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適用於低色彩對比前景抽取之 

CIELAB 色彩空間背景模型 

 

學生:陳俊升            指導教授: 張志永博士 

 

國立交通大學電機與控制工程研究所 

 

摘要 

 

利用固定攝影機拍攝的串流影像資訊於前景物體抽取是一個很典型的方法。在一

般前、後景色彩深淺差別大時，可以簡單的使用亮度的資訊將前後景分離，但當前後

景色彩接近時，例如; 當辨識的目標穿著和背景相似的衣服時，若只使用灰階影像並

無法將完整的前景資訊分離，我們曾使用 HSV 色彩空間加入像素點色彩成分的考慮建

立背景模型做顏色的補償，達到前、後景的分離，且能對陰影的問題加以消除改進。

然而使用 HSV 色彩空間會遇到色調一些不穩定的問題，所以我們在色調不穩定的區域

加以限制，以增加抽取前景影像的準確性，但對於某些情況，例如;背景為米白色而前

景目標穿著粉紅色衣服時，在 HSI 系統對前景物體抽取的準確性提升效果有限。 

 本論文，我們建立一個內嵌在CIELAB色彩空間的統計性背景模型來做前景物體抽

取，這個模型大幅的提高前景物體抽取的靈敏度。在HSV的系統與我們新的前景抽取系

統比較，實驗證明，CIELAB其正確率從原來的75.62%改善為87.88%。 
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CIELAB Color Space Based Background Modeling for  

Low Color Contrast Foreground Extraction  

 
STUDENT: Chun-Sheng Chen       ADVISOR: Dr. Jyh-Yeong Chang 

 
Institute of Electrical and Control Engineering 

National Chiao-Tung University 
 

ABSTRACT 

 

Background subtraction is a typical method used to extract foreground object in video 

streams taken from a static camera. When the foreground color is different from the 

background color, the foreground subject can be extracted easily by the luminance 

component. When the foreground color is similar to the background color, we cannot 

extract the foreground image completely by the luminance component. To solve this, we 

used to utilize the HSV color space to build the background model to do color compensation, 

in line with similar spirit of W4 segmentation algorithm. This approach can not only extract 

foreground image well but also be helpful to shadow removal. However, H and S 

components are not consistently reliable in some situations. For example, HSI system does 

not detect foreground well when the object wears pink clothes when in ivory background.  

In this thesis, we build a statistical background modeling embedded in CIELAB color 

space for foreground object extraction. By the use of color difference formula in CIELAB 

space, so that the sensitivity of foreground object extraction can be raised evidently. In 

comparison with HSV based scheme and our new foreground extraction scheme, the 

CIELAB improves the segmentation accuracy from 75.62% to 87.88%.  
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Chapter 1  Introduction 

 

1.1 Motivation 
 

Human activity recognition from video streams has many applications such as 

home care system, human-machine interface, and automatic surveillance, etc. 

However, there is no rigid syntax and well-defined structure in human action 

recognition system. Therefore, it makes human activity recognition a very challenging 

task. 

Several human activity recognition methods have been proposed in the past few 

years. Yamato et al. [1] turn image frames into a symbol sequence and use HMM to 

recognize human action. Bobick and Davis [2] recognize human activities by 

comparing motion-energy and motion-history of template images with temporal 

images. Cohen and Li [3] use a view-independent 3-D shape description for 

classifying and identifying human activity using SVMs. There have been some 

significant projects on detecting, tracking people and recognizing their activities. W4 

[4] is one of them. W4 can detect people (single person or people in group) by 

adopting an adaptive background model and identify the activities by finding the body 

parts on the silhouette boundary. 

In vision-based systems, foreground subject extraction is usually the first an 

important step, which is also the objective of this thesis. If we can improve the 

accuracy of extracting foreground object, then monolithic performance of surveillance 

systems can be done easily and reliably, such as human activity recognition, dynamic 

object tracking, and many others.   

Our human activity recognition system flowchart is illustrated in Fig. 1.1. The 
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proposed system can be separated into four components. The first component is the 

background modeling. The second component is the foreground subject extraction. 

The third component is the transformation of image data into a space which is smaller 

and easier for posture recognition. The fourth component is the posture classification 

of an image frame and activity recognition using frame sequences. In this thesis, we 

emphasize the first two components to improve the accuracy of extracting the 

foreground image, so that we can enhance the performance of an activity surveillance 

system.  

 

 

 

Fig. 1.1  The flowchart of our human activity recognition system.  

 

 
Background modeling 

 
Foreground subject extraction

 
Transformation of image data 

Posture classification and 
activity recognition 
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1.2 Background Modeling 

 

Background subtraction is widely used for detecting moving objects from 

image frames of static cameras. Most of this work has been based on background 

subtraction using color or luminance component. In these approaches, difference 

between the coming frame and the background image is performed to detect 

foreground objects. W4 [4] is a famous one to be noted. It records the maximum and 

minimum luminance and the maximum inter-frame difference in every position of a 

frame in a background video. Then every pixel of the image frame subtracts the 

maximum and minimum luminance at this position. If the pixel’s absolute value of 

this difference is larger than the maximum inter-frame difference, the pixel is a 

foreground. 

Background subtraction is extremely sensitive to dynamic scene changes due to 

illumination change. In order to solve the artifact causing from varying luminance, we 

develop a method which is more robust to the illumination changes. To this end the 

method makes use of frame ratio rather than frame difference in the luminance 

component. 

   If we utilize only the luminance to do background subtraction, we cannot detect a 

foreground pixel correctly when the colors of foreground and background are similar. 

