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摘 要       

毫無疑問，瞭解電子在奈米線內部的運動行為是應用奈米線製作新穎

奈米電子元件一個相當重要的步驟，然而，要能實際達成應用的目的，

僅止於這樣的瞭解卻是不夠的。我們知道，任何奈米線，不論是作為

元件本身或是作為傳遞訊號的導線，它都必須與外界有所接觸，這個

接觸可能是元件與元件之間的連結，也可能是元件與巨觀世界之間的

連結。由於相關奈米製程的步驟繁複，一個非理想的接點顯然十分容

易因為污染或製程條件的些微差異而形成，而這樣一個非理想的接點

極可能會改變電子的運動方式，並進而影響元件的正常操作模式。因

此，徹底掌握電子在奈米線內部與在奈米線接點附近的傳輸特性是兩

個同等重要的研究課題。 

本篇論文即是針對上述的主題，以 RuO2與 IrO2兩種極具應用價

值的氧化物金屬奈米線為主體，進行一完整的研究。RuO2與 IrO2是具

有相同結構、高度化學與熱穩定性，以及擁有相當於一般金屬導電率

的過渡金屬氧化物。利用標準的電子束微影製程，以及運用不同數目

的量測電極，我們不僅釐清了它們本身從室溫到液態氦溫度的電子傳

輸特性，也成功地描述了電子在奈米線接點附近從室溫到液態氦溫度

的運動行為。 

關於 RuO2與 IrO2奈米線本身的電子傳輸特性，我們發現，與它

們的單晶塊材相同，其奈米線的電阻率從室溫到液態氦溫度的變化仍

舊可以用 Boltzmann傳輸理論來成功描述。然而，對於 RuO2奈米線

而言，我們發現，從理論擬合得到的 Debye溫度卻會隨著奈米線直徑



 

縮小而大幅度的變小。對於直徑約 40 奈米的 RuO2奈米線而言，其內

的 Debye溫度已變小至只有其單晶塊材 Debye溫度的大約一半大小。

對於我們所觀察到的結果，我們提出並探討了一些可能引發這種現象

的物理機制，我們歸納後認為，這樣的現象應該是來自於晶格點與晶

格點之間的等效鍵結力(亦即晶體的楊格彈性係數)隨著奈米線直徑變

小而減弱所導致。另外，在此篇論文裡，我們將僅報告較大直徑 IrO2

奈米線的測量結果，對於較小直徑 IrO2奈米線的進一步測量則正在進

行當中。 

對於電子通過 RuO2與 IrO2奈米線接點的傳輸行為，我們發現，

對於具有較高接觸電阻的接點而言，不同材質的奈米線，其接觸電阻

隨溫度變化的行為分別可以用不同的物理模型(函數關係)來成功解
釋。在 RuO2奈米線方面，我們發現，其較高阻值的接觸電阻隨溫度

的變化行為可以用 thermally fluctuation-induced tunneling的物理模型

來解釋，這主要是由於在接點附近形成一個等效的絕緣層，導致電子

通過接點時是以 tunneling的方式來傳遞。在 IrO2奈米線方面，我們發

現，在溫度約 100 K以下，其較高阻值的接觸電阻與溫度的相依關係

則是遵從了 logR正比於 T -1/2的關係式，這主要是因為在接點附近形

成了一個由顆粒狀金屬所組成的區域，使得電子通過接點時是以

hopping的方式來傳輸。我們認為，不同材質奈米線的接觸電阻具有

不同的溫度相依關係，極可能只是一個隨機的結果，亦即，接點結構

乃是從兩種可能的結構當中(絕緣層或顆粒層)隨機形成，然而，這樣
的結構差異也很可能是肇因於金屬電極材料(本篇論文使用 Cr/Au作
為電極材料)在不同材質的奈米線上具有不同的表面應力。更進一步的

釐清我們則正在進行當中。 
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Abstract

Fair understanding of the intrinsic electronic transport properties of individ-

ual nanowires (NWs) is certainly the key step for numerous nanoelectronic

applications. Quantitative knowledge about the relevant electronic contacts

is also very crucial in correctly interpreting the experimental results. In this

work, we have studied the intrinsic electronic transport properties of indi-

vidual single-crystalline RuO2 and IrO2 NWs, which belong to the family of

transition metal oxides that have advantages of being chemically stable while

possessing comparatively high conductivities. With the help of the standard

electron-beam lithographic technique, individual NWs are contacted by submi-

cron metal electrodes from above. By applying different probe configurations

to our measurements, not only the intrinsic electronic transport properties of

the individual as-grown NWs but also the temperature behaviours of high-

resistance electronic contacts, Rc(T ), have been determined down to liquid-

helium temperatures.

Two main results have been obtained. First, the measured temperature

dependent resistivity of the NWs is found to agree well with the current theo-

retical understanding of these materials. Although they can be well described

by the existing theory, we found that the Debye temperature in RuO2 NWs

is significantly reduced to only one half of its bulk value when the diameter

of the NW decreases down to ≈ 40 nm. (Comparable experiments on IrO2

NWs with diameters down to this scale have not been performed.) Possible

mechanisms accounting for this observation have been discussed. It is conjec-

tured that the chemical binding in the NWs may be gradually weakened as

the diameter decreases.

Second, for high-resistance electronic contacts, the measured Rc(T ) reveals

semiconducting or insulating behaviour, i.e., it increases rapidly with decreas-

ing temperature. However, different temperature dependence has been found
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for different kind of NW. For RuO2 NWs, the temperature behavior of Rc

can be satisfactorily explained in terms of the thermally fluctuation-induced

tunneling through a junction formed at the interface between the electrode

and the NW. On the other hand, for IrO2 NWs, a power law of the form

logRc ∝ T−1/2 over a very wide temperature range from ≈ 100 K down to

liquid-helium temperatures has been observed. This later conduction process

is ascribed to the hopping of electrons through nanoscale metal (Cr) granules

incidentally formed at the contact region during the thermal evaporation of

the submicron Cr/Au electrodes. Although such a difference may arise from

the different surface conditions of different kinds of NWs (such as different

surface stresses), we believe that either mechanism could occur even for the

same kind of NW; they just appear randomly. Unfortunately, direct evidences

supporting this viewpoint are not obtained in this work.
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Chapter 1

Introduction

Over the past decade, nanostructures have received much attention because

they not only have great potential for novel industrial applications but also

could provide a peculiar system for fundamental researches on issues about

dimensionality and space-confined phenomena. Among the various nanostruc-

tures, self-assembled quasi-one-dimensional (Q1D) metallic nanowires (NWs)

are of particular interest due to their promising applicability in the future nano-

electronics as elemental devices or as probes that diagnose functional circuitry.

For instance, the molecular carbon nanotubes (CNTs) are shown to behave

(in some cases) ballistically and be capable of sustaining extremely high cur-

rent densities [1]. Prototypical nanoelectronic devices based on a single CNT

have been proposed and tested [2]. To date, in addition to the extensively

studied CNTs [1, 2], great amounts of efforts have been focusing on quasi-one-

dimensional semiconductors [3] and their binary compounds including Si [4],

ZnO [5], GaN [6], etc.

Of course, for all fascinating applications to be true, fair understanding

of the intrinsic electronic transport properties of these Q1D metallic NWs is

the very first and key step for the realization of numerous possibilities. How-

ever, although nowadays various metallic NW systems have been successfully

synthesized, electrical characterizations on individual metallic NWs have been

comparatively less reported with only very few exceptions like metallic silicide

[7] and semi-metallic Bi [8, 9]. This lack of reports mainly originates from

the problem of uncontrollable surface oxidation that largely hinders reliable

electrical measurements from being taken [8]. Measurements so far were thus

mostly performed simultaneously on a great number of NWs imbedded in an

insulating porous template, by using the simple 2-probe method. In that way,

the influences of the contacts apparently cannot be explicitly excluded and the

1



unique properties of individual NWs could also be easily smeared out.

In this context, conducting metal oxides, such as RuO2 and IrO2, that

have advantages of being chemically stable while possessing comparatively

high conductivities, can thus provide an alternative and excellent choice for

nanodevice-related applications and most of all, fundamental electronic trans-

port studies, from which the information inferred over a wide range of temper-

ature (and, further, with the application of magnetic fields) will help clarify

the electronic conduction mechanism in metal and semiconductor NWs.

Recently, syntheses of single-crystalline RuO2 and IrO2 NWs have been

reported by means of different techniques including cryogenic decomposition

[10], metal-organic chemical vapor deposition [11], reactive sputtering [12], and

many others [13, 14, 15]. Nevertheless, despite the fact that they are metallic

oxides with superior chemical stabilities, the intrinsic temperature dependent

electronic transport properties of these highly applicable materials down to

the nanoscale have not yet been fully characterized so far.

This fact may result from another frequently encountered technical diffi-

culty. Since exploring the electronic transport properties in these Q1D systems

requires the connections of the instruments to the individual nanostructures,

nanofabrication techniques such as the electron-beam lithography (EBL) and

the focused ion beam deposition are usually employed to accomplish this need.

However, it is known that fabrication of reliable electronic contacts to the nan-

odevices has been a nontrivial issue, because very often an imperfect contact

inevitably forms and may possess a non-negligible temperature dependent con-

tact resistance, Rc(T ), which in turn is prone to complicate the experiments

and could seriously mislead the physical interpretation of the data. The high-

resistance Rc may be as a result of the surface contamination of the NW,

or the minor break of the electrode at the contact where it just touches the

NW. Either could be easily introduced due to the complexity of the whole

fabrication process.

From the physical point of view, in the cases involving semiconductors,

the contact between a metal electrode and a semiconductor NW usually forms

a Schottky barrier, whose properties have been extensively studied [16]. A

2



different situation concerning heavily doped semiconductor NW has also been

discussed [17]. On the contrary, the electrical properties of the contact between

a metal electrode and a metal NW have not yet been much addressed in the

literature. In the case of metal NWs, since the NWs may readily be separated

from the electrode by a layer of some insulator (oxidation, contamination, an

amorphous coating, or a break, etc.) of a few nm thick, the underlying physics

of how electron waves transmit through such a nanoscale interface should be

of fundamental interest and urgent industrial concerns.

In this work, we report the electronic transport measurements on individ-

ual single-crystalline RuO2 and IrO2 NWs fabricated by the thermal evapora-

tion method and the metal-organic chemical vapor deposition method, respec-

tively. With the help of the EBL technique, individual NWs were contacted

by submicron electrodes from above. Utilizing different probe configurations

in our measurements, not only the intrinsic electronic transport properties of

individual NWs but also the temperature dependent high-resistance electronic

contacts (which incidentally formed at the interfaces between the lithographic-

patterned submicron electrodes and the NWs) have been determined from 300

K down to liquid-helium temperatures.

