if 3 802.11n 2. Radix—4 MR R F >1& & 75

8 E

A Radix-4 LDPC Decoder for 802.1In

A Radix-4 LDPC Decoder for 802.11n

Yu-Wen Chen

Advisor: Dr. Shang-He Tsai
Department of Eleétrical and Centrol Engineering
National :Chico Tung University

December 3, 2008

Abstract

In this thesis, a new decoding algorithm called Radix-4 LDPC decoder
is used to increase the throughput and achieve better BER performance.
Moreover, a three-size (1944,972), (1296,648), and (648,324) LDPC de-
coder applied to IEEE 802.11n standard is implemented. The partially
parallel scheme is used to decrease chip area as well as routing resource.
The LDPC decoder was implemented with TSMC CMOS 18um process.
The proposed decoder can achieve 292~50Mbps decoding throughput rate
under clock frequency of 62.5MHz. The core size is 17.9 mm? and average
power consumption with a 1.62V voltage supply is 145mW.

Contents

1 Introduction 1
2 Low-Density Parity-Check Codes 3
2.1 Categories of error correction codes 3
2.2 Categories of LDPC 4
2.3 Encoder of LDPCcode 6
2.4 Decoder of LDPC code . a% . . 0 lfe o oo 8
2.4.1 Sum-Product algerithm(SPA) &« L. 9
2.4.2 Log-Likelihood Ratio Sum-Product/algorithm (LLR) . .. 13
2.4.3 Min-Sum with aicorrectfactory(Min-Sum-Correct) 15
2.4.4 Min-Sum algorithm oo . . . 0. o000 16
2.4.5 Simulation resulto 17
3 Proposed Algorithm and Architecture 23
3.1 Latency reductiono 23
3.1.1 Reordering of the parity check matrix 23

3.1.2 Overlapped operation of bit node update and check node
update 26
3.2 Proposed algorithm oo 28
3.3 The comparison of Radix-4 and Min-Sum-Correct 31
3.4 LUT circuito 35
3.5 Fixed point analysiso 37
3.6 Proposed architecture oL 37

3.6.1 The unit for the check node update 38

3.6.2 The unit for the bit node update 41

4 VLSI implementation 43
4.1 Designflow 43
4.1.1 System model 43

4.1.2 RTLcode 43

4.1.3 BIST 45

4.1.4 Synthesis 45

4.1.5 Gate-level simulation 45

4.1.6 DFT 46

4.1.7 ATPG 46

4.1.8 APR 46

419 DRCand LVS. 46

4.1.10 Post-layout simulationsspesss.o 47

4.2 Chip layout &3 . smpma e .o 47
4.3 Comparison and implemientation result *. = 48

5 Conclusion and Future Work 51
5.1 Conclusion S L 51
5.2 Future work 51

i

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22

A digital communication system. L. 3
Categories of error correction codes. 4
Codeword in systematic block code. 4
Parity check and corresponding Tanner Graph.)
Quasi-cyclic LDPC code in 802.11n. 6
A identity matrix shifted right by 1 bit. 6
Six sub-matrices in parity chieck matrix,.H. 7
Block diagram of the encoder architecture for the block LDPC code. 9
A decoding flow of LDPC'eodes. . oo . o= 9
Message information form Check-node to bit node. 10
Message information formy bit node to ¢heck node. 12
Message information from bit node to check node. 16
The general flow of check node update. 17
LLR algorithm in 802.11n in AWGN channel (Z=81bits). 18
Min-Sum-Correct algorithm in 802.11n in AWGN channel (Z=81bits). 19
Min-Sum algorithm in 802.11n in AWGN channel (Z=81bits). . . 19
Comparison of different algorithm with one iteration. 20
Comparison of different algorithm with ten iterations. 20
The value of check node update in different algorithm. 21
The value of check node update in different algorithm. 21
The value of check node update in different algorithm. 22

The value of check node update in different algorithm. 22

111

3.1

3.2

3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

3.21
3.22
3.23
3.24
3.25

Reordering the row of the parity check matrix: (a) original matrix,
and (b) reordered matrix. 24
Reordering the column of the parity check matrix: (a) original
matrix, and (b) reordered matrix. L. 24

Reordering the parity check matrix (a)original matrix, and (b)reordered

matrix. 25
The original parity check matrix of IEEE 802.11n standard. . . . 25
The reordered parity check matrix of IEEE 802.11n standard. . . 26
The reordered parity check matrix of IEEE 802.11n standard. . . 27
Timing diagram: (a) original (b) overlapped. 28
Message information from bit nodes to a check node. 28

The flow diagram of check node update using Radix-4 algorithm.. 30

Performance comparison of the proposed Radix-4 algorithm and

the conventional LLR. . <807, o0 0oL oL 30
The value of check nodefupdate in different, algorithm. 31
The value of check node update in different-algorithm. 32
The value of check node update-in-different-algorithm. 32
The value of check node update in different algorithm. 33
The unit for check update with 4'bit node in LLR algorithm. . . . 33
The unit for check update with 4 bit node in Radix-4 algorithm. . 34
Comparison of using LLR and Radix-4. 36
The performance of Radix-4 algorithm with fixed-point. 37
The overall architecture of the proposed LDPC decoder. 38
Table shows how many nonzero (elements that are not “-”) ele-

ments i TOWS. o v vt 39
Case 1: A check node connected to 7 bit nodes. 39
Case 2: A check node connected to 8 bit nodes. 40
The first operation unit for the check node update. 40
The second operation unit for the check node update. 41
The unit for bit node update with 12 inputs. 42

v

4.1 IC design flow.
4.2 Layout of the proposed LDPC decoder
4.3 Layout of the proposed LDPC decoder

List of Tables

3.1
3.2
3.3
3.4
3.5

4.1
4.2

The comparison of Radix-4 and Min-Sum-Correct. 34
The decoding latency. L. 35
Quantization table for log(14+e7l®h, 35
Piece-wise linear function for log(1+e7 1. 36
The proposed piece-wise linear function for log(1 4 e~ 1#). 36
Specification of the proposed LDRPG decoder. 49
The comparison of different architecturess, 50

vi

Chapter 1

Introduction

Low-density parity-check (LDPC) codes was first invented by Gallager in 1962
[1] [2]. Due to the difficulty of circuit implementation and large complexity of
calculation, LDPC codes have been forgot for about forty years except for the
research of codes defined on graphs by Tanuer [3]. The rediscover of LDPC code
was done by Mackay in 1995 [4] [5}: Tt was provenr[6] that the LDPC codes with
large block length can beat turbo codes, @nd achieve.a capacity within 0.0045dB
of the Shannon limit on AWGN channel:+ With the dramatic improvement of
VLSI technology and the robust-transmission-demands of next communication
standards, the research interest of LDP@.is.dramatically increased recently.

LDPC codes have been adopted by several communication standards, such as
IEEE 802.16e standard, IEEE 802.11n standard, and the Digital Video Broad-
casting - Satellite - Second Generation (DVB-52).

The main challenge of the LDPC decoder falls in the complicated intercon-
nections due to the large size of parity check matrix. This leads to large chip
area. According to using memory or not, the architecture of LDPC decoder can
be divided into two types, one is fully parallel form and the other is partially
parallel form.

Fully parallel form directly maps the corresponding Tanner graph into the
hardware and all the processing units are connected according to the connectiv-
ity of the graph. Thus, they can have very high throughput but have a large
hardware cost. The first published LDPC decoder [7] which used fully parallel

form was designed by Blanksby and Howland in 2002. It can achieve 1Gb/s
with 64 iterations. However, it also need large area due to the large amount of
processing units and the complicated interconnections.

In the other hand, partially parallel form only has part unit of the full process-
ing. Since the processing can be shared by controlling memory. The hardware
complexity can be reduced with the plenty of lower throughput rate and more
route complexity. In [8], the authors use the decoding unit of Turbo code to
increase the throughput, up to 640Mb/s. In [9] an LDPC decoder was proposed
for IEEE 802.16e standard, and the design controlling circuit can support 19
modes with rate 1/2. Among the many kinds of the decoders of turbo code, the
decoding architecture called Radix-4 turbo decoding architecture [10] calculate
two stage of data with one timing cycle. Hence it can reduce memory size and
increase the processing speed. In this thesis, we develop a Radix-4 algorithm in
LDPC decoder. We call it as Radix-4LDPC decoding. The Radix-4 decoding can
increase the throughput than the‘conventional decoding. Also, from the simula-
tion results, we observe that the performancé of the Radix-4 algorithm is better
than conventional algorithm. Furthermore,-we implement proposed algorithm
via VLSI with application over IEEE:802.11n standard.

