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Abstract

In this thesis, a new decoding algorithm called Radix-4 LDPC decoder
is used to increase the throughput and achieve better BER performance.
Moreover, a three-size (1944,972), (1296,648), and (648,324) LDPC de-
coder applied to IEEE 802.11n standard is implemented. The partially
parallel scheme is used to decrease chip area as well as routing resource.
The LDPC decoder was implemented with TSMC CMOS 18um process.
The proposed decoder can achieve 292∼50Mbps decoding throughput rate
under clock frequency of 62.5MHz. The core size is 17.9 mm2 and average
power consumption with a 1.62V voltage supply is 145mW.



Contents

1 Introduction 1

2 Low-Density Parity-Check Codes 3

2.1 Categories of error correction codes . . . . . . . . . . . . . . . . . 3

2.2 Categories of LDPC . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Encoder of LDPC code . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Decoder of LDPC code . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Sum-Product algorithm(SPA) . . . . . . . . . . . . . . . . 9

2.4.2 Log-Likelihood Ratio Sum-Product algorithm (LLR) . . . 13

2.4.3 Min-Sum with a correct factor (Min-Sum-Correct) . . . . . 15

2.4.4 Min-Sum algorithm . . . . . . . . . . . . . . . . . . . . . . 16

2.4.5 Simulation result . . . . . . . . . . . . . . . . . . . . . . . 17

3 Proposed Algorithm and Architecture 23

3.1 Latency reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Reordering of the parity check matrix . . . . . . . . . . . . 23

3.1.2 Overlapped operation of bit node update and check node

update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 The comparison of Radix-4 and Min-Sum-Correct . . . . . . . . . 31

3.4 LUT circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Fixed point analysis . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Proposed architecture . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 The unit for the check node update . . . . . . . . . . . . . 38

i



3.6.2 The unit for the bit node update . . . . . . . . . . . . . . 41

4 VLSI implementation 43

4.1 Design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 RTL code . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.3 BIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.5 Gate-level simulation . . . . . . . . . . . . . . . . . . . . . 45

4.1.6 DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.7 ATPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.8 APR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.9 DRC and LVS . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.10 Post-layout simulation . . . . . . . . . . . . . . . . . . . . 47

4.2 Chip layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Comparison and implementation result . . . . . . . . . . . . . . . 48

5 Conclusion and Future Work 51

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ii



List of Figures

2.1 A digital communication system. . . . . . . . . . . . . . . . . . . 3

2.2 Categories of error correction codes. . . . . . . . . . . . . . . . . . 4

2.3 Codeword in systematic block code. . . . . . . . . . . . . . . . . . 4

2.4 Parity check and corresponding Tanner Graph. . . . . . . . . . . . 5

2.5 Quasi-cyclic LDPC code in 802.11n. . . . . . . . . . . . . . . . . . 6

2.6 A identity matrix shifted right by 1 bit. . . . . . . . . . . . . . . . 6

2.7 Six sub-matrices in parity check matrix H. . . . . . . . . . . . . . 7

2.8 Block diagram of the encoder architecture for the block LDPC code. 9

2.9 A decoding flow of LDPC codes. . . . . . . . . . . . . . . . . . . . 9

2.10 Message information form Check node to bit node. . . . . . . . . 10

2.11 Message information form bit node to check node. . . . . . . . . . 12

2.12 Message information from bit node to check node. . . . . . . . . . 16

2.13 The general flow of check node update. . . . . . . . . . . . . . . . 17

2.14 LLR algorithm in 802.11n in AWGN channel (Z=81bits). . . . . . 18

2.15 Min-Sum-Correct algorithm in 802.11n in AWGN channel (Z=81bits). 19

2.16 Min-Sum algorithm in 802.11n in AWGN channel (Z=81bits). . . 19

2.17 Comparison of different algorithm with one iteration. . . . . . . . 20

2.18 Comparison of different algorithm with ten iterations. . . . . . . . 20

2.19 The value of check node update in different algorithm. . . . . . . 21

2.20 The value of check node update in different algorithm. . . . . . . 21

2.21 The value of check node update in different algorithm. . . . . . . 22

2.22 The value of check node update in different algorithm. . . . . . . 22

iii



3.1 Reordering the row of the parity check matrix: (a) original matrix,

and (b) reordered matrix. . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Reordering the column of the parity check matrix: (a) original

matrix, and (b) reordered matrix. . . . . . . . . . . . . . . . . . 24

3.3 Reordering the parity check matrix (a)original matrix, and (b)reordered

matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 The original parity check matrix of IEEE 802.11n standard. . . . 25

3.5 The reordered parity check matrix of IEEE 802.11n standard. . . 26

3.6 The reordered parity check matrix of IEEE 802.11n standard. . . 27

3.7 Timing diagram: (a) original (b) overlapped. . . . . . . . . . . . 28

3.8 Message information from bit nodes to a check node. . . . . . . . 28

3.9 The flow diagram of check node update using Radix-4 algorithm. . 30

3.10 Performance comparison of the proposed Radix-4 algorithm and

the conventional LLR. . . . . . . . . . . . . . . . . . . . . . . . . 30

3.11 The value of check node update in different algorithm. . . . . . . 31

3.12 The value of check node update in different algorithm. . . . . . . 32

3.13 The value of check node update in different algorithm. . . . . . . 32

3.14 The value of check node update in different algorithm. . . . . . . 33

3.15 The unit for check update with 4 bit node in LLR algorithm. . . . 33

3.16 The unit for check update with 4 bit node in Radix-4 algorithm. . 34

3.17 Comparison of using LLR and Radix-4. . . . . . . . . . . . . . . . 36

3.18 The performance of Radix-4 algorithm with fixed-point. . . . . . . 37

3.19 The overall architecture of the proposed LDPC decoder. . . . . . 38

3.20 Table shows how many nonzero (elements that are not “-”) ele-

ments in rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.21 Case 1: A check node connected to 7 bit nodes. . . . . . . . . . . 39

3.22 Case 2: A check node connected to 8 bit nodes. . . . . . . . . . . 40

3.23 The first operation unit for the check node update. . . . . . . . . 40

3.24 The second operation unit for the check node update. . . . . . . . 41

3.25 The unit for bit node update with 12 inputs. . . . . . . . . . . . . 42

iv



4.1 IC design flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Layout of the proposed LDPC decoder. . . . . . . . . . . . . . . . 47

4.3 Layout of the proposed LDPC decoder. . . . . . . . . . . . . . . . 48

v



List of Tables

3.1 The comparison of Radix-4 and Min-Sum-Correct. . . . . . . . . . 34

3.2 The decoding latency. . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Quantization table for log(1 + e−|x|). . . . . . . . . . . . . . . . . 35

3.4 Piece-wise linear function for log(1 + e−|x|). . . . . . . . . . . . . . 36

3.5 The proposed piece-wise linear function for log(1 + e−|x|). . . . . . 36

4.1 Specification of the proposed LDPC decoder. . . . . . . . . . . . . 49

4.2 The comparison of different architectures. . . . . . . . . . . . . . 50

vi



Chapter 1

Introduction

Low-density parity-check (LDPC) codes was first invented by Gallager in 1962

[1] [2]. Due to the difficulty of circuit implementation and large complexity of

calculation, LDPC codes have been forgot for about forty years except for the

research of codes defined on graphs by Tanner [3]. The rediscover of LDPC code

was done by Mackay in 1995 [4] [5]. It was proven [6] that the LDPC codes with

large block length can beat turbo codes, and achieve a capacity within 0.0045dB

of the Shannon limit on AWGN channel. With the dramatic improvement of

VLSI technology and the robust transmission demands of next communication

standards, the research interest of LDPC is dramatically increased recently.

