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Abstract

With the progress of the MEMS technology, the application of micro-gyroscopes
becomes more and more extensive. Examples can be found in automobile navigation
and safety control, game hosts, mobile phones, etc.. However, fabrication errors and
operation wearout will cause difference in component characteristics between the
expected value and the actual value in real devices. The objective of this research is
focused on the design of a controller which can maintain certain system performance
in the presence of the system characteristic parameter variation.

The gyroscope is a multi-input multi-output (MIMO) system with possible
variations in system characteristics. Therefore, the common PID controller design
method can not be used in controller design. to‘meet the specification. A robust
controller which can be used-to"control-a MIMO' system and endure parameter
variation is required. In this thesis, the.pole‘placement method is applied to design a
PID controller without considering the isystem variation. Then the H,, theory and
quantitative feedback theory (QFT) are applied to design the controller. The
performance and the robustness of the controllers are compared.

After determining the characteristic matrix P of the plant and the weighting
functions, the controller is calculated by MATLAB. When the natural frequency and
the damping coefficient both have variation of 10%, the variation of the system
response is 5.6% in QFT/H,, controller and 24% in PID controller. Therefore, the
QFT/H, control method has better robustness. Compared with conventional H.

controller, the QFT/H., control loop uses output feedback and is easier to realize.
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Chapter 1 Introduction

Gyroscopes are used to measure the angular rate in vehicle navigation, guidance,
rollover stability, and in aerospace applications such as aircrafts and satellites.
Therefore, the accuracy and precision of gyroscopes have been the targets of intensive
studies. Gyroscopes have been developed for a long time, but traditional gyroscopes
are too big and expensive. Therefore, MEMS gyroscopes are becoming more popular
in electronic and consumer market.

Micro Electro-Mechanical Systems (MEMS) have the advantages of small
dimensions, mass production, and integration with electronic circuits. It has been used
in various sensing applications, such, as..pressure sensors, temperature Sensors,
radiation sensors, and inertial sensors suchias.accelerometers and gyroscopes. Another
advantage is that MEMS devices can be fabricated with electric circuits on a single
chip. Therefore, low cost and high performanee system can be achieved.

For MEMS gyroscopes, accuracy,: stability, and robustness are important
performance characteristics. Fabrication deviations and operation wear-out are typical
reasons for the variation and non-ideality of system characteristics variation and
quadrature error. Post-fabrication trimming can be used to adjust the device
parameters with high cost [1]. In order to maintain wide fabrication process windows
and long-term stability, MEMS gyroscopes can also be operated with an active
feedback control to compensate for these deviations. Complex control algorithms
such as adaptive control [2, 3], H., control [4], automatic gain control [5, 6] and active
disturbance rejection control [5] have been reported in the literature. However,
complex systems are not necessarily the best solutions for commercialization. In this

thesis, the QFT/H,, control method will be studied. The performance of various



control systems will be compared when the system characteristic parameters have

variation.

1.1 Gyroscope

The development of the gyroscope can be traced back to 1852 when the French
experimental physicist Leon Foucault used an equipment called “gyroscope” to study
the rotation of earth. Since then, gyroscopes have been used for measuring angular
rate in many navigation, homing, and stabilization applications. Many different
gyroscopes have been developed.

The gyroscope is a two degrees of freedom (2-DOF) mass-spring-damper system.
When there is an angular rate acting on_the gyroscope, the sense axis of the gyroscope
is affected by the Coriolis force: The force.is. proportional to the angular rate and
measured as the output of the gyroscope. Although conventional rotating wheel
gyroscopes have dominated high-precision-applications, they are large and most often
too expensive to be used in many applications [3]. On the other hand, sensitivity,
reliability and the miniaturization of mass producible gyroscopes are more and more

important for consumer applications.

1.1.1 MEM S gyroscope

A MEMS gyroscope is an angular rate sensor whose size is much smaller than
most mechanical gyroscopes. In batch fabrication, hundreds of MEMS gyroscopes
can be produced in a wafer. Fig. 1.1 shows an example of a bulk-micromachined
gyroscope [6]. Compared with mechanical gyroscopes, MEMS gyroscopes are much

smaller and inexpensive.



Fig. 1.1 A prototype bulk-micromachined gyroscope, diced and released [6]

The reported micromachined gyroscopes almost all use vibrating mechanical
elements to sense the angular rate. Because the silicon material has fine mechanical
characteristics, the MEMS vibrgto& gyroscopes are almost all fabricated in silicon
substrates. The main advantage "of se}niéﬁﬁducfofi silicon fabrication process is
matured technology that is suitabie for;rrfrliamductirbn. The other MEMS fabrication
process, like LIGA [7], LIGA-like '[8]', and SOIrv’véfer fabrication process [9] are also
applied to gyroscope fabrication. Various types of MEMS gyroscopes are reviewed in

the following.

1.1.2 Vibrating beam gyroscope

A simple vibrating beam gyroscope is shown in Fig. 1.2 [10]. There is a
rectangle ditch which is chromium-plated at the bottom of the glass substrate as a
sense electrode of the x-axis under the vibrating beam. A piezoelectric vibrator drives
the beam in the y-axis. In the presence of a z-axis rotation, the x-axis will vibrate due
to the Coriolis force. This structure uses capacitance change to calculate the angular

rate.
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Fig. 1.2 Vibrating beam gyroscope [10]

1.1.3 Tuning fork gyroscope

Tuning fork gyroscopes [11, 12] have been used for many years. A micro
machined tuning fork gyroscope is shown in Fig. 1.3. The principle of the tuning fork
gyroscope is similar to the principle of the vibrating beam gyroscope. There is no net
torque at the junction and stable goh‘d'i-fi‘or}s can 'bg obtained for the balanced system
with two bars oscillating opposij;e_ly. It lé’ﬂsit_qjﬁiﬁw 'P:hlergy loss and high Q factor.

The tuning fork is drivé__ﬁ by ' t_@@g/balsance electrodes with a phase
difference of 180°. When there Ji:s-arir-‘;mglJIa-rrraté"’in vertical direction, the Coriolis
force causes torsion of the tuning f(;rk. Tﬁé torsion can be sensed by the sense

electrodes and the angular rate can be derived.

Tuning/Balance
Electrodes

Crive Electrode

Sense Electrodes

Fig. 1.3 Tuning fork MEMS gyroscope [11]
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1.1.4 Vibrating ring gyroscope

A vibrating ring gyroscope is shown in Fig. 1.4 [12]. A sustaining cylinder
suspends the ring structure in the center of the device. The ring structure can be
electrostatically actuated and capacitively sensed by the surrounding electrodes. The
ring is connected to the center axis by eight semicircular springs. When the ring
structure is actuated by applying a voltage to the driving electrodes, the Coriolis force
will cause the ring to vibrate in the direction of 45° from the driving axis. The angular

rate is derived from the capacitance sensing electrodes.

Drive and control
electrodes T Supportsprings

i)

Sense vibrating
mode ‘f-‘

A5

=

: Drive_v:ibrating
| mode

|
- Sense and control
electrodes

Fig. 1.4 Vibrating ring gyroscope [12]

1.1.5 Frame gyroscope

Fig. 1.5 shows the inside drive outside sense (IDOS) and inside sense outside
drive (ISOD) frame gyroscopes, respectively [13]. In both devices, there is an inner
mass connected via mechanical springs to the outer frame that is anchored to the
substrate via another set of springs. The design of the springs is such that the two
masses are compliant in two orthogonal directions, namely the drive (x-axis) and

sense (y-axis) directions. Since the drive resonant motion is typically much larger than



the sense motion, the lateral comb finger drive is used for driving the structures while
parallel-plate sense combs are used to sense the Coriolis force.

For the Type A device, the inner mass (drive mass) is driven into resonance by
applying sinusoidal voltages to the lateral combs using an on-chip closed-loop drive
circuitry. In the presence of z-axis rotation rate, Coriolis force acts along y-axis on the
oscillating drive mass. The change in capacitance arising from this sense motion
yields an output proportional to the input rotation rate.

For the Type B device, the driving force is applied to the outer frame (drive mass)
which causes both the mass to oscillate along the drive axis. In response to a z-axis
angular rate, Coriolis force acts on both masses. However, only the sense mass

responds to Coriolis force due to stiff drive springs along the sense axis.