To make fully use of the spectrum of a pixel, it is imperative to do the segmentation in 

the color domain. In our system, we build our background model in the HSV color 

space. We use both the luminance and the chromatic components in the background 

subtraction task. In order to improve detectability, background subtraction is thus 

computed by taking into account not only a pixel’s luminance, but also its 

chromaticity. 
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 According to our investigation, we have found that CIELAB color space is 

developed to become more sensitive in color difference, which also bears the 

attributes from Hue, Saturation and Lightness. In the CIELAB space, the color 

difference formula is proposed in this thesis to effectively differentiate the color 

difference between two colors, where effectiveness becomes significant for close 

color. The background model records the maximum color difference in every position 

of an inter-frame in a background video. If the pixel’s color difference between the 

background and the foreground is lager than a preset maximum color difference, the 

pixel belongs to the foreground. In this way, the color difference between the 

background and the foreground becomes larger, and thus the effectiveness of 

foreground object extraction can be raised greatly.  

 

1.3 Foreground Subject Extraction 

  

 Foreground subject extraction is an important step of the vision-based human 

activity recognition system. Many authors have developed methods of detecting 

people in images. Park and Aggarwal subtracted foreground pixels from background 

by computing Mahalanobis distance in each pixel in the HSV color model [5]. Leung 

and Yang built a human body outline labeling system [6]. Jabri and Duric [7] used 

color and edge information to improve the quality and reliability of the results. They 

have all tried to find out the real poses a human did by human body outline or by 

silhouettes.  

 Furthermore, the moving cast shadows mostly exhibit a challenge for accurate 

foreground subject detection. A lot of attempts have been developed to tackle the 

shadow suppression [8]− [13] encountered in background subtraction. Horprasert et al. 
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[8] and Cucchiara et al. [9] utilized the rationale that shadows have similar 

chromaticity, but lower brightness than the background model. Under the proposed 

frame work in the HSV and color space, we can effectively identify the shadow 

existence in our detected foreground subject. 

After building background models in HSV and CIELAB color spaces, we can 

extract foreground subjects from video frames by subtracting pixel’s color difference 

existing in the image frames.   

 

1.4 Thesis Outlines 

 

The thesis is organized as follows. Before introducing the technique of our 

human activity recognition system, the basic concepts concerning the color difference 

formula in HSV and CIELAB color spaces are introduced in Chapter 2. In this chapter, 

we first introduce the HSV and CIELAB color spaces, and then some color difference 

formulae. Chapter 3 describes in detail our CIELAB-based method, embedded in 

difference formulae, to build a statistical background modeling for foreground subject 

extraction. In Chapter 4, the experiment results of the foreground object extraction in 

the HSV and CIELAB color spaces are shown and compared. At last, we conclude 

this thesis with a discussion in Chapter 5.  
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Chapter 2   Introduction to Color Space 

 

 In this chapter, we briefly explain the basic concepts of color difference formula, 

CIELAB and HSV color space.  

 

2.1  The XYZ Color System 

 

 The characteristics generally used to distinguish one color from another are, 

brightness, hue, and saturation. Brightness embodies the chromatic notion of intensity. 

Hue is an attribute associated with the dominant wavelength in a mixture of light 

waves. Hue represent dominant color as perceived by observer. Thus, when we call an 

object red, orange, or yellow, we are specifying its hue. Saturation refers to the 

relative purity or the amount of white light mixed with a hue. The pure spectrum 

colors are fully saturated. Colors such as pink (red and white) and lavender (violet and 

white) are less saturated, with the degree of saturation being inversely proportional to 

the amount of white light added. 

 

 Hue and saturation taken together are called chromaticity, and, therefore, a color 

may be characterized by its brightness and chromaticity. The amounts of red, green, 

and blue needed to form any particular color are called the tristimulus values and are 

denoted, X, Y, and Z, respectively. A color is then specified by its trichromatic 

coefficients, defined as 

          Xx
X Y Z

=
+ +

            (1)  
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ZYX

Yy
++

=             (2) 

and  

ZYX
Zz
++

=             (3) 

It is noted from these equation that 

       1.x y z+ + =                 (4) 

For any wavelength of light in the visible spectrum, the tristimulus values needed to 

produce the color corresponding to that wavelength can be obtained directly from 

curves or tables that have been compiled from extensive experimental result.  

  

 Another approach for specifying colors is to use CIE chromaticity diagram  

(Fig. 2.1), which shows color composition as a function of x (red) and y (green). For 

any value of x and y, the corresponding value of z (blue) is obtained form Eq. (4) by 

noting that z = 1 – (x + y). The point marked green in Fig. 1, for example, has 

approximately 62% green and 25% red content. From Eq. (4), the composition of blue 

is approximately 13% 

 

 

. 
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             Fig. 2.1   The chromaticity diagram. 

                       

 

The chromaticity diagram is useful for color mixing because a straight-line 

segment joining any two points in the diagram defines all the different color 

variations that can be obtained by combining these two colors additively. Consider, 

for example, a straight line drawn from the red to the green points shown in Fig. 2.1. 

If there is more red light than green light, the exact point representing the new color 

will be on the line segment, but it will be closer to the red point than to the green point. 

Similarly, a line drawn from the point of equal energy to any point on the boundary of 

the chart will define all the shades of that particular spectrum color. 

 

 Extension of this procedure to three colors is straightforward. To determine the 

range of colors that can be obtained from any three given colors in the chromaticity 
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diagram, we simply draw connecting lines to each of the three color points. The result 

is a triangle, and any color inside the triangle can be produced by various 

combinations of the three initial colors. A triangle with vertices at any three fixed 

colors cannot enclose the entire color region in Fig. 2.1. This observation supports 

graphically the remark made earlier that not all colors can be obtained with three 

single, fixed primaries. 

 

2.2  The Color Space 

  

2.2.1  The HSV Color Space 

The HSV (hue, saturation and value) color space corresponds closely to the 

human perception of color. Conceptually, the HSV color space is a cone. Viewed from 

the circular side of the cone, the hues are represented by the angle of each color in the 

cone relative to the 0o line, which is traditionally assigned to be red. The saturation is 

represent as the distance from the center of the circle. Highly saturation color are on 

the outer edge of the cone, whereas gray tones (which have no saturation) are at the 

very center. The brightness is determined by the colors vertical position in the cone. 