LDPC codes have been adopted by several communication standards, such as

IEEE 802.16e standard, IEEE 802.11n standard, and the Digital Video Broad-

casting - Satellite - Second Generation (DVB-S2).

The main challenge of the LDPC decoder falls in the complicated intercon-

nections due to the large size of parity check matrix. This leads to large chip

area. According to using memory or not, the architecture of LDPC decoder can

be divided into two types, one is fully parallel form and the other is partially

parallel form.

Fully parallel form directly maps the corresponding Tanner graph into the

hardware and all the processing units are connected according to the connectiv-

ity of the graph. Thus, they can have very high throughput but have a large

hardware cost. The first published LDPC decoder [7] which used fully parallel
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form was designed by Blanksby and Howland in 2002. It can achieve 1Gb/s

with 64 iterations. However, it also need large area due to the large amount of

processing units and the complicated interconnections.

In the other hand, partially parallel form only has part unit of the full process-

ing. Since the processing can be shared by controlling memory. The hardware

complexity can be reduced with the plenty of lower throughput rate and more

route complexity. In [8], the authors use the decoding unit of Turbo code to

increase the throughput, up to 640Mb/s. In [9] an LDPC decoder was proposed

for IEEE 802.16e standard, and the design controlling circuit can support 19

modes with rate 1/2. Among the many kinds of the decoders of turbo code, the

decoding architecture called Radix-4 turbo decoding architecture [10] calculate

two stage of data with one timing cycle. Hence it can reduce memory size and

increase the processing speed. In this thesis, we develop a Radix-4 algorithm in

LDPC decoder. We call it as Radix-4 LDPC decoding. The Radix-4 decoding can

increase the throughput than the conventional decoding. Also, from the simula-

tion results, we observe that the performance of the Radix-4 algorithm is better

than conventional algorithm. Furthermore, we implement proposed algorithm

via VLSI with application over IEEE 802.11n standard.

The rest of this thesis is organized as follows. Chapter 2 describes the LDPC

encoder and decoding algorithm. In addition, we also show the performance of

different decoding algorithm. Chapter 3 introduces the proposed algorithm and

a method to reduce the decoding latency under IEEE 802.11n standard. The

design flow of chip implementation and specification of this work are presented

in Chapter 4. Finally, conclusion and future work are given in Chapter 5.
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Chapter 2

Low-Density Parity-Check Codes

2.1 Categories of error correction codes

The error correction codes are widely used to improve transmitting quality in

modern digital communication systems. The error correction codes also called

channel coding are beforehand preserving method adopted to protect transmitted

data from injected interference and channel response with noise, as shown in

Fig 2.1. In general, error correct codes can be divided into two groups, including

block codes and convolution codes, as shown in Fig 2.2. Famous block codes

include Hamming codes, cyclic code, and Reed-Solomon code. For the last ten

years, Turbo codes in convolutional code and LDPC codes were widely studied

due to their significant performance improvement.

Source

encoder

Channel

encoder

Digital

modulator

Channel

Digital

demodulator

Channel

decoder

Source

encoder
Output signal

input signal

Figure 2.1: A digital communication system.
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Error correct code

Block code Convolutional code

Turbo

code

Hamming

code

Reed-Solomon

code
Cyclic codeLDPC

Viterbi

decoder

Figure 2.2: Categories of error correction codes.

An (n, k) block code represents that k-bit information data is encoded into an

n-bit codeword. Block codes can be further divided into two groups according to

the encoded bits in the codeword. One is the systematic block code and the other

is the non-systematic block code. Systematic block code consists of original the

information bits and redundant bits called parity check bits, as shown in Fig. 2.3.

If the block code can not be directly divided into information bits and parity check

bits, we call it non-systematic block code.

)|( 122112321 knknknkkk PPPPPIIIIII ------- LL

bitsk bitskn -

Figure 2.3: Codeword in systematic block code.

2.2 Categories of LDPC

Low-density parity-check (LDPC) code is a systematic block code, because the

parity check matrix is a sparse matrix, which contains mostly 0’s and only a small

number of 1’s. The parity check matrix H which has N rows and M columns

defines an LDPC code with N information bits and M −N parity bits. The code
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rate R in this case is N/M .

An LDPC codes can be divided into two groups according to the number of

1’s in one row or one column. If the number of 1’s in one row and one column are

constant, it is called regular LDPC code. Otherwise, it is called irregular LDPC

code. For a regular LDPC code, each column or row has a fixed number of 1’s in

the parity check matrix H. For example, a 6 × 9 parity check matrix has code

rate R = 2/3, and can be expressed by Tanner Graph [3] as shown in Fig. 2.4.

In general, an irregular LDPC code has better error-correcting performance than

regular ones.

1 2

1 2 3 4 5 6 7 8 9

3 4 5 6

CNU

BNU

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

011001100

001100010

100010001

100100100

010010010

000001001

Parity check matrix

Figure 2.4: Parity check and corresponding Tanner Graph.

An LDPC code can also be classified by it’s parity check matrix H, e.g.

random and quasi-cyclic LDPC code. Quasi-cyclic LDPC codes [11] is a popular

code construction in modern communication systems. The code constructions in

the Standard like IEEE 802.16e and IEEE 802.11n standards are exactly quasi-
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cyclic.
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Figure 2.5: Quasi-cyclic LDPC code in 802.11n.

In the quasi-cyclic LDPC code, every element in the parity check matrix is a

basic matrix with size Z ×Z. There are three types of Z, e.g. 27, 54, and 81 bits

in IEEE 802.11n standard. As shown in Fig. 2.5, the element with mark “-” is a

zero matrix and the other are cyclic-shifted matrixes. For instance, the identity

matrix cyclically shifted right by 1 bit is shown in Fig. 2.6.

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

100

0

10

001

K

OOM

MO

L

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

001

10

0

010

K

OO

MOM

L
Cyclically shift

right by 1 bit

Figure 2.6: A identity matrix shifted right by 1 bit.

2.3 Encoder of LDPC code

In LDPC encoder, a codeword vector v was produced by multiplying a generator

matrix G multiplied by the information vector u, i.e.

uG = v. (2.1)
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Because LDPC code is a linear block code, it satisfies the following equation

HvT = 0, (2.2)

where H is the parity check matrix. From (2.2), we can get the relationship of

G and H, as show as

HvT = H(uG)T = HGTuT = 0 =⇒ HGT = 0. (2.3)

Intuitively, the encoding method is letting the generator matrix G multiply the

information vector u. However, it needs to store both G and H in circuit. In

order to save storing unit, IEEE 802.16e standard introduces a method [12] to

encoder directly from the parity check matrix H. Hence, there is no need to use

extra memory to store G.