(- ——

Drive spring .
o <, sense spring

A ] Sense mass

Sense spring Lateral comb drive Drive motion
o AR e r—— |
Y

A/Sezemotion _l_

Drive spring Drive mass Sense mass

Sense motion

Drive motion

Anchor

I | Drlve mass [_
" Eﬂl'\ Parallel plate sense combs
TypeA Parallel plate sense TypeB

Fig. 1.5 Frame gyroscope [13]

1.2 Gyroscope control
Various control methods have been applied to control MEMS gyroscopes. In this
section, some common MEMS gyroscope control methods are reviewed.

1.2.1 Adaptive control

Adaptive control is a useful method for the operation of MEMS z-axis

6



gyroscopes [2, 3]. The proposed control scheme estimates the component of the
angular rate orthogonal to the plane of oscillation of the gyroscope. The control loop
is composed of a band-pass filter, a parameter adaptation algorithm and a modulation,
as shown in Fig. 1.6 [14]. The parameter adaptation algorithm (PAA) block in Fig. 1.6
estimates the angular rate, identifies and compensates the quadrature error, and may
permit on-line automatic mode tuning. Its goal is to achieve compensation of
fabrication imperfections, closed-loop estimation of the angular rate, to attain a large

bandwidth and dynamic range, and self-calibration operation.

2

[

xy

Fig. 1.6 Block diagram of the adaptive add-on control [14]

1.2.2 H, control

Since the MEMS gyroscope is operated at its resonant frequency, its high quality
factor limits its bandwidth under an open loop condition. To improve the bandwidth
of the gyroscope, an H., controller was proposed and developed in [4]. The analysis
and test results showed that the proposed controller enlarged the bandwidth and
enhanced the linearity. It was also shown that the H. controller was more robust
compared with traditional control methods such as the PID controller.

In order to design the H,, controller, the plant model in Fig. 1.7 (a) should be
transformed into a two-port system illustrated in Fig. 1.7 (b).The H,, control problem

is to find a controller which makes the infinity norm of the transfer function from w to



z minimum, where w is a signal including noises, disturbances, and reference signals,
z is a signal including all controlled signals and tracking errors. Because z is
composed of output and control input, the H,, controller minimizes the output and the
control input for the external angular rate, which is indispensable to achieve the wide

bandwidth and dynamic range.

Gp

........................................... i
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Feoriolis ] y Vout
Q E fpt K, ‘_‘m_-.- n "" v-Iv’Vn
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i
L FA »

)
i Z
N~ S e ———

Magnitude (db)

ALk,
[oM ®y
Fdr{/ing -
(a) (b)

Fig. 1.7 (a) Plant model, (b) block diagram of MEMS gyroscope with H,, controller [4]

1.2.3 AGC forcerebalancecontrol

Force rebalance control can be applied via the automatic gain control (AGC)
method [15, 16]. The rebalance control design takes advantages of AGC loop
modification, which allows the approximation of the system dynamics into a simple
linear form. Using the AGC and the rebalance control that maintains a biased
oscillation, bandwidth and operating range can be improved.

Fig. 1.8 (a) shows the proposed feedback system which is a modification from
the normal AGC loop design. In the figure, u denotes a controller output, uy, denotes a
modulated control signal, o, denotes a natural frequency, and ¢, denotes a damping
ratio, respectively. Note that the plant output z implies the velocity signal and the
output of the low pass filter y is its scaled envelope signal. The block diagram in Fig.

1.8 (b) shows the practical implementation of the vibratory MEMS gyroscope and the



electronics for signal processing and control. In the figure, the lower loop is
implemented for the force rebalance and the upper loop is for the lateral oscillation in
the driving mode dynamics. The rebalance loop is implemented through the
combination of a charge amplifier, analog differentiator, and demodulator for

envelope detector, controller, voltage gain and analog multiplier.
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Fig. 1.8 (a) Force rebalance configuration-with*a -modified AGC loop, (b) block
diagram and electronics for force rebalance [16]

1.2.4 Activedisturbancerg ection control

Another control solution of the MEMS gyroscopes is the active disturbance
rejection control (ADRC) [5]. This control method can solve the problem of
mismatched natural frequencies of the two axes in a vibrating MEMS gyroscope. It
can also solve the problems of the mechanical-thermal noise, the quadrature errors,
and the parameter variations. The extended state observer (ESO) is applied to the
feedback control. Then the controller drives the drive axis to the desired trajectory and
forces the vibration of the sense axis to be zero by force rebalance. Thus, the angular
rate can be estimated precisely by the demodulator.

The estimation of the angular rate is based on the accurate state estimation and
the good tracking of the drive axis and the sense axis. The block diagram of ADRC is

9



shown in Fig. 1.9. In the figure, the ESO provides an estimate of the external
disturbances and plant dynamics, and the demodulation block is applied to estimate

the angular rate.

. & N, |
7 L G_} » Li_{t \.{.”
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V N ¥
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A

Fig. 1.9 Block diagram of the ADRC and rate estimation [5]

1.2.5 Summary

The above control methods have their advantages and disadvantages. Because
the assumptions and specifications. of the controllers are different, it is difficult to
compare the performance fairly.

Adaptive control is the most widely-used method in MEMS gyroscope control.
But the multiple tuning parameters of the controller make it difficult to realize in real
world. H,, control is a good method for robustness. But in [4], the quadrature error
and the effect on the drive axis by the displacement of the sense axis were ignored.
The disadvantage of AGC force rebalance control is that double-tuned high-Q filters
are required to prevent the signals from interfering with the detectors. The
disadvantages of ADRC control are that it is complicated and has an inherent
assumption that the disturbance is already given. Therefore, a robust controller

designed by QFT/H,, control method is studied in this thesis.
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1.3 Objectives and thesis or ganization

The objective of this thesis is to design a controller to maintain the system
performance when the characteristic parameters have variation. First, the PID control
design using pole placement is presented. Then the QFT/H, theory is applied to
design a robust controller [17]. The performance of the PID control, QFT/H., control
and the results from other publications are also compared.

In this thesis, the analysis of the micro vibrating ring gyroscope is given in
Chapter 2. The controller design is discussed in Chapter 3. The simulation and
comparison of the different controllers applied to the MEMS gyroscope are presented

in Chapter 4. Finally, conclusion and future work are discussed in Chapter 5.
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Chapter 2 Principleof MEM S gyroscope

The overview of the micro vibrating ring gyroscope to be studied in this thesis is
shown in Fig. 2.1. The design of this device is provided by Chung-Shan Institute of
Science.

The main sense component is a suspended ring supported by elastic suspension
structures. The structure thickness is the thickness of the silicon substrate. There are
electrodes of drive, sense, and control. Electrostatic forces are applied to drive and
control the device. The ring is driven along the drive axis at the resonant frequency.
The angular rate Q is measured by detecting the capacitance change due to the gap
variation along the sense axis. A feedback force is used to counteract the Coriolis
force caused by the rotation, thus maintaining the. amplitude of the sense mode at

ZEero.

Drive and control Anchor

electrodes

Fig. 2.1 Overview of the micro vibrating ring gyroscope

Coriolis acceleration, as illustrated in Fig. 2.2, is an apparent deflection of

moving objects when they are viewed from a rotating reference frame [18]. If the

12



coordinate system along with the observer starts rotating around the z-axis with an
angular rate Q, the observer thinks that the trajectory of the object deflects toward the
y-axis with the acceleration equal to 2vQ2 where v is the velocity of the object as
measured in the rotating reference frame. Although no real force has been acted on
the object, to an observer who is attached to the rotating reference frame, an apparent
force has arisen that is directly proportional to the rate of rotation Q. This Coriolis

effect is the basic operating principle of gyroscopes.

AZ
Moving mass
— g

Rotation rate Q Q—V

e

Acoriolis=2VE2

Corialis.acceleration

N

Fig. 2.2 Concept of the Coriolis acceleration

The Coriolis acceleration is given by the vector cross product of the angular rate
Q and the velocity of the object v. In Fig. 2.2, the velocity is oriented along the x-axis
and the Coriolis acceleration is along the y-axis. Therefore, a gyroscope in this
configuration can detect the angular rate of the z-axis by measuring the deflected

trajectory in the y-axis (sense axis).

2.1 Operating principle

In a vibrating ring gyroscope, energy is transferred between two vibration modes

due to the action of the Coriolis acceleration. Since the Coriolis force is proportional

13



to the rate of rotation Q. The angular rate can be determined by sensing the
Coriolis-induced vibration.

