-

mained 
(%)** 

Min. 
RT 

(sec)

Max. 
RT 

(sec)

Avg. 
RT 

(sec)

SD of 
RT 

(sec) 

Med. 
of RT 
(sec) 

Trials 
w. RT > 
3 sec 
(%) 

Dev. 
to Left 

(%)

437 6552.12 -- 0.02 110.52 6.09 9.93 2.06 43.71 48.05
s40_070207 

222 -- 50.80 0.38 46.37 7.61 9.37 3.38 52.70 45.95
568 6353.32 -- 0.02 49.75 2.16 3.43 0.87 21.13 52.11

s44_070325 
223 -- 39.26 0.58 49.75 2.74 4.74 0.84 26.91 41.70
592 6918.08 -- 0.02 109.35 3.09 5.98 1.19 25.00 55.24

s36_061221 
336 -- 56.76 0.64 32.15 3.38 4.74 1.24 26.49 54.46
548 6514.88 -- 0.05 628.43 3.45 26.98 1.25 23.54 51.09

s42_070105 
197 -- 35.95 0.62 66.26 2.81 5.29 1.50 26.40 50.76
533 6304.28 -- 0.02 40.17 2.94 4.23 1.39 19.14 45.03

s01_061102 
287 -- 53.85 0.62 40.17 3.24 4.69 1.35 21.60 44.95
555 5968.00 -- 0.02 56.98 2.44 5.21 0.79 15.32 52.61

s35_070322 
195 -- 35.14 0.47 56.98 2.33 6.15 0.73 12.82 60.00
550 7301.76 -- 0.02 30.79 3.16 3.89 1.90 25.64 49.09

s32_061031 
250 -- 45.45 0.64 6.64 1.85 0.84 1.67 10.40 48.00
716 6592.20 -- 0.10 8.46 1.22 1.12 0.88 6.42 52.37

s05_061101 
402 -- 56.15 0.55 8.01 1.31 1.24 0.90 7.71 50.00
628 5823.40 -- 0.02 26.06 1.24 1.92 0.77 6.21 51.91

s43_070208 
430 -- 68.47 0.50 26.06 1.39 2.22 0.79 7.67 53.72
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670 6353.32 -- 0.02 10.65 1.12 1.05 0.75 5.82 49.55
s41_061225 

282 -- 42.09 0.32 8.62 1.17 1.15 0.74 7.45 47.16
566 6231.08 -- 0.03 11.23 1.78 1.35 1.35 10.95 48.06

s31_061103 
272 -- 48.06 0.72 8.68 1.61 1.16 1.22 7.35 47.43

    
6363 -- -- 0.02 628.43 2.46 9.02 1.05 17.32 50.32

All subjects 
3096 -- 48.66 0.32 66.26 2.50 4.51 1.05 17.31 49.68

Note: shaded areas: distribution of the trials remained after artifacts removal. *: original datasets. **: 

datasets after artifacts removal. 

Figure 11 shows the cumulative distribution of sorted reaction time across 

subjects in the “motionless” datasets. The x- and y- axes are reaction time (in log 

scale) and percentage of RT-sorted index, respectively, and the vertical dashed line 

indicates 3-sec RT. The curve shows an approximate bi-linear distribution of RTs 

(when the x-axis is plotted in linear scale). Only 20% of all remained trials have RTs 

longer than 3 sec, which suggest the subjects were not very drowsy in these trials. 

 
Figure 11: Cumulative distribution curve of sorted reaction times in the motionless datasets. 
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4.1.2 Clustered Scalp Maps and Dipole Locations 

Eight clusters of independent components with dipole sources located in the 

frontal, central, parietal, somatomotor, and occipital regions were identified based 

on their scalp maps from the results of ICA decomposition. The average scalp maps 

of these IC clusters are shown in Figure 12. Figure A1-Figure A24 show the scalp 

maps, and Table A3-Table A10 summarize the Talairach coordinates of each dipole 

in the remaining clusters. 

 
Figure 12: The average scalp maps of eight IC clusters in the motionless datasets. 

4.1.3 Tonic Power Spectra 

4.1.3.1 The Frontal Cluster 

Figure 13 shows the results of the frontal cluster, including the average scalp 

map, dipole source locations, baseline power spectra, tonic power image, and 
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trends of tonic power changes in four frequency bands. The power image and traces 

in Figure 13 D and E, respectively, show about 1~2 dB increase in the theta band 

when the mean RTs are longer than 1.88 sec, and such increase shifts to the lower 

frequencies when RTs further increase and become significant (p < 10-10, 

two-sampled t-test, corrected) when RTs are longer than 6.67 sec. 

 
Figure 13: Results of the frontal cluster in the motionless datasets. A: the average scalp map of all IC 

in the cluster, B: mean power spectra of alert trials in each dataset and cluster average (blue 

trace), C: dipole locations (yellow dot: cluster average), D: the moving averaged power image 

(x-axis: RT-sorted index in percentage and the corresponding reaction time in seconds; y-axis: 

frequency in Hz; regions inside contour: p < 10-10, two-tailed t-test, corrected for multiple com-

parison), and E: trends of mean tonic power in four frequency bands (extracted from D; x-axis: 

RT-sorted index and the corresponding reaction time in seconds; y-axis: power increase in dB). 

4.1.3.2 The Central and Parietal Clusters 

Figure 14 shows the results of the central cluster, including the average scalp 

map, dipole source locations, baseline power spectra, tonic power image, and 
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trends of tonic power changes in four frequency bands. The power image and trends 

show significant increase in the low theta band when RTs are longer than 3 sec, and 

significant increase near 20 Hz when RTs are longer than 7.29 sec. 

 
Figure 14: Results of the central cluster in the motionless datasets. All conventions follow Figure 13. 

Figure 15 shows the results of the parietal cluster, including the average scalp 

map, dipole source locations, baseline power spectra, tonic power image, and 

trends of tonic power changes in four frequency bands. The power image and trends 

show the onset RTs of significant increase in the alpha and theta bands are around 

2.27 sec and around 3 sec, respectively; in addition, such increase shifts to the 

lower frequencies when RTs further increase. Note that the power on the alpha 

band falls when RTs are longer than 3 sec, but theta band power continues to in-

crease. 
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Figure 15: Results of the parietal cluster in the motionless datasets. All conventions follow Figure 13. 

4.1.3.3 The Somatomotor Clusters 

The results of the left and right somatomotor clusters, including the average 

scalp maps, dipole source locations, baseline power spectra, tonic power image, 

and trends of tonic power changes in four frequency bands, are shown in Figure 16 

and Figure 17, respectively. The power images and trends show significant increase 

in the lower frequencies in the left (right) somatomotor cluster when RTs are longer 

than 2.17 (5.97) sec. 
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Figure 16: Results of the left somatomotor cluster in the motionless datasets. All conventions follow 

Figure 13. 



 

 30

 
Figure 17: Results of the right somatomotor cluster in the motionless datasets. All conventions follow 

Figure 13. 

4.1.3.4 The Occipital Clusters 

Figure 18 shows the results of the occipital midline cluster, including the aver-

age scalp map, dipole source locations, baseline power spectra, tonic power image, 

and trends of tonic power changes in four frequency bands. The power image and 

trends start to show increase in the lower frequency bands when RTs are longer 

than ~1.27 sec. The power increase becomes significant when RTs are longer than 

~3 sec, and shifts to the lower frequencies when RTs become even longer. The 

trend in alpha band power starts to decrease at RTs lower than those where the 

descending trend occurs in the theta band power. 
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Figure 18: Results of the occipital midline cluster in the motionless datasets. All conventions follow 

Figure 13. 

