
國 立 交 通 大 學 
 

電 機 與 控 制 工 程 研 究 所 
 

碩 士 論 文 

用於窄波段腸胃道影像之遞迴式解馬賽克演算法

研究 

Study on Recursive Demosaicking Algorithm for 

Narrow-band Gastrointestinal Image 

 

中華民國九十七年九月 

 研究生：賴貫康 

指導教授：董蘭榮 博士 



 

Study on Recursive Demosaicking Algorithm for 

Narrow-band Gastrointestinal Image 

Advisor: Dr. Lan-Rong Dung 

Graduate Student: Kuan-Kang Lai 

September 2008 

Graduate Institute of Electrical and Control 

Engineering 

National Chiao Tung University 

Hsinchu, Taiwan, ROC 



 i 

Study on Recursive Demosaicking Algorithm for Narrow-band Gastrointestinal Image 

 

 

Graduate Student: Kuan-Kang Lai   Advisor: Dr. Lan-Rong Dung 

 

Department of Electrical and Control Engineering 

National Chiao Tung University 

 

Abstract 

The objective of this dissertation is to develop a demosaicking algorithm which 

is suitable for narrow-band gastrointestinal image. We present a hybrid recursive 

demosaicking method which utilizes the inter-plane and the frequency correlation 

efficiently. Processing the iteration can improve the image quality and reduce the 

aliasing and color artifacts. However, too many iterations may cause the zipper effect 

and tend to de-saturate the color of image. So we set a stop criterion to judge the 

image is suitable and stop the iteration adaptively. For Bayer CFA, we compare the 

proposed method using several test images with some existing techniques. Our 

method performs better both in visual and by the performance measurement indexes. 

In order to process the demosaicking algorithm for narrow-band gastrointestinal 

image, the CFA need to withdraw one G component. Through our discussion, we 

found the CFA which been arranged similar to Bayer pattern can achieve better results. 

Compare to conventional Bayer CFA, our proposed demosaicking algorithm can lose 

only 1.0185dB in average by only three samples in 2-by-2 CFA block. 
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摘要 
 

這篇論文的目標是發展一個專為窄波段腸胃道影像設計的解馬賽克演算

法。我們提出了一種遞迴式的演算法，這個方法有效的利用了三原色平面間的相

關性以及頻域上高頻頻段的高度關聯性。透過利用疊代的方式，可以提升影像的

品質並且消除一些解馬賽克容易產生的失真或是顏色上不正常的變化。然而，使

用太多次疊代可能會造成拉練效應並且可能會使整張影像的顏色變得不飽和。為

了解決這個問題，我們設立了一個停止疊代的機制，這個機制能判斷這張影像是

否適合用疊代來改良品質，適合的話再執行，並且適應性的停止疊代。針對傳統

的貝氏彩色濾光陣列，我們和一些已經現存的方法做比較，透過一些常用的測試

影像，我們的方法無論在視覺上或是評估指標上都表現得比較好。為了把這樣的

演算法適用於窄波段腸胃道影像，彩色濾光陣列裡的綠色成分會被窄波段藍光替

換。透過諸多的討論，把貝氏彩色濾光陣列裡的綠色成分替換掉，這樣的排列效

果是最好的。針對這個特別設計的彩色濾光陣列，我們的演算法在一個二乘二的

彩色濾光區塊中只有三個取樣成分下，還是可以把影像解馬賽克出來。跟傳統的

貝氏彩色濾光陣列比較，品質上只損失了 1.0185dB。 
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Chapter 1   Introduction 
 

1.1 Demosaicking 
The natural images contain three different spectral channels, i.e. red (R), green (G) 

and blue (B). However, each individual optical sensor is able to capture only one 
single color of the three color bands. That’s means we need three sensors to get the 
full color in one pixel. In order to reduce the cost and size, most digital still cameras 
(DSC) today using a single-chip CCD or CMOS sensor array whose surface is 
covered with a color filter array (CFA). The CFA is located between the lens and the 
sensors. The following figure describes this system.  

 
Fig. 1.1 Optical system in digital still camera 

 
According to this arrangement, there is only one color be sampled of each pixel. To 

get a full-color image, other colors must be estimated or interpolated from the 
neighboring samples. This color filter array interpolation is known as demosaicking. 

Bayer pattern [1] is the most popular type of color filter array. It has four possible 
arrangements which can be described as Fig. 1.2. 

 

Fig. 1.2 Four possible arrangements of Bayer CFA 
 

As we see, G samples are obtained by a checkerboard lattice and R and B samples 
are obtained by a rectangular lattice. The G pixels are sampled at a twice rate than 
others as the human eye is more sensitive to G compared to R and B. 

However, we choose the first arrangement of Fig. 1.2 for the whole discussion. 
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1.2 Narrow-band Image 
For the last few years, endoscope has been spread widely for diagnosing abnormal 

pathological changes. Except for its less invasive, for the most important point, it is 
capable of identifying early-stage lesions of cancers. Early detection and treatment of 
cancers has become a demanding goal in the diagnosis field.  

Physician detects those abnormal regions based on the color, shape, and the surface 
pattern of patient’s mucosa. Throughout the judgment, if the lesions is observed and 
identified as a tumor, treatment is decided among surgery or other therapy. In order to 
afford complete cure by endoscope, lesions must be found at the early stage. 
Therefore, for the sake of better identifying of abnormal findings and more accurate 
diagnostic performance, several investigators and researches have been done for the 
same object, the improvement of the endoscope system and the enhancement of its 
observation. 

Narrow-band Image (NBI) [28], [29] can achieve the goal we mentioned above. 
This kind of endoscope enables physicians to detect tumors in the deep layer of 
mucosa. Under the narrow-band light, due to the absorption of hemoglobin, the fine 
vessels of mucosa can be displayed clearer than under the white light. K. Gono in [27] 
had proved that center wavelengths of 415nm and 540nm enable to emphasize images 
of vessels. According to the experiments of backside mucosa of human tongue, as 
shown in Fig. 1.3, the 415nm image can display the structure of fine vessels at the 
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Fig. 1.3 Images of backside mucosa of human tongue under the light of different 

wavelengths.1 
 
superficial layer, and the 540nm image can present the vessel structure in the 
relatively deep layer of mucosa if the living tissue is observed under narrow band 
light 415 and 540nm. Besides, Gono also proved that under the same center 
wavelength 415nm, broad-bandwidth (100nm) of 415nm light is not enough to show 
the fine vessels of mucosa. However, narrow-bandwidth (60nm) of 415nm light can 
increase the contrast of micro vessels in superficial layer. 

Nowadays, NBI has been popularly used in endoscope throughout the world. 
Olympus developed the first endoscope system and now its latest platform “EVIS 
LUCERA SPECTRUM” imaging platform (SPECTRUM) offers not only NBI, but 
also provides autofluorescence image (AFI) and infrared image (IRI). All of them are 
HDTV image quality. In order to display NBI in color image, SPECTRUM is 
designed so that 415nm image is assigned to B and G plane and 540 nm image is 
assigned to R plane. This assignment of the final image let the fine vessels are 
displayed in brownish-red, and thicker vessels in the deep layer are displayed in cyan 
color. Physicians observed the abnormal findings when making overall judgment, they 
can switch to NBI mode to investigate any pathological changes through the 
high-contrast image of the vessels. 

                                                 
1 This figure refers to [27] 
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1.3 Motivation 
The object of our experiment is to design the gastrointestinal capsule endoscope 

with NBI image. The sensor of existing NBI system has two layers of optical filters 
[27]. The first layer is mode selector for choose the vision mode of white light image 
(WLI) or NBI. The second layer is used to sense RGB color. However, it is not 
practical to place two layers of sensors to capture RGB and NB color individually. 
Similar to the reasons of most commercial digital cameras today, demosaicking is a 
way to solve this difficulty. The following figure describes the existing system 
diagram. We use two different light sources: white light and NB light. And the CFA 

 
 
 
 
 
 
 

Fig. 1.4 Sensor structure of existing capsule endoscope system 
 

we used is similar to Bayer pattern but withdrawing one G sample, as shown in Fig. 
1.4. When the capsule endoscope captures the image, these two sources are emitted 
continually. While the source is white light, the CFA is open for sense mosaic RGB 
color. Otherwise, the sensor is record the N information under gray-level resolution at 
the location of withdrawing G. 

Now we desire to develop a demosaicking algorithm with satisfied results so that 
we can make use of it on the endoscope system. Demosaicking problem has been 
studied and researched broadly in recent years. Lots of demosaicking algorithms are 
also presented continually. The simplest way is the bilinear interpolation. Although it 
is easy to implement, the reconstructed image can not maintain the edge information 
and high-frequency component. Later, many characteristics or correlations have been 
utilized in order to get better results. Some may aim to suppress artifacts around edge, 
and some may exploit the strong inter-plane frequency correlation to improve the 
high-frequency component. Among several ways, recursive methods can achieve a 
better result [2]. The iteration had been widely used in demosaicking since the 
closed-loop estimation can approximate the original color values and hence enable to 
reduce these artifacts. However, too much iteration may cause the zipper effect and 
tend to de-saturate the color of image [20]. Besides, in our research, we found that 
some output images can be closed to the original one after many times of iterations 
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but some can not. If we can diagnose the image is suitable to execute the iteration 
beforehand, we can decide to enter the image to the recursive step or not. Thus, the 
discussion of how to adaptively use the iteration as we proceeding demosaicking is 
also an important part in this dissertation. 
 

1.4 Outline 
This thesis is structured as below:  

Chapter 2  Background 
This chapter makes a review of color fundamentals and some color models, which 

builds the foundation of following discussion. Besides, some measurement indexes 
which used to compare the outputs of image processing are introduced as well. Then, 
briefly introductions of some existed demosicking methods which are popularly 
discussed throughout this field are described. 
 
Chapter 3  Demosaicking using Iterative Approach 

This chapter presents the demosaicking methods which utilize the iteration to 
improve image quality. A discussion about the number of iteration is also shown in 
this chapter. Following is the demosaicking algorithm we proposed and the plan 
concentrates on how to adaptively use the iteration is take on, too. At last, some 
comparisons are made on test image and highlight their pros and cons. 

 
Chapter 4  Demosaicking Problems of Gastrointestinal Narrow-band Image 

In this chapter, we modify the demosaicking algorithm in order to process on 
narrow-band gastrointestinal image. Besides, the CFA is no longer Bayer CFA and 
need to withdraw one G component. Discussions about the effects and performances 
of different CFA arrangements are also presented. 
 
Chapter 5  Conclusion and Future Work 

This chapter concludes this dissertation and its findings. The possible 
improvements are also described in this chapter. 
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Chapter 2   Background 
 

2.1 Introduction 
As we research or conduct experiments on image, the color fundamentals are the 

basis for the whole processing. Color is an important part of human expression, 
likewise, it also define the way we recognize the image. In general, we sense color 
owing to the spectrum of light source and the reflectance of observed object. This 
relationship is depicted as Fig. 2.1. Note that the spectrum of observer is obtained 
from the convolution of waveform of light and reflectance. 

 

Fig. 2.1 The relationship between the light source and observer 
 

The output waveform of Fig. 2.1 is actually color and brightness we absorbed. 
Retina, located the inner layer of human eye, is in charge of the vision of human. It 
contains two different kinds of receptors, cones and rods. Cones provide the color 
vision under normal illuminance, however, rods provide the monochromatic vision 
under low illuminance environment [31]. Typically, only features of light could be 
detected by cones, that is, specific range of wavelength spectrum would be catch by 
humid vision system. What image processing has done is virtually base on this 
specification. 

Next, when image processing has finished, regardless of image compression or 
transmission is, we need to check the result is the same to original one. If negative, we 
should know how much does the output image differ from the input? Some 
performance measurement indexes have been used to assess this issue. Discussion of 
these indexes would be shown as following. 
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The rest of this chapter gives briefly introductions of some existed demosicking 
methods. These discussions in sequence can also get a glimpse of the process of its 
evolution and progress in the demosaicking field 
 

2.2 Color Models 
So far, the perception of color in human brain and its interactions are still unclear 

and ambiguous. However, the physics of color can be defined by the results of 
experiments and theory. The first experiment was conducted by Newton in 1666 [30]. 
He observed that the rays after sunlight passing the prism of glass are not white light. 
This detection is opposed to the argument which said sunlight is just a homogeneous 
entity that almost everyone believed at that time. Newton continued his experiment; 
he made a small hole in a dark room. The sunlight passes through the hole and forms 
the direct rays in the dark room. After that, taking an optical prism and placing it in 
front of the hole, he observed the light radiate into a spectrum, as shown in Fig. 2.2. 

 
Fig. 2.2 Color spectrum seen by passing white light through a prism2 

 
The spectrum is actually the specification we mentioned last section. We display 

the spectrum in detail in Fig. 2.3. This range is called the visible light and the 
wavelength of this range is roughly from 400nm to 700nm. This range is just a minor 
part of the electromagnetic spectrum. 

 
 

                                                 
2 This figure refers to [32] and courtesy of the General Electric Co., Lamp Business Division. 
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Fig. 2.3 Wavelengths of visible light of the electromagnetic spectrum 

 
The trichromacy which introducing the principle of three color measurements was 

began in the 18th century. This theory showed that people need three different 
photoreceptors to create the visible range of color. Those receptors are called cone 
cells with different absorption. Therefore, the evaluation of color should require three 
different spectral weighting functions. That is to say, by linear combination of three 
primaries, it can produce a region in the color space. The following statement will 
introduce some color models which popularly used. 
 
2.2.1 RGB Color Model 

This color model comes from the color matching experiment conducted by 
Grassmann in 1853. The experiment schematic was described as Fig. 2.4. 

 

Fig. 2.4 The experimental schematic of trichromatic color matching 
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And this experiment has some important requirements as below: 
1)  The three primaries must have linearly independent spectra. 
2)  The angular size of the viewing field is limited to 2 degree. 
3) The observer must have normal color vision. 