In an ideal vibrating ring gyroscope, the ring structure has two degenerate
fundamental resonance modes which are shown in Fig. 2.3. These modes can be
excited by appropriate driving signal. General MEMS gyroscopes are often driven by
electrostatic force. The resonance of the drive mode has maximum amplitude at 0°and
90° direction, and nodes A at the 45° direction. The long axis and short axis of the
elliptic mode shape does not rotate when the angular rate is zero; therefore the
position of the node does not move. If a displacement sensor is placed at the node
position, the output is zero. Nevertheless, if there is an angular rate, the Coriolis force
will make the axes of the mode shape rotate. We can regard this as the coupling of the

drive mode and the sense mode under the effect of.Coriolis force.

Sense and control electrodes

Original position

Resonant drive mode Resonant sense mode

(a) (b)

Fig. 2.3 Resonant modes of a vibrating ring gyroscope (a) drive mode, (b) sense mode

In Fig. 2.3, the vibration direction of the sense mode is the node direction of the

drive mode. If the angular rate Q+0, the sense axis will be driven by the Coriolis
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force. In this case, the displacement of node A is no longer zero; it is in direct

proportion to Coriolis force.

2.1.1 Non-ideal effects

Usually there are non-ideal effects in the gyroscope, such as the system
parameter variation, the quadrature errors, mismatch between the two resonant
frequencies, etc.. The main reason of the system parameter variation is the fabrication
process deviation. For instance, the etching rate of the structure decreases when the
concentration of the etching solution decreases with time. The wear of the gyroscope
would also change structure characteristics and cause system parameters to fall short
of the requirements. The electrostatic spring softening effect is another important
factor, too. The total spring constant of the structure decreases when the applied
electrostatic force increases. If the.amount of the static electricity is large enough, the
parallel plate capacitor would even pull-in-and-the gyroscope would stop resonating
until restarting the system.

The quadrature error is another major source of error in MEMS gyroscopes. It is
related to the erroneous coupling of the drive motion into the sense motion in the
absence of a rotational rate. This coupling is caused by imperfections in the
manufacturing process. More particularly, the coupling will occur whenever the
support structures of the vibrating element are not perfectly orthogonal. The output
signal induced by such drive error is usually referred to as the quadratic signal. In
general, it has been assumed that the damping around the ring is symmetric, which
means the quadrature error term only appears in the stiffness part.

The other important non-ideal effect is the mismatch between the resonant
frequencies. The vibrating ring gyroscope is a two-degree-of-freedom (2-DOF)

dynamic system which includes drive and sense axes. The 2-DOF dynamic system
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has two independent resonant frequencies, one is the drive mode resonant frequency
w, =k, /m, and the other is the sense mode resonant frequency , = \/k, /m . When

the stiffness values in the drive and sense directions are the same, i.e. ks = k, then the
two resonance modes are matched, i.e. ax = @,. However, fabrication imperfections
and environmental changes may drastically affect the suspension stiffness. If o # @y,
the frequency response of the 2-DOF system has two resonant peaks, one at a, and
one at ay. On the other hand, if e = @, the frequency response of the 2-DOF system
has one combined resonant peak, which will provide a much larger response

amplitude due to coinciding drive and sense resonance peaks, as shown in Fig. 2.4.

4 i
3.5 \“n..
Mo Mismatch
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Fig. 2.4 Response of the overall 2-DOF system with varying drive and sense stiffness
mismatch [6].

2.1.2 Open-loop mode of operation

In the operation of gyroscopes, the drive axis is driven to resonance and the
Coriolis force along the sense axis is detected. Both open-loop and closed-loop modes
of operation can be implemented.

Many MEMS gyroscopes are operated in open-loop mode due to its easy
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implementation and direct control method. In an open-loop system, the driving force
is only applied to the drive mode. Then the displacement of the sense axis caused by
the Coriolis force is detected, which is in direct proportion to the angular rate Q.

The disadvantage of this mode is longer rise and the settling times. It can not be

used when there are the quadrature error and system variation either.

2.1.3 Closed-loop mode of operation

In the closed-loop operation of the gyroscope, a feedback force is applied to the
sense mode to counteract the Coriolis force, thus maintaining the amplitude of the
sense mode at zero. The feedback force is therefore an indication of the magnitude of
the angular rate. The disturbance and noise can be eliminated in the closed-loop mode.

In this thesis, the closed-loop method will be applied to design the controller.

2.2 Equation of motion

Before designing the controller, the‘equations of motion and system parameters
are derived.
2.2.1 ldeal plant

The MEMS gyroscope is modeled as a 2-DOF spring-mass-damper system with
the drive mode displacement x and sense mode displacement y. The two modes are
coupled by the Coriolis force. The governing equation of the ideal vibrating ring

gyroscope can be expressed as:

o aliMa LM ALHE »

where m is the equivalent mass at resonant frequency, b is the damping coefficient, Q

is the angular rate, k is the spring constant, F, and Fy are applied forces on the drive
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and sense axes, respectively. The governing equation can be normalized and rewritten

DM ST CIH e

where o is natural frequency of two axes, £is damping coefficient, u, and uy are

as:

control inputs for the drive and sense axes. The equation of motion, Eq. 2.1, can be

rewritten as state equations.

0 0
X 0 1 0 0 X 1
k|_|-ot 200 0 20 |%| |m O,
vyl | 0 0 0 1 |ly|l |0 OfF,
y 0 -2Q - -2fw|y 1
0 - (2.3)

oo ol

If the angular rate is zero,"this equation_can be decoupled into two transfer

< X X

functions as:

X(s) Y(s) 1
F(s) - F,(s) " K+bs+ms? (2.4)

X

The system then becomes two single-input single-output (SISO) systems, which can

be controlled by PID controllers.

2.2.2 Non-ideal plant
Because of the non-ideal effects described in section 2.1.1, the governing

equation has to be corrected as

m 0][x b, —2mQ+hb,, [ K, Ky |[x F
o a5, o e G MR e
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where by, by, ky, ky are the damping coefficient and spring constant of two axes, by, and

ks are the quadrature errors. The governing equation can be normalized and rewritten

1 0| X 2¢ o, 0 X o> 0 |[x u —a)yy+2§2y
0 1]y "o 2.0,y o o) |y uy—a)xyx 2Qx
{é:x = 50 +A§x

W, =0, +Aw,

as:

(2.6)
{fy =G tAS,

o, =0, + Ao,
where & is the nominal damping coefficient, ax is the nominal natural frequency, A&,

A&, Aax, Awy are the variations of the respective parameters, and a)fy is the quadrature

error caused by stiffness coupling. From Eq. 2.6, the transfer function of the drive and

sense axes can be expressed as:

() _ 1

X
U (s) S+25a8+ 0
Y
U

5) ) (2.7)

y(s) $*+28,0,5+ @

where Uy and Uy are the control input of the drive and sense axes, respectively.

2.3 Parameters of the MEM S gyroscope

The layout of the micro vibrating ring gyroscope is shown in Fig. 2.5. The
normalized equations of motion, as shown in Eq. 2.6, were applied to the controller

design and simulation in this thesis.
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Sense-axis \l.

Fig. 2.5 layout of the micro vibrating ring gyroscope

Because the system is operated in the resonance mode, the modal analysis of the
ring structure was first performed by using finite element method. The first four
modes are shown in Fig. 2.6. Fig. 2.6(a) and Fig, 2.6 (b) are translation modes which
are not the operation mode. Fig.:2.6 (c) and Fig. 2.6 (d) are the desired drive and sense
modes. Because the frequencies of the two modes are assumed to match each other,
the gyroscope is assumed to be “operated in mode 3 whose resonance frequency is
10220Hz and equivalent mass is 1.251x10 °kg.

In addition to the resonant frequency and the equivalent mass, the quality factor
and damping coefficient are found experimentally. From the test data provided by
Chung-Shan Institute of Science and Technology, the quality factor is about 450 and
thus the damping coefficient is & =1/2Q =1/900. The structure thickness is 100um,

and the capacitance gap is 4.5um.
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(c) fo=10220Hz (d) fo=10344Hz
Fig. 2.6 Modal analysis () model, (b)-mode2, (c) mode3, (d) mode4

The lumped and operation parameters of the system are shown in Table 2.1.
Simulink was used to simulate the dynamic response of the system and the
performance of the controller. System specifications are shown in Table 2.2. The
amplitude of the drive axis is controlled at 1um, and the sense axis is assumed to be
static. The maximum angular rate to be measured is 100°/sec. The allowed variation
of the system parameters to be considered in this thesis is 10%. The settling time is

0.2ms and the maximum overshoot is 10%.
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Table 2.1 System parameters

Structure thickness 100pm
Capacitance gap 4.5um
Quality factor Q 450
Resonant frequency f (w) 10220Hz (64214rad/sec)
Equivalent mass 1.251x10°kg
Damping coefficient & 1.11x10°

Table 2.2 System specifications

Angular rate Q 0~100°/sec (0~1.745rad/sec)
amplitude of drive axis lpum
Maximum overshoot M, 10%
Settling time ts 0.2ms
Quadrature error a)fy 6421.4rad/sec (10% of resonant frequency)
Uncertainty Ag, A® 10%

2.4 Force balance control

The concept of the force balance is often applied to the control of inertial sensors.
Coriolis force is considered as a disturbance in the governing equation. The controller
is designed to provide a feedback force to counteract the Coriolis force and the
quadrature error to maintain the displacement of the sense axis at zero. Therefore, the
coupled system can be modeled as two systems with the coupling viewed as
disturbance, as shown in Fig. 2.7. The reference inputs of the two axes are 10sinat
and zero, respectively. The controller will be designed according to the loops in Fig.

