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中文摘要 

  
隨著微機電科技的進步，微型陀螺儀的應用日益廣泛，如在汽車的導航及

安全控制、遊戲主機、手機等都可發現其蹤跡。對於目前的微機電式陀螺儀而

言，製造過程中的誤差及使用過程中的磨損會造成成品與設計間存在差異，以

至於無法滿足原先系統的規格。本研究的重點在於設計一控制器，能在微型陀

螺儀的特性參數發生變異時，還能保有一定的系統性能。  

因為陀螺儀本身屬於多輸入多輸出系統 (multi-input multi-output, MIMO)，

且驅動軸與感測軸間有耦合的情形，若系統特性有變異時，無法利用一般的 PID

控制設計方法來達成規格要求。因此，我們必須設計一個既可以控制 MIMO 系

統又可以忍受特性參數變異的穩健控制器(robust controller)。在此論文中我們會

先忽略系統變異並利用 pole placement 的控制理論設計出 PID 控制器，之後再利

用穩健控制理論中的 H∞理論結合量化迴授理論(quantitative feedback theory, QFT)

設計出穩健控制器，最後比較不同控制器的性能和穩健特性等差異。 

論文中，我們先找出受控體的特性矩陣 P(s)和權重函數，並使用 MATLAB

輔助完成控制器的設計。當系統的共振頻率和阻尼係數存在 10%變異量時，加

入 PID 控制的系統響應變異量為 24%，而加入 QFT/H∞控制器的變異量為 5.6%，

且暫態響應的特性仍能符合規格，包含安定時間小於 0.2ms，最大超越量低於

10%，可知利用 QFT/H∞的控制方法設計出的控制器在穩健性上有明顯的改善。

此外和一般 H∞控制器相比，系統迴路由狀態回授變為輸出回授，因而在實現上

也較為容易。 

 

  



 ii 

Abstract 
 

With the progress of the MEMS technology, the application of micro-gyroscopes 

becomes more and more extensive. Examples can be found in automobile navigation 

and safety control, game hosts, mobile phones, etc.. However, fabrication errors and 

operation wearout will cause difference in component characteristics between the 

expected value and the actual value in real devices. The objective of this research is 

focused on the design of a controller which can maintain certain system performance 

in the presence of the system characteristic parameter variation. 

The gyroscope is a multi-input multi-output (MIMO) system with possible 

variations in system characteristics. Therefore, the common PID controller design 

method can not be used in controller design to meet the specification. A robust 

controller which can be used to control a MIMO system and endure parameter 

variation is required. In this thesis, the pole placement method is applied to design a 

PID controller without considering the system variation. Then the H∞ theory and 

quantitative feedback theory (QFT) are applied to design the controller. The 

performance and the robustness of the controllers are compared.  

After determining the characteristic matrix P of the plant and the weighting 

functions, the controller is calculated by MATLAB. When the natural frequency and 

the damping coefficient both have variation of 10%, the variation of the system 

response is 5.6% in QFT/H∞ controller and 24% in PID controller. Therefore, the 

QFT/H∞ control method has better robustness. Compared with conventional H∞ 

controller, the QFT/H∞ control loop uses output feedback and is easier to realize. 
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Chapter 1 Introduction 
 

Gyroscopes are used to measure the angular rate in vehicle navigation, guidance, 

rollover stability, and in aerospace applications such as aircrafts and satellites. 

Therefore, the accuracy and precision of gyroscopes have been the targets of intensive 

studies. Gyroscopes have been developed for a long time, but traditional gyroscopes 

are too big and expensive. Therefore, MEMS gyroscopes are becoming more popular 

in electronic and consumer market. 

Micro Electro-Mechanical Systems (MEMS) have the advantages of small 

dimensions, mass production, and integration with electronic circuits. It has been used 

in various sensing applications, such as pressure sensors, temperature sensors, 

radiation sensors, and inertial sensors such as accelerometers and gyroscopes. Another 

advantage is that MEMS devices can be fabricated with electric circuits on a single 

chip. Therefore, low cost and high performance system can be achieved.  

For MEMS gyroscopes, accuracy, stability, and robustness are important 

performance characteristics. Fabrication deviations and operation wear-out are typical 

reasons for the variation and non-ideality of system characteristics variation and 

quadrature error. Post-fabrication trimming can be used to adjust the device 

parameters with high cost [1]. In order to maintain wide fabrication process windows 

and long-term stability, MEMS gyroscopes can also be operated with an active 

feedback control to compensate for these deviations. Complex control algorithms 

such as adaptive control [2, 3], H∞ control [4], automatic gain control [5, 6] and active 

disturbance rejection control [5] have been reported in the literature. However, 

complex systems are not necessarily the best solutions for commercialization. In this 

thesis, the QFT/H∞ control method will be studied. The performance of various 
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control systems will be compared when the system characteristic parameters have 

variation.  

 

1.1 Gyroscope 

The development of the gyroscope can be traced back to 1852 when the French 

experimental physicist Leon Foucault used an equipment called “gyroscope” to study 

the rotation of earth. Since then, gyroscopes have been used for measuring angular 

rate in many navigation, homing, and stabilization applications. Many different 

gyroscopes have been developed.  

The gyroscope is a two degrees of freedom (2-DOF) mass-spring-damper system. 

When there is an angular rate acting on the gyroscope, the sense axis of the gyroscope 

is affected by the Coriolis force. The force is proportional to the angular rate and 

measured as the output of the gyroscope. Although conventional rotating wheel 

gyroscopes have dominated high-precision applications, they are large and most often 

too expensive to be used in many applications [3]. On the other hand, sensitivity, 

reliability and the miniaturization of mass producible gyroscopes are more and more 

important for consumer applications. 

 

1.1.1 MEMS gyroscope 

A MEMS gyroscope is an angular rate sensor whose size is much smaller than 

most mechanical gyroscopes. In batch fabrication, hundreds of MEMS gyroscopes 

can be produced in a wafer. Fig. 1.1 shows an example of a bulk-micromachined 

gyroscope [6]. Compared with mechanical gyroscopes, MEMS gyroscopes are much 

smaller and inexpensive. 
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Fig. 1.1 A prototype bulk-micromachined gyroscope, diced and released [6] 

 

The reported micromachined gyroscopes almost all use vibrating mechanical 

elements to sense the angular rate. Because the silicon material has fine mechanical 

characteristics, the MEMS vibratory gyroscopes are almost all fabricated in silicon 

substrates. The main advantage of semiconductor silicon fabrication process is 

matured technology that is suitable for mass production. The other MEMS fabrication 

process, like LIGA [7], LIGA-like [8], and SOI wafer fabrication process [9] are also 

applied to gyroscope fabrication. Various types of MEMS gyroscopes are reviewed in 

the following. 

 

1.1.2 Vibrating beam gyroscope 

A simple vibrating beam gyroscope is shown in Fig. 1.2 [10]. There is a 

rectangle ditch which is chromium-plated at the bottom of the glass substrate as a 

sense electrode of the x-axis under the vibrating beam. A piezoelectric vibrator drives 

the beam in the y-axis. In the presence of a z-axis rotation, the x-axis will vibrate due 

to the Coriolis force. This structure uses capacitance change to calculate the angular 

rate. 

800µm 



 4 

 
Fig. 1.2 Vibrating beam gyroscope [10] 

 

1.1.3 Tuning fork gyroscope 

Tuning fork gyroscopes [11, 12] have been used for many years. A micro 

machined tuning fork gyroscope is shown in Fig. 1.3. The principle of the tuning fork 

gyroscope is similar to the principle of the vibrating beam gyroscope. There is no net 

torque at the junction and stable conditions can be obtained for the balanced system 

with two bars oscillating oppositely. It leads to low energy loss and high Q factor. 

The tuning fork is driven by the tuning/balance electrodes with a phase 

difference of 180°. When there is an angular rate in vertical direction, the Coriolis 

force causes torsion of the tuning fork. The torsion can be sensed by the sense 

electrodes and the angular rate can be derived. 

 

 
Fig. 1.3 Tuning fork MEMS gyroscope [11] 

torsion 
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1.1.4 Vibrating ring gyroscope 

A vibrating ring gyroscope is shown in Fig. 1.4 [12]. A sustaining cylinder 

suspends the ring structure in the center of the device. The ring structure can be 

electrostatically actuated and capacitively sensed by the surrounding electrodes. The 

ring is connected to the center axis by eight semicircular springs. When the ring 

structure is actuated by applying a voltage to the driving electrodes, the Coriolis force 

will cause the ring to vibrate in the direction of 45° from the driving axis. The angular 

rate is derived from the capacitance sensing electrodes. 