According to [12], an n×m parity check matrix H can be divide into six-sub

matrices, A(m−g)×(n−m), B(m−g)×g , T(m−g)×(m−g), Cg×(n−m), Dg×g, and Eg×(m−g)

as shown in Fig. 2.7. Among the sub-matrices, there is a constraint which makes

LDPC encoding process easier. That is sub-matrix T(m−g)×(m−g) must be a lower

triangular square matrix with all it’s diagonal elements being ones.

1

1

1

1

1

1

1

1

1

1

1

A B

C D E

T

0

n

m

g

g m-gn-m

m-g

Figure 2.7: Six sub-matrices in parity check matrix H.
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Let v be a codeword corresponding to parity check matrix H. It needs to

satisfy the equation (2.2). Therefore, the codeword can be divide into three

parts, i.e. v = [u p1 p2]. Where u is the original information bits with length

n−m. p1 is with length g and p2 is with length m− g. p1 and p2 are the parity

check bits.

From the equation (2.2), we can obtain the mathematical relationship be

shown in following equations

AuT + BpT
1 + TpT

2 = 0, (2.4)

and

CuT + DpT
1 + EpT

2 = 0. (2.5)

After rewriting (2.4) and (2.5), we can get

(ET−1A + C)uT + (ET−1B + D)pT
1 = 0. (2.6)

Define φ := ET−1B + D and select the appropriate sub-matrices B(m−g)×g,

T(m−g)×(m−g), Dg×g, and Eg×(m−g) to make the matrix φ be the identity matrix.

Then we can get

pT
1 = (ET−1A + C)uT , (2.7)

and

pT
2 = T−1(AuT + BpT

1 ). (2.8)

As a result, we can produce easily the output vector v, as shown in Fig. 2.8.

2.4 Decoder of LDPC code

In general, the LDPC decoding can divided into hard decision and soft decision.

Hard decision means that the message exchange between bit node and check node

is a bit, like the bit flipping [2]. On the contrary, soft decision means that the

message exchange between bit node and check node is a soft information, like

the belief propagation [2] or called Sum-Product algorithm. The performance of

8



A

C

B 1-
T

1-
ETT

u

T
u

T
p1

T
p 2

Figure 2.8: Block diagram of the encoder architecture for the block LDPC code.

soft decision is usually better than hard decision however with more complexities.

The sections which will be introduced below are based on soft decision.

2.4.1 Sum-Product algorithm(SPA)

By the Tanner Graph as shown in Fig. 2.3 and concept of message passing, we can

understand the decoding procedure of LDPC codes more easily. The decoding

flow is illustrated in Fig. 2.9.

Channel Initialization
Check node

update

Syndrome

check

Bit node

update

Output
YesNo

Figure 2.9: A decoding flow of LDPC codes.

For the following mathematical deriving, define that qi→j be the probability

message from bit node Bi to check node Cj, rj→i be the probability message from

the check node Cj to the bit node Bi, vi be the ith bit in the codeword v, yi be

the ith received data, and σ2 be the noise variance.

(1) Initialization: The probability message qi→j is initialized as the received

data from channel. Let the transmit data xi be BPSK, we have

qi→j(xi = +1) = P (xi = +1|yi) =
P (yi|xi = +1)P (xi = +1)

P (yi)
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=
1

2σ2 e
−

(yi−1)2

2σ2 1
2

1
2

1
2σ2

(

e−
(yi−1)2

2σ2 + e
(yi+1)2

2σ2

) =
1

1 + e−
2yi

σ2

, (2.9)

and

qi→j(xi = −1) =
e−

(2yi)

σ2

1 + e−
2yi

σ2

. (2.10)

1B 2B 1-iB 1+iB
iB kB

jC

jq ®1 jkq ®

ijr ®

Figure 2.10: Message information form Check node to bit node.

(2) Check node update: In this step, the check nodes perform updating by

collecting message from connected bit node. As shown in Fig. 2.10, we will derive

the relation between qk→j and rj→i below.

From (2.2) and Fig. 2.10, we can obtain

B1 ⊕ B2 ⊕ · · · ⊕ Bi−1 ⊕ Bi ⊕ Bi+1 ⊕ · · · ⊕ Bk = 0. (2.11)

Following (2.11), we can get

P (rj→i = 1) = P (B1 ⊕ B2 ⊕ · · · ⊕ Bi−1 ⊕ Bi+1 ⊕ · · · ⊕ Bk = 1), (2.12)

and

P (rj→i = 0) = P (B1 ⊕ B2 ⊕ · · · ⊕ Bi−1 ⊕ Bi+1 ⊕ · · · ⊕ Bk = 0). (2.13)

Obtain (2.12) and (2.13). Let k = 2, P (B1 = 1) = a1, and P (B2 = 1) = a2.

(2.12) and (2.13) can be rewritten as

P (B1 ⊕ B2 = 1) = a1(1 − a2) + (1 − a1)a2, (2.14)

10



and

P (B1 ⊕ B2 = 0) = a1a2 + (1 − a1)(1 − a2). (2.15)

(2.14) and (2.15) can be rewritten again as

P (B1 ⊕ B2 = 1) =
1 − (1 − 2a1)(1 − 2a2)

2
=

1 −
2
∏

i=1

(1 − 2ai)

2
, (2.16)

and

P (B1 ⊕ B2 = 0) =
1 + (1 − 2a1)(1 − 2a2)

2
=

1 +
2
∏

i=1

(1 − 2ai)

2
. (2.17)

Assume (2.12) and (2.13) are true for the condition that k = n, we can obtain

P (B1 ⊕ B2 ⊕ · · · ⊕ Bn = 1) =

1 −
n
∏

i=1

(1 − 2ai)

2

△
= Mn, (2.18)

and

P (B1 ⊕ B2 ⊕ · · · ⊕ Bn = 0) =

1 +
n
∏

i=1

(1 − 2ai)

2
= 1 − Mn. (2.19)

Let P (Bn+1 = 1) = an+1 on condition that k = n + 1, (2.16) and (2.17) can be

deduced as

P (B1 ⊕ B2 ⊕ · · · ⊕ Bn ⊕ Bn+1 = 1) = Mn(1 − an+1) + (1 − Mn)an+1

=
1 − (1 − 2an+1)(1 − 2Mn)

2

=

1 −
n+1
∏

i=1

(1 − 2ai)

2
,

(2.20)

and

P (B1 ⊕ B2 ⊕ · · · ⊕ Bn ⊕ Bn+1 = 0) = Mnan+1 + (1 − Mn)(1 − an+1)

=
1 + (1 − 2an+1)(1 − 2Mn)

2

=

1 +
n+1
∏

i=1

(1 − 2ai)

2
.