Note that the RGB color model does not define three primaries. All discussions 
below are relative to the primary colors. When the exact primaries are defined, the 
color model then specified as absolute, such as sRGB or Adobe RGB.  

According to the trichromacy theory, spectral color can be matched by the three 
primaries. Equation 2.1 showed this combination. 
 

( ) ( ) ( ) ( )P r R g G b Bλ λ λ λ= ⋅ + ⋅ + ⋅   (2.1) 
 

The target of this experiment is let ( )P λ match the specific color spectrum. The 
observer checks color to be the same in the field of view. Different wavelength should 
have different weighting functions. International Commission on Illumination (CIE) 
in 1931 summarized the various experiment results from various primaries and 
different observers. They obtained the wavelengths of three primaries were chosen as 
R (700nm), G (546.1nm) and B (435.8nm) [34][35]. Based on the same principle, the 
experimental result is depicted as Fig. 2.5. These functions are called color matching 
function. 
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Fig. 2.5 The CIE 1931 RGB color matching function 

 
According to the figure above, the color matching function can be used to 

determine the amounts of R, G and B which needed to compose any available color. 
The values of R, G and B are regard as tristimulus values. Nevertheless, some 
tristimulus values of RGB color model are negative. That’s because some color 
spectrum can not be combined by equation 2.1. At that condition, one light source of 
three primaries needs to be moved to another side in order to match the specific color. 
The equation then becomes equation 2.2. 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

P r R g G b B
P r R g G b B
λ λ λ λ

λ λ λ λ
+ ⋅ = ⋅ + ⋅

⇒ = − ⋅ + ⋅ + ⋅
  (2.2) 

 
These negative values of tristimulus are not desirable as the electron beams are not 

able to produce “negative” input.  
Nowadays, the RGB color model is the most common way to encode color in 

computing. The mainstream of quantization number is 8 bits each primary color. RGB 
values encode in 24 bits per pixel (bpp) and represent the intensities of R, G and B 
using the range from 0 to 255. The color cube shown in Fig. 2.6 describes the 24bpp 
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RGB color space. 

 
Fig. 2.6 RGB Color cube 

 
2.2.2 XYZ Color Model 

In order to modify the problem of negative input in RGB color space, CIE 
discovered a new color model such that the tristimulus values were not negative. XYZ 
color model is build based on direct measurements of human visual perception hence 
it is close to the human vision. Due to this characteristic, XYZ color space regard as 
the basis from which many other color spaces are defined. The tristimulus values in 
XYZ color model become X, Y and Z. These tristimulus values are transformed from 
R, G and B values. This transformation is given as equation 2.3. 
 

0.4900 0.3100 0.2000
0.1770 0.8124 0.0106
0.0000 0.0100 0.9900

X R
Y G
Z B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (2.3) 

 
The transformed color space is XYZ color space. According to this transformation, 

the tristimulus values would always be positive. Then equation 2.1 becomes  
 

( ) ( ) ( ) ( )P x X y Y z Zλ λ λ λ= ⋅ + ⋅ + ⋅   (2.4) 
 
and the result of color matching function displays as below. 
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Fig. 2.7 The CIE 1931 XYZ color matching function 

 
Another advantage of this color space is the component Y directly representing the 

luminance of a color. 
Normalization of X, Y and Z sets three new stimulus x, y and z, as equation 2.5. 

 

1

Xx
X Y Z

Xx
X Y Z

Xx
X Y Z

Y

X
X Y Z

y
X Y Z

Zz x y
X Y Z

=
+ +

=
+ +

+ +

⎧ =⎪ + +⎪
⎪ =⎨ + +⎪
⎪ = = − −⎪ + +⎩

  (2.5) 

 
This produces the two dimensional chromaticity diagram xyY which is the projection 
of three dimensional XYZ color space. This chromaticity diagram allows some 
possible interpretations and is depicted as Fig. 2.8. 
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Fig. 2.8 The CIE 1931 color space chromaticity diagram xyY3 

 
Note that x, y represent the chromaticity values while Y shows the luminance. 

Besides, mentioned that Fig. 2.8 also show other two color models. As discussed in 
section 2.2.1, different primaries is set defines different color models. Therefore, the 
transformation to XYZ color space should not be the same. These transformations of 
sRGB and NTSC are given by equation 2.6 and 2.7 respectively. Do not get confuse 
to equation 2.3. All of them are RGB color spaces. Equation 2.3 is CIE RGB color 
space. sRGB is a standard RGB color space proposed by Hewlett-Packard (HP) and 
Microsoft and is utilized on Internet, monitors and printers. NTSC is designed for 
analog television and has a larger gamut than most of today’s monitors. Detailed 
introduction and mathematical process are given in [36]-[38]. 
 

                                                 
3 This figure refers to [38]. 
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0.4125 0.3576 0.1804
0.2127 0.7152 0.0722
0.0193 0.1192 0.9502

X R
Y G
Z B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (2.6) 

0.6067 0.1736 0.2001
0.2988 0.5868 0.1143
0.0000 0.0661 1.1149

X R
Y G
Z B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (2.7) 

 
2.2.3 CIELab Color Model 

When we try to compare two colors, use RGB or XYZ components is not precise. 
The reason is both of RGB and XYZ color space are not uniform color space. 
Non-uniform means when one color has the same Euclidean distance [see equation 
2.8] between any two color points. These two colors maybe differ from each other or 
on the other hand they maybe recognize to be the same although these two colors 
have same RGBEΔ . 
 

2 2 2
1 2 1 2 1 2( ) ( ) ( )RGBE R R G G B BΔ = − + − + −   (2.8) 

 
MacAdam had conducted an experiment on “similar” colors [30]. The same 

experimental platform displayed as Fig. 2.4 was conducted. Observer needed to match 
two color patterns in the view of field. The error in matching was recorded and 
yielded the sensitivity ellipses in the xyY chromaticity diagram as shown in Fig. 2.9. 
Those ellipses mean the differences in chromaticity are just noticeable regions. Within 
the ellipses, we may identify the colors are similar. Note that the ellipses are enlarged 
ten times in order to enhance its orientation. 
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Fig. 2.9 MacAdam’s ellipses (just noticeable regions) on the CIELuv diagram 

 
As a result, if the color space is uniform, the same Euclidean distance of this color 

space can presents the same perception of human vision system sense to. CIE 
suggested two uniform color models in 1976, CIELuv and CIELab [24]. MacAdam’s 
experiment was based on the CIELuv color model. Both color models are 
transformations of XYZ color model [see equation 2.9 and 2.10]. CIELuv reserves the 
characteristic that the mixture of any two colors would basically located at the line of 
the two sources but CIELab does not. However, we calculated the Euclidean distance, 
i.e., the color difference based on the CIELab color model as it is closer to the 
perception of human vision system. Fig. 2.10 shows the chromaticity diagram of 
CIELab color model. 
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  (2.10) 

 

 

Fig. 2.10 The chromaticity diagram of CIELab color model 
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Saturation 
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2.3 Performance Measurements 
As we carry out image processing, we may want to know how much does the result 

similar to the original image. That is to say, we want to know the performance of this 
process. Take image compression for example. There is a tradeoff between the 
compression ratio and image quality. The evaluation of quality may use mean square 
error (MSE). Such image measure can help the development and improvement of this 
process. MSE is just one kind of performance measurements indexes. In this 
dissertation, demosaicking has been discussed mostly. The images after demosaicking 
are usually compared to the raw image data. While various demosaicking algorithms 
have been proposed, we can effectively quantify the performance by these indexes. 
Note that the original one which compared with should be nonmosaicked image. The 
following introduced few measurements that we used in this thesis. We try to choose 
those indexes that can indicate the difference of two images from distinct aspects. 
 
2.3.1 Peak Signal-to-noise Ratio (PSNR) 

Similar to mean square error (MSE), peak signal-to-noise ratio (PSNR) is the 
numerical difference between any two images. It is most commonly used as measure 
of quality of image processing. The PSNR in decibels (dB) is given by equation 2.11  

2

10

2

1

25510 log ( )

1 ( ) ( )
M N

n

PSNR
MSE

MSE I n P n
M N

×

=

= ×

= −
× ∑

  (2.11) 

where ( )I n  represent color value of nth pixel of the original image and ( )P n  is the 
color value of the reconstructed image. Both of them have the size by M N× . 

PSNR is defined on monochrome image. For color image with three RGB values 
per pixel, we can modify MSE to the sum over all squared differences values divided 
by image size and by three. Whereas, we keep PSNR to be derived from each color 
plane so that we can understand the individual performance of each plane. Normally, 
the PSNR value between 30 and 50 dB is considered as lossy image. The higher the 
PSNR value we receive, the better the image quality we get. When PSNR value is 
above 40 dB, it is hard to distinguish original image from reconstructed one by human 
eye. If the PSNR value is exceed 45 dB, that’s mean the squared difference of each 
pixel between two images we compared is less than 1 in average. 
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2.3.2 Color Difference ( *
abE ) 

As the discussion in section 2.2.3, we need to compare two colors under uniform 
color space in order to reveal the perception of human vision. Due to the same reason, 
the PSNR value is calculated in RGB color space which does not equate with human 
consciousness of color difference. Fig. 2.11 is an example of two images which have 

almost the same PSNR value of Y plane but the CIELab color differences ( *
abE )  

are distinct from each other. We can observe the right image has some color 
misregistration around the fence region. Table 2.1 presents these indexes values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.11 Two images with similar PSNR_Y but with different *
abE  value 

 

Table 2.1 PSNR of Y plane and *
abE  values computed for the images in Fig. 2.11 

 Left-hand image Right-hand image 

PSNR_Y 35.1198 35.8474 

*
abE  0.9859 2.0270 

 The CIELab color difference ( *
abE ) measures the Euclidean distance between the 



 

 19

original image and the reconstructed one in CIELab color space [24][25]. It can better 

capture the color difference perceived by human observers. The *
abE  is given by the 

following equation where ( )L n , ( )a n  and ( )b n  are the nth pixel of each plane of 
 

* 2 2 2
1 2 1 2 1 2

1

1 ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
M N

ab
n

E L n L n a n a n b n b n
M N

×

=

Δ = − + − + −
× ∑   (2.12) 

 
CIELab color space in the original and reconstructed image. 

A lower *
abE  value provides a better image quality. According to [25][30], 

* 2.3abE ≈  correspond to an ellipse (just noticeable region) in Fig 2.9. The *
abE  

greater than 2.3 indicates the color difference is visible. When the *
abE  is larger 

than 10, the reconstructed image is differ from the original one seriously. 
 
2.3.3 Structural Similarity Index (SSIM) 

Although MSE and PSNR are widely used for quality measurements, there are lots 
of evidences to show that these indexes are not matched to perceived human visual 
perception [40][41]. Fig. 2.11 is an obviously example. It is clearly that left-hand 
image has a better visual quality than right-hand one even if they have similar PSNR 
values. In order to modify these errors, a great deal of effort has used to develop the 
quality assessments that can estimate the quality in accordance with its visibility of 
human vision at the same time. 

The structural similarity index (SSIM) proposed in [39] is able to quantify the 
visibility of errors between two images. The object of SSIM is to separate the 
influence of the illumination which may effect the comparison. Fig. 2.12 is the 
diagram of SSIM measurement. 
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Fig. 2.12 The diagram of SSIM measurement4 
 
This measurement mainly has three tasks: luminance, contrast and structure 
comparison, as depicted in Fig. 2.12. More introductions and computations in detail 
can refer to [39]. Also some downloads are available on [42]. Let’s look some 
achievements of this index. The following two figures are refer to [42]. Fig. 2.13 best 
describe the function of SSIM. Almost of them have same MSE but SSIM can reflect 
the visual quality correspond to human perception of vision. Note that SSIM equal to 
1 represents the same structural similarity of two images. Fig. 2.14 is another example 
of three images which have equivalent MSE. We can recognize the quality just by our 
eye. 

 
Fig. 2.13 Images with best / worse SSIM values lay on equal-MSE hypersphere 

 

                                                 
4 This figure refers to [39] 
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Fig. 2.14 SSIM evaluation of three images which have same MSE value 

 

2.4 Common Demosaicking Methods for Bayer Pattern 
As mentioned in section 1.1, most digital cameras use a single sensor array so that 

each pixel can capture only one sample of three color primaries. To obtain a full-color 
image, we need estimate the other two missing colors of each pixel. This process is 
known as demosaicking.  

The simplest way of demosaicking is the spatial interpolation. The interpolation is 
been applied to each color plane separately, such as nearest-neighborhood replication, 
bilinear interpolation and cubic spline interpolation. Although those methods are easy 
to implement, the results may produce some aliasing and can not maintain edge 
information well. Various demosaicking algorithms have been discussed extensively 
in [2]-[22]. In this section, we will introduce some demosaicking methods and 
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Lowpass filter 

Bilinear 
interpolation 

Bilinear 
interpolation 

discover their evolutions and improvements. 
 
2.4.1 Ideal demosaicking 

Demosaicking can be regard as the sample procedure of continuous signal. 
According to Whittaker-Shannon sampling theory, when the sampling frequency is 
not high enough (at least twice) compared to the maximum frequency of the 
continuous signal, there will be aliasing so that the original signal may not be 
reconstructed exactly. Fig. 2.15 illustrates this concept. Fig. 2.15(a) is the 

 
 
 
 
 
 
 
 
 
 
 
 
 
(a.)                                          (b.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c.)                                          (d.) 
Fig. 2.15 Example of sampling frequency higher / lower than twice of the maximum 

frequency 
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nonmosaicked raw image. When we run demosaicking on this image, the 
reconstructed one [see Fig. 2.15(b)] may produce aliasing because of violating the 
requirements by the sampling theorem. Nevertheless, the result of demosaicking on 
Fig. 2.15(c) shows no artifacts. The lowpass filter limits the Fourier spectrum of 
original image to half of the sampling frequency. Due to that, Fig. 2.15(d) is able to be 
reconstructed without aliasing. 

