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ABSTFLKT 

We show that an n x n complex matrix T is the product of two unipotent 

matrices of index 2 if and only if T is similar to a matrix of the form D@ De’8 
(I + N)@( - I + 1;: ,@J,), where 0 and f 1 are not eigenvalues of D, N is nilpotent, 

and each j, is a nilpotent Jordan block of even size. On the other hand, T is the 

product of finitely many unipotent matrices of index 2 if and only if det T = 1. In this 
case, the minimal number of required unipotents is 1 if n = 1, 3 if n = 2, and 4 if 
n > 3. 

1. INTRODUCTION 

An n X n complex matrix U is unipotent if U = I + N, where I is the 
identity matrix and N is nilpotent. It is unipotent of index m if N”’ = 0 and 
N”‘- ’ z 0. Fong and Sourour [4] initiated the study of the factorization of 
complex matrices into unipotent ones. They showed that every complex 
matrix T with determinant 1 is the product of three unipotents. Using the 
factorization theorem in [ll], we can easily show that T is the product of two 
unipotents if and only if either T is the identity matrix or T is nonscalar with 
determinant I. 

In this paper, we restrict ourselves to unipotent matrices with index 2 
and consider the problems of characterizing matrices which are expressible 
as products of two or more such matrices. We start in Section 2 by studying 
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products of two unipotent matrices of index 2. We are able to completely 

characterize this class (Theorem 2.7). Specifically, we show that a complex 

matrix T is the product of two unipotent matrices of index 2 if and only if 

T is similar to a matrix of the form D@D-‘@(Z+ N)@(- Z+CyLi@J,), 

where 0 and _t 1 are not eigenvalues of D, N is nilpotent, and each J, is a 

nilpotent Jordan block of even size. 

In Section 3, we consider the problem of expressing matrices as products 

of three or more unipotents of index 2. We show that every complex matrix 

with determinant I is the product of four unipotent matrices of index 2 

(Theorem 3.5) and proceed to determine whether fewer of them will do. 

Depending on the size of the matrices considered, the minimal such number 

can be completely determined. This is achieved through an examination on 

matrices which are expressible as products of three unipotents of index 2. 

Although we haven’t been able to give a complete characterization of such 

matrices, we do obtain some necessary or sufficient conditions. In particular, 

we show that if the tr X n matrix T is the product of three unipotents of 

index 2, then the geometric multiplicity of any eigenvalue, other than + 1, of 

T is at most three-fourths of n (Theorem 3.1). 
We conclude this introduction by bringing attention to the close resem- 

blance between the theory of products of unipotent matrices of index 2 and 

that of products of involutions (cf. Corollary 2.8, and [l], [2], [3], [5], [8], [9], 

and [13]). These multiplicative theories are also parallel to the additive ones 

of sums of idempotent and square-zero matrices (cf. [6], [7], [I2], and [Id]). 

For the rest of the paper, all unipotent matrices are assumed to be of 

index 2. 

2. TWO UNIPOTENTS 

For a matrix T, a(T) denotes the set of its eigenvalues. We start with the 

following 

LEMMA 2.1. Let T = T,@T, be an inz;ertible matrix with a(T,>n a(Tl’) 

= 0. Then T is the product of two unipotents if and only $ both T, and T, 

are. 

Proof. We need only prove the necessity part. Assume that T = 

(I + SXZ + R), where 
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are square-zero matrices, that is, S” = R’ = 0. A little computation yields that 

sg + s,s, = 0, Ry + R, R, = 0, 

s,s, + s,s, = 0, R,R, + R,R, = 0, 

s,s, + s,s, = 0, R,R, + R,R:, = 0, 

s,s, + sg = 0, R,R, + Rf = 0 

and 

(z+S,)(z+R,)+S,R=T,, 

(I+~,)R,+s,(I+ R,) =o, 

s,(I + R,) +(I + s,)R, = O, 

S,R,+(I+S,)(I+R,)=T,. 

