| Proteins Amino acids C 102–126 | | Functions | Comments Cytoplasmic | | |--------------------------------|---------------------------|--|---|--| | | | Nucleoprotein. Forms the capsid | | | | PrM | 166–183
(Glycoprotein) | Stabilizes E protein at acidic pH in
the immature intracellular virion | Precursor of M. Forms heterodimers with
E protein in the immature virion.
N-glycosylation on one site | | | M | 75 | Membrane protein | Present on the mature extracellular virion | | | E | 495
(Glycoprotein) | Binding to a cell receptor, fusion on
the mature viron, induction of neutralizing
antibodies | Dimeric envelope protein. N-glycosylation on one site | | | NS1 | 352
(Glycoprotein) | Functions in the viral RNA replication.
Other functions (extracellular form)? | Forms intracellular dimers and extracellular
hexamers. N-glycosylation on two sites | | | NS2A | 348–354 | Role in the cleavage of NS1-NS2A? | Hydrophobic protein | | | NS2B ∫ | 340–334 | Cofactor in NS3 protease activity | Hydrophobic protein | | | NS3 | 618-623 | Protease, helicase, NTPase | Cytoplasmic protein | | | NS4A] | 395–405 | RNA replication | Hydrophobic protein | | | NS4B∫ | 385 -4 05 | RNA replication | Hydrophobic protein | | | NS5 | 900-905 | Polymerase, methyltransferase | Cytoplasmic protein | | ## 表一 Biological characteristics of flavivirus proteins. | Site | | Lys-head | Arg-head | | |------|---------|------------------|--------------------|-----------------| | | Residue | Binding pocket | Residue | Binding pocket | | P5 | Cys16 | R157 | Cys43 | R157 | | P4 | Asp17 | No Contacts | Ile44 | G153, V155 | | P3 | Cys19 | No Contacts | Cys45 | G153, V155 | | P2 | Thr19 | H51, N152 | Thr46 | H51, G151, N152 | | P1 | Lys20 | L115, S131, P132 | Arg47 | S131, P132, | | | 2 | G133, S135, Y150 | o . | G133, T134, | | | | G151, S163 | | S135, G151 | | | | | Arg47 _A | L115, Y150 | | | | | 8 4 | N152, A160 | | | | | | S163, I165 | | | | | Arg47 _B | S127, L128, | | | | | - L | D129, A160 | | P1′ | Ser21 | 136, H51, S135 | Ser48 | 136, H51, V52, | | | | V52 | | P132, G133, | | | | | | S135 | | P2' | Ile22 | S34, Q35, I36, | Met49 | S34, Q35, I36 | | | | P132, G133 | | P132, G133 | | P3′ | Pro23 | S34, Q35 | Pro50 | S34 | | P4' | Pro24 | No contacts | Gly51 | No contacts | | P5' | Glu25 | H51 | Lys52 | H51 | 表二 Residues in protease molecules that make interactions with MbBBI. (Murthy, 2000) | - Jan - | | Procedure | Goal | Alternatives | Pitfalls | |--|---|---------------------------------|---|--|--| | 23 | 1 | Receptor
modeling | Correct receptor pocket model(s). | Sources: X-ray, NMR, or
homology modeling.
Apo-form or liganded-form.
Alternative conformations
predicted by simulations. | Receptor model does not
reflect the induced fit.
Alternative conformations
are missed. | | 0.50 | 2 | Library
generation | Sufficiently
large and diverse
set of relevant
compounds. | In-house collection, HTS hits,
commercially available
compounds, virtual libraries
computed from accessible
scaffolds and sidechains. | The library is too restricted, molecules are not chemically feasible or not drug-like. | | | 3 | Flexible
docking | Correct
prediction of the
binding
geometry. | MC or GA, stochastic global
optimization with gradient
minimization, incremental
construction, grid or explicit
receptor representations, etc. | Inaccurate energy function,
poor optimization algorithm.
Wrong receptor
model, inadequate ligand
flexibility. | | N 6000
N 6000 | 4 | Ligand
scoring | Maximal
separation
between binders
and non-binders. | Weighted interaction terms,
statistical potentials,
combination of binding score
with QSAR if binders are
known. | Poorly predicted binding geometries, score over-
training to a particular case/family, large number of false positives. | | R_1 R_2 R_3 | 5 | Hit list
post-
processing | The best task for
the chemist,
screener or
compound
vendor. | Clustering, diversity, selection
of scaffolds and/or side-
chains for a small
combinatorial library or
parallel synthesis. | Domination of one
chemical family, lack of
chemical availability, or
ADME-tox and patent
considerations. | | | | | | | Current Opinion in Chemical Biology | 表三 Flow chart of flexible docking and VLS procedure.