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研究生：王文佑                                   指導教授：陳福川 教授 

 

國立交通大學 

電機與控制工程研究所 

 

摘要 

 

本篇論文目的在於推導一個不同以往可用於三角積分器最佳化設計之積分

器快速諧波失真模型,本篇論文詳細分析了積分器非線性特性進而獲得完整的非

線性積分器非線性直流增益諧波失真數學模組,更由於主要的諧波失真來自於第

一級的積分器,所以我們的數學模組可廣泛應用在各種不同積分三角數位類比轉

換器的架構,一般常見的論文為了達到低功率消耗與系統高解析度的設計,往往直

接提高過多的直流增益值或消耗大量的最佳化時間,這在現今要求高效率與低耗

能的產品要求下,是非常不利於設計者的.為了證明我們的模組不但比傳統的模型

快速而且結果能讓設計者使用,最後我們將同時利用行為模組以及電晶體電路實

際去驗證我們的諧波失真模型是可以在最快速的運算下,得到設計者想要的最佳

化結果. 
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                      ABSTRACT 

 

The purpose of this paper is to introduce a new modeling of op-amp induced 

harmonic distortion in sigma-delta modulator, which is aimed to optimum design of 

SDM for high-performance applications. We analyze complete nonlinear 

characteristic in integrator to obtain analytic models to represent harmonic distortion 

as function of op-amp nonlinear DC-gain. Our model can apply for all modulator 

architectures where harmonic distortion is dominated by the first integrator in the 

chain. In order to achieve the low-power requirement and high-resolution, general 

approaches adopt either time-wasting model or high-power DC-gain. We show that 

results provided by our distortion model fit well to that obtained by simulation in 

behaving model and transistor level. It is accurate and fast than provided by 

previously reported modeling approaches.      

 

 II



誌謝 Acknowledgment 

 

我要將此論文獻給 

最疼我的父親-王進聰 先生 

我親愛的母親-劉瑞桃 女士 

  

 

若沒有他們，我不可能有機會完成此篇論文，並且從交通大學碩士班畢業。

此外，必須感謝指導教授陳福川博士兩年來嚴格的督促與指導，讓我學會做研究

的方法與心態。另外，也要感謝口試委員林清安教授、洪浩喬博士與董蘭榮博士

對本篇論文所給予的建議與指導。 

  還要感謝實驗室孟學學長、哲安學長、基恩學長在我一年級時幫我打好深厚的

研究基礎。感謝實驗室同學柏年、俊傑和學弟智隆、瑞祺、武璋陪我度過最後的

學生生涯，並在研究上給予我很多幫助。感謝學弟們，謝謝你們在這兩年間帶給

我的鼓勵和歡樂，我以後會很懷念晚上打棒球的日子。 

最後要謝謝這兩年在新竹唸書期間所有幫助過我的人，雖然無法一一列舉，

但在這邊向大家致上最大的謝意。 

   

 

 

 

 

 

 

 III



Contents 
中文摘要 ...................................................................................................................... I  

English Abstract.............................................................................................................II 

Acknowledgment..........................................................................................................III 

Contents....................................................................................................................... IV 

Lists of Tables ...............................................................................................................V 

Lists of Figures............................................................................................................ XI 

List of Symbols .........................................................................................................XIII 

Chapter1 Introduction....................................................................................................1 

1.1 Current Status and Background.................................................................1 

1.2 Motivation and Aims.................................................................................2  

1.3 Organization..............................................................................................3 

Chapter2  Fundamental Theorems and Architectures of SDM.....................................4 

2.1 Nyquist Sampling Theorm.........................................................................4 

2.2 Quantization Noise and Peak SNR.............................................................6 

2.3 Techniques of Sigma-Delta Modulator.......................................................8 

    2.3.1 Oversampling Technique.................................................................9 

    2.3.2 Noise shaping................................................................................10 

2.4 Architectures of Sigma-Delta Modulator.................................................12 

2.4.1 First-Order Sigma-Delta Modulator……………………….…….13 

2.4.2 Single-Loop Second-Order Sigma-Delta Modulator……………15 

2.4.3 Single-Loop High Order Sigma-Delta Modulator…………….…17 

2.4.4 Interpolative Sigma-Delta Modulator…………………………...18 

2.4.5 MASH Architecture…………………………………………..…19 

2.4.6 Multi-bit Quantizer Sigma-Delta Modulator.................................20 

 IV



2.4.7 Multi-bit Sigma-Delta Modulator use DEM Technique…………22 

2.4.8 Decimator…………………………………………………..……23 

2.4.9 Performance Metrics for a ΣΔ  Modulator……………………..24 

Chapter3  OTA Non-Linear Gain Curve……………………………………….……26 

Chapter4  Distortion Due to the Non-Linear Gain of the Operational Amplifier…...33 

Chapter5  Behaving Model Simulation Results……………………………………..38 

Chapter6  Transistor Level Simulation Results…………………………………...…41 

Chapter7  Conclusions and Future Works…………………………………………...43 

 V



Lists of Tables  

Table 4.1 the relationship between the each parameter and the harmonic distortions 

…………………………………………..37 

Table.5.1 Comparison of theoretic result and behavior simulation of Case A Table 
                                  …………………………………………..39 
Table.5.2 Comparison of theoretic result and behavior simulation of Case B 
                                   ………………………………………....40 

Table.5.3 Comparison of theoretic result and behavior simulation of Case C 

                                   …………………………………………40 

Table.6.1 Comparison of theoretic result and spice simulation………………………42 

 VI



Lists of Figures 

Fig. 2.1（a）Original signal spectrum 

      （b）Sample function when fs > 2fB 

      （c）Signal spectrum that is sampled by (b) 

      （d）Sample function when fs < 2fB 

（e）Signal spectrum that is sampled by (d).....................................................6 

Fig. 2.2 Quantization process ........................................................................................7 

Fig. 2.3 Quantization error caused by A/D converter ....................................................7 

Fig. 2.4 Quantization error range ..................................................................................8 

Fig. 2.5 P.D.F of quantization error................................................................................8 

Fig. 2.6 Sampling system ............................................................................................10 

Fig. 2.7 Noise distribution after sampling ...................................................................10 

Fig. 2.8 （a）General  modulator  ΣΔ

       （b）Linear model with quantization noise ...................................................11 

Fig. 2.9 Noise shaping .................................................................................................12 

Fig. 2.10 Block diagram of A/D converter. .................................................................13 

Fig. 2.11 First-order modulator.....................................................................................14 

Fig. 2.12 Single-loop second order ΣΔ modulator.......................................................16 

Fig. 2.13 Comparison of noise shaping techniques..................................................... 17 

Fig. 2.14 Single-loop high order ΣΔ  modulator....................................................... 18 

Fig. 2.15 Four-order interpolative architecture .......................................................... 18 

Fig. 2.16 2-1 architecture MASH ΣΔ  modulator...................................................... 19 