Hence 

S,T, = S,S,R, + S,( I + S,)( I + R4) 

=-SfR,+(S,-S,S,)(I+R,) 

=-S;R,+(I-S#,(I+R,) 

= - SfR, -(I- Sf)R, 

=-R,. 

Similarly, we have T,R, = - S,, S,T, = - R,, and T,R, = - S,. Therefore, 
S,T, = T[ ‘S, or T,S, = Ti’S,. Thus a(T,)n a(T, ‘) = 0 implies that S, = 0 
(cf. [lo]). By symmetry, R, = 0. So T, = (I + S,)(I + R,) is the product of 
two unipotents. The same holds for Tg. n 

The next lemma gives a necessary condition for products of two unipo- 
tents. 

LEMMA 2.2. If T is the product of two unipotents, then T is similar to 
T-l. 
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Proof. Since T is similar to T,@T,, where 1 E a(T,) and a(T,)= (11, 
Lemma 2.1 implies that T, is a product of two unipotents. Say T, = 
(I + S)(z + R), where S” = R2 = 0. Then Tie1 = (I - RXZ - S), and therefore 
(T, - Z)(T,’ - I) = 2Z- T, - T;’ = - SR - RS = (S - R)‘. The invertibility 
of T, - Z implies that of S - R. Now, since 

(s-R)T,=(S-R)(z+S+R+SR) 

=S+SR-R-RS-RSR 

=(I-S-R+RS)(S-R) 

= T,‘(S - R), 

the similarity of T, and T,’ follows. That T2 is similar to TF’ is a 
consequence of [3, Lemma I], and thus the same holds for T. n 

Note that the converse of Lemma 2.2 is not true in general. In fact, it is 
known that if a(T) = (- l} then T is similar to T-’ (cf. [3, Lemma l]), but 
not every such T is the product of two unipotents, as the following lemma 
shows. Recall that Jk denotes the nilpotent Jordan block of size k: 

Jk = 

0 1 
0 . . 

. 1 

0 

LEMMA 2.3. IfT=(-Z+J,)~C:‘l=,~(-Z+J,,), wherekisodd, then 

T is not the product of two unipotents. 

Proof. Suppose that T is a product of two unipotents: T = (I + S)(Z + R). 
We obtain, as in the proof of Lemma 2.1 with T, = - Z + Jk and T, = Eyzl@ 

(-- I + Jk,), that 

and 

S,S, = - &T,R, = R,R,, 

S,S,T, = - S,R, = T,R,R, = T,S,S, 

R&J3 = R,R,R, = - R,R,R, = R,R,R, = S,S,R,. 

We consider two cases separately. 
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Case 1. S,S, is invertible. From the equations in the proof of Lemma 
2.1 and the above ones, we obtain 

0=S,[S3(I+RJ+(z+S‘$)R3] 

= s,s,( I + R,) + (s, - S,S,) R, 

=(z+R,)S,S,+(I-S,)S,R, 

=(I+R,)S,S,-(I-S,)T,S2S,. 

Therefore, 

I+R,=(I-S,)T,. (1) 

Similarly, we have 

I$_S,=T,(I-R,). (2) 

If k = 1, then T, = - 1. Adding (1) and (2) yields the ludicrous 2 = -2. Thus 
in the following we may assume that k > 1. Let I - S, be the k X k matrix 
[xi,]. Then (1) and (2) imply that 

Carrying out the above multiplication and comparing the entries in the lower 
triangular parts of the resulting matrices on both sides yields that xzl = 4, 
X3i = . . . = Xkl - - 0, xs2 = . . . = xkl = 0, xqa = 4, xs3 = . . . = xk3 = 0, and 
so on. In particular, we obtain 