(2.21)
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By Mathematical Induction, we can get

P (rj→i = 1) = P (B1 ⊕ B2 ⊕ · · · ⊕ Bi−1 ⊕ Bi+1 ⊕ · · · ⊕ Bk = 1)

=

1 −
∏

i′∈W (j)\{i}

(1 − 2Qi′→j)

2
, (2.22)

and

P (rj→i = 0) = P (B1 ⊕ B2 ⊕ · · · ⊕ Bi−1 ⊕ Bi+1 ⊕ · · · ⊕ Bk = 0)

=

1 +
∏

i′∈W (j)\{i}

(1 − 2Qi′→j)

2
, (2.23)

where Qi′→j
△
= P (qi′→j = 1), W (j) is the set of bit nodes connected to the check

node Cj , and W (j)\{i}means the subset excluding the ith bit node.

ijq ®

1-jC
2C jC 1+jC kC

ir ®1

iB

ikr ®

1C

Figure 2.11: Message information form bit node to check node.

(3) Bit node update: Similarly, the bit nodes perform updating by collecting

message from the connected check nodes. Next let us derive the relation between

qj→i and rk→i below.

As shown in Fig. 2.11, there are k check nodes connected bit node Bi. Thus

we can get

P (qj→i = 1) = P (vi = 1)
∏

j′∈M(i)\{j}

P (ri→j′ = 1), (2.24)

12



and

P (qj→i = 0) = P (vi = 0)
∏

j′∈M(i)\{j}

P (ri→j′ = 0). (2.25)

where M(i) is the set of check nodes connected to the bit node Bi, and M(i)\{j}

means the subset excluding the jth check node.

(4) Syndrome check: Let

P (vi = 1) = P (xi = +1|yi),

and

P (vi = 0) = P (xi = −1|yi).

The a posteriori probability for each codeword bit can be computed as

P post(vi = 1) = P (vi = 1)
∏

j∈M(i)

P (ri→j = 1). (2.26)

and

P post(vi = 0) = P (vi = 0)
∏

j∈M(i)

P (ri→j = 0), (2.27)

The estimated bit v̂i is set to 1 if P post(vi = 1) > 0.5, otherwise it is set to 0.

Then the syndrome check equation (2.2) is used to verify whether the estimated

sequence v̂ =[v̂1 v̂2 · · · v̂n] is a valid codeword.

The decoding process stops when the syndrome check equation is satisfied,

otherwise the decoding iteration will start. If the number of iterations attains

our predetermined goal without finding a right codeword, it fails to decode and

still pass to be the valid codeword. This is the reason which make bit error.

2.4.2 Log-Likelihood Ratio Sum-Product algorithm (LLR)

In order to reduce decoding complexity, the decoding operations can be performed

in term of log-likelihood ratios [13]. The log-likelihood ratio (LLR) of a binary

random variable U which can be defined as

L(U) = log
P (U = 0)

P (U = 1)
, (2.28)

13



where P (U = 0) and P (U = 1) mean the probability of a binary random variable

U being 0 and 1 respectively. Therefore, the decoding flow can be modified as

follows.

(1) Initialization: By combining (2.9), (2.10), and (2.28), the initial message

can be modified as

Lvi
= log

P (vi = 0)

P (vi = 1)
= log

e
−

(2yi)

σ2

1+e
−

2yi

σ2

1

1+e
−

2yi

σ2

= log
(

e
−2yi

σ2

)

=
−2yi

σ2
, (2.29)

where yi be the received data and σ2 be the noise variance.

(2) Check node update: By combining (2.22), (2.23), and (2.28), we can obtain

Lrj→i
= log

P (rj→i = 0)

P (rj→i = 1)
= log











1 +
∏

i′∈W (j)\{i}

(1 − 2Qi′→j)

1 −
∏

i′∈W (j)\{i}

(1 − 2Qi′→j)











. (2.30)

By using the hyperbolic tangent function

tanh
(

x

2

)

=
ex − 1

ex + 1
, (2.31)

and the arc-hyperbolic tangent function

tanh−1(y) =
1

2
log

1 + y

1 − y
, (2.32)

Eq (2.30) can be rewritten as follows,

Lrj→i
= log

1 +
∏

i′∈W (j)\{i}

(1 − 2Qi′→j)

1 −
∏

i′∈W (j)\{i}

(1 − 2Qi′→j)
= log

1 +
∏

i′∈W (j)\{j}



1 − 2
1

1 + e−
2y

i′

σ2





1 −
∏

i′∈W (j)\{j}



1 − 2
1

1 + e−
2y

i′

σ2





= log

1 +
∏

i′∈W (j)\{j}







e−
2y

i′

σ2 − 1

e−
2y

i′

σ2 + 1







1 −
∏

i′∈W (j)\{j}







e−
2y

i′

σ2 − 1

e−
2y

i′

σ2 + 1







= log

1 +
∏

i′∈W (j)\{j}

tanh
(

−yi′

σ2

)

1 −
∏

i′∈W (j)\{j}

tanh
(

−yi′

σ2

)

= 2 tanh−1





∏

i′∈W (j)\{j}

tanh
(

1

2
Lqi′→j

)



 . (2.33)
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(3) Bit node update: By combining (2.24), (2.25), and (2.28), we can obtain

Lqi→j
= log

P (vi = 0)
∏

j′∈M(i)\{j}

P (rj′→i = 0)

P (vi = 1)
∏

j′∈M(i)\{j}

P (rj′→i = 1)
= Lvi

+
∑

j′∈M(i)\j

Lrj′→i
. (2.34)

(4) Syndrome check: The final posteriori probability of deciding 0 or 1 is

Lpost
vi

= log
P post(vi = 0)

P post(vi = 1)
= Lvi

+
∑

j∈M(i)

Lri→j
. (2.35)

Deciding the result is 0 or 1 according Lpost
vi

by
{

v̂i ⇒ 0, if Lpost
vi

≥ 0, ∀i ∈ {1, 2, · · · · · · , n}
v̂i ⇒ 1, if Lpost

vi
< 0, ∀i ∈ {1, 2, · · · · · · , n}.

(2.36)

If (2.2) is satisfied or arrival the number of setting iteration, the decoding process

is finished. Otherwise it goes into the next iteration.

2.4.3 Min-Sum with a correct factor (Min-Sum-Correct)

By observing the flow of the above decoding algorithm, we can find the compu-

tational complexity was most on the check node update due to the hyperbolic

tangent functions. Based on the calculation reducing or rewriting, there are

some development of derivative algorithm like Min-Sum-Correct [14], Min-Sum

[15], and normalized Min-Sum algorithm [16].

We consider a check node with 3 bit nodes, as shown in Fig. 2.12. By com-

bining (2.22), (2.23), and (2.28), we can obtain

Lr1→3 = log
1 + ( e

Lq1→1 −1
eLq1→1 +1

· e
Lq2→1−1

eLq2→1 +1
)

1 − ( eLq1→1−1

e
Lq1→1 +1

· eLq2→1 −1

e
Lq2→1 +1

)

= log(
1 + eLq1→1eLq2→1

eLq1→1 + eLq2→1
)

= log(1 + eLq1→1+Lq2→1 ) − log(eLq1→1 + eLq2→1)

= max(0, Lq1→1 + Lq2→1) + log(1 + e−|Lq1→1+Lq2→1 |)

−max(Lq1→1 , Lq2→1) − log(1 + e−|Lq1→1−Lq2→1 |)

= sign(Lq1→1)sign(Lq2→1) min(|Lq1→1|, |Lq2→1|) + g(Lq1→1, Lq2→1),

(2.37)
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Figure 2.12: Message information from bit node to check node.

where g(Lq1→1 , Lq2→1) = log(1 + e−|Lq1→1+Lq2→1 |) − log(1 + e−|Lq1→1−Lq2→1 |) is a

correct term.