Figure 19 shows the results of the bilateral occipital cluster, including the av-

erage scalp map, dipole source locations, baseline power spectra, tonic power im-

age, and trends of tonic power changes in four frequency bands. The power image 

and trends start to show increase in the lower frequency bands when RTs are longer 

than ~1 sec. The power increase becomes significant when RTs are longer than 

~1.3 sec and shifts to the lower frequencies when RTs become even longer. The 

trends in alpha band and low beta band power start to decrease when RTs are over 

~3 sec; however, the trend in theta band power continues to increase as RTs further 

increase. 
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Figure 19: Results of the bilateral occipital cluster in the motionless datasets. All conventions follow 

Figure 13. 

Figure 20 shows the results of the tangential occipital cluster, including the av-

erage scalp map, dipole source locations, baseline power spectra, tonic power im-

age, and trends of tonic power changes in four frequency bands. The power image 

and trends start to show increase in the lower frequency bands when RTs are longer 

than ~1.15 sec. The power increase becomes significant when RTs are longer than 

~1.8 sec and shifts to the lower frequencies when RTs become even longer. The 

trends in alpha band and low/high beta band power start to decrease when RTs are 

over ~3 sec; however, the trend in theta band power continues to increase mono-

tonically as RTs further increase. 



 

 33

 
Figure 20: Results of the tangential occipital cluster in the motionless datasets. All conventions follow 

Figure 13. 

 

4.2 Motion Datasets 

4.2.1 Behavioral Data 

Table 2 shows the distribution of behavioral data of individual subjects in the 

“motion” condition. The shaded rows show the numbers of trials remained after EEG 

and behavioral artifact removal. Subjects are sorted in descending order by their 

drowsiness levels. In total, 52.84% of original trials in all subjects remained due to 

severe artifacts in the driving experiments. The car drifted to the left (right) in 51.7% 

(49.3%) of all the remained trials. 
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TABLE 2: BEHAVIORAL DATA OF MOTION DATASETS 

 

Trials Data 
Length 
(sec)* 

Trials 
Re-

mained 
(%)** 

Max. 
RT 

(sec)

Min. 
RT 

(sec)

Avg. 
RT 

(sec)

SD of 
RT 

(sec) 

Med. 
of RT 
(sec) 

Trials 
w. RT > 
3 sec 
(%) 

Dev. 
to Left 

(%)

662 5815.36 -- 18.79 0.15 1.54 2.09 0.80 11.48 53.78
s44_070209 

409 -- 61.78 14.74 0.45 1.74 2.25 0.84 14.18 52.57
683 6315.52 -- 11.3 0.02 1.29 1.54 0.87 6.88 53.44

s05_061019 
319 -- 46.71 11.3 0.54 1.58 1.96 0.85 10.34 53.61
540 6515.16 -- 383.60 0.02 3.05 19.28 0.89 9.44 52.41

s35_070115 
301 -- 55.74 27.40 0.33 1.56 2.87 0.80 6.98 55.48
685 6535.12 -- 22.52 0.02 1.53 1.89 1.14 4.67 51.39

s36_061122 
330 -- 48.18 22.52 0.45 1.79 2.49 1.13 7.27 47.58
632 6562.20 -- 27.14 0.02 1.51 2.14 1.07 5.85 49.05

s40_070131 
316 -- 50.00 27.14 0.38 1.59 2.54 1.07 5.06 46.52
711 6533.24 -- 12.74 0.10 1.01 1.21 0.70 2.25 51.62

s43_070202 
315 -- 44.30 12.74 0.43 1.11 1.66 0.69 4.76 54.60
640 7061.04 -- 10.81 0.02 1.36 0.85 1.25 2.50 52.34

s31_061020 
416 -- 65.00 8.39 0.52 1.39 0.68 1.29 2.16 51.68

     
4553 -- -- 383.6 0.02 1.57 6.84 0.97 6.04 52.01

All subjects 
2406 -- 52.84 27.40 0.33 1.54 2.14 0.99 7.32 51.70

Note: shaded areas: distribution of the trials remained after artifacts removal. *: original datasets. **: 

datasets after artifacts removal. 

Figure 21 shows the cumulative distribution of sorted reaction time across sub-

jects in the “motion” datasets. The x- and y- axes are reaction time (in log scale) and 

percentage of RT-sorted index, respectively, and the vertical dashed line indicates 

3-sec RT. The curve shows an approximate bi-linear distribution of RTs (when the 

x-axis is plotted in linear scale). About 10% of all remained trials have RTs longer 

than 3 sec, which suggest the subjects were not very drowsy in these trials. 
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Figure 21: Cumulative distribution curve of sorted reaction times in the motion datasets. 

4.2.2 Clustered Scalp Maps and Dipole Locations 

Eight clusters of independent components were identified based on their scalp 

maps from the results of ICA decomposition. The average scalp maps of these IC 

clusters are shown in Figure 22. Figure A25-Figure A48 show the scalp maps, and 

Table A11-Table A18 summarize the Talairach coordinates of each dipole in the 

remaining clusters. 
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Figure 22: The average scalp maps of eight IC clusters in the motion datasets. 

4.2.3 Tonic Power Spectra 

4.2.3.1 The Frontal Cluster 

Figure 23 shows the results of the frontal cluster, including the average scalp 

map, dipole source locations, baseline power spectra, tonic power image, and 

trends of tonic power changes in four frequency bands. The power image and trends 

in Figure 23 D and E, respectively, show increase in the theta band when the mean 

RTs are longer than 1.31 sec, and such increase shifts to the lower frequencies 

when RTs further increase and become significant (p < 10-10, corrected) when RTs 

are longer than 2.38 sec. 
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Figure 23: Results of the frontal cluster in the motion datasets. All conventions follow Figure 13. 

4.2.3.2 The Central and Parietal Clusters 

Figure 24 shows the results of the central cluster, including the average scalp 

map, dipole source locations, baseline power spectra, tonic power image, and 

trends of tonic power changes in four frequency bands. The power image and trends 

show significant increase in the low theta band when RTs are longer than ~2.5 sec, 

and significant increase near 20 Hz when RTs reach the maximum value. 
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Figure 24: Results of the central cluster in the motion datasets. All conventions follow Figure 13. 

Figure 25 shows the results of the parietal cluster, including the average scalp 

map, dipole source locations, baseline power spectra, tonic power image, and 

trends of tonic power changes in four frequency bands. The power image and trends 

show increase in the alpha and beta bands when RTs increase moderately, and the 

increase shifts to the lower frequencies when RTs further increase. However, the 

increase in the entire power spectra does not reach the significance level. 
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Figure 25: Results of the parietal cluster in the motion datasets. All conventions follow Figure 13. 

4.2.3.3 The Somatomotor Clusters 

The results of the left and right somatomotor clusters, including the average 

scalp maps, dipole source locations, baseline power spectra, tonic power image, 

and trends of tonic power changes in four frequency bands, are shown in Figure 26 

and Figure 27, respectively. Both somatomotor clusters show no significant changes 

when RTs increase. 
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Figure 26: Results of the left somatomotor cluster in the motion datasets. All conventions follow 

Figure 13. 
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Figure 27: Results of the right somatomotor cluster in the motion datasets. All conventions follow 

Figure 13. 

4.2.3.4 The Occipital Clusters 

Figure 28 shows the results of the occipital midline cluster, including the aver-

age scalp map, dipole source locations, baseline power spectra, tonic power image, 

and trends of tonic power changes in four frequency bands. The power image and 

trends start to show increase in the lower frequency bands when RTs are longer 

than ~0.9 sec. The power increase in alpha (theta) band becomes significant when 

RTs are longer than ~1.6 (~2.4) sec, and the increase shifts to the lower frequencies 

when RTs become even longer. The increase in power in the alpha band is larger 

than that in the other bands, and it reaches a plateau when RTs are longer than 

~1.23 sec; however, theta band power continues to increase monotonically with 

long RTs. 
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Figure 28: Results of the occipital midline cluster in the motion datasets. All conventions follow Figure 

13. 