The rest of this thesis is organized as follows. Chapter 2 describes the LDPC
encoder and decoding algorithm. In addition, we also show the performance of
different decoding algorithm. Chapter 3 introduces the proposed algorithm and
a method to reduce the decoding latency under IEEE 802.11n standard. The
design flow of chip implementation and specification of this work are presented

in Chapter 4. Finally, conclusion and future work are given in Chapter 5.

Chapter 2

Low-Density Parity-Check Codes

2.1 Categories of error correction codes

The error correction codes are widely used to improve transmitting quality in
modern digital communication systems. The error correction codes also called
channel coding are beforehand presefving methed-adopted to protect transmitted
data from injected interference and channel response with noise, as shown in
Fig 2.1. In general, error correct-codes can-be divided into two groups, including
block codes and convolution codes, as-showmzin Fig 2.2. Famous block codes
include Hamming codes, cyclic code;zand Reed=Solomon code. For the last ten
years, Turbo codes in convolutional code and LDPC codes were widely studied

due to their significant performance improvement.

input sienal Source Channel Digital
P & encoder encoder modulator
Cha@
. - Source Channel Digital
Output signal encoder decoder demodulator

Figure 2.1: A digital communication system.

Error correct code

Block code Convolutional code

A N

Reed-Solomon Hamming Turbo

LDPC Cyclic code code code code

Viterbi
decoder

Figure 2.2: Categories of error correction codes.

An (n, k) block code represents that k-bit information data is encoded into an
n-bit codeword. Block codes can beifurther divided into two groups according to
the encoded bits in the codeword.” One-is the systematic block code and the other
is the non-systematic block code. Systematic block code consists of original the
information bits and redundant bits called parity check bits, as shown in Fig. 2.3.
If the block code can not be directlydivided inte'information bits and parity check

bits, we call it non-systematic block code.

o 5L I, - L, I, I, | B P,

k bits n—k bits

Figure 2.3: Codeword in systematic block code.

2.2 Categories of LDPC

Low-density parity-check (LDPC) code is a systematic block code, because the
parity check matrix is a sparse matrix, which contains mostly 0’s and only a small
number of 1’s. The parity check matrix H which has N rows and M columns

defines an LDPC code with N information bits and M — N parity bits. The code

4

rate R in this case is N/M.

An LDPC codes can be divided into two groups according to the number of
1’s in one row or one column. If the number of 1’s in one row and one column are
constant, it is called regular LDPC code. Otherwise, it is called irregular LDPC
code. For a regular LDPC code, each column or row has a fixed number of 1’s in
the parity check matrix H. For example, a 6 x 9 parity check matrix has code
rate R = 2/3, and can be expressed by Tanner Graph [3] as shown in Fig. 2.4.
In general, an irregular LDPC code has better error-correcting performance than

regular ones.

100100000
010010010
0010071001
100010001
0 1 0,00 1.0 0
0 0 4 1 OmOual T+,0

Parity check matrix

Figure 2.4: Parity check and corresponding Tanner Graph.

An LDPC code can also be classified by it’s parity check matrix H, e.g.
random and quasi-cyclic LDPC code. Quasi-cyclic LDPC codes [11] is a popular
code construction in modern communication systems. The code constructions in

the Standard like IEEE 802.16e and IEEE 802.11n standards are exactly quasi-

cyclic.

0 - - — 0 0 - =0 — =010 - - - — — — — - — —
2 0 - - 17 — 00 12 — — = =00 — — — — — — — — —

- -~ 10 - - — 24 -0 - = =00 - — — — - — — -

- - 0 20 - - - 25 - - - - 2000 - - - - - - -
2 - - - 3 — — — 0 - 91 - == -=00 - - - - — —
24 - 231 17 - 3 = 10 - - — — — — — - 00 - - - — -
26 - - - 8 - — - 18 - — 0 — — — — - 00 - - — -
1324 - - 0 - 8 — 6 - — — — — — — — — - 00 - — -
7 20 - 16 22 10 — — 23 — — — — — — — — — — _ 00 - -
1 - - =19 — — = 13 = 317 = = = = — — — — - 00 -
25 - 8 - 2318 — 14 9 — — — — — - — — - — - — _ 0 0
3 - - — 16 — — 2 25 5 — — 1 — — — — — — — — — — 0]

Figure 2.5: Quasi-cyclic LDPC code in 802.11n.

In the quasi-cyclic LDPC code, every element in the parity check matrix is a
basic matrix with size Z x Z. There are three types of 7, e.g. 27, 54, and 81 bits
in IEEE 802.11n standard. As shown in Fig. 2.5, the element with mark “-” is a
zero matrix and the other are cyclic-shifted matrixes. For instance, the identity

matrix cyclically shifted right by+1 bit'is shown in Fig. 2.6.

PO 01 cyclically shife |01 0
0 1 . :| rightby 1 bit ;0
- ‘. 0 > (0 -
0 .. 0 1 I .. 00

Figure 2.6: A identity matrix shifted right by 1 bit.

2.3 Encoder of LDPC code

In LDPC encoder, a codeword vector v was produced by multiplying a generator

matrix G multiplied by the information vector u, i.e.

uG =v. (2.1)

Because LDPC code is a linear block code, it satisfies the following equation

Hv’ =0, (2.2)

where H is the parity check matrix. From (2.2), we can get the relationship of
G and H, as show as

Hv' = HuG)" = HG"u" =0 = HG' = 0. (2.3)

Intuitively, the encoding method is letting the generator matrix G multiply the
information vector u. However, it needs to store both G and H in circuit. In
order to save storing unit, IEEE 802.16e standard introduces a method [12] to
encoder directly from the parity check matrix H. Hence, there is no need to use
extra memory to store G.

According to [12], an n x m paritychiéckmatrix H can be divide into six-sub
matrices, A(n—g)x(n-m), Bn—g)xg8 Ton-gsmsy) s Coxn-m): Dyxg: and Egxn—g)
as shown in Fig. 2.7. Among the sub-matrices: there-is a constraint which makes
LDPC encoding process easier. That i3 sub=matrix T,,—g)x (m—g) must be a lower

triangular square matrix with allit’s diagonal“elements being ones.

- n-m g m-g R
\ . y
1
1 0
1
1
A B T
1 m-g
m 1
1
1
1

C D E g

v 3
n

Figure 2.7: Six sub-matrices in parity check matrix H.

Let v be a codeword corresponding to parity check matrix H. It needs to
satisfy the equation (2.2). Therefore, the codeword can be divide into three
parts, i.e. v = [u p; py]. Where u is the original information bits with length
n—m. p; is with length g and p, is with length m — ¢g. p; and p, are the parity
check bits.

From the equation (2.2), we can obtain the mathematical relationship be

shown in following equations

Au” + Bp] +Tp; =0, (2.4)

and

Cu’ + Dp] + Ep; = 0. (2.5)

After rewriting (2.4) and (2.5), we can get

(ET'A + C)i” + (ET-'B +D)p] = 0. (2.6)

Define ¢ := ET'B + D and-select the appropriate sub-matrices Bin—g)xg:
T (1m—g)x(m—g)> Dgxg, and Egy nZg) topmake the matrix ¢ be the identity matrix.

Then we can get

p! = (ET'A + C)u”, (2.7)

and

pg = T_l(AuT + Bpf). (2.8)

As a result, we can produce easily the output vector v, as shown in Fig. 2.8.

2.4 Decoder of LDPC code

In general, the LDPC decoding can divided into hard decision and soft decision.
Hard decision means that the message exchange between bit node and check node
is a bit, like the bit flipping [2]. On the contrary, soft decision means that the
message exchange between bit node and check node is a soft information, like

the belief propagation [2] or called Sum-Product algorithm. The performance of

8

D

— C

Figure 2.8: Block diagram of the encoder architecture for the block LDPC code.

soft decision is usually better than hard decision however with more complexities.

The sections which will be introduced below are based on soft decision.

2.4.1 Sum-Product algorithm(SPA)

By the Tanner Graph as shown in Fig: 2.3 and ¢oncept of message passing, we can
understand the decoding procedure of EDPC eodes more easily. The decoding
flow is illustrated in Fig. 2.9.

Cheek node %] Bitnode

Channel —» Initialization update update

Output ————

Figure 2.9: A decoding flow of LDPC codes.

For the following mathematical deriving, define that ¢;_.; be the probability
message from bit node B; to check node C}, r;_,; be the probability message from
the check node C; to the bit node B;, v; be the ith bit in the codeword v, y; be
the ith received data, and o2 be the noise variance.

(1) Initialization: The probability message ¢;—.; is initialized as the received
data from channel. Let the transmit data x; be BPSK, we have
P(yi|lz; = +1)P(x; = +1)

P(y;)

Gimj(zi =+1) = Pz =+1y;) =

1
- 2 — . (2.9)
L1 (e by +e(”é§%)2) 14
and
_ (295)
(& o
14+e 72
B, B, B,
ql—)j

Figure 2.10: Message infermation form:.Check node to bit node.