 

 
Fig. 1.4 Vibrating ring gyroscope [12] 

 

1.1.5 Frame gyroscope 

Fig. 1.5 shows the inside drive outside sense (IDOS) and inside sense outside 

drive (ISOD) frame gyroscopes, respectively [13]. In both devices, there is an inner 

mass connected via mechanical springs to the outer frame that is anchored to the 

substrate via another set of springs. The design of the springs is such that the two 

masses are compliant in two orthogonal directions, namely the drive (x-axis) and 

sense (y-axis) directions. Since the drive resonant motion is typically much larger than 

Sense and control 
electrodes 

Drive and control 
electrodes Support springs 

Drive vibrating  
mode 

Sense vibrating  
mode 
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the sense motion, the lateral comb finger drive is used for driving the structures while 

parallel-plate sense combs are used to sense the Coriolis force. 

For the Type A device, the inner mass (drive mass) is driven into resonance by 

applying sinusoidal voltages to the lateral combs using an on-chip closed-loop drive 

circuitry. In the presence of z-axis rotation rate, Coriolis force acts along y-axis on the 

oscillating drive mass. The change in capacitance arising from this sense motion 

yields an output proportional to the input rotation rate. 

For the Type B device, the driving force is applied to the outer frame (drive mass) 

which causes both the mass to oscillate along the drive axis. In response to a z-axis 

angular rate, Coriolis force acts on both masses. However, only the sense mass 

responds to Coriolis force due to stiff drive springs along the sense axis. 

 

 

Fig. 1.5 Frame gyroscope [13] 

 

1.2 Gyroscope control 

Various control methods have been applied to control MEMS gyroscopes. In this 

section, some common MEMS gyroscope control methods are reviewed. 

1.2.1 Adaptive control 

Adaptive control is a useful method for the operation of MEMS z-axis 

Sense mass 

Drive motion 

Sense motion 

Drive mass 

Drive mass 

Drive motion 

Sense motion 

Sense spring 

Drive spring 

Anchor 

Parallel plate sense combs 

Lateral comb drive 

Drive spring 
Sense spring 

Sense mass 

Parallel plate sense 

x z 

y 

Type A Type B 
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gyroscopes [2, 3]. The proposed control scheme estimates the component of the 

angular rate orthogonal to the plane of oscillation of the gyroscope. The control loop 

is composed of a band-pass filter, a parameter adaptation algorithm and a modulation, 

as shown in Fig. 1.6 [14]. The parameter adaptation algorithm (PAA) block in Fig. 1.6 

estimates the angular rate, identifies and compensates the quadrature error, and may 

permit on-line automatic mode tuning. Its goal is to achieve compensation of 

fabrication imperfections, closed-loop estimation of the angular rate, to attain a large 

bandwidth and dynamic range, and self-calibration operation. 

 

 

Fig. 1.6 Block diagram of the adaptive add-on control [14] 

 

1.2.2 H∞ control 

Since the MEMS gyroscope is operated at its resonant frequency, its high quality 

factor limits its bandwidth under an open loop condition. To improve the bandwidth 

of the gyroscope, an H∞ controller was proposed and developed in [4]. The analysis 

and test results showed that the proposed controller enlarged the bandwidth and 

enhanced the linearity. It was also shown that the H∞ controller was more robust 

compared with traditional control methods such as the PID controller.  

In order to design the H∞ controller, the plant model in Fig. 1.7 (a) should be 

transformed into a two-port system illustrated in Fig. 1.7 (b).The H∞ control problem 

is to find a controller which makes the infinity norm of the transfer function from w to 
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z minimum, where w is a signal including noises, disturbances, and reference signals, 

z is a signal including all controlled signals and tracking errors. Because z is 

composed of output and control input, the H∞ controller minimizes the output and the 

control input for the external angular rate, which is indispensable to achieve the wide 

bandwidth and dynamic range.  

 

 
(a)                                (b) 

Fig. 1.7 (a) Plant model, (b) block diagram of MEMS gyroscope with H∞ controller [4] 

 

1.2.3 AGC force rebalance control 

Force rebalance control can be applied via the automatic gain control (AGC) 

method [15, 16]. The rebalance control design takes advantages of AGC loop 

modification, which allows the approximation of the system dynamics into a simple 

linear form. Using the AGC and the rebalance control that maintains a biased 

oscillation, bandwidth and operating range can be improved. 

Fig. 1.8 (a) shows the proposed feedback system which is a modification from 

the normal AGC loop design. In the figure, u denotes a controller output, um denotes a 

modulated control signal, ωy denotes a natural frequency, and ζy denotes a damping 

ratio, respectively. Note that the plant output z implies the velocity signal and the 

output of the low pass filter y is its scaled envelope signal. The block diagram in Fig. 

1.8 (b) shows the practical implementation of the vibratory MEMS gyroscope and the 
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electronics for signal processing and control. In the figure, the lower loop is 

implemented for the force rebalance and the upper loop is for the lateral oscillation in 

the driving mode dynamics. The rebalance loop is implemented through the 

combination of a charge amplifier, analog differentiator, and demodulator for 

envelope detector, controller, voltage gain and analog multiplier. 

 

  

(a)                               (b) 

Fig. 1.8 (a) Force rebalance configuration with a modified AGC loop, (b) block 
diagram and electronics for force rebalance [16] 

 

1.2.4 Active disturbance rejection control 

Another control solution of the MEMS gyroscopes is the active disturbance 

rejection control (ADRC) [5]. This control method can solve the problem of 

mismatched natural frequencies of the two axes in a vibrating MEMS gyroscope. It 

can also solve the problems of the mechanical-thermal noise, the quadrature errors, 

and the parameter variations. The extended state observer (ESO) is applied to the 

feedback control. Then the controller drives the drive axis to the desired trajectory and 

forces the vibration of the sense axis to be zero by force rebalance. Thus, the angular 

rate can be estimated precisely by the demodulator.  

The estimation of the angular rate is based on the accurate state estimation and 

the good tracking of the drive axis and the sense axis. The block diagram of ADRC is 
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shown in Fig. 1.9. In the figure, the ESO provides an estimate of the external 

disturbances and plant dynamics, and the demodulation block is applied to estimate 

the angular rate. 

 

 
Fig. 1.9 Block diagram of the ADRC and rate estimation [5] 

 

1.2.5 Summary  

The above control methods have their advantages and disadvantages. Because 

the assumptions and specifications of the controllers are different, it is difficult to 

compare the performance fairly.  

Adaptive control is the most widely-used method in MEMS gyroscope control. 

But the multiple tuning parameters of the controller make it difficult to realize in real 

world. H∞ control is a good method for robustness. But in [4], the quadrature error 

and the effect on the drive axis by the displacement of the sense axis were ignored. 

The disadvantage of AGC force rebalance control is that double-tuned high-Q filters 

are required to prevent the signals from interfering with the detectors. The 

disadvantages of ADRC control are that it is complicated and has an inherent 

assumption that the disturbance is already given. Therefore, a robust controller 

designed by QFT/H∞ control method is studied in this thesis.  
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1.3 Objectives and thesis organization 

The objective of this thesis is to design a controller to maintain the system 

performance when the characteristic parameters have variation. First, the PID control 

design using pole placement is presented. Then the QFT/H∞ theory is applied to 

design a robust controller [17]. The performance of the PID control, QFT/H∞ control 

and the results from other publications are also compared. 

In this thesis, the analysis of the micro vibrating ring gyroscope is given in 

Chapter 2. The controller design is discussed in Chapter 3. The simulation and 

comparison of the different controllers applied to the MEMS gyroscope are presented 

in Chapter 4. Finally, conclusion and future work are discussed in Chapter 5. 
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Chapter 2 Principle of MEMS gyroscope 
  

The overview of the micro vibrating ring gyroscope to be studied in this thesis is 

shown in Fig. 2.1. The design of this device is provided by Chung-Shan Institute of 

Science.  

The main sense component is a suspended ring supported by elastic suspension 

structures. The structure thickness is the thickness of the silicon substrate. There are 

electrodes of drive, sense, and control. Electrostatic forces are applied to drive and 

control the device. The ring is driven along the drive axis at the resonant frequency. 

The angular rate Ω is measured by detecting the capacitance change due to the gap 

variation along the sense axis. A feedback force is used to counteract the Coriolis 

force caused by the rotation, thus maintaining the amplitude of the sense mode at 

zero. 

 

 
Fig. 2.1 Overview of the micro vibrating ring gyroscope 

 

Coriolis acceleration, as illustrated in Fig. 2.2, is an apparent deflection of 

moving objects when they are viewed from a rotating reference frame [18]. If the 

Oscillation ring 
Spring 

Sensing electrode 

Anchor Drive and control 
electrodes 

Drive axis 

Sense axis 
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coordinate system along with the observer starts rotating around the z-axis with an 

angular rate Ω, the observer thinks that the trajectory of the object deflects toward the 

y-axis with the acceleration equal to 2vΩ where v is the velocity of the object as 

measured in the rotating reference frame. Although no real force has been acted on 

the object, to an observer who is attached to the rotating reference frame, an apparent 

force has arisen that is directly proportional to the rate of rotation Ω. This Coriolis 

effect is the basic operating principle of gyroscopes. 