We found that the electronic transport properties of our as-grown NWs can

be explained in terms of the current theoretical understanding for these ma-

terials. The measured temperature dependent resistivities are well accounted

for by the scattering of electrons with phonons. However, for RuO2 NWs with

diameters of several tens nm, the effective Debye temperature was found to be

largely reduced as compared with its bulk value.1 It is conjectured that the

chemical binding of the lattice may be weakened as the diameter of the NW

decreases.

On the other hand, instead of providing a solution to the problem resulting

in the high-resistance Rc, we demonstrated that the temperature behavior of

Rc, however, can be well understood in terms of two existing phenomenological

1Investigations of the IrO2 NWs with diameters down to the similar scales have not been
performed yet because of the experimental difficulty of patterning four submicron electrodes
onto such NWs, of which the lengths are rather shorter than those of the RuO2 NWs.
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theories, one for RuO2 NWs, and one for IrO2 NWs. Although such a difference

may arise from the different surface conditions of different kinds of NWs (such

as different surface stresses), we believe that either mechanism could occur

even for the same kind of NWs; they just appear randomly. Unfortunately,

direct evidences supporting this viewpoint are not obtained in this work.

To our knowledge, the present work is the first quantitative electrical char-

acterization on these highly applicable materials down to the nanoscale, and

also over such a wide range of temperature.
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Chapter 2

Experimental method

2.1 Fabrication of nanowires

The NWs used in the present work are provided by Profs. Fu-Rong Chen and

Ji-Jung Kai’s group at the Department of Engineering and System Science

of National Tsing Hua University (RuO2) and by Prof. Ying-Sheng Huang’s

group at the Department of Electronic Engineering of National Taiwan Uni-

versity of Science and Technology (IrO2). The fabrication processes are briefly

given here. Detailed descriptions of fabrication processes and other material

characterizations for each kind of NWs can be found in the references as indi-

cated in the text.

2.1.1 RuO2

Ruthenium dioxide, RuO2, together with several other oxides, such as IrO2 and

OsO2, crystallizes in the rutile structure (Fig. 2.1) and belongs to the family

of transition metal oxides that exhibit metallic conductivities comparable with

those of the parent metals themselves [18, 19]. Owing to its excellent thermal

and chemical stability [20, 21], it has been investigated for applications in

many diverse fields. For example, it has been used as resistive thermometers in

cryogenics [22], as corrosion-resistant low-overpotential electrodes for chlorine

and oxygen evolution in electrolysis [23], and as electrochemical capacitors for

energy storage in power industry [24]. Moreover, in addition to being an strip-

line conductor [25] and an electrical contact material [26] in vast electronics,

RuO2 as well finds its application in modern very large scale integrated circuits

as an outstanding diffusion barrier between Al and Si in contact metallizations

[27].

Single-crystalline RuO2 NWs were self-assembled by applying the thermal
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Figure 2.1: Rutile structure.
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Figure 2.2: TEM image for a RuO2 NW.
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evaporation method based on the vapor-liquid-solid growth mechanism,[28]

using Au nanoparticles (Ted-pella, 5–40 nm in diameter) as catalyst. A con-

ventional quartz tube furnace was used for the synthesis. The tube was first

cleaned by evacuating it to a base pressure of 10−3 torr. Oxygen gas (99.9%)

was then introduced as a carrier gas to transport the vapor produced by evap-

orating stoichiometric RuO2 powder (Aldrich, 99.9%), which was placed in the

tube center, at 920–960◦C. The pressure and the flow rate of the carrier gas

was 2 torr and 100 sccm, respectively. Silicon substrates with a native oxide

layer on top were placed at the downstream end of the tube, where the temper-

ature was kept at 450–670◦C. Several hours later, single-crystalline RuO2 NWs

were grown on the substrates. The as-deposited NWs were further analyzed

by using field-emission scanning electron microscopy (FE-SEM), transmission

electron microscopy (TEM), x-ray diffraction (XRD), and x-ray energy disper-

sive spectroscopy (XR-EDS). Figure 2.2(a) shows the SEM image focused on

a particular NW, of which the nearly square cross section is illustrated. The

TEM image and the corresponding electron diffraction pattern are shown in

Fig. 2.2(b). Detailed results of the material characterizations can be found

elsewhere [15].

2.1.2 IrO2

Iridium dioxide, IrO2, also crystallizes in the rutile structure with the lattice

constants differing from RuO2 by less than ≈ 1% (see Fig. 2.1). Owing to its

high resistance to the inter-diffusion of oxygen, as well as its excellent thermal

and chemical stability [29], it has been used in many diverse applications. For

instance, it has been investigated for use as optical switches in electrochromic

devices [30], as thin film electrodes for dynamic random access memories [31],

and as durable electrode materials for oxygen or chlorine evolution [32]. More

recently, IrO2 NWs have been studied as high-performance and robust field

emitters due to their low surface work function [33].

Self-assembled single-crystalline IrO2 NWs were grown onto sapphire (100)

substrates via the MOCVD method, using the low-melting iridium source

8



Figure 2.3: (a) Tilted FESEM image of as-grown IrO2 NWs revealing nearly
triangular cross sections. (b) Schematic plot of the geometry for a NW. (c)
XRD pattern of the NWs.
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reagent (MeCp)Ir(COD) supplied by the Strem Chemicals. Both the pre-

cursor reservoir and the transport line were controlled in the temperature

range of 100−130 ◦C to avoid precursor condensation during the vapor-phase

transport. High purity oxygen, with a flow rate of 100 sccm, was used as the

carrier gas and reactive gas. During the deposition, the substrate tempera-

ture was kept at 350 ◦C, and the chamber pressure was held at 23±1 mbar to

obtain the quasi-one-dimensional IrO2 crystals. The deposition rate of NWs

with nearly triangular cross sections was estimated to be 20–25 nm/min. By

adjusting the temperatures of precursor reservoir and substrate, NWs with

different cross-sectional morphologies, such as triangles and squares, could be

obtained [34]. For the sake of convenience for resistance measurements, the

NWs with nearly triangular cross sections [figures 2.3(a) and 2.3(b)] were used

in this work since they have the longest length (∼ 3 µm) among all morpholo-

gies. The as-deposited NWs were analyzed using field-emission scanning elec-

tron microscopy (FE-SEM), transmission electron microscopy (TEM), x-ray

diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). Figure 2.3(c)

shows the XRD pattern of the NWs used in this work, in which the unique

(002) diffraction signal indicates the nearly single-crystalline quality as ob-

tained in our previous results [35]. Detailed fabrication processes and material

characterizations can be found elsewhere [33, 34, 35].

2.2 Electrical measurements

Electrical contacts onto individual NWs were fabricated by the standard EBL

process as described below. Figure 2.4 shows the schematic plot of the pro-

cess. Silicon substrates with a ≈ 200-nm thick SiO2 layer on top were first

photo-lithographically patterned with Cr/Au (≈ 10/60 nm) macro-electrodes

using bi-layer photoresist process to create reverse-slope resist sidewall profiles.

Several droplets of dispersed alcoholic solution containing RuO2 or IrO2 NWs

were dropped on the substrate. Transfer of the NWs could also be achieved

by bringing the patterned Si substrate into loose surface contact with the

substrate where the NWs were actually grown onto. No differences have been
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found between these two methods.1 Individual NWs were then positioned with

SEM. A spin-coated thick layer of PMMA (polymethyl methacrylate) on top

of the substrate was exposed to electron beam to produce submicron patterns.

Following the thermal evaporation of Cr/Au films (≈ 10/90 nm thickness, ≈
1/5 Å/s deposition rate), lift-off techniques were applied to generate submicron

electrodes contacting the NWs.

Copper leads were attached to the macro-electrodes with Ag paste, and

the substrate was thermally anchored to the sample holder mounted with a

calibrated silicon diode thermometer on a standard 4He cryostat. For measure-

ments down to sub-Kelvin temperatures, an Oxford Heliox 3He refrigerator

with a calibrated RuO2 thermometer was used.

The resistances were measured by two different methods, depending on

which measurement configuration was employed. First, in order to investigate

the intrinsic electronic properties of individual NWs, a standard four-probe

(4-p) measurement configuration [Fig. 2.5(b)] was applied, using a Linear Re-

search LR-700 AC resistance bridge. Second, for the three-probe (3-p) and

two-probe (2-p) measurement configurations [Fig. 2.5(c) and (d), respectively],

the resistances were measured by the DC method, in which a Keithley K-6430

source meter as a current source and a K-182 nanovoltmeter were used, and the

current-reversal method [36] was adopted so that any existing thermoelectric

voltages along the measurement loop were canceled. For some 2-p measure-

ments (in which higher resistance readings were obtained), only the K-6430

source meter was used.

Obviously, in the 2-p method, the measured resistance R is the sum of the

NW sample resistance Rs plus the two electronic contact resistances Rc’s and

the two submicron-electrode resistances Rel’s, i.e., R(T ) = Rs(T ) + 2Rc(T ) +

2Rel(T ). The prefactor 2 is introduced to denote that there are two similar

electronic contacts in series (and also, two similar submicron electrodes in se-

ries).2 We have assumed this simple case here because they were fabricated

1For IrO2 NWs, only the first method was used, i.e., the wet method.
2The resistances of the submicron electrodes are similar at least within an order of

magnitude, though they actually have different geometrical sizes (except their thicknesses).
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Figure 2.4: Schematic plot of making electrical contacts onto individual
NWs.
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Figure 2.5: (a) Schematic diagram for a single NW (thick bar) with four
electronic contacts on it and the equivalent circuit model. Rs denotes the
resistance of each segment of the NW (i.e., the sample resistance). Rc1, Rc2,
Rc3 and Rc4 denote the electronic contact resistances between the NW and the
submicron electrodes 1, 2, 3 and 4, respectively. Rel,i denotes the submicron-
electrode resistance of the ith electrode. Four-probe (b), three-probe (c) and
two-probe (d) measurement configurations, and the corresponding measured
resistances. In (d), the approximations Rc2 ≈ Rc3 ≡ Rc and Rel,2 ≈ Rel,3 ≡ Rel

are assumed (see text).
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simultaneously under the same condition and on the same NW. In the case

of high-resistance electronic contacts (i.e., R À Rs and R À Rel), the Rc

may dominate the measured resistance and the approximation R ≈ 2Rc is

valid for the whole range of experimental temperature. The measured magni-

tude and temperature behavior of R thus faithfully reflect the magnitude and

temperature behavior of Rc. As a result, Rc(T ) can be quantitatively inferred.