4 if j is even, 
xjj-r = 

0 if j is odd 

for 2 < j < k. But comparing the (k, k) entries, we have 2- rkk = -2- Xkk 
+ xkk_r, which implies that Xkk_r = 4, This yields a contradiction, since k is 

odd. 
Case 2. S,S, is noninvertible. If k = 1, then S,S, = R,R, = 0. From 

SF + S,S, = 0 and RF + R,R, = 0, we deduce that S, = R, = 0. Also, S,R, 

= - S2S,T, = 0. Therefore, from (I + S,)(I + R,)+ S,R, = T,, we obtain 
I = - 1, which is ridiculous. Hence for the rest of the proof we may assume 
that k > 1. Since, as verified before, S,S, commutes with ]k = Z + T,, we 
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have S,S, = Cb-’ J=oajJl for some complex numbers a,, . . . , uk_ 1. The nonin- 
vertibility of S,S, forces a, = 0. Hence 

det( T, - S,R,) = det{ T,( Z + S,S,)} 

k-1 

=det -Z+(l-a,)Jk+ c (u~_,-u.~)JL 
j=Z 

since k is odd. On the other hand, by the identities Sf = - S,S, and 
RT = - R,R, = - S,S,, S, and R, are nilpotent. Therefore, det(Z + S,) = 
det(2 + R,) = 1. It follows from (I + S,)(Z + R,)+ S,R, = T, that 1 = 
det(Z + S,)det(Z + R,) = det(T, - S,R,) = - 1, which is impossible. This 
completes the proof. w 

To prove the sufficiency condition of our main theorem (Theorem 2.7 
below), we need the following lemma from [4, Lemma 31. 

LEMMA 2.4. Zf T and Z + T are invertible, then T @T-’ is the product of 

two unipotents. 

The next two lemmas dig out the matrices T with a(T) = { k 1) which 
are expressible as products of two unipotents. 

LEMMA 2.5. Any matrix T with u(T) = (1) is the product of two unipo- 

tents. 

Proof. It suffices to show that for each integer k 2 2, Z + Jk is the 
product of two unipotents. Let 

I‘ 
I 

m 

if k=2m+l 
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and 

if k=2, 

if k=2m>4, 

It is easily seen that M and N are unipotent, and 

MN= 

if k=2m+l. 

if k=2, 

if ka.3. 

In either case, MN is similar to I+ Jk. Hence I+ Jk is the product of two 
unipotents. 

LEMMA 2.6. 

Proof. Let 

n 

- I + Jk is the product of two unipotents for any ezjen k. 

M=[Ii i] and N=[Iy :I, 

and let M, and N3 be the k X k matrices 
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respectively. It is easily seen that Mi = Nt = 0 and 

(z+%)(z+%) 

1 
(z+M)(z+N) M+N+zMN * 

= I 0 

-1 1 6 -11 
-1 8 - 14 

-1 1 
-1 

= 

0 

0 1 
0 8 

0 1 
0 8 

=--I+ 

0 

M+N+SMN 
(Z+M)(Z+N) 

Since this latter matrix is similar to - Z + Jk, our assertion follows. w 

Combining the above lemmas, we obtain 

THEOREM 2.7. A matrix T is the product of two unipotents if and only if 

T is similar to o~o-‘~(Z+N)~(-Z+C~“=,~J,,), where 0, +lPa(D), 
N is nilpotent, and ki is even for each i. 

Proof. The sufficiency follows from Lemmas 2.4, 2.5, and 2.6. To prove 
the necessity, note that T is similar to T,@T,@T3, where f 1 @ a(T,), 

a(T,) = (l}, and a(T,) ={ - l}. L emmas 2.1 and 2.3 imply that T, is the 
product of two unipotents and Z’s is similar to - Z + Cyzl@Jki, where ki is 
even for each i. Thus T, is similar to T;’ by Lemma 2.2. Since T, is similar 
to ~~@D,,where a(D,)c{z:Izl<lor ~z~=landImz>Oland a(D,)r 
(z: 1.~1 > 1 or IzJ = 1 and Im .z < O}, the similarity of T, and T;’ implies the 
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existence of an invertible matrix 

such that 

Then D,U,=U,D;’ and o(D,>na(D,‘>= 0 imply that U,=O (cf. [lOI>. 
Similarly, U, = 0. Hence both U, and U, are invertible, and thus D, is 
similar to 0; ‘, as desired. n 

Recall that a matrix T is an inuoktion if T” = I. 