Figure 29 shows the results of the bilateral occipital cluster, including the av-

erage scalp map, dipole source locations, baseline power spectra, tonic power im-

age, and trends of tonic power changes in four frequency bands. The power image 

and trends start to show significant increase in the lower frequency bands (alpha 

and theta) when RTs are longer than ~0.9 sec, and shifts to the lower frequencies 

when RTs become even longer. The increase in alpha band power is higher than 

that in the other frequency bands. The trends in alpha band and beta band power 

start to decrease when RTs are over ~1.1 sec; however, the trend in theta band 

power continues to increase as RTs further increase. 
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Figure 29: Results of the bilateral occipital cluster in the motion datasets. All conventions follow 

Figure 13. 

Figure 30 shows the results of the tangential occipital cluster, including the av-

erage scalp map, dipole source locations, baseline power spectra, tonic power im-

age, and trends of tonic power changes in four frequency bands. The power image 

and trends show increase in the alpha and beta bands when RTs increase, and the 

power increase in alpha (beta) band becomes significant when RTs are longer than 

1.08 (0.99) sec, respectively. The trend in alpha (beta) band power reverses to the 

downside when RTs are longer than 1.23 (1.08) sec, and theta band power in-

creases abruptly when RTs are longer than 1.61 sec. 
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Figure 30: Results of the tangential occipital cluster in the motion datasets. All conventions follow 

Figure 13. 

 

4.3 Comparison Between Motionless and Motion Datasets 

In real-life driving, the driver receives kinesthetic stimuli in addition to visual and 

auditory stimuli on the road. In order to investigate the effect of kinesthetic stimuli on 

the EEG data especially during drowsy driving, seven subjects who participated in 

both motion and motionless sessions were selected for comparison, and the be-

havioral data and trends in EEG power spectra were compared between motion and 

motionless conditions. Subjects s01, s32, s41, and s42 did not participate in motion 

sessions, so their EEG data in the motionless datasets were not included in the 

comparison. 
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4.3.1 Behavioral data 

Figure 31 shows the cumulative distributions of sorted reaction times across 

subjects in the “motion” (red trace) and “motionless” (blue trace) datasets, respec-

tively. The x- and y- axes are reaction time (in log scale) and percentage of 

RT-sorted index, respectively, and the vertical dashed line indicates 3-sec RT. Both 

curves show approximate bi-linear distributions of RTs (when the x-axis is plotted in 

linear scale). The traces show that over 90% of trials have RTs less than 3 sec in the 

motion datasets, and only over 80% of trial RTs are below 3 sec in the motionless 

datasets. In addition, in the motion datasets, the shortest 1/3 (802 trials, RTs = 

0.38~0.82 sec, mean = 0.66 ± 0.09 sec, median = 0.67 sec) and longest 1/3 (802 

trials, RTs = 1.22~27.40 sec, mean = 2.97 ± 3.25 sec, median = 1.59 sec) RTs are 

longer than corresponding portions of RTs in the motionless datasets (shortest 1/3: 

693 trials, RTs = 0.38~0.82 sec, mean = 0.71 ± 0.07 sec, median = 0.72 sec; long-

est 1/3: 693 trials, RTs = 1.27~56.98 sec, mean = 6.15 ± 7.28 sec, median = 3.36 

sec). The curves in both conditions are statistically different (p < 10-10, two-sample 

t-test); however, the middle 1/3 of RTs in both conditions are not significant (mo-

tionless datasets: 694 trials, RTs = 0.82~1.27 sec, mean = 1.00 ± 0.12 sec, median 

= 0.97 sec; motion datasets: 802 trials, RTs = 0.80~1.22 sec, mean = 0.99 ± 0.13 

sec, median = 0.99 sec; p = 0.41). 
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Figure 31: Cumulative distributions of sorted reaction times in motionless (blue trace) and motion 

(red trace) conditions. 

4.3.2 Tonic Power Spectra 

4.3.2.1 The Frontal Clusters 

Figure 32 shows the results of the frontal clusters in motionless and motion 

conditions, including the average scalp maps, tonic power images, and trends of 

tonic power changes in four frequency bands. The power images in Figure 32 C 

show the onset of significant increase in the theta band power at shorter RTs in the 

motion condition than those in the motionless condition. In addition, the trends in 

Figure 32 D show monotonic power increase in theta band when RTs increase in 

the motion condition, and theta band power in the motionless condition initially in-

creases with RTs and starts to decline above 3-sec RT. The alpha band power is 

lower in the motion condition than that in the motionless condition when RTs are 

longer than 1 sec, and the overall high-beta band power is lower in the motionless 
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condition than that in the motion condition. These results suggest that kinesthetic 

stimuli have influences on the alpha and band power in the frontal cluster. 

 
Figure 32: Comparison of the trends of tonic power spectra between motionless and motion condi-

tions of the frontal cluster. A and B: average scalp maps in the motionless and motion datasets, 

respectively, C: moving averaged power images (left panel: the motionless datasets, right panel: 

the motion datasets; x-axis: reaction time, y-axis: frequency; regions inside contour: p < 10-10, 

two-sample t-test, corrected), and D: trends of power in four frequency bands (extracted from C; 

blue and red traces: motionless and motion conditions, respectively; vertical dashed line: RT = 

3 sec). 

4.3.2.2 The Central Clusters 

Figure 33 shows the results of the central clusters in motionless and motion 

conditions, including the average scalp maps, tonic power images, and trends of 

tonic power changes in four frequency bands. The power images in Figure 33 C 

show the onset of significant increase in the theta band power at shorter RTs in the 

motion condition than those in the motionless condition. The trends in Figure 33 D 
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show higher increase in the theta band power in the motion condition than that in the 

motionless condition when RTs are longer than ~ 1 sec; however, the trends in al-

pha and beta band power are virtually the same in both motion and motionless 

conditions. These comparisons suggest that kinesthetic stimuli only influence the 

theta band power in the central cluster. 

 
Figure 33: Comparison of the trends of tonic power spectra between motionless and motion condi-

tions of the central cluster. All conventions follow Figure 32. 

4.3.2.3 The Parietal and Somatomotor Clusters 

The results of the parietal, left somatomotor, and right somatomotor clusters in 

both conditions (Figure 34-Figure 36) have similar trends in their tonic power spec-

tra. The power images in the parietal and left somatomotor clusters show significant 

power increase in theta band in motionless datasets when RTs are longer than 3 

sec; however, the power spectra of all three clusters in the motion condition show do 

not show any significant increase, and all three clusters in the motion condition show 
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relative lower in alpha and beta bands than that in the motionless condition. These 

comparisons suggest that kinesthetic stimuli influence the alpha and beta band 

power in the parietal and somatomotor clusters. 

 
Figure 34: Comparison of the trends of tonic power spectra between motionless and motion condi-

tions of the parietal cluster. All conventions follow Figure 32. 
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Figure 35: Comparison of the trends of tonic power spectra between motionless and motion condi-

tions of the left somatomotor cluster. All conventions follow Figure 32. 
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Figure 36: Comparison of the trends of tonic power spectra between motionless and motion condi-

tions of the right somatomotor cluster. All conventions follow Figure 32. 