2.7.
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Fig. 2.7 Control loop of two axes

2.5 Demodulation

The rotation rate can be “obtained ‘through ‘demodulation. In this thesis, the
displacement of the sense axis is maintained at zero by a feedback force to cancel the
Coriolis force and quadrature error terms from the drive axis. The normalized force

can be expressed as:

F
u, :Ey:—a)fyx—ZQX (2.8)

The angular rate Q and the quadrature errora)fy can be derived by demodulating the
feedback force uy. If the displacement x of the drive axis is represented by a sinusoidal
signal x = Asinat, the angular rate Q can be demodulated from the feedback force uy

by the multiplication by cos ait:
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U, -Cos ot = (—wf, X — 2Q)-cos ot

= —w}, Asin wt cos wt — 2QAw cos’ ot (2.9)

= —%a)fyAsin 20t — QAw® Cos 2at — QAw

. : 1 :
In Eq. 2.9, the high frequency signals —Ea)fyAnga)t and —QAwcos 2wt can be

filtered out by a low pass filter (LPF). Therefore, the angular rate Q can be found

from:

Uy‘COS(Ot
Q=F,|- v - |, (2.10)

where F_ pg (-) represents the function of a low pass filter. In the same way, the

quadrature error a)fy can be demodulated from the feedback force u, by the

multiplication of sinat:

2uy -sin wt
—r (2.11)

a)fy = FLPF (_ A
A second order filter attenuates higher frequencies more steeply than a first order

filter. The transfer function of the filter is

1
(rs +1)2

Fiee (3) = (2.12)

where t is a time constant. The rolloff is 40 dB per decade at high frequency. Because
the resonant frequency is about 10000Hz, the time constant t of the low pass filter is

chosen as 1x10™, so that the high frequency (2) signals are attenuated by 12 dB.

2.6 Summary

In this chapter, the operating principle of the micro vibrating ring gyroscope,

source and effects of system variation, and system parameters are presented.
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Closed-loop control is used in this research. The displacement of the drive axis is to
be controlled at the constant amplitude of 1um; the displacement of the sense axis is
to be maintained at zero. A feedback force is used to counteract the disturbance
caused by Coriolis force and quadrature error. The angular rate Q can be derived by
demodulating the feedback force. The controller design will be discussed in Chapter

3.
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Chapter 3 Controller design

The objectives of this research are to eliminate disturbance and to deal with
parameter uncertainty. PID control is a general industrial control method and the
QFT/H,, control is a robust control method. These two methods are used to design the
controllers in this chapter. The performances of these two controllers are compared by

Simulink system in Chapter 4.

3.1 System analysis
In Chapter 2, the governing equations of the MEMS gyroscope and the system

parameters were presented. From ,Eg. 2.4 and Table 2.1, the uncoupled transfer

functions of the two axes are as follows:

()= Im _ 7.99x10°
S +20ws+w°  s2+1427s¥4:128x10°

(3.1)

In this section, the characteristics of the transfer function in time domain and

frequency domain are discussed.

3.1.1 Characteristicsin timedomain

If the Coriolis force is considered as an internal disturbance of the system, the
government equation of the gyroscope can be decoupled to two independent transfer
functions for the two axes, as shown in Eq. 3.1. For this standard second order system

with the natural frequency @ = 64214 rad/sec and damping coefficient& =1/900, the

maximum overshoot M, and settling time t; of the step response are [19]:

M, = e/ ~ 99,650

3.2
t :ﬁ=0.064sec (3:2)

S é:a)
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The MATLAB simulation of the step response of the plant is shown in Fig. 3.1. From
Eq. 3.2 and Fig. 3.1, the maximum overshoot is too large and the settling time of the
open-loop system is too long. Therefore, a controller is needed to improve the
transient response performance. The characteristic in frequency domain is listed in

Table 3.1.

4 Step response for MEMS gyroscope

Amplitude

| 1 1 | 1 | | I |
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (sec)

Fig. 3.1 Step response of MEMS gyroscope

3.1.2 Characteristicsin frequency domain

In frequency domain, the dominant poles of the uncoupled transfer function Eq.
3.1 are derived as—71.35+64214 j. The Bode plot is shown in Fig. 3.2. The original
gain margin is infinite, and the phase margin is only 0.18°. If the gyroscope is
operated in resonant frequency, it will have the largest amplitude and the drive voltage

can be reduced. The characteristic in frequency domain is also listed in Table 3.1.
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Bode Diagram
Gm = Inf dB (at Inf rad/sec) , Pm=0.18 deg (at 9.08e4+004 rad/sec)
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Fig. 3.2 Bode plot of MEMS gyroscope plant
Table 3.1 Characteristics intime and frequency domains
TimeDomain
Maximum overshoot Mg 99.65%
Settling time ts (within 1%) 0.064sec
Rise time t, (from 10% ~ 90%) 0.024ms
Frequency.Domain
Dominant pole —71.35+64214 ]
Gain margin o0
Phase margin 0.18°

3.2 PID control design using pole placement

A proportional-integral-derivative (PID) controller is a generic control loop
feedback mechanism widely used in industrial control systems. A PID controller
attempts to correct the error between a measured variable and a desired set-point by
calculating and then outputting a corrective action. The controller can be design by

moving the poles to the new locations to satisfy the specifications.
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3.2.1 PID controller
Once the transfer function of the system is derived, the corresponding PID
controller can be designed. The schematic of the closed-loop system with the PID

controller is shown in Fig. 3.3.

g oID y(t)

\ 4
®

Fig. 3.3 Schematic of the closed-loop system with a PID controller

The PID controller includes three parameters: the Proportional, the Integral and
the Derivative gains. The Proportional, gain.determines the reaction to current error,
the Integral gain determines the reactionibased on. the sum of plant errors and the
Derivative gain determines the reaction to the rate at which the error has been

changing. The transfer function of a PID controller is

K.
Gc(s)=Kp(1+%+TdsJ=Kp+?'+ K,S (3.3)

where K, is the proportional gain, K; = Kp/ T, is the integral gain, and K, =K T, is

the derivative gain. Because the specifications have been defined, the PID controller
can be designed by pole placement [20] to move the poles to the appropriate place to

satisfy the specifications.

3.2.2 Pole placement method
Pole placement is one of the control methods to make the system satisfy the
specifications by moving the poles of the system to the appropriate places. In a

closed-loop system, the pole placement has a direct effect on time response, such as

29



rise time, settling time, maximum overshoot, etc.. The design starts with an
assumption of what form the controller must take in order to control the given plant.
Typically, specifications lead to the formation of a second order equation. Most of the
final characteristic equation will have more than 2 poles, and additional desired poles
must be determined. Algebra is used to determine the controller coefficients necessary
to achieve the desired closed-loop poles with the assumed controller form. Typically,
an integrator is used to drive the steady-state error towards zero. This implies that the
final characteristic equation will have at least one more pole than uncontrolled

system.

3.2.3 Using pole placement to design PID controller
From Eqgs. 3.1 and 3.3, the characteristic equation of the closed-loop system with
a PID controller, 1+G.G = 0, can be expressed-as:

D, =(sz+2§ws+w2)s+%(dez+ KGs# Ky}

. (3.4)

:33+(2§a)n +£de52 +(a)2 +iKpjs+—Ki
m m m

The desired characteristic equation is determined by the maximum overshoot and

settling time in the specifications. Because there are three poles in Eq 3.4, it can be

expressed as (s+a)(32+2§desireda)desireds+w§esired), where a is an extra pole.

Comparing the coefficients of the desired characteristic equation with the closed-loop
characteristic equation Eq. 3.4, the PID gains can be solved.