At the point end of the cone, there is no brightness, so all colors are blacks. At the fat 

end of the cone are the brightness colors. 
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Fig. 2.2  The HSV Cone 

 

2.2.2  The CIELAB Color Space 

 

 The effectiveness of the transformations examined in this section is judged 

ultimately in print. Since these transformations are developed, refined, and evaluated 

on monitors, it is necessary to maintain a high degree of color consistency between 

the monitors used and the eventual output devices. In fact, the colors of the monitors 

should represent accurately any digitally scanned source images, as well as the final 

printed output. This is best accomplished with a device-independent color model that 

relates the color gamut of the monitors and output devices, as well as any other device 

being used, to one another. The success of this approach is a function of the quality of 

the color profiles used to map each device to the model and the model itself. The 

model of choice for many color management systems (CMS) is the CIE ∗∗∗ baL  

model, also called CIELAB. The ∗∗∗ baL  color components are given by the 
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following equations: 

     116 16
w

YL h
Y

∗ ⎛ ⎞
= ⋅ −⎜ ⎟

⎝ ⎠
             (5) 

     500
W w

X Ya h h
X Y

∗
⎡ ⎤⎛ ⎞ ⎛ ⎞

= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                        (6) 

        200
W W

Y Zb h h
Y Z

∗
⎡ ⎤⎛ ⎞ ⎛ ⎞

= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

           (7) 

where 

   ( )
⎪⎩

⎪
⎨
⎧

≤+

≥
=

  0.008856         , 116/16  787.7 
0.008856                                  ,  

 
3

qq
qq

qh         (8) 

and WX , WY , and WZ  are reference white tristimulus values—typically the white of 

a perfectly reflecting diffuser under CIE standard D65 illumination (defined by x = 

0.3127 and y = 0.3290 in the CIE chromaticity diagram of Fig. 2.1 ). The ∗∗∗ baL  

color space is colorimetric (i.e., color perceived as matching are encoded identically), 

perceptually uniform (i.e., color differences among various hues are perceived 

uniformly), and device independent. While not a directly displayable format 

(conversion to another color space is required), its gamut encompasses the entire 

visible spectrum and can represent accurately the colors of any display, print, or input 

device. Like the HSI system, the ∗∗∗ baL  system is an excellent decoupler of 

intensity (represented by lightness ∗L ) and color (represented by ∗a  for red minus 

green and ∗b  for yellow minus blue), making it useful in both image manipulation 

(tone and contrast editing) and image compression applications. 
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Fig. 2.3   The CIELAB Chromaticity Diagram         

 

2.3 Color Difference Formula 

 

Based on color difference formula in [14], the CIELAB system is a simplified 

mathematical approximation to a uniform color space composed of perceived color 

differences. The perceived lightness ∗L  of a standard observer is assumed to follow 

the intensity of a color stimulus according to a cubic root law [15]. The colors of 

lightness ∗L  are arranged between the opponent colors green-red and blue-yellow 

along the rectangular coordinates ∗a  and ∗b . The total difference between the two 

colors is given in terms of ∗L , ∗a , ∗b  by the CIE 1976 formula 

              ( ) ( ) ( )2 2 2

b .aE L a b∗ ∗ ∗Δ = Δ + Δ + Δ           (9) 



 13

Any color represented in the rectangular coordinate system of axes ∗L , ∗a , ∗b  can 

alternatively be expressed in terms of polar coordinates with the perceived lightness 

∗L  and the psychometric correlates of chroma, 

            ( ) ( )2 2
  abC a b∗ ∗ ∗= +          (10) 

and hue angle, 

       1tan .ab
bh
a

∗
−

∗

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
          (11) 

In fact, the CIELAB space is not really uniform. If MacAdam or Brown-MacAdam 

ellipses or ellipsoids are transformed into CIELAB coordinates, differences appear 

among their axes of up to 1:6. 

 In particular, at high values of chroma, the simple CIE 1976 color difference 

formulas value color differences too strongly compared to experimental results of 

color perception [16]. An improved color difference formula was therefore 

recommended in 1994 [17]-[19]: 

    
22 2

94 ,ab ab

L L C C H H

C HLE
k S k S k S

∗ ∗∗
∗ ⎛ ⎞⎛ ⎞ ⎛ ⎞Δ ΔΔ

Δ = + +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

             (12) 

where ∗ΔL , ∗Δ abC , and ∗Δ abH  are the CIELAB 1976 color differences of lightness, 

chroma, and hue; Lk , Ck , and Hk  are factors to match the perception of 

background conditions; LS , CS , and HS  are linear functions of ∗Δ abC . Color 

differences in this thesis have also been calculated for this formula and they are 

compared to the calculations for baEΔ . Standard reference values specified in CIE 
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[18], [19] have been assumed for the calculations of ∗Δ 94E : 

          1L C Hk k k= = =                    (13) 

            1LS =                 (14) 

       1 0.045C abS C∗= +           (15) 

       1 0.015 .H abS C∗= +           (16) 
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Chapter 3  Background Modeling in HSV and  

CIELAB Color Space 
 

3.1   Object Extraction in HSV Color Space 

 

3.1.1   The Intensity of the Image  

 

We assume the intensity of the image captured by a camera can be described as 

( , ) ( , ) ( , ),i i iI x y S x y r x y=                          (17) 

where Ii is the intensity of the image, Si is the spatial distribution of source 

illumination, ri is the distribution of scene reflectance, (x,y) is the location of a pixel 

in the image, and i is the image sequence index. Now we can compare the difference 

caused by illumination change between frame difference and frame ratio. If we hold 

the camera still with no foreground subjects pass by, the reflectance of this 

background should be the same at any time. That is, 

( ) ( ), , .ir x y r x y=                          (18) 