Fig. 2.17 SNR vs. OSR with different quantizer bit number ..................................... 21 

Fig. 2.18 Multi-bit architecture .................................................................................. 22 

Fig. 2.19 A B-bit DAC with DEM technique ............................................................. 23 

 VII



Fig. 2.20 Performance characteristic of a converter.................................................... 25 

Fig 3.1 Two-Stage OTA architecture…………………………………………………26 

Fig.3.2 A typical op-amp’s configuration schematic of nonlinear DC gain……….....27 

Fig.3.3 A typical relationship between DC gain and ………………………….....27 oV

Fig.3.4. Two nonlinear gain curves with identical  but different………………..28 OSV

Fig.3.5. Two nonlinear gain curves with similar  but different ……………….28 0A OSV

Fig. 3.6. A classical two-stage operation amplifier…………………………………..30 

Fig.3.8. Comparison between simulation of nonlinear curve function and practical 

design………………………………………………………………………..32 

Fig.3.9. Comparison between simulation of nonlinear curve function and practical 

design……………………………………………………………………..…32 

Fig. 4.1 Switch-capacitor integrator with finite-gain amplifier………………………33 

Fig. 4.2 Integrator………………………………………………………………….…35 

Fig. 5.1 an nonlinear op-amp model in simulink…………………………………….39 

Fig. 5.2 Non-ideal second-order SDM……………………………………………….39 

Fig.6.1. two-stage Op-Amp…………………………………………………………..41 

Fig6.2. Simulation FFT Results with a1=1, DC-gain=60dB VOS=1.43V FB=200k…..42 

 

 
 
 

 

 VIII



List of Symbols  
 
 
Symbols 
VLSB           Quantizer step size 

OSV           Maximum output swing of op-amp 
OSR         OverSampling Ratio 
n               Order of the Sigma-Delta modulator 
B            Number of bits in the quantizer 

Sf            Sampling Frequency 

Bf            Signal Bandwidth 

refV             Reference Voltage of the quantizer 

0A           Finite Gain of OTA 

inf           Frequency of the input signal 

iφ            ith phase of a nonoverlap clock 

inA           Amplitude of input signal 

.jitσ          standard deviation of clock jitter 

SC           Sampling capacitor 

IC                 Integrating capacitor 

LC           Load capacitor of OTA 

LogicC        The loading capacitors of CMOS logic gates 

gateC         The gate capacitances of all CMOS transmission gates 

OXC          The capacitance per unit area of the gate oxide 

SV            Input signal plus feedback DAC signal 

1τ             Time constant of input branch 

VSσ          Standard deviation of  SV
2τ           Time constant of integrator output settling 

ia           gain coefficient of i th integrator 

 IX



η            percentage of the bottom plate parasitic 
T            Absolute temperature   
R           Switch ON resistance 
N          quantizer levels 
gm1        Amplifier transconductance   
Pr()         Probability of some condition 

.capσ         Mismatch of unit capacitance 

k           Boltzmann’s constant ( ) J/K 231038.1 −×
α           OTA noise factor 

[]Erf        Error Function 

OTAI        Total current of the OTA 

BI          Bias current of each transistor of the input differential pair of OTA 

OTAk         The ratio of the total current of the OTA to this bias current 

2clf          The GBW of the OTA 

reffV         The overdrive voltage of the transistor of the input differential pair of 

OTA 

Csk          The ratio between the summation capacitance of  in all stages and 

the one in the first stage 

SC

0ε          The permittivity of free space 

SN          The number of the CMOS transmission gate in ΣΔ  modulator 

 

 X



1.Introduction 
1.1 Current Status and Background 

 
 

The sigma-delta modulator based on switched-capacitor circuits is well suited for 

high resolution medium-to-low-speed applications such as digital audio [1-6], voice 

codec [7], and DSP chip. ΣΔ ADCs have been frequently applied to higher bandwidth 

signals and low power designs. For example, in xDSL [8, 9], WiMAX [10, 11] and 

WLAN [12] applications, signals up to several MHz must be handled. Recently, with 

the popularity of the portable devices, the low power devices became a very important 

topic [4]. To reduce power consumption is to extend the life of the battery and to 

bring the convenience to the users. Design optimization towards minimal power 

consumption is popular with the high-speed low-power applications of the ΣΔ 

modulator [13-19]. Generally, the op-amps are the components consuming the most 

power in SDM [5]. Since significantly increasing the sampling rate and power 

consummation are difficult [4], designers seek DC-gain in order to achieve low power 

consummation and high-linearity. Due to the complexity with op-amps, the papers 

about op-amps noise and distortion can’t directly offer an efficient method to obtain 

optimum DC-gain in low power consumption required. How to choice an optimum 

equilibrium of power consummation and resolution is an important issue to designers.
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1.2 Motivation and Aim 

 
Nowadays, design of the op amps becomes increasingly more difficult as the 

device dimensions and the supply voltage scale down [20, 21]. In order to reduce the 

power consummation of the op-amps and increase its dynamic range, nonlinear 

effects of OTA has been very generally researched. Two approaches for distortion 

model have been reported. One is to suggest a specific higher DC-gain to achieve low 

distortion [22-27]. The pros and cons of the approach are low complexity and high 

power-consummation. For example, general ones assume that DC-gain higher than 

70dB is enough to achieve high- resolution within different op-amps. However, it is 

not possible to optimize the op-amp design for low power required. Due to excessive 

DC-gain, this incomplete methods leads to power wasting. The other approach is to 

offer incomplete enough distortion model [28-31]. This method has the benefits of 

high accurate and adaptability of integration. But this approach requires additional 

circuit-level simulation as well as increased time-consuming. In addition, in order to 

seek the nonlinear curve coefficients in transistor level. It requires a simulation time 

about one week in Spice (with low accuracy specifications). Time-wasting is a 

disadvantage when designers devise multi-function chips. This paper proposes a 

complete op-amp nonlinear gain distortion model for SDM applications. Compared 

with others approaches, the advantages of this paper are efficiency and accurate. 

Based on modeling op-amp nonlinear gain curves and nonlinear gain distortion, our 

model provides insight into how nonlinear gain distortion is related to circuit and 

system parameters. In this work, we correct this mistake and discuss the harmonic 

distortion how to vary with system parameters and what condition of it can be ignored. 

In addition, for advanced low-power designs, the approach we introduce can 

efficiently determine optimum DC-gain for low-distortion and low-power required. 

 2
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1.3 Organization 

This paper is organized as follows. Section Ⅱ describes OTA Non-Linear Gain 

Curve and section Ⅲ presents the distortion model. Section Ⅳ and SectionⅤ uses 

behaving and transistor level simulation to verify our model. The conclusion is 

provided in Section Ⅵ. 
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2.  
Fundamental Theorems and Architectures 
of Sigma-Delta Modulators 
 

Before we establish the OTA gain distortion model of ΣΔ  modulators, several 

important theorems and concepts must be known, such as Nyquist sampling theorem, 

quantization error and the two most critical techniques in a  modulator: 

oversampling and noise shaping. All topologies of 

ΣΔ

ΣΔ  modulators are based on 

these two techniques. There also have some parameters we must to understand, such 

as OSR, SNR, and SNDR …etc. This chapter starts from fundamental theorems, and 

introduces several topologies of ΣΔ  modulators. 