(2) Check node update: In this step;the eheck modes perform updating by
collecting message from connectedsbit node. As shown in Fig. 2.10, we will derive
the relation between g;_.; and r;_; below.

From (2.2) and Fig. 2.10, we can obtain

Bl®B,® - ®B_1®B;®Biy1®---® B =0. (2.11)

Following (2.11), we can get

P(rimi=1)=P(B1®By® - ®B;i1 ®Bip1 &+ @ Bp = 1), (2.12)
and

P(rii=0)=P(B1&B,&---®B_1®&B.1®--®Bp,=0). (2.13)

Obtain (2.12) and (2.13). Let k = 2, P(B; = 1) = a1, and P(By = 1) = as.
(2.12) and (2.13) can be rewritten as

P(Bl@Bg = 1) :al(l—a2)+(1—a1)a2, (214)

10

and
P(Bl@Bg :O) :a1a2+(1—a1)(1—a2). (215)

(2.14) and (2.15) can be rewritten again as
2

1-J]1 - 2a;)
1—(1-2 1-2 -
P(Bi® B, =1) = (‘;1)(@) _ i 5 : (2.16)
and
2
1+] - 2a)
1 1—-2 1—-2 -
P(By @ By —0) — L “21)(a) _ = (2.17)
Assume (2.12) and (2.13) are true for the condition that k£ = n, we can obtain
1-J]@1 - 2a;)
P(Bi®&By® & B, =1) = — = 2 M, (2.18)
and o
1 Jl =24,
PBi®B,® - ®B,=0) = i=12 =1 — M,. (2.19)

Let P(By+1 = 1) = an41 on condition that & = n +1, (2.16) and (2.17) can be
deduced as
P(Bl D BQ D---D Bn D Bn+l = 1) = Mn(l - an+1) + (]_ - Mn)an+1

1— (1 = 2an41)(1 — 2M,,)
2

n+1

1 [[(1 - 2a)

i=1

2 Y

(2.20)
and

PBi®B® - @®B,®B,11=0) = Mya,1+ (1 —M,)(1—ap1)
1+ (1 —=2a,.1)(1 —2M,)
2

n+1

1+ JT (1 —2a)

i=1
2

(2.21)

11

By Mathematical Induction, we can get

1— J] (1-2Qi—;)

2)

and

P(’I"j_,i:O) = P(Bl@Bg@@Bz_l@BH_l@@Bk:O)

1+ I (1-2Qi)

2 Y

where Q. 2 P(qy—; = 1), W(j) is the set of bit nodes connected to the check
node C;, and W (j)\{i}means the subset excluding the ith bit node.

Figure 2.11: Message information form bit node to check node.

(3) Bit node update: Similarly, the bit nodes perform updating by collecting
message from the connected check nodes. Next let us derive the relation between
¢j—i and 7,_; below.

As shown in Fig. 2.11, there are k check nodes connected bit node B;. Thus

we can get

P(gjii=1)=Pv;=1) [Plriy=1), (2.24)
5 €M (i)\{j}

12

and

P(gj—;=0)=P(v;=0) [[Plriey =0). (2.25)
F'eM@)\{}

where M (i) is the set of check nodes connected to the bit node B;, and M (i)\{j}
means the subset excluding the jth check node.

(4) Syndrome check: Let
P(v; =1) = P(x; = +1|y,),
and
P(v; =0) = P(z; = —1ly;).

The a posteriori probability for each codeword bit can be computed as

PPty = 1) = P(yp=)u]l P(rie; =1). (2.26)
JEM (@)
and
Pp08t<1)i = 0) = P(’UZ B O) H P(T’Z‘_>j = 0), (227)
FEM(E)

The estimated bit 9; is set to 1 if*PE%!(v; = 1) = 0.5, otherwise it is set to 0.
Then the syndrome check equation (2.2) is used to verify whether the estimated
sequence vV =[01 0y -+ - Uy is a valid codeword.

The decoding process stops when the syndrome check equation is satisfied,
otherwise the decoding iteration will start. If the number of iterations attains
our predetermined goal without finding a right codeword, it fails to decode and

still pass to be the valid codeword. This is the reason which make bit error.

2.4.2 Log-Likelihood Ratio Sum-Product algorithm (LLR)

In order to reduce decoding complexity, the decoding operations can be performed
in term of log-likelihood ratios [13]. The log-likelihood ratio (LLR) of a binary
random variable U which can be defined as

P(U =0)

L(U) = log m>

(2.28)

13

where P(U = 0) and P(U = 1) mean the probability of a binary random variable
U being 0 and 1 respectively. Therefore, the decoding flow can be modified as
follows.

(1) Initialization: By combining (2.9), (2.10), and (2.28), the initial message

can be modified as

(2y;)

e o2
P(v; =0) e o ~2y; —2y;
L, =log——"—~ =log*t& = —] (02): ., 2.29
1+e o2

where 1; be the received data and o2 be the noise variance.

(2) Check node update: By combining (2.22), (2.23), and (2.28), we can obtain
1+] (1-2Qi—;)

P(rj_; =0) i eW ()\{i}
L. =log—" < =10 . 2.30
g & P(rj—i=1) flic I a-20i) (230)
i'eW (5)\{i}
By using the hyperbolic tangent function
k P
tanh <—> Z : 2.31
s 2 3 (2:31)
and the arc-hyperbolic tangent function
_ 1 14y
tanh™'(y) = =log —— 2.32
anh™ (y) SloBT— (2.32)

Eq (2.30) can be rewritten as follows,

1
1+ J] (1-2Qi) 1+ I (1—27%)
\{5)

Lrjﬂi _ 1Og i'eW (5)\{i} :log eW(5) 1+e =2
Y T A (1 p)
ireWw (7)\{i} - - 2y
€W (5)\ {4} 14 ot
Zyi/
e % — —Yir
log O\ T A1) ewih) ’
2y, - —Yi
e or — 1— H tanh (5)
1- J] —n— W) 7

YeW(\it \e % +1

= 2tanh_1(I tanh <%Lqi,ﬂ,)>. (2.33)

eW()\{i}

14

(3) Bit node update: By combining (2.24), (2.25), and (2.28), we can obtain
Pv;=0)][I Plrj—i=0)

J'EM(0)\{7}
= =L,+ >, L., . (234
qi—j vi "yl i

Pl;=1)]I Plryi=1) FEM@N
J'EM()\()

(4) Syndrome check: The final posteriori probability of deciding 0 or 1 is
Prost(y; = 0)
Prost(y; = 1)

L

LE = log

=L,+ >, L., (2.35)

JEM(i)
Deciding the result is 0 or 1 according L?** by

0; = 0,if L2t >0, Vi € {1,2,------ ,n} (2.36)
0; = 1,if 1Pt <0, Vi e {1,2,------ ,n}. ’
If (2.2) is satisfied or arrival the number of setting iteration, the decoding process

is finished. Otherwise it goes into the next iteration.

2.4.3 Min-Sum with a correctfactor (Min-Sum-Correct)

By observing the flow of the abgve decoding algorithm, we can find the compu-
tational complexity was most on the check node update due to the hyperbolic
tangent functions. Based on the calculation reducing or rewriting, there are
some development of derivative algorithm like Min-Sum-Correct [14], Min-Sum
[15], and normalized Min-Sum algorithm {16].

We consider a check node with 3 bit nodes, as shown in Fig. 2.12. By com-

bining (2.22), (2.23), and (2.28), we can obtain

L L
ela1—1 -1 elea—1-1
L = lo 1_I_(equﬂ“rl eLq2H1+1)
-3 g 1— (eLq1ﬂ1_1) eLq2ﬁ1_1)
elais141 elaa—1 41

1+ elai—1 elaz—

elai—a + ela

= log(
= log(1 + efn—1tra—1) —Jog(eln—1 4 ehaz-1)
= max(0, Ly, _, + Ly,_,) + log(1 + eI Fn—1Flaaly
—max(Ly, ., Lq,_.,) — log(1 + €—|Lq1H1_LQ2H1‘)
= sign(Lg, ,)sign(Lg,) min(|Lg, |, |Les 1]) + 9(Lgy 1y Lgs)
(2.37)

15

Figure 2.12: Message information from bit node to check node.

where g(Lg, ., Lg,.,) = log(1 4+ e La—itlaal) —log(1 + e lta1Lanl) is a
correct term.

We can obtain the general cheek nod updates-flow as shown in Fig. 2.13, a
check node is connected to many bit nodes. The notation © is the computing
unit which execute the formula in (2.37).