4.3.2.4 The Occipital Clusters 

The tonic power spectra of three occipital clusters (Figure 37-Figure 39) show 

different trends between motion and motionless conditions. The power images in 

both conditions show power increase below 30 Hz when RTs increase in all three 

clusters; furthermore, the motion condition shows significant power increase at 

lower RTs than those in the motionless condition. The power increase in beta band 

becomes insignificant when RTs further increase in the tangential cluster. 

The trends of alpha and beta band power in all three clusters increase at 

shorter RTs and then decrease at longer RTs, and these trends of in-

crease-and-decrease trends are steeper in the motion condition then those in the 

motionless condition. All three clusters show monotonic increase in theta band 

power when RTs increase, and the increase in the theta band power of the occipital 
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midline and bilateral occipital clusters in the motion condition is faster than those in 

the motionless condition. These comparisons suggest that kinesthetic stimuli show 

major influence on the trends of alpha and beta band power in the occipital clusters. 

 
Figure 37: Comparison of the trends of tonic power spectra between motionless and motion condi-

tions of the occipital midline cluster. All conventions follow Figure 32. 
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Figure 38: Comparison of the trends of tonic power spectra between motionless and motion condi-

tions of the bilateral occipital cluster. All conventions follow Figure 32. 
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Figure 39: Comparison of the trends of tonic power spectra between motionless and motion condi-

tions of the tangential occipital cluster. All conventions follow Figure 32. 
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Chapter V Discussions 

5.1 Behavior Indices in the Driving Simulator and in the Real Life 

Driving is a complex behavior in the real life and could be difficult to study in a 

laboratory setting. The goal of this study is to establish the relation between 

changes in EEG power spectra and fluctuations of driving performance in a simu-

lated driving environment; hence, the first step is to define a behavioral index of 

driving performance that objectively and quantitatively measures the subject’s vigi-

lance levels during continuous driving. The event-related lane departure paradigm 

uses reaction time as a direct and instantaneous measure of the subject’s readiness 

to respond to deviation in each trial, and average reaction time can also be obtained 

in a longer window (e.g., 90 sec) to assess the subject’s “global” or “contextual” 

vigilance levels at a larger time scale. It is assumed that the longer it takes to re-

spond to the deviation, the lower the subject’s vigilance level is. 

The mapping between EEG power spectra and reaction time established on a 

driving simulator may be used as a norm for the development of drowsiness detec-

tion system. In the real life, although it could be difficult to define explicit events and 

measure reaction times, the changes in EEG power spectra can be used to predict 

the subject’s implicit reaction time to situations on the road. Several next generation 

cars are already equipped with intelligent systems (e.g., electronic stability control, 

ESC [24] and lane departure warning system, LDWS [25]) that monitor the vehicle’s 

stability or lane position. These behavioral measures could be integrated into the 

EEG-based drowsiness detection system to provide better estimation of the driver’s 

vigilance level. 
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5.2 Effects of Kinesthetic Stimuli 

5.2.1 Behavior Data 

In Section 4.3.1, the results show that the average RT in the motion datasets is 

shorter than that in the motionless datasets; in addition, the first one-third and the 

last one-third of the sorted RTs in the motion datasets are lower than the corre-

sponding portions of RTs in the motionless datasets. The difference of RTs between 

motion and motionless datasets could be explained by the uneven distribution of 

alertness levels across different sessions, i.e. subjects happen to be more alert in 

the motion sessions than in their motionless sessions, and the other possibility is 

that the shorter RT distribution could be explained by the kinesthetic stimuli during 

motion sessions. In our recent experiments (data not shown in this study), all sub-

jects reported that the centrifugal force after deviation onset in the motion sessions 

seemed to provide the kinesthetic cues for responses; therefore, it could be sug-

gested that the subjects in this study had similar experience and were able to re-

spond with shorter RTs during motion sessions. This is an interesting topic that re-

quires further investigation. 

 

5.2.2 Tonic Power Spectra 

In Section 4.3.2, the comparisons between motion and motionless conditions 

suggest that kinesthetic stimuli have almost no influence on the rising trend of theta 

band power except that in the left somatomotor cluster; furthermore, theta band 

power of the central cluster is generally higher in the motion condition than that in 

the motionless sessions. 

The power in alpha and beta bands is suppressed at longer RTs (> 2 sec) in 

motion sessions in most IC clusters. In the central cluster, the kinesthetic stimuli 

have almost no effect on power in the alpha and beta bands. The power images of 
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the parietal and somatomotor clusters in the motion sessions show no significant 

changes from their alert baseline power spectra. 

In the occipital clusters, the trends of increase and decrease of power are 

steeper in the motion condition than those in the motionless condition; in addition, 

significant power increase occurs at shorter RTs in the motion condition than those 

in the motionless condition. These results could provide a foundation for the devel-

opment of drowsiness detection system on the road since the driver receives kin-

esthetic stimuli (similar to those simulated by the motion platform) in real-life driving. 

 

5.3 Effects of Driving Events 

Real-life driving usually involves a lot of motor activities, including steering, 

braking, stepping on the gas paddle, and shifting gears, in response to events or 

situations on the road. These events and responses generally induce transient 

(phasic) perturbation in the EEG power spectra, which are referred to as 

event-related spectra perturbations (ERSPs) [17][26]; however, it is not known 

whether these phasic activities may affect the trends in EEG power spectra and the 

validity of drowsiness detection. In Chapter IV, tonic EEG power spectra were only 

computed from a 1-sec window prior to deviation onset in each epoch, which was 

less contaminated by phasic activities; in this section, EEG power spectra from the 

whole 8-sec epoch, which contained the effects of different events (deviation onset, 

response onset, and response offset), were estimated using the same methods 

described in Section 3.6 and Section 3.7. The discussions in this section suggest 

that phasic activities did influence the trends in some frequency bands of some IC 

clusters. The goal for developing a reliable drowsiness detection system is to iden-

tify those IC clusters and frequency bands that are less affected by phasic activities. 
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Only motion datasets are discussed since the experiment conditions are closer to 

real-life driving than their motionless counterparts. 

5.3.1 The Frontal Cluster 

Figure 40 shows the comparison between “tonic” (only the pre-deviation period 

in each epoch) and “mixed” (both pre- and post-deviation period in each epoch) 

power spectra of the frontal cluster. The power images (Figure 40 A) show that in-

crease in “mixed” power spectra is less salient than that in the “tonic” ones; however, 

significant theta band power increase occurs at lower RTs in the “mixed” power 

spectra. The trends in Figure 40 B show the “mixed” power increase in the theta 

band is lower than that of “tonic” power increase at longer RTs, but the monotonic 

rising trend is not affected by phasic activities in the “mixed” power spectra, sug-

gesting that the theta band power in the frontal cluster could be a stable index for 

drowsiness detection in real-life driving. 
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Figure 40: Comparison of the trends between “tonic” and “mixed” power spectra of the frontal cluster. 

A: moving averaged power images (left panel: “tonic” power spectra, right panel: “mixed” power 

spectra; regions inside contour: p < 10-10 by two-tailed t-test, corrected). B: trends of power in-

crease in four frequency bands extracted from A; light-blue traces: trend in “tonic” power, 

light-green traces: trend in “mixed” power). 

5.3.2 The Central and Parietal Clusters 

The comparison between the trends in “tonic” and “mixed” power spectra in the 

central cluster is shown in Figure 41. The “mixed” power image shows significant 

increase in both theta and beta bands at long RTs (> 2.5 sec), and the overall 

“mixed” power in the theta and alpha bands is lower than that in the “tonic” power 

spectra. The rising trend of theta band power in the “mixed” power spectra suggest 

that theta band power is less affected by “phasic” activities and may be suitable for 

drowsiness detection in real-life driving. 
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Figure 41: Comparison of the trends between “tonic” and “mixed” power spectra of the central cluster. 