The example above totally shows the sampling theory. In practice, however, 
real-world scenes do not have fixed frequency limit and we also not capable of 
changing that. To recover the original signal, a sinc function is used for the 
interpolation [43]. Unfortunately, this function is infinite and therefore is band-limited. 
Hence, this kind of interpolation is unable to implement practically. 
 
2.4.2 Bilinear Interpolation 

Bilinear interpolation is the simplest way of demosaicking. The interpolation is 
been applied to RGB color plane separately. Referring to Fig. 2.16, the missing G  

00 01 02 03 04 05 06 07 08

10 11 12 13 14 15 16 17 18

20 21 22 23 24 25 26 27 28

30 31 32 33 34 35 36 37 38

40 41 42 43 44 45 46 47 48

50 51 52 53 54 55 56 57 58

60 61 62 63 64 65 66 67 68

70 71 72 73 74 75 76 77 78

80 81 82 83 84 85 86 87 88

Fig. 2.16 One sample of Bayer pattern 
 

pixel of R44 is obtained by the average of G34, G43, G45 and G54, as shown by equation 
2.13. And the missing B of R44 is estimated also by the average of B33, B35, B53 and  
 

34 43 45 54 33 35 53 55
44 44,     

4 4
G G G G B B B BG B+ + + + + +

= =   (2.13) 

 
B55. Likewise, R43 is the mean of R42 and R44; B43 is the mean of B42 and B44. Bilinear 
interpolation can be summarized by the following equation.  
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1 2 1 0 1 0 1 2 1
1 1 12 4 2 ,  1 4 1 ,  2 4 2
4 4 4

1 2 1 0 1 0 1 2 1
R G BF F F

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (2.14) 

 
While computing bilinear interpolation, convolution with RF , GF  and BF  apply on 
R, G and B plane respectively. This type of interpolation is the process of lowpass 
filter and it can get acceptable results in low-frequency regions of an image. Whereas, 
it may produce some aliasing and blur the sharps edges in high-frequency regions.  
Fig. 2.17 is a demonstration of this phenomenon. 
 
 
 
 
 
 

(a.)                    (b.) 
Fig. 2.17 Fence region of lighthouse (bilinear interpolation) 

(a.) Original image (b.) Reconstructed image 
 
2.4.3 Inter-channel Correlation Interpolation 

To get better results, some demosaicking methods utilize the inter-channel 
correlation. In [4] ,Cok presents an observation that the ratios between R and G values 
are strongly similar in a local region of an image. So are the ratios between B and G 
values. Based on this concept, some algorithms have been developed [3]-[5] and 
interpolation would take other two color planes into account instead of interpolation 
itself. Besides color ratios, many methods also make use of inter-channel color 
differences (R-G or B-G) [4]-[9]. The conventional interpolation method proposed by 
[6] exploits the inter-channel color differences correlation sufficiently. When 
interpolating the missing color, the existed color can assist to upgrade the estimation 
at same pixel. The interpolation way is given by equation 2.15. 

 

,    lpf lpf

lpf

G G X X X R or B

G G X

− = − =

⇒ = + Δ
  (2.15) 

 

XΔ  can help to upgrade the estimation value lpfG . While interpolate R and B 
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plane, we just modify equation 2.15 to lpfX X G= + Δ . Referring to Fig. 2.16, G44 is 

estimated by the following equation. 
 

44

34 43 45 54 24 42 44 46 64
44

4( )
4 8

lpfG G R

G G G G R R R R RR

= + Δ

+ + + + + + +
= + −

  (2.16) 

 
Although exploiting the inter-channel correlation can come to a better result than 

bilinear interpolation. These methods, however, still have poor performance around 
sharp edges and fine details. The reason is the observation mentioned initially does 
not hold whenever the image has high-frequency regions. 
 
2.4.4 Edge-directed Interpolation (Gradient and Laplacian based) 

Since some artifacts may generate around the edges, several algorithm are based on 
the edge-interpolation [11]-[14]. Some algorithms analyze the spatial structure of a 
local region in an image by gradients [11] or the laplacian [12], [13], and then choose 
the best directions to do interpolation. Referring to Fig. 2.16, the concepts of 
edge-directed interpolation can be described by the equation below. 
 

42 44 46 43 45

24 44 64 34 54

2
2

H

V

D R R R G G
D R R R G G

⎧ = − + − + −⎪
⎨ = − + − + −⎪⎩

  (2.17) 

43 45 42 44 46

34 54 24 44 64
44

34 43 45 54 24 42 44 46 64

2                                 ,   
2 4

2                                 ,   
2 4

4 ,   
4 8

H V

H V

G G R R R for D D

G G R R RG for D D

G G G G R R R R R otherwise

+ − + −⎧ + <⎪
⎪

+ − + −⎪= + >⎨
⎪

+ + + − − + − −⎪ +⎪⎩

  (2.18) 

 

HD  and VD  is the classifiers and is composed of the laplacian for chroma data (R 
plane in this example) as well as gradient for G plane. According to these classifiers, 
we can realize the distribution along horizontal and vertical directions in this pixel. If 
the computation of this classifier is large, this direction may contain high-frequency 
components. Thus, we do interpolation along another direction.  
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2.4.5 Weights Based Interpolation 
Since the observation in section 2.4.3 is necessary hold in smooth region, we can 

choose the direction which has few edges information and executes interpolation 
based on the observation. Just like the technique used in the last section, we can have 
a better result than using the observation only.  

The algorithm proposed in [10][16] extends the above concepts. These methods 
compute an estimation value and a weight along each known direction. In [10], the 
estimation is calculated according to the assumptions below. Note that the symbol ‘~’ 
ahead denote the missing color values that we want to estimate and the pixel 
arrangement can refer to Fig. 2.16. 
 

44 24 44 24

44 2434 34

G G R R

G G G G

⎧ − = −⎪
⎨

− = −⎪⎩
  (2.19) 

 
Combining these two assumptions, we can get the equation (2.20). 
 

44 24 44 24 4444 24 34 34 34

44 24
44 34

( ) ( ) 2( )

2

R R G G G G G G G G
R RG G

− = − = − + − = −
−

⇒ = +
  (2.20) 

 
Therefore, G44 value can be estimated by equation 2.20 from the top interpolation 
direction. 

And the weight is calculated from the gradient of the same direction, given by 
equation 2.21. 
 

43 23 45 25
44 24 54 34 34 142 2

G G G GR R G G G G− −+ − + + − + −  (2.21) 

 
Equation 2.21 can reveal the sharpness in the specific direction. If this direction 
contains high-frequency ingredients, the weight should be small to reveal the 
assumptions in equation 2.19 are not fit to hold. So the weight along top direction is 
designed as following. 
 

34
43 23 45 25

44 24 54 34 34 14

1

1
2 2

G G G GR R G G G G
α =

+
− −+ − + + − + −

 (2.22) 
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Referring to Fig. 2.16, to properly combine the estimated value correspond to the 
assumptions in equation 2.19, G44 value can be interpolated by equation 2.23. 

 

34 43 45 5434 43 45 54
44

34 43 45 54

44 24 44 42
34 4334 43

44 46 44 64
45 5445 54

              
2 2

                        
2 2

             is calculated in similar way of e

G G G GG

R R R Rwhere G G G G

R R R RG G G G

α α α α
α α α α

α

+ + +
=

+ + +
− −

= + = +

− −
= + = +

quation 2.22

  (2.23) 

 
2.4.6 Homogeneity Based Interpolation 

In [22], it uses another indicator instead of gradient or laplacian. This method 
utilizes the local homogeneity as an indicator. It has two estimated candidates along 
horizontal and vertical direction and then interpolates in the direction with fewer color 
artifacts according to the homogeneity. The homogeneity, measured in the CIELab 
color space, is the total number of similar luminance (L) and chrominance (a,b) values 
within a neighborhood of a pixel. This neighborhood is defined by the specific 
threshold of Euclidean distance in L and a, b channels, described as Fig. 2.18.  

 
Fig. 2.18 Neighborhood’s range of a pixel X in CIELab color space 

 
While located within this blue cylindrical area in the CIELab color space, this point is 
regard as a neighbor and the Euclidean distance is recorded. That is, the more 
neighbors meet the conditions, the larger the homogeneity value is.  

So this algorithm first interpolate along vertical and horizontal direction separately. 
The two reconstructed results are then transformed to CIELab color space and 
calculate their homogeneity. Finally, we combine these results to one image according 
to the direction with large homogeneity value. 

CIELab is a uniform color space. As our discussion in section 2.2.3, this color 
space presents the same perception of human vision system sense to. Due to that, 

X 
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homogeneity based interpolation can achieve significant result around edges.     
Fig. 2.19 displays its performance. 
 
 
 
 
 
 

Fig. 2.19 Fence region of lighthouse (homogeneity based interpolation) 
(a.) Original image (b.) Reconstructed image 

 
2.4.7 Other Interpolation Methods 

By taking the advantages of some methods of demosaicking mentioned above, 
hybrid demosaicking algorithms may appear and could reduce some artifacts more 
efficiently. In [3], Kimmel uses an edge-interpolation and then enhance the image by 
an inverse diffusion process. In [14], Li and Orchard interpolate based on the 
geometric duality between the low-resolution covariance and the high-resolution 
covariance. There are also more complicated demosaicking methods. In [17]-[19], 
these methods proposed a minimum mean-square error (MMSE) solution and also 
produce satisfactory results no matter in visually and in demosaicking performance 
measurements. In [9], it takes the directional information and judge the correlation in 
a local region. In [21], it proposed a different view of demosaicking in temporal 
domain. Interpolation can have the help of the intra-frame and inter-frame information 
by the motion estimation. However, in this dissertation, we pay our attention mostly 
on iterative demosaicking. 
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Chapter 3   Demosaicking using Iterative 

Approach 
 

3.1 Introduction 
Several demosaicking methods have been proposed for the last few decades, all of 

them are aim to suppress the aliasing and visible artifacts. Iteration is also employed 
in some algorithms. From some literature, several methods tend to use two-steps way 
to suppress the artifacts after initial interpolation. Gunturk in [15] exploits the detail 
and observation projection and repeats doing the projection after the edge-directed 
interpolation; Kimmel in [3] uses the second stage to enhance the result from the first 
stage; Li in [20] proposed an iterative method in the color difference domain. Though 
the computation of these algorithms may be complicated, these methods are effective 
in suppressing color misregistration and zipper effects in the demosaicked images. 
The rest of this chapter will introduce some iterative demosaicking methods. Then a 
discussion about the problem of iteration is taken on. In order to solve this problem 
and suppress artifacts effectively at the same time, we present a hybrid iterative 
demosaicking algorithm. Some comparisons are also made by the performance 
measurements mentioned in section 2.3 and display some test images derived from 
different demosaicking methods. 
 

3.2 Projections onto Convex Sets (POCS) 
Projection onto Convex Sets (POCS) in [15], proposed by Gunturk, is a landmark 

using iterative approach in this field for the last few years. This method makes two 
observations: 

1) High-frequency subbands of R / B and G plane are highly correlated. 
2) Low-frequency subbands of original and interpolated image are highly 

correlated. 
These subbands are decomposed by discrete wavelet transform (DWT), as shown in 
Fig. 3.1, Low-frequency subbands means the top-left band (LL) and the rest are  
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Fig. 3.1 Decomposition into four subbands by DWT 

 
high-frequency subbands (LH, HL and HH). Highly correlated represents the 
correlation coefficient given by equation 3.1 is larger than 0.9.  
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In equation (3.1), ( , )i j  are the spatial coordinates in integers, ( , )x i j  and 

( , )y i j are two different color planes or subbands and xμ  and yμ  are the means of 

( , )x i j  and ( , )y i j , respectively. 
POCS also define two constraint sets: Detail and observation constraint set. Detail 

constraint set is the absolute difference between the detail subbands (high-frequency 
subbands) of R / B and G plane is constrained to be less than a threshold. Observation 
constraint set means the interpolated pixels are consistent to the observed data that 
CFA sampled. These two constraint sets have been proved to be convex. 

This algorithm firstly makes interpolation to RGB plane. The interpolation way can 
be bilinear interpolation or edge-directed interpolation mentioned in section 2.4.4. 
Then the initial estimates execute the detail and observation projection iteratively. 
The detail projection is updating the detail subbands of R and B plane where the pixel 
is within the detail constraint set to the same location of G plane. The observation 
projection is inserting the observed data into their corresponding locations.  
 

3.3 Demosaicking with Post-processing 
Post-processing, the procedure of improvement, can upgrade the initial estimation 

further. The detail and observation projection in POCS is an example of this process. 
The purpose of the post-processing is designed to suppress the visible artifacts we 
obtained from the first stage. Some artifacts such as false color and zipper effect are 
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commonly seen in the demosaicking images. The reasons why these artifacts 
generated have been discussed extensively in [8], [10], [22]. And they also present 
some methods to reduce them. Fig. 3.2 shows some examples of these artifacts.  
 
 
 
 
 
 
 
 
 

(a.) 
 
 
 
 
 
 
 
 
 
 

(b.) 
Fig. 3.2 The example of (a.) false color and (b.) zipper effect 

 
Fig. 3.2(a) shows the false color around the mast and Fig. 3.2(b.) shows the zipper 
effect on the fence region. The left hand is the original image and the right hand is the 
demosaicked image. 

Lu and Tan in [10] directly named ‘Post-processing’ of their second step. Let make 
a briefly review of this step. The post-processing in [10] exploits the spatial 
correlation for reduce the artifacts. This spatial correlation is the inter-channel 
differences (R / B and G) changing smoothly. The outliers of a local region may be 
considered as aliasing or color artifacts. In order to use the relationship more effective, 
it adopts the median filtering as it can effectively diffuse the estimation errors into 
local neighborhoods. The size of median filter is 5 by 5. It adjusts the central pixel by 
the local region ℜ  around it covering 5×5 pixels. Following is the adjustment: 
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where ( , )x y ∈ℜ , adjustR , adjustG  and adjustB  are the values after modified. 