 

 

 

 

The Coriolis acceleration is given by the vector cross product of the angular rate 

Ω and the velocity of the object v. In Fig. 2.2, the velocity is oriented along the x-axis 

and the Coriolis acceleration is along the y-axis. Therefore, a gyroscope in this 

configuration can detect the angular rate of the z-axis by measuring the deflected 

trajectory in the y-axis (sense axis). 

 

2.1 Operating principle 

In a vibrating ring gyroscope, energy is transferred between two vibration modes 

due to the action of the Coriolis acceleration. Since the Coriolis force is proportional 

v 

y 

z 

Rotation rate Ω 

Coriolis acceleration 

aCoriolis=2vΩ 

Moving mass 

x 

Fig. 2.2 Concept of the Coriolis acceleration 
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to the rate of rotation Ω. The angular rate can be determined by sensing the 

Coriolis-induced vibration.  

In an ideal vibrating ring gyroscope, the ring structure has two degenerate 

fundamental resonance modes which are shown in Fig. 2.3. These modes can be 

excited by appropriate driving signal. General MEMS gyroscopes are often driven by 

electrostatic force. The resonance of the drive mode has maximum amplitude at 0°and 

90° direction, and nodes A at the 45° direction. The long axis and short axis of the 

elliptic mode shape does not rotate when the angular rate is zero; therefore the 

position of the node does not move. If a displacement sensor is placed at the node 

position, the output is zero. Nevertheless, if there is an angular rate, the Coriolis force 

will make the axes of the mode shape rotate. We can regard this as the coupling of the 

drive mode and the sense mode under the effect of Coriolis force. 

 

 
(a)                               (b) 

 

 

In Fig. 2.3, the vibration direction of the sense mode is the node direction of the 

drive mode. If the angular rate Ω≠0, the sense axis will be driven by the Coriolis 

Resonant drive mode 

A 

Sense and control electrodes 

A 

Resonant sense mode 

Drive axis 

Sense axis Original position 

Fig. 2.3 Resonant modes of a vibrating ring gyroscope (a) drive mode, (b) sense mode 
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force. In this case, the displacement of node A is no longer zero; it is in direct 

proportion to Coriolis force.  

 

2.1.1 Non-ideal effects 

Usually there are non-ideal effects in the gyroscope, such as the system 

parameter variation, the quadrature errors, mismatch between the two resonant 

frequencies, etc.. The main reason of the system parameter variation is the fabrication 

process deviation. For instance, the etching rate of the structure decreases when the 

concentration of the etching solution decreases with time. The wear of the gyroscope 

would also change structure characteristics and cause system parameters to fall short 

of the requirements. The electrostatic spring softening effect is another important 

factor, too. The total spring constant of the structure decreases when the applied 

electrostatic force increases. If the amount of the static electricity is large enough, the 

parallel plate capacitor would even pull-in and the gyroscope would stop resonating 

until restarting the system. 

The quadrature error is another major source of error in MEMS gyroscopes. It is 

related to the erroneous coupling of the drive motion into the sense motion in the 

absence of a rotational rate. This coupling is caused by imperfections in the 

manufacturing process. More particularly, the coupling will occur whenever the 

support structures of the vibrating element are not perfectly orthogonal. The output 

signal induced by such drive error is usually referred to as the quadratic signal. In 

general, it has been assumed that the damping around the ring is symmetric, which 

means the quadrature error term only appears in the stiffness part. 

The other important non-ideal effect is the mismatch between the resonant 

frequencies. The vibrating ring gyroscope is a two-degree-of-freedom (2-DOF) 

dynamic system which includes drive and sense axes. The 2-DOF dynamic system 
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has two independent resonant frequencies, one is the drive mode resonant frequency

x xk mω = , and the other is the sense mode resonant frequency y yk mω = . When 

the stiffness values in the drive and sense directions are the same, i.e. kx = ky then the 

two resonance modes are matched, i.e. ωx = ωy. However, fabrication imperfections 

and environmental changes may drastically affect the suspension stiffness. If ωx ≠ ωy, 

the frequency response of the 2-DOF system has two resonant peaks, one at ωx, and 

one at ωy. On the other hand, if ωx = ωy, the frequency response of the 2-DOF system 

has one combined resonant peak, which will provide a much larger response 

amplitude due to coinciding drive and sense resonance peaks, as shown in Fig. 2.4. 

 

 
Fig. 2.4 Response of the overall 2-DOF system with varying drive and sense stiffness 
mismatch [6]. 

 

2.1.2 Open-loop mode of operation 

In the operation of gyroscopes, the drive axis is driven to resonance and the 

Coriolis force along the sense axis is detected. Both open-loop and closed-loop modes 

of operation can be implemented. 

Many MEMS gyroscopes are operated in open-loop mode due to its easy 
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implementation and direct control method. In an open-loop system, the driving force 

is only applied to the drive mode. Then the displacement of the sense axis caused by 

the Coriolis force is detected, which is in direct proportion to the angular rate Ω. 

The disadvantage of this mode is longer rise and the settling times. It can not be 

used when there are the quadrature error and system variation either. 

 

2.1.3 Closed-loop mode of operation 

In the closed-loop operation of the gyroscope, a feedback force is applied to the 

sense mode to counteract the Coriolis force, thus maintaining the amplitude of the 

sense mode at zero. The feedback force is therefore an indication of the magnitude of 

the angular rate. The disturbance and noise can be eliminated in the closed-loop mode. 

In this thesis, the closed-loop method will be applied to design the controller. 

 

2.2 Equation of motion 

Before designing the controller, the equations of motion and system parameters 

are derived. 

2.2.1 Ideal plant 

The MEMS gyroscope is modeled as a 2-DOF spring-mass-damper system with 

the drive mode displacement x and sense mode displacement y. The two modes are 

coupled by the Coriolis force. The governing equation of the ideal vibrating ring 

gyroscope can be expressed as:  

0 2 0
0 2 0

x

y

Fm x b m x k x
Fm y m b y k y

− Ω             
+ + =             Ω             

 

 

                (2.1) 

where m is the equivalent mass at resonant frequency, b is the damping coefficient, Ω 

is the angular rate, k is the spring constant, Fx and Fy are applied forces on the drive 
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and sense axes, respectively. The governing equation can be normalized and rewritten 

as: 

2

2

1 0 2 2 0
0 1 2 2 0

x

y

ux x x
uy y y

ξω ω
ξω ω

− Ω            
+ + =            Ω            

 

 

                 (2.2) 

where ω is natural frequency of two axes, ξ is damping coefficient, ux and uy are 

control inputs for the drive and sense axes. The equation of motion, Eq. 2.1, can be 

rewritten as state equations. 
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                (2.3) 

If the angular rate is zero, this equation can be decoupled into two transfer 

functions as: 

( )
( )

( )
( ) 2

1

x y

X s Y s
F s F s k bs ms

= =
+ +

                                     (2.4) 

The system then becomes two single-input single-output (SISO) systems, which can 

be controlled by PID controllers. 

 

2.2.2 Non-ideal plant 

Because of the non-ideal effects described in section 2.1.1, the governing 

equation has to be corrected as 

20
20

x xy x xy x

xy y xy y y

b m b k k Fm x x x
m b b k k Fm y y y
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     (2.5) 



 19 

where bx, by, kx, ky are the damping coefficient and spring constant of two axes, bxy and 

kxy are the quadrature errors. Τhe governing equation can be normalized and rewritten 

as: 

2 2

2 2

0

0

0

0

2 0 0 21 0
0 2 0 20 1
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where ξ0 is the nominal damping coefficient, ω0 is the nominal natural frequency, ∆ξx, 

∆ξy, ∆ωx, ∆ωy are the variations of the respective parameters, and 2
xyω is the quadrature 

error caused by stiffness coupling. From Eq. 2.6, the transfer function of the drive and 

sense axes can be expressed as: 

( ) ( )
( )

( ) ( )
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2 2

2 2

1
2
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y y y y

X s
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U s s s

Y s
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U s s s

ξ ω ω

ξ ω ω

= =
+ +

= =
+ +

                                 (2.7) 

where Ux and Uy are the control input of the drive and sense axes, respectively.  

 

2.3 Parameters of the MEMS gyroscope 

The layout of the micro vibrating ring gyroscope is shown in Fig. 2.5. The 

normalized equations of motion, as shown in Eq. 2.6, were applied to the controller 

design and simulation in this thesis. 
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Because the system is operated in the resonance mode, the modal analysis of the 

ring structure was first performed by using finite element method. The first four 

modes are shown in Fig. 2.6. Fig. 2.6(a) and Fig. 2.6 (b) are translation modes which 

are not the operation mode. Fig. 2.6 (c) and Fig. 2.6 (d) are the desired drive and sense 

modes. Because the frequencies of the two modes are assumed to match each other, 

the gyroscope is assumed to be operated in mode 3 whose resonance frequency is 

10220Hz and equivalent mass is 1.251×10-6kg.  