Other conventions follow Figure 40. 

Figure 42 shows the comparison between “tonic” and “mixed” power spectra in 

the parietal cluster. The power images show almost no changes in “mixed” power 

spectra except theta band power when RTs are longer than ~2.22 sec. The trends of 

“mixed” power only show small increase in the theta band and remain unchanged in 

other frequency bands. These results suggest that “mixed” power spectra of the pa-

rietal cluster are largely affected by “phasic” activities, and may not be suitable for 

drowsiness detection. 
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Figure 42: Comparison of the trends between “tonic” and “mixed” power spectra of the Parietal clus-

ter. Other conventions follow Figure 40. 

5.3.3 The Somatomotor Clusters 

Figure 43 and Figure 44 show the comparisons of trends between “tonic” and 

“mixed” power spectra in the left and right somatomotor clusters. The power images 

and trends of the left somatomotor cluster show the changes in “mixed” power 

spectra are generally smaller than those in the “tonic” power spectra; moreover, 

alpha and beta band power is further suppressed with increasing RTs. The power 

images and trends of the right somatomotor cluster do not show consistent differ-

ence between “tonic” and “mixed” power spectra in four frequency bands. These 

results suggest that the trends of power spectra of the somatomotor clusters are 

affected by motor responses and are not suitable for drowsiness detection. 
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Figure 43: Comparison of the trends between “tonic” and “mixed” power spectra of the left somato-

motor cluster. Other conventions follow Figure 40. 
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Figure 44: Comparison of the trends between “tonic” and “mixed” power spectra of the right soma-

tomotor cluster. Other conventions follow Figure 40. 

5.3.4 The Occipital Clusters 

Figure 45-Figure 47 show the comparisons of trends between “tonic” and 

“mixed” power spectra in three occipital clusters. The power images and trends 

show that the overall power in the “mixed” power spectra is generally lower than that 

of the “tonic” power spectra in all three occipital clusters. In particular, alpha band 

power is greatly reduced in the “mixed” power spectra, which could be explained by 

the subject’s attention and responses following deviation onset. The trends of theta 

band power in the “mixed” power spectra remain virtually the same as those in the 

“tonic” power spectra; in addition, significant power increases occur at longer RTs in 

the “mixed” power spectra. These results suggest that theta band power in the oc-

cipital clusters could be a reliable index for drowsiness detection in situations that 

are similar to real-life driving. 
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Figure 45: Comparison of the trends between “tonic” and “mixed” power spectra of the occipital mid-

line cluster. Other conventions follow Figure 40. 
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Figure 46: Comparison of the trends between “tonic” and “mixed” power spectra of the bilateral oc-

cipital cluster. Other conventions follow Figure 40. 
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Figure 47: Comparison of the trends between “tonic” and “mixed” power spectra of the tangential 

occipital cluster. Other conventions follow Figure 40. 

 

5.4 EEG Power Spectra in the Bilateral Occipital Cortex 

In this study, the tonic power spectra in the bilateral occipital cortex exhibit a 

rising trend and then start to decline with increasing RTs in the alpha band power, 

and this phenomena is often referred to as the “biphasic” pattern [27]. In other sus-

tained attention studies [13][14][17], they only show alpha and theta band increase 

with RTs or error, and did not show the biphasic pattern reported in this study. This 

is likely because that only a small percentage of trials have RTs longer than 3 sec, 

which suggests that their subjects were not very drowsy across all sessions in [14]. 

The theta band power increases monotonically with the increase of RTs. The in-

creases in theta and alpha band power during long RTs periods are consistent with 

the findings in other studies [9], [13]-[17]. 
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This study further shows the trends of power spectral changes in motion ses-

sions during which the subjects received kinesthetic stimuli. The trend of theta band 

power remains the same in the motion sessions, whereas alpha band power shows 

steeper increase and decrease trend than that in the motionless sessions; in addi-

tion, these trends remain the same when “phasic” activities were included in the 

power spectral analysis. 

 

5.5 The Optimal Cluster and Frequency Bands for Drowsiness 

Detection 

From the results and discussions above, the bilateral occipital cluster could be 

considered the optimal cluster for drowsiness detection for two reasons: the trends 

in theta band power were quite stable in both motion and motionless conditions and 

were not influenced by driving events or the subject’s responses, and the bilateral 

occipital component is the most prevalent across sessions. Table 3 shows that there 

are 14 bilateral occipital components from 10 sessions in the motionless datasets 

(total 11 sessions) and 8 such components from 7 sessions in the motion datasets 

(total 7 sessions). On average, at least one such component exists in a session. 

EEG power in the theta and alpha bands rises with increasing RTs; however, 

when RTs become even longer, alpha band power starts to decline, while theta 

band power continues to increase. Hence, EEG power on the theta band could be 

suitable for estimating drivers’ vigilance level, whereas that in the alpha band could 

be an auxiliary index. 
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TABLE 3: NUMBER OF COMPONENTS IN THE IDENTIFIED CLUSTERS 
Condition 

Cluster 
Motionless Datasets 

(11 Sessions) 
Motion Datasets 

(7 Sessions) 
Frontal 8 6 
Central 9 5 

Parietal 12 7 
Left Somatomotor 9 3 
Right Somatomotor 7 5 

Occipital Midline 6 3 
Bilateral Occipital 14 8 
Tangential Occipital 7 6 
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Chapter VI Conclusions 

In this study, subjects participated in simulated long-haul driving experiments 

on a motion platform in an immersive VR-based environment, during which their 

brain waves (EEG) and driving behavior were recorded. Driving performance was 

measured by reaction time (RT) as defined in an event-related lane-departure 

paradigm. Following strict criteria for artifact rejection in behavioral and EEG data, 

independent component analysis (ICA) was used to decompose EEG signals into 

independent brain processes, and power spectra were computed from the activation 

time course of each independent component. Independent components with similar 

features, such as topographic maps, dipole sources, and alert baseline power 

spectra, were grouped into clusters across subjects. 

The results show that the power spectra of independent brain processes in the 

bilateral occipital regions are optimal for monitoring subject’s vigilance states for two 

reasons: the bilateral occipital components are most prevalent across subjects, and 

the trends of EEG power spectral changes are most stable across different condi-

tions. The tonic power in the alpha band initially rises with increasing RTs, but re-

verses to the downward trend when RTs become even longer; however, theta band 

power increases monotonically with RTs, and the center of mass in the power 

spectra shifts to lower frequencies at longer RTs. The trends of power spectral 

changes in the motion sessions are similar to those in the motionless sessions, but 

the upward and downward trends in alpha band power are steeper in the motion 

sessions; furthermore, significant power increase occurs at shorter RTs in the mo-

tion sessions than those in the motionless sessions. Finally, the rising trends of 

theta band power are affected by neither kinesthetic stimuli in the motion sessions 

nor “phasic” activities induced by events and responses. 
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This study not only shows results that are consistent with existing studies on 

drowsy driving, but also reports new findings in conditions that are close to real-life 

driving. These results may provide insights into the design of drowsiness detection 

system on the road. 
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Appendix 

A.1 Output Frequency Bins and Time Points of Time-Frequency 

Transform in the Computing of Tonic Power Spectra 
TABLE A1: OUTPUT FREQUENCY BINS 

Bins Frequency (Hz) 
1~10 2.93 3.91 4.88 5.86 6.84 7.81 8.79 9.77 10.74 11.72
11~20 12.70 13.67 14.65 15.63 16.60 17.58 18.55 19.53 20.51 21.48

21~30 22.46 23.44 24.41 25.39 26.37 27.34 28.32 29.30 30.27 31.25
31~40 32.23 33.20 34.18 35.16 36.13 37.11 38.09 39.06 40.04 41.02
41~44 41.99 42.97 43.95 44.92   