For the case of low-resistance electronic contacts (i.e., Rc, Rs, and Rel are

similar within an order of magnitude), measurements using additional probe

configurations are required to extract the resistance of each electronic contact.

For example, the resistance of the sum of the two electronic contacts Rc2

and Rc3 in Fig. 2.5 can be obtained by subtracting the 4-p result from the

result obtained from the quasi 4-p measurement configuration [Fig. 2.6(a)].

To further explicitly extract the resistance of each electronic contact, a quasi

3-p probe measurement configuration [Fig. 2.6(b)] is needed.

In the present work, only the cases of high-resistance electronic contacts

are discussed.

Typically, Rel ≈ several tens Ω.
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Figure 2.6: Additional probe configurations needed to extract the resistance
of each electronic contact.

15



Chapter 3

Electronic transport in metal nanowires

3.1 Introduction

Fundamental studies concerning the physical properties (e.g., electronic struc-

tures, Boltzmann transport properties, and optical properties) of RuO2 and

IrO2 have been investigated for a long time, both experimentally [18, 19, 37,

38, 39, 40] and theoretically [41, 42, 43, 44, 45]. It is often accepted that the

current understanding of the material is fairly complete. In particular, the

electrical resistivities of RuO2 and IrO2 single crystals [18, 19] and disordered

thick films [46, 47, 48] have been investigated over a wide range of tempera-

ture from 0.3 up to 1000 K. It has been shown that, for RuO2 and IrO2 single

crystals, the temperature dependence of resistivity is essentially independent

of the crystal orientation [18]. More specifically, the electronic conduction pro-

cess in RuO2 rutile has been theoretically determined from the first-principles

electronic-structure calculations and found to conform to the behavior as de-

scribed by the Boltzmann transport equation [43]. Good agreement with the

experiments has been established [19, 43].

3.2 Theoretical background

In this section, a brief description of the electronic transport properties of

RuO2 and IrO2 single crystals is given. More theoretical and experimental

details can be found in Refs. [19, 43].

Originally, the temperature dependent resistivities of RuO2 and IrO2 rutile

structures were explained [18] in terms of a tow-band model [49], which de-

scribes the electron-phonon scattering in transition metals with parabolic s and

d bands. In this model, the electrons are scattered by acoustic phonons from

a Fermi sheet of high mobility and low band mass to one of low mobility and
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high band mass. However, based on their first-principles electronic-structure

calculations, Glassford and Chelikowsky [43] have pointed out that the Fermi

surface of RuO2 has no such topology, which would account for such a high

degree of interband transitions between Fermi sheets. On the contrary, they

gave a description of the temperature behaviour of resistivity for RuO2 by

including an additional contribution due to the scattering of electrons with

optical-mode phonons. It has been found to agree well with the experiments

[19, 43].

Theoretically, the resistivity is defined as

ρ =
4π

Ω2
pτ

, (3.1)

where Ωp is the plasma frequency and 1/τ is the electron scattering rate. The

Ωp can be theoretically calculated from a knowledge of the electronic struc-

ture of the material or experimentally determined from optical and transport

measurements. If only electron-phonon scattering is taken into account, the

scattering rate 1/τ can be written as

1

τ
∝

∫ ∞

0

dω

ω
α2F (ω)

[
~w/2kBT

sinh(~ω/2kBT )

]2

, (3.2)

where ω is the phonon frequency, α2 is the effective frequency dependent

electron-phonon coupling parameter, and F (ω) is the phonon density of states,

which can be obtained from neutron scattering data. However, no matter

experimentally or theoretically, the so called “spectral function” α2F (ω) is

difficult to get separated and normally has to be considered as a whole.

For typical metals, a Bloch-Grüneisen type behaviour which accounts for

the scattering of electrons with acoustic-mode phonons is followed. This model

can be obtained by replacing the α2F (ω) with its equivalent in the Debye

approximation (where F (ω) ∝ ω2 is assumed):

α2F (ω) ∝ λBG

(
ω

ωD

)4

θ(ωD − ω) , (3.3)

where θ is the step function, ωD is the Debye frequency (which is defined as

the maximum phonon frequency), and λBG is the transport electron-phonon
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coupling constant in the Bloch-Grüneisen model. Substituting Eq. (3.3) into

Eq. (3.2) and letting x = ~ω/kBT , from Eq. (3.1) we have

ρBG(T ) = βBGT

(
T

ΘD

)4 ∫ ΘD/T

0

x5dx

(ex − 1)(1− e−x)
, (3.4)

where βBG is a material dependent constant containing the information about

λBG and Ωp, and ΘD is the Debye temperature corresponding to the max-

imum phonon energy in the Debye approximation of the phonon spectrum

(i.e., ΘD = ~ωD/kB). At higher temperatures, Eq. (3.4) results in a temper-

ature dependence which is proportional to T , while at lower temperatures, it

gives a T 5 dependence.

For transition-metal oxides which contain multi-atom bases that can de-

velop extra branches of lattice vibrations, the scattering of electrons with such

optical-mode phonons should be considered as well. (In fact, for RuO2, there

exist 15 possible optical branches that the electrons can scatter from.) The

contribution due to this scattering process can be obtained by replacing the

α2F (ω) with its equivalent in the Einstein approximation (where F (w) is a

delta function centered at the Einstein frequency ωE):

α2F (ω) ∝ λEωEδ(ω − ωE) , (3.5)

where δ is the delta function, and λE is the transport electron-phonon coupling

constant in the Einstein model. Substituting Eq. (3.5) into Eq. (3.2), from

Eq. (3.1) we have

ρE(T ) = βET

[
ΘE/2T

sinh(ΘE/2T )

]2

, (3.6)

where where βE is a material dependent constant containing the information

about λE and Ωp, and ΘE is the Einstein temperature representing the sole

phonon energy in the Einstein approximation of the phonon spectrum (i.e.,

ΘE = ~ωE/kB).

Apart from the electron-phonon scattering, there is an additional term that

could contribute to the temperature dependent resistivity. This is the usual

electron-electron scattering which depends on T 2. It can be simply written as

ρee(T ) = AeeT
2 , (3.7)
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where Aee is a material dependent constant.

According to Matthiessen’s rule, these three contributions [i.e., Eq. (3.4)–

(3.7)] are additive and independent of each other. The total resistivity ρ(T )

is thus the sum of the residual resistivity ρ0 and Eqs. (3.4)–(3.7), i.e.,

ρ(T ) = ρ0 + ρBG(T ) + ρE(T ) + ρee(T ) . (3.8)

The measured resistivity can then be fitted to Eq. (3.8), in which ρ0, ΘD, βBG,

ΘE, βE, and Aee are normally regarded as adjusting parameters.

However, with so many fitting parameters, ambiguous results might occa-

sionally occur. Fortunately, at not too high temperatures (e.g., at tempera-

tures below 300 K)1, the resistivity due to the usual electron-electron scattering

can be neglected in the first approximation because in practice in transition

metals Aee is only of the order of 10−5 K−2 µΩ cm [49]. Indeed, it has been

shown [19] that in RuO2 single crystals fitting the experimental data without

this term leads to only minor deviations of the remaining parameters (i.e.,

ΘD, βBG, ΘE, and βE) from those obtained by considering all the three contri-

butions. This conclusion has also been established in other transition metals

[50]. On the other hand, since in the previous studies [19, 43] the ratio of the

values of βBG/βE, which determines the relative strength of the coupling of

electrons with acoustic- and optical-mode phonons, was found to be ≈ 2, we

further assume this value in our following analysis to reduce the number of the

adjusting parameters so that the more reliable results could be obtained. Nev-

ertheless, it should be noted that to our knowledge the physics of the disorder

dependence of this relative strength is still not clear yet.

To sum up, in the following analysis, the measured ρ(T ) of our NWs would

be fitted to the equation

ρ(T ) = ρ0 + ρBG(T ) + ρE(T ) , (3.9)

in which only ρ0, ΘD, βBG, and ΘE are treated as adjusting parameters.

1According to their mathematical expressions, the electron-electron scattering could
dominate over the other two scattering processes at temperatures below liquid-helium tem-
peratures. Physically, this is due to the much smaller number of excited phonons because
of the low-temperature (i.e., low-energy) environment.
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3.3 RuO2

To study the intrinsic electronic transport properties of our single-crystalline

RuO2 NWs, the resistivities ρ as a function of temperature from 300 K down

to liquid-helium temperatures for eight individual as-grown NWs were deter-

mined with the 4-p measurement configuration. Typical behaviour of ρ(T ) is

shown in Fig. 3.1. The physical dimensions (inspected by SEM)2 and the room

temperature resistivities of these NWs are listed in Table 3.1. Notice that the

samples Ru-8a and Ru-8b are actually two different sections of the same NW,

while the sample Ru-8ab is the sum of these two sections (see Fig. 3.2).

Clearly, the NWs reveal the electronic transport characteristic of a typ-

ical metal, i.e., the resistivity decreases as the temperature decreases from

room temperature down. However, the resistivity reaches a minimum value

(≡ ρmin) at a certain low temperature Tmin, below which it shows different lev-

els of upturn for different NWs. This notable resistance rise with decreasing

temperature may originate from the weak-localization and electron-electron

interaction effects [51] and two-level systems [52].

Figure 3.3 shows the variation of the resistivity at T = 300 K (≡ ρ300)

with diameter of the NW for the NWs measured in this work. Obviously, the

plausible ρ300 should be ≈ 150–300 µΩ cm, as obtained in Ru-1, Ru-4, and Ru-

5 (whose lengths are long enough to avoid the ambiguity of the determination

of the length of the NW section that we actually probed). Nevertheless, this

value is still considerably higher than that (≈ 85 ± 35 µΩ cm) in bulk single

crystals [18, 19]. Using the lowest measured ρ300 ≈ 150 µΩ cm and the relevant

material parameters for RuO2 [43], we extract in our NWs the electron mean

free path l ≈ 8.4 Å and the electron mean free time τ ≈ 3× 10−15 s at 300 K.