Although the reflectance is not changed, the effect of illumination is still going 

on. The frame difference and frame ratio between two consecutive frames can 

respectively be written as 

       
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )
1 1

1

, , , , , ,

, , , ,

d d d d
i i i i

d d
i i

I x y I x y S x y r x y S x y r x y

S x y S x y r x y

− −

−

− = −

= −
        (19) 
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i i
r r
i i
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i
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I x y S x y r x y

S x y
S x y

S x y S x y

− −

−

−

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

= −

         (20) 

where Id  is the intensity of scene captured by camera of frame difference, Sd  is the 

spatial distribution of source illumination of frame difference, and I r  and Sr  is of 

frame ratio. Comparing Eqs. (19) and (20), we can find that the problems cause by 

reflectance still remains in the frame difference approach; nevertheless, the influence 

of reflectance is eliminated in the frame ratio approach.  

 Fig.3.1 shows a comparison between frame ratio and frame difference. Fig.3.1(a) 

is a background image and Fig. 3.1(b) is an image frame with a human. By using 

frame difference and frame ratio approach, we obtain Fig. 3.1(c) and Fig. 3.1(d), 

respectively. Gray level of the resulting images distributed from 0 to 255. Fig. 3.1(e) 

is the histogram of Fig. 3.1(c) and Fig. 3.1(f) is the histogram of Fig. 3.1(d). 

Comparing the histograms of Fig. 3.1(d) and Fig. 3.1(e), we find out that there was 

less noise in the region of low gray level by using frame ratio method. The Fig. 3.1(g) 

and Fig. 3.1(h) are the binary image of extraction images which simply took a 

threshold value 15 at gray level against Fig. 3.1(c) and Fig. 3.1(d). 
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(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 
(g) 

 
(h) 

 

Fig. 3.1  The comparison between frame ratio and frame difference. (a) Background 

image, (b) image frame with a human, (c) frame difference, (d) frame ratio, (e) 

histogram of frame difference, (f) histogram of frame ratio, (g) foreground pixels of 

frame difference after simply taking a threshold, and (h) foreground pixels of frame 

ratio after simply taking a threshold
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3.1.2   Background Model 

 

If we only use the luminance component to do background subtraction, we cannot 

detect reliably those foreground pixel whose luminance component close to 

background pixel. In order to solve this problem, we build our background model in 

the HSV color space. The HSV color space corresponds closely to the human 

perception of color. We can have the luminance information and the chromatic 

information simultaneously.  

The hue parameter is the value which represents color information without 

brightness. Therefore, the hue is not affected by change of the illumination brightness 

and direction. Although hue is the most useful attribute, there are three problems in 

using hue attribute for color segmentation: (1) hue is meaningless when the intensity 

value is very low; (2) hue is unstable when the saturation is very low; and (3) 

saturation is meaningless when the intensity value is very low [11]. Accordingly, 

Ohba et al. [20] use three criteria (intensity value, saturation, and hue) to obtain the 

hue value reliably. 

 Intensity Threshold Value: 

If tV V< , then 0H = , where ,V  tV , and H are an intensity value, the 

intensity threshold value, and a hue value, respectively. If measured color is not 

bright enough, the color is discarded. Then, the hue value is set to a 

predetermined value, i.e., 0. 

 Saturation Threshold Value: 

If tS S< , then 0H = , where ,S  tS , and H are an saturation value, the 

saturation threshold value, and a hue value, respectively. Using this equation, 

measured color close to gray is discarded in the image. 
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 Hue Threshold Value: 

If tH P< Δ  or 2 tH Pπ− < Δ , then 0H = . The range of hue value is 

from 0 to ,2π  and it has discontinuity at 0 and ,2π  We use the phase 

threshold value tPΔ  to avoid the discontinuity effect. 

 

From the result of the previous section, it is advantageous to use frame ratio 

approach in countering the luminance change. Hence, we propose to utilize the frame 

ratio to build the background model in the luminance component. We build our 

background model with the minimum value ( [ ( , ), ( , ), ( , )]H S Vn x y n x y n x y ) and 

maximum value ([ ( , ), ( , ), ( , )]H S Vm x y m x y m x y ) in each HSV domain. Besides, we 

also record the inter-frame ratio in the brightness information and the inter-frame 

different in the chromatic information.  

We need a background video, without any moving objects, for background model 

training. Suppose the observed image frame sequence contains N consecutive images. 

( ),H
iI x y  be the pixel’s hue value at ( )yx,  of the i-th image frame. ( ),S

iI x y  be the 

pixel’s saturation value at ( )yx,  of the i-th image frame. ( ),V
iI x y  be the pixel’s 

brightness value at ( )yx,  of the i-th image frame. The background model of a pixel 

is obtained by 

 

( )
( )
( )

( ){ }
( ){ }

( ) ( ){ }1

max ,,
, min ,  
, max , ,

H
H ii

H H
ii

H
H H
i ii

I x ym x y
n x y I x y
d x y I x y I x y−

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

                        ( 21) 
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                                                                (23) 

1,2,..., .i N=  

 

3.1.3  Foreground Subject Extraction and Shadow Suppression 

 

Fig.3.2 shows the framework we apply to foreground subject extraction. Our 

framework of foreground subject extraction is composed of four components. The 

first component is foreground subject extraction by luminance. The second 

component is the shadow suppression. The third component is the object 

segmentation. And the finally component is the color compensation to recover the 

foreground pixels wrongly classified to the background due to their high luminance 

similarly. 
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Fig.3.2   The framework we apply to foreground subject extraction 

 

A. Foreground Subject Detection by Luminance  

 

Foreground objects can be segmented from every frame of the video stream. 