We can obtain the general check nod updates flow as shown in Fig. 2.13, a

check node is connected to many bit nodes. The notation ⊘ is the computing

unit which execute the formula in (2.37).

The only different between Min-Sum-Correct algorithm and LLR algorithm

is the mathematical representation in step of check node update. Therefore the

Min-Sum-Correct algorithm flow can be obtained by replace equation (2.37) with

(2.33). In general, most research in LDPC decoding is on how to achieve good

performance or low complex, like Min-Sum algorithm that we will introduce be-

low.

2.4.4 Min-Sum algorithm

The Min-Sum algorithm is derived from Min-Sum-Correct algorithm. By follow-

ing (2.34), if the term g(Lq1→1 , Lq2→1) is skipped, we can obtain

Lr1→3 = sign(Lq1→1)sign(Lq2→1) min(|Lq1→1|, |Lq2→1|). (2.38)

From (2.38), a sub-optimal expression for general case can be obtained as follows

Lrj→i
≈ (

∏

Bi′∈W (j)\Bi

sign(Lqi′→j
)) min

Bi′∈W (j)\Bi

(|Lqi′→j
|). (2.39)
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Figure 2.13: The general flow of check node update.

By skipping the correct term, there is a penalty of performance degradation.

Later we will show this by simulation result. Like Min-Sum-Correct algorithm,

the Min-Sum algorithm is same with LLR algorithm except check node update.

2.4.5 Simulation result

In this subsection, we will show the simulation that the relationship is between

BER (bit error rate) and SNR (signal to noise ratio) by algorithm above men-

tioned.

In Fig. 2.14, there are performances of LLR algorithm with different itera-

tions. We can find that the better performance can achieved by the more itera-

tions. Similarly, Fig. 2.15 and Fig. 2.16 show the simulation results with different

iterations by Min-Sum-Correct algorithm and Min-Sum algorithm respectively.

By the way, Fig. 2.17 and Fig. 2.18 mean the performance comparison with one

iteration and ten iterations respectively. We can find the curve of LLR algorithm

and the curve of Min-Sum-Correct algorithm are almost overlapped, the reason
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Figure 2.14: LLR algorithm in 802.11n in AWGN channel (Z=81bits).

is that their calculation of check node update are same in fact.

In addition, we find in Fig. 2.17 that with one iteration the performance

with Min-Sum is better than that with LLR algorithm. [16] and [20] mentioned

that the value of the check node update in Min-Sum algorithm is larger than

it in LLR algorithm, where larger values implies better reliability. However the

above phenomenon only appear at the 1st iteration as shown in Fig. 2.19. The

reliability of the Min-Sum becomes worse as the iteration number grows as shown

in Figs. 2.20- 2.22, where the SNR is 4. Hence, with a reasonable large iteration

number the performance of the LLR outperforms that of Min-sum.
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Figure 2.15: Min-Sum-Correct algorithm in 802.11n in AWGN channel
(Z=81bits).
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Figure 2.16: Min-Sum algorithm in 802.11n in AWGN channel (Z=81bits).
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Figure 2.17: Comparison of different algorithm with one iteration.
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Figure 2.18: Comparison of different algorithm with ten iterations.
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Figure 2.19: The value of check node update in different algorithm.
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Figure 2.20: The value of check node update in different algorithm.
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Figure 2.21: The value of check node update in different algorithm.
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Figure 2.22: The value of check node update in different algorithm.
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Chapter 3

Proposed Algorithm and
Architecture

3.1 Latency reduction

In general, the LDPC decoding time increases as the size of parity check matrix

increase. However, the size of parity check matrix size is usually large in stan-

dard. Thus we use a method consisting of two steps to reduce the decoding time

introduced in the following subsections.

3.1.1 Reordering of the parity check matrix

In LDPC decoding process, the bit node update does not start until that the

check node update completes. If the size of the parity check matrix is large,

e.g. IEEE 802.11n standard, the decoding time is also large. To save overall

decoding time, a easy way was proposed in [17] to reduce the decoding time by

reordering the parity check matrix. Reordering the rows and the columns in the

parity matrix does not change the decoding process as mentioned in Chapter 2

and does not affect the BER performance. Next let us explain the reason. From

Fig. 3.1, the parity check equation (2.2) is still satisfied in case (b), so we can

get same decoding result from the original parity check matrix and reordered

parity check matrix. We can obtain that the row reordering has no any change

on the decoding process. In another hand, the columns reordering just affect the

codeword sequence. From Fig. 3.2, the codeword sequence in case (b) is changed
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to satisfy the parity check equation (2.2). Hence overall decoding process does

not change.
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Figure 3.1: Reordering the row of the parity check matrix: (a) original matrix,
and (b) reordered matrix.
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Figure 3.2: Reordering the column of the parity check matrix: (a) original matrix,
and (b) reordered matrix.

By combining both the row and the column reordering, we only need to con-

sider the effect of column reordering. From Fig. 3.3, the relationship between

the original codeword and the reordered codeword is just a element permutation

according to column permutation of the parity check matrix.

The main advantage of the reordering is that the idle time can be reduced

by performing overlapped operation between check node update and bit node

update. For example, by using the original parity check matrix H shown in

Fig. 3.4. If we want to perform bit node update, we have to wait until the

last row of the matrix being calculated, and than we can start performing bit

node update. Because there is a necessary information (red part) for the bit

node update of the 1st column in the last row. On the contrary, by using the
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Figure 3.3: Reordering the parity check matrix (a)original matrix, and
(b)reordered matrix.

reordered parity check matrix as shown in Fig. 3.5, we only need to wait until the

8th row to finish, we can start bit node update. On the other hand, it is same

that the performing check node update before bit node updating. If we want

to perform check node update in the 4th row, we have to wait until the 17th

column of the matrix being calculated, and than we can start performing check

node update. Because there is a necessary information (green part) for the check

node update of the 4th row in the last column. General speaking, reordering the

parity matrix can increase decoding speed without degrading performance and

adding extra hardware complexity.
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Figure 3.4: The original parity check matrix of IEEE 802.11n standard.
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Figure 3.5: The reordered parity check matrix of IEEE 802.11n standard.

3.1.2 Overlapped operation of bit node update and check
node update

In general, the LDPC decoder can be divided into two groups, including fully-

parallel and partially-parallel architectures. The fully-parallel form can achieve

large throughput however with large hardware. On the contrary, the partially-

parallel form has lower throughput and large decoding latency but with lower

complexity. In addition, the partially-parallel form can perform overlapped op-

erations of bit node update and check node update when we reorder the parity

check matrix.

In order to maximize the period of the overlapping, the reordered parity check

matrix in Fig. 3.5 can be redrawn as Fig. 3.6, where the BNU is the unit for the

bit node update, and CNU is the unit for the check node update. There are eight

BNUs and four CNUs in the proposed architecture. Let us introduce the timing

schedule of the decoding process. Assume we use a subblock size Z 81 × 81.