Since this l is much shorter than the diameters of our NWs, an electron will on

average have undergone several tens to few hundreds collisions (depending on

the diameter and the actual ρ300 of the NW) within the NW before it scatters

once off the NW surface. This diffusive motion of an electron implies that the

2To have more accurate values of the diameters, atomic force microscopy (AFM) was
used to determine the diameters of the two thinnest NWs.
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Figure 3.1: Typical temperature behaviour of RuO2 NWs.
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Table 3.1: Sample parameters for the eight RuO2 NWs measured by the
4-p method. Because the NWs have square cross sections, the diameter here
means the side length of the square. The large uncertainties in length (defined
as the length of the section that we actually probe) are mainly due to the
large widths of the voltage probes and thus result in the large uncertainties in
resistivity.

Diameter Length ρ300 Tmin ρ300/ρmin

(nm) (µm) (µΩ cm) (K)
Ru-1 155± 5 4.279± 0.984 149± 43 ≈ 45 1.588
Ru-2 135± 20 1.613± 0.882 724± 523 ≈ 22 1.725
Ru-3 110± 4 1.297± 0.842 339± 234 ≈ 32 1.742
Ru-4 104± 12 3.252± 0.790 281± 125 ≈ 42 1.685
Ru-5 97± 13 9.157± 0.704 184± 61 ≈ 43.5 1.561
Ru-6 76± 7 1.593± 0.862 825± 543 ≈ 53 1.435
Ru-7 55± 5 0.670± 0.441 483± 362 ≈ 27 1.609
Ru-8a 37± 2 0.516± 0.226 183± 95 < 10 1.536
Ru-8b 37± 2 0.516± 0.226 158± 82 < 10 1.579
Ru-8ab 37± 2 1.032± 0.226 141± 45 < 10 1.554
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Figure 3.2: SEM image of the Ru-8 NW.
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electronic transport properties in our NWs should be largely determined by

their bulk properties while the surface effects may not be very effectual.

The residual resistivity ratio (RRR) ρ300/ρ0 ≡ ρ300/ρmin ≈ 1.5–1.7 for these

NWs are found to be significantly lower, as compared with the corresponding

bulk value (≈ 100–1000, depending on the quality of the crystal) [18, 19].

Such properties as the low RRR values and the short l lengths all indicate

the presence of a high level of defects (most likely, point defects) in the NWs.

This observation is in sharp distinction to the conclusion drawn from conven-

tional materials characterization techniques such as XRD and high-resolution

TEM [15], which often reveal very high quality atomic structure. Similar phe-

nomenon had also been found in single-crystalline metallic NiSi NWs [7]. This

observation suggests that the electronic transport measurements over a wide

range of temperature can serve as a powerful probe for investigating the physics

concerning the microscopic defects in nanostructures because of its sensitivity

to the microscopic motions of conduction electrons with the existence of any

level of randomness in the crystal.

3.3.1 Nanowires with diameters ' 100 nm

Despite the disorder nature of our NWs, we found that for the temperature

behaviour above Tmin our experimental data still can be explained within the

framework of the Boltzmann transport theory for typical metals, as given in

Section 3.2.

Figure 3.4 shows the log-log plot of the variation of the measured normal-

ized resistivity, (ρ − ρ0)/ρ0, as a function of temperature for two NWs with

diameters ≈ 100 nm. The solid line is the least-squares fit to Eq. (3.9). As

mentioned, we merely took ρ0, ΘD, βBG, and ΘE as adjusting parameters in

our fitting. The fitted values of these parameters for all NWs are listed in
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Figure 3.3: Variation of the resistivity at T = 300 K with diameter of the
NW for the NWs measured in the present work.
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Figure 3.4: log-log plot of the variation of the measured normalized resistiv-
ity, (ρ − ρ0)/ρ0, as a function of temperature for two NWs with diameters ≈
100 nm.

26



Table 3.2. Figures 3.5–3.8 show the variations of ΘD, ΘE, βBG/ρ0,
3 and ρ0

with diameter, respectively. In this section, only NWs with diameters ' 100

nm would be discussed. The results for NWs with diameters < 100 nm would

be discussed later.

We first notice that the fitted values of ΘD and ΘE are nearly identical

for the NWs with diameters ' 100 nm. However, in comparison with the

corresponding bulk values (ΘD ≈ 400–410 K and ΘE ≈ 790–810 K) in single

crystals [19, 43], we find that the ΘD has a value of ≈ 400± 25 K, while the

ΘE has a value of ≈ 700± 25 K. A reduction of ≈ 13% in ΘE is observed.

If we additionally set ΘD and ΘE to their bulk values (i.e., 400 and 790 K,

respectively) and left only ρ0 and βBG as free variables, we found that for all

the NWs no satisfactory results could be obtained as expected. A typical best

fit in this way is shown in Fig. 3.9 for the sample Ru-4.

At first glance, since we are dealing with NWs, one might conjecture that

this reduction in the effective phonon characteristic temperatures results from

the increased electron scattering rate with surface phonons, which are softer

than bulk phonons due to the lowered coordination number of surface atoms

leading to their enhanced vibrational amplitudes. Nevertheless, in our case,

as mentioned above, this electron-surface scattering is less effectual, because

in our NWs, the much shorter electron mean free path as compared with

the diameter of the NWs makes this process much infrequent. As a matter

of fact, a change in phonon related properties such as these characteristic

temperatures could also be induced by some structural [53, 54], compositional

[55, 56], and mechanical [57, 58] effects. For instance, in thin gold films the

lowering of the effective Debye temperature is ascribed due to the electron

scattering with additional surfaces created by grain boundaries [53]. However,

3In fact, the measured resistance R was fitted to the equation of the form:

R−R0

R0
=

ρ− ρ0

ρ0
=

βBG

ρ0
f(ΘD, ΘE) ,

where R0 is the residual resistance, and f is a function of ΘD and ΘE, obtained from
Eqs. (3.4) and (3.6). Therefore, the actual adjusting parameters are R0, βBG/ρ0, ΘD, and
ΘE.
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Table 3.2: Values of the relevant parameters for the eight RuO2 NWs mea-
sured by the 4-p method.

Fit range ρ0 ΘD (βBG/ρ0) ΘE ρ300/ρ0

(K) (µΩ cm) (K) (10−3/K) (K)
Ru-1 55–300 93± 27 426± 15 3.66± 0.04 726± 13 1.595
Ru-2 30–300 420± 303 365± 4 4.30± 0.01 689± 4 1.725
Ru-3 40–300 194± 134 372± 5 4.42± 0.02 687± 4 1.746
Ru-4 50–300 166± 74 377± 22 4.07± 0.06 674± 16 1.695
Ru-5 55-300 117± 39 373± 19 3.39± 0.04 690± 12 1.571
Ru-6 70–300 569± 375 393± 22 2.66± 0.03 672± 8 1.449
Ru-7 35–300 300± 225 324± 7 3.58± 0.02 692± 5 1.611
Ru-8a 30–300 119± 62 213± 13 3.07± 0.01 682± 2 1.532
Ru-8b 30–300 100± 52 234± 14 3.21± 0.02 617± 2 1.585
Ru-8ab 30–300 92± 29 229± 15 3.11± 0.01 660± 1 1.542
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Figure 3.5: Variation of ΘD with diameter.
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Figure 3.6: Variation of ΘE with diameter.
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Figure 3.7: Variation of βBG/ρ0 with diameter.
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Figure 3.8: Variation of ρ0 with diameter.
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Figure 3.9: Best fit for the sample Ru-4 by intentionally setting ΘD and ΘE

to their bulk values (i.e., 400 and 790 K, respectively) and leaving only ρ0 and
βBG as free variables.
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apart from being caused by these effects, we found that in the present work

another possibility could also account for the observed reduction in ΘE owing

to the simple fact that, in our moderately disordered NWs, we interpreted

the resistivity variations as arising solely from the “pure” electron-phonon

scattering process that usually dominate in clean metals.

Experimentally, it has been known for a long time that deviations from

Matthiessen’s rule exist in many real metals. That is, the additivity and in-

dependence which bring about Eq. (3.8) are no longer valid as the level of

disorder in a metal increases. Recently, it becomes clear that such a devia-

tion in an impure metal can be readily accounted for by merely adding an

additional term into Eq. (3.8). This additional contribution was theoretically

proposed and calculated by Reizer and Sergeev [59] as a consequence of the

quantum interference mechanism between the elastic electron scattering and

the electron-phonon scattering. It can be written as

ρint(T ) = βintρ0T
2

∫ ΘD/T

0

[
x2ex

(ex − 1)2
− x

ex − 1

]
dx , (3.10)

where βint is a material dependent constant, being independent of the amount

of disorder contained in the sample. Such an “electron-phonon-impurity in-

terference” has been experimentally demonstrated by many groups in many

different material systems [48, 54, 60, 61]. It is shown that this effect can

dominate the overall behaviour of ρ(T ) at lower temperatures, especially at

temperatures below ≈ 0.1ΘD. However, as temperature increases, the increase

of this contribution becomes less temperature dependent and finally saturates

to a constant value at T ≈ ΘD. In principle, at these higher temperatures

Eq. (3.10) contributes just a small amount to the total ρ(T ) (as compared

with that contributed by the electron-phonon scattering) and thus can some-

times be neglected in the first approximation.

Figure 3.10 shows the result obtained by fitting the experimental data of

the same NW presented in Fig. 3.9 to the equation of the form:

ρ(T ) = ρ0 + ρBG(T ) + ρE(T ) + ρint(T ) , (3.11)

in which we intentionally set ΘD and ΘE to their bulk values, and then left
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only ρ0, βBG, and βint as adjusting parameters. In comparison with Fig. 3.9,

it is clear to see that the experimental data turns out to agree quite well with

the theoretical description including this additional correction.

This correction is ≈ 6% of the total resistivity at T ≈ 400 K. It thence

slightly decreases as temperature decreases, and eventually becomes more im-

portant at temperatures approaching ≈ 40 K.4 In fact, it is not surprising

at all to have reduced values of ΘD and ΘE if we regard the measured ρ(T )

as exclusively originating from the electron-phonon scattering mechanisms de-

scribed by Eqs. (3.4) and (3.6). Phenomenologically, in order to compensate

for lack of including Eq. (3.10), more collisions of electrons with optical and

acoustic phonons accordingly had to be produced to take this accountability.

At higher temperatures, the dominant behaviour of ρ(T ) in this range is con-

trolled by Eq. (3.6), in which ΘE corresponds to the unique optical phonon

energy in the Einstein approximation. To offer the needed extra resisting force

against the motion of electrons, the ΘE had to lower itself so that more optical

phonons could be more easily excited. The environment consequently became

more chaotic as seen by electrons. At last, the resistivity was compensated.