The only different between Min-Smn-Correct algorithm and LLR algorithm
is the mathematical representation i step.-of ¢heck node update. Therefore the
Min-Sum-Correct algorithm flow can be obtained by replace equation (2.37) with
(2.33). In general, most research in LDPC decoding is on how to achieve good
performance or low complex, like Min-Sum algorithm that we will introduce be-

low.

2.4.4 Min-Sum algorithm

The Min-Sum algorithm is derived from Min-Sum-Correct algorithm. By follow-

ing (2.34), if the term g(L L,, .,) is skipped, we can obtain

q1—1>»
Ly, s = sign(Lg, .,)sign(Ly, .,) min(| Ly, . [, | Ly, . [). (2.38)

From (2.38), a sub-optimal expression for general case can be obtained as follows

L, .~ sign(Lg, min L., . 9 39
j—i (Bi,eml/_{j)\Bi g (q; ﬁ])) Bi/EW(j)\Bi(| q; H]|) ()

16

Figure 2.13: The general flow of check node update.

By skipping the correct term, there is a-penalty of performance degradation.
Later we will show this by simulation résult: T Like Min-Sum-Correct algorithm,

the Min-Sum algorithm is same with LLR algerithm except check node update.

2.4.5 Simulation result

In this subsection, we will show the simulation that the relationship is between
BER (bit error rate) and SNR (signal to noise ratio) by algorithm above men-
tioned.

In Fig. 2.14, there are performances of LLR algorithm with different itera-
tions. We can find that the better performance can achieved by the more itera-
tions. Similarly, Fig. 2.15 and Fig. 2.16 show the simulation results with different
iterations by Min-Sum-Correct algorithm and Min-Sum algorithm respectively.
By the way, Fig. 2.17 and Fig. 2.18 mean the performance comparison with one
iteration and ten iterations respectively. We can find the curve of LLR algorithm

and the curve of Min-Sum-Correct algorithm are almost overlapped, the reason

17

802.11n (1944,972) AWGN LLR algorithm

{ %\Tv‘
10’1 \\%‘ i

4
|

()

%) i1 <>
A<
A <P
7 <D

10 “F 4
: : : S
o
i
M
N
R —&— lteration 1
10 "p{ —5— Iteration 2]
—*— Iteration 4 : , 5 3

—©— lteration 5
—%*— lteration 8
—— lteration 10

107 i i i i i i i
0 0.5 1 15 2 2.5 3 35 4

SNR (dB)

Figure 2.14: LLR algorithm ig:802.11n in AWGN channel (Z=81bits).

is that their calculation of check-node update are same in fact.

In addition, we find in Fig. 2.17 that with omne iteration the performance
with Min-Sum is better than that with' LR algorithm. [16] and [20] mentioned
that the value of the check node update in Min-Sum algorithm is larger than
it in LLR algorithm, where larger values implies better reliability. However the
above phenomenon only appear at the 1st iteration as shown in Fig. 2.19. The
reliability of the Min-Sum becomes worse as the iteration number grows as shown
in Figs. 2.20- 2.22, where the SNR is 4. Hence, with a reasonable large iteration

number the performance of the LLR outperforms that of Min-sum.

18

802.11n (1944,972) AWGN Min-Sum-Correct algorithm

10 e 5
: % s ©
. . S g
X S
107
Q
& %
[a0]

- —<&— lteration 1
10 k| —=— Iteration 2
—— lteration 4
—©6— lteration 5
—*— lteration 8
—— lteration 10

-4

10 I I I I I

<D

74

A

<D

(o)

0 0.5 1 15 2 25
SNR (dB)

Figure 2.15: Min-Sum-Correct salgorithm 1n .802.11n in AWGN

3.5

(Z=81bits).
802.11n (1944,972) AWGN Min-Sum algorithm
10"
-2
x 10
w
m
—<&— lteration 1
1020 lteration 2
—— lteration 4
—O6— lteration 5
—%*— Iteration 8
—— |teration 10
10_4 I I I I
0 0.5 1 1.5 2 2.5 3 3.5
SNR (dB)

channel

Figure 2.16: Min-Sum algorithm in 802.11n in AWGN channel (Z=81bits).

19

802.11n (1944,972) AWGN lteration=1

BRSO]
i L S
m \\Q\ -
N1 -
*\ N
<~ ¢
. N
— % — Min—-Sum 4
— ¥ — Min-Sum-Correct]
— % — LLR
1072 I I I I I I I
0 0.5 1 1.5 2 2.5 3 35 4
SNR (dB)

Figure 2.17: Comparison ofidifferent.algorithm with one iteration.

802.11n (1944,972) AWGN lteration=10

— — — — _)k - — _ _ T T
I TR
10°F T SRR . 1
BEP %
7 N
N < N
N N\
N N\
N
" & \
10°F N N 1
N N
% \ *
\ \
om N .
AN . \
@
3 \
10°}F \ i
(o
B \ \
— % — Min-Sum o)
— © — Min—-Sum-Correct \ \\
— % — LLRBP \\ \
10_4 I I I I \
0 0.5 1 1.5 2 2.5
SNR (dB)

Figure 2.18: Comparison of different algorithm with ten iterations.

20

The 1st iteration
4 T T T

Value of the check update in Min—Sum algorithm
o

_4 I I I I I I
-2 -15 -1 -0.5 0 0.5 1 15 2

Value of the check node update in LLR algorithm

Figure 2.19: The value of chieek node update in different algorithm.

The 2nd iteration
5 T T T

Value of the check node update in Min—-Sum algorithm
o

_5 I I I I
-25 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25
Value of check node update in LLR algorithm

Figure 2.20: The value of check node update in different algorithm.

21

The 5th iteration
8 T T

Value of check node update in Min-Sum algorithm

_10 Il Il Il Il Il Il
-8 -6 -4 -2 0 2 4 6
Value of check node update in LLR algorithm

Figure 2.21: The value of chieek node update in different algorithm.

|

The 8th iteration
10 T T

Value of check update in Min—Sum algorithm

_10 I I I I I I
-8 -6 -4 -2 0 2 4 6
Value of check node update in LLR algorithm

Figure 2.22: The value of check node update in different algorithm.

22

Chapter 3

Proposed Algorithm and
Architecture

3.1 Latency reduction

In general, the LDPC decoding time inciéases as the size of parity check matrix
increase. However, the size of parity checksmatrix size is usually large in stan-
dard. Thus we use a method consisting of twe stéps to reduce the decoding time

introduced in the following subsections.

3.1.1 Reordering of the parity check matrix

In LDPC decoding process, the bit node update does not start until that the
check node update completes. If the size of the parity check matrix is large,
e.g. IEEE 802.11n standard, the decoding time is also large. To save overall
decoding time, a easy way was proposed in [17] to reduce the decoding time by
reordering the parity check matrix. Reordering the rows and the columns in the
parity matrix does not change the decoding process as mentioned in Chapter 2
and does not affect the BER performance. Next let us explain the reason. From
Fig. 3.1, the parity check equation (2.2) is still satisfied in case (b), so we can
get same decoding result from the original parity check matrix and reordered
parity check matrix. We can obtain that the row reordering has no any change
on the decoding process. In another hand, the columns reordering just affect the

codeword sequence. From Fig. 3.2, the codeword sequence in case (b) is changed

23

to satisfy the parity check equation (2.2). Hence overall decoding process does

not change.
a a, a, a,|v d d, d, d,|v
b b, by by|v,| 0 a a, a; a,|v,| 0
(N A R b b, b b, |v

d d, d, d,|v, ¢ ¢ ¢ cy|v,

Figure 3.1: Reordering the row of the parity check matrix: (a) original matrix,
and (b) reordered matrix.

a a, a, a,|v a, a, a, a | v

bbby bl by bbb

¢ C Cy eyl c, Ty C, ||V,

d, d, d, d,|v, \d,d,md, d | v]
(a) (b)

Figure 3.2: Reordering the column of the parity check matrix: (a) original matrix,
and (b) reordered matrix.

By combining both the row and the column reordering, we only need to con-
sider the effect of column reordering. From Fig. 3.3, the relationship between
the original codeword and the reordered codeword is just a element permutation
according to column permutation of the parity check matrix.