COROLLARY 2.8. Zf the matrix T is such that T und I + T are insertible, 
then the following statements are eyuicalent : 

(1) T is the product of two unipotents; 
(2) T is the product of two involutions; 
(3) T is similar to T _ ‘; 

(4) there exists an involution V such that TV = \‘T-‘; 
(5) T is similar to D@ D- I CB (I + N >, where D is inoertible and N is 

nilpotent. 

Proof. This is an easy consequence of [3, Theorem 11, [l, Theorem 21, 
and Theorem 2.7. n 

3. THREE OR MORE UNIPOTENTS 

In this section, we consider the problem of expressing matrices as 
products of three or more unipotents. We start with the following necessary 
condition for products of three unipotents. 

THEOREM 3.1. If the n X n matrix T is a product of three unipotents, 
then dim ker(T - (YZ) < an for any (Y E C, a2 # 1. 

Proof. Let T =(Z+ T,)(Z+ T,XZ+ T,), where Tj2 =O for j = 1,2,3. 
Note that dim ker Tj > in for all j. Indeed, if dimker T, < $n, then ran Tj c 
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ker T, implies that rank Tj < in, whence n = dim ker Tj + rank Tj < irz + in = 
n, which is impossible. 

Let K = ker(T - cul) f~ ker T3 and m = dim ker(T - cul). Then dim K = 
dimker(T-cuZ) +dimkerT, - dim[ker(T - LyZ) + ker T3] > m + in - n = 

m-in. Since K is invariant for both T and (I + T3)-l, it is invariant 
for (I + T,XZ + T,). Moreover, (I + T,XZ + T,)jK = T(Z + T$‘IK = (YZ~ 

(I, denotes the identity matrix on K). Hence K c ker[(Z + T,)(Z + Tz)- LYZ], 

which implies that dim ker[(Z + T,)(Z + T2) - cull > dim K > m - $a. By 

Lemma 2.2, (I + T,)(Z + Tz) is similar to (I + T,)-‘(I + T,)-‘, whence we 
also have dimker[(Z + T,XZ + Tz)- cu-‘I] > m -in. 

Let L = ker(T - cwZ)nker[(Z + T,)(Z + Tz)- a-‘Z]. We repeat the above 
arguments: 

dimLadimker(T--aZ)+dimker[(Z+Tr)(Z+T,)-a-’I]-n 

>m+(m-in)-n 

=2m-in. (*> 

Since L is invariant for both T and [(I + T,XZ + T,)]-‘, it is invariant for 
I + T,. Moreover, (I + T,)IL = [(I + T,)(Z + T,)]-‘TIZ, = a”Z,. Thus L c 
ker[(l - (Y’)Z + T3]. However, since Tt = 0, (1 - a”)Z + T3 is invertible for 
any (Y E C, a2 # 1. Therefore dim L = 0. From (*), we infer that m < $a, as 
asserted. n 

Next we consider sufficient conditions for products of three unipotents. 
Our main tool is the following lemma. 

LEMMA 3.2. Zf T is an n X n invertible cyclic matrix and (Ye, , LX, are 

complex numbers satisfying a1 . . ’ CY,, = det T, then there exist matrices A and 

B such that T = AB, (A - Z)2 = 0, and B is cyclic with a(B) = (al,. . . , a,}. 

Proof. Since T is similar to a companion matrix of the form 
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we need only prove our assertion for C. For j = 1,. . , n - 1, let bj be the 
coefficient of xj in the expansion of (X - a,) . . . (x - an). Let 

1 1 and R = 

0 % 

1 0 -h, 

[noting that a, = (- l)“+ ’ det T # 01. It is easily seen that C = AB, (A - I)” 
= 0, and B is cyclic with characteristic polynomial (x - or). . .(x - a,>. 
Hence o(B) = {LX,, . . . , a,,}. n 

PROPOSITION 3.3. Let T be u matrix with det T = 1. If T = T,@ . . . @T,,, 
where each Tj is cyclic with size at least 2, then T is the product of three 

unipotents. 