  We will illustrate quantization error and analyze quantization noise in an ideal A/D 

converter and then derives the peak signal-to-noise ratio. The resolution of an A/D 

converter is determined by signal-to-noise ratio, which is a very important 

specification in an A/D converter. 

 
2.1 Nyquist Sampling Theorem 
  In an analog-to-digital converter, the analog signal from external environment must 

be converted to discrete-time signal by sampling. However, the sampling rate (fs) and 

signal bandwidth (fB) must follow the Nyquist sampling theorem in (2.1): 

                      fS ≧ 2fB                     （2.1） 

The sampling rate must be higher or equal to twice of signal bandwidth in order to 

prevent from aliasing. We will illustrate the phenomenon of aliasing by Fig. 2.1. Fig. 

2.1(a) and (b) are the spectrums of signal and sample function respectively; from fig. 

2.1(c), when sampling rate is twice higher than signal bandwidth, the signal after 

 4



sampling has no aliasing and it can be perfectly reconstructed by using low pass filters. 

However, in Fig. 2.1(d), when the sampling rate is lower than twice of signal 

bandwidth, aliasing will appear in the signal after sampling. The signal having 

aliasing is difficult to reconstruct to original signal, like Fig. 2.1(e). 

   

(a) 

-fS fS

S(f)

0 2fS 3fS-2fS-3fS

fs > 2fb

                        

(b) 

Xs(f) no
aliasing

0 fS 2fS 3fS-fS-2fS-3fS   

(c) 

                 

(d) 

                 

(e) 

Fig. 2.1（a）Original signal spectrum（b）Sample function when fs > 2fB（c）Signal spectrum that＇ 

sampled by (b)（d）Sample function when fs < 2fB（e）Signal spectrum that sampled by (d) 
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2.2 Quantization noise and Peak SNR 

We can get a discrete-time signal by sampling a continuous-time signal, and this 

sampled signal can be converted to digital signal. Quantization will appear in this 

process, the basic concept of quantization is to classify the original signal to different 

levels according to its level to determine the bit number of this signal, as shown in Fig. 

2.2 

 

Fig. 2.2 Quantization process 

  It will have quantization error even in an ideal analog-to-digital converter. As 

shown in Fig .2.3, we convert the digital signal B to analog signal V1 by a D/A 

converter, and then the signal V1 is subtracted by input signal Vin. The result is the 

quantization error VQ, as in (2.2) [32].  

                    VQ = Vin – V1                         （2.2） 

 6



    

Fig. 2.3 Quantization error caused by A/D converter 

The range of quantization error is limited in ±VLSB/2 (as in Fig. 2.4), and we assume 

the probability density function of quantization error is uniformly distributed between 

±VLSB/2 and its mean is zero, as shown in Fig. 2.5. From this assumption, we can 

easily get the quantization noise power VQ(rms)
2 in (2.3). 

VQ(rms)
2 = = ∫

∞

∞−
⋅⋅ dx)x(fx Q

2 ∫− ⋅
2/VLSB

2/VLSB

2 dxx
V

1

LSB

= 
12

V 2
LSB          （2.3） 

2
VLSB+

2
VLSB−

LSBV
1

 

Fig. 2.4 Quantization error range         Fig. 2.5 P.D.F of quantization 

error 

From (2.3) we can know the quantization noise power is proportional to square of 

VLSB, and VLSB can be represented as in (2.4). Therefore, we can say that the 

quatization noise will reduce by increasing quantization bit number. 

                VLSB = B2
FS                            （2.4） 

 7



            FS=Full scale = Vref+－Vref-   B：Quantization bit number 

Assume that input signal is sinusoidal, expressed as Vin(t) = A sinωt, so the input 

signal power Vin(rms)
2 is as （2.5）. In （2.5）, we define the amplitude of input signal 

is the full scale of reference voltage, and from (2.3), (2.4) and (2.5), the peak 

SNR(Peak Signal-to-Noise Ratio) can be derived as in (2.6). 

           Vin(rms)
2 = ∫− ⋅⋅

2/T

2/T

2 dt)tsinA(
T
1 ω = 

2
A2

= 
8

)A2( 2

= 
8

FS2

      （2.5） 

           PSNR = 10 log（ 2
)rms(Q

2
)rms(in

V
V

）= 6.02B + 1.76 dB               （2.6） 

(2.6) is the result obtained by Nyquist sampling rate. From (2.6), we can know that 

each additional bit number in quantizer increases 6dB in SNR. In Nyquist A/D 

converters, increasing the resolution of quantizer (decrease VLSB) while reducing the 

quantization noise is a general method to reach higher SNR, but this method is 

sensitive to mismatches of analog device. Therefore, the general Nyquist A/D 

converter is not easily to implement with high resolution. 

 

2.3 Techniques of Sigma-Delta Modulator  

  ΣΔ  A/D converters are based on oversampling and noise shaping to reach high 

resolution. Oversampling means the sampling rate is much higher than Nyquist rate, 

about 8~512 times in general applications. The goal of oversampling is to expand 

quantization noise to wider range. It can reduce the quantization noise in signal 

bandwidth and increase the DR (Dynamic range) of input signal. Noise shaping is a 

technique that moves noise to high frequency, which is done by using discrete time 

filter and feedback technique. After noise shaping, the noise in high frequency can be 

filtered out by a digital filter [42]. 
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2.3.1 Oversampling Technique 

 First, we made the assumption that quantization noise is a uniform distribution in 

sampling spectrum so its mean is zero and is a white noise [34]. The system in Fig. 

2.6 just has oversampling function and does not have noise shaping effect. If a A/D 

converter is sampled in Nyquist rate, then the quantization noise is uniform 

distributed between ±fB ; if it is sampled by oversampling technique, then quantization 

noise is uniform distributed between± fS2/2s, which is much larger than fB. As shown 

in Fig. 2.7, if the signal bandwidth is between ±fB, then quantization noise in this 

bandwidth will be reduced by using oversampling technique, which will raise PSNR 

significantly. 