The main advantage of the reordering is that the idle time can be reduced
by performing overlapped operation between check node update and bit node
update. For example, by using the original parity check matrix H shown in
Fig. 3.4. If we want to perform bit node update, we have to wait until the
last row of the matrix being calculated, and than we can start performing bit
node update. Because there is a necessary information (red part) for the bit

node update of the 1st column in the last row. On the contrary, by using the

24

a, a, a, a,|v | dy, d, d, d]
b b, by, b, |v, 0 ¢, ¢, ¢ ¢, 0
¢ ¢ ¢ ocllvs| a, a, a, al|v,
d, d, d, d,|v,] by by by by v

Figure 3.3: Reordering the parity check matrix (a)original matrix, and
(b)reordered matrix.

reordered parity check matrix as shown in Fig. 3.5, we only need to wait until the
8th row to finish, we can start bit node update. On the other hand, it is same
that the performing check node update before bit node updating. If we want
to perform check node update in the 4th row, we have to wait until the 17th
column of the matrix being calculated.;and than we can start performing check
node update. Because there is a necessary: information (green part) for the check
node update of the 4th row in the last column. General speaking, reordering the
parity matrix can increase decoding speed without degrading performance and

adding extra hardware complexity.

(57 - - - 50 - 11 - 5 - 79" 0 - - - - - — - - — -
3 - 28 - 0 - - - 55 7 — — — 00 - — - — — — — — -
30 - - - 2437 - - 5614 — - — — 00 - - - - — — — -
2 53 - - 53 - - 335 - - - - - -—of@----- - -
40 - - 20 66 — - 2 28 — — - — — — =00 - - — — — -
0 - - — 8 — 4 - 50 - - 8§ - - — — - 00 - - — — -
69 79 79 - - - 56 - 52 — — - 0 - — — — - 00 - - — -
65 — - - 38 57 - - T2 — 27 - - — — — — — - 00 - - -
64 - - - 14 52 — — 30 - - 32 — — — — — — — - 00 - -
— 45 - 70 0 - - - 77 9 - — — — — — — — — - - 00 -
2 056 - 57 35 - - — - — 12 - — — — — — — — — _ _ 0

24 - 61 - 60 - - 2751 - - 161 - - - - — - - - - _ 0]

Figure 3.4: The original parity check matrix of IEEE 802.11n standard.

25

NEw | 123456789 ftoftt][i2]13][14]15]16]17]18]19]20(21]227]23]24
NEw [oD | 7 11]13[12]24 (2322215 [1[92 106 [4]14]3[8 |20][19]18[17]16]15
1 11791 |- || =|-|-]50|57{50| - |- -|-]o|=|=|=-|=|=-|=-|-]-
2 9 |- |-[-|32]-]-]0 146430 - |- |s2|-|-|=|=[=[=|=|-|-]|-
3 1| —ji2f=[-folo|-|-[35]2]-|s6]-|-|57|-|=|=|=|=-|=|=-|=]-
4 10 |-|-|-|-|-|ofo|-]o|-1]77]a5]90|-|70][-]=]=-|=]- ===
5 12 [—|-|1]16]0]|-|—-]—-|60]24|51| ||| —|—-|61]27|-|-|-]-]-]|-
6 8 | |27 -|-|-|-1o|-138]6s|72|-|-|57|-|-|-|-|o|-|-]-]-]-
7 7 |sel-Jo|—-|-|-|-|-]-]69[52]79]-|-|-|-|79|-Jo|o|-|-|-]-
8 6 |42]-]-|8]- —l8lofso|-|-|-|-|-|-|-|-]o]o|-|-]|-
9 s =] =f=|=|=1=|=|-66]40|28-|-|-]20|-|-]22/-|=-]o0o]o0o]|-]|-
10 | 4 [=f=|=[=|=|=|=1-153]62(35|53|-|-|-|-|-|3|-|-|-]ofo]-
11 3 === =]=1=1=|-24[30|56]-[14|37[-|-|-[-|-]-|-[-0]0
12 2 ==l =l=l=1=]=|=]o|3]ss|-|7]-|-fof28|=-]-|=-|=-|=|=-10o

Figure 3.5: The reordered parity check matrix of IEEE 802.11n standard.

3.1.2 Overlapped operation of bit node update and check
node update

In general, the LDPC decoder can be divided: inte two groups, including fully-
parallel and partially-parallel architectures.” The: fully-parallel form can achieve
large throughput however with darge hardware. 'On:the contrary, the partially-
parallel form has lower throughput and large-decoding latency but with lower
complexity. In addition, the partially-parallel form can perform overlapped op-
erations of bit node update and check node update when we reorder the parity
check matrix.

In order to maximize the period of the overlapping, the reordered parity check
matrix in Fig. 3.5 can be redrawn as Fig. 3.6, where the BNU is the unit for the
bit node update, and CNU is the unit for the check node update. There are eight
BNUs and four CNUs in the proposed architecture. Let us introduce the timing
schedule of the decoding process. Assume we use a subblock size Z 81 x 81.
Fours rows are completed in one clock cycle in the step of check node update.
It needs 81 clock cycles to complete the check node update from the 1st row to
the 4th row in Fig 3.6. The same clock cycles are needed for check node update
from the 5th row to the 8th row, and from the 9th row to the 12th row. Hence

it needs 243 clock cycles to complete one check node update. In addition, it

26

BNU 1 BNU 2 BNU 3

011791————— =[=1=1= ===
— =] -|32]-]-]o ==1=l==1=l=1=
[E—
é—lz—— 0| -|- =l=1=l=l=l=l=1=
- |l=]l=]l=1l0]o0]- == === |=]-=
A 602451 -|-|-|-]-
3806572 — | - [57] - | -
(\O]
—le69|s2|79] - |- |- |-
slofso|-|-|-]|-]-
N EHEEE R =22 =]= 0| -]-
- == =|=]=]= 3= == 0| —
[9%)
é———————— ==T=l=l=I=lve]®
=T=T=T=1=1T=0=1= 28 - -[-[=-|=-]-]o

Figure 3.6: The reordered parity check matrix of IEEE 802.11n standard.

also needs 81 clock cycles to complete the bit node update form the 1st column
to the 4th column. The same clock cycles are needed for bit node update from
the 5th column to the 8th colum B from®
Totally it also needs 243 clock

column to the 12th column.

e bit node update. Because
left and upper-right parts
in Fig. 3.5. In this case, the

the parity matrix is reordered, wi
of the parity check matrix be zero.
bit node update from the 1st colummn to he 8th eolumn can be performed easier
right the after check note update of the rs 8 rows. There is null information
between the 9th row and the 12th row for performing bit node update from the
1st column to the 8th column; Similarly, the check node update from the 1st row
to the 4th row can be performed easier right the after the bit node update of the
first 16 columns. There are null information between the 17th column and the
24th column for check node update from the 1st row to the 4th row. For example,
it needs 81 x 12 = 972 clock cycles for original decoding flow 2 iteration. On the
other hand, it just needs 81 x 9 = 729 clock cycles for overlapped decoding flow

with 2 iterations, as shown in Fig. 3.7.

27

CNUI | CNU2 | CNU3 CNUI | CNU2 | CNU3

BNU1 | BNU2 ‘ BNU3 BNU1 | BNU2 | BNU3

Time schedule

(a)
CNUI | CNU2 | CNU3 CNUI | CNU2 | CNU3
BNUI | BNU2 | BNU3 BNUI | BNU2 | BNU3

Time schedule

(b)

Figure 3.7: Timing diagram: (a) original (b) overlapped.

3.2 Proposed algorithm

In Chapter 2, we introduced the commonly uused LDPC decoding algorithms and
showed the simulation result of thé correspending performance. In this section,

we will introduce the Radix-4 algorithm.

911 N4

Figure 3.8: Message information from bit nodes to a check node.

Similar to the derivation of Min-Sum-Correct algorithm, first we consider a
check node with 4 bit nodes, as shown in Fig. 3.8. By combining (2.22), (2.23),

and (2.28), we can obtain

1 elaisr -1 eleasi—1 elaz—i—1
+ (eLq1H1+1 " Lo 41 " Laz—a +1)
. (eLq1H1_1 o e eLqSHI—l)
elaio1 41 elea—141 efaz—141

L, ., = log

28

1 e(Lq1H1 +Lq2H1 +Lq3*>1) _|_ eLq1H1 _|_ eLq2H1 _|_ eLq3H1
= (0]
& e(Lfllﬁl +Lgy 1) + e(Lq1ﬁ>1 +Lq3ﬁ>1) —+ €(Lq2H1 +Lq3ﬁ>1) + 1

f— log (e(Lq1H1+Lq2~>1+L‘13~>1) + equﬂl + eLq2~»1 + eLq3~»1)

— 10g (e(quﬂl +Lgy 1) + €(Lq1H1 +Lg3 1) + €(Lq2H1 +Lg3 1) + 1) . (31)
We follow the approximations in [10] to obtain a new approximation as follows:
log(e® + €° + € + e?) ~ max(a, b, ¢, d) + log(1 + e~ (max(@bed)—maxa(abed)) (3 9)

where maxs(a, b, ¢, d) is the second biggest value in the set of (a, b, ¢, d). If we use

the approximate equation (3.2) to simply (3.1), we can obtain

LT,1H4 = log (equﬂl +Lgy 1 +Laz_y + elaia + elaz—1 + 6Lq3ﬁ1)