Likewise, at lower temperatures, the optical phonons would quickly disappear,

and the acoustic phonons thus became in this range the dominant source that

the electrons could collide with. As described above, Eq. (3.4) has a tem-

perature behaviour which crosses over from a T dependence at temperatures

above ≈ ΘD to a T 5 dependence at temperatures approaching zero. A lower

ΘD means that such a crossover would occur at relatively lower temperatures.

Therefore, the T dependence would prevail over a wider range of temperature

to make the needed compensation for not including Eq. (3.10), which has a

weaker T 2 dependence at lower temperatures.

4Due to the low temperature upturn in our NWs, any contribution originating from
Eqs. (3.4), (3.6), and (3.10) would be masked. Without this upturn, Eq. (3.10) would
dominate the temperature behaviour down to the lowest temperature until it gets masked
again by the residual resistivity, as can be seen in Ref. [61].
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Figure 3.10: Best fit for the sample Ru-4 to the Eq. (3.10) by intentionally
setting ΘD and ΘE to their bulk values (i.e., 400 and 790 K, respectively) and
leaving only ρ0, βBG, and βint as free variables.
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3.3.2 Nanowires with diameters < 100 nm

We have also measured several NWs with diameters of < 100 nm. To have

more accurate values of the diameters, atomic force microscopy (AFM) was

used to determine the diameters of the two thinnest NWs. The measured ρ(T )

was then analyzed following the model that includes only electron-phonon

scattering processes given by Eqs. (3.4) and (3.6). As can be seen from

Figs. 3.5 and 3.6, with decreasing diameter a more significant reduction in

ΘD is observed while the value of ΘE remains barely not changed. For the

thinnest NW, the ΘD is reduced to only one half of its corresponding bulk

value.

As described in Section 3.3.1, the reduced ΘD, along with the reduced ΘE,

might be conjointly caused by explaining the measured ρ(T ) in terms of an

incomplete model. In Figure 3.11, we show the variation of the as-obtained

βint with diameter.5 The βint is found to start increasing as diameter decreases

down to a certain scale. This is actually theoretically unreasonable in the

present case. According to the electron-phonon-impurity interference theory

[59] leading to Eq. (3.10), the prefactor βint is a constant for a given material,

being independent of not only the amount of disorder contained in the sample

but also the size of the sample, as long as the requirement of, roughly speaking,

ql > 1, is satisfied, where q is the phonon wavevector and l is the electron mean

free path. As will be seen in the next section, this condition is clearly obeyed

for the case of our NWs. Therefore, the observed futhter reduction in ΘD can

not be as well ascribed to the consequence of using a rather incomplete model.

In sum, the consequence of using an incomplete model results in only the

initial reduction in ΘE, as described in Section 3.3.1.

3.3.2.1 Size-dependent Debye temperature

As mentioned earlier, a softening of an effective ΘD can be ascribed to the

increased number of phonon modes due to additional surface phonons that

5The as-obtained βBG’s are nearly not changed. Its variation with diameter is almost
the same as that in Fig. 3.7.
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Figure 3.11: Variation of βint with diameter.
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electrons can scatter from. For that to be valid, an electron mean free path l

comparable to the characteristic dimension of the system is certainly required.

For example, in thin metallic films grown by ultrahigh vacuum molecular beam

epitaxy [62], the ΘD was found to start deviating from the bulk value in the

films of thickness below ≈ l. A considerable reduction of ≈ 50% in ΘD was

found in the thinnest film, which had a thickness approximately just one third

of the l. However, in our case, the observed significant decrease in ΘD with

decreasing diameter apparently cannot be simply explained in terms of such

surface scattering because of the l being much shorter than the diameters of

the NWs. Even for the thinnest one, its diameter is still several tens times

longer than its l.

Obviously, we used a very simple model to describe the temperature be-

haviour of the resistivity in our NWs. In deriving the Bloch-Grüneisen formula,

the real but complicated and barely known phonon spectral function α2F (ω)

is replaced by a more simpler one, in which the phonon density of states hav-

ing a quadratic dependence with a cutoff frequency (i.e., the Debye frequency)

ωD = kBΘD/~ is used. In this Debye model, the phonon dispersion relation

(spectrum) follows the form ω = vsq, where vs is the sound speed of the ma-

terial and q is the phonon wavevector. Although the approximation is rather

crude, the Bloch-Grüneisen formula has often been found to work remarkably

well when compared with experiments. However, one might still conjecture

that this simplification would make serious illegitimacy if the acoustic phonon

dispersion relation of the NW is substantially modified from that of its bulk

as the diameter of the NW decreases down to a certain scale. The change in

ΘD thus corresponds to an outcome that results from the application of an

inappropriate and too simple model.

Indeed, spatial confinement of phonons by boundaries or interfaces of the

system could render material properties like optical spectra, electrical and ther-

mal conductivities which depend on their dynamics subject to change when

one or more dimensions of the system are reduced down to the scale close to

the characteristic length, such as the phonon mean free path (MFP) and the

dominant phonon wavelength λ [63, 64]. Specifically, for acoustic phonons [63],
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no significant modification in the phonon spectrum has been found in systems

with the feature size W smaller than the phonon MFP. On the other hand,

however, a pronounced effect on the phonon spectrum is found to occur in sys-

tems with the W further down to the scale close to or smaller than the λ. In

fact, it has been theoretically shown [65] that such an acoustic phonon confine-

ment effect can manifest itself by introducing not only acoustic subbands but

also non-linear and considerably changed phonon dispersion relation curves at

q close to the Brillouin zone center. For a free-standing nanostructure, even

more complex dispersion relation curves could occur at the free surfaces due

to the wave coupling of different vibrational modes [66].

The confinement effect can be roughly understood by simple means. It

is known that when fundamental excitations, like phonons and electrons, are

confined by the boundaries of the system, they are only allowed to exist at

certain energy levels due to their wave nature. In bulk materials at tempera-

ture T , these energy levels are almost identical and basically not distinguish-

able from each other by experiments. As the W of the system decreases and

becomes comparable with the wavelength of the excitation, the energy sepa-

ration between these levels can be raised to a value larger than the thermal

energy of the lattice kBT ,6 and hence becomes non-negligible and causes the

related material properties to change. (Clearly, instead of reducing the W , the

confinement phenomenon can as well be observed by decreasing the temper-

ature of the system.) It is this energy “gap” that alters the total number of

phonons at different levels and accordingly plays a role in possibly affecting

the electron-phonon scattering rate that leads to the observed ρ(T ).

From this energy point of view, we can estimate in our NWs the tem-

perature below which the energy separation between different phonon modes

6We have assumed that at temperature T , every phonon in the system has the same
energy kBT , which is in fact the exact energy of the phonon that has the occupancy of ≈
0.6 if the classical Planck distribution function is obeyed. This is the same approximation
often used in textbooks to obtain a qualitative explanation of the Debye T 3 law for the heat
capacity of solids due to lattice vibrations.
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becomes appreciable. Suppose that we use a sphere in momentum space to ap-

proximate the phonon density of states,7 we end up with the simple expression

for the Debye temperature, which is given by

ΘD =
~vs

kB

(
6π2N

V

)1/3

, (3.12)

where ~ and kB have their usual meanings, N is the number of primitive unit

cells in the sample, and V is the volume of the sample. In the above equation,

the N/V can be approximated by 1/a2c, where a and c are the lattice constants

for RuO2 and equal ≈ 4.5 and 3.1 Å, respectively. Using the value of ΘD = 400

K for bulk RuO2, we first estimate the sound speed of RuO2 to be vs ≈ 5360

m/s.8 At temperature T , the dominant phonon in the system is approximated

to have an energy kBT . The phonon wavelength subject to the influence of

changing the feature size W is λ = 2W/n, where n = 1. Therefore, the

temperature below which the confinement effect becomes considerable is

T =
~πvs

kBW
. (3.13)

For the case of our thinnest NW of diameter ≈ 37 nm, this leads to the

occurrence of perceivable energy splittings at temperatures below ≈ 3.4 K.

This is apparently a much lower temperature range than our fit range. At

temperatures higher than ≈ 3.4 K, many phonon modes are occupied and

have almost no differences from each other. In this case, the acoustic phonon

spectrum and density of states may be regarded to be Debye-like, and thus

the phonon confinement effect seems very unlikely to occur in our NWs, and

thus unable to account for the observed reduction in ΘD.

As a matter of fact, to be more specific, we shall consider the influence

of acoustic phonon dimensionality on the temperature dependent resistivity

directly from the point of view of the Bloch-Grüneisen formula. As we know,

if there exists any influence, it would manifest itself when the W is close to

7This is the same approximation which we assume in the derivation of the Bloch-
Grüneisen formula.

8This value is comparable to the speed of longitudinal sound wave in Al.
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the wavelength of the dominant acoustic phonons that electrons scatter with.

All we have to do is find out this dominant phonon wavelength. It should be

noted that the dominant acoustic phonons here might not be the same ones

which we concerned about in the previous paragraph. By our definition, the

dominant acoustic phonons, which we refer to here, mean the acoustic phonons

that contribute most to the temperature dependent resistivity, i.e., the ρBG(T )

[Eq. (3.4)]. We note that, for a specimen with a βBG and a ΘD, the largest

contribution at temperature T to the integral in ρBG(T ) would occur around

some phonon frequency ωd which makes the integrand f(x) in Eq. (3.4) has

the largest value, where f(x) has the form:

f(x) =
x5

(ex − 1)(1− e−x)
, (3.14)

and the x is given by ~w/kBT . The phonons that have this vibrating frequency

ωd can thus be regarded as the most important phonons in the current electron-

phonon scattering process.

We plot in Fig. 3.12 the f(x) as a function of x for a material with a ΘD

at several different temperatures. The shaded area denotes the integral in

Eq (3.4). What particularly deserves our attention in Fig. 3.12 is that when

we are at different temperatures, we have different upper limit of integration

xmax, as indicated in the figure. Also notice that, for T larger than ≈ ΘD/5,

the f(x) always has the maximum value at x ≈ 5. From Fig. 3.12, it can be

clearly seen that the dominant phonon frequency is temperature dependent.

For example, at T = ΘD/2, the maximum value of f(x) occurs right at the

Debye frequency ωD (i.e., ωd = ωD), while at T = ΘD/10, the maximum value

of f(x) occurs at the phonon frequency ωD/2 (i.e., ωd = ωD/2).