 
Fig. 2.6 Sampling system                                      

Frequence

Se(f)

2
f 1S

2
f 1S−

2
f 2S

2
f 2S−

fB-fB

PSD of Nyquist rate

PSD of oversampling rateHigh = kx

Se1(f)

Se2(f)

 

Fig. 2.7 Noise distribution after sampling 

In the condition of oversampling, the PSD (Power Spectrum Density) of quantization 

noise is as Se2(f) in Fig. 2.7 and can be represented as: 

              kx
2 = 

s

2
LSB

f12
V
⋅

= Se2
2(f)                                （2.7） 
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From (2.7) we can estimate the quantization noise in 2fB after oversampling 

              PQ =  ∫− ⋅B

B

f

f

2
x dfk =

OSR212
FS

12
V

f
f2

B2

22
LSB

s

B

⋅⋅
=⋅          （2.8） 

In (2.8), we define a parameter OSR (Oversampling Ratio) as 

                          OSR = 
B

s

f2
f                           （2.9） 

Finally, we can get PSNR from (2.5) and (2.8) 

          PSNR = 10 log（
Q

signal

P
P

）= 6.02B + 1.76 + 10 log（OSR）      （2.10） 

From (2.10), we can find that doubling OSR will increase 3dB in PSNR, which is 

about 0.5 bit increase in resolution. Although oversampling can reduce quantization 

noise, it is difficult to reach high SNR when using a low bit quantizer. For example, if 

we need a 16bit A/D converter, then SNR must be equal to 98dB, if the signal 

bandwidth is 20KHz, then the sampling rate must equal to 2 × 109 × 20KHz, it is 

impossible to implement. Because at such high frequency, quantization noise is no 

longer a white noise, it is correlated with input signal. So there is not only 

oversampling technique, we must add noise shaping technique also, if we want to 

achieve high resolution.  

 

2.3.2 Noise Shaping 

  We can model a general ΣΔ modulator and its linear model as shown in Fig. 2.8. 

            

H(z)

Quantizer

y(n)x(n)
u(n)

 
                                    （a） 
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                                    （b） 

        Fig. 2.8 (a) General  modulator (b) Linear model with quantization noise ΣΔ

From Fig. 2.8(a), we can derive output Y(z) as (2.11) 

                  Y(z) = 
)z(H1

)z(H
+

X(z) + 
)z(H1

1
+

E(z)              （2.11） 

and define Signal Transfer Function STF and Noise transfer function NTF as 

                      STF (z)= 
)z(H1

)z(H
)z(X
)z(Y

+
=                     （2.12） 

                      NTF (z)= 
)z(H1

1
)z(E
)z(Y

+
=                     （2.13） 

where H(z) is the transfer function of a discrete time filter. There have two important 

meanings in (2.12), (2.13). If we want to obtain highest SNR, STF must be equal to 1, 

that means the input signal can transfer to output without attenuating; and NTF (z) 

must be equal to 0, because the quantization noise will not affect output SNR. 

  In order to make NTF (z) be a high pass filter, so at DC(z = 1), NTF must be 0, and z 

= 1 is a pole of H(z), so the transfer function H(z) of the discrete filter is as  

                           H(z) = 
1Z

1
−

 = 1

1

Z1
Z

−

−

−
                （2.14） 

Substitute (2.14) into (2.12) and (2.13), we can get 

                            STF (z) = 
z
1                          （2.15） 

                            NTF (z) = 
z
11−                        （2.16） 

And we substitute z with fs
f2j

e
π

, then we can plot )f(STF
2 and )f(NTF

2 in frequency 

domain, as Fig. 2.9. We can find )f(NTF
2 also increases with frequency, and 
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)f(STF
2 is always equal to 1, if we choose signal bandwidth in low frequency, then 

we can get highest signal power and lowest noise power, from this figure we see that 

quantization noise is moved to higher frequency significantly, this is the noise shaping 

effect. 

2
TF )f(N

2
TF )f(S

                

Fig. 2.9 Noise shaping 

After noise shaping, we can filter out the noise in high frequency by using digital 

filter, and we will illustrate its architecture more detail in the next chapter. 

 

2.4 Architectures of Sigma-Delta Modulator 

Before we introduce various architectures of ΣΔ  modulators, we must to realize 

the basic architecture of a general ΣΔ  A/D converter. Fig. 2.10 is a complete block 

diagram of a  A/D converter [32], and we can divide it into two different parts. 

First part is the  modulator. The main function of this part is doing oversampling 

and noise shaping to the input analog signal. Second part is the decimation filter. The 

main function of this part is to remove noise in high frequency and down sampling the 

sampling frequency to base band frequency. 

ΣΔ

ΣΔ
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Fig. 2.10 Block diagram of ΣΔ  A/D converter 

 

First, the input signal Xin(t) pass an Anti-aliasing filter, the 3dB frequency of this 

filter is about few times of Nyquist frequency, so signal and noise out of Nyquist 

frequency is filtered roughly, and this signal goes into the ΣΔ  modulator after goes 

through a S/H circuit. However, in the circuits implement situation, the sample and 

hold function is included in the circuits of ΣΔ  modulator, so the signal Xc(t) will 

pass this modulator and produces a high speed data code Xdsm(n), because of noise 

shaping, the quantization noise will appear in high frequency. Finally, we must filter 

the noise in high frequency and reduce the sampling frequency to Nyquist frequency 

by a decimator, and passes the digital signal to the output [32].  

 In this chapter, we will focus on the architectures of ΣΔ  modulator, because that 

the noise model and optimal method is focus on this part, we must understand the 

theorem, benefits and drawbacks of each kinds of ΣΔ  modulators. In addition, the 

implement of decimator is very typical [35, 36]. In today’s technology, DSP 

processors are also used to replace decimators, so we will introduce this part roughly. 

 

2.4.1 First-Order Sigma-Delta Modulator 

We recall that H(z) in (2.14) is 1

1

Z1
Z

−

−

−
, substitute it into Fig. 2.8, then we can get a 

first-order  modulator; Analyze transfer function H(z) from time-domain, it 

indicates that output signal m(t) is obtained by adding the delayed input signal n(t-1) 

ΣΔ
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and the delayed output signal m(t-1), so we can express a complete first-order  

modulator as Fig. 3.2. 

ΣΔ

 

          

                          Fig. 2.11 First-order ΣΔ  modulator 

 

  H(z) in Fig. 2.11 is indicated the effects of delay and accumulation, this is 

equivalent with an integrator in circuit design, so the three circuits components of 

 modulator are integrator, quantizer and DAC in the feedback path. A first order 

ΣΔ modulator’s output can represent as  

ΣΔ

               Y(z) = z-1X(z) + (1－z-1)E(z)                        （2.17） 

From (2.17) we can find the signal transfer function is as a delay function, and noise 

transfer function is as a high pass filter, moves the noise to high frequency. In order to 

derive PSNR of first order  modulator, we must get the magnitude of NTF(z) and 

STF(z) in the frequency domain, so we substitute z with , and get 

ΣΔ

sf/f2je ⋅π (f)STF  and 

(f)NTF  respectively as: 

              sf/fj2π1
TF ez(f)S ⋅−− == = 1                           （2.18） 

                 NTF(f) = 1－ = sf/f2je ⋅− π sf/fj

s

ej2)
f
fsin( ⋅−×× ππ  

            ⇒   )sin(2)(
s

TF f
ffN π

⋅=                                   （2.19）  
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So the quantization noise in base band ±fB can obtain by (2.7) and (2.19)  