_ lOg (eLthl +Lgy ,y + eLq1H1+L¢I3H1 + eLq2H1+Lq2H3)

= mnax (LQ1H1 + LQ2H1 + Lq3ﬁ1a Lq1—>1a LQ2H1> Lq3~»1) + 01 (Lq1ﬂ1> quﬂu Lq3ﬂ1)
— max (quﬂl + Lq2ﬂl7 LQ2—>1 + LQ3—>17 Lq1—>1 + L434>17 0)

_92(L¢hﬂ1> LQ2ﬂ1> LQ3H1)7 (33)
where
gl(quﬂu Lq2ﬂ17 quﬂ1> = log (1 T 6_(max(a)_maX2(a)))) (3'4)
with o = (Lq1~>1 + LQ2ﬂ1 + LQ3H1> Lthﬂv LQ2ﬂ1a LQ3H1)7
and

g2(Lq1~>17 Lq2~>17 Lq3~>1> =]‘Og (1 _'_ 6_(maX(ﬁ)_maX2(IB))) Y (35)
with 3 = (LQ1H1 + LQ2ﬁ1a LQ2H1 + LQ3H1> Lq1~>1 + LQ3H1> 0)

We can also obtain the general check node updates flow diagram as shown in
Fig. 3.9, where a check node is connected to many bit nodes. The notation & is
the computing unit which execute the formula in (3.3).

The performance comparison of the proposed algorithm and the conventional
LLR is shown in Fig. 3.10. In simulation result, we can find the performances

of the Radix-4 algorithm are better than the performance of LLR algorithm. By

29

Figure 3.9: The flow diagram of check node update using Radix-4 algorithm.

LLR algorithm V.S. Radix—4 algorithm

10

10°F

—<&— LLR lIteration 1
—&— LLR lteration 2
—*— LLR lIteration 4
—©6— LLR lteration 5
—#— LLR lIteration 8
_3|| —>— LLR Iteration 10
— © — Radix-4 lteration 1
— 8 — Radix—-4 lIteration 2
— % — Radix—4 lteration 4
— © — Radix—4 lteration 5
7
*

BER

— Radix-4 Iteration 8
— Radix—4 Iteration 10
4) , ‘

0 0.5 1 15 2 2.5 3 3.5 4
SNR (dB)

10

Figure 3.10: Performance comparison of the proposed Radix-4 algorithm and the
conventional LLR.

30

following [20], we show the value of the check update with LLR algorithm and the
proposed algorithm as in Figs. 3.11- 3.14, where the SNR is 4. We find that unlike
Min-Sum algorithm the proposed algorithm can keep the quite large when value
iteration unmber grows. This may be the reason that the performances of the
proposed Radix-4 algorithm is better than that of LLR algorithm. The Radix-
4 LDPC decoding has more complexity than the LLR decoding. The unit for
check node update in LLR algorithm and Radix-4 algorithm can be implemented
as show in Fig. 3.15 and Fig. 3.16 respectively.

The 1st iteration

15

0.5f

_05 -

Value of check update in Radix—4 algorithm

_15 -

_2 Il Il Il Il Il Il
-2 -15 -1 -0.5 0 0.5 1 15
Value of check node update in LLR algorithm

Figure 3.11: The value of check node update in different algorithm.

3.3 The comparison of Radix-4 and Min-Sum-
Correct

From Fig. 2.13 and Fig. 3.9, we can obtain the individual number of state with
seven nonzero elements in a row, as shown in table 3.1. It shows the number

of state is less by Radix-4 algorithm than by Min-Sum-Correct algorithm. In

31

The 2nd iteration
3 T T T

Value of check update node in Radix—4 algorithm
o

_3 I I I I I I
-25 -2 -15 -1 -05 0 0.5 1 15 2 25

Value of check node update in LLR algorithm

Figure 3.12: The value of chieek node update in different algorithm.

The 5th iteration
8 ‘

Value of check node update in Radix—4 algorithm
o

_8 I I I I I
-6 -4 -2 0 2 4 6
Value of check node update in LLR algorithm

Figure 3.13: The value of check node update in different algorithm.

32

The 8th iteration

Value of check node update in Radix—4 algorithm
o

-6 -4 -2

0

2

Value of check node update in LLR algorithm

4

Figure 3.14: The value of‘check node update in different algorithm.

B~ tanh

B— tanh

B;—— tanh

97 ¢

B—— tanh

o

tanh' —> NEW B,
tanh' |~ NEWB,
tanh™ — NEWB,
tanh” | NEWB,

f

Figure 3.15: The unit for check update with 4 bit node in LLR algorithm.

33

\

NEWB,

A
5
5 A
“ o

Figure 3.16: The unit for check update with 4 bit node in Radix-4 algorithm.

addition, we can obtain the overall decoding latency with partially parallel scheme
by Radix-4 algorithm and Min-Sdm-Correct algerithm, as show in Table 3.2. For
example, assume subblock size is 81 bits with 10 nofizero elements in a row and
10 iterations. We can obtain the overlapped-¢lock cycle by Radix-4 algorithm
is (81+43)*(1+4*10)=3403 and overlapped clogk:cycle by Min-Sum-Correct is
(81+45)*(14+4*10)=3525, where 81 is the size of basic matrix, 3 and 5 are needed
stage, and 10 is iteration number. The decoding latency by Radix-4 algorithm is
shorter than it by Min-Sum-Correct algorithm.

Number of the nonzero
element in a row 7 8 10 20
Number of stage by Min-
Sum-Correct (X) 3 3 4 5
Number of stage by
Radix-4 (Y) 2 2 2 3

Table 3.1: The comparison of Radix-4 and Min-Sum-Correct.

34

Radix-4

Min-Sum-Correct

Non-overlapped
(clock cycles)

(Z+Y)*(Iteration®6)

(Z+X)*(Iteration*6)

Non-overlapped
(clock cycles)

(Z+Y)*(1+Iteration*4)

(Z+X)*(1+Iteration*4)

X: Number of stage by Min-Sum-Correct

Y': Number of stage by Radix-4

Table 3.2: The decoding latency.

3.4 LUT circuit

Observing Min-Sum-Correct and the Radix=4 dlgorithm, we need to perform func-
tion of log(1 4 e~1*l). In general, .the, special finction is usually implemented by
look-up table. The authors in {14} proposed: two approximation methods, i.e.
coarse quantization and piece-wise linear approximation as shown in Table 3.3
and Table 3.4. To reduce the implementation effort in VLSI design, we modified

Table 3.4 as in Table 3.5. The simulation'of different approximation methods

and original function are shown in Fig. 3.17.

x| log(1+e™) x| log(1+e™)
[0,0.196) 0.65 [1.05,1.508) 0.25
[0.196,0.433) 0.55 [1.508,2.252) 0.15
[0.433,071) 0.45 [2.252,4.5) 0.05
[0.71,1.05) 0.35 [4.5,+0) 0.0

Table 3.3: Quantization table for log(1 + e~1l).

35

IX| log(1+e™) IX| log(1+e™)
[0,0.5) —|x|x27"+0.7 [2.2,3.2) —|x|x27* +0.2375
[0.5,1.6) |—|x|x27+0.575 [3.2,4.4) |-|x|x27+0.1375
[1.6,2.2) —|x|x27 +0.375 [4.4,+00) 0.0

Table 3.4: Piece-wise linear function for log(1 4 e~1#]).

x| log(1+e™) x| log(1+e™)
[0,0.5) —|x|x27" +0.6875 [2.0,3.0) —|x|x2*+025
[0.5,1.5) —|x|x272 +0.575 [3.0,4.5) —|x[x27 +0.125
[1.5,2.0) —|x|x27 +0.375 [4.5,+00) 0.0

Table 3.5: The proposed piece-wise linear function for log(1 + e~l=h.

0.8

0.7

0.6

0.5f

0.4}

0.3

0.2}

0.1f

-0.1
0

log(1+exp(=|x]))

— - — - piecewise linear approximation
table-lookup approximation
our piecewise linear approximation

Figure 3.17: Comparison of using LLR and Radix-4.

36

3.5 Fixed point analysis

In VLSI implemented flow, the quantification effect is must considered. In order
to show quantification effect, we need to run proposed algorithm with fixed point.
In order to reduce complexity, we choose 4 bits for integer part and 4 bits for

decimal. Fig. 3.18 show the floating point and fixed point simulation.