Evidently, we can categorize them into two different groups. The first group

is when we are at temperatures above ≈ ΘD/5, at which the dominant phonon

wavelength is exactly the Debye wavelength. The second group is when we are

at temperatures below ≈ ΘD/5, at which the dominant phonon wavelength is

larger than the Debye wavelength, and increases as the temperature decreases.
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Figure 3.12: f(x) as a function of x for a material with a ΘD at several
different temperatures.
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From the definition of the Debye model:

~ωD = ~2π
vs

λD

≡ kBΘD . (3.15)

With the use of Eq. (3.12), the Debye wavelength λD can be written as

λD =

(
4πV

3N

)1/3

. (3.16)

As we did previously, we can approximate the N/V by the lattice constants,

and then we have, in RuO2, the λD ≈ 6.4 Å. Therefore, for RuO2 at higher

temperatures (i.e., at temperatures above ≈ 80 K for the case of the first

group), the dominant phonon wavelength λd (= λD ≈ 6.4 Å) is far below the

diameter of our thinnest NW of ≈ 37 nm, and hence the phonon confinement

effect is certainly not expected to occur. When the temperature decreases

down to below ≈ 80 K (i.e., for the case of the second group), the dominant

phonon wavelength λd starts to increase, and would, for example, have the

value of ≈ 25.6 (128) Å at T ≈ 20 (4) K. Accordingly, to observe any possi-

ble influence of the phonon confinement effect on the temperature dependent

resistivity, we have to reduce the temperature down to at least below ≈ 4 K

so that the λd would become comparable with the diameter of our thinnest

NW of ≈ 37 nm. However, this is obviously not the temperature range that

concerns us in our analysis.

So far, we have demonstrated that the observed significant reduction in the

Debye temperature ΘD in our RuO2 NWs can not be satisfactorily accounted

for by the quantization of the acoustic phonon spectrum that results from the

phonon confinement effect, since for our experimental range of temperature,

such an energy splitting, if any, can hardly make any difference to the electron-

phonon scattering process in our NWs.

Other than the afore-discussed possibilities which could lead to a reduction

in ΘD, a reduced sound speed vs would also bring about a reduction in ΘD,

as can be seen from Eq. (3.12) or (3.15). The sound speed is known to be a

constant in a classical elastic continuum. In the Debye model for real solids,

the vs is also presumptively taken to be a constant for each polarization type,
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and has the relationship:

vs ∝
(

C

M

)1/2

, (3.17)

where C is the effective force constant between nearest neighbouring lattice

planes, and M is the equivalent mass of a lattice point. Undoubtedly, the

equivalent mass of a lattice point would not change with the size of a partic-

ular specimen. If the reduction in ΘD is truly caused by a reduced vs, it then

implies that the effective force (characterized by C) between nearest neigh-

bouring lattice planes might be weakened as the size of a specimen reduces

down to a certain length scale. Actually, such a conjecture is not implausible

at all since it has been known that the effective forces can be of quite long

range, possibly up to several tens lattice planes in some materials [67]. When

the size of the system reduces down to this scale, the C is accordingly prone

to be affected. Indeed, the recently developed bond-order-length-strength cor-

relation theory [68] has revealed that the broken bonds of surface atoms could

make the remaining bonds between the undercoordinated atoms shorter and

stronger. In a calculation [57] of Young’s modulus based on this theory, the

relative change in ΘD with decreasing size has been found, and it could be pos-

itive or negative, depending on the bond nature and the testing temperature.9

The comparison has been made with the results obtained for nanoparticles. A

general agreement is satisfied.

For the case of metallic NWs, a size and material dependent reduction in

ΘD has been previously reported [69] (by using the same experimental ap-

proach as we use here), though the relative change in ΘD is quite small, as

compared with that observed in our RuO2 NWs. However, it should be noted

that in Ref. [69], the measured NWs were actually embedded in a porous

medium, and the possible interface interaction with the surrounding medium

might further complicate the situation.

9Theoretically, the ΘD could be temperature dependent. However, in most transport
studies, it is assumed and taken to be a constant independent of temperature.
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3.4 IrO2

Figure 3.13 shows the measured resistivity ρ as a function of temperature from

300 K down to liquid-helium temperatures for two IrO2 NWs with similar lat-

eral sizes defined as ≡ W 2/4, where W is the hypotenuse as schematically

depicted in Fig. 2.3(b). From inspection of the SEM images, we obtained

W ≈ 180 ± 5 nm for both samples. In Fig. 3.13, the symbols are the ex-

perimental data and the solid curves are the theoretical predictions (see be-

low). Clearly, both samples reveal electrical-transport characteristic of a typi-

cal metal, i.e., the resistivities decrease as the temperature decreases from the

room temperature down. However, close inspection indicates that the resistiv-

ity ρ(300 K) ≈ 270± 40 µΩ cm in our NWs is considerably higher than that

(≈ 85±35 µΩ cm) in bulk single crystals [19]. In addition, the resistivity ratio

ρ(300K)/ρ0 ≈ 1.1−1.2 in our NWs is considerably lower, as compared with

the corresponding bulk values (≈ 10−1000, depending on the crystal quality)

[18, 19, 37], where ρ0 is the residual resistivity.

Similar with that observed in RuO2 NWs, such a low residual resistivity

ratio suggests the presence of a high level of (point) defects in our IrO2 NWs.

This observation is also in sharp contrast to the conclusion drawn from conven-

tional materials characterization techniques such as XRD and high-resolution

TEM [35], which often revealed seemingly high-quality atomic structure. In

fact, this is exactly one of the great advantages of the electrical-transport mea-

surements which are very sensitive to the microscopic motions of conduction

electrons in the NWs.

As usual, our experimental data still can be explained in terms of the same

theoretical description given in Section 3.2, despite the fact that the observed

RRR in IrO2 NWs are comparatively lower than those in RuO2 NWs. Since the

level of disorder (or, the RRR) in our NWs is similar to that in the sputtered

IrO2 thick films previously studied [48], the adequate formula to account for

our experimental data should be thus the one described by Eq. (3.11), which

would be a more complete model than Eq (3.9) for this sample.
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Figure 3.13: Resistivity as a function of temperature for two IrO2 NWs
measured by the four-probe method. The symbols are the experimental data
and the solid lines are the theoretical predictions of equation (3.11). The inset
shows the SEM image of one NW contacted by four Cr/Au electrodes.
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According to the electron-phonon-impurity interference theory [59] lead-

ing to Eq. (3.10), the prefactor βint is a constant for a given material, being

independent of the amount of disorder contained in the sample. Therefore,

taking the value of βint = 4.5× 10−7 K−2 from [48], the measured normalized

resistivity, (ρ − ρ0)/ρ0, can then be fitted to Eq. (3.9) with ρ0, βBG, ΘD, βE

and ΘE as adjusting parameters. We find that Eq. (3.9) can well describe the

resistance in the Ir-1 (Ir-2) NW between 80 and 300 K (25 and 300 K). The

fitted values of the relevant parameters are listed in Table 3.3. It should be

noted that the fitted values of ΘD and ΘE are nearly identical for these two

samples, which in turn are close to those values obtained in the previous mea-

surements on this material [19, 48]. However, the ratio of our fitted values of

βBG/βE ≈ 3.1± 0.3, which determines the relative strength of the coupling of

electrons with acoustic-mode and optical-mode phonons, is somewhat larger

than the previous result (≈ 2) [19, 48]. The relative importance of the contri-

bution from each term in Eq. (3.9) is more clearly illustrated in a log-log plot

as shown in Fig. 3.14. We point out that, below about 50 K, the resistivity of

the Ir-1 NW increases more drastically than that of the Ir-2 NW as the temper-

ature decreases. This notable resistance rise with decreasing temperature may

originate from the weak-localization and electron-electron interaction effects

[51] and two-level systems [52], as the sample Ir-1 possesses a higher value of

resistivity than the sample Ir-2. These just mentioned disorder induced effects

are not considered in Eq. (3.9).
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Table 3.3: Values of the relevant parameters for the two IrO2 NWs measured
by the 4-p method. For both samples, W ≈ 180± 5 nm and L ≈ 0.83± 0.01
µm. The uncertainties in resistivities mainly arise from the uncertainties in
the dimensions of the NWs.

ρ300 ρ300/ρ0 ΘD βBG ΘE βE βBG/βE

(µΩ cm) (K) (µΩ cm/K) (K) (µΩ cm/K)
Ir-1 295± 20 1.09 320 0.204 840 0.071 2.87
Ir-2 220± 15 1.19 310 0.341 820 0.099 3.44
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Figure 3.14: Log-log plot of the variation of the normalized resistivity
∆ρ/ρ0 = (ρ − ρ0)/ρ0 with temperature for the two IrO2 NWs studied in
figure 3.13. Notice that the scales of the axes are different in (a) and (b). The
contribution from the ρint/ρ0 term in the Ir-1 NW has the same magnitude as
that (∼ 10−3) in the Ir-2 NW, and thus is outside the range displayed in (a).
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Chapter 4

Electronic transport through metal nanowire

contacts

4.1 Introduction

Nanoscale materials are important for fundamental researches and applications

due to their promising potential for both new physics and technology. One ma-

jor motivation for studies on self-assembled Q1D metallic NWs is their poten-

tial use as interconnects in the future nanoelectronics. Probing the electronic

transport properties of these nanostructures thus becomes the very key step

for the realization of numerous novel applications. Usually, connections of the

instruments to the individual nanodevices are accomplished by the nanofab-

rication techniques such as the electron-beam lithography (which we adopted

in this work) and the focused ion beam deposition method. However, a criti-

cal hindrance is that the often obtained non-negligible temperature dependent

contact resistances1 Rc are prone to complicate the experiments and could

seriously mislead the physical interpretation of the data. Therefore, in this

context, the main theme of this section – uncovering the physics and mecha-

nism of the electronic nanocontact resistances – could provide indispensable

information and valuable solution for this problem.

From the experimental point of view, the lead resistances and the electronic

contact resistances in electrical measurements must be small to minimize ther-

mal noises. Usually, the Rc of a macroscopic metal-metal contact is on the

1The large contact resistance (≈ tens kΩ) may result from a thin, dirty insulating layer
incidentally formed at the interface between the submicron electrodes and the NW. This
insulating layer could be the lightly contaminated or oxidized metals introduced during the
electrode evaporation, the amorphous coating resulting from the complex growth process,
the vacancies caused by dramatic surface roughness near the contact region, or the breaking
induced by tensile stress.
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order of ∼ 1 Ω. As the area of electronic contact shrinks, the magnitude of

Rc may increase considerably. Moreover, it has been pointed out that, as the

nanoscale being approached, the detailed atomic structure of the contact could

affect the Rc significantly in fairly different manners [70].