        PQ = df
f
fsin2

f12
Vdf)f(N)f(S

2
f

f
ss

2
LSB2

TF

f

f

2
e

B

B

B

B

⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅
=⋅ ∫∫ −−

π          （2.20） 

Because that fB is much lower than fs, so sin(π f/fs) is approximate equal to (π f/fs), 

and PQ is as 

                PQ = 3
22

LSB )
OSR

1(
36

V
⋅

π = 3B2

22

OSR236
FS

⋅⋅
⋅π              （2.21） 

From (2.5) and (2.21), if we have the maximum signal power, then PSNR is as (3.6) 

          PSNR = 10 log(
Q

signal

P
P

) = 10 log( B22
2
3 ) + 10 log[ 3

2 )OSR(3
π

] 

               = 6.02B + 1.76－5.17 + 30 log(OSR)                  （2.22） 

(&)From (2.22), we find that each octave of OSR, PSNR will increase 9dB, increase 

1.5 bit in resolution. Compare (2.22) with (2.10) that only has oversampling effect; 

we can find that 1st order noise shaping increases the performance of  modulator. ΣΔ

 

2.4.2 Single-Loop Second-Order Sigma-Delta Modulator 

When the discrete time filter in Fig. 2.8 is replaced by two cascade integrator, then it 

is a second order ΣΔ  modulator, output of the first integrator is only connecting with 

the input of the second integrator, it is shown in Fig. 2.12 

 

               

Fig. 2.12 Single loop second order ΣΔ modulator 
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Then the output of it can easily be derived as 

                     Y(z) = z-2X(z) + (1－z-1)2E(z)                  （2.23） 

where STF and NTF is as 

                        STF(z) = z-2                              （2.24） 

                        NTF(z) = (1- z-1)2                          （2.25） 

Using the same method in (2.19) (2.20), we can obtain 

                      1)f(STF =                                 （2.26） 

                      
2

s
TF f

fsin2)f(N ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

π                      （2.27） 

                 PQ = 5

42
LSB

OSR60
V
⋅

⋅π = 5B2

42

OSR602
FS

⋅⋅
⋅π                   （2.28） 

So finally, PSNR of the second order ΣΔ  modulator is as 

        PSNR = 10 log(
Q

signal

P
P

) = 10 log( B22
2
3 ) + 10 log[ 5

4 )OSR(5
π

] 

             = 6.02B + 1.76－12.9 + 50 log(OSR)                    （2.29） 

In the single loop second order architecture, each octave of OSR can increase PSNR 

by 15 dB, it is equivalent to 2.5 bit in resolution. If we compare (2.29), (2.27) with 

)f(NTF =1 that without noise shaping, as Fig. 2.13, we can find that in our needed 

signal bandwidth, the quantization noise is highest when )f(NTF =1, and that with 

second order noise shaping is smallest among this figure [32]. 
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Fig. 2.13 Comparison of noise shaping techniques 

 

2.4.3 Single-Loop High Order Sigma-Delta Modulator 

Fig. 2.14 is a single loop high order ΣΔ  modulator, from the derivation in Section 

2.4.1 and Section 2.4.2, we can get the quantization noise PQ in signal bandwidth is as      

               PQ = 1L2
L22

LSB )
OSR

1(
1L212

V +⋅
+

⋅
π  ，L：order             （2.30） 

and its PSNR is   

      PSNR = 6.02B＋1.76－10 log(
1L2

L2

+
π )＋(20L＋10) log(OSR)       （2.31） 

In the application of high order ΣΔ  modulator, (6L+3)dB increases in SNR when 

OSR is octave, so PSNR can be raised by increasing the order of the system, 

especially at large oversampling ratio. But sometimes in high order architecture, the 

performance will be worsen than result predicted by (2.29), because of the stability 

problem, it will make less effective noise shaping function, so the quantization noise 

will not be suppressed completely. 
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                     Fig 2.14 Single-loop high order ΣΔ  modulator 

2.4.4 Interpolative Sigma-Delta Modulator 

  Interpolative is a kind of high order ΣΔ  modulator, it changes connection of some 

stages, adds some feed forward paths and feedback paths in order to suppose more 

aggressive noise shaping effect, Fig. 2.15 is a four-order interpolative architecture 

 modulator [37]. ΣΔ
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Fig. 2.15 Four-order interpolative architecture 

This architecture also has stability problem, when the order L increases, each 

integrator produces one pole, and when the order is higher, poles of this system will 

also increase, and it will cause unstable situation, so the range of integrator gain will 

be limited; if the range of integrator gain is small, oscillation will appear in the 

circuits. Another is the considerations of clock control, when we use SC 

(switched-capacitor) to implement the integrator, each integrator needs two clocks to 

control its operation, and we will need more clock to control the integrator when the 

order of system increases, it will produce more problems.     
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2.4.5 MASH Architecture 

MASH (Multi-stage noise shaping) architecture is also called cascade architecture, 

which is a method that cascades several low order loops modulator in order to get 

high order noise shaping effect. The fundamental ideal of MASH is delivering 

quantization noise of front stage to input of next stage, and combining the digital 

outputs of all the stages with proper transfer function in digital domain, only the 

quantization noise of last stage will appear at the output, and the orders of NTF is the 

same with total orders in the cascade ΣΔ  modulator. Fig 2.16 is a three-order 

cascade  modulator, its is the combination of a second-order and first-order  

modulator, so also called 2-1 cascade architecture. 

ΣΔ ΣΔ

 

1−Z

1−Z 1−Z

 
Fig. 2.16 2-1 architecture MASH ΣΔ  modulator 

From Fig. 3.7, we can derive the first stage output Y1(z) can be represented as 

                   Y1(z) = z-2X1(z) + (1－z-1)2E1(z)                  （2.32） 

Output of second stage Y2(z) is as 

                   Y2(z) = z-1X2(z) + (1－z-1)E2(z)                   （2.33） 

and overall output of MASH Y(z) is as 
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                   Y(z) = H1(z)Y1(z) + H2(z)Y2(z)                   （2.34） 

and we can say that second stage input X2(z) is almost the same with E1(z), in order to 

eliminate first stage quantization noise E1(z), from (2.32) ~ (2.34), we can define the 

error cancellation functions H1(z) and H2(z) as 

                           H1(z) = z-1                            （2.35） 

                         H2(z) = (1－z-1)2                         （2.36） 

From (2.32)~(2.36), E1(z) can be eliminated, and second stage quantization noise E2(z) 

is shaped by third-order noise shaping function, and the MASH output Y(z) is as  

                     Y(z) = z-3X1(z) + (1－z-1)3E2(z)                 （2.37） 

The most significant advantage of this architecture is that stability is not an issue, 

because it is composed by several low-order systems, and the quantization noise will 

not be amplified stage by stage, so its stability is good. Most important, the noise 

shaping function is equivalent as high order ΣΔ  modulator, so it is popular in recent 

publications [38, 39].  However, there also have some drawbacks of this topology; it 

is sensitive to the circuits＇ imperfections, such as finite DC gain of OTA, variance of 

integrator gain due to capacitor mismatch and non-zero switch resistance. These are 

all practical considerations when we design a MASH architecture  modulator 

[40]. 