802.11n (1944,972) AWGN Radix-4 algorithm with floating point and fixed—point
10 T — s == T T T

107%F

BER

—<— fixed—point with iteration 1
—&— fixed—point with iteration 4
10 £ | —— fixed—-point with iteration 5
[| —*— fixed—point with iteration 8
— & — floating point with iteration 1
— 8 — floating point with iteration 4
— % — floating point with iteration 5
— % — floating point with iteration 8
4 1 1 1 I \
0 0.5 1 15 2 25 3 3.5 4
SNR (dB)

—HE

10

Figure 3.18: The performance of Radix-4 algorithm with fixed-point.

3.6 Proposed architecture

The VLSI design for the proposed LDPC decoders is shown in Fig. 3.19. The
8 bit input data consisted of 4 bits respectively for integer and decimal part.
First the received date is passed input buffer and then fed into the one port
memory bank and the two port memory bank simultaneously. The one port
memory bank stores the initial channel value for to decide the valid codeword for
syndrome check, and the two port memory bank is used to store the probability
message exchanged between the unit for the check node update and that for bit

node update. The date fed into the two port memory bank from input will be

37

passed to the unit for the check node update to perform check node update. After
the check node update, the computing result will be rewritten in the two port
memory bank. Then the data stored in the two port memory bank is fed into the
unit for the bit node update to perform the bit node update. Similarly, after the
bit node update, the computing result will be rewritten in the two port memory
bank too. By performing storing and writing mentioned above, we say we can
finish the iteration for one time. After iterative computing, the date in the two
port memory bank and the one port memory bank are summed to decide valid

codeword bits.

Input enable

Data In) One port
| v memory VY
bank

[e ||

Two port
CNU memory BNU
bank

Data Out

Figure 3.19: The overall architecture of the proposed LDPC decoder.

3.6.1 The unit for the check node update

To implement the proposed algorithm for code rate 1/2 in IEEE 802.11n standard,

we need to consider two cases, as shown in Fig. 3.20. The last column represents

38

how many nonzero elements (elements that are not “-”) in the corresponding row.

There are only two different numbers in the last column, i.e. 7 and 8. Thus the

we can obtain the flow diagram of the check node update as shown in Fig. 3.21

and Fig. 3.22. From two figures, we find that two kinds of operation units are

needed, i.e. @ and ©. @ (the first unit for the check update) is an unit to perform

formula (2.37) and & (the second unit for the check update) is an unit to perform

formula (3.3).

NEW

1112 (1314151617 |18 19|20 |21|22|23|24

NEW

OLD

1

~
o
|
|
|

- |50

57

0| - |- -[-lo|-|-]-]|-|-|-|-]-

9

14

64

30| - |- [s2]-|-|-|-|-|-|-|-|-]-

11

- 135

10

77045(9 [- [70| - | - |- |- |- |-|-|-]-

12

- | 60

24

S1| = | —=|—=|—-1]—-]61|27

8

|
I E=N N R=N

- |38

65

72157 -|-]-]-

d

(=)}

|
[N e |

|

|

|

69

0
52179 | - | = | —=|—-|79|-1]0

X ||| |[W[N =

Sofeb= -1 -1 -|-1-

o

===]=]=1-1-166

40

28| — | == 20 - | - | 22| -

—_
(=}

62

(I E=N =N

35063 =n = | | — | - |3 |- |-

—_
—_

30

(B E=N =N

solpleitaler = - |- |- |- |-

[E=R KN

—
[’}

N|W| kA O

|

|

|

|
[iiiaim e e

Figure 3.20: Table shows how many nonzerc (elements that are not “-”) elements
in rows.

Figure 3.21: Case 1: A check node connected to 7 bit nodes.

Fig. 3.23 is The first operation unit for the check node update. There are 2

input in Fig. 3.23. We take the MSB of input A and B to perform xor operation,

39

Figure 3.22: Case 2: A check node connected to 8 bit nodes.

- LUT
e @

Abs | —
Compaté
Abs =]
sign

sign XOR

Figure 3.23: The first operation unit for the check node update.

mag

and the last 7 bits to obtain the absolute value of the input. Then, compare
the absolute value of the input, and take the smaller value to combine with the
output of xor operation. In addition, we take input A and B to add and subtract,
and then perform table look-up and subtract. Final, the real output is that we
sum the output of circuit above mentioned. The clipping component is used to
clip the number of bits for the input of the bit node update.

There are 3 input in Fig. 3.24. We take the three inputs to perform addition
individually as shown in Fig. 3.24. Then, we can obtain the largest value MAX;
and the second largest value MAX;5 in the first comparison block. We can also
obtain the largest value MAXy; and the second largest value MAXs, in the sec-

ond comparison block. Then, we perform the subtract and table look-up. The

40

A MAX11

B L
A »& A+B+C | Compare l e
B Eb i —(-)+ LUT
: c, MAX12 Clipping
v MAX21
o B+C,
C) A+B. ouT
A+C, | Compare

MAX22

Figure 3.24: The second operation unit for the check node update.

final output can be obtained by performing add individual and then performing
subtraction. The clipping component is used to clip the number of bits for the

input of the bit node update.

3.6.2 The unit for the bit node update

In the step of the bit node update, we need to sum the probability message from
all check nodes connected to this bit noder"Thernumber of the nonzero elements
in the same column in IEEE 802.11n standard ‘have been defined, i.e. 2, 3, 4,
11, and 12. Based on the reason mentioned above, we design units for bit node
update with 12 inputs and a mux, as shown in Fig. 3.25. For Fig. 3.25, this is
used for 12 inputs in standard. We sum all input and channel value, then subtract
a target input individually excluding to be the input for the check node update.
The FF is the flip-flop used to shorten data path and the clipping function is
to clip carry bit that is the input of check node update. In addition, the MSB
at point P is the hard-decision value of the decoded result. At the final stage a
multiplexer is needed to select the desired output signal. This scheme enables a

sharing circuit for BNU with 2, 3, 4 ;11 and 12 inputs.

41

Channel value

<
wn

B Decoded bit

FF

T

—»@—» FF — Clipping New €,

New C
— Clipping S

- New C
S ;H E -—>-C11pp1ng 04 3

FF

Gl g N

FF

~{Clpping] 5 f-= "

FF

: - New C
S Ciping [g I

FF

New C
' Ciing | 5

FF

C, I -
C, I
Cy

{Climing] 5 Yev €

o Clnping N

.—>©_> FF
—»@—» FF |~ Clipping New Cu
L 0

S New C
Gl 5

FF7+@§ew G,

Figure 3.25: The unit for bit node update with 12 inputs.

42

Chapter 4

VLSI implementation

4.1 Design flow

In the section, we will introduce the design flow for the proposed LDPC decoder.
The cell-based design flow is as shown in Fig. 4.1.

4.1.1 System model

We use the Matlab to build simulation envitonment. JFirst the encoder is created
according to the IEEE 802.11n standard; then Radix-4 algorithm with floating
point and fixed point are used to ‘observe the decoding performance. We use
Radix-4 algorithm with floating point to observe the performance between BER
and SNR, and Radix-4 algorithm with fixed point to choose the bit width and
build test pattern for RTL code.

Using tool: Matlab.

4.1.2 RTL code

In this step, we use Verilog-HDL to describe the hardware architecture. The
general design method is hierarchically method. Hence we need to divide the
overall design into serval basic modules first. Then, connecting among the basic
modules to complete the rough structure. Finally we need to perform bit true
in order to make sure the output signals of RTL code and Matlab are same with

same input signals. In addition, we have using memory in our architecture, so we

43

Specification
development
System model

L]

System model
(Matlab)

!

RTL code
(Verilog)

Bit ture simulation
NC-verilog and
modelsim
T

RTL verification

L]

Logic systhesis
(Design complier)

!

Gate level netlist

Scan chain with
netlist
(DFT complier)

Fault coverage
analyze
(TetraMax)

Gate level
simulation
(NC-verilog)

Gate Level pre-layout

verification

v

Place & Route
(SOC Encounter)

GateLevel post-layout

verification

v

|

v

Gate level STA

Layout verification
(DRC/LVS)

Power analyze

RC Extraction
Delay Calculation

A,

!

)

Circuit Level

Layout Merging Layout verification - .
(Calibre) (DRC/LVS) Circuit Extraction) f)
Circuit -level Circuit -level
simulation STA
Y
Tapeout

Figure 4.1: IC design flow.

44

use the memory compiler to generate need one port and two port register files.

Using tools: memory compiler, NC-verilog, modelsim, and Debussy nWave.

4.1.3 BIST

Because there are memory in our architecture, we need to add BIST circuit on
memory control for the testability of IC. After adding BIST circuit, there are two
mode in circuit, i.e. function mode and test mode. Function mode means that
normal LDPC decoding can be performed, and test mode can be used test that
there are have any error in memory.

Using tool: TurboBIST.