In our case, the electronic contact resistances formed between the EBL-

patterned electrodes and the NWs normally fall between several tens and sev-

eral hundreds Ω, and are not much dependent on temperature. However,

highly resistive electronic contacts with room temperature resistances of order

several kΩ or higher may also be obtained in many fabrications. Figure 4.1

shows three diverse temperature behaviours of the measured resistance R, as

determined from the 2-probe measurement configuration [see Fig. 2.5(d)]. As

we discussed in Section 2.2, the behaviour in Fig. 4.1(c) is obviously a re-

sult of having comparable values of Rc, Rs, and Rel. In the case of having

high-resistance electronic contacts (i.e., Rc À Rs and Rc À Rel), the Rc may

dominate the measured resistance [as shown in Fig. 4.1(a)] and the approx-

imation R ≈ 2Rc is valid for the whole range of experimental temperature.

In this case, the measured magnitude and temperature dependence of R thus

faithfully reflect the magnitude and temperature dependence of Rc.
2

In the following sections, only the behaviour of high-resistance Rc [i.e., the

one in Fig 4.1(a)] will be quantitatively discussed. We will demonstrate that

the temperature dependence of Rc, could be well understood in terms of two

existing phenomenological theories, one for RuO2 NWs, and one for IrO2 NWs.

Such a difference may arise from the different surface conditions of different

kinds of NWs (such as different surface stresses). However, we believe that

either mechanism could occur even for the same kind of NWs, though the

evidences supporting our conjecture have not been obtained yet.

2For the case of Fig. 4.1(b), since the total resistance of the Cr/Au electrodes is typi-
cally ≈ few tens Ω and the NW resistance is typically ≈ few hundreds Ω, the temperature
behaviour is therefore a result of the competition between Rc, Rs, and Rel. At higher T ,
the temperature dependence is primarily caused by the metallic properties of Rs and the
Rel, while at lower T , the Rc dominates because of its insulating nature.

52



Figure 4.1: Three typical temperature behaviours of the measured resistance
R, as determined from the 2-p method.
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4.2 RuO2

4.2.1 Fluctuation-induced tunneling conduction

With the metallic nature of our individual RuO2 NWs being established, we

can already safely use these NWs to study the electronic contact resistances

Rc(T ) in lithographic-contacting nanostructures, using the 2-probe method.

Figure 4.2 shows the typical temperature behavior of Rc for such a high-

resistance contact from 300 K down to liquid-helium temperatures, as deter-

mined from the 2-probe method on a RuO2 NW. In strong contrast to the

4-probe results previously studied, now the measured resistance reveals semi-

conducting or insulating behavior, i.e., the resistance increases rapidly with

decreasing temperature.

The inset to Fig. 4.2 shows the variation of logR with T−1 for the same de-

vice. This figure indicates that the simple thermally activated conduction (the

straight solid line) is only responsible near room temperatures. As the temper-

ature reduces from room temperature, the resistance does not increase as fast

as would be expected from the thermal activation process. At liquid-helium

temperatures, the resistance appears roughly constant, i.e., independent of

temperature. Such a temperature independent resistance at liquid-helium tem-

peratures can signify a conduction mechanism characteristic of simple elastic

tunneling. Indeed, quantitative analysis (see below) indicates that the overall

temperature behavior of the contact resistance can be well interpreted in terms

of a tunneling conduction model. Previously, in order to explain the electrical-

transport properties in certain classes of granular metal-dielectric composites,

Sheng and coworkers [71, 72] have proposed a thermally “fluctuation-induced

tunneling” (FIT) model, where the thermal effects arising from the capacitance

C of a small junction formed between two large metal grains was considered.

According to Sheng and coworkers [71, 72], the temperature dependent

resistance for small applied electric fields across a single small junction can be

expressed as

R(T ) = R0 exp

(
T1

T0 + T

)
, (4.1)
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Figure 4.2: Resistance as a function of temperature for two high-resistance
contacts in series, as determined from the 2-probe method on the NW device
C3 (see Table 4.1). The inset shows a plot of logR versus T−1 for the same NW
device. The straight solid line indicates the thermal activation conduction.
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where R0 is parameter which depends only weakly on temperature, and T1

and T0 are characteristic temperatures defined as

T1 =
8ε0

e2kB

(
AV 2

0

w

)
, (4.2)

and

T0 =
16ε0~

π(2m)1/2e2kB

(
AV

3/2
0

w2

)
, (4.3)

where ε0 is the vacuum permittivity, ~ is the Planck’s constant divided by 2π,

and m is the electron mass. In Eq. (4.1), T1 can be regarded as a measure of

the energy required for an electron to cross the potential barrier between the

two conducting regions, and T0 is the temperature below which the fluctuation

effects become insignificant, since, at T ¿ T0, Eq. (4.1) is temperature inde-

pendent and reduces to an expression for the expected simple elastic tunneling.

In the derivation of Eq. (4.1), the conduction was first modeled [71] as the tun-

neling of electrons through a single potential barrier of width w, height V0, and

junction area A. (A is the size at the point of the two large conducting regions’

closest approach.) If A is small enough, it was found [71, 72] that the potential

barrier seen by the electrons could be effectively narrowed and lowered by the

thermal voltage fluctuations (≈
√

kBT/C, where kB is the Boltzmann con-

stant) across the insulating gap due to the small effective capacitance of the

junction. Such a potential-barrier modulation effect greatly influences the tun-

neling probability in the low temperature limit, and consequently introduces a

characteristic temperature behavior to the normally temperature independent

tunneling conductivity (i.e., the elastic tunneling regime).

In the case of granular composites of macroscopic sizes, it was then argued

[72], via the effective-medium theory, that in a network of independently fluc-

tuating tunnel junctions with different values of T1 and T0, the conductivity

of the network could still be well described in terms of a single junction with

a representative set of T1 and T0.

Figure 4.3 shows a plot of our experimental results in double logarithmic

scale for four representative NW devices having high contact resistances (as

determined from the 2-probe method). The symbols are the experimental data
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and the solid curves are the least-squares fits to Eq. (4.1), with R0, T1 and T0

as the adjusting parameters. Inspection of Fig. 4.3 clearly indicates that the

Eq. (4.1) can well describe the overall temperature behavior for a wide range of

temperature between 2 and 300 K. The values of T1 and T0 can then be reliably

extracted. Furthermore, by using SEM and/or AFM, we can directly measure

the diameter and the length of our NWs, as well as the width of the relevant

submicron Cr/Au electrodes overlying the NW. Therefore, the junction area

A which appeared in Eqs. (4.2) and (4.3) is independently determined. (The

junction area A is given by the product of the NW diameter and the width

of the overlying submicron electrode.) With the values of T1, T0 and A being

determined, the microscopic parameters characterizing the electronic contacts,

i.e., the width w and height V0 of the potential barrier, may then be inferred.

Our experimental values of the relevant parameters are listed in Table 4.1.

Notice that, in Table 4.1, the measured resistance R(300 K) for each NW

device is at least an order of magnitude higher than the intrinsic resistance of

the NW, Rs(300 K), justifying our approximation R(T ) ≈ 2Rc(T ). Moreover,

the resistance ratio R(T )/Rs(T ) increases rapidly as the temperature decreases

below room temperature.

It should be noted that, in the FIT model, because the two conducting

regions remain large in size, the charging energy Ec needed to transfer an

electron from one conducting region to the other is completely negligible, i.e.,

Ec ¿ kBT . This situation is very different from that in the case of Coulomb

blockade which involves fine metal grains or quantum dots, where the charging

energy Ec (À kBT ) rather than the thermal voltage fluctuations plays the

crucial roles in controlling the electronic transport properties. In the present

work, the volume of our “long” NW is relatively large as compared to the sizes

of the fine metal grains (e.g., ∼ 103 nm3) used in Coulomb blockade studies.[73]

The typical volume of our NWs is ∼ 100 nm × 100 nm × 3 µm. Thus, our NW

can be envisioned as a large conducting region separated by an insulating layer

from another large conducting region (the submicron Cr/Au electrode) with a

junction area A (∼ 100 × 500 nm2). This size of A is already small enough to

render the aforementioned thermal voltage fluctuations important while large
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Figure 4.3: Double logarithmic plot of the resistances versus temperature
for four high-resistance NW devices, as determined from the 2-probe method.
The symbols are the experimental data and the solid curves are the theoretical
fits to Eq. (4.1).
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Table 4.1: Values of relevant parameters for four high-resistance NW devices,
as determined from the 2-probe method. For each device, the NW resistance
Rs(300 K) was estimated from the 4-probe method, while the junction area A
was determined from the SEM image.

R(300 K) Rs(300 K) R0 T1 T0 A w V0

(kΩ) (kΩ) (kΩ) (K) (K) (µm2) (nm) (meV)
C1 241 0.67 112 316 91 0.023 6.6 4.2
C2 33 0.33 13.6 363 104 0.022 6.4 4.5
C3 10.3 0.31 8.08 87 37 0.040 7.0 1.7
C4 3 0.33 2.82 20 8.6 0.028 8.7 1.1
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enough to make Coulomb blockade irrelevant. In effect, our NW devices in

the 2-probe configuration mimic two similar tunnel junctions in series in the

context of the FIT model.

Previously, the FIT model has been successfully applied to explain the tem-

perature behavior of the resistances in, among others, carbon polyvinylchloride

composites [71, 74, 75], polymer composites [76], and tin-doped indium oxide

thin films [77]. In those “macroscopic” composite systems, a very large num-

ber of tunnel junctions with barely known junction properties were involved.

On the contrary, the situation is greatly simplified and straightforward in our

case, since in the 2-probe configuration we deal with only two electronic con-

tacts characterized by similar junction parameters, as discussed. Moreover,

our junction area A is known. Interestingly, our experimental values of w and

V0 listed in Table 4.1 are on the same orders of magnitude to those obtained

in carbon polyvinylchloride composites [71, 74, 75]. This coincidence may be

due to the fact that the sizes of our NWs are approximately the same to the

mean size of the conducting chains found in those composites.

Finally, it is worth noting that, if in our case, the effective junction area

is somewhat reduced from the maximum possible area A defined above, our

values of w (V0) would be slightly decreased (increased) from those listed in

Table 4.1.