ΣΔ

 

2.4.6 Multi-bit Quantizer Sigma-Delta Modulator 

   The demands of high resolution and high bandwidth ADC are more and more in 

recent years. In a high signal bandwidth, OSR of ΣΔ  ADC can’t be too high, and the 

peak SNR of a  modulator with such limited OSR can’t satisfy of high resolution 

applications, if we use higher order architecture, then the performance will degrade 

due to instability. So the most general method to increase performance is to use 

multibit quantizer. The most obvious advantage of using multibit quantizer is that the 

ΣΔ
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distance between quantizer level VLSB in (2.4) is much smaller due to increasing of B, 

and according to (2.3), the power of quantization noise is attenuated. Fig. 2.17 is the 

results of theoretical peak SNR of ΣΔ  modulator versus oversampling ratio, with 

different order and quantizer bits, it is noted that peak SNR of the same OSR is 

increase 6 dB with each additional bit number in quantizer, and at low OSR, low order 

higher bit number architecture has equivalent performance as high order architecture. 

This result is usable for high bandwidth applications, and the power consumption of 

digital circuit in  modulator is reduced due to lower sampling rate [41]. ΣΔ
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Fig. 2.17 SNR vs. OSR with different quantizer bit number 

Because of using multi-bit quantizer, so we also need to use multi-bit DAC(Digital-to 

Analog Converter) to transfer the digital output to analog signal, and feed it back to 

integrator. The most significant disadvantage is the non-linearities introduced by 

multi-bit DAC can degrade the performance of ΣΔ  converter, like Fig. 2.18. It is a 

linear model of multi-bit  modulator, where E(Q) and E(D) represent the 

quantization noise and feedback DAC noise respectively. The values of these 

capacitor elements in DAC will not equal to ideal values that we need, it is due to 

ΣΔ
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process variation, typical value of mismatch in modern CMOS technology is about 

0.05% ~ 0.5%. In recent years, so many researches are make efforts on reduce DAC 

noise due to mismatch, such as trimming [42], Dynamic element matching(DEM)[33, 

43], although trimming is effective, but it has a expensive production step. So, DEM 

becomes more and more popular because of its efficiency and cheaper cost. 

 

                        Fig. 2.18 Multi-bit architecture 

 

2.4.7 Multi-bit Sigma-Delta Modulator use DEM Technique 

   Dynamic element matching is a different approach to decrease the DAC noise, it 

is used to improve the linearity of pure DACs [44], but now it is most used in inner 

DAC of multi-bit ΣΔ  modulator. A DAC with DEM technique is illustrated in Fig. 

2.19,  bits thermometer code is put into the element selection logic block, and the 

function of element selection logic is try to select DAC elements in such way let the 

errors introduced by DAC average to zero for several operation periods. Because the 

DEM block is located in feedback loop, so its delay must be very small prevent to 

degrade the performance of  converter, therefore the algorithm used in the DEM 

block must be simple. There are several techniques of DEM, such as Randomization 

B2

ΣΔ
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[45], Clocked Averaging (CLA) [47], Individual Level Averaging (ILA) [46], Data 

Weighted Averaging (DWA) [47], Randomization is the first approach to use DEM 

technique in  ADC, and DWA offers a good performance to reduce DAC error, 

in this section, an overview introduction of these two algorithms will be presented, 

and the operation principle of them will be explained.  

ΣΔ
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Fig. 2.19 A B-bit DAC with DEM technique 

 

2.4.8 Decimator 

  In  A/D converter, digital decimator is used to process digital signal of the 

quantizer output, the high speed data word after oversampling modulation can’t be 

used directly. Because there have original signal and quantization noise among it, so 

the main function of decimator is to convert the oversampled B-bit output words of 

the quantizer at a sampling rate of fs to N-bit words at Nyquist rate of input, and 

removes the noise out of signal band. In order to prevent the noise introduced by other 

frequency, the decimator filter must have very flat signal pass-band, and sharp 

transition region and enough signal attenuation in stop band. Two-stage decimator is 

used in a general situation, because that single stage decimator is difficult to convert 

sampling rate to Nyquist rate in 1 time and without degrading SNR. In the first stage, 

we can down-sample the sample frequency to 2~4 times of Nyquist frequency, and in 

the second stage, we can use IIR or FIR filter that have high linearity [42]. For a large 

ΣΔ
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OSR, multi-stage decimator is used. 

 

2.4.9 Performance Metrics for a ΣΔ  Modulator 

  In order to understand the performance merits used to specify the behavior of  

modulator, several specifications concerning the performance are discussed [30]. 

ΣΔ

 ․Signal to Noise Ratio: The SNR of a data converter is the ratio of the signal 

power to the noise power, measured at the output of the converter for a certain 

input amplitude. The maximum SNR that a converter can achieve is called the 

peak SNR. 

․Signal to Noise and Distortion Ratio: The SNDR of a converter is the ratio of the 

signal power to the power of the noise and the distortion components, measured at 

the output of the converter for a certain input amplitude. The maximum SNDR that 

a converter can achieve is called the peak SNDR. 

․Dynamic Range at the input: The DRi is the ratio between the power of the 

largest input signal that can be applied without significantly degrading the 

performance of the converter, and the power of the smallest detectable input signal. 

The level of significantly degrading the performance is defined as the point where 

the SNDR is 6 dB bellow the peak SNDR. The smallest detectable input signal is 

determined by the noise floor of the converter.  

․Dynamic Range at the output: The dynamic range can also be considered at the 

output of the converter. The ratio between maximum and minimum output power is 

the dynamic range at the output DRo, which is exactly equal to peak SNR.  

․Effective Number of Bits: ENOB gives an indication of how many bits would be 

required in an ideal quantizer to get the same performance as the converter. This 

numbers also includes the distortion components and can be calculated from (2.6) 

as              
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02.6

76.1ENOB −
=

SNR                            (2.38) 

․Overload Level: OL is defined as the relative input amplitude where the SNDR is 

decreased by 6dB compared to peak SNDR 

 Typically, these specifications are reported using plots like Fig. 2.17. This figure 

shows the SNR and SNDR of the ΣΔ  converter versus the amplitude of the 

sinusoidal wave applied to the input of the converter. For small input levels, the 

distortion components are submerged in the noise floor of the converter. Consequently, 

the SNDR and SNR curves coincide for small input levels. When the input level 

increases, the distortion components start to degrade the modulator performance. 