In addition to the resonant frequency and the equivalent mass, the quality factor 

and damping coefficient are found experimentally. From the test data provided by 

Chung-Shan Institute of Science and Technology, the quality factor is about 450 and 

thus the damping coefficient is 1 2 1 900Qξ = = . The structure thickness is 100µm, 

and the capacitance gap is 4.5µm.  

 

 

Sense axis 

Drive axis 

Fig. 2.5 layout of the micro vibrating ring gyroscope 
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(a) f0=10071Hz                   (b) f0=10100Hz 

  

(c) f0=10220Hz                   (d) f0=10344Hz 

Fig. 2.6 Modal analysis (a) mode1, (b) mode2, (c) mode3, (d) mode4 

 

The lumped and operation parameters of the system are shown in Table 2.1. 

Simulink was used to simulate the dynamic response of the system and the 

performance of the controller. System specifications are shown in Table 2.2. The 

amplitude of the drive axis is controlled at 1um, and the sense axis is assumed to be 

static. The maximum angular rate to be measured is 100°/sec. The allowed variation 

of the system parameters to be considered in this thesis is 10%. The settling time is 

0.2ms and the maximum overshoot is 10%.  
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Table 2.1 System parameters 

Structure thickness 100µm 
Capacitance gap 4.5µm 
Quality factor Q 450 

Resonant frequency f (ω) 10220Hz (64214rad/sec) 
Equivalent mass 1.251×10-6kg 

Damping coefficient ξ 1.11×10-3 
 

Table 2.2 System specifications 

Angular rate Ω 0~100°/sec (0~1.745rad/sec) 
amplitude of drive axis 1µm 

Maximum overshoot Mo 10% 
Settling time ts 0.2ms 

Quadrature error 2
xyω  6421.4rad/sec (10% of resonant frequency) 

Uncertainty ∆ξ, ∆ω 10% 

 

2.4 Force balance control 

The concept of the force balance is often applied to the control of inertial sensors. 

Coriolis force is considered as a disturbance in the governing equation. The controller 

is designed to provide a feedback force to counteract the Coriolis force and the 

quadrature error to maintain the displacement of the sense axis at zero. Therefore, the 

coupled system can be modeled as two systems with the coupling viewed as 

disturbance, as shown in Fig. 2.7. The reference inputs of the two axes are 10-6sinωt 

and zero, respectively. The controller will be designed according to the loops in Fig. 

2.7. 
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2.5 Demodulation 

The rotation rate can be obtained through demodulation. In this thesis, the 

displacement of the sense axis is maintained at zero by a feedback force to cancel the 

Coriolis force and quadrature error terms from the drive axis. The normalized force 

can be expressed as: 

2 2y
y xy

F
u x x

m
ω= = − − Ω                                          (2.8) 

The angular rate Ω and the quadrature error 2
xyω can be derived by demodulating the 

feedback force uy. If the displacement x of the drive axis is represented by a sinusoidal 

signal x = Asinωt, the angular rate Ω can be demodulated from the feedback force uy 

by the multiplication by cosωt: 
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Fig. 2.7 Control loop of two axes 
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In Eq. 2.9, the high frequency signals 21 sin 2
2 xy A tω ω− and cos 2A tω ω−Ω can be 

filtered out by a low pass filter (LPF). Therefore, the angular rate Ω can be found 

from: 

LPF

cos
F yu t

A
ω

ω
⋅ 

Ω = − 
 

,                                         (2.10) 

where ( )LPFF ⋅ represents the function of a low pass filter. In the same way, the 

quadrature error 2
xyω can be demodulated from the feedback force uy by the 

multiplication of sinωt: 

2
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2 sin
F y
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u t
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ω
ω

⋅ 
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 
                                       (2.11) 

A second order filter attenuates higher frequencies more steeply than a first order 

filter. The transfer function of the filter is 

( )
( )LPF 2

1F
1

s
sτ

=
+

                                            (2.12) 

where τ is a time constant. The rolloff is 40 dB per decade at high frequency. Because 

the resonant frequency is about 10000Hz, the time constant τ of the low pass filter is 

chosen as 1×10-4, so that the high frequency (2ω) signals are attenuated by 12 dB. 

 

2.6 Summary 

In this chapter, the operating principle of the micro vibrating ring gyroscope, 

source and effects of system variation, and system parameters are presented. 
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Closed-loop control is used in this research. The displacement of the drive axis is to 

be controlled at the constant amplitude of 1µm; the displacement of the sense axis is 

to be maintained at zero. A feedback force is used to counteract the disturbance 

caused by Coriolis force and quadrature error. The angular rate Ω can be derived by 

demodulating the feedback force. The controller design will be discussed in Chapter 

3. 
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Chapter 3 Controller design 
  

The objectives of this research are to eliminate disturbance and to deal with 

parameter uncertainty. PID control is a general industrial control method and the 

QFT/H∞ control is a robust control method. These two methods are used to design the 

controllers in this chapter. The performances of these two controllers are compared by 

Simulink system in Chapter 4.  

 

3.1 System analysis 

In Chapter 2, the governing equations of the MEMS gyroscope and the system 

parameters were presented. From Eq. 2.4 and Table 2.1, the uncoupled transfer 

functions of the two axes are as follows: 

( )
5

2 2 2 9

1 7.99 10
2 142.7 4.123 10

mG s
s s s sζω ω

×
= =

+ + + + ×
                    (3.1) 

In this section, the characteristics of the transfer function in time domain and 

frequency domain are discussed. 

 

3.1.1 Characteristics in time domain 

If the Coriolis force is considered as an internal disturbance of the system, the 

government equation of the gyroscope can be decoupled to two independent transfer 

functions for the two axes, as shown in Eq. 3.1. For this standard second order system 

with the natural frequency 64214 rad / secω = and damping coefficient 1 900ξ = , the 

maximum overshoot Mo and settling time ts of the step response are [19]: 

21 99.65%
4.6 0.064sec

o

s

M e

t

πξ ξ

ξω

− −= =

= =
                                        (3.2) 
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The MATLAB simulation of the step response of the plant is shown in Fig. 3.1. From 

Eq. 3.2 and Fig. 3.1, the maximum overshoot is too large and the settling time of the 

open-loop system is too long. Therefore, a controller is needed to improve the 

transient response performance. The characteristic in frequency domain is listed in 

Table 3.1. 

 

 
Fig. 3.1 Step response of MEMS gyroscope 

 

3.1.2 Characteristics in frequency domain 

In frequency domain, the dominant poles of the uncoupled transfer function Eq. 

3.1 are derived as 71.35 64214 j− ± . The Bode plot is shown in Fig. 3.2. The original 

gain margin is infinite, and the phase margin is only 0.18°. If the gyroscope is 

operated in resonant frequency, it will have the largest amplitude and the drive voltage 

can be reduced. The characteristic in frequency domain is also listed in Table 3.1. 
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Fig. 3.2 Bode plot of MEMS gyroscope plant 

 

Table 3.1 Characteristics in time and frequency domains 

Time Domain 
Maximum overshoot Mo 99.65% 

Settling time ts (within 1%) 0.064sec 
Rise time tr (from 10% ~ 90%) 0.024ms 

Frequency Domain 
Dominant pole 71.35 64214 j− ±  

Gain margin ∞ 
Phase margin 0.18° 

 

3.2 PID control design using pole placement 

A proportional–integral–derivative (PID) controller is a generic control loop 

feedback mechanism widely used in industrial control systems. A PID controller 

attempts to correct the error between a measured variable and a desired set-point by 

calculating and then outputting a corrective action. The controller can be design by 

moving the poles to the new locations to satisfy the specifications. 
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3.2.1 PID controller 

Once the transfer function of the system is derived, the corresponding PID 

controller can be designed. The schematic of the closed-loop system with the PID 

controller is shown in Fig. 3.3. 

 

 

 

The PID controller includes three parameters: the Proportional, the Integral and 

the Derivative gains. The Proportional gain determines the reaction to current error, 

the Integral gain determines the reaction based on the sum of plant errors and the 

Derivative gain determines the reaction to the rate at which the error has been 

changing. The transfer function of a PID controller is 

1( ) 1 i
c p d p d

i

KG s K T s K K s
T s s

 
= + + = + + 

 
                          (3.3) 

where Kp is the proportional gain,  i p iK K T= is the integral gain, and d p dK K T= is 

the derivative gain. Because the specifications have been defined, the PID controller 

can be designed by pole placement [20] to move the poles to the appropriate place to 

satisfy the specifications.  