In the time domain specifications, the maximum overshoot is 10% and the
settling time is 0.2ms. So the desired damping coefficient &gesireq 1S 0.591 and the
desired natural frequency ayesireq 1S 38300rad/sec from EQ.3.2. The extra pole is
supposed to be at ten times of the natural frequency. But it was found in simulation

that such an extra pole would make the closed-loop system unstable. Therefore, the
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extra pole was placed at 1000x of the natural frequency, a =-3.83x10". The desired

characteristic equation of the closed-loop can be expressed as:
d, = [52 +45194s +(3.83x10° )2](5 +3.83x107) (3.5)

The three gain parameters of the PID controller can be obtained by comparing Eq. 3.5

with Eq. 3.4, as listed in Table 3.2,

Table 3.2 PID controller gain

Result
Kp 418.6
K; 1.363x10’
Kq 9.3x107
-3.2 7
PD | G, (8)29.3><10 s? +418.65+1.363x10
S

3.3 QFT/H,, Control

Both Quantitative Feedback’-Theory (QFT) and H., design techniques have be
developed for a long time [21]. The QFT and H., design techniques are popular robust
feedback control schemes which can achieve the desired system objectives no matter
if there is any uncertainty. In this thesis, the two methods will be applied to design the
controller. The standard schematic of the closed-loop system by QFT/H. design

method is shown in Fig. 3.4.

O Lk K

\ 4
®

Fig. 3.4 Schematic of the general closed-loop system with QFT/H., controller
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3.3.1 QFT design technique

QFT was first introduced by Horowitz and Sidi [21]. This method translates the
time domain specification to the frequency domain and uses Nichols Chart to find the
boundary conditions. It also makes the system output satisfy the desired specifications
by moving the poles and the zeros of the controller to the suitable positions.

The general problem is how to design the controller K and prefilter F in Fig. 3.4.
Fig. 3.4 is a two degrees of freedom (TDOF) feedback system, which includes plant P,
controller K, prefilter F, input signal r, output signal y, disturbance d, and sensor noise
n. The controller K is the first design degree of freedom used to reduce system
sensitivity from disturbance and noise. The prefilter F is the second design
degree-of-freedom used to satisfy the required performance. Thus the plant output is
bounded and constrained by the given specifications.

Two boundary conditions in time domain; B,.and B, are given, so that the output

y(t) is bounded by:

B (t)<y(t)<B,(t) (3.6)
These tracking specifications in the time domain are translated into the frequency

domain as the upper bound and the lower bound, as shown in Fig. 3.5,

B, (w)S‘T(Ja))‘ <B, (o) (3.7)
where
TR
F(s) is a prefilter, and (3.8)
T.(s)= % is the loop gain.

Because the QFT theory is part of the robust control design, the sensitivity is the

most important factor in studying the parameter variation effect. The definition of
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sensitivity specification is expressed as [17]:

oT/T _AT/T |
0G/G ~ AG/G

53 () 53.(5) =

AT imax (3.9)

where A[T (jo)| _and A|G(jo)| ~ are the maximum variation of [T (jw) and

|G (je)|, which is 10% in this thesis. In the QFT theory, the upper bound is an under

damped system, & <1, and the lower bound is an over damped system, & >1. Thus,
the specifications in time domain can be applied to set the upper bound and the
lower bound conditions.
With the given boundary condition, Nichols Chart is applied to design the
controller. In this thesis, the controller is designed by H.,, method. The prefilter F(s)
will move the closed loop gain T;(s):to withinithe upper bound and the lower bound,

as shows in Fig. 3.5, to fit the specifications:by.adding poles and zeros.
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Fig. 3.5 Unity feedback closed-loop for different plant cases [17]

3.3.2 H,, control method [22]
The H, control method is applied to design a robust controller when system
parameters change or disturbance exists. In the H., control theory, as shown in Fig. 3.6,

K is the controller and G is the generalized plant including the plant and the weighting
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functions. It can be written as:

z _G wo G, G, W
y - u G, G, u (3.10)

where w is a vector signal including noises, disturbances, and reference signals, z is a
vector signal including all controlled signals and tracking errors, u is the control

signal, y is the measurement.

A\ 4

K

A

Fig. 3.6 Hgcontrol structure

According to Eqg. 3.10, the transfer functions of w and z are derived as shown
below:
-1
2=| Gy + G, K (1 -G, K) " Gy Jws T
. (3.11)
T :(311+G12K(| _GzzK)i G,
where T, is transfer matrix of w to z. The purpose of H. control is to design a

controller K to suppress the controlled value z. The magnitude of T, is defined by the

H.. norm and can be expressed as:
[Tl =sup,, &{T,, (i)} (3.12)
where 5(-)means the maximum singular value, and Sup(-)means supremum or least

upper bound, and is defined as the smallest real number that is greater than or equal to
this number. It is the maximum value of the gain in the Bode plot, and the maximum
distance to the origin in the vector diagram. According to the input signal and the

output signal shown in Fig. 3.6, the H., norm of T,,, can be redefined as
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2],

T.(s) | =sup, [wl (3.13)
2

From Eg. 3.13, it can be observed that the problem of H., control is to minimize

the transfer matrix of w to z in the form of H, norm, and satisfy ‘

TZW(S) Hw <y,

which v is the chosen positive number.

3.3.3 Combined QFT/H, control

The combined QFT/H., control method does not use the Nichols Chart to design
the controller. Instead, the controller K is first calculated by the H, optimization
control method, and then the prifilter F is added to make the output fit the
performance requirement. The design steps,are shown in Fig. 3.7, where the most
important part of the design is"to. transfer-the Specifications of the system into
appropriate weighting functions. Step 1 is finding out the weighting function, and
translating into the H., control ‘structure ‘as-shown-in Fig. 3.6. Step 2 is using H.,
method to calculate controller K, and ‘using the boundary condition to define prefilter
F.

The closed-loop system with the controller K can be stabilized by minimizing the
sensitivity and the disturbance w can have the minimal effect on the expectable output

z. A function D(w) is given to specify the disturbance rejection specifications, and the

sensitivity function has satisfied ‘S(ja))‘s D(w) . The sensitivity function is

constrained to satisfy this inequality ‘Wl(ja))s(ja))‘sl, where the weighting

function W; is used to limit the sensitivity function and can be chosen by

‘Wl ( Ja))‘ <

‘S(ja))"
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)
r + € u +

- + Specification

W1 W2 d W3

A A + | A

e » K T G —>
g n
«—

A\ 4

Fig. 3.7 QFT/H. design step

The sensor noise amplification is not expected to exist in high frequency. If the
high sensor noise amplification can be reduced, the cost of feedback design can be

also reduced. After given nominal plant Gy, the transfer function from noise n to

controller output u isT,, = u__-K . It stands for the amplifier effect of the sensor
n 1+KG,

noise. The weighting function W, has to satisfy‘W2 (jo)Tu ( ja))‘ <1. A good control

system should have proper loop-gain, which reduces the sensor noise at high
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frequency. This property is considered in choosing W, and W;. It is found practical
and efficient here to use the control weighting function W, as a tuning parameter in
optimization process.

Considering the parameter variations, if the multiplicative perturbation modeling

structure of the plant is used [17], as shown in Fig. 3.8, then G can be represented by

G =G, (1 +AG), where AG is the error of multiplicative model. This structure allows

the modeling of various plant uncertainties, and the condition for stable closed-loop

systems [22, 23] is

KG,
1+ KG,

= |w;-T[, <1 (3.14)

0

<L or |AP- KG,
—|ag|, 1+ KG,

Therefore, the weighting function W35 can be found byH G(io) -1

G, (jo)

used to limit the complementary sensitivity function T=1-S and to ensure the

<’\/V3(Ja))‘ It is

closed-loop system of multiplicative perturbation model is stable.