Furthermore, to avoid the degeneration of the observed data, it adaptive use the 
median filter only on the artifact-prone regions. Fig.3.3 is an example of these regions. 
Using the Laplacian operator (on G plane only) to detect the edges and then set a 
threshold to define the edge map, given by equation 3.3.  
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  (3.3) 

 
The median filter will only apply to those pixels which are in the edge map. Details of 
the method are discussed thoroughly in [10]. 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

Fig. 3.3 The artifact-prone regions (white points) where post-processing apply on 
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3.4 Bottleneck of Iterative Approach 
Among several ways, recursive methods can achieve a better result [2]. The 

iteration had been widely used in demosaicking since the closed-loop estimation can 
approximate the original color values and hence enable to reduce these artifacts. Li in 
[20] gives a discussion about the iteration strategy and brings up three important 
questions about the iteration mentioned as following: 

1) When to start the iteration? 
2) Does the iteration converge? 
3) If the iteration is converge, when should we stop the iteration? 

The convergence of the iteration had been proved in the literature [15]. The theory of 
projection-onto-convex-set (POCS) presented in the literature will be used in our 
proposed post-processing. However, despite the convergence property of iterative 
demosaicking method, the ultimate solution, i.e., the limit of the convergence process, 
is not the optimal solution. We can understand this argument visually in Fig. 3.4. The 

         

Fig. 3.4 The zipper effect may be generated of the ultimate solution. 
(Left) The original image. (Right) The reconstructed image by 10 iterations. 

 
artifact shown in Fig. 3.4 is the zipper effect. Compared to the zipper effect we 
mentioned in Fig. 3.3, the artifact in Fig. 3.4 seems to be light but still some “on-off” 
patterns could be seen. This kind of zipper effect is due to too many iterations 
executed when demosaicking.  

Besides, each post-processing is based on different assumptions. If the assumptions 
are fail to hold during iteration, image quality would be worse and worse. Therefore, 
we should understand which situation may cause failure and try to optimize. From the 
above discussion, in order to minimize the risk of having these artifacts both in 
visually and in performance measurements, setting a stop criterion to stop iteration 
appropriate is necessary. The discussion of the stop criterion is presented in the next 
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section. 
 

3.5 Proposed Recursive Demosaicking Algorithm 
This chapter mainly discusses the algorithm we proposed. We present a hybrid 

iterative demosaicking algorithm which contains the interpolation step and the 
post-processing step. The first stage is interpolating the missing color values. The G 
plane is first to be fully reconstructed, and then adaptively using the detail subbands 
of R and B to upgrade the G plane value. Next the G plane is used to help the R and B 
plane interpolation. The interpolation manner could be bilinear, edge-directed 
interpolation…etc. In our algorithm, we use the homogeneity based interpolation in 
[22] and the weighted sum method in [10] since both of them provide good 
performance. 
  The second stage is post-processing step which is designed to suppress the artifacts 
we obtained from the first stage. We combine the post-processing in [10] with the 
observation projection in [15]. This extension then become iterative and can reduce 
the demosaicking artifacts more effective. Besides, we also consider the detail and 
observation projection in [15]. Arrange these two ways of post-processing with 
iteration ingeniously can provide satisfactory results in suppressing those artifacts. 
However, too many iterations may cause some aliasing according to the discussion in 
the last. Setting a stop criterion seems to be necessary. In our proposed algorithm, we 
will judge the image property by its spatial correlation coefficients first before the 
second stage. If the post-processing is not work on this image, the input image won’t 
be entered to the second stage. If the post-processing is worthy to do for this image, 
we adaptively run the iteration according to its spatial correlation coefficients. 
 
3.5.1 Stage 1: Interpolation Step 

In this section, we describe the first stage of our proposed demosaicking algorithm. 
Fig. 3.5 depicts the flowchart of this interpolation step. The G plane is first to be fully 
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Fig. 3.5 Flowchart of the Stage 1: Interpolation step 

 
reconstructed, and then used to help the R and B plane interpolation. Make this kind 
of interpolation order is the most popular way in the current demosaicking methods 
since it utilizes the inter-channel correlation and is surely have better results than 
bilinear interpolation. Demosaicking to each color plane can get the aid and the 
information of other two planes instead of interpolate separately.  

Besides, the homogeneity based interpolation in [22] can achieve significant results 
to those artifacts-prone regions. We exploit the homogeneity map in our algorithm. 
Hence, we first make interpolation along horizontal and vertical direction on G plane. 
Since the R and B plane interpolation can be helped by G plane, the better the G been 
reconstructed, the more reliable the G plane information that R and B plane can refer 
to. In order to make the G plane interpolated precisely, we exploit the detail subbands 
of R and B to upgrade the G plane value [15]. Next the G plane is used to assist the R 
and B plane interpolation. After that, calculate the homogeneity map of the results 
along different direction. According to this map, we are able to choose the direction 
with fewer color artifacts. 
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A. G Plane Interpolation along horizontal and vertical direction 
00 01 02 03 04 05 06 07 08

10 11 12 13 14 15 16 17 18

20 21 22 23 24 25 26 27 28

30 31 32 33 34 35 36 37 38

40 41 42 43 44 45 46 47 48

50 51 52 53 54 55 56 57 58

60 61 62 63 64 65 66 67 68

70 71 72 73 74 75 76 77 78

80 81 82 83 84 85 86 87 88

Fig. 3.6 One sample of Bayer pattern 
 

For the reason of convenience, we move Fig. 2.16 to here. The interpolation we 
used is the weighted sum method in [10]. Proper weights of the two estimated G 
values can reveal the assumptions (2.19) are fit or not. Referring to Fig. 3.6, the 
estimation values of G44 along horizontal and vertical direction are given by equation 
3.4 and 3.5, respectively. 
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Once the G plane is fully reconstructed, it can be used to help the R and B plane 

interpolation. Before that, we upgrade the G plane value in order to give more precise 
information for the next interpolation. 
 
B. Adaptively Upgrade the G Plane 

In this section, we describe the method to upgrade the G plane. Gunturk in [15] has 
proposed a skill which replaces the detail subbands of G plane with R and B plane to 
upgrade the G plane. Nevertheless, this skill is work only under an assumption. The 
assumption said the inter detail subbands correlation coefficients calculated by 
equation 3.1 should be larger than 0.9 for R / B plane and G plane. However, some 
images are failed to satisfy this assumption. We discussed this problem by some 
examples presented in Table 3.1. We can observe the first test image 
 

Table 3.1 Some example of upgrade the G plane after we finish interpolating G 
R / G Corr. Coef.  B / G Corr. Coef. Upgrade the G planeImage 

No. LL LH HL HH LL LH HL HH No Yes 
Fig. 3.25 #1 0.8460 0.9931 0.9805 0.9947 0.9914 0.9964 0.9926 0.9941 11.0093 5.7580 
Fig. 3.25 #4 0.5905 0.8981 0.8877 0.9597 0.9560 0.9905 0.9874 0.9829 3.7255 7.0679 

Performance measurement for G plane in terms of mean square error (MSE)
 

has a strong correlation of it’s detail subbands (LH, HL, HH) either in R / G or in B / 
G. Undoubtedly, upgrade the G plane can improve it’s quality in the measurement of 
MSE. But the second test image dose not have the improvement as the first one and 
tends to be worse in the performance. Therefore, we need to set a judgment to classify 
the image we interpolated. In our proposed algorithm, we exploit the inter-channel 
correlation coefficients calculated also by equation 3.1. The x and y in equation 3.1 
then change to one of three primary color plane instead of detail subbands. The 
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correlation coefficients of R / G, B / G and R / B could be computed, but we use R / G 
and B / G as the upgrade employs these two correlations only. Statistically, we find 
the lower the R / G or B / G correlation coefficient is, the more the chance that the 
detail subbands correlation are not strong. None the less, this observation is hold to 
the raw images. Does it also hold while demosaicking? In our experiments, we find 
the conventional interpolation method described in section 2.4.3 can give the 
approximations of inter-channel correlation coefficients, in other words, the real 
coefficients are similar to the values we got from the conventional interpolation. Table 
3.2 describes this observation as follow. 

Table 3.2 The inter-channel correlation coefficients between real value and the 
approximate 

Fig. 3.25 #2 Fig. 3.25 #3 Fig. 3.25 #4 
Image No. 

R / G B / G R / B R / G B / G R / B R / G B / G R / B 
The Real Value 0.5279 0.9740 0.4063 0.7185 0.5534 0.2890 0.6004 0.9568 0.6850

The Approximate 0.5332 0.9720 0.4245 0.7167 0.5579 0.2863 0.6051 0.9551 0.6879
 

 
Fig. 3.7 Downsample vision of observed R and estimated G 

 
Since we can get the approximation mentioned above, we use it to classify the 

images as the steps below  
1) Use the observed samples of R and downsample it. Note that all pixels of 

this downsampled version are observed data, i.e. the known pixel value 
from CFA [see Fig. 3.7]. 

2) Use the interpolated G plane at the corresponding R locations and 
downsample it. Note that all pixels of this downsampled version are from 
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the results of G interpolation [see Fig. 3.7]. 
3) Decompose the downsampled version from above two steps into four 

subbands (LL, LH, HL, HH). 
4) Adaptively choose the image that is suitable for upgrade the G plane 

according to the approximate in Table 3.2. If the image is fit, replace the 
detail subbands (LH, HL, HH) of the G plane with R. If not, maintain the 
detail subbands. 

5) Reconstructed the downsampled G plane and then insert all pixels to the 
place they located initially. 

6) Repeat the step above for the observed samples of B. 
 

After the G plane is been upgraded along horizontal and vertical direction, we can 
use the more accurate G plane to assist R and B plane interpolation, as detailed in the 
following section. 
 
C. R and B Plane Interpolation 

Since the G plane is fully populated, the R and B planes can have the aid of the G 
plane no matter the observed samples or the interpolated ones. This step is achieved 
as follow: interpolate the missing R values at observed B and vice versa, and then fill 
the rest of the missing R and B values at observed G. Reconstructed G planes along 
horizontal and vertical direction are been used in the same manner. 

 
Fig. 3.8 Reconstructed G plane and observed R, B plane 

 
Referring to Fig. 3.8, the dark green area means the estimation value of G plane. 

The missing B44 is interpolated as equation 3.6 and 3.7. The missing R located at 
observed B is interpolating at the same way. It may confuse about the little difference 
of equation 3.6 and 2.23. Observed that equation 2.23 is refer to the pixel two spatial 
space away and equation 3.6 is just one spatial space may understand the difference 
between them. 
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Finally, we proceed to fill the rest the missing R and B values at observed G. As 

shown in Fig. 3.9, R43 is estimated as equation 3.8 and 3.9. Likewise, the B43 is 
interpolated as the same way. Just replace the R with B in equation 3.8 and 3.9. Also 
note that the dark red and dark blue are the estimation value from last step. 

 
Fig. 3.9 Reconstructed G plane and half-reconstructed R, B plane 
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We may observer that the weights α  of this step are all concern about G. As we 

mentioned before, G plane is used to assist R and B interpolation since it contains 
more accurate data from CFA. Now the image from CFA sampled has been fully 
reconstructed. We get two reconstructed data along horizontal and vertical direction. 
The mission of next step is to choose the direction which has fewer artifacts. 
 
D. Homogeneity Map 

The homogeneity map is presented in [22]. As introduced in section 2.4.6, this 
technique is able to achieve significant result around edges. Our proposed algorithm 
also exploits this technique. This step is processed by the following statements:  

1) We have two reconstructed image along different direction, named ( , )HR i j  

and ( , )VR i j . Transform them into CIELab color space, , ( , )H LabR i j  and 

, ( , )V LabR i j . 

2) Calculate the homogeneity map of , ( , )H LabR i j  and , ( , )V LabR i j . Detail 

concepts and computations can refer to [22]. 
3) The homogeneity map ( , )HH i j  and ( , )VH i j  are used to combine 

( , )HR i j  and ( , )VR i j  to final output, as given by equation 3.10. Note that A 
is a lowpass filter such as an averaging filter. 

 

( , ) ,  ( , ) ( , )
( , )

( , ) ,  ( , ) ( , )
H H V

V H V

R i j if A H i j A H i j
R i j

R i j if A H i j A H i j
∗ ≥ ∗⎧

= ⎨ ∗ < ∗⎩
  (3.10) 
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We may wonder why the map makes convolution with an averaging filter. Since 
frequent switch from interpolation in one direction to another may cause some 
discontinuities of ( , )R i j , taking a average of the homogeneity map can reduces the 
problem of discontinuity. Fig. 3.10 depicted the homogeneity map of lighthouse. 
White part means the homogeneity of horizontal direction is larger the vertical. We 
should choose this direction which may contains few artifacts. Black part is otherwise. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.10 Homogeneity map of lighthouse 
 
E. Results  

Now the output of first stage: interpolation step is completed by applying all the 
interpolation steps described above. The following figure makes a quick review of all 
steps in this stage. See Fig. 3.11. 
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Fig. 3.11 Rough figure description of interpolation step 

 
The next section will introduce the second stage: post-processing step. Recursive 

processes we used and the stop criterion are the main points of that section. 
 
3.5.2 Stage 2: Post-processing Step with Adaptive Stop Criterion 

In our proposed post-processing algorithm, we use three different types of 
post-processing as shown in Fig. 3.12. These are spatial correlation iteration and 

Horizontal 
interpolation 

Vertical 
interpolation 

Homogeneity map 
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Fig. 3.12 Flowchart of the post-processing step 

 
detail and observation projection. The first step is achieved by combining the 
post-processing in [10] with the observation projection in [15]. The second 
post-processing that we used has been shown in [15]. So the following just introduce 
spatial correlation iteration. 
 
A. Spatial Correlation Iteration 
  The post-processing in [10] has been discussed in section 3.3. However, we find 
some data sampled from the CFA would be revised without turning these back to the 
observed ones. In order to turning back, we utilize the observation projection in [15] 
to return the original color values. Therefore, this extension combining the median 
filter and the observation projection then become iterative. This extension can modify 
the initial estimations from interpolation and improve them substantially. We 
summary this post-processing step as the algorithm described below: 

1) Use the Laplacian operator to define the edge map, given by equation 3.3. 
2) Apply the median filter to adjust these artifact-prone regions using equation 3.2. 
3) Restore the observed data using the observation projection. 