 

3.2.2 Pole placement method 

Pole placement is one of the control methods to make the system satisfy the 

specifications by moving the poles of the system to the appropriate places. In a 

closed-loop system, the pole placement has a direct effect on time response, such as 

r(t) 
PID 

y(t) 

− 
G 

+ 

Fig. 3.3 Schematic of the closed-loop system with a PID controller 
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rise time, settling time, maximum overshoot, etc.. The design starts with an 

assumption of what form the controller must take in order to control the given plant. 

Typically, specifications lead to the formation of a second order equation. Most of the 

final characteristic equation will have more than 2 poles, and additional desired poles 

must be determined. Algebra is used to determine the controller coefficients necessary 

to achieve the desired closed-loop poles with the assumed controller form. Typically, 

an integrator is used to drive the steady-state error towards zero. This implies that the 

final characteristic equation will have at least one more pole than uncontrolled 

system. 

 

3.2.3 Using pole placement to design PID controller 

From Eqs. 3.1 and 3.3, the characteristic equation of the closed-loop system with 

a PID controller, 1+GcG = 0, can be expressed as: 

( ) ( )2

3

2 2
CL

2 2

12

1 1 1       2

d p i

d p in

s s
m

s s

s K s K

m m m

s K

s K K K

ξω ω

ξω ω

+ + +

 +

Φ = + +

 = + ++ + 
 




                  (3.4) 

The desired characteristic equation is determined by the maximum overshoot and 

settling time in the specifications. Because there are three poles in Eq 3.4, it can be 

expressed as ( )( )2 2
desired desired desired2s a s sξ ω ω+ + + , where a is an extra pole. 

Comparing the coefficients of the desired characteristic equation with the closed-loop 

characteristic equation Eq. 3.4, the PID gains can be solved. 

In the time domain specifications, the maximum overshoot is 10% and the 

settling time is 0.2ms. So the desired damping coefficient ξdesired is 0.591 and the 

desired natural frequency ωdesired is 38300rad/sec from Eq.3.2. The extra pole is 

supposed to be at ten times of the natural frequency. But it was found in simulation 

that such an extra pole would make the closed-loop system unstable. Therefore, the 
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extra pole was placed at 1000x of the natural frequency, 73.83 10a = − × . The desired 

characteristic equation of the closed-loop can be expressed as: 

( ) ( )22 4 7
CL 45194 3.83 10 3.83 10s s s Φ = + + × + ×  

                    (3.5) 

The three gain parameters of the PID controller can be obtained by comparing Eq. 3.5 

with Eq. 3.4, as listed in Table 3.2. 

 

Table 3.2 PID controller gain 

 Result 
Kp 418.6 
Ki 1.363×107 
Kd 9.3×10-3 

PID 
3 2 79.3 10 418.6 1.363 10( )c
s sG s

s

−× + + ×
=  

 

3.3 QFT/H∞ Control 

Both Quantitative Feedback Theory (QFT) and H∞ design techniques have be 

developed for a long time [21]. The QFT and H∞ design techniques are popular robust 

feedback control schemes which can achieve the desired system objectives no matter 

if there is any uncertainty. In this thesis, the two methods will be applied to design the 

controller. The standard schematic of the closed-loop system by QFT/H∞ design 

method is shown in Fig. 3.4. 
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  F r(t) 
K 

y(t) 

− 
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+ u 
+ 

+ 

+ 
+ 

Fig. 3.4 Schematic of the general closed-loop system with QFT/H∞ controller 
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3.3.1 QFT design technique 

QFT was first introduced by Horowitz and Sidi [21]. This method translates the 

time domain specification to the frequency domain and uses Nichols Chart to find the 

boundary conditions. It also makes the system output satisfy the desired specifications 

by moving the poles and the zeros of the controller to the suitable positions. 

The general problem is how to design the controller K and prefilter F in Fig. 3.4. 

Fig. 3.4 is a two degrees of freedom (TDOF) feedback system, which includes plant P, 

controller K, prefilter F, input signal r, output signal y, disturbance d, and sensor noise 

n. The controller K is the first design degree of freedom used to reduce system 

sensitivity from disturbance and noise. The prefilter F is the second design 

degree-of-freedom used to satisfy the required performance. Thus the plant output is 

bounded and constrained by the given specifications. 

Two boundary conditions in time domain, Bu and Bl, are given, so that the output 

y(t) is bounded by: 

( ) ( ) ( )l uB t y t B t≤ ≤                                             (3.6)  

These tracking specifications in the time domain are translated into the frequency 

domain as the upper bound and the lower bound, as shown in Fig. 3.5, 

( ) ( ) ( )l uB T j Bω ω ω≤ ≤                                         (3.7) 

where 

( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( )

1

1

 is a prefilter, and

 is the loop gain.
1

Y s
T s F s T s

R s

F s

K s G s
T s

K s G s

= =

=
+

                             (3.8) 

Because the QFT theory is part of the robust control design, the sensitivity is the 

most important factor in studying the parameter variation effect. The definition of 



 33 

sensitivity specification is expressed as [17]: 

( ) ( )
( )
( )

max

max

   or   T T
G G

T jT T T TS s S s
G G G G G j

ω

ω

∆∂ ∆
≡ ≅ ≡

∂ ∆ ∆
                  (3.9) 

where ( )
max

T jω∆ and ( )
max

G jω∆  are the maximum variation of ( )T jω  and

( )G jω , which is 10% in this thesis. In the QFT theory, the upper bound is an under 

damped system, 1ξ < , and the lower bound is an over damped system, 1ξ > . Thus, 

the specifications in time domain can be applied to set the upper bound and the 

lower bound conditions. 

With the given boundary condition, Nichols Chart is applied to design the 

controller. In this thesis, the controller is designed by H∞ method. The prefilter F(s) 

will move the closed loop gain T1(s) to within the upper bound and the lower bound, 

as shows in Fig. 3.5, to fit the specifications by adding poles and zeros. 

 

 
Fig. 3.5 Unity feedback closed-loop for different plant cases [17] 

 

3.3.2 H∞ control method [22] 

The H∞ control method is applied to design a robust controller when system 

parameters change or disturbance exists. In the H∞ control theory, as shown in Fig. 3.6, 

K is the controller and G is the generalized plant including the plant and the weighting 
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functions. It can be written as: 

11 12

21 22

           
   

           
G Gz w w

G
y u G G u

      
= =       

      
                            (3.10) 

where w is a vector signal including noises, disturbances, and reference signals, z is a 

vector signal including all controlled signals and tracking errors, u is the control 

signal, y is the measurement. 

 

 
Fig. 3.6 H∞ control structure 

 

According to Eq. 3.10, the transfer functions of w and z are derived as shown 

below: 

( )

( )

1
11 12 22 21

1
11 12 22 21

zw

zw

z G G K I G K G w T w

T G G K I G K G

−

−

 = + − ≡ 

= + −
                          (3.11) 

where Tzw is transfer matrix of w to z. The purpose of H∞ control is to design a 

controller K to suppress the controlled value z. The magnitude of Tzw is defined by the 

H∞ norm and can be expressed as: 

( ){ }supzw zwT T jω σ ω
∞

=                                        (3.12) 

where ( )σ ⋅ means the maximum singular value, and ( )sup ⋅ means supremum or least 

upper bound, and is defined as the smallest real number that is greater than or equal to 

this number. It is the maximum value of the gain in the Bode plot, and the maximum 

distance to the origin in the vector diagram. According to the input signal and the 

output signal shown in Fig. 3.6, the H∞ norm of Tzw can be redefined as 

G 

K 

z 

y u 

w 
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( ) 2

2

  
  sup

  zw

z
T s

wω∞
=                                         (3.13) 

From Eq. 3.13, it can be observed that the problem of H∞ control is to minimize 

the transfer matrix of w to z in the form of H∞ norm, and satisfy ( )  zwT s γ
∞

< , 

which γ is the chosen positive number. 

 

3.3.3 Combined QFT/H∞ control  

The combined QFT/H∞ control method does not use the Nichols Chart to design 

the controller. Instead, the controller K is first calculated by the H∞ optimization 

control method, and then the prifilter F is added to make the output fit the 

performance requirement. The design steps are shown in Fig. 3.7, where the most 

important part of the design is to transfer the specifications of the system into 

appropriate weighting functions. Step 1 is finding out the weighting function, and 

translating into the H∞ control structure as shown in Fig. 3.6. Step 2 is using H∞ 

method to calculate controller K, and using the boundary condition to define prefilter 

F. 