Fours rows are completed in one clock cycle in the step of check node update.

It needs 81 clock cycles to complete the check node update from the 1st row to

the 4th row in Fig 3.6. The same clock cycles are needed for check node update

from the 5th row to the 8th row, and from the 9th row to the 12th row. Hence

it needs 243 clock cycles to complete one check node update. In addition, it
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Figure 3.6: The reordered parity check matrix of IEEE 802.11n standard.

also needs 81 clock cycles to complete the bit node update form the 1st column

to the 4th column. The same clock cycles are needed for bit node update from

the 5th column to the 8th column and from 9th column to the 12th column.

Totally it also needs 243 clock cycle to complete one bit node update. Because

the parity matrix is reordered, we can make the lower left and upper-right parts

of the parity check matrix be zero matrices as shown in Fig. 3.5. In this case, the

bit node update from the 1st column to the 8th column can be performed easier

right the after check note update of the first 8 rows. There is null information

between the 9th row and the 12th row for performing bit node update from the

1st column to the 8th column; Similarly, the check node update from the 1st row

to the 4th row can be performed easier right the after the bit node update of the

first 16 columns. There are null information between the 17th column and the

24th column for check node update from the 1st row to the 4th row. For example,

it needs 81× 12 = 972 clock cycles for original decoding flow 2 iteration. On the

other hand, it just needs 81 × 9 = 729 clock cycles for overlapped decoding flow

with 2 iterations, as shown in Fig. 3.7.
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Figure 3.7: Timing diagram: (a) original (b) overlapped.

3.2 Proposed algorithm

In Chapter 2, we introduced the commonly used LDPC decoding algorithms and

showed the simulation result of the corresponding performance. In this section,

we will introduce the Radix-4 algorithm.

1B 2B
3B

1C

11®qL
41®rL

12®qL
13®qL

4B

Figure 3.8: Message information from bit nodes to a check node.

Similar to the derivation of Min-Sum-Correct algorithm, first we consider a

check node with 4 bit nodes, as shown in Fig. 3.8. By combining (2.22), (2.23),

and (2.28), we can obtain

Lr1→4 = log
1 + ( eLq1→1 −1

eLq1→1+1
· eLq2→1−1

eLq2→1 +1
· eLq3→1 −1

eLq3→1 +1
)

1 − ( e
Lq1→1 −1

eLq1→1 +1
· e

Lq2→1−1
eLq2→1 +1

· e
Lq3→1 −1

eLq3→1 +1
)
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= log

(

e(Lq1→1+Lq2→1+Lq3→1 ) + eLq1→1 + eLq2→1 + eLq3→1

e(Lq1→1+Lq2→1 ) + e(Lq1→1+Lq3→1 ) + e(Lq2→1+Lq3→1 ) + 1

)

= log
(

e(Lq1→1+Lq2→1+Lq3→1 ) + eLq1→1 + eLq2→1 + eLq3→1

)

− log
(

e(Lq1→1+Lq2→1 ) + e(Lq1→1+Lq3→1 ) + e(Lq2→1+Lq3→1 ) + 1
)

. (3.1)

We follow the approximations in [10] to obtain a new approximation as follows:

log(ea + eb + ec + ed) ≈ max(a, b, c, d) + log(1 + e−(max(a,b,c,d)−max2(a,b,c,d))), (3.2)

where max2(a, b, c, d) is the second biggest value in the set of (a, b, c, d). If we use

the approximate equation (3.2) to simply (3.1), we can obtain

Lr1→4 = log
(

eLq1→1+Lq2→1+Lq3→1 + eLq1→1 + eLq2→1 + eLq3→1

)

− log
(

eLq1→1+Lq2→1 + eLq1→1+Lq3→1 + eLq2→1+Lq2→3

)

= max (Lq1→1 + Lq2→1 + Lq3→1 , Lq1→1 , Lq2→1, Lq3→1) + g1(Lq1→1 , Lq2→1 , Lq3→1)

−max (Lq1→1 + Lq2→1 , Lq2→1 + Lq3→1 , Lq1→1 + Lq3→1 , 0)

−g2(Lq1→1 , Lq2→1 , Lq3→1), (3.3)

where

g1(Lq1→1 , Lq2→1 , Lq3→1) = log
(

1 + e−(max(α)−max2(α))
)

, (3.4)

with α = (Lq1→1 + Lq2→1 + Lq3→1 , Lq1→1 , Lq2→1, Lq3→1),

and

g2(Lq1→1 , Lq2→1 , Lq3→1) = log
(

1 + e−(max(β)−max2(β))
)

, (3.5)

with β = (Lq1→1 + Lq2→1 , Lq2→1 + Lq3→1 , Lq1→1 + Lq3→1 , 0).

We can also obtain the general check node updates flow diagram as shown in

Fig. 3.9, where a check node is connected to many bit nodes. The notation ⊖ is

the computing unit which execute the formula in (3.3).

The performance comparison of the proposed algorithm and the conventional

LLR is shown in Fig. 3.10. In simulation result, we can find the performances

of the Radix-4 algorithm are better than the performance of LLR algorithm. By
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Figure 3.9: The flow diagram of check node update using Radix-4 algorithm.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

LLR algorithm V.S. Radix−4 algorithm

 

 

LLR  Iteration 1
LLR  Iteration 2
LLR  Iteration 4
LLR  Iteration 5
LLR  Iteration 8
LLR  Iteration 10
Radix−4  Iteration 1
Radix−4  Iteration 2
Radix−4  Iteration 4
Radix−4  Iteration 5
Radix−4  Iteration 8
Radix−4  Iteration 10

Figure 3.10: Performance comparison of the proposed Radix-4 algorithm and the
conventional LLR.
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following [20], we show the value of the check update with LLR algorithm and the

proposed algorithm as in Figs. 3.11- 3.14, where the SNR is 4. We find that unlike

Min-Sum algorithm the proposed algorithm can keep the quite large when value

iteration unmber grows. This may be the reason that the performances of the

proposed Radix-4 algorithm is better than that of LLR algorithm. The Radix-

4 LDPC decoding has more complexity than the LLR decoding. The unit for

check node update in LLR algorithm and Radix-4 algorithm can be implemented

as show in Fig. 3.15 and Fig. 3.16 respectively.
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Figure 3.11: The value of check node update in different algorithm.

3.3 The comparison of Radix-4 and Min-Sum-

Correct

From Fig. 2.13 and Fig. 3.9, we can obtain the individual number of state with

seven nonzero elements in a row, as shown in table 3.1. It shows the number

of state is less by Radix-4 algorithm than by Min-Sum-Correct algorithm. In
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Figure 3.12: The value of check node update in different algorithm.
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Figure 3.13: The value of check node update in different algorithm.
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Figure 3.14: The value of check node update in different algorithm.
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Figure 3.15: The unit for check update with 4 bit node in LLR algorithm.
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Figure 3.16: The unit for check update with 4 bit node in Radix-4 algorithm.

addition, we can obtain the overall decoding latency with partially parallel scheme

by Radix-4 algorithm and Min-Sum-Correct algorithm, as show in Table 3.2. For

example, assume subblock size is 81 bits with 10 nonzero elements in a row and

10 iterations. We can obtain the overlapped clock cycle by Radix-4 algorithm

is (81+3)*(1+4*10)=3403 and overlapped clock cycle by Min-Sum-Correct is

(81+5)*(1+4*10)=3525, where 81 is the size of basic matrix, 3 and 5 are needed

stage, and 10 is iteration number. The decoding latency by Radix-4 algorithm is

shorter than it by Min-Sum-Correct algorithm.