4.1.4 Synthesis

In this step, we start to synthesize our circuit. Before this step, our program is
just hardware language, is not real gate. By using Synopsys Design Compiler
to do the synthesis, our prograni can be translate as real gate. And we can get
the rough area and some timing-information of the gate. In our decoder design,
all modules except the one port-and two port:register files are synthesized with
TSMC 0.18um CMOS process technology.

Using tool: Design Compiler.

4.1.5 Gate-level simulation

After synthesis, we can get timing information of gate. So we can perform our
circuit to check have any error with real time. We use NC-Verilog to do the
gate-level simulation and use Debussy nWave to check waveform. By checking
waveform, we can observe function exactitude with our predetermined clock pe-
riod.

Using tools: NC-Verilog, and Debussy nWave.

45

4.1.6 DFT

For IC testing, we need to add mux in front of Flip-Flop and scan chains for
the testability of IC. After adding mux, we can get there is any error between
Flip-Flop and Flip-Flop by passing mux input signal. We use to Synopsys DFT
Compiler to do scan chain insertion.

Using tool: DFT compiler.

4.1.7 ATPG

In the step, we use ATPG (automatic test pattern generator) of Synopsys Tetra-
Max to generate test patterns for chip measurement.

Using tool: Synopsys TetraMax.

4.1.8 APR

We use SOC encounter to do automaticalsplacement and routing (APR). Before
placing and routing, we need to add power I/O and cere 1/O on Gate-level netlist
and arrange location of input, éutput, I/O power, and core power on pad CIC
supported. We need to consider®eore mtilization, location of one port and two
port register files, number of power ring;location and number of stripe to meet
timing constraints from SDC file.

Using tool: SOC encounter.

4.1.9 DRC and LVS

In general, we usually have consider DRC (design rule checking) and LVS (layout
V.S. schematic) in APR. But there is just rough check result in SOC encounter.
So we need to do detail verification. We use the Calibre DRC to check whether
there is any error with design rule and use the Calibre LVS to make sure that
whether the layout and the schematic are identical or not.

Using tool: Calibre.

46

4.1.10 Post-layout simulation

In order to check function, we take the netlist and file of timing information
generated by SOC encounter to run NC-Verilog. We can observe wave to find
whether is any error by Debussy nWave. This is the last step to check function
on myself work.

Using tools: NC-Verilog, and Debussy nWave.

4.2 Chip layout

Figure 4.2: Layout of the proposed LDPC decoder.

47

Figure 4.3: Layout of the proposed LDPC decoder.

4.3 Comparison and implementation result

A 3-mode LDPC decoder for IEEE 802.11n is implemented. With input quanti-
zation of 8 bits (4-bit integer part and 4-bit fraction part), synthesized with RTL
compiler using TSMC CMOS 18um cell library, the total gate number of the
proposed architecture is 780K. Using the TSMC 18um technology with 6 metal
layers, the layout plot is presented as in Fig. 4.2 and Fig. 4.3 by SOC encounter for
floorplaning, placement and routing. The core size is 17.9mm?, clock frequency

is 62.5MHz, and average power is 145mW. The data rate is 292~50Mbps.

48

TSMCO0.18um

CQFP160

30mm*

62.5MHZ

292~50Mbp

165mW

Table 4.1: Specification of the proposed LDPC decoder.

49

[7] [19] [8] This work
Multi-modes NO NO NO 3 modes
Spec. (1024,512) | (2048,1732) | (2048,1024) (éi;i’;i:kgzl)
Con(sjt(;gStion Random RS-based int?rllr:;\/-ed QC_based
Decoding LLR LLR Turbo Radix-4
algorithm
Technology 0.16um "0.1778um 7 77 Ls ,Q.18um 0.18um
Parallelism | Fully(100%) ‘ Fully(1 00%) | Paftial(33%) Partial(33%)
Iterations 64 B2 CEL 16 1~7
Frequency 64MHz 100MHz 125MHz 62.5MHz
Area 52.5mm’ 17.3mm’ 14 3mm’ 17.9mm”*
Throughput 1Gbps 3.2Gbps 640Mbps 292~50Mbps
Power 690mW N/A 78TmW 145mW

Table 4.2: The comparison of different architectures.

50

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we propose a decoding architecture of LDPC codes for IEEE
802.11n. We use partial parallel scheme to reduce the area and congestion. It can
increased throughput by using propoesed Radix=4 algorithm in our architecture,
and we use a method to reducerdecoding latency. “In addition, we use simpler
method to approximate function needed. -Finally, the proposed architecture is
implemented of 292~50Mbps actording post=layout-simulation. The core size is

17.9mm?, and clock frequency is 62.5MHz and.average power is 145mW.

5.2 Future work

In this thesis, we only implement three mode which all are rate 1/2 LDPC decoder
under for IEEE 802.11n standard. In fact, there are 12 modes which 4 kind of
rate and 3 kind of basic matrix size. A 12 mode supported LDPC decoder design
can be expected. In addition, the point that performance of Radix-4 algorithm
is better than traditional decoding be also discuss. Furthermore, we should find

a easy way to make routing easy.

51

Bibliography

1]

R. G. Gallager, “Low-density parity-check codes,” IRE Trans. on Informa-
tion Theory, vol. IT-8, pp. 21-28, Jan. 1962.

R. G. Gallager, “Low-Density Parity-Check Codes,” Cambridge, MA:MIT
press, 1963.

R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.

Inform. Theory, vol. 74, no. 2, pp..H33-547, Sept. 1981.

D. J. C. Mackay and R .M. Neal, “Near Shanhon limit performance of low-
density parity-check codes;” Electronics: Lettets., vol. 32, pp. 1645-1646,
Aug. 1996.

D. J. C. MacKay, “Good error-correcting codes based on very sparse matri-

ces,” IEEE Trans. Inf. Theory, 45, pp. 399V432, March 1999.

S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the
design of low-density parity-check codes within 0.0045 dB of the Shannon
limit,” IEEE Comm. Lett., vol. COMM-5, no. 2, pp. 58-60, Feb. 2001.

A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gbs 1024-b rate 1/2 low-
density parity-check code decoder,” TEEE Journal of Solid-State Circuits,
Volume 37, Issue 3, pp. 404 V 412, March 2002.

M. Mansour and N. Shanbhag, “A 640-Mb /s 2048-bit programmable LDPC
decoder chip,” IEEE Journal of Solid- State Circuits, vol. 41, no.3, pp. 684-
698, March 2006.

Xin-Yu Shih, Cheng-Zhou Zhan, Cheng-Hung Lin, and An-Yeu Wu, “An
8.29mm? 52mW Multi-mode LDPC Decoder Design for Mobile WiMAX

52

[10]

[13]

[15]

[16]

[17]

[18]

System in 0.13um CMOS Process,” IEEE Jour. Solid-State Circuits, vol. 43,
no. 3, pp. 672-683, Mar. 2008.

M. Bicherstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s
Radix-4 LogMAP Turbo Decoder for 3GPP Mobile Wireless,” ISSCCO03 Dig.
Tech. Papers, pp. 150 - 151, Feb. 2003.

H. Zhang and T. Zhang, “Design of VLSI Implementation-Oriented LDPC
Code,” Vehicular Technology Conference, vol. 1, pp. 670-673, 2003.

T. J. Richardson and R. L. Urbanke, “Efficient encoding of Low-Density
Parity-Check codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638-
656, Feb. 2001.

J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429-445,
Mar. 1996.

X. Y. Hu, E. Eleftheriou, D: M. Armold and A. Dholakia, “Efficient imple-
mentation of the sum-product algorithin for decoding LDPC codes,” Proc.

[EEE GLOBECOMO1, vol. 2, ppi 25-29;1Nov. 2001.

N. Wiberg, “Codes and Decoding on-General Graphs” Ph.D. thesis, Linkop-
ing University, Sweden, 1996.

J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation
based decoding of low-density parity check codes,” IEEE Comm. Lett., Vol.
50, pp- 406-414, March 2002.

I. C. Park and S. H. Kang, “Scheduling algorithm for partially parallel archi-
tecture of LDPC decoder by matrix permutation,” Proc. IEEE International
Symposium Circuits and Systems, pp. 5778-5781 Vol. 6, May 2005.

K. Shimizu, T. Ishikawa, N. Togawa, T. Ikenaga and S. Goto, “Partially-
parallel LDPC decoder based on high-efficiency message-passing algorithm,”

Proc. IEEE International Conference Computer Design: VLSI in Computers
and Processors, pp. 503-510, Oct. 2005.

93

[19] A. Darabiha, A.C. Carusone, and F.R. Kschischang, “Multi-Gbit/sec low
density parity check decoders with reduced interconnect complexity,” ISCAS
2005, Vol. 5, May 2005.

[20] W. Ryan, “Low-Density Parity-Check Codes,” June 2005.

o4