Repeat it as m times, defined by the user. 
 
B. Arrangement of the post-processing 

The methods we introduced in this chapter are all effective in suppressing the 
demosaicking artifacts. Do them also work well if we putting these method together? 
How to arrange these post-processing? To find the answer we need to understand the 
influences to the image of each post-processing. We discuss these in the view of 
performance measurement: peak signal-to-noise ratio (PSNR) and the CIELAB color 

difference value ( *
abE ) introduced in chapter 2 before. For the first one, spatial 

correlation iteration, it can improve the PSNR of the three color plane and *
abE , and 

the second one is able to refine the PSNR only to R and B color plane as well as 
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*
abE . In the proposed post-processing algorithm, we arrange these methods in the 

purpose of minimize the color difference *
abE . Since the PSNR of G plane only has 

the chance to be improved in spatial correlation iteration, and the G plane accuracy is 
also important for the detail and observation projection. We arrange the spatial 

correlation iteration first to upgrade the PSNR of all plane and *
abE . And the detail 

and observation then upgrade quality again except for the PSNR of G plane. 
Therefore, in our proposed post-processing, we arrange these two methods as depicted 
in Fig. 3.12. The question is how many times should all post-processing done? It may 
be concern with the image correlation no matter in spatial domain or in frequency 
domain. The following will give a discussion about this. 
 
C. Stop Criterion for Iteration in the Post-processing Step 

The necessity of setting a stop criterion has been discussed in section 3.4. Before 
creating the stop criterion, we need to understand the assumptions made in the 
post-processing step. The two steps depicted in Fig. 3.12 have their own property.  

1) The spatial correlation iteration uses the median filter calculating by equation 
3.2. But if the inter-plane correlation is not good enough, the result from the 

median filter would not be so correct. As a whole, the adjustR , adjustG  and 

adjustB  are deviate far away from the original distribution, not to say repeating 

this step many times.  
2) The detail and observation projection replaces the detail subbands of R and B 

color plane with the detail subbands of G. However, if the inter detail 
subbands correlation coefficients are not larger than 0.9, the iteration may not 
be able to improve the image quality very effectively, similar to the discussion 
in section 3.5.1(B). 

Although we understand the conditions of executing the post-processing 
beforehand, we can not predict whether the image we processing is hold the 
assumptions or not. Fortunately, the technique we used in section 3.5.1(B) and Table 
3.2 can give a good prediction of approximating the inter-plane correlation. Since we 
can predict the inter-plane correlation in advance, we decide to set a stop criterion for 
the spatial correlation iteration, i.e., the first step of our proposed post-processing. 
There are two keypoints of the stop criterion: 1) If the image is not suitable to execute 
the post-processing step, do not enter it to the process. 2) If the image is fit, do the 
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iteration and stop it when the visible artifacts may appear. 
Our implementation of stage 2 can be renewed as shown in Fig. 3.13. We can see 

the judgment at the first step. If the image get no improvement from the 

 

Fig. 3. 13 The flow of the post-processing with the stop criterion 
 
post-processing, the process would not execute on this image. If the image is suitable 
to do the process, the two methods would apply in the order depicted above. Since the 
image property for spatial correlation iteration can be predicted, we should carefully 
observe the correlation between two iteration and then use the stop criterion to 
minimize the risk of suffering from the artifacts. 

In the process of searching the stop criterion, we focus on the distribution of the 
inter-plane correlation. We discovered that if the post-processing can not improve the 
performance, the inter-plane correlation would distribute separately, i.e., the 
difference of the inter-plane correlation between two iterations would be large. To 
straightly reveal the distribution of the inter-plane correlation, we execute the spatial 
correlation iteration by changing the number of iteration from zero to eight, and then 
calculate the standard deviation σ respect to R to G correlation and B to G 

correlation respectively. We take 1
10

σ  as an index value and use it to judge the 

iteration as following equation. 
1
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R G R G R G
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B G B G B G
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k

Diff C C k index

+
− − −

+
− − −

⎧ = − ≤ ⋅⎪ =⎨
= − ≤ ⋅⎪⎩

        (3.11) 

where R GC −  and R GC −  denote the R to G correlation and B to G correlation and  

R GDiff −  denotes the difference of the 1n + th iteration and the n th iteration. In 
general, each image has own inter-plane correlation and k  value while best case 
happened. We then run all the test images in the Fig. 3.25 and make a statistic of best 
case depicted as Fig. 3.14. 
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Fig. 3.14 The statistical graph of the k  value correspond to the inter-plane 
correlation 

 
In Fig. 3.14, the vertical coordinate means the k  value which is close to the optimal 
solution, and the horizontal coordinate represents the inter-plane correlation of each 
test images in Fig. 3.25. However, this figure records the best case of each test image. 
In order to approximate the optimal solution, we utilize the curve fitting to minimize 

the error between the base case and the optimal 
one [see figure left-hand side]. The result of 
optimal solution is shown as equation 3.12 and 
is used to set the stop criterion and judgment. 
Since the inter-plane correlation can be 
predicted in advance, we can use equation 3.12 
to determine the k  value. And the criterion will 
judge the image before the post-processing. 
 

27.9954 27.5538k Cor= − ⋅ +   (3.12) 
Note that Cor  represents the inter-plane correlation we predicted from the result of 
conventional interpolation. 



 

 48

The judgment and the stop criterion are processing as below: 
1) Judgment: If the inter-plane correlation is smaller than 0.75, the image would 

not enter the post-processing. 
2) Criterion: If the image has passed the judgment, k  value is decided 

according to equation 3.12. 
 

3.6 Comparison and Experimental Results 
So far we have introduced lots of demosaicking algorithms above, some methods 

even employed in commercial cameras today. And we also point out few drawbacks 
and present a hybrid iterative demosaicking algorithm. Now we want to make 
comparisons and display their performances. In our experiments, we compare them 
not only visually but also in terms of performance measurements. For the visual 
comparison, we use two different kinds of test images. One kind is some synthesis 
images. These particular images are able to emphasis the fine details that every 
algorithm works on. In other words, these images consider the extreme cases for 
Bayer CFA. Another kind has twenty-four images which are popularly used to 
compare in demosaicking field. We will display some region-of-interest (ROI) to 
reveal the effects of different algorithms. Eventually, we directly see the performance 
according to the measurements mentioned in section 2.3. 
 
3.6.1 Synthesis Images 

The following figures are the test patterns we used. Fig. 3.15(a.) is gray level and  
 
 
 
 
 
 
 
 
 
 

(a.)                                (b.) 
Fig. 3.15 Synthesis test images 

 
consists of 8 by 8 blocks. Each block has different directions and increasing spatial 
frequencies. Fig. 3.15(b.) is a binary image and has edges in almost directions. 
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Likewise, it also has the decreasing spatial frequencies away from the center. Fig. 
3.16 shows the results of different demosaicking algorithms processed on Fig. 3.15(a). 
 
 
 
 
 
 
 
 
 

 
(a.)                                     (b.) 

 
 
 
 
 
 
 
 
 
 

(c.)                                     (d.) 
 
 
 

 
 
 
 
 
 
 

(e.)                                     (f.) 
Fig. 3.16 Demosaicking results of Fig. 3.15(a.) 

(a.) Bilinear (b.) Conventional [6] (c.) POCS [15]  
(d.) New [10] (e.) Homogeneity [22] (f.) Proposed 
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And we define ROI of Fig. 3.15(a.) in order to observe the effects clearly of each 
algorithm. The ROI is depicted as Fig. 3.17. 
 
 
 
 
 
 
 
 
 
 

Fig. 3.17 ROI region of Fig. 3.15(a.) 
 
Fig. 3.18 them depicts the demosaicking results processed on Fig. 3.17. 
 
 
 
  
 
 
 
 
 

(a.)                           (b.)                           (c.) 
 
 
 
 
 
 
 
 
 

(d.)                           (e.)                           (f.) 
Fig. 3.18 Demosaicking results of Fig. 3.17 (ROI) 
(a.) Bilinear (b.) Conventional [6] (c.) POCS [15]  
(d.) New [10] (e.) Homogeneity [22] (f.) Proposed 



 

 51

In Fig. 3.18, we can visually recognize the aliasing of high-frequency regions. 
Bilinear is the worst result which been damage by aliasing and even blurring. 
Conventional makes improvement of blur but still has aliasing problems. POCS and 
New get better performance. The aliasing almost disappears but still exists lightly. 
Homogeneity and Proposed algorithm have the best results. It is hard to distinguish 
between the original image and the reconstructed one. The last four algorithms seem 
to perform better since they all utilize post-processing to modify initial estimations. 
Method (c.), (e.) and (f.) even use recursive approach to suppress visible artifacts. 

Now we demosaicking on another test pattern shown in Fig. 3.15(b.). However, this 
figure has high resolution. It is hard to identify the aliasing and decide the 
performance. Since this figure is circle and symmetric for up-down or left-right 
direction, we can define the ROI by one quarter of this circle, as shown in Fig. 3.19. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.19 ROI region of Fig. 3.15(b.) 
 

And the results of different algorithms are shown in Fig. 3.20. 
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(a.)                                      (b.) 
 
 
 
 
 
 
 
 
 
 
 

(c.)                                      (d.)  
 
 
 
 
 
 
 
 
 
 
 

(e.)                                      (f.)  
Fig. 3.20 Demosaicking results of Fig. 3.19 (ROI) 
(a.) Bilinear (b.) Conventional [6] (c.) POCS [15]  
(d.) New [10] (e.) Homogeneity [22] (f.) Proposed 
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  As shown in Fig. 3.20, the artifact-prone regions are located near the center of the 
circle which has high spatial frequency. And the results have similar trends between 
these algorithms as we seen in the previous test pattern. 
 
3.6.2 Natural Scenes Images 

We use the following figures shown in Fig. 3.21 and Fig. 3.22 for our test images. 
For the purpose of observe easily, we all process these images of specific ROI which 
may contain edges and fine details. 

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.21 ROI region of Fig. 3.25 #19 
 

 
Fig. 3.22 ROI region of Fig. 3.25 #8 
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Fig. 3.23 and Fig. 3.24 display the results of above two figures respectively. 
 
 
 
 

 
 

(a.)                      (b.)                      (c.) 
 
 
 
 
 
 

(d.)                      (e.)                      (f.) 
Fig. 3.23 Demosaicking results of Fig. 3.21 (ROI) 
(a.) Bilinear (b.) Conventional [6] (c.) POCS [15]  
(d.) New [10] (e.) Homogeneity [22] (f.) Proposed 

 
 
 
 

 
 
 

(a.)                  (b.)                 (c.) 
 
 
 
 
 
 

(d.)                  (e.)                 (f.) 
Fig. 3.24 Demosaicking results of Fig. 3.22 (ROI) 
(a.) Bilinear (b.) Conventional [6] (c.) POCS [15]  
(d.) New [10] (e.) Homogeneity [22] (f.) Proposed 

 
As can be seen from Fig. 3.23, there exists aliasing around the fence. Fig. 3.23(a.) 
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to (d.) are all suffer from visually artifacts. But Fig. 3.23(d.) and (e.) makes good 
performance of this specific region. Likewise, aliasing occurs on the rooftop of the 
window in Fig. 3.24. The trend of performance is similar to Fig. 3.23. 
 
3.6.3 Performance Measurement Results 

 

Fig. 3.25 Test images  
(These images are marked as Image 1 to Image 24, from the left-to-right, and 

top-to-bottom) 
 

Although we can visually observe the effect of each algorithm, it is not easy to 
choose the better one from similar performance. To compare each algorithm precisely, 
we adopt the performance measurements mentioned in section 2.3. These 

measurement indexes conclude PSNR, *
abE  and SSIM. In our experiments, we use 

the test images shown in Fig. 3.25. These natural images from the Kodak Photo are 
commonly use for the current demosaicking and can be available in [26]. For our 
proposed demosaicking algorithm, we use the parameter 2m =  for the 
post-processing depicted in Fig. 3.13. We demonstrate our proposed method by 
comparing it with six state-of-the-art demosaicking method─bilinear interpolation,  
Gunturk’s method [15], Lu and Tan’s method [10], Alleysson’s method [23], 
Hirakawa’s method [22] and Li’s method [20]. For the Gunturk’s method, we set the 
iteration number is 7 and the threshold T as 0.02 and make use of the one-level 
decomposition of the subbands. For the Hirakawa’s method, we set 2δ = . The image 

quality in terms of PSNR, *
abE  and SSIM are reported in Table 3.3, 3.4 and 3.5, 
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respectively. Note that the bold type value means the best one through the algorithms 
we compared in this test image. 
Table 3.3 Peak Signal-to-noise Ratio Comparison of Different Demosaicking Method 

Image No. Channel Bilinear Method [15] Method [10] Method [23] Method [22] Method [20] Proposed 