7 8 10 20

Number of stage by Min-

Sum-Correct (X)

Number of stage by

Radix-4 (Y)

Number of the nonzero

element in a row

3 3 4

2 2 2

5

3

Table 3.1: The comparison of Radix-4 and Min-Sum-Correct.
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Radix-4

Non-overlapped

(clock cycles)

Min-Sum-Correct

(Z+X)*(Iteration*6 )(Z+Y)*(Iteration*6 )

(Z+X)*(1+Iteration*4 )
Non-overlapped

(clock cycles)
(Z+Y)*(1+Iteration*4 )

Y: Number of stage by Radix-4

X: Number of stage by Min-Sum-Correct

Table 3.2: The decoding latency.

3.4 LUT circuit

Observing Min-Sum-Correct and the Radix-4 algorithm, we need to perform func-

tion of log(1 + e−|x|). In general, the special function is usually implemented by

look-up table. The authors in [14] proposed two approximation methods, i.e.

coarse quantization and piece-wise linear approximation as shown in Table 3.3

and Table 3.4. To reduce the implementation effort in VLSI design, we modified

Table 3.4 as in Table 3.5. The simulation of different approximation methods

and original function are shown in Fig. 3.17.

|x|

[0,0.196)

[0.196,0.433)

[0.433,071)

[0.71,1.05)

0.65

0.55

0.45

0.35

|x|

[1.05,1.508) 0.25

[1.508,2.252) 0.15

0.05

0.0

[2.252,4.5)

),5.4[ +¥

)1log( ||x
e

-+ )1log( ||xe-+

Table 3.3: Quantization table for log(1 + e−|x|).
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|x|

[0,0.5)

[0.5,1.6)

[1.6,2.2)

|x|

[2.2,3.2)

[3.2,4.4)

0.0

)1log( ||xe-+

375.02|| 3 +´- -
x

2375.02|| 4 +´- -
x

1375.02|| 5 +´- -
x

)1log( ||xe-+

575.02|| 2 +´- -
x

7.02|| 1 +´- -x

),4.4[ +¥

Table 3.4: Piece-wise linear function for log(1 + e−|x|).

|x|

[0,0.5)

[0.5,1.5)

[1.5,2.0)

|x|

[2.0,3.0)

[3.0,4.5)

0.0),5.4[ +¥

)1log( ||xe-+

6875.02|| 1 +´- -
x

575.02|| 2 +´- -x

375.02|| 3 +´- -
x

25.02|| 4 +´- -
x

125.02|| 5 +´- -
x

)1log( ||xe-+

Table 3.5: The proposed piece-wise linear function for log(1 + e−|x|).
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Figure 3.17: Comparison of using LLR and Radix-4.
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3.5 Fixed point analysis

In VLSI implemented flow, the quantification effect is must considered. In order

to show quantification effect, we need to run proposed algorithm with fixed point.

In order to reduce complexity, we choose 4 bits for integer part and 4 bits for

decimal. Fig. 3.18 show the floating point and fixed point simulation.
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floating point with iteration 5
floating point with iteration 8

Figure 3.18: The performance of Radix-4 algorithm with fixed-point.

3.6 Proposed architecture

The VLSI design for the proposed LDPC decoders is shown in Fig. 3.19. The

8 bit input data consisted of 4 bits respectively for integer and decimal part.

First the received date is passed input buffer and then fed into the one port

memory bank and the two port memory bank simultaneously. The one port

memory bank stores the initial channel value for to decide the valid codeword for

syndrome check, and the two port memory bank is used to store the probability

message exchanged between the unit for the check node update and that for bit

node update. The date fed into the two port memory bank from input will be
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passed to the unit for the check node update to perform check node update. After

the check node update, the computing result will be rewritten in the two port

memory bank. Then the data stored in the two port memory bank is fed into the

unit for the bit node update to perform the bit node update. Similarly, after the

bit node update, the computing result will be rewritten in the two port memory

bank too. By performing storing and writing mentioned above, we say we can

finish the iteration for one time. After iterative computing, the date in the two

port memory bank and the one port memory bank are summed to decide valid

codeword bits.

One port

memory

bank

Two port

memory

bank
CNU BNU

Data In

Data Out

Input enable

Figure 3.19: The overall architecture of the proposed LDPC decoder.

3.6.1 The unit for the check node update

To implement the proposed algorithm for code rate 1/2 in IEEE 802.11n standard,

we need to consider two cases, as shown in Fig. 3.20. The last column represents
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how many nonzero elements (elements that are not “-”) in the corresponding row.

There are only two different numbers in the last column, i.e. 7 and 8. Thus the

we can obtain the flow diagram of the check node update as shown in Fig. 3.21

and Fig. 3.22. From two figures, we find that two kinds of operation units are

needed, i.e. ⊘ and ⊖. ⊘ (the first unit for the check update) is an unit to perform

formula (2.37) and ⊖ (the second unit for the check update) is an unit to perform

formula (3.3).
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Figure 3.20: Table shows how many nonzero (elements that are not “-”) elements
in rows.

1B
3B

2B
4B 5B 6B

7B

Figure 3.21: Case 1: A check node connected to 7 bit nodes.

Fig. 3.23 is The first operation unit for the check node update. There are 2

input in Fig. 3.23. We take the MSB of input A and B to perform xor operation,
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Figure 3.22: Case 2: A check node connected to 8 bit nodes.
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Figure 3.23: The first operation unit for the check node update.

and the last 7 bits to obtain the absolute value of the input. Then, compare

the absolute value of the input, and take the smaller value to combine with the

output of xor operation. In addition, we take input A and B to add and subtract,

and then perform table look-up and subtract. Final, the real output is that we

sum the output of circuit above mentioned. The clipping component is used to

clip the number of bits for the input of the bit node update.

There are 3 input in Fig. 3.24. We take the three inputs to perform addition

individually as shown in Fig. 3.24. Then, we can obtain the largest value MAX11

and the second largest value MAX12 in the first comparison block. We can also

obtain the largest value MAX21 and the second largest value MAX22 in the sec-

ond comparison block. Then, we perform the subtract and table look-up. The
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Figure 3.24: The second operation unit for the check node update.

final output can be obtained by performing add individual and then performing

subtraction. The clipping component is used to clip the number of bits for the

input of the bit node update.

3.6.2 The unit for the bit node update

In the step of the bit node update, we need to sum the probability message from

all check nodes connected to this bit node. The number of the nonzero elements

in the same column in IEEE 802.11n standard have been defined, i.e. 2, 3, 4,

11, and 12. Based on the reason mentioned above, we design units for bit node

update with 12 inputs and a mux, as shown in Fig. 3.25. For Fig. 3.25, this is

used for 12 inputs in standard. We sum all input and channel value, then subtract

a target input individually excluding to be the input for the check node update.