Fig. 3.8 Multiplicative perturbation model of the plant

In short, the three weighting functions satisfying Eq. 3.15 are necessary and

sufficient for the solution of the proposed QFT/H,, design technique.
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”\Nl(ja))S(jw)Hw <1
W, (jo)T,, (io)|, <1 (3.15)
|, <1

W, (jo)T (jo)

IN

IA

o0

3.3.4 Design of QFT/H,, controller for MEM S gyroscope

The flow chart of the QFT/H., design method is shown in Fig. 3.9. First, the
settling time and maximum overshoot specifications are applied to define the upper
bound and lower bound. The upper bound uses the specifications to calculate that the
damping coefficient £ = 0.59 and natural frequency @, = 38301. Since the lower
bound is an over damped system, the damping coefficient is assumed as £ = 1.1, and

the natural frequency is shown as @, = 20543. The two bounds are defined as
B(s)= a)ﬁ/(sz + 2§a)s+w§) and can'be expressed as:

B, ()= 1.467 x10°
: s? +45194s +1.467 x 10°
B (s) = 4.22x10°
s? +45194s + 4.22 x10°

(3.16)

To relax the restrictions in high frequency and to maintain the system
performances, the pole (s+3.83x10°) to the lower bound and the zero (s+2.05x10°) to

the upper bound are added. The two bounds become

B (S) _ 383)(105
v s? +46194s+1.467x10°
4.22x108

(52 +461945 +4.22x10°) [ 1+, >
2.05x10

1.467x10° (1+ S]

(3.17)

The three weighting functions of the plant are found by Eq. 3.15 and Fig. 3.9,

()= s*+1.018x10%s +3.142x10"
' 70128s* +140.265 +0.0701
W,(s)=0.1
W, (s)=39

(3.18)
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After the weighting functions are found, the “hinflmi” instruction in MATLAB is used
to solve for the LMI-based H., controller. The prefilter F is then added to adjust the
frequency response so that it completely lies between the upper bound and the lower

bound. The controller and the prefilter are as follows:

K(s)-= 1.885x10% (s +28.34)(s* +2.324x10*s + 4.121x10°)
(s+0.02)(s +0.0014)(s* +6.875x10°s +1.193x10")
F(s)= 0.132 (s+2.5x10°) (s+2x10°)
(s+6x10") (s+5x10%)

(3.19)

A

Problem specifications

v

Translate Ty(t),T,(t)> Ty(w@), Ti(w)

v

Obtain W,-for robust:stability

v

Fix initial W,, calculate sensitivity S and

resolve\W;

A
Modify W, Find the controller K by H,, method

y
A‘Tl( Jw)‘max s A‘Tl( ja))‘max bound

Yes Refinement of the

Design prefilter F design if necessary

'

Evaluation of design
I

v
End

Fig. 3.9 Flow chart of combined QFT/H,, design
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The frequency response of the system with controller and prefilter is shown in
Fig. 3.10. The red solid lines are the response of the family of plants with 10%

variation in natural frequency and damping coefficient, as described in section 2.3.

Froquency Responsa
20 T T

Closad-loop without prefilter

20+

40k

-G60

Magnitude (dB)

-80

-100~

-120-

B ', Con el Coe el
10 107 10 10° 10 10
Freqency (radisec)

Fig. 3.10 Frequency response ‘of ;the closed=loop system, x(s)/r(s), with controller
designed by QFT/H., method

3.3.5 QFT/H, method discussion

The QFT/H, control method discussed above is different from conventional
QFT/H,, control in a number of aspect. In this thesis, the Coriolis force and the
quadrature error are regarded as inner disturbances of the system before the plant, as
shown in Fig. 3.7. But in standard QFT/H., control method, the disturbances are after
the plant, as shown in Fig. 3.4. Therefore, the way of deriving the weighting functions

needs to be modified.

3.4 Summary

A PID controller and a QFT/H,, controller are designed according the same
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specifications. The former is the general control method and can be easily realized.
The latter is a robust controller over fabrication errors and model uncertainties. The
simulation results with the two controllers and the robustness comparison are

presented in Chapter 4.
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Chapter 4 Simulation and Discussion

This Chapter presents the Simulink simulation of the open-loop system, the PID
control, QFT/H,, control, and comparison with other publications. The reference
position of the drive mode has an amplitude of 1um at the resonance of 64214 rad/sec.
The angular rate 100°/sec is added to the system at t = 0.1sec. The Simulink model of

the plant is shown in Fig. 4.1. All the simulation is with double precision of 10,

X
- > = o
F
Transfer Fent
WP U2
Fond Qutd
mass
() >
Wy Pl iz Ol
w " (b)
Subsystem
— L
Omaga =
P -ulTul2l2mulErulE]
g mnss] 2 i 2 Outt
Subsystem1 =
@ T m
Fy ¥
Transfer Fen

(a)
Fig. 4.1 Simulink model of the gyroscope~(a) overview (b) detail of Subsystem for
drive axis (c) detail of Subsystem for sense axis

4.1 Open-loop system

The governing equation of the drive axis can be rewritten as:

F, = MX+bX+kx = m( X+ 2Ew%+ o) (4.1)
The desired trajectory of the drive axis is x=Asinwt , X=Awcoswt and

X = —Aw® sin wt, where A = 1x10°°m. The other parameters can be found in Table 2.1.

In the ideal case, the drive force to drive the displacement of the drive axis at 1um at

the resonant frequency can be found from Eq. 4.1 as F, =1.15x107° cos 64214t N. The

Coriolis force from sense axis is ignored in the calculation because the displacement
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of the drive axis is much larger than the displacement of the sense axis. Because the
displacement of the sense axis is to be maintained at zero, the reference input of the
sense axis is zero. For an open-loop system, only the Coriolis force acts on the sense

axis. The governing equation of the sense axis can be expressed as:

F, =—2mQX = my +by +ky = m(y+ 20y + oY) (4.2)
With Q = 1007/sec and other parameters from Table 2.1, Eq. 4.2, becomes:

1.251x10° (§+142.7y +4.123x10°y) = -2.8x10 " cos(64214t) (4.3)
The differential equation can be solved and the displacement of the sense axis is

found as y =-2.44x10"°sin(64214t)m.

4.1.1 Mode€ verification

The force derived from Eq. 4.1, F, =1:15x10°cos64214t N, can be used to

drive the lumped model Eg. 2.1,"'which:hasaquality-factor Q = 450, to a displacement
of 1um at resonance. However, the ‘sameforce, when applied to finite element
modeling, will cause a displacement larger than that allowed by the spring structures
outside the vibrating ring due to a much larger quality factor in the numerical

calculation. Therefore, the force is reduced by a factor of 100 to

F/=1.15x10" cos64214t N before it is used in the finite element modeling to verify

the lumped model. As shown in Fig. 4.2, a pair of sinusoidal forces F, in opposite

directions are exerted on the ring in the direction of the drive axis. The deformation of
the structure at resonance is shown in Fig. 4.3. As shown in Fig. 4.4, the maximum
displacement of x = 4.32um occurs at f = 10220.37Hz, which is the same as that used
in the lumped model. The displacement at low frequency is 4.3x10°um. The quality

factor of the system in the simulation can be derived as 1x10°.
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The reduced force F, drives the finite element model to a displacement of

4.32um at resonance, but only to a displacement of 0.01um in the lumped model. This
means the quality factor of the finite element model is 432 times larger than that of
the lumped model. However, the ratio of the two factors is only Qfinite etement/ Qiumped =
1x10°/450 = 222. The difference may be due to the numerical errors and should be

discussed in the future.

COVENTOR

Fig. 4.3 Deformation of the structure at resonance

44



1.00E+00 l

1.00E-01

1.00E-02

1.00E-03

Ho —
1.00E-05 \.

100 1000 10000 100000

Displacement(pum)

1.00E-06
Frequency (Hz)

Fig. 4.4 Harmonic response of the finite element model

4.1.2 Simulation

The Simulink model of the open-logp system is.shown in Fig. 4.5 with the “Plant”
block shown as Fig. 4.1 The “Omega_in” block is a step input at t = 0.1sec with a step
value of 1.745. Fig. 4.6 shows the simulationresult of the drive force on the drive axis.
The left part is for0 <t < 2 sec and the right part is for 0.0995sec <t <0.1005sec. The
same apply to the other time domain simulation results in the following. Fig. 4.7
shows the simulation result of the Coriolis force produced by the drive axis on the

sense axis. Fig. 4.8 shows the displacement of the drive axis. The Coriolis force
produced by the sense axis on the drive axis is 2mQy =6.84x10°° cos(64214t)N,
which is much smaller than the drive force. Therefore, the Coriolis force produced by
the sense axis almost has no effect on the drive axis. Fig. 4.9 shows the simulation

result of the displacement of the sense axis. Without a controller, the settling time is

64 ms. However, the responses of the two axes have no overshoot.
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Fig. 4.5 Simulink model of the open-loop system