Each pixel of the video frame is classified to either a background or a foreground 

pixel by the difference between the background model and a captured image frame. 

We utilize the maximum luminance ( ),  Vm x y , minimum luminance ( ),  Vn x y  and 

Image 

Foreground Subject Detection 
by Luminance 

Shadow Suppression 

Object Segmentation 

Color Compensation 

Output 
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maximum inter-frame luminance ratio ( ),  Vd x y  of the training background model 

to segment the foreground pixel by 

    0,           if  ( , ) ( , ) ( , )  

                 or ( , ) ( , ) ( , )( , )

255,          otherwise                                        

V V V
i V

V V V
i V

I x y m x y k d x y

I x y n x y k d x yB x y

⎧ <
⎪

<⎪= ⎨
⎪
⎪⎩

             (24) 

where ( ),  V
iI x y  is the intensity of a pixel which is located at ( )yx, , ( )yxB  ,  is the 

gray level of a pixel in a binary image, and Vk  is a threshold, determined by light 

sufficiency of the scene. The value of Vk  is normally set to 1.3 for normal light 

condition, and Vk  will be reduced for in-sufficient light condition and increased 

otherwise. 

 

B. Shadow Suppression 

 

The pixels of the moving cast shadows are easily detected as the foreground 

pixel in normal condition. Because the shadow pixels and the object pixels share two 

important visual features: motion model and detectability. For this reason, the moving 

shadows cause object merging and object shape distortion. Horprasert et al. [8] and 

Cucchiara et al. [9] utilize the rationale that shadows have similar chromaticity, but 

lower brightness than the background model. Hence, we can detect the shadow from 

foreground subject in the HSV color space. We analyze only points belonging to 

possible moving object that are detected in step A. We define a shadow mask S  for 

each ( , )x y  point as follows: 
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shadow,           if     ( , ) ( , ) 0

                       and  ( , ) ( , ) (x,y) 

( , )                        and  ( , ) ( , ) (x,y)                        

   
  object,    

V V
i

H H H
i H

S S S
i S

I x y n x y

I x y m x y k d

S x y I x y m x y k d

− <

− <

= − <

        otherwise                                                                       

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

 

where ( , )H
iI x y , ( , )S

iI x y , and ( ),  V
iI x y  are respectively the HSV channel of a pixel 

located at ( )yx, , and ( ),  S x y  is the shadow mask to class the pixel in the moving 

cast shadow. Values Sk  and Hk  are selected threshold values used to measure the 

similarities of the hue and saturation between the background image and the current 

observed image. We can utilize the shadow mask ( , )S x y  to change the shadow 

pixels into background in ( , )B x y .  

 

C. Object Segmentation 

 

According to the binary image B segmented by above, we extract the region of 

foreground object to minimize the image size. Foreground region extraction can be 

accomplished by simply introducing a threshold on the histograms in X and Y 

direction. Fig. 3.3 shows an example of foreground region extraction. We utilize the 

binary image and project it to X and Y directions. The interested section has higher 

counts in the histogram. We obtain the boundary coordinates x1, x2 of X axis and y1, y2 

of Y axis from the projection histogram. We can use these boundary coordinates as the 

corner of a rectangle to extract foreground region ( sB ). Fig. 3.4 is the extracted 

foreground region. 

 

(25) 
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X axis
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Fig. 3.3  Histogram of binary image projection in X and Y direction. 
 

 

 
 

Fig. 3.4  The binary image of extracted foreground region. 
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D. Color Compensation 

 

Some colors such as yellow, pink, and light blue have similar luminance value. If 

we only use the luminance component to do background subtraction, we cannot detect 

foreground pixel correctly when its luminance is similar to that of a background pixel. 

In order to improve detectability, background subtraction is computed by taking into 

account not only a point’s luminance, but also its chromaticity. We want to use the 

chromaticity to enhance the accuracy of the foreground object. We only analyze the 

region sB  obtained in subsection C above. Based on the amount of the chromaticity 

change, we reanalyze its background in sB  to be changed to a foreground of object, 

by 

255,          if  ( , ) ( , ) (x,y)  

                or ( , ) ( , ) (x,y) ( , )

0,          otherwise                                       

S S S
i S

H H H
i H

f

I x y m x y k d

I x y m x y k dB x y

⎧ − >
⎪
⎪ − >= ⎨
⎪
⎪
⎩

 

where ( , )H
iI x y and ( , )S

iI x y are respectively the hue and saturation components of a 

pixel at ( )yx, , Sk  and Hk  are selected threshold values. fB  is the final 

foreground object after the refined step of Eq. (26). 

 

 

 

 

 
 

(26) 
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3.2  Object extraction in CIELAB color space 

 

3.2.1 Background Model 

 

 According to CIELAB’s sensitiveness on color difference, we can have subtle 

color difference measure in the CIELAB color space, which also bears the attributes 

of Hue, Saturation and Lightness. In order to compute the genuine difference between 

two colors and thus raise the sensitivity of foreground object extraction by a larger 

color difference between the background and the foreground, we build a statistical 

background model by in CIELAB color space combined with color difference 

formula. 

     We need a background video, without any moving objects, for background 

model training. Suppose the observed image frame sequence contains N consecutive 

images. First of all, we have to do the color separation on the N consecutive images of 

background video.  

We can obtain the tristimulus values of X, Y and Z from the values of R, G and B 

by linear transform on the N consecutive images as follows: 

                  
⎥
⎥
⎥
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⎤

⎢
⎢
⎢
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⎥
⎥
⎥
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⎦
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⎢
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⎣

⎡

B
G
R

Z
Y
X

939.0130.0020.0
071.0707.0222.0
178.0342.0431.0

         (27) 

 However, the tristimulus values X, Y and Z are transformed into chromaticity 

coordinate, the homogenization of this color space is not good. Therefore, the color 

difference calculated by color difference formula in X, Y and Z domain can not 

factually represent the color difference between the two colors. In order to resolve the 
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problem of the homogenization in the color domain, we transform the tristimulus 

values into CIELAB color space from the X, Y and Z domain on the N consecutive 

images, and we can find the color difference between two colors, especially for two 

very similar colors. In the CIELAB color space, background modeling can become 

more sensitive and hence more effective in foreground subject extraction. 