1 
R 
G 
B 

24.6841 
29.3635 
29.2954 

35.7346 
38.9064 
35.9257 

32.3942 
36.8346 
35.4537 

34.9475 
39.5243 
35.2839 

34.6206 
36.2820 
34.7859 

36.6601 
40.8909 
37.6548 

39.2554 
41.4683 
38.2121 

2 
R 
G 
B 

30.5583 
35.4630 
31.4180 

35.0137 
38.4480 
36.0592 

32.4868 
40.6330 
38.9858 

34.0877 
39.4376 
36.1975 

36.4087 
41.5646 
40.1705 

35.5249 
40.0856 
38.9228 

38.1941 
40.8978 
37.9774 

3 
R 
G 
B 

31.1295 
36.0856 
32.6765 

38.4768 
40.5146 
37.1935 

33.9918 
41.3518 
38.7537 

38.4244 
41.9124 
38.0033 

40.6392 
43.7566 
40.1532 

38.9541 
42.0993 
38.9456 

41.6784 
43.9398 
40.1372 

4 
R 
G 
B 

30.8966 
35.7442 
32.3929 

36.4687 
39.4182 
39.9686 

33.2129 
40.5648 
39.8046 

39.9754 
40.8305 
38.9362 

36.6715 
41.4141 
40.6165 

36.8343 
40.8581 
40.7602 

39.1537 
40.9721 
39.5840 

5 
R 
G 
B 

25.1783 
29.0823 
25.9916 

35.7410 
37.9827 
34.8139 

32.7734 
37.9392 
35.5474 

34.8472 
38.3493 
34.6245 

35.1472 
37.4663 
34.4349 

35.4555 
38.0781 
35.1111 

38.5762 
40.3361 
35.2181 

6 
R 
G 
B 

25.9985 
30.7318 
26.7381 

36.8372 
39.5360 
35.7318 

32.8373 
37.8396 
35.4225 

36.0509 
40.6410 
35.4588 

37.6040 
39.1382 
36.4738 

37.7778 
41.4063 
37.1654 

40.3441 
43.1370 
37.5487 

7 
R 
G 
B 

30.7217 
35.5465 
32.0169 

39.1486 
41.0277 
37.3317 

34.3171 
41.5756 
38.7901 

38.6888 
42.2447 
37.7623 

40.1131 
42.7181 
39.0557 

40.0737 
42.7468 
39.3064 

42.1312 
44.1054 
38.3749 

8 
R 
G 
B 

22.2966 
27.2854 
22.7166 

33.8624 
37.3833 
33.8196 

31.3766 
35.7007 
33.3655 

31.3617 
36.5403 
31.5061 

33.2216 
35.3680 
33.2576 

34.2794 
38.5543 
34.9584 

38.8360 
39.1466 
35.2547 

9 
R 
G 
B 

29.9406 
35.1474 
31.5447 

39.6149 
41.4774 
38.2619 

34.2896 
41.2255 
39.0589 

39.0182 
42.6450 
38.7539 

40.6981 
43.0743 
39.8952 

40.9267 
44.0068 
40.4849 

42.1486 
44.2825 
40.1774 

10 
R 
G 
B 

29.9322 
34.7878 
31.4499 

39.5299 
41.4364 
38.3414 

34.3887 
41.4493 
38.9456 

39.7949 
43.4449 
39.4017 

40.0783 
42.9230 
39.5119 

40.3706 
43.6376 
40.2123 

41.4405 
43.6739 
39.5449 

11 
R 
G 
B 

27.5131 
32.0102 
28.3983 

36.9857 
39.9488 
37.2063 

33.2669 
38.7444 
37.3247 

36.3333 
40.9616 
37.3147 

36.6602 
39.0450 
37.4883 

37.4353 
41.6653 
38.4982 

39.8441 
42.4235 
38.7601 

12 
R 
G 
B 

30.1784 
35.7831 
32.0500 

39.8918 
42.1194 
38.7687 

34.4169 
41.7382 
39.2680 

38.9180 
43.4932 
39.2741 

40.6058 
44.0297 
40.9713 

41.0958 
44.5264 
41.4236 

42.1009 
44.4664 
40.3014 

13 
R 
G 
B 

22.8444 
26.4047 
23.1188 

33.6926 
36.0145 
32.5773 

30.8484 
33.2084 
31.5973 

34.4930 
37.6598 
33.2128 

31.5343 
32.4086 
30.6164 

34.4419 
37.5530 
33.2735 

36.1295 
38.6564 
33.9967 

14 
R 
G 
B 

27.4480 
31.6848 
28.2134 

33.8506 
37.0140 
33.4978 

32.2438 
38.1796 
35.7796 

32.3152 
36.7797 
32.9697 

34.1703 
38.0151 
34.9453 

33.2568 
36.5378 
33.6036 

37.8873 
39.7978 
35.4481 

15 
R 
G 
B 

28.8948 
34.0925 
30.3953 

35.3817 
39.2425 
37.0317 

32.3507 
39.6735 
37.7602 

34.7037 
40.2753 
37.0102 

35.5073 
40.6966 
38.6001 

35.2978 
40.3236 
38.6941 

38.1219 
40.9227 
38.4801 

16 
R 
G 
B 

29.0113 
34.0251 
29.6993 

38.7294 
41.1583 
37.6698 

33.4692 
39.7110 
33.7101 

38.6999 
43.5030 
38.2501 

41.4353 
42.9261 
40.6183 

38.6298 
43.3823 
39.3689 

43.2914 
46.3576 
41.3128 

17 
R 
G 
B 

29.6539 
33.8688 
30.5022 

38.3534 
40.3636 
37.2144 

33.7554 
39.5400 
37.7809 

39.6231 
42.9592 
38.6909 

39.3799 
40.8211 
38.2701 

38.3577 
42.4780 
38.8816 

41.3375 
43.8117 
39.0416 

18 
R 
G 
B 

26.7376 
30.2492 
27.0037 

34.3462 
37.5391 
35.3231 

32.8506 
36.0966 
34.2786 

35.4349 
38.7971 
34.7155 

34.0038 
35.6875 
33.2761 

35.5331 
38.5239 
35.1862 

36.7171 
38.5920 
35.4229 
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19 
R 
G 
B 

26.1501 
31.3420 
27.1095 

37.2663 
39.4156 
38.6897 

32.0194 
38.7791 
37.1109 

35.9729 
40.6866 
35.8657 

37.9696 
39.6739 
37.4932 

37.6820 
42.1023 
38.3847 

40.2023 
42.6246 
38.7023 

20 
R 
G 
B 

29.0816 
33.0888 
28.4438 

35.5636 
37.3779 
35.9963 

33.7482 
39.2275 
31.3022 

37.9151 
41.6877 
36.2254 

38.9239 
40.6775 
36.9343 

38.3538 
41.4824 
36.9313 

38.5573 
42.0306 
37.5166 

21 
R 
G 
B 

27.1632 
31.3600 
27.5408 

37.0983 
38.7586 
34.8800 

33.7587 
38.0590 
35.9813 

36.7682 
41.0174 
36.0150 

36.6396 
37.9464 
35.5877 

38.2112 
41.5733 
37.4274 

39.6253 
41.9749 
36.8998 

22 
R 
G 
B 

29.1831 
33.1174 
29.3487 

35.4084 
37.8446 
35.1373 

33.9713 
38.9436 
36.7683 

36.3022 
39.2482 
35.4534 

35.7033 
38.4803 
35.4865 

36.1079 
39.7031 
36.8836 

37.4339 
40.0064 
36.3649 

23 
R 
G 
B 

31.3377 
36.8178 
33.7479 

37.7621 
40.1441 
38.8050 

33.2818 
41.6624 
39.7045 

37.1895 
41.3245 
37.8592 

38.9823 
42.2828 
39.6315 

37.6577 
41.9007 
40.2823 

40.6403 
43.8409 
39.4444 

24 
R 
G 
B 

26.3319 
29.4064 
22.2652 

32.5037 
34.7295 
31.7337 

33.8326 
35.4127 
31.4127 

35.2495 
37.8917 
32.6206 

32.6299 
34.9580 
31.6108 

33.6921 
36.7272 
32.8012 

34.0810 
37.3236 
32.4338 

Average 
R 
G 
B 

28.0361 
32.6037 
28.8982 

36.5526 
39.0751 
36.2491 

33.1618 
38.9203 
36.4128 

36.5465 
40.4940 
36.3086 

37.0562 
39.6814 
37.0786 

37.1921 
40.8685 
37.7151 

39.4887 
41.8662 
37.7565 

 
Table 3.4 CIELAB Color Difference Comparison of Different Demosaicking Method 

Image No. Bilinear Method [15] Method [10] Method [23] Method [22] Method [20] Proposed 
1 4.2846 1.4103 1.5438 1.5101 1.2475 1.2724 1.0860 
2 2.0355 1.2207 1.1749 1.2637 0.9136 1.1096 0.9053 
3 1.4323 0.8784 0.8791 0.7906 0.6054 0.7994 0.7098 
4 1.9231 1.0482 1.0848 1.0179 0.9127 1.0138 0.8898 
5 4.7072 1.9133 1.8027 1.9409 1.6661 1.9795 1.5934 
6 2.9889 1.1171 1.2016 1.1533 0.8520 1.0258 0.8317 
7 1.6837 0.9704 0.9344 0.9729 0.7751 0.8915 0.8164 
8 5.2150 1.7296 1.7877 2.0732 1.4885 1.5906 1.4259 
9 1.7740 0.8962 0.9209 0.8703 0.6992 0.8019 0.7422 

10 1.7708 0.8738 0.9291 0.8504 0.7335 0.8070 0.7749 
11 3.0311 1.2593 1.3561 1.3036 1.0395 1.1592 0.9965 
12 1.4015 0.6884 0.7514 0.6893 0.5150 0.5907 0.5893 
13 5.3043 1.9558 2.1473 1.7842 1.9213 1.8011 1.5877 
14 3.3424 1.7545 1.4995 1.6623 1.2910 1.7535 1.2447 
15 2.2616 1.2779 1.3258 1.2829 1.0737 1.2322 1.0629 
16 2.6079 1.0608 1.1544 1.0790 0.7464 0.9660 0.7618 
17 2.6012 1.3741 1.4479 1.2820 1.1383 1.2588 1.1450 
18 3.7096 1.8634 1.8631 1.8436 1.8606 1.9673 1.6736 
19 2.7994 1.1349 1.2013 1.1689 1.0126 1.0721 0.9456 
20 1.9289 1.0323 1.0318 0.9411 0.8642 0.9821 0.8532 
21 2.9844 1.2066 1.3068 1.2248 1.0943 1.0995 1.0170 
22 2.2649 1.2774 1.2020 1.2122 1.1743 1.2075 1.0928 
23 1.2018 0.8547 0.8531 0.8249 0.7071 0.8218 0.7016 
24 2.9500 1.3158 1.2532 1.2681 1.2489 1.2458 1.1851 

Average 2.7577 1.2547 1.2772 1.2504 1.0659 1.1854 1.0263 
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Table 3.5 Structural Similarity Comparison of Different Demosaicking Method 
Image No. Bilinear Method [15] Method [10] Method [23] Method [22] Method [20] Proposed 

1 0.8081 0.9856 0.9822 0.9814 0.9730 0.9869 0.9901 
2 0.8981 0.9679 0.9771 0.9509 0.9671 0.9718 0.9781 
3 0.9325 0.9850 0.9869 0.9827 0.9844 0.9849 0.9872 
4 0.9138 0.9783 0.9815 0.9745 0.9729 0.9785 0.9829 
5 0.8782 0.9861 0.9883 0.9816 0.9811 0.9827 0.9878 
6 0.8473 0.9851 0.9826 0.9822 0.9815 0.9850 0.9890 
7 0.9533 0.9877 0.9903 0.9842 0.9859 0.9874 0.9885 
8 0.8259 0.9846 0.9823 0.9790 0.9756 0.9855 0.9870 
9 0.9208 0.9842 0.9834 0.9821 0.9777 0.9836 0.9837 

10 0.9199 0.9852 0.9852 0.9836 0.9798 0.9852 0.9856 
11 0.8694 0.9845 0.9839 0.9803 0.9799 0.9843 0.9882 
12 0.9075 0.9852 0.9850 0.9825 0.9819 0.9851 0.9870 
13 0.7728 0.9817 0.9750 0.9830 0.9597 0.9839 0.9858 
14 0.8715 0.9791 0.9822 0.9724 0.9758 0.9753 0.9841 
15 0.9144 0.9746 0.9762 0.9725 0.9683 0.9747 0.9781 
16 0.8775 0.9876 0.9848 0.9844 0.9846 0.9869 0.9907 
17 0.9254 0.9880 0.9870 0.9875 0.9819 0.9875 0.9887 
18 0.8709 0.9797 0.9788 0.9777 0.9668 0.9783 0.9792 
19 0.8753 0.9842 0.9821 0.9818 0.9744 0.9833 0.9860 
20 0.9180 0.9713 0.9757 0.9751 0.9691 0.9759 0.9762 
21 0.8886 0.9810 0.9805 0.9797 0.9731 0.9814 0.9822 
22 0.8847 0.9716 0.9742 0.9719 0.9637 0.9739 0.9745 
23 0.9561 0.9818 0.9854 0.9769 0.9793 0.9818 0.9836 
24 0.8757 0.9829 0.9837 0.9822 0.9760 0.9838 0.9840 

Average 0.8877 0.9818 0.9823 0.9788 0.9756 0.9820 0.9845 
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3.6.4 Results 
Lots of demosaicking methods have been discovered nowadays, different algorithm 

may have its own advantages. So compare two algorithm by the image individually 
may not be fare. To increase the reliability, we should use more test images and then 
compute the average value of the performance measurement. As shown in Table 3.3, 
the algorithm we proposed outperforms almost all of various other methods. Although 
our algorithm just has little improvement in the index PSNR of B plane, we still 
present competitive result. Another measurement is shown in Table 3.4. We can 
observe that Hirakawa’s method in [22] and our proposed algorithm have the 
comparable performance among these algorithms. Li’s method in [20] also provides 
satisfactory achievement compare to the remaining algorithm. All of them ([20], [22], 
proposed) give the discussion about the visible artifacts and aim to suppress them in 
the post-processing step. So they can work well in reducing the artifacts and also 

reveal in the color difference *
abE . The last measurement, SSIM, is shown in Table 

3.5. Our proposed method has almost highest SSIM. Therefore, despite the similar 

results in the measurement *
abE  and SSIM, we finally recommend the proposed 

algorithm as it can has good performance in the measurement PSNR and in human 
vision as well. 
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Chapter 4   Demosaicking Problems of 

Gastrointestinal Narrow-band 

Image 
 

4.1 Introduction 
Now we have developed a recursive demosaicking algorithm for Bayer pattern. 

However, the demosaicking of gastrointestinal (GI) narrow-band Image (NBI) 
actually is different to normal demosaicking. According to the following figure, the 
existing capsule endoscope system continually emits white light and NB light 

 
 
 
 
 

 
 

Fig. 4.1 Sensor structure of existing capsule endoscope system 
 
sequentially when capturing image. And the CFA in used is not Bayer CFA but 
withdrawing one G component. We focus on the problem of reconstruct the white 
light image (WLI) by only three samples in 2-by-2 CFA block. In this chapter, we will 
discuss the demosaicking problem based on this issue. And some discussions of 
different CFA arrangements will also made. 
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4.2 Modification of the Demosaicking Method for Different 

CFA Arrangements 

4.2.1 RGYB CFA Pattern 
The CFA can be chosen from many different kinds. However, the familiar 

arrangement is withdrawing one G sample from Bayer pattern, depicted by Fig. 4.2. 
00 01 02 03 04 05 06 07 08

10 11 12 13 14 15 16 17 18

20 21 22 23 24 25 26 27 28

30 31 32 33 34 35 36 37 38

40 41 42 43 44 45 46 47 48

50 51 52 53 54 55 56 57 58

60 61 62 63 64 65 66 67 68

70 71 72 73 74 75 76 77 78

80 81 82 83 84 85 86 87 88

Fig. 4.2 One sample of Bayer pattern withdrawing one G sample 
 
Note that the word “RGYB” means the order from left-to-right, top-to-bottom of the 
CFA sample of 2-by-2 square, as shown in Fig. 4.3. 