5 &
1.5X 10 ‘ ‘ . 1.5>< 10
1
g g 0.5
S & ©
o (@]
(I L o5
-1
1.5 : ; : -1.5 ;
0 0.05 0.1 0.15 0.2 0.0995 0.1 0.1005
Time (sec) Time (sec)
Fig. 4.6 Input force on the drive axis in the open-loop system
i -7
SX 10 ‘ ‘ ‘ 3X 10
2 2r
z |
8o 8o
& 8
(T w4l
-2 =2
-3 : ; : -3 ‘
0 0.05 0.1 0.15 0.2 0.0995 0.1 0.1005
Time (sec) Time (sec)

Fig. 4.7 Coriolis force from the drive axis on the sense axis in the open-loop system
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Fig. 4.8 Displacement of the drive axis in the open-loop system
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Fig. 4.9 Displacement of the sense axis in the open-loop system

[=]

The open-loop response of the""system with a quadrature error of

a)fy =6421.4 rad/sec is shown in Fig. 4.10 and Fig. 4.11. The force produced by

quadrature error term is —ma; x = —8.03x107° sin 64214t N. The simulation result of

the force on the sense axis is shown in Fig. 4.10. The simulation result of the
displacement of the sense axis is shown in Fig. 4.11. The response before 0.1sec is
caused by the quadrature error. The response after 0.1sec is caused by the Coriolis
force and the quadrature error. The calculated and simulated amplitudes of various
signals are shown in Table 4.1. The settling time in Fig. 4.8 and Fig. 4.9 is 50ms,
which is longer than the specification. The amplitude of the sense axis and the effect

of a controller will be compared in the following sections.
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The Coriolis force on sense axis, —2mQx, and the quadrature error term,

—mcofyx, can be calculated. It is found that the Coriolis force is 35 times larger than

the quadrature error term, therefore the quadrature error can be neglected at

Q=100"/sec .
-7 -7
X 10 X 10
3 - T T 3
2 2r
— 1 =
= =
© @ i e W S S OB
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L gt
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Fig. 4.10 Force on the sense axis:in'the open-loop system with quadrature error
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Fig. 4.11 Displacement of the sense axis in the open-loop system with quadrature
error
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Table 4.1 Calculated and simulated response amplitude of the open-loop system

. . Simulations (amplitude)
Calculations (amplitude) - -
Without quadrature error | With quadrature error
Fx (N) 1.15x10°°
Fy (N) 2.80x10”" 2.80x1077 2.80x107”’
x (m) 1.00x10°° 1.00x10°°
y (m) 2.44x10°° 2.46x10°° 2.46x10°®

4.2 PID controller using pole placement

The PID controller designed in section 3.2 is used to control the gyroscope. The

Simulink model is shown in Fig. 4.12. In the force balance control loop, the controller

output on the sense axis is the feedback force: It is equal to the Coriolis force and

proportional to the angular rate. Therefore the controller output is used in the

following to discuss its performance.

sl

X » P
ref_x1 PID Controller1 -C- Wy ~
)¢

0 P+ PID
ref x2 PID Contraller2

Omega_in

1

den(s)

fiu) . o

P Omega

Fig. 4.12 Simulink model of the closed-loop system with a PID controller
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Fig. 4.13 and Fig. 4.14 show the simulation results of the controller output on the
drive axis and the sense axis. On the drive axis, the amplitude of the closed-loop
controller outputs almost equals the one of the open-loop input force. On the sense
axis, the closed-loop controller output almost can cancel the open-loop Coriolis force.
Fig. 4.15 and Fig. 4.16 show simulation results of the displacements of the two axes.
The displacement of the drive axis can be controlled at 1um amplitude whether the
quadrature error exists or not. The displacement of the sense axis can be controlled at
4.924x10™" m, which is much smaller than that in the open-loop system as shown in
Fig. 4.11. The effect of the controller is shown in Fig. 4.17 where the angular rate
100°/sec is added to the system at t = 0.1sec and the PID controller is turned on at t =
0.2sec. From Fig. 4.17, it can be seen that the displacement is reduced from 10®m to
10"'m in 0.2ms. The demodulated-angular rateis.shown in Fig. 4.18 with a settling

time of 0.7ms. The simulation results are summarized:in Table 4.2.

s 5
aX 10 ——With quadrature error 2 10 —With quadrature error
——-Without quadrature error ——-Without quadrature error

; ; . a1 ;
0 0.05 0.1 0.15 0.2 0.0995 0.1 0.1005
Time (sec) Time (sec)

Fig. 4.13 Controller output on the drive axis in the closed-loop system with a PID
controller
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Fig. 4.14 Controller output on the sense axis in the closed-loop system with a PID
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Fig. 4.17 Effect of the PID controller on the displacement of the sense axis

_| —Input signal — Input signal
—==Qutput with quadrature error —==Qutput with quadrature error
’g sl e Output without quadrature error ’8‘ ol - Quiput without quadrature error
@ 177}
=i = -
O o &
© 157 © 1.5} i
= = /
o o /
o I T 1f H
— A
— A I
R s /
3 051 3 0.5y i
o)) =) i
£ £ /
0 0 ’
0 0.05 0.1 0.15 0.2 0.0995 0.1 0.1005 0.101 0.1015
Time (sec) Time (sec)

Fig. 4.18 Angular rate of the close-loop system with a PID controller

Table 4.2 Simulation results of the closed-loop system with a PID controller for Q =

100°/sec
Simulations(amplitude)
Without quadrature error | With quadrature error
Fx (N) 1.15x10°° 1.15x10°°
Fy (N) 2.80x1077 2.79x107’
x (m) 1.00x10°° 1.00x10°°
y (m) 4.92x10™" 4.92x10™"
Demodulated Q (rad/sec) 1.74 1.73

4.3 QFT/H, control

The Simulink model of the closed-loop system with a QFT/H,, controller is
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shown in Fig. 4.19. The “H_inf controller” block and the “Prefilter” block were
discussed and designed in section 3.3 and shown in Eq. 3.19. Compared to Fig. 4.12,

the QFT/H,, control loop is similar to the PID loop except for the additional prefilter.

den
Prefilter H_inf controller1

21 4 P
x P x
Wﬁx\f MY

P Omega
»
Cmega_in P Fy ! ’II
Plant
QOmega_in

o -
Foo
H_inf controller

1
St ot
den(s)

Derivative1 -C-

Fig. 4.19 Simulink model of the closed-loop system with a QFT/H., controller

Fig. 4.20 and Fig. 4.21 show the" controller outputs F, and F, on the drive the
sense axes. Fig. 4.22 and Fig. 4.23 show the displacements of the two axes. From Fig.
4.22, it is obvious that the displacement of the drive axis is almost not effected by the
Coriolis force from the sense axis and the quadrature error. This is because that the
two forces are much smaller than the drive force. From Fig. 4.23, the displacement of
the sense axis can be controlled at 7.88x10™" m. The demodulated angular rate is
shown in Fig. 4.24. It can be observed that the demodulated angular rate is smaller
than the input step value. Even for t<0.1sec, there is a non-zero output when the
input angular rate is zero. But this situation did not happen in the PID controller in the
previous section. The difference of the two control loops is the prefilter. If the prefilter

is removed temporarily, the force on the sense axis is shown in Fig. 4.25. Obviously

53



the prefilter causes a response delay. Because the reference input is a harmonic signal
at the resonance frequency, the transfer function of the prefilter Eg. 3.19 can be

evaluated as:

: 0562 _
F (64214]) = 6.05+3.08) e°* ..

~1.12+7.06) €%

(4.4)

The magnitude of the gain is 1, and the phase is -1.166 rad/sec. In the presence of the
system delay caused by the prefilter, the demodulated signal becomes:

U, -cos(at) = (—of, x—2QX)-cos(wt), where x = Asin(wt +¢) (4.5)
u, -cos(wt)

105 .
=Qcos¢+——2sin g, where ¢ =—1.166.
Aw 2 @

=Q'= FLPF(
The demodulated output Q' is different from the input rate Q if ¢=0. With the

values of Q, @, ¢, and cofy discussed above, it is found Q'=-0.046"/sec when

Q=0 and Q'=0.64"/sec when Q=100"/sec, which is close to the simulated
results.