 In CIELAB space, we calculate the arithmetic mean from these N consecutive 

images to represent the background, and find the maximum color difference in every 

pixel of an inter-frame among the background image by.  

      ,),(1),(
1
∑
=

=
N

i
iL yxL

N
yxm         (28) 

      ,),(1),(
1
∑
=

=
N

i
ia yxa

N
yxm         (29) 

      ,),(1),(
1
∑
=

=
N

i
ib yxb

N
yxm         (30) 

where ),,( yxLm  ),( yxam  and ),( yxbm  are respectively the L, a and b 

components of the arithmetic mean of a pixel at (x , y) of these N images. 

 

 The background model of a pixel is obtained by 

      { }b
1

( , ) max ( , ) ,a
N

d x y E x y
−

= Δ         (31) 

where ),(b yxEaΔ  is the color difference at ),( yx , in Eq. (9) of Chapter2, of the 

background images.  
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3.2.2 Foreground Subject Extraction 

 

Foreground objects can be segmented from every frame of the video stream. 

Each pixel of the video frame is classified to either a background or a foreground 

pixel by the difference between the background model and a captured image frame. 

We utilize the maximum inter-frame color difference ),( yxd  of the training 

background model to segment the foreground pixel by 

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

>Δ

=

),(),(if,255
 

otherwise,0
,

yxdkyxE
yxB

i
ab

             (32) 

where  

 ( ) ( ) ( )2 2 2
( , ) ( , ) ( , ) ( , ) ,i i i i

abE x y L x y a x y b x yΔ = Δ + Δ + Δ         (33) 

and 

     ( , ) ( , ) ( , ) ,i i
LL x y L x y x yΔ = − m       (34) 

     ( , ) ( , ) ( , ) ,i i
aa x y a x y x yΔ = − m       (35) 

     ( , ) ( , ) ( , ) .i i
bb x y b x y x yΔ = − m       (36) 

Therefore, ( )yxB  ,  is the resulting binary image after segmentation. In the 

above equation, k is a threshold, determined by light sufficiency of the scene. The 

value of k is normally set to 2 for normal light condition, and k will be reduced for 

in-sufficient light condition and increased for sufficient lighting. 
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Chapter 4   Experimental Result 

 
In our experiment, we tested our system on videos taken by digital camera. We 

took the video in our laboratory at the 5th Engineering Building in NCTU campus. 

The camera has a frame rate of thirty frames per second and image resolution is 

320 240×  pixels. The experimental environment is shown in Fig. 4.1. 
 

 

Fig. 4.1.  The experimental environment. 
 

The background is not complex and we equipped a table in the scene. The light 

source is fluorescent lamps and is stable. The models clothing color are“pink,＂ 

“ yellow, ＂ “ light blue, ＂ “ ivory, ＂ and “ white. ＂ We test the foreground 

detection capability depending on the light color  clothing worn by action subjects, 

and the similarity of the colors of subject’s clothing and background. When the colors 

of clothing and background are similar, a moving object, such as human body, may 

not be segmented easily from image frame. We compare the detection result in the 

HSV and CIELAB space. Fig. 4.2 shows our models in the experiment.  
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Fig. 4.2.  Various images of our models. 

 

4.1  Background Model Construction  

  

 We built the background model in the HSV and CIELAB color space. The 

value of H or S or V is between 0 and 255. Figs. 4.3(a), 4.3(b), and 4.3(c) show the 

background image in the H, S, and V component, respectively. We can find from these 

three figures that the hue value is relatively unstable when the saturation is close to 

zero. We make an experiment to test the changes in the HSV components in 

constructing the background model. Fig. 4.4 represents the H, S, and V variations of 

two pixels at coordinates ( , )x y = (10, 10) and ( , )x y = (120, 160) during the first 300 

frames in the background video. From Fig. 4.4, we can see that V component is most 

stable of the background model. H and S components are less stable than V. Hence, 

we need to solve this problem.  
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         (a)                     (b)                   (c) 

 

Fig. 4.3.  Background images. (a) Background image in the H component, (b) 

Background image in the S component, and (c) Background image in the V 

component. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 

Fig. 4.4. H, S, and V variations versus frame index of background video from frame 

1 to frame 300. (a) H at (10, 10), (b) H at (120, 160), (c) S at (10, 10), (d) S at (10, 10), 

(e) V at (10, 10), and (f) V at (10, 10). 

 

In Sec. 3.1.2, we know that hue is unreliable when the color is close to the gray 

tones. Hence, we use three criteria ( , ,t t tV S H ) to obtain the hue value reliably in 

building the background model. In our experiment, we set three criteria by  
 

50,  50, and 25t t tV S H= = =  
 

to make hue value reliably. 

Fig. 4.5 shows the background image in the H color components after we use 

above criterion to redefine it. We can find that the hue values in the background image 

are almost be set to zero. The reason is that our background is simple and the color is 

similar to the gray tones. 
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Fig. 4.5.  Background image in the redefined H color components.  

 

 The background model in the CIELAB color space records the maximum color 

difference in every position of an inter-frame in 100 out of 300 background image 

frames. Fig. 4.6 shows the histogram of background training. 

  

 
 

Fig. 4.6.  The histogram of background model in the CIELAB color space. 
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4.2  Foreground Subjects Extraction 

 

4.2.1 Foreground Detection in HSV Color Space 

 

In segmenting the images, the V color component is usually stable and reliable, 

but it has two drawbacks: the V component is insensitive to the similar, especially 

lighting, color such as yellow, pink, and light blue. When the subjects wear the 

clothing with the color different from the background, we can do background 

subtraction well in the V color component.   