4.3 IrO2

4.3.1 Electron hopping conduction

In this subsection, we report the temperature behaviour of the highly resistive

Rc(T ) for two electronic contacts measured on a representative IrO2 NW (Ir-3)

connected by three submicron electrodes. The sample parameters of the Ir-3

NW are given in the caption to table 4.2. As discussed in Section 2.2, the values

of Rc(T ) can be extracted from the electrical measurements by employing

either the 3-p [Fig. 2.5(c)] or the 2-p [Fig. 2.5(d)] configuration, provided that

Rc À Rs and Rc À Rel. At 300 K, the resistances obtained from the 3-p and 2-

p configurations for this particular NW are 2.4 and 5.6 kΩ, respectively. These
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measured values are indeed significantly larger than the intrinsic resistance (≈
0.5 kΩ) of this NW, suggesting that the contact resistance(s) being dominating

the measured resistances. More precisely, the measured R3−p and R2−p are

largely determined by the electronic contact resistances Rc2 and Rc3 as denoted

in Figs. 2.5(c) and (d). In the 3-p method, the measured resistance R =

R3−p ≈ Rc3; while in the 2-p method, the measured resistance R = R2−p ≈
Rc2 + Rc3.

Figure 4.4(a) shows our experimental results for R3−p and R2−p as a func-

tion of temperature. Inspection of Fig. 4.4 indicates that, in sharp contrast

to the 4-p results discussed previously, now the measured resistances also re-

veal semiconducting or insulating behaviour, namely, the resistance increases

rapidly with decreasing temperature. Below about 50 K, a sharp resistance rise

is found. Quantitatively, as the temperature reduces from room temperature

to liquid-helium temperatures, the resistance ratio R2−p/R4−p increases from

≈ 20 to ≈ 500, ensuring the predominance of the electronic contact resistances

on the measured resistances especially at intermediate and low temperatures.

The relevant parameters measured for the 3-p and 2-p configurations are listed

in table 4.2.

A plot of logR as a function of 1/T is shown in the inset of Fig. 4.4(a),

the nonlinear dependences of the 3-p and 2-p results suggest that the simple

thermally activated conduction is not the responsible mechanism for our obser-

vations. Instead, if we plot logR as a function of T−1/2, linear dependences are

clearly obeyed for a very wide temperature range from about 100 K down to

liquid-helium temperatures, as depicted in Fig. 4.4(b). The difference between

the two curves are simply the electronic contact resistance Rc2(T ). Such a

logR ∝ T−1/2 behaviour is frequently observed in materials like granular met-

als [78] and disordered semiconductors [79]. The resistance can be expressed

as

R(T ) = R∞exp[(T0/T )1/2] , (4.4)

where R∞ and T0 are material dependent parameters and are insensitive to

temperature. Our fitted values of R∞ and T0 are listed in table 4.2. In
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Figure 4.4: (a) Resistances as a function of temperature for the 2-probe and
3-probe measurement configurations as depicted in Figs. 2.5(c) and (d). The
inset shows logR as a function of 1/T . (b) logR as a function of T−1/2. Since
R2−p ≈ Rc2 + Rc3 and R3−p ≈ Rc3, the difference between the two curves is
simply the electronic contact resistance Rc2.
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Table 4.2: Values of the relevant parameters for the three-probe and two-
probe electrical measurement configurations implemented on the Ir-3 NW con-
tacted by three submicron Cr/Au (10/90 nm) electrodes. The Ir-3 NW has a
hypotenuse W ≈ 115 ± 5 nm, length L ≈ 0.7 µm, and the sample resistance
Rs(300 K) ≈ 0.5 kΩ. R∞ and T0 are defined in Eq. (4.4).

R(300 K) R(100 K) R(10 K) R∞ T0

(kΩ) (kΩ) (kΩ) (kΩ) (K)
3-p 2.4 5.2 56.1 1.9 113
2-p 5.6 11.6 117.4 4.3 109
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disordered semiconductors, the form of Eq. (4.4) can be given by the one-

dimensional Mott [80] variable range hopping (VRH) between localized car-

rier states near the Fermi level, or by the Efros-Shklovskii [81] VRH if the

Coulomb interaction between carriers is taken into account. In granular met-

als, the form of Eq. (4.4) arises from the conductivity model of Sheng and

co-workers [78, 82], in which a structural effect is considered. In our case,

since the 90-nm thick Au film (which formed the top layer of the submicron

electrode) and the IrO2 NW are “good” metals, it is conjectured that our

measured resistance of ∼ several tens kΩ (at a few tens K and lower) must be

dominated by a resistance due to the nominally 10-nm thick granular Cr layer

deposited between the thick Au film and the IrO2 NW. It can also be due to the

amorphous coating and/or the noncrystalline structure of the outermost one

or two atomic layers of the as-grown IrO2 NW. The granular structure of the

deposited Cr thin layer might have accidentally formed due to the breaking

induced by tensile stress, the vacancies caused by dramatic surface roughness

near the contact region, or the lightly contaminated metal grains during evap-

oration. To check the structure, we have made several samples comprising a

Cr layer with a nominal thickness of 10 nm on mica substrates using simi-

lar deposition conditions as used for the submicron electrode fabrication, and

analyzed the Cr layer surface profiles by atomic force microscopy (AFM). As

expected, a granular pattern with a distribution of disk-shaped grains having

radius of ∼ several tens nm and height of ≈ 2−6 nm has been observed in

several cases (see Fig. 4.5), supporting the aforementioned conjecture. Indeed,

it is known that thermal-evaporation deposited thin Cr films can easily form

island-like granular structures rather than continuous layers [83].

Apparently, the one-dimensional Mott [80] VRH process is inappropriate

for the explanation of our data, considering the geometrical structure around

the contact region of our samples, namely, the size of the thin Cr layer in the

transverse directions of electrical transport is more than an order of magnitude

larger than that in the longitudinal direction. Although the Efros-Shklovskii

[81] VRH theory is often used to fit the resistivity data in the studies of gran-

ular metals where a logR ∝ T−1/2 behaviour is observed, it has been shown
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Figure 4.5: (a) AFM image of a thin Cr layer with a mean thickness of 10 nm
prepared by thermal-evaporation deposition on a mica substrate. (b) Surface
profile along the line indicated in (a), showing a distribution of disk-shaped
grains having radius of ∼ several tens nm and height of ≈ 2−6 nm.
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[84, 85] that serious inconsistencies exist in applying such transport model to

those systems due to the unreasonable extracted values of the relevant param-

eters. For instance, an optimum hop distance is found to be too short to allow

the electrons to tunnel beyond neighboring metal grains, or, a tunnelling bar-

rier is found to be smaller than kBT (where kB is the Boltzmann constant), and

thus made the comparison unrealistic. Therefore, we believe that the adequate

mechanism to describe our data is the conductivity model proposed by Sheng

and co-workers [78, 82], i.e., conduction electrons are thermally activated and

hop through, in our case, the nanoscale Cr granules sandwiched between the

thick Au layer and the IrO2 NW.

In the Sheng’s model [78, 82], it is proposed that, for a granular metal-

dielectric composite sample with a uniform relative volume fraction of metal

and dielectric, the ratio s/d should have the same value everywhere throughout

the sample, where s is the separation of neighboring metal grains, and d is the

diameter of metal grains. Since the electrostatic charging energy Ec ∼ 1/d

(which is required to create a positive-negative charged pair of grains), it thus

follows that sEc is a constant everywhere in the sample and can be written as

sEc =
kBT0

4χ
, (4.5)

where T0 is the characteristic temperature parameter in Eq. (4.4), χ = (2mφ/~2)1/2,

m is the effective electron mass, φ is the effective barrier height, and ~ is

Planck’s constant divided by 2π. With a second assumption that only hop-

ping between nearest-neighbor grains which are equal or nearly equal in size is

included, the model found that, at each temperature T , the maximum conduc-

tivity occurs at a dominant separation of neighboring metal grains, sm, given

by

sm =
1

4χ

(
T0

T

)1/2

. (4.6)

From Eqs. (4.5) and (4.6), it follows that, at high (low) temperatures, the

conductivity is governed by the hopping events between small (large) grains

separated by a short (long) distance. From our fitted value of T0 ≈ 110

K, and assuming a free electron mass and a barrier height φ ≈ 0.1 eV, we
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obtain Ec ≈ 16 (3) meV and sm ≈ 1 (5) Å at T = 300 (10) K. (A value

of φ ≈ 0.1 eV corresponds to a small barrier height which is about an order

of magnitude larger than the thermal energy kBT , and is just probable for

tunnelling to occur.) These values are quite close to the values obtained in

the previous works on granular metallic systems [78] and suggest that our thin

Cr layers lie in the dielectric regime approaching the threshold for classical

percolation conductivity. The smallness of the values of sm results from a high

volume fraction of metal (Cr), which in turn renders a low value of the effective

tunnelling barrier due to considerable image forces [78, 82].
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Chapter 5

Conclusion

By using different probe configurations in our measurements, we have mea-

sured down to liquid-helium temperatures not only the intrinsic electronic

transport properteis of individual single-crystalline RuO2 and IrO2 NWs but

also the temperature dependent behaviours of high-resistance electronic con-

tacts Rc on these two kinds of NWs.

For the intrinsic properties of the NWs, although the measured tempera-

ture dependent resistivities can be well accounted for by an existing theoretical

description based on the Boltzmann transport theory, we found that the De-

bye temperature in RuO2 NWs is largely reduced as the diameter of the NW

decreases. (Comparable experiments on IrO2 NWs with diameters down to

this scale have not been performed.) Possible mechanisms accounting for this

observation have been discussed. It is concluded that the chemical binding in

the NWs may be gradually weakened as the diameter decreases.

By employing the 3- and 2-probe method, we have quantitatively charac-

terized the temperature behaviours of high resistance electronic contacts, Rc,

formed at the interfaces between the submicron electrodes and the NWs. Two

different behaviours have been observed. For RuO2 NWs, we found that the

temperature dependence of the Rc can be well attributed to the thermally

fluctuation-induced tunneling conduction through a junction formed at the

interface between the electrode and the NW. The junction parameters such

as the barrier width and height have been determined. On the other hand,

For IrO2 NWs, a temperature behaviour obeying the law logR ∝ T−1/2 is

observed over a wide temperature range below ≈ 100 K. This behaviour is

satisfactorily ascribed to the hopping of electrons through nanoscale Cr gran-

ules and/or amorphous coating incidentally formed at the interface between

the Cr/Au submicron electrode and the NW. Less direct evidence supporting
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this argument has been provided.

This work demonstrates that, by properly applying a combination of elec-

trical measurement configurations, both the intrinsic property of a NW and the

electronic contact on it could be quantitatively studied. Under certain condi-

tions, the electronic contacts between an interconnect and a metal nanodevice

could be further modeled.
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