The FF is the flip-flop used to shorten data path and the clipping function is

to clip carry bit that is the input of check node update. In addition, the MSB

at point P is the hard-decision value of the decoded result. At the final stage a

multiplexer is needed to select the desired output signal. This scheme enables a

sharing circuit for BNU with 2, 3, 4 ,11 and 12 inputs.
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Figure 3.25: The unit for bit node update with 12 inputs.
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Chapter 4

VLSI implementation

4.1 Design flow

In the section, we will introduce the design flow for the proposed LDPC decoder.

The cell-based design flow is as shown in Fig. 4.1.

4.1.1 System model

We use the Matlab to build simulation environment. First the encoder is created

according to the IEEE 802.11n standard, then Radix-4 algorithm with floating

point and fixed point are used to observe the decoding performance. We use

Radix-4 algorithm with floating point to observe the performance between BER

and SNR, and Radix-4 algorithm with fixed point to choose the bit width and

build test pattern for RTL code.

Using tool: Matlab.

4.1.2 RTL code

In this step, we use Verilog-HDL to describe the hardware architecture. The

general design method is hierarchically method. Hence we need to divide the

overall design into serval basic modules first. Then, connecting among the basic

modules to complete the rough structure. Finally we need to perform bit true

in order to make sure the output signals of RTL code and Matlab are same with

same input signals. In addition, we have using memory in our architecture, so we
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Figure 4.1: IC design flow.
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use the memory compiler to generate need one port and two port register files.

Using tools: memory compiler, NC-verilog, modelsim, and Debussy nWave.

4.1.3 BIST

Because there are memory in our architecture, we need to add BIST circuit on

memory control for the testability of IC. After adding BIST circuit, there are two

mode in circuit, i.e. function mode and test mode. Function mode means that

normal LDPC decoding can be performed, and test mode can be used test that

there are have any error in memory.

Using tool: TurboBIST.

4.1.4 Synthesis

In this step, we start to synthesize our circuit. Before this step, our program is

just hardware language, is not real gate. By using Synopsys Design Compiler

to do the synthesis, our program can be translate as real gate. And we can get

the rough area and some timing information of the gate. In our decoder design,

all modules except the one port and two port register files are synthesized with

TSMC 0.18um CMOS process technology.

Using tool: Design Compiler.

4.1.5 Gate-level simulation

After synthesis, we can get timing information of gate. So we can perform our

circuit to check have any error with real time. We use NC-Verilog to do the

gate-level simulation and use Debussy nWave to check waveform. By checking

waveform, we can observe function exactitude with our predetermined clock pe-

riod.

Using tools: NC-Verilog, and Debussy nWave.
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4.1.6 DFT

For IC testing, we need to add mux in front of Flip-Flop and scan chains for

the testability of IC. After adding mux, we can get there is any error between

Flip-Flop and Flip-Flop by passing mux input signal. We use to Synopsys DFT

Compiler to do scan chain insertion.

Using tool: DFT compiler.

4.1.7 ATPG

In the step, we use ATPG (automatic test pattern generator) of Synopsys Tetra-

Max to generate test patterns for chip measurement.

Using tool: Synopsys TetraMax.

4.1.8 APR

We use SOC encounter to do automatical placement and routing (APR). Before

placing and routing, we need to add power I/O and core I/O on Gate-level netlist

and arrange location of input, output, I/O power, and core power on pad CIC

supported. We need to consider core utilization, location of one port and two

port register files, number of power ring, location and number of stripe to meet

timing constraints from SDC file.

Using tool: SOC encounter.

4.1.9 DRC and LVS

In general, we usually have consider DRC (design rule checking) and LVS (layout

V.S. schematic) in APR. But there is just rough check result in SOC encounter.

So we need to do detail verification. We use the Calibre DRC to check whether

there is any error with design rule and use the Calibre LVS to make sure that

whether the layout and the schematic are identical or not.

Using tool: Calibre.
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4.1.10 Post-layout simulation

In order to check function, we take the netlist and file of timing information

generated by SOC encounter to run NC-Verilog. We can observe wave to find

whether is any error by Debussy nWave. This is the last step to check function

on myself work.

Using tools: NC-Verilog, and Debussy nWave.

4.2 Chip layout

Figure 4.2: Layout of the proposed LDPC decoder.
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Figure 4.3: Layout of the proposed LDPC decoder.

4.3 Comparison and implementation result

A 3-mode LDPC decoder for IEEE 802.11n is implemented. With input quanti-

zation of 8 bits (4-bit integer part and 4-bit fraction part), synthesized with RTL

compiler using TSMC CMOS 18um cell library, the total gate number of the

proposed architecture is 780K. Using the TSMC 18um technology with 6 metal

layers, the layout plot is presented as in Fig. 4.2 and Fig. 4.3 by SOC encounter for

floorplaning, placement and routing. The core size is 17.9mm2, clock frequency

is 62.5MHz, and average power is 145mW. The data rate is 292∼50Mbps.
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Items Specification

Technology TSMC0.18um

Package CQFP160

Chip Size

Core Area

Gate Count 780K

On-Chip Memory
(RF1SH82X8)X24
(RF2SH82X8)X88

Max Frequency 62.5MHZ

Throughput 292~50Mbp

29.17 mm

230mm

Power Consumption 165mW

Table 4.1: Specification of the proposed LDPC decoder.
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[7] [19] This work

Multi-modes NO NO 3 modes

Spec. (1024,512) (2048,1732)
(24*Z,12*Z)

Z=27,54,81

Code

Construction
Random RS-based QC_based

Decoding

algorithm
LLR LLR Radix-4

Technology 0.16um 0.18um 0.18um

Parallelism Fully(100%) Fully(100%) Partial(33%)

Iterations 64 32 1~7

Frequency 64MHz 100MHz 62.5MHz

Area

Throughput 1Gbps 3.2Gbps 292~50Mbps

Power 690mW N/A 145mW

29.17 mm
25.52 mm

23.17 mm

[8]

NO

(2048,1024)

Turbo-

interleaved

Turbo

0.18um

Partial(33%)

16

125MHz

640Mbps

787mW

23.14 mm

Table 4.2: The comparison of different architectures.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we propose a decoding architecture of LDPC codes for IEEE

802.11n. We use partial parallel scheme to reduce the area and congestion. It can

increased throughput by using proposed Radix-4 algorithm in our architecture,

and we use a method to reduce decoding latency. In addition, we use simpler

method to approximate function needed. Finally, the proposed architecture is

implemented of 292∼50Mbps according post-layout simulation. The core size is

17.9mm2, and clock frequency is 62.5MHz and average power is 145mW.

5.2 Future work

In this thesis, we only implement three mode which all are rate 1/2 LDPC decoder

under for IEEE 802.11n standard. In fact, there are 12 modes which 4 kind of

rate and 3 kind of basic matrix size. A 12 mode supported LDPC decoder design

can be expected. In addition, the point that performance of Radix-4 algorithm

is better than traditional decoding be also discuss. Furthermore, we should find

a easy way to make routing easy.
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