Therefore, the SNDR will be smaller than the SNR for large input signals. Note that 

these specifications are dependent on the frequency of the input signal and the clock 

frequency of the converter. Fig. 2.20 also shows that SNDR curves drop very fast 

once the overload point is achieved. This is due to the overloading effect of the 

quantizer which results in instabilities. 

 

Fig. 2.20 Performance characteristic of a ΣΔ  converter 
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3.OTA Non-Linear Gain Curve   
 

Existing OTA nonlinear gain distortion models in Sigma-Delta Modulator 

consume much time to obtain. Usually OTA nonlinear gain curve parameters are 

identified directly from transistor-level designs. Although the nonlinear gain curve 

parameters obtained this way are more accurate, it is hard to generalize from one 

design case to another. In addition, there are two more problems. First, due to that 

they consume much time to obtain OTA nonlinear gain curve parameters, it is not 

practical to achieve desired results in a recursive way. Second, it is hard to know how 

nonlinear gain curve parameters are affected by sigma-delta modulator circuit 

parameters, e.g., OTA dc gain Ao, OTA output swing voltage VOS, etc. 

Two of major op-amp architectures are popular with low-power IC design. First 

architecture is the two-stage op amp. It consists of a cascade of V→I and I→V stages. 

This two-stage op amp is so widely used that we call it the classical two-stage op amp. 

Second architecture major architecture is commonly called the folded-cascade op amp. 

Architecture of classical two-stage architecture is widely used in SDM design. It 

comprises differential amplifier in first voltage stage and output amplifiers in second 

voltage stage, see as Fig. 3.1.  

 

 
Fig 3.1 Two-Stage OTA architecture 

 

By general application in sigma-delta modulator, our non-linear gain model built 
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of classical two-stage op-amp with class-A stage. It’s typical op-amp’s configuration 

schematic see as Fig.3.2.   

In the practical op amp circuit, the nonlinearity of the gain is manifested by its 

dependency on amplifier output voltage . Fig. 3.3 shows a typical relationship 

between DC gain and , in which the maximum DC gain  appears at  

OV

OV OA

 
Fig. 3.2. A typical op-amp’s configuration schematic considering nonlinear 

DC gain 
 

 
Fig. 3.3. A typical relationship between DC gain and  oV

 

center of scale and decreases as the magnitude of output voltage increases. This 

nonlinear gain introduces distortion in the sigma-delta modulator output spectrum. 

After some HSPICE simulation based on TSMC 0.18μm, the results reveal that GSQV  

of the output-stage transistors and the maximum DC-gain  also affect the shape of  OA
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   VVA OS 1,5700 ==

    VVA OS 1,3210 ==

Fig.3.4. Two nonlinear gain curves with identical  but different  OSV 0A

 

   VVA OS 6.1,3310 ==

    VVA OS 1,3210 ==

         
 Fig.3.5. Two nonlinear gain curves with similar  but different  0A OSV

 

the nonlinear curves. In order to make designers easier to use, it is must to replace 

GSQV  by a more general parameter in circuit. By the basal op amp circuit concept, we 

can know the range of maximum output swing ( )OSV  and GSQV  are germane relation 

with each other. Thus, in dealing with OTA distortions, we are basically faced with a 

family of nonlinearities. 

 

 About the distortion due to a particular nonlinear curve approximated by the 

polynomial: 
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Because the nonlinear curve is even function, it can be simplified by: 

 

)1()( 6
6

4
4

2
20 L++++= ooooV VqVqVqAVA                          (3.2) 

 

Where  is finite DC gain of OTA, and  is the maximum finite DC gain 

when  is in the neighborhood of 0V.  

)( OVAv

OV

OA

Although some expressions for harmonic distortions are derived in [30] and [48], 

these results are not completed. They just offer an incomplete model, due to they 

model must use transistor level to assist their distortion model complete. In this 

subsection, we will drive a complete OTA gain distortion model for 0.18μm process. 

There are two steps. In the first step, we try to model the family of nonlinear curves. 

Next, based on this nonlinear curve model, we derive the distortion model. The 

behavior simulation model offered by [49] is applied to verify this model. 

For the first step, our HSPICE simulation based on TSMC 0.18μm process 

model reveals that, in addition to output voltage Vo, both the GSV  of output stage 

transistors and the maximum DC gain  can affect the shape of the nonlinear curves. 

Thus, in dealing with OTA distortions, we are basically faced with a family of 

nonlinearities. Since VGSQ is inversely proportional to the range of maximum output 

swing , we identify ,  and V  as the three parameters that can affect OTA 

DC gain . We simulated on a classical two-stage operation amplifier shown in Fig. 

3.6 to produce two specific cases shown in Fig. 3.4 and Fig. 3.5. Figure 3.5 shows 

how variation in  can affect the curve shape. Figure 3.5 demonstrate the case when 

OA

OSOSV

A

OV OA

V

OA
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variation is mainly in . In order to model the nonlinear DC gain , we tried 

various combination of  and  to the curve shape. In order to model the 

nonlinear DC gain , we tried various combination of  and  to create a set of 

representative curves for the family of nonlinear DC gain curves. Then, after intensive 

OSV

A

VA

O OSV

VA OA OSV

 

 
Fig. 3.6. A classical two-stage operation amplifier 

 
trials and errors, we come up with the following function to fit the nonlinear curves. 
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After performing Taylor’s series expansion on (14) over , the model we arrive at is 

of the form 

oV

                                                (3.4) )1()( 4
4

2
20 oooV VqVqAVA ++=

where and  in (5.17) are  2q 4q
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24
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Aq ⋅⋅−=                       (3.6) 

Because the q2 and q4 are the critical parameter for OTA gain distortion, we can 
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discriminate the circuit parameter effect upon OTA gain distortion clearly.  

 

In the past, it is hard to decide DC gain to achieve high-linear. Because modern 

ICs are asked for low power consumption, DC gain isn’t the bigger the better. 

Designers can plan a recursive way with our approach. For example, if designer 

expect the HD3 is -110 dB. Users can easily know that q2 is needed -0.170521 and q4 

is needed -0.004846 and designers can decide important parameters (e.g., OTA dc 

gain, OTA output swing voltage etc) in design flow.     