TABLE A2: OUTPUT TIME POINTS 
Time Points Times (sec) 

1~10 -.743 -.739 -.735 -.727 -.723 -.719 -.715 -.707 -.703 -.699

11~20 -.695 -.687 -.683 -.679 -.675 -.671 -.663 -.659 -.655 -.651
21~30 -.643 -.639 -.635 -.631 -.623 -.619 -.615 -.610 -.602 -.598
31~40 -.594 -.590 -.586 -.578 -.574 -.570 -.566 -.558 -.554 -.550

41~50 -.546 -.538 -.534 -.530 -.526 -.522 -.514 -.510 -.506 -.502
51~60 -.494 -.490 -.486 -.482 -.474 -.470 -.466 -.462 -.458 -.450
61~70 -.446 -.442 -.438 -.430 -.426 -.422 -.418 -.410 -.406 -.402

71~80 -.398 -.394 -.386 -.382 -.378 -.374 -.366 -.362 -.357 -.353
81~90 -.345 -.341 -.337 -.333 -.325 -.321 -.317 -.313 -.309 -.301

91~100 -.297 -.293 -.289 -.281 -.277 -.273 -.269 -.261 -.257 -.253
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A.2 Clustered Scalp Maps, Alert Baseline Power, Dipole Locations, 

and Talairach Coordinates of Each Dipole in Each Cluster 

A.2.1 The Motionless Datasets 

A.2.1.1 The Frontal Cluster 

 
Figure A1: The ICA scalp map of each dataset in the frontal cluster (motionless datasets; 8 compo-

nents; paired correlation coefficient: 0.84 ± 0.13). The left-top inset is the average scalp map of 

this cluster, and the others are the scalp map from each dataset in this cluster. 
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Figure A2: Tonic power spectra of alert trials (trials with shortest 10% RT in each dataset) in the 

frontal cluster (motionless datasets). The left-top inset is the average spectra of this cluster, and 

the others are the spectrum of each dataset. In each inset, the blue trace denotes the average 

spectra of this dataset, the red trace is the average spectrum of the indicated dataset, and the 

gray traces are the average spectra of the other dataset. The x-axis is frequency in Hz, and the 

y-axis is the power in dB. 

 
Figure A3: The locations of dipoles in the frontal cluster (motionless datasets). The white dot is the 
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average location of dipoles in this cluster (dashed line: projection lines to the coronal, horizontal, 

and sagittal planes), and the others are the location of each dipole in this cluster. 

TABLE A3: TALAIRACH COORDINATES OF THE FRONTAL CLUSTER (MOTIONLESS DATA-

SETS) 
Talairach Coordinates 

Dataset Component 
X Y Z 

s01_061102 6 -11.63 27.29 38.95

s32_061031 10 4.45 15.79 50.67
s32_061031 12 13.02 74.21 29.23
s35_070322 11 -9.65 28.77 20.48

s36_061221 7 -1.68 70.22 14.38
s41_061225 3 -3.98 10.89 31.10
s42_070105 13 2.47 34.47 39.71

s44_070325 5 -3.38 7.49 22.84
Mean -1.30 33.64 30.92

Standard Deviation 7.93 25.55 11.85

A.2.1.2 The Central Cluster 

 
Figure A4: The ICA scalp map of each dataset in the central cluster (motionless datasets; 9 com-

ponents; paired correlation coefficient: 0.85 ± 0.15). Other conventions follow Figure A1. 
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Figure A5: Tonic power spectra of alert trials in the central cluster (motionless datasets). Other con-

ventions follow Figure A2. 

 
Figure A6: The locations of dipoles in the central cluster (motionless datasets). Other conventions 

follow Figure A3. 
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TABLE A4: TALAIRACH COORDINATES OF THE CENTRAL CLUSTER (MOTIONLESS DATA-

SETS) 
Talairach Coordinates 

Dataset Component 
X Y Z 

s01_061102 8 -3.34 -7.52 42.03

s05_061101 3 3.36 -11.72 2.55
s31_061103 10 1.19 -9.62 62.72
s35_070322 8 0.09 7.70 39.85

s36_061221 2 -3.75 -7.30 27.67
s40_070207 3 8.88 -1.82 43.17
s41_061225 9 -5.60 0.76 43.15

s43_070208 8 2.59 -9.02 43.47
s44_070325 7 -1.29 -22.52 45.94

Mean 0.24 -6.79 38.95

Standard Deviation 4.42 8.49 16.33

A.2.1.3 The Parietal Cluster 

 
Figure A7: The ICA scalp map of each dataset in the parietal cluster (motionless datasets; 12 com-

ponents; paired correlation coefficient: 0.92 ± 0.06). Other conventions follow Figure A1. 
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Figure A8: Tonic power spectra of alert trials in the parietal cluster (motionless datasets). Other con-

ventions follow Figure A2. 

 
Figure A9: The locations of dipoles in the parietal cluster (motionless datasets). Other conventions 

follow Figure A3. 
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TABLE A5: TALAIRACH COORDINATES OF THE PARIETAL CLUSTER (MOTIONLESS DATA-

SETS) 
Talairach Coordinates 

Dataset Component 
X Y Z 

s01_061102 7 -9.44 -31.70 24.91

s05_061101 6 9.09 -12.21 27.15
s05_061101 13 9.43 -36.89 44.22
s31_061103 8 -4.35 -37.14 22.28

s32_061031 6 -0.24 -66.16 -1.34
s35_070322 7 5.01 -14.77 12.92
s36_061221 9 4.10 -33.85 38.13

s40_070207 4 0.35 -34.57 10.17
s41_061225 4 -1.84 -43.16 41.15
s42_070105 5 -0.90 -23.94 13.96

s43_070208 5 -4.86 -54.16 25.70
s44_070325 6 -0.87 -55.75 23.71

Mean 0.46 -37.02 23.58

Standard Deviation 5.62 16.12 13.40

A.2.1.4 The Left Somatomotor Cluster 

 
Figure A10: The ICA scalp map of each dataset in the left somatomotor cluster (motionless datasets; 

9 components; paired correlation coefficient: 0.88 ± 0.11). Other conventions follow Figure A1. 
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Figure A11: Tonic power spectra of alert trials in the left somatomotor cluster (motionless datasets). 

Other conventions follow Figure A2. 

 
Figure A12: The locations of dipoles in the left somatomotor cluster (motionless datasets). Other 

conventions follow Figure A3. 
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TABLE A6: TALAIRACH COORDINATES OF THE LEFT SOMATOMOTOR CLUSTER (MO-

TIONLESS DATASETS) 
Talairach Coordinates 

Dataset Component 
X Y Z 

s05_061101 10 -29.64 -36.15 32.70

s31_061103 9 -24.53 -39.12 55.70
s32_061031 8 -38.27 -19.53 40.49
s35_070322 13 -33.57 -34.54 34.53

s36_061221 8 -24.78 -16.61 17.69
s40_070207 8 -31.43 -26.20 34.85
s41_061225 10 -29.35 -35.10 32.85

s41_061225 21 -42.87 -3.45 50.33
s44_070325 10 -18.36 -57.47 14.07

Mean -30.31 -29.80 34.80

Standard Deviation 7.43 15.53 13.42

A.2.1.5 The Right Somatomotor Cluster 

 
Figure A13: The ICA scalp map of each dataset in the right somatomotor cluster (motionless datasets; 

7 components; paired correlation coefficient: 0.93 ± 0.08). Other conventions follow Figure A1. 
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Figure A14: Tonic power spectra of alert trials in the right somatomotor cluster (motionless datasets). 