 In the first step, we use the frame ration in the V color component to get the 

binary image ( , )B x y in Eq. (24) described in Sec. 3.1.3. The value Vk  is chosen by 

experiments and varies with different trials. Hence, we ran a series of experiments to 

determine the optimal threshold .Vk  When the subject’s clothing color different from 

the background, Fig. 4.7 shows the binary image ( , )B x y  obtained by different 

.Vk s＇  When subject’s clothing color similar to the background, Fig. 4.8 shows the 

binary image ( , )B x y  obtained by different .Vk s＇  Comparing Figs. 4.7 and 4.8, we 

can find that if the color is different from the background, we can use the threshold 

value Vk  to get a good foreground subject extraction. But we cannot adjust Vk  to 

get a complete and noise-free foreground subject when the clothing color is similar to 

the background. After the experiment, we set 1.3Vk =  in the HSV color system. 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 

 
(f) 

 

Fig. 4.7.  An example of foreground extraction at different Vk  thresholds. 

(a) An image frame with subject’s clothing color different from the background, 

(b)− (f) foreground detected images, (b) 1.0Vk = , (c) 1.1Vk = , (d) 1.2Vk = , (e) 

1.3Vk = , and (f) 1.4Vk =  
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
(f) 
 

 

Fig. 4.8.  An example of foreground region extraction at different Vk  threshold. 

(a) An image frame with subject’s clothing color similar to the background, (b)− (f) 

foreground detected images, (b) 1.0Vk = , (c) 1.1Vk = , (d) 1.2Vk = , (e) 1.3Vk = , 

and (f) 1.4Vk = ,  

 

 During the foreground extraction, the shadowing effect introduces artifact 

foreground subjects and deteriorates the recognition result. We use the shadow mask, 

which including the shadow characteristic existing in HSV domains of Eq. (25) 

described in Sec. 3.1.4 to classify the pixels whether it is a shadow point or not. Fig. 
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4.9 shows the process result regarding shadow suppression. Figs. 4.9(a) and (b) are 

two input images. Figs. 4.9(c) and (d) are the foreground subject without shadow 

suppression. The foreground subject with shadow suppression is shown in Figs. 4.9(e) 

and (f), which improves greatly comparing with Figs. 4.9(c) and (d). 

 

 

(a) 
 

(b) 
 

 

(c) 
 

(d) 
 

 

(e) 

 

 

(f) 
 

 

Fig. 4.9.  The example of the shadow suppression. 
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The models wear light blue clothing, yellow clothing, and pink clothing, 

respectively. In the previous experiment, we cannot adjust Vk  to get a complete and 

clean foreground subject. Hence, we do the color compensation in Eq. (26) described 

in Sec. 3.1.3. In what follows, the effectiveness of color compensation in obtaining a 

more accurate foreground is described in Fig. 4.10.  

From the Figs. 4.10(a2)-(c2), we can find a trade-off between the foreground and 

the background detection by color compensation step to the whole image. Hence we 

cannot get a complete and noise-free foreground subject when the clothing color is 

similar to the background. 

From the Figs. 4.10(a3)-(c3), we have found that we can get good compensation 

when the clothing color is light blue and yellow, but cannot obtain good compensation 

when the clothing color is pink. The reason is that when pink color pixels are 

transformed from RGB color space to HSV color space, the saturation of pink is 

lower than the set criterion tS . Hence, we cannot recover those pixels from 

background to foreground for such small chromaticity difference in this space. 
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(a)          

 

 
(a1) 

 
(a2) 

 
(a3) 

 
 

 
(b) 

 

 
(b1) 

 
(b2) 

 

 
(b3) 
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(c) 
 

(c1) 
 

 

(c2) 
 

(c3) 
 

   

Fig. 4.10.  Foreground detection without and with color compensation. (a)− (c) is 

the input images, (a1)− (c1) the foreground images, without color compensation, 

(a2)− (c2) the foreground images detected with color compensation to the whole 

image. (a3)− (c3) the foreground images detected with color compensation to only 

foreground subject region. 

 

4.2.2 Foreground Detection in CIELAB Color Space 

 

We utilize the maximum inter-frame color difference ),( yxd  of the training 

background model to get the binary image ( , )B x y in Eq. (32) described in Sec. 3.2.3, 

and use the “foreground subject ground truths” to record the color difference of 

foreground pixel simultaneously. Fig. 4.11 shows the histogram of color difference of 

the foreground subject.  
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(a)       (b)                        (c) 

 

Fig. 4.11.  The histogram of color difference of the foreground subject. (a) the 

clothing color is light pink, (b) the clothing color is light yellow and (c) the clothing 

color is light blue. 

 

The value k is chosen by experiments and varies with different trials. Hence, we 

ran a series of experiments to determine the optimal threshold k. When subject’s 

clothing color different from the background, Fig. 4.12 shows the binary image 

( , )B x y  obtained by different k’s. When subject’s clothing color similar to the 

background, Fig. 4.13 shows the binary image ( , )B x y obtained by different k’s. 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 

 
(f) 

 

Fig. 4.12.  An example of foreground extraction at different k thresholds.(a) An 

image frame with subject’s clothing color different from the background, (b)− (f) 

foreground detected images, (b) k = 1, (c) k = 2, (d) k = 3, (e) k = 4, and (f) k = 5 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 

 
(f) 

      

Fig. 4.13.  An example of foreground extraction at different k thresholds.(a) An      

image frame with subject’s clothing color similar to the background, (b) − (f) 

foreground detected images, (b) k = 1, (c) k = 2, (d) k = 3, (e) k = 4, and (f) k = 5 

 

From Fig. 4.12 and Fig. 4.13, we can find that if the color is different from or 

similar to the background, we can use the threshold value k to get a good foreground 

subject extraction in the CIELAB space. In general condition, the suitable range of 

threshold value k is form 1.8 to 2.5. After the experiment, we set 5.2=k  in the 

CIELAB color system. 
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4.3  Comparing the Experimental Result 

 

The results of the foreground subject extraction in the HSV and CIELAB color 

spaces are showed in Fig. 4.14, the left column contains input images; the middle 

column contains the resulting foreground images detected in the HSV color space; 

and the right column is the resulting foreground images detected in the CIELAB color 

space. 