 

Fig. 4.3 Representation of CFA order 
 

The simplest way is still bilinear interpolation, given by equation 4.1. 
 

, ,

1 2 1
1( , ) ( , ) 2 4 2
4

1 2 1
R G BR i j I i j

⎡ ⎤
⎢ ⎥= ∗ ⎢ ⎥
⎢ ⎥⎣ ⎦

  (4.1) 

 
Needless to say, the performance tends to be dissatisfied.  

The sensor located at withdrawing G has no filter covered. When NB light emitting, 
this location is sense the N data. Besides, we can choose to open the sensor or not 
while white light emitting. In order to improve image quality, we decide to open it 

RGYB 
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since it can provide Y information when demosaicking WLI. Then we use the 
conventional method with the assist of Y information, given by equation 4.2. 
 

,      lpf lpf

lpf

G G X X X R or B or Y

G G X

− = − =

⇒ = + Δ
  (4.2) 

 
Now we try to modify the proposed algorithm fitting this CFA. Our strategy is to 

estimate the G value located at Y pixel for the purpose of reconstructing Bayer pattern. 
Then execute the recursive demosaicking algorithm we proposed. Note that the more 
accurate the estimated G value is, the better the performance we received. 

Hence, we first interpolate the G value located at Y pixel. For example, G34 is 
interpolated by equation 4.3 and 4.4. After that, we obtain an estimated Bayer pattern. 
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  (4.4) 

 
Then we proceed to use the proposed demosaicking method on estimated Bayer 
pattern. 

Equation 4.3 and 4.4 used to estimate G located at Y pixel is the weighted sum 
method. The Y information on this method is just used to improve the accuracy of G 
candidate by their difference. However, we discover another way to exploit Y 
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information more. We first reconstruct the R, G and B values located at Y pixel. Then 
utilize these R, G and B values to calculate Cb and Cr. At last, we have Y, Cb and Cr. 
Transform them into RGB color space and then withdraw the G plane. This G plane is 
also an estimated G value located at Y pixel. We summarize above description as 
following steps. 

1) Reconstruct the R, G and B values located at Y pixel by weighted sum 
method. 

2) Downsample the R, G, B and Y plane at the location of Y. 
3) Calculate Cb and Cr by equation 4.5. 
 

( )

( )

1128 37.945 74.494 112.439
256
1128 112.439 94.154 18.285

256

Cb R G B

Cr R G B

= + − × − × + ×

= + × − × − ×
  (4.5) 

 
4) Transform Y, Cb and Cr to RGB color space. 
5) Withdraw the G plane from RGB color space in last step. Insert all pixels to 

the place they located initially. 
6) Execute the proposed algorithm on estimated Bayer pattern. 

 
We will compare these methods in section 4.2.3. 

 
4.2.2 BGRY CFA Pattern 

00 01 02 03 04 05 06 07 08

10 11 12 13 14 15 16 17 18

20 21 22 23 24 25 26 27 28

30 31 32 33 34 35 36 37 38

40 41 42 43 44 45 46 47 48

50 51 52 53 54 55 56 57 58

60 61 62 63 64 65 66 67 68

70 71 72 73 74 75 76 77 78

80 81 82 83 84 85 86 87 88

Fig. 4.4 One sample of BGRY CFA 
 

 
This CFA arrangement is come from the idea of B and NB pixel located diagonally 

when NB light emitting. Since B filter is able to absorb some NB information, we can 
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improve the reconstructed NBI quality. Then the interpolation methods mentioned in 
last section are modified as following. 
Bilinear Interpolation:  

Remain the same as equation 4.1. 
 
Conventional Interpolation: 

Remain the same as equation 4.2. 
 
Proposed Method (Use Y difference) 

The strategy of estimating G value at Y pixel is unable in this CFA. To recover 
another G sample is also not practical to run demosaicking. The chance is to estimate 
B value located at Y pixel, given by equation 4.6 and 4.7 [referring to Fig. 4.4]. And 
then reconstruct the mosaic data to full color image by proposed method. 
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  (4.7) 

 
Proposed Method (Use YCbCr transformation) 

Step 1 to 4 remain the same. Withdraw the B plane from RGB color space and then 
insert all pixels to the place they located initially. Finally, execute the demosaicking 
algorithm. Note that the CFA is no longer RGGB Bayer pattern but BGRB pattern. 
Just change the sample location of Bayer pattern to GBRG and then exchange G and 
B plane while demosaicking. Remember to switch them back after demosaicking. 
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Likewise, the results of above-mentioned methods will display in next section. 
 
4.2.3 Experimental Results 

Now we proceed to compare those methods with different CFA arrangements. 
However, for the sake of convenience and easy-observing, we just compare them by 
the performance measurements of the average through 24 images in Fig. 3.24. Table 
4.1, 4.2 and Fig. 4.5 show the results. 

Table 4.1 Performance Measurements of Different Demosaicking Methods (RGYB 
CFA) 

Measurements Bilinear Conventional Proposed 
 (Y difference) 

Proposed 
(YCbCr Transform) 

PSNR_R 
PSNR_G 
PSNR_B 

28.0701 
28.0625 
29.3289 

31.3356 
29.9110 
31.8822 

33.9974 
34.4936 
34.2762 

38.5207 
39.9715 
37.5637 

Color Difference 3.1278 2.5041 1.4585 1.1257 
SSIM 0.8616 0.9442 0.9665 0.9820 

 
Table 4.2 Performance Measurements of Different Demosaicking Methods (BGRY 

CFA) 

Measurements Bilinear Conventional Proposed 
 (Y difference) 

Proposed 
(YCbCr Transform) 

PSNR_R 
PSNR_G 
PSNR_B 

28.0701 
28.7070 
28.7210 

32.0054 
30.0436 
31.6096 

34.6046 
33.7196 
33.8435 

35.8841 
36.2494 
36.5705 

Color Difference 3.2208 2.3534 1.6169 1.4798 
SSIM 0.8597 0.9454 0.9613 0.9708 

 
 
 
 
 
 
(a.)        (b.)     (c.)      (d.) 

 
 
 
 
 
 
(e.)        (f.)     (g.)       (h.) 

Fig. 4.5 Demosaicking results of different methods based on different CFA 
Methods: Bilinear, conventional, proposed (Y difference) and (YCbCr transform) 

CFA: Upper row is RGYB CFA pattern and bottom row is BGRY CFA pattern  
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Since we only have three samples when reconstruct, it becomes easier to cause 
aliasing and artifacts. However, as shown in Fig. 4.5(a.)~(d.), we can achieve good 
performance by exploiting Y information to estimate G. Y contains more than half 
percentages of G element. So G values we estimated are reliable and close to the 
quantity from Bayer pattern. As a matter of result, we can recover the image almost 
without visual artifacts by three samples in 2-by-2 CFA. The measurements are record 
in Table 4.1. Through these methods, our proposed algorithm which uses YCbCr 
transformation performs better than others based on RGYB CFA. 

For BGRY CFA, however, all methods seem not able to reduce artifacts as shown 
in Fig. 4.5(e.)~(h.). To reconstruct image by the pattern with two B samples and one R, 
G is differ from the perceptual of human. Recall that human eye is more sensitive to 
G component. Decrease the sampling rate of G and double the one of B are not 
practical and can not have good results at the same time. Besides, the strategy of using 
YCbCr transformation to enhance the color at same place is not as useful as the 
performance for RGYB CFA pattern according to Fig. 4.5(d.)(h.) and Table 4.2. That’s 
because Y has the fewest B element. Use it to enhance B is limited to improvement.  

As a result of the above experiments, we decide to choose RGYB CFA pattern as it 
closes to Bayer pattern and provides satisfied visual performance while demosaicking. 
 

4.3 CFA with Narrow-band Information 
As depicted in Fig. 4.1, the existing capsule endoscope system captures one WLI 

and one NBI and so on. According to the discussion of last section, the CFA is chosen 
to be RGYB and execute the demosaicking by the modified algorithm we proposed. 
Nonetheless, existing system has some drawbacks. In order to display NBI in color 
image, we will combine the WLI and NBI as discussed in section 1.2. So we run 
demosaicking and then do combination. Demosaicking may cause some quality loss 
to the input data. Besides, the most important point, the system is unable to combine 
the WLI and NBI at same location of each pixel since the capture time is actually not 
the same. This situation may bring about another damage of image quality. Therefore,  

 
 
 
 
 
 
 

Fig. 4.6 Modification of existing capsule endoscope system 
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we attempt to do modifications of existing system. Fig. 4.6 depicted our idea. Depend 
on this structure, it is possible to have WLI and NBI at same location and also reduce 
the quality loss. At following sections, we still pay our attention on WLI 
demosaicking. However, it is difficult to experiment on demosaicking as we lack of 
the test images with NB information. We need to capture the test images with NB data 
by ourselves. The next section introduces the manufacture of test images. Then give 
some discussions about the arrangements of CFA. At last we make comparisons of 
these created test images. 
 
4.3.1 Experimental platform 

There are several principles of manufacturing the test image:  
1) The capturing device sense the RGB color without demosaicking. That is, 

capture three color bands by three sensors. 
2) There is no more process or modification of the data which device captured.  
3) The data after capture must be save without compression, such as JPEG. The 

storage type should be the raw data (RAW). 
4) Since we need NB information of the image, we capture two images exposed 

to white light and narrow-band light respectively. These two images must 
have same location. Besides, other capture conditions, such as ISO setting 
and shutter speed etc., are also to be the same. 

The three former terms are related to the capture device. In order to fit these 
conditions, we choose the camera named “SIGMA DP1” to be our capture device. 
This special camera is able to sense all three color bands [44]. FOVEON X3 
technology is the breakthrough of the sensors in this camera. FOVEON X3 is 
modified directly from the IC processing as depicted in Fig. 4.7. This is a stack of  

 

Fig. 4.7 The technology behind the X3 sensor5 

                                                 
5 This figure refers to [46] 
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silicon which able to absorb different wavelengths of light. Fig. 4.8 best describes the 
difference between the traditional mosaic sensor and FOVEON X3. As a result, DP1 

 
Fig. 4.8 The difference between the traditional mosaic sensor and FOVEON X3 

 
which included this sensor can capture image with improved sharpness and immunity 
to color artifacts. Furthermore, it can play a competent role in our experiments 

As for the light source, we need white light and narrow-band (NB) light while 
capturing image. Both of them are use SMD LED. Note that the NB light we used has 
the wavelength near 450nm. However, it is capable of covering the 415nm. Fig. 4.9(b.) 
displays the result of the NB light we used. We can 
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(a.)                                   (b.) 

Fig. 4.9 Result of images exposed to white light and NB light, respectively6 
 

observe the fine vessels under the mucosa clearly compared to Fig. 4.9(a.). Based on 
the same NB light, we organize the light source in rectangular lattice as depicted in 
Fig. 4.10. Just use the switch when changing to another light source. 
 

   
Fig. 4.10 Description of the light source (white and NB light) in our experiment 

 
Next, we choose GretagMacbeth™ ColorChecker Color Rendition Chart to be our 

test pattern. As shown in Fig. 4.11, this chart contains 24 scientifically prepared 
 

                                                 
6 These figures provided by Dr. S. M. Wu and courtesy of Chung-Shan Institute of Science and 
Technology. 
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Fig. 4.11 GretagMacbeth™ ColorChecker Color Rendition Chart 
(each block is mark as 1 to 24, from the left-to-right, and top-to-bottom) 

 
colored squares in a wide range of color. Besides, it is the industry standard color 
checking chart for cinematographers and photographers alike. Other characteristics in 
detail and waveform of each square can refer to [45]. Here we use this chart to be the 
pattern. Fig. 4.12 displays the results of the chart exposed to white and NB light 
captured by SIGMA DP1. Note that the capture parameters are ISO100, 0.25sec 
shutter speed, aperture value F4.0 and focal length of 16.6mm. 

   
Fig. 4.12 Test image exposed to white and NB light respectively 

 
4.3.2 RGNB CFA Pattern 

00 01 02 03 04 05 06 07 08

10 11 12 13 14 15 16 17 18

20 21 22 23 24 25 26 27 28

30 31 32 33 34 35 36 37 38

40 41 42 43 44 45 46 47 48

50 51 52 53 54 55 56 57 58

60 61 62 63 64 65 66 67 68

70 71 72 73 74 75 76 77 78

80 81 82 83 84 85 86 87 88

Fig. 4.13 One sample of RGNB CFA 
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The CFA arrangements have been discussed in last section. The pattern which can 
reconstruct another G sample and build the estimated Bayer CFA can achieve a better 
result. Now the Y component has become to NB. We may wonder about the influence 
of NB so that all possible CFA arrangements will be discussed in this section. 