Proof. Let dj=detl), j=l,..., m, and fix a nonzero number c. By 
Lemma 3.2, for each j there exist matrices A. and Bj such that q = AjBj, 
(Aj - I)‘=O, and a(Bj)={c(nJ’~~di)-‘, c-‘(rIj=,d,), l,...,l}. If A = A, 
@ . . . @A,,, and B = B,@ . . . @B,,,, then T = AB, (A - I>2 = 0, and a(B) = 

{I?,,. .., b, ,,,, 1,. .., I), where the bj’s satisfy b,:’ = b.)+,, for j = I ,..., m. 

Choose c such that the b,‘s are all distinct and different from + 1. By 
Theorem 2.7, B is the product of two unipotents, whence T is the product of 
three unipotents. n 

COROLLARY 3.4. If T is such that det T = 1, - 1 e a(T), and dimker 
(T - cul) < 2 for any (Y # 1, then T is the product of three unipotents. 

Proof. Using Proposition 3.3 and the rational form for matrices, we are 
reduced to considering T in the following form: 

T, 0 
[ 1 0 a’ 

where a f 0, + 1, and T, is cyclic with size at least 2 and characteristic 
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polynomial p, satisfying p,(a) = 0. Let A and B be such that T, = AB, 
(A - 1)’ = 0, and B is cyclic with c+(B) = (a-‘, 1,. . . , 1). Then B is similar to 

a -1 0 
0 I Z+N ’ 

where N is nilpotent. Hence 

This latter matrix is the product of two unipotents by Theorem 2.7. This 
proves our assertion for T. n 

We conclude this paper with the following theorem, which says that 
matrices with determinant 1 can always be written as the product of four 
unipotents. 

THEOREM 3.5. An n X n matrix T is the product of finitely many unipo- 
tents zy and only af det T = 1. In this case, the minimal number of required 
unipotents is 1 if n = 1, 3 if n = 2, and 4 if n 2 3. 

Proof. If det T = 1, we want to show that T is the product of four 
unipotents. We consider the following two cases separately: 

Case 1. T is nonscalar. By [ll, Theorem 11, there exist matrices A and 
B such that T = AB and both a(A) and a(B) are of the form 
{~li,cz~~,..., (Y~,(Y,‘) or (l,cu,,(v,‘,..., (Y~,(Y,‘] according as n is even or 
odd, where the q’s are chosen such that all the elements in a(A) and a(B) 
are distinct. Since both A and B are products of two unipotents by Theorem 
2.7, T is the product of four unipotents. 

Case 2. T = aZ, fw som.e (Y with CY” = 1. If n is odd, write T = AB, 
where A and B are diagonal matrices with diagonals {(u, a-l, (~~,a-~,.. ., 
(p-2 ,cY-(~-~),~) and {~,(Y~,(Y-~,...,(Y"-~,(Y -("- '3, respectively. Note that 
crj z - 1 for any j. Hence Theorem 2.7 implies that both A and B are 
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products of two unipotents. Similarly, if n is even, write T = AB, where 
A = diag(a-‘cu, acry-‘, a-‘a3, a(~-~,. . . , CZ-~CI”-~, ~a-(“-‘)), B = 
diag(a, a-‘(y’, u(y-‘, . . . , u-1~“-2, u(y-(“-‘), a-‘) and a is any real number 

bigger than 1. Note that (a-‘&( = 6’ implies that u-‘cyj # - 1 for any j. 

Our assertion follows from Theorem 2.7. 

If rr 2 3, then T = al,,, where a” = 1 and CY z k 1, cannot be written as a 
product of three unipotents by Theorem 3.1. For n = 2, the assertion on the 
minimal number is a consequence of [4, Theorem 21. n 
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