The closed-loop system with the controller K can be stabilized by minimizing the 

sensitivity and the disturbance w can have the minimal effect on the expectable output 

z. A function D(ω) is given to specify the disturbance rejection specifications, and the 

sensitivity function has satisfied ( ) ( )S j Dω ω≤ . The sensitivity function is 

constrained to satisfy this inequality ( ) ( )1 1W j S jω ω ≤ , where the weighting 

function W1 is used to limit the sensitivity function and can be chosen by

( ) ( )
( )1

D
W j

S j
ω

ω
ω

≤ . 
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The sensor noise amplification is not expected to exist in high frequency. If the 

high sensor noise amplification can be reduced, the cost of feedback design can be 

also reduced. After given nominal plant G0, the transfer function from noise n to 

controller output u is
01un

u KT
n KG

−
= =

+
. It stands for the amplifier effect of the sensor 

noise. The weighting function W2 has to satisfy ( ) ( )2 1unW j T jω ω ≤ . A good control 

system should have proper loop-gain, which reduces the sensor noise at high 

+ Specification 
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Fig. 3.7 QFT/H∞ design step 
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frequency. This property is considered in choosing W2 and W1. It is found practical 

and efficient here to use the control weighting function W2 as a tuning parameter in 

optimization process. 

Considering the parameter variations, if the multiplicative perturbation modeling 

structure of the plant is used [17], as shown in Fig. 3.8, then G can be represented by

( )0G G I G= + ∆ , where ∆G is the error of multiplicative model. This structure allows 

the modeling of various plant uncertainties, and the condition for stable closed-loop 

systems [22, 23] is 

0 0
3

0 0

1     or     1
1 1

KG KGP W T
KG G KG ∞

∞ ∞ ∞

< ∆ ⋅ ≡ ⋅ <
+ ∆ +

             (3.14) 

Therefore, the weighting function W3 can be found by ( )
( ) ( )3

0

1
G j

W j
G j

ω
ω

ω
∞

− < . It is 

used to limit the complementary sensitivity function T=1-S and to ensure the 

closed-loop system of multiplicative perturbation model is stable.  

 

 

 

In short, the three weighting functions satisfying Eq. 3.15 are necessary and 

sufficient for the solution of the proposed QFT/H∞ design technique. 

G0 

K 

y u 
+ 

+ 

G∆  

G 

Fig. 3.8 Multiplicative perturbation model of the plant 
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( ) ( )
( ) ( )

( ) ( )

1

2

3

1

1

1

un

W j S j

W j T j

W j T j

ω ω

ω ω

ω ω

∞

∞

∞

≤

≤

≤

                                         (3.15) 

 

3.3.4 Design of QFT/H∞ controller for MEMS gyroscope 

The flow chart of the QFT/H∞ design method is shown in Fig. 3.9. First, the 

settling time and maximum overshoot specifications are applied to define the upper 

bound and lower bound. The upper bound uses the specifications to calculate that the 

damping coefficient ξ = 0.59 and natural frequency ωn = 38301. Since the lower 

bound is an over damped system, the damping coefficient is assumed as ξ = 1.1, and 

the natural frequency is shown as ωn = 20543. The two bounds are defined as 

( ) ( )2 2 22n nB s s sω ξω ω= + +  and can be expressed as: 

( )

( )

9

2 9

8

2 8

1.467 10
45194 1.467 10

4.22 10
45194 4.22 10

u

l

B s
s s

B s
s s

×
=

+ + ×
×

=
+ + ×

                                (3.16) 

To relax the restrictions in high frequency and to maintain the system 

performances, the pole (s+3.83×105) to the lower bound and the zero (s+2.05×105) to 

the upper bound are added. The two bounds become 

( )

( )
( )

9
5

2 9

8

2 8
5

1.467 10 1
3.83 10

46194 1.467 10
4.22 10

46194 4.22 10 1
2.05 10

u

l

s

B s
s s

B s
ss s

 × + × =
+ + ×

×
=

 + + × + × 

                   (3.17) 

The three weighting functions of the plant are found by Eq. 3.15 and Fig. 3.9, 

( )

( )
( )

2 8 13

1 2

2

2

1.018 10 3.142 10
70128 140.26 0.0701

0.1

39

s sW s
s s

W s

W s

+ × + ×
=

+ +
=

=

                             (3.18) 



 39 

After the weighting functions are found, the “hinflmi” instruction in MATLAB is used 

to solve for the LMI-based H∞ controller. The prefilter F is then added to adjust the 

frequency response so that it completely lies between the upper bound and the lower 

bound. The controller and the prefilter are as follows:  

( )

( )

10 2 9

2 5 1

4

5 5

4

1

4

1.885 10 ( 28.34)( 10 4.121 10 )
( 0.02)( 0.0014)( 6.

2.324

0.132 (s+2.5
875 10 1.193 10 )

10 10
1

) (s+2 )
(s+6 ) ( 150 s+ )0

K s

F

s s s
s s s s

s

× + + × + ×
+ + + × + ×

×
×

=

×
×

=
          (3.19) 
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( ) ( )1 1max max  boundT j T jω ∆ ω≤

Find the controller K by H∞ method 
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Fig. 3.9 Flow chart of combined QFT/H∞ design 
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The frequency response of the system with controller and prefilter is shown in 

Fig. 3.10. The red solid lines are the response of the family of plants with 10% 

variation in natural frequency and damping coefficient, as described in section 2.3. 

 

 

Fig. 3.10 Frequency response of the closed-loop system, x(s)/r(s), with controller 
designed by QFT/H∞ method 

 

3.3.5 QFT/H∞ method discussion 

The QFT/H∞ control method discussed above is different from conventional 

QFT/H∞ control in a number of aspect. In this thesis, the Coriolis force and the 

quadrature error are regarded as inner disturbances of the system before the plant, as 

shown in Fig. 3.7. But in standard QFT/H∞ control method, the disturbances are after 

the plant, as shown in Fig. 3.4. Therefore, the way of deriving the weighting functions 

needs to be modified. 

 

3.4 Summary 

A PID controller and a QFT/H∞ controller are designed according the same 
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specifications. The former is the general control method and can be easily realized. 

The latter is a robust controller over fabrication errors and model uncertainties. The 

simulation results with the two controllers and the robustness comparison are 

presented in Chapter 4. 
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Chapter 4 Simulation and Discussion 
  

This Chapter presents the Simulink simulation of the open-loop system, the PID 

control, QFT/H∞ control, and comparison with other publications. The reference 

position of the drive mode has an amplitude of 1µm at the resonance of 64214 rad/sec. 

The angular rate 100°/sec is added to the system at t = 0.1sec. The Simulink model of 

the plant is shown in Fig. 4.1. All the simulation is with double precision of 10-14. 

 

 

 

 

 
 
 
 

 
Fig. 4.1 Simulink model of the gyroscope (a) overview (b) detail of Subsystem for 
drive axis (c) detail of Subsystem for sense axis 

 

4.1 Open-loop system 

The governing equation of the drive axis can be rewritten as: 

( )22xF mx bx kx m x x xξω ω= + + = + +                                 (4.1) 

The desired trajectory of the drive axis is sinx A tω= , cosx A tω ω= and

2 sinx A tω ω= − , where A = 1×10-6m. The other parameters can be found in Table 2.1. 

In the ideal case, the drive force to drive the displacement of the drive axis at 1µm at 

the resonant frequency can be found from Eq. 4.1 as 51.15 10 cos 64214xF t−= × N. The 

Coriolis force from sense axis is ignored in the calculation because the displacement 

(a)                              (c) 

(b) 
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of the drive axis is much larger than the displacement of the sense axis. Because the 

displacement of the sense axis is to be maintained at zero, the reference input of the 

sense axis is zero. For an open-loop system, only the Coriolis force acts on the sense 

axis. The governing equation of the sense axis can be expressed as:  

( )22 2yF m x my by ky m y y yξω ω= − Ω = + + = + +                          (4.2) 

With Ω = 100°/sec and other parameters from Table 2.1, Eq. 4.2, becomes: 

( ) ( )6 9 71.251 10 142.7 4.123 10 2.8 10 cos 64214y y y t− −× + + × = − ×           (4.3) 

The differential equation can be solved and the displacement of the sense axis is 

found as ( )82.44 10 sin 64214y t−= − × m. 

 

4.1.1 Model verification 

The force derived from Eq. 4.1, 51.15 10 cos 64214xF t−= × N, can be used to 

drive the lumped model Eq. 2.1, which has a quality factor Q = 450, to a displacement 

of 1µm at resonance. However, the same force, when applied to finite element 

modeling, will cause a displacement larger than that allowed by the spring structures 

outside the vibrating ring due to a much larger quality factor in the numerical 

calculation. Therefore, the force is reduced by a factor of 100 to 

71.15 10 cos 64214xF t−′ = × N before it is used in the finite element modeling to verify 

the lumped model. As shown in Fig. 4.2, a pair of sinusoidal forces xF ′  in opposite 

directions are exerted on the ring in the direction of the drive axis. The deformation of 

the structure at resonance is shown in Fig. 4.3. As shown in Fig. 4.4, the maximum 

displacement of x = 4.32µm occurs at f = 10220.37Hz, which is the same as that used 

in the lumped model. The displacement at low frequency is 4.3×10-5µm. The quality 

factor of the system in the simulation can be derived as 1×105.  
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The reduced force xF ′  drives the finite element model to a displacement of 

4.32µm at resonance, but only to a displacement of 0.01µm in the lumped model. This 

means the quality factor of the finite element model is 432 times larger than that of 

the lumped model. However, the ratio of the two factors is only Qfinite element/Qlumped = 

1×105/450 = 222. The difference may be due to the numerical errors and should be 

discussed in the future. 