 

At last, we simulate a practical two op amps to verify our non-linear gain curve 

model. First, we simulate op-amp with class-B stage. It’s parameter is 

Ao=68dB,Vos=±1.5V. See Fig.3.8, when Vo swing in (+0.87V~-0.87V), the 

simulation result of nonlinear curve function is close to the practical one. The 2nd 

order nonlinear coefficient of the nonlinear curve function q2= - 0.0593 is close to 

that of the practical case q2= -0.0561, but the 4th order nonlinear coefficient of the 

nonlinear curve function q4=-0.000586 is much larger than that of practical case q4= 

-0.00873. 
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Fig.3.8. Comparison between simulation of nonlinear curve function and 
practical design 

 

Second, we simulate op-amp with class-A stage. It’s parameter is 

Ao=50dB,Vos=±1.6V. See Fig.3.9, when Vo swing in (+1V~-1V), the simulation 

result of nonlinear curve function is close to the practical one. The 2nd order 

nonlinear coefficient of the nonlinear curve function  is close to that of the 

practical case , but the 4th order nonlinear coefficient of the nonlinear curve 

function  is much larger than that of practical case  since  is 

very sensitive and difficult to be estimated, it causes that the 5th harmonic distortion 

estimation is not accurate, 

1387.02 −=q

q

1106.02 −=q

0032.04 4 4−=q 0451.0−= q

 
Fig.3.9. Comparison between simulation of nonlinear curve function and practical 

design 
 

Because our nonlinear gain model are build with class-A in second stage, The 

simulate with class-A is more accurate than class-B. No matter what Architecture is, 

q2 is still enough to obtain a accurate HD3. Because it’s the most important factor for 

HD3. 
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4. Distortion Due to the Non-Linear Gain 
of the Operational Amplifier 

 

An ideal OTA with infinite gain doesn’t introduce any noise or distortion. 

Practical OTAs not only have the characteristics of finite DC gain, but also the gain is 

nonlinear. In chapter four, we analyze the op amps non-linear gain phenomenon. We 

also obtain the non-linear gain curve model aimed the classical two-stage. So the next 

work is to obtain the expressions to estimate harmonic distortion introduced by 

integrator with our non-linear gain curve model. 

   
       (a) Sampling phase               (b) integration phase 

Fig. 4.1. Switch-capacitor integrator with finite-gain amplifier 
 

See Fig 4.1(a) and 4.1(b), First, in order to obtain more accurate distortion 

model we must analyze the charge transfer in integrator. By Fig. 4.1 we can obtain the 

charge transfer in integrator is 

 

               )()(1)( −+−++ −−−=⋅− aaOO
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Arrange function 
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Up to the present, we obtain three important functions in nonlinear gain analyze. First, 

the nonlinear gain curve model. Second, the charge transfer functions in integrator. 

Third, the behaving characteristic functions of op amp. See below 
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Substituting (4.3) and (4.4) into (4.5), one obtains the following expression 
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In order to simplify (4.6), it is assumed in [30] that 1)/11(
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final expression can be derived as  
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Using Taylor’s series expansion on over Ao 
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The nonlinear term is  
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In order to build a mathematical expression related to input signal magnitude for 

estimating the distortion caused by nonlinear DC gain,  and  must be expressed 

as functions of . In single-loop second-order sigma-delta modulator, when a signal 

 apply to modulator input and quantization noise is not considered,  can 

be represented as  
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The output signal of the first integrator can be represented input signal 

See Fig. 4.2  

 
Fig. 4.2 Integrator 

 
As t = nT, in sample phase 
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As t = (n+1/2)T, in integration phase 
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So, we can obtain  
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We can clean find that output voltage and input voltage are integral relation.  

Then we simplify function 
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Then (4.10) (4.15) replace Vo and Vs into the nonlinear tern  
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Coordination function 
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Where 
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So the powers of the 3rd and 5th harmonic distortions are 
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In (4.18)-(4.21) we can obtain the relationships between the each parameter and 

power of the harmonic distortions, which are listed in Table 4.1. 

Table 4.1 the relationship between the each parameter and the harmonic distortions 

 IC ↑ SC ↑ inA ↑ 0A ↑ osV ↑ OSR ↑ 
Distortion 
size 

↓ ↑ ↑ ↓ ↓ ↑ 
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5.Behaving Model Simulation Results 

 

We use a calculable behaving model to verify our nonlinear gain distortion 

model. [49] 

The z-domain transfer function of a delayed integrator of Sigma-Delta 

Modulator is  
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The nonlinear curve is 
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By above function, we could build an op amp model in Simulink. See as Fig.5.1 
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Fig. 5.1 an nonlinear op-amp model in simulink 

 
Then, we take op amp model into the complete sigma delta modulator. See as Fig.5.2 

 
Fig. 5.2 Non-ideal second-order SDM 

 

Now, we can use the non-ideal OTA behaving model in sigma delta modulator to 

simulate the OTA nonlinear gain distortion.  

 

Table.5.1 Comparison of theoretic result and behavior simulation of Case A 
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See as Table.5.1, Table.5.2, Table.5.3, we can find our model simulation results are 

close to behaving model simulation results. At different op-amp specifications, HD3 

in our model is always close to simulation results. 

 
Table.5.2 Comparison of theoretic result and behavior simulation of Case B 

 
 

Table.5.3 Comparison of theoretic result and behavior simulation of Case C 
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6.Transistor Level Simulation Results 

 
The proposed model serves as a powerful tool for analyzing nonlinear gain 

distortion for sigma delta modulator. In order to assess the accuracy of the proposed 

methodology at circuit-level, the circuit of Fig. 6.1 has been realized using classical 

two-stage architecture in Spice.  

Because the magnitude of transfer function of first op amp in sigma delta 

modulator is one, all of its noise wouldn’t loss in SDM output. So we can just use an 

op amp to simulate gain distortion. 

 

 
Fig.6.1. two-stage Op-Amp  

 

The specifications op the op amp are DC-gain=69dB,Vos=±1.43V, a1=1. Its FFT print 

See as Fig.6.2. Note that the even order harmonic distortions are ideally zero due to 

the symmetry of fully differential OTA. The total harmonic distortion (THD) is 

mainly determined by the third harmonic distortion (HD3). By Fig.6.2 HD3 and HD5 

is -52.1dB and -72.9dB respective, our model simulation is that HD3 and HD5 is 

-47.0227dB and -63.0224dB respective. We can find that our HD3 is close to Spice 

simulation, it’s different about 5dB. But the q4 of our model isn’t accurate enough, our 

HD5 isn’t close to Spice simulation. It’s different about 10dB. But HD5 can be 
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neglect always in common sigma delta design, its effect on signal in SDM is 

unobvious. This simulation results are listed in Table 6.1. 

 

 
Fig6.2. Simulation FFT Results with a1=1, DC-gain=60dB VOS=1.43V FB=200k 

 

Table.6.1 Comparison of theoretic result and spice simulation 
 Theoretic (dB) Spice Simulation (dB) 

HD3 -47.0227 -52.1 
HD5 -63.1224 -72.9 
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7. Conclusions and Future Works 
 

 

In this paper, our approach model not only nonlinear gain curve but also nonlinear 

OTA gain distortion. Due to saving time for circuit-level simulation, designer can use 

this model to obtain the expectant specification with a recursive way. Although the 

HD5 is not accurate enough, it isn’t a major cause of performance attenuation. 

Because the total harmonic distortion (THD) is mainly determined by the third 

harmonic distortion (HD3), our model is still enough to satisfy designer want. Using 

of our approach, the effects of op-amp parameters on power-consumption is clear to 

know. Distinct from general approaches, our model is accurate and fast to obtain 

optimal DC-gain to derive the low-power requirement and high-resolution. 
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