 

 

 

  

 

(a)                       (a1)                        (a2) 

 

 

 

        

(b)                       (b1)                        (b2) 

 

 

 

 

(c)                       (c1)                        (c2) 

 

 



 45

 

 

 

 

(d)                       (d1)                       (d2) 

 

 

 

 

(e)                        (e1)                      (e2) 

 

Fig. 4.14   The result of the foreground subject extraction in the HSV and CIELAB 

color space. (a)− (e) is the input images, (a1)− (e1) the foreground images detected in 

the HSV color space, (a2)− (e2) the foreground images detected in the CIELAB color 

space. 

 

We selected over 300 frames from the video sequence of the model with a 

subject wearing clothing similar to the background color. The “foreground subject 

ground truths” of these 300 frames were generated manually. Let A be a detected 

foreground subject region and B be the corresponding “ground truth.” Then we test 

the pixel accuracy by the following two metrics. Metric 1, accuracy 1rate , is a 

measure concerning whole segmented region pixels relative to these pixels in A the 

same with in B. To this end, we calculate the accuracy rate by 

 

1Accuracy rate  = 100%,s

total

N
N

×                   (37) 
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where totalN  is the pixel number of segmented foreground image, and sN  is the 

pixel number that the pixel in A is the same as that in B, i.e., such of true positive and 

false negative pixels of A relative to B. Metric 2, accuracy 2rate , is adopted from [21] 

by 

 

2Accuracy rate 100%.A B
A B
∩

= ×
∪

                (38) 

 

This measure counts the percentage of the mutual positive pixels to expanded 

positive pixels. We consider the accuracy rate of the foreground subject and the 

background in metric 1 and 2. Table I and III show the accuracy rate of the foreground 

subject and the background in metric 1 and 2 of over 300 frames, and the HSV (i) and 

(ii) is the accuracy rate of the foreground images detected with color compensation to 

the whole image and only foreground subject region, respectively. Table II and IV 

show the combination accuracy rate of the foreground subject combined with the 

background by linear interpolation, and demonstrate the improvement of the 

foreground subject extraction in the CIELAB color space over that in the HSV color 

Space. 
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TABLE I 

 

COMPARISON RESULT OF THE PIXEL ACCURACY RATES OVER 300 IMAGES IN METRIC 1 

 

Accuracy 1rate  (%)  
     HSV (i) HSV (ii) CIELAB 

 Foreground Background Foreground Background Foreground Background

Pink 58.91 98.86 62.39 99.42 90.55 98.72 

Yellow 82.72 96.32 82.06 99.26 90.67 98.64 

Light 
Blue 

78.78 95.06 89.82 99.58 92.96 98.67 

White 67.33 98.03 71.68 98.91 83.24 99.15 

Ivory 58.42 98.31 64.21 99.13 77.55 99.35 

 

TABLE II 

 

THE COMBINATION ACCURACY RATES IN METRIC 1 

 

Combination Accuracy 1rate  (%)  

HSV (i) HSV (ii) CIELAB 

Pink 60.24 64.46 91.02 

Yellow 83.5 83.02 91.44 

Light Blue 81.41 90.1 93.24 

White 69.53 73.72 84.47 

Ivory 60.14 66.82 79.21 

Average 70.96 75.62 87.88 
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TABLE III 

 

COMPARISON RESULT OF THE PIXEL ACCURACY RATES OVER 300 IMAGES IN METRIC 2 

 

Accuracy 2rate  (%)  
     HSV (i) HSV (ii) CIELAB 

 Foreground Background Foreground Background Foreground Background

Pink 48.47 96.42 56.69 97.22 86.41 98.37 

Yellow 52.27 95.32 73.09 98.22 85.41 98.15 

Light 
Blue 

42.59 93.96 83.14 99.02 87.73 98.35 

White 51.32 96.77 63.03 96.69 75.11 97.78 

Ivory 49.17 96.01 57.89 96.35 71.67 97.56 

 

TABLE IV 

 
THE COMBINATION ACCURACY RATES IN METRIC 2 

 

Combination Accuracy 2rate  (%)  

HSV (i) HSV (ii) CIELAB 

Pink 51.17 58.97 87.62 

Yellow 54.68 74.49 86.12 

Light Blue 45.26 83.96 88.28 

White 53.02 65.54 76.82 

Ivory 41.45 60.76 73.64 

Average 49.12 68.74 82.5 
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Chapter 5   Conclusion 

 
 In this thesis, we have proposed the foreground subject extraction in the 

CIELAB color space. Embedded in CIELAB space, our method exploits color 

difference formula to raise the sensitivity of color detection. In the CIELAB color 

space, we still can utilize not only the luminance component but also the chromatic 

component existent in the background image. In this way, we can reliably extract the 

foreground subject, even when the foreground chrominance is similar to that of the 

background. Experimental results have shown of the foreground subject extraction is 

better in the CIELAB color space than HSV Color space.  

 

In the future study, we can apply our method to human activity recognition 

system. The recognition rate can be raised owing to better segmentation capability. In 

addition, utilization other color difference formulae, detection by a camera moving at 

a fixed velocity, extensions of various test environments, and more complicated 

surrounding are our future work.    
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