 

 

Fig. 4.2 Harmonic analysis 

 

 

Fig. 4.3 Deformation of the structure at resonance 
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Fig. 4.4 Harmonic response of the finite element model 

 

4.1.2 Simulation  

The Simulink model of the open-loop system is shown in Fig. 4.5 with the “Plant” 

block shown as Fig. 4.1 The “Omega_in” block is a step input at t = 0.1sec with a step 

value of 1.745. Fig. 4.6 shows the simulation result of the drive force on the drive axis. 

The left part is for 0 2t< < sec and the right part is for 0.0995sec 0.1005sect< < . The 

same apply to the other time domain simulation results in the following. Fig. 4.7 

shows the simulation result of the Coriolis force produced by the drive axis on the 

sense axis. Fig. 4.8 shows the displacement of the drive axis. The Coriolis force 

produced by the sense axis on the drive axis is ( )92 6.84 10 cos 64214m y t−Ω = × N, 

which is much smaller than the drive force. Therefore, the Coriolis force produced by 

the sense axis almost has no effect on the drive axis. Fig. 4.9 shows the simulation 

result of the displacement of the sense axis. Without a controller, the settling time is 

64 ms. However, the responses of the two axes have no overshoot. 
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Fig. 4.5 Simulink model of the open-loop system 

 

  
Fig. 4.6 Input force on the drive axis in the open-loop system 

 

  
Fig. 4.7 Coriolis force from the drive axis on the sense axis in the open-loop system 
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Fig. 4.8 Displacement of the drive axis in the open-loop system 

 

  
Fig. 4.9 Displacement of the sense axis in the open-loop system 

 

The open-loop response of the system with a quadrature error of

2 6421.4 rad / secxyω =  is shown in Fig. 4.10 and Fig. 4.11. The force produced by 

quadrature error term is 2 98.03 10 sin 64214xym x tω −− = − × N. The simulation result of 

the force on the sense axis is shown in Fig. 4.10. The simulation result of the 

displacement of the sense axis is shown in Fig. 4.11. The response before 0.1sec is 

caused by the quadrature error. The response after 0.1sec is caused by the Coriolis 

force and the quadrature error. The calculated and simulated amplitudes of various 

signals are shown in Table 4.1. The settling time in Fig. 4.8 and Fig. 4.9 is 50ms, 

which is longer than the specification. The amplitude of the sense axis and the effect 

of a controller will be compared in the following sections. 
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The Coriolis force on sense axis, 2m x− Ω , and the quadrature error term, 
2
xym xω− , can be calculated. It is found that the Coriolis force is 35 times larger than 

the quadrature error term, therefore the quadrature error can be neglected at 

secΩ =100  . 

 

  
Fig. 4.10 Force on the sense axis in the open-loop system with quadrature error 

 

  
Fig. 4.11 Displacement of the sense axis in the open-loop system with quadrature 
error 
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Table 4.1 Calculated and simulated response amplitude of the open-loop system 

 Calculations (amplitude) 
Simulations (amplitude) 

Without quadrature error With quadrature error 

Fx (N) 51.15 10−×    

Fy (N) 72.80 10−×  72.80 10−×  72.80 10−×  

x (m) 61.00 10−×  61.00 10−×   

y (m) 82.44 10−×  82.46 10−×  82.46 10−×  

 

4.2 PID controller using pole placement 

The PID controller designed in section 3.2 is used to control the gyroscope. The 

Simulink model is shown in Fig. 4.12. In the force balance control loop, the controller 

output on the sense axis is the feedback force. It is equal to the Coriolis force and 

proportional to the angular rate. Therefore the controller output is used in the 

following to discuss its performance. 

 

 

Fig. 4.12 Simulink model of the closed-loop system with a PID controller 
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Fig. 4.13 and Fig. 4.14 show the simulation results of the controller output on the 

drive axis and the sense axis. On the drive axis, the amplitude of the closed-loop 

controller outputs almost equals the one of the open-loop input force. On the sense 

axis, the closed-loop controller output almost can cancel the open-loop Coriolis force. 

Fig. 4.15 and Fig. 4.16 show simulation results of the displacements of the two axes. 

The displacement of the drive axis can be controlled at 1µm amplitude whether the 

quadrature error exists or not. The displacement of the sense axis can be controlled at 

4.924×10-11 m, which is much smaller than that in the open-loop system as shown in 

Fig. 4.11. The effect of the controller is shown in Fig. 4.17 where the angular rate 

100°/sec is added to the system at t = 0.1sec and the PID controller is turned on at t = 

0.2sec. From Fig. 4.17, it can be seen that the displacement is reduced from 10-8m to 

10-11m in 0.2ms. The demodulated angular rate is shown in Fig. 4.18 with a settling 

time of 0.7ms. The simulation results are summarized in Table 4.2. 

 

  
Fig. 4.13 Controller output on the drive axis in the closed-loop system with a PID 
controller 
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Fig. 4.14 Controller output on the sense axis in the closed-loop system with a PID 
controller 

 

  
Fig. 4.15 Displacement of the drive axis in the closed-loop system with a PID 
controller 

  
Fig. 4.16 Displacement of the sense axis in the closed-loop system with a PID 
controller 
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Fig. 4.17 Effect of the PID controller on the displacement of the sense axis 

 

  
Fig. 4.18 Angular rate of the close-loop system with a PID controller 

 

Table 4.2 Simulation results of the closed-loop system with a PID controller for Ω = 
100°/sec 

 
Simulations(amplitude) 

Without quadrature error With quadrature error 

Fx (N) 51.15 10−×  51.15 10−×  

Fy (N) 72.80 10−×  72.79 10−×  

x (m) 61.00 10−×  61.00 10−×  

y (m) 114.92 10−×  114.92 10−×  

Demodulated Ω (rad/sec) 1.74 1.73 

 

4.3 QFT/H∞ control 

The Simulink model of the closed-loop system with a QFT/H∞ controller is 

Controller on 

Controller off 
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shown in Fig. 4.19. The “H_inf controller” block and the “Prefilter” block were 

discussed and designed in section 3.3 and shown in Eq. 3.19. Compared to Fig. 4.12, 

the QFT/H∞ control loop is similar to the PID loop except for the additional prefilter. 

 

 

Fig. 4.19 Simulink model of the closed-loop system with a QFT/H∞ controller 

 

Fig. 4.20 and Fig. 4.21 show the controller outputs Fx and Fy on the drive the 

sense axes. Fig. 4.22 and Fig. 4.23 show the displacements of the two axes. From Fig. 

4.22, it is obvious that the displacement of the drive axis is almost not effected by the 

Coriolis force from the sense axis and the quadrature error. This is because that the 

two forces are much smaller than the drive force. From Fig. 4.23, the displacement of 

the sense axis can be controlled at 7.88×10-11 m. The demodulated angular rate is 

shown in Fig. 4.24. It can be observed that the demodulated angular rate is smaller 

than the input step value. Even for 0.1sect < , there is a non-zero output when the 

input angular rate is zero. But this situation did not happen in the PID controller in the 

previous section. The difference of the two control loops is the prefilter. If the prefilter 

is removed temporarily, the force on the sense axis is shown in Fig. 4.25. Obviously 
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the prefilter causes a response delay. Because the reference input is a harmonic signal 

at the resonance frequency, the transfer function of the prefilter Eq. 3.19 can be 

evaluated as: 

( )
0.562

1.166
1.728

6.05 3.0864214
1.12 7.06

j
j

j
j eF j e
j e

−+
= = =

− +                        (4.4) 

The magnitude of the gain is 1, and the phase is -1.166 rad/sec. In the presence of the 

system delay caused by the prefilter, the demodulated signal becomes: 

( ) ( ) ( ) ( )
( )

2

2

LPF

cos 2 cos ,  where sin

cos 1' F cos sin ,  where 1.166.
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ω ω
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 



   (4.5) 

The demodulated output 'Ω  is different from the input rate Ω if 0φ ≠ . With the 

values of Ω, ω, φ, and 2
xyω  discussed above, it is found ' 0.046 / secΩ = −   when 

0Ω =  and ' 0.64 / secΩ =   when 100 / secΩ =  , which is close to the simulated 

results. 

Since the system works at a single frequency, the prefilter can be removed from 

this loop to eliminate the system delay. The angular rate without the prefilter in the 

control loop is shown in Fig. 4.26. The simulation results are summarized in Table 

4.3.  