Other conventions follow Figure A2. 

 
Figure A15: The locations of dipoles in the right somatomotor cluster (motionless datasets). Other 

conventions follow Figure A3. 
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TABLE A7: TALAIRACH COORDINATES OF THE RIGHT SOMATOMOTOR CLUSTER (MO-

TIONLESS DATASETS) 
Talairach Coordinates 

Dataset Component 
X Y Z 

s01_061102 11 15.69 -40.54 28.77

s31_061103 12 33.29 -53.43 34.04
s32_061031 9 34.76 -28.04 41.79
s36_061221 12 33.84 -21.82 37.99

s40_070207 13 18.77 -64.97 45.23
s41_061225 8 30.22 -26.55 42.74
s43_070208 9 30.53 -31.40 28.95

Mean 28.16 -38.11 37.07
Standard Deviation 7.70 15.85 6.66

A.2.1.6 The Occipital Midline Cluster 

 
Figure A16: The ICA scalp map of each dataset in the occipital midline cluster (motionless datasets; 

6 components; paired correlation coefficient: 0.97 ± 0.03). Other conventions follow Figure A1. 
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Figure A17: Tonic power spectra of alert trials in the occipital midline cluster (motionless datasets). 

Other conventions follow Figure A2. 

 
Figure A18: The locations of dipoles in the occipital midline cluster (motionless datasets). Other 

conventions follow Figure A3. 
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TABLE A8: TALAIRACH COORDINATES OF THE OCCIPITAL MIDLINE CLUSTER (MOTIONLESS 

DATASETS) 
Talairach Coordinates 

Dataset Component 
X Y Z 

s01_061102 5 -1.00 -63.76 -33.74

s32_061031 7 8.47 -74.06 1.25
s35_070322 9 0.15 -63.43 4.86
s36_061221 6 -0.75 -65.71 -23.98

s40_070207 7 -1.36 -96.73 5.34
s44_070325 8 6.07 -76.91 -14.87

Mean 1.93 -73.43 -10.19

Standard Deviation 4.23 12.72 16.52

A.2.1.7 The Bilateral Occipital Cluster 

 
Figure A19: The ICA scalp map of each dataset in the bilateral occipital cluster (motionless datasets; 

14 components; paired correlation coefficient: 0.78 ± 0.21). Other conventions follow Figure A1. 
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Figure A20: Tonic power spectra of alert trials in the bilateral occipital cluster (motionless datasets). 

Other conventions follow Figure A2. 

 
Figure A21: The locations of dipoles in the bilateral occipital cluster (motionless datasets). Other 

conventions follow Figure A3. 
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TABLE A9: TALAIRACH COORDINATES OF THE BILATERAL OCCIPITAL CLUSTER (MO-

TIONLESS DATASETS) 
Talairach Coordinates (Left) Talairach Coordinates (Right)

Dataset 
Compo-

nent X Y Z X Y Z 
s01_061102 10 -47.34 -65.34 5.46 -- -- --

s05_061101 4 -35.65 -67.11 -5.72 35.91 -67.71 -5.69
s05_061101 11 -29.55 -78.62 -5.93 -- -- --
s31_061103 6 -40.09 -78.56 10.98 40.12 -79.23 11.01

s32_061031 3 -45.96 -53.13 8.53 46.43 -53.90 8.57
s32_061031 4 -44.84 -57.52 -10.92 -- -- --
s35_070322 3 -33.81 -104.96 -8.04 33.42 -105.52 -8.01

s35_070322 12 -20.74 -94.65 -40.58 -- -- --
s36_061221 4 -41.82 -64.36 -9.59 42.13 -65.06 -9.55
s40_070207 2 -28.70 -75.15 2.95 28.80 -75.62 2.97

s41_061225 6 -- -- -- 16.78 -50.94 -20.17
s41_061225 7 -18.29 -47.92 -27.97 -- -- --
s42_070105 4 -28.46 -62.56 0.99 28.79 -63.03 1.01

s43_070208 6 -- -- -- 4.87 -35.08 -74.53
Mean -34.60 -70.82 -6.65 30.80 -66.23 -10.49

Standard Deviation 9.70 16.63 15.00 13.08 19.91 25.90

A.2.1.8 The Tangential Occipital Cluster 

 
Figure A22: The ICA scalp map of each dataset in the tangential occipital cluster (motionless data-
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sets; 7 components; paired correlation coefficient: 0.87 ± 0.13). Other conventions follow Figure 

A1. 

 
Figure A23: Tonic power spectra of alert trials in the tangential occipital cluster (motionless datasets). 

Other conventions follow Figure A2. 

 
Figure A24: The locations of dipoles in the tangential occipital cluster (motionless datasets). Other 

conventions follow Figure A3. 

TABLE A10: TALAIRACH COORDINATES OF THE TANGENTIAL OCCIPITAL CLUSTER (MO-
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TIONLESS DATASETS) 
Talairach Coordinates (Left) Talairach Coordinates (Right)

Dataset 
Compo-

nent X Y Z X Y Z 
s01_061102 14 -28.50 -81.91 -18.02 28.52 -82.38 -17.99

s31_061103 13 -32.07 -85.77 20.92 31.96 -86.30 20.95
s36_061221 16 -39.35 -99.34 -2.56 39.05 -99.99 -2.53
s40_070207 12 -17.11 -110.73 -10.77 16.62 -111.01 -10.75

s42_070105 7 -34.28 -68.30 8.45 34.49 -68.87 8.48
s43_070208 11 -34.10 -105.94 -8.65 33.69 -106.51 -8.62
s44_070325 25 -23.17 -109.60 -10.04 22.70 -109.99 -10.02

Mean -29.80 -94.51 -2.95 29.58 -95.01 -2.93
Standard Deviation 7.55 16.16 13.36 7.67 16.10 13.36

A.2.2 The Motion Datasets 

A.2.2.1 The Frontal Cluster 

 
Figure A25: The ICA scalp map of each dataset in the frontal cluster (motion datasets; 6 components; 

paired correlation coefficient: 0.90 ± 0.12). Other conventions follow Figure A1. 
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Figure A26: Tonic power spectra of alert trials in the frontal cluster (motion datasets). Other conven-

tions follow Figure A2. 

 
Figure A27: The locations of dipoles in the frontal cluster (motion datasets). Other conventions follow 

Figure A3. 
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TABLE A11: TALAIRACH COORDINATES OF THE FRONTAL CLUSTER (MOTION DATASETS) 
Talairach Coordinates 

Dataset Component 
X Y Z 

s05_061019 5 2.98 44.05 -11.69

s31_061020 3 13.27 47.49 -32.96
s35_070115 7 0.41 43.28 7.74
s36_061122 2 -1.16 26.86 18.83

s40_070131 7 2.29 17.33 47.75
s44_070209 5 -1.50 14.67 8.43

Mean 2.71 32.28 6.35

Standard Deviation 5.47 14.52 27.38

A.2.2.2 The Central Cluster 

 
Figure A28: The ICA scalp map of each dataset in the central cluster (motion datasets; 5 components; 

paired correlation coefficient: 0.93 ± 0.07). Other conventions follow Figure A1. 
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Figure A29: Tonic power spectra of alert trials in the central cluster (motion datasets). Other conven-

tions follow Figure A2. 