Since the system works at a single frequency; the prefilter can be removed from
this loop to eliminate the system delay. The angular rate without the prefilter in the
control loop is shown in Fig. 4.26. The simulation results are summarized in Table

4.3.
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Fig. 4.20 Controller output on the drive axis in the closed-loop system with a QFT/H.,
controller
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Fig. 4.21 Controller output on the sense axis in the closed-loop system with a QFT/H.,
controller
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Table 4.3 Simulation results of the closed-loop system with a QFT/H., controller for

Q =100°/sec
Simulations(amplitude)
Without quadrature error | With quadrature error
Fx (N) 1.15x10°° 1.15x10°°
Fy (N) 2.80x1077 2.80x107”’
x (m) 1x107° 1x10°°
y (m) 7.88x107 7.88x107"
Q with prefilter (rad/sec) 0.67 0.62
Q without prefilter (rad/sec) 1.75 1.75

4.4 Robustness

In this section, the robustness of the open=loop:system, the PID control loop and
the QFT/H., control loop are compared. It is-assumed that the quadrature error exists,
and there are variations in the-dampingcoefficient and the natural frequency. In
addition, the feedback forces on the sense ‘axis are discussed to avoid demodulation
error. Because the open-loop system does not have feedback control, the action force
on the sense axis in the open-loop system should be multiplied by -1 to be compared
with controller output on the sense axis in the closed-loop system.

The robustness comparisons of three controllers are shown in Fig. 4.27. Fig. 4.27
(@) shows the simulation results without system variation; Fig. 4.27 (b) is the results
with 10% variation in natural frequency; Fig. 4.27 (c) is the results with 10% variation
in damping coefficient; Fig. 4.27 (d) is the results with 10% variation in both the
natural frequency and damping coefficient. The simulation results are summarized in
Table 4.4. It is assumed that the variations of the two axes are the same in this

simulation. The first row of Table 4.4 shows the forces without any system variations.
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The other rows show the forces and relative errors for various system variations. The

relative error is calculated by |(x, —X)/X,|x100% , where x and x, are the forces with

and without system variations in the same column. As shown in Table 4.4, when there
is no variation, the force on the sense axis in the open-loop system is 2.8x10'N; the
one in the close-loop system with a PID controller is 2.79x10” N; the one in the
close-loop system with a QFT/H., controller is 2.8x10”" N.

From Table 4.4, the robustness of QFT/H,, controller is better than the PID
controller, and the influence of natural frequency is larger than the damping
coefficient. From Fig. 4.27, it can be observed that the settling times of the PID
control and the QFT/H. control are both smaller than 0.2ms and satisfy the
specification for all the variations considered. in the simulation.

Unequal variations in the two axes were also simulated. For the system with 10%
variation in natural frequency- of the sense axis only, the simulation results are
summarized in Table 4.5. The relative error-of-the feedback force on the sense axis is
12.5% for the PID controller and 3.2% forithe QFT/H., controller. Therefore, even
when there are unequal variations or frequency mismatch between the two axes, the

QFT/H,, controller still has better performance.
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Fig. 4.27 Robustness comparisans of three controllers;(a) without system variation, (b)
with 10% variation in natural frequency;(c)"with 10% variation in damping coefficient,
(d) with 10% variation in both the'natural frequeney and damping coefficient

Table 4.4 Robustness comparison

Variation (%) Amplitude of force on the sense axis (N)
0] & Open-loop PID control QFT/H,, control
1] 0 0 2.80x107" (0%) 2.79x107" (0%) 2.80x107" (0%)
2| 10 0 | 276x107(99%) | 2.12x107(24%) | 2.65x107(5.6%)
3| 0 10 | 2.54x107(9.2%) | 2.80x107(0.2%) 2.80x107(0%)
41 10 10 | 3.15x107°(99%) | 2.12x107(24%) 2.64x107" (5.6%)
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Table 4.5 Robustness comparison with frequency mismatch

Variation (%) | Amplitude of force on the sense axis (N)

ax @y PID control QFT/H., control

11 0 0 2.79x107" (0%) 2.80x107" (0%)

21 0 10 | 2.44x107(125%) | 2.71x107(3.2%)

4.5 Comparison with other publications

45.1 AGC forcerebalance control
The QFT/H., control method was compared to the AGC force rebalance control
in [16]. The dynamic parameters of the MEMS vibratory gyroscope in [16] are listed

in Table 4.6; the block diagram of the system is'shown in Fig. 1.8.

Table 4.6 Dynamic parameters,of that MEMS vibratory gyroscope in [16]

Resonant frequency. f(w) 7816 Hz (491009 rad/sec)
Mass 3.11x10°kg
Spring coefficient k 7500 Nm™
Damping coefficient & 0.0014
Amplitude of drive axis 0.32 um

The QFT/H., control method is used to design the controller for the system in

Table 4.6 with the following results:

K (s)= 1.395x10' (s +918.3)(s* +137.6s +2.412x10°)
(s+918)(s+9.19x10*)(s* +5.887x10°s +9.023x10")
5
F(s)= 0.4 (s+2><140 )
(s+8x10%)

(4.6)

The drive mode has an amplitude of 0.32um at the resonance of 49109 rad/sec. A 0.5

rad/sec angular rate was added to the system at t=0.01sec. The simulation result by
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the QFT/H,, controller and AGC force rebalance controller [16] are shown in Fig. 4.28
and Fig. 4.29. Obviously, the transient performance of QFT/H,, control is better than

the result in [16].
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Fig. 4.28 Simulation result with QFT/H., control

i ] | | | ] |
R | | | | | | |

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time (sec)

Controller output: Simulation (volt)

Fig. 4.29 Step response of the simulation results [16]

4.5.2 H,, control

The QFT/H,, control method is also compared to the H,, control method in [4].
The system block diagram of the MEMS gyroscope in [4] is shown in Fig. 1.7. A
conventional H,, control method is used to design the H. controller. Though the
parameters of this plant [4] are different from the plant in this thesis, the equations of
motion of the gyroscope are the same. The concept of H., control is applied to both

controller designs. Therefore, we can still compare their performance in robustness.
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For resonant frequency variation of 2% and 4%, Fig. 4.30 shows that controller output
has variation of 0.5% and 2.5%, respectively [4].

Fig. 4.31 is the results with the same resonant frequency variations by QFT/H,,
control. The variation of the QFT/H., controller is 0.3% and 1.7%, respectively. It can
be observed that the robustness and transient performance of QFT/H., control is better
than the result in [4]. In addition, the result of the QFT/H. controller and H,,
controller in [4] are output feedback and state feedback, respectively. In reality, to
realize the controller using output feedback is easier than using state feedback.

Therefore, the QFT/H., controller can be realized more easily than the H., controller.

0002 0.004 0.006 0008 001 0012 Q014 0016 COIB D.C2
Time (sec)

Fig. 4.30 Controller output resonant frequency variation by H,, controller in [4]
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Fig. 4.31 Simulation result with QFT/H., control
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4.6 Summary

In this chapter, the QFT/H., control method was compared to the PID control and
other control methods. Both PID control and QFT/H., control have good performance.
The amplitude of the sense axis in the open-loop system is reduced from 10®°m to
10"m by using a PID controller or a QFT/H,, controller. When there is a 10%
variation in the system, the variation of response with a PID controller is 24%, and the
variation of response with a QFT/H, controller is just 5.6%. Thus, the QFT/H,,

control has better robustness.
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Chapter 5 Conclusion and Future Work

5.1 Conclusion

In this thesis, the PID controller and the QFT/H., controller are applied to the
MEMS vibrating gyroscope. The amplitude of drive axis can be maintained at 1um,
and the amplitude of sense axis can be maintained at less than 10™pum for both PID
control and QFT/H, control. The performance of different control methods are
simulated and discussed. When the natural frequency and the damping coefficient
both have the variation of 10%, the variations of the response using QFT/H., and PID
control are 5.6% and 24%, respectively. Therefore, the QFT/H,, control method has
better robustness when the fabrication-‘errors:and the model uncertainties exist. In
addition, the transient performance of this:control method is better than the AGC force
rebalance control in [16]. The variations-of the response of the QFT/H., control and
the H,, control in [4] are 1.7% and 2.5%, respectively. The robustness and transient
performance of the QFT/H., control are better. Since the reference signal is at single
frequency, the prefilter in the QFT/H., controller can be removed to eliminate the
system delay and erroneous demodulation. In such a case, the loop becomes an output
feedback loop, which is easier for realization compared to the conventional H., control

which is a state feedback loop.

5.2 Futurework

The transfer function of the QFT/H, controller is a 4th-order function. For
realization, to reduce the order of the function to 3rd-order even 2nd-order may be
required. In this thesis, the angular rate is 100°/sec and the Coriolis force is 35 times

larger than the quadrature error term. In the future, it is necessary to consider the
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effect on the system response caused by the quadrature error term when the angular

rate is smaller. Besides, the effect on the system robustness caused by the structure

asymmetry of the two axes when m, = m_  should be considered.
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