Fig. 4.13 displays the arrangement similar to Bayer pattern. One G component is 
replaced with NB, just like the pattern in Fig. 4.2. Note that the NB information is 
acquired from the B plane of NB image. The interpolation algorithms are modified as 
below: 
Bilinear Interpolation:  

, ,

1 2 1
1( , ) ( , ) 2 4 2
4

1 2 1
R G BR i j I i j

⎡ ⎤
⎢ ⎥= ∗ ⎢ ⎥
⎢ ⎥⎣ ⎦

  (4.8) 

 
Conventional Interpolation: 

,      lpf lpf

lpf

G G X X X R or B or N

G G X

− = − =

⇒ = + Δ
  (4.9) 

 
Proposed Method (Use N difference) 

Refer to Fig. 4.13, estimate G value located at NB pixel by equation 4.10 and 4.11. 
Then reconstruct the mosaic data to full color image by proposed method based on the 
estimated Bayer CFA. 
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  (4.11) 

 
Proposed Method (Use YCbCr transformation) 

Since we don’t have Y information, this method is not available to use. 
 

Experimental results of these methods will be compared in section 4.3.5. 
 
4.3.3 BGRN CFA Pattern 

00 01 02 03 04 05 06 07 08

10 11 12 13 14 15 16 17 18

20 21 22 23 24 25 26 27 28

30 31 32 33 34 35 36 37 38

40 41 42 43 44 45 46 47 48

50 51 52 53 54 55 56 57 58

60 61 62 63 64 65 66 67 68

70 71 72 73 74 75 76 77 78

80 81 82 83 84 85 86 87 88

Fig. 4.14 One sample of BGRN CFA 
 
 The algorithms based on this CFA are shown as following: 
Bilinear Interpolation:  

Remain the same as equation 4.8. 
 
Conventional Interpolation: 

Remain the same as equation 4.9. 
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Proposed Method (Use N difference) 
The strategy remains the same while processed on BRGY CFA pattern. Estimate B 

value located at NB pixel firstly, given by equation 4.12 and 4.13 [referring to Fig. 
4.14]. And then reconstruct the mosaic data to full color image by proposed method. 
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  (4.13) 

 
  Likewise, experimental results are shown in section 4.3.5. 

 
4.3.4 RGGN CFA pattern 

This arrangement is originate from the following reasons: 
1) Human eye is less sensitive to B. 
2) The wavelength of NB is close to B. The information from NB may also 

covers B information. 
3) G component is important in demosaicking. CFA with twice sampling rate of 

G can reserve the information of the scene the most. 
4) Based on this structure, we can obtain a color image with NB information. 

No need to do another combination. 
Due to these motivations, we decide to experiment on this pattern. RGGN CFA is 
depicted as Fig. 4.15. 
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00 01 02 03 04 05 06 07 08

10 11 12 13 14 15 16 17 18

20 21 22 23 24 25 26 27 28

30 31 32 33 34 35 36 37 38

40 41 42 43 44 45 46 47 48

50 51 52 53 54 55 56 57 58

60 61 62 63 64 65 66 67 68

70 71 72 73 74 75 76 77 78

80 81 82 83 84 85 86 87 88

Fig. 4.15 One sample of RGGN CFA pattern 
 

Now, the most important thing we need to check is the effect of replacing B plane 
with NB information. We use the test pattern in Fig. 4.12 and change the B plane of 
white light image by the NB plane. Fig. 4.16 is the outcome. According to Fig. 4.16,  
 
 
 
 
 
 
 

Fig. 4.16 Original image and the result of replace B with NB 
 
although these two images look like almost the same, few colors between two figures 
are still dissimilar. To reveal the difference of color, the index introduced in section 
2.3.2 is the best commentator. Table 4.3 shows this index and other measurements. 

Table 4.3 Performance Measurement Comparison of Fig. 4.16 
 
 
 
 
Note that we use PSNR of Y plane instead of PSNR of RGB since the PSNR of R and 
G are infinite. 

As can be seen from Table 4.3, the PSNR is nearly 40dB but the color difference is 
8.6815. This value is larger than 2.3 and even almost 4-times large. That is to say, 
these two images are out of MacAdam’s ellipses (just noticeable regions) and can be 
recognize easily. The main problem of this phenomenon is the bandwidth of NB light. 

Measurements  
PSNR_Y 39.3997 

Color Difference 8.6815 
SSIM 0.9704 
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Recall that NB light means the narrow-bandwidth of wavelength around 415nm (our 
NB is near 450nm). Now NB is playing the role of color filter. The bandwidth of blue 
filter is broad-band and therefore some signals that B absorbed can not be covered by 
NB as well [as shown in Fig. 4.17]. Take #10: purple color of Fig.4.11 for instance, 
the 

 

Fig. 4.17 Relative response of B and NB bands 
 
waveform of this color is depicted as Fig. 4.18. The NB filter absorb less than B filter 
in the range near 400nm. Hence, the purple color under NB light is darker than under 
white light. 

 
Fig. 4.18 Waveform of #10: purple color in colorchecker chart 

 
As a conclusion, the RGGN CFA pattern is not practical to use. Nevertheless, we 

still process experiment based on this CFA. Result is shown in the next section. 
 

 B  
NB  
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4.3.5 Comparisons of test images 
In order to increase the accuracy of experiments, we use not only Fig. 4.12, but also 

Fig. 4.19 to be the test patterns. Comparisons of different methods based on RGNB 
and BGRN CFA to those test images are recorded in Table 4.4 and 4.5. Note that the 
values in the following tables are the average of all images. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
\\ 

 
Fig. 4.19 Other test patterns exposed to white and NB light respectively 

 
Table 4.4 Performance Measurements of Different Demosaicking Methods (RGNB 

CFA) 

Measurements Bilinear Conventional Proposed 
 (N difference) 

PSNR_R 
PSNR_G 
PSNR_B 

41.5849 
41.7558 
41.6038 

42.4228 
42.9830 
43.3175 

44.7847 
45.6170 
45.8580 

Color Difference 0.7827 0.7930 0.6021 
SSIM 0.9869 0.9887 0.9921 
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Table 4.5 Performance Measurements of Different Demosaicking Methods (BGRN 
CFA) 

Measurements Bilinear Conventional Proposed 
 (N difference) 

PSNR_R 
PSNR_G 
PSNR_B 

41.5849 
41.7600 
41.5851 

41.8092 
43.1319 
43.3936 

44.3362 
44.7095 
45.4337 

Color Difference 0.8263 0.7974 0.6312 
SSIM 0.9870 0.9880 0.9921 

 
Table 4.6 Performance Measurements of Different Demosaicking Methods (RGGN 

CFA) 

Measurements Proposed 
 (Y difference) 

PSNR_R 
PSNR_G 
PSNR_B 

46.3290 
51.0223 
14.8607 

Color Difference 18.7986 
SSIM 0.9034 

 
Table 4.6 show the measurement values of proposed method based on RGGN CFA. 

According to Table 4.5 and 4.5, the algorithm we proposed can achieve better 
performance. Besides, the results of proposed method based on RGNB and BGRN are 
comparable. Just like the data in Table 4.1 and 4.2, without using YCbCr 
transformation, the effects on RGYB and BGRY are similar. Here, RGNB CFA is 
recommended since it provides better performance. 

With regard to RGGN CFA, we have discussed this pattern as not practical. Table 
4.6 presents its demosaicking result. Although the tremendous performance of 
PSNR_R and PSNR_G, other three indexes are terrible and even worse than bilinear 
interpolation. Therefore, this pattern does not take into consideration while 
demosaicking. 
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4.4 Influence about different brightness of NB image 
While discussing the differences between each CFA arrangement in last section, we 

discover that there is a limitation about the brightness of NB image. That is to say, the 
brightness of NB plane can be neither too bright nor too dark. Fig. 4.20 and Table 4.7 
describe this incident. 
 
 
 
 

 
 
 
 (a.)                              (b.)                             (c.) 
 
 
 
 
 
 

 
(d.)                              (e.)                             (f.) 

Fig. 4.20 Image exposed to white light and NB light with different brightness 
 
Table 4.7 Performance Measurements of Fig. 4.20(a.) with different brightness of NB 

RGNB CFA Without 
NB info. 

With 
Fig. 4.20(b.)

With 
Fig. 4.20(c.) 

With 
Fig. 4.20(d.)

With 
Fig. 4.20(e.) 

With 
Fig. 4.20(f.) 

PSNR_R 
PSNR_G 
PSNR_B 

46.5070 
45.1351 
45.4047 

45.7743 
44.2922 
46.2761 

46.6759 
45.1766 
46.1875 

47.1085 
45.8921 
46.4870 

47.0620 
46.0167 
46.5944 

46.3814 
44.4773 
44.7034 

Color Difference 0.4487 0.4929 0.4751 0.4599 0.4561 0.4722 
SSIM 0.9933 0.9933 0.9934 0.9930 0.9930 0.9920 

 
Refer to the data of Table 4.7, we believe there exists a valid region so that NB 
information can assist to improve quality. Review equation 4.10 of demosaicking on 
RGNB CFA pattern, we exploit the NB difference to help the reconstruction of G. 
However, according to the above table, the brightness of NB image should be proper. 
We bring up some questions here to this problem:  

1) How much range does the NB information valid to use? 
2) How much improvement does the NB information give? 
3) How much are different CFA patterns affected? 
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To understand this problem, we proceed to do experiment with changeable brightness 
of NB image. We exploit histogram slide to adjust the brightness of NB image. 
Theoretically, extremely light or dark image can not improve image quality and even 
has same performance without NB information. We call this kind of image as 
saturation. Between these saturated brightness, there should be an effective region. 
Concerning the CFA arrangements, we choose RGNB and BGRN to experiment. As 
discussed in section 4.3, those two CFA arrangements can provide satisfied results. 
We do not subsume RGGN CFA in our discussion on accounting of its performance. 
  Fig. 4.21 is the tendency diagrams of Fig. 4.12 with different brightness based on 
RGNB and BGRN CFA respectively. 

  

Fig. 4.21 PSNR of G to Fig. 4.12 with different brightness of NB image and different 
CFA 

 
We define the valid region which can improve the quality of demosaicking without 
NB information at least 0.5 dB [see Fig. 4.22].  

←dark  light→ RGNB 
BGRN 
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Fig. 4.22 Definition of valid region 

 

According to this definition, RGNB CFA has the region [ ]36 20∈ − . To explain it 

clearly, the valid field is allow 36 steps to dark of histogram slide and 20 steps to light. 

The region of BGRN CFA is [ ]35 14∈ − . Although they have similar valid bound, 

utilize N information on RGNB CFA is capable of increasing image quality to 
1.931dB than 1.3017dB of BGRN CFA. As a result, we still recommend RGNB CFA. 
Not only the better performance of demosaicking, but also the ability to increase 
quality more by NB information. 
 

4.5 Results 
Through lots of discussions in this chapter, we discover that the CFA which close to 

Bayer pattern can perform better. Both RGYB and RGNB CFA are similar to Bayer 
pattern. At the location of withdrawing G, we utilize the sensed signal to estimate G 
information so that Bayer pattern can be reproduced. Besides, other CFA 
arrangements are not able to reconstruct Bayer pattern since the withdrawing G are 
not at the diagonal direction with observed G. Although we use the same way to 
estimate another color (R or B) at withdrawing G, the results are become worse. Since 
human eye is more sensitive to G compared to R and B, the performance with twice 
sampling rate of G would be better than others. 
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Chapter 5   Conclusion and Future Work 
 

5.1 Conclusion 
In this thesis, we presented a recursive demosaicking algorithm both for Bayer 

pattern and for narrow-band gastrointestinal image. This method contains two 
successive steps: the interpolation step and the post-processing step. The first step is 
use the weighted sum interpolation to reconstruct along different directions. Then it 
upgrades the plane adaptively by exploiting the strong correlation of the detail 
subbands and use homogeneity map to choose the direction with fewer color artifacts. 
The second stage is composed of two different kinds of post-processing. Arrange 
them technically by the property of each post-processing can provide satisfactory 
results in suppressing those artifacts. Furthermore, to avoid the artifacts that may 
cause by too many iterations, we set a stop criterion to judge the image is suitable to 
execute post-processing or not. The proposed algorithm was compared with other 
existing methods; it showed a better quality both visually and in terms of performance 
measurement. 

As for the narrow-band gastrointestinal image, we modify the demosaicking 
algorithm corresponding to specific CFA. According to experiments, our proposed 
method is able to achieve satisfied performance based on only three samples in 2-by-2 
CFA block. Besides, lots of discussion and experiments have been done to discover 
the differences of CFA arrangements. We conclude RGNB is the best choice since it 
can provide better image quality among several of CFA arrangements. Besides, it is 
similar to Bayer pattern and has the ability to increase image quality more by NB 
information. Therefore, we recommend RGNB to be the CFA of narrow-band 
gastrointestinal endoscope system. 
 

5.2 Future work 
There are some extensions about this dissertation. The first one is about 

demosaicking strategy. If the performance improvement between recursive approach 
and bilinear interpolation is fewer in particular region, we can just use bilinear 
interpolation. That is to say, while process in flat region which does not have 
high-frequency component, we can simply run bilinear interpolation. When encounter 
the artifacts-prone area, and then use more complicate and more useful algorithm. 
According to this skill, we can be able to save lots of computation time and reduce the 
complexity. But the question is how to recognize between the low-frequency and 
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high-frequency region? This is another research material. 
The second one is about the narrow-band gastrointestinal image endoscopic system. 

Our ideal is to display color NBI. But the current combination way is designed so that 
415nm image is assigned to B and G plane and 540 nm image is assigned to R plane. 
However, the color of this image is pseudo-color. If we capture the image by emitting 
white light and NB light simultaneously [see Fig. 5.1], we can obtain the normal color 
which human perceived normally while demosaicking. But the influences of emitting 
white light and NB light at the same time are being ambiguous. This problem is left as 
a future work. 

 
 
 
 
 

Fig. 5.1 Expected sensor structure capsule endoscope system 
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