 
Figure A30: The locations of dipoles in the central cluster (motion datasets). Other conventions follow 

Figure A3. 
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TABLE A12: TALAIRACH COORDINATES OF THE CENTRAL CLUSTER (MOTION DATASETS) 
Talairach Coordinates 

Dataset Component 
X Y Z 

s05_061019 6 0.59 -11.30 27.11

s31_061020 11 -3.02 4.88 60.35
s35_070115 9 -0.03 -5.28 46.55
s36_061122 3 2.63 -15.61 33.14

s44_070209 9 -0.56 -21.74 46.65
Mean -0.08 -9.81 42.76

Standard Deviation 2.04 10.18 13.01

A.2.2.3 The Parietal Cluster 

 
Figure A31: The ICA scalp map of each dataset in the parietal cluster (motion datasets; 7 compo-

nents; paired correlation coefficient: 0.88 ± 0.10). Other conventions follow Figure A1. 
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Figure A32: Tonic power spectra of alert trials in the parietal cluster (motion datasets). Other con-

ventions follow Figure A2. 

 
Figure A33: The locations of dipoles in the parietal cluster (motion datasets). Other conventions fol-

low Figure A3. 
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TABLE A13: TALAIRACH COORDINATES OF THE PARIETAL CLUSTER (MOTION DATASETS) 
Talairach Coordinates 

Dataset Component 
X Y Z 

s05_061019 12 5.65 -31.51 40.21

s31_061020 7 -2.32 -15.16 28.21
s35_070115 4 -7.64 -24.59 20.07
s36_061122 17 15.63 -51.02 80.97

s40_070131 4 -4.53 -39.05 30.31
s43_070202 10 -4.50 -13.92 45.61
s44_070209 4 -4.16 -62.21 16.98

Mean -0.27 -33.92 37.48
Standard Deviation 8.14 18.09 21.70

A.2.2.4 The Left Somatormotor Cluster 

 
Figure A34: The ICA scalp map of each dataset in the left somatomotor cluster (motion datasets; 3 

components; paired correlation coefficient: 0.91 ± 0.13). Other conventions follow Figure A1. 
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Figure A35: Tonic power spectra of alert trials in the left somatomotor cluster (motion datasets). 

Other conventions follow Figure A2. 

 
Figure A36: The locations of dipoles in the left somatomotor cluster (motion datasets). Other con-

ventions follow Figure A3. 
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TABLE A14: TALAIRACH COORDINATES OF THE LEFT SOMATOMOTOR CLUSTER (MOTION 

DATASETS) 
Talairach Coordinates 

Dataset Component 
X Y Z 

s05_061019 9 -22.08 -29.63 27.18

s31_061020 10 -36.26 -17.89 44.73
s36_061122 7 -22.78 -22.12 26.52

Mean -27.04 -23.21 32.81

Standard Deviation 7.99 5.94 10.33

A.2.2.5 The Right Somatomotor Cluster 

 
Figure A37: The ICA scalp map of each dataset in the right somatomotor cluster (motion datasets; 5 

components; paired correlation coefficient: 0.83 ± 0.17). Other conventions follow Figure A1. 
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Figure A38: Tonic power spectra of alert trials in the right somatomotor cluster (motion datasets). 

Other conventions follow Figure A2. 

 
Figure A39: The locations of dipoles in the right somatomotor cluster (motion datasets). Other con-

ventions follow Figure A3. 
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TABLE A15: TALAIRACH COORDINATES OF THE RIGHT SOMATOMOTOR CLUSTER (MOTION 

DATASETS) 
Talairach Coordinates 

Dataset Component 
X Y Z 

s05_061019 8 25.93 1.54 40.28

s05_061019 17 27.70 -37.31 41.39
s31_061020 9 51.27 -26.21 44.30
s36_061122 9 41.86 0.35 28.96

s43_070202 11 40.34 4.19 30.58
Mean 37.42 -11.49 37.10

Standard Deviation 10.57 18.97 6.88

A.2.2.6 The Occipital Midline Cluster 

 
Figure A40: The ICA scalp map of each dataset in the occipital midline cluster (motion datasets; 3 

components; paired correlation coefficient: 0.97 ± 0.03). Other conventions follow Figure A1. 
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Figure A41: Tonic power spectra of alert trials in the occipital midline cluster (motion datasets). Other 

conventions follow Figure A2. 

 
Figure A42: The locations of dipoles in the occipital midline cluster (motion datasets). Other conven-

tions follow Figure A3. 
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TABLE A16: TALAIRACH COORDINATES OF THE OCCIPITAL MIDLINE CLUSTER (MOTION 

DATASETS) 
Talairach Coordinates 

Dataset Component 
X Y Z 

s05_061019 7 10.78 -44.05 -49.52

s35_070115 10 0.34 -80.06 -20.96
s36_061122 10 -5.78 -77.10 -7.33

Mean 1.78 -67.07 -25.94

Standard Deviation 8.37 19.99 21.53

A.2.2.7 The Bilateral Occipital Cluster 

 
Figure A43: The ICA scalp map of each dataset in the bilateral occipital cluster (motion datasets; 8 

components; paired correlation coefficient: 0.89 ± 0.12). Other conventions follow Figure A1. 
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Figure A44: Tonic power spectra of alert trials in the bilateral occipital cluster (motion datasets). 

Other conventions follow Figure A2. 

 
Figure A45: The locations of dipoles in the bilateral occipital cluster (motion datasets). Other con-

ventions follow Figure A3. 
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TABLE A17: TALAIRACH COORDINATES OF THE BILATERAL OCCIPITAL CLUSTER (MOTION 

DATASETS) 
Talairach Coordinates (Left) Talairach Coordinates (Right)

Dataset 
Compo-

nent X Y Z X Y Z 
s05_061019 4 -36.68 -68.94 0.58 36.90 -69.55 0.61

s05_061019 18 -50.78 -54.90 4.79 -- -- --
s31_061020 6 -22.09 -75.74 3.96 22.18 -76.11 3.98
s35_070115 2 -21.27 -70.66 -9.28 21.48 -71.01 -9.26

s36_061122 4 -26.16 -81.05 -19.79 26.20 -81.48 -19.77
s40_070131 3 -20.83 -77.16 -2.31 20.91 -77.51 -2.30
s43_070202 4 -2.40 -29.54 -46.47 -- -- --

s44_070209 8 -- -- -- 9.39 -75.86 -30.57
Mean -25.74 -65.43 -9.79 22.84 -75.26 -9.55

Standard Deviation 14.99 17.92 18.31 8.90 4.37 13.30

A.2.2.8 The Tangential Occipital Cluster 

 
Figure A46: The ICA scalp map of each dataset in the tangential occipital cluster (motion datasets; 6 

components; paired correlation coefficient: 0.86 ± 0.14). Other conventions follow Figure A1. 
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Figure A47: Tonic power spectra of alert trials in the tangential occipital cluster (motion datasets). 

Other conventions follow Figure A2. 

 
Figure A48: The locations of dipoles in the tangential occipital cluster (motion datasets). Other con-

ventions follow Figure A3. 
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TABLE A18: TALAIRACH COORDINATES OF THE TANGENTIAL OCCIPITAL CLUSTER (MOTION 

DATASETS) 
Talairach Coordinates (Left) Talairach Coordinates (Right)

Dataset 
Compo-

nent X Y Z X Y Z 
s05_061019 20 -5.93 -113.71 -14.99 5.41 -113.80 -14.99

s31_061020 15 -23.29 -109.79 -3.84 22.81 -110.17 -3.82
s35_070115 12 -15.61 -105.62 -27.45 15.25 -105.88 -27.44
s40_070131 10 -18.83 -106.50 30.00 18.35 -106.81 30.02

s43_070202 9 -17.48 -46.45 -33.04 18.15 -46.75 -33.03
s44_070209 13 -- -- -- 3.21 -110.29 -22.85

Mean -16.23 -96.41 -9.87 13.86 -98.95 -12.02

Standard Deviation 6.42 28.11 24.99 7.82 25.73 22.98

 