  
Fig. 4.20 Controller output on the drive axis in the closed-loop system with a QFT/H∞ 
controller 
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Fig. 4.21 Controller output on the sense axis in the closed-loop system with a QFT/H∞ 
controller 

 

  
Fig. 4.22 Displacement of the drive axis in the closed-loop system with a QFT/H∞ 
controller 

 

  
Fig. 4.23 Displacement of the sense axis in the closed-loop system with a QFT/H∞ 
controller 
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Fig. 4.24 Angular rate of the close-loop system with a QFT/H∞ controller 

 

  
Fig. 4.25 Feedback force of sense axis of close-loop system by QFT/H∞ control with 
and without prefilter 

 

  
Fig. 4.26 Angular rate of close-loop system by QFT/H∞ control with and without 
prefilter 
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Table 4.3 Simulation results of the closed-loop system with a QFT/H∞ controller for 
Ω = 100°/sec 

 
Simulations(amplitude) 

Without quadrature error With quadrature error 

Fx (N) 51.15 10−×  51.15 10−×  

Fy (N) 72.80 10−×  72.80 10−×  

x (m) 61 10−×  61 10−×  

y (m) 117.88 10−×  117.88 10−×  

Ω with prefilter (rad/sec) 0.67 0.62 

Ω without prefilter (rad/sec) 1.75 1.75 

 

4.4 Robustness 

In this section, the robustness of the open-loop system, the PID control loop and 

the QFT/H∞ control loop are compared. It is assumed that the quadrature error exists, 

and there are variations in the damping coefficient and the natural frequency. In 

addition, the feedback forces on the sense axis are discussed to avoid demodulation 

error. Because the open-loop system does not have feedback control, the action force 

on the sense axis in the open-loop system should be multiplied by -1 to be compared 

with controller output on the sense axis in the closed-loop system.  

The robustness comparisons of three controllers are shown in Fig. 4.27. Fig. 4.27 

(a) shows the simulation results without system variation; Fig. 4.27 (b) is the results 

with 10% variation in natural frequency; Fig. 4.27 (c) is the results with 10% variation 

in damping coefficient; Fig. 4.27 (d) is the results with 10% variation in both the 

natural frequency and damping coefficient. The simulation results are summarized in 

Table 4.4. It is assumed that the variations of the two axes are the same in this 

simulation. The first row of Table 4.4 shows the forces without any system variations. 
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The other rows show the forces and relative errors for various system variations. The 

relative error is calculated by ( )0 0 100%x x x− × , where x and x0 are the forces with 

and without system variations in the same column. As shown in Table 4.4, when there 

is no variation, the force on the sense axis in the open-loop system is 2.8×10-7N; the 

one in the close-loop system with a PID controller is 2.79×10-7 N; the one in the 

close-loop system with a QFT/H∞ controller is 2.8×10-7 N.  

From Table 4.4, the robustness of QFT/H∞ controller is better than the PID 

controller, and the influence of natural frequency is larger than the damping 

coefficient. From Fig. 4.27, it can be observed that the settling times of the PID 

control and the QFT/H∞ control are both smaller than 0.2ms and satisfy the 

specification for all the variations considered in the simulation. 

Unequal variations in the two axes were also simulated. For the system with 10% 

variation in natural frequency of the sense axis only, the simulation results are 

summarized in Table 4.5. The relative error of the feedback force on the sense axis is 

12.5% for the PID controller and 3.2% for the QFT/H∞ controller. Therefore, even 

when there are unequal variations or frequency mismatch between the two axes, the 

QFT/H∞ controller still has better performance. 
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(a)                               (b) 

  
(c)                               (d) 

Fig. 4.27 Robustness comparisons of three controllers (a) without system variation, (b) 
with 10% variation in natural frequency, (c) with 10% variation in damping coefficient, 
(d) with 10% variation in both the natural frequency and damping coefficient 

 

Table 4.4 Robustness comparison 

 
Variation (%) Amplitude of force on the sense axis (N) 

ω ξ Open-loop PID control QFT/H∞ control 

1 0 0 ( )72.80 10 0%−×  ( )72.79 10 0%−×  ( )72.80 10 0%−×  

2 10 0 ( )92.76 10 99%−×  ( )72.12 10 24%−×  ( )72.65 10 5.6%−×  

3 0 10 ( )72.54 10 9.2%−×  ( )72.80 10 0.2%−×  ( )72.80 10 0%−×  

4 10 10 ( )93.15 10 99%−×  ( )72.12 10 24%−×  ( )72.64 10 5.6%−×  
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Table 4.5 Robustness comparison with frequency mismatch 

 
Variation (%) Amplitude of force on the sense axis (N) 

ωx ωy PID control QFT/H∞ control 

1 0 0 ( )72.79 10 0%−×  ( )72.80 10 0%−×  

2 0 10 ( )72.44 10 12.5%−×  ( )72.71 10 3.2%−×  

 

4.5 Comparison with other publications 

4.5.1 AGC force rebalance control  

The QFT/H∞ control method was compared to the AGC force rebalance control 

in [16]. The dynamic parameters of the MEMS vibratory gyroscope in [16] are listed 

in Table 4.6; the block diagram of the system is shown in Fig. 1.8. 

 

Table 4.6 Dynamic parameters of that MEMS vibratory gyroscope in [16] 

Resonant frequency f (ω) 7816 Hz (49109 rad/sec) 
Mass 3.11×10-6kg 

Spring coefficient k 7500 Nm-1 
Damping coefficient ξ 0.0014 

Amplitude of drive axis 0.32 µm 

 

The QFT/H∞ control method is used to design the controller for the system in 

Table 4.6 with the following results: 

( )

( )

10 2 9

4 2 5 10

5

4

0.4 (s+2 )
(
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( 5.887 10 9.023 10 )
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1 )0

s s s
s s s

K

s

s
s
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−
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+ + ×

×
=

+ × + ×

×

=

        (4.6) 

The drive mode has an amplitude of 0.32µm at the resonance of 49109 rad/sec. A 0.5 

rad/sec angular rate was added to the system at 0.01 sect = . The simulation result by 



 61 

the QFT/H∞ controller and AGC force rebalance controller [16] are shown in Fig. 4.28 

and Fig. 4.29. Obviously, the transient performance of QFT/H∞ control is better than 

the result in [16]. 

 

 

Fig. 4.28 Simulation result with QFT/H∞ control 

 

Fig. 4.29 Step response of the simulation results [16] 

 

4.5.2 H∞ control  

The QFT/H∞ control method is also compared to the H∞ control method in [4]. 

The system block diagram of the MEMS gyroscope in [4] is shown in Fig. 1.7. A 

conventional H∞ control method is used to design the H∞ controller. Though the 

parameters of this plant [4] are different from the plant in this thesis, the equations of 

motion of the gyroscope are the same. The concept of H∞ control is applied to both 

controller designs. Therefore, we can still compare their performance in robustness. 
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For resonant frequency variation of 2% and 4%, Fig. 4.30 shows that controller output 

has variation of 0.5% and 2.5%, respectively [4]. 

Fig. 4.31 is the results with the same resonant frequency variations by QFT/H∞ 

control. The variation of the QFT/H∞ controller is 0.3% and 1.7%, respectively. It can 

be observed that the robustness and transient performance of QFT/H∞ control is better 

than the result in [4]. In addition, the result of the QFT/H∞ controller and H∞ 

controller in [4] are output feedback and state feedback, respectively. In reality, to 

realize the controller using output feedback is easier than using state feedback. 

Therefore, the QFT/H∞ controller can be realized more easily than the H∞ controller. 

 

 

Fig. 4.30 Controller output resonant frequency variation by H∞ controller in [4] 

 

Fig. 4.31 Simulation result with QFT/H∞ control 
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4.6 Summary 

In this chapter, the QFT/H∞ control method was compared to the PID control and 

other control methods. Both PID control and QFT/H∞ control have good performance. 

The amplitude of the sense axis in the open-loop system is reduced from 10-8m to 

10-11m by using a PID controller or a QFT/H∞ controller. When there is a 10% 

variation in the system, the variation of response with a PID controller is 24%, and the 

variation of response with a QFT/H∞ controller is just 5.6%. Thus, the QFT/H∞ 

control has better robustness.  
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Chapter 5 Conclusion and Future Work 
 

5.1 Conclusion 

In this thesis, the PID controller and the QFT/H∞ controller are applied to the 

MEMS vibrating gyroscope. The amplitude of drive axis can be maintained at 1µm, 

and the amplitude of sense axis can be maintained at less than 10-4µm for both PID 

control and QFT/H∞ control. The performance of different control methods are 

simulated and discussed. When the natural frequency and the damping coefficient 

both have the variation of 10%, the variations of the response using QFT/H∞ and PID 

control are 5.6% and 24%, respectively. Therefore, the QFT/H∞ control method has 

better robustness when the fabrication errors and the model uncertainties exist. In 

addition, the transient performance of this control method is better than the AGC force 

rebalance control in [16]. The variations of the response of the QFT/H∞ control and 

the H∞ control in [4] are 1.7% and 2.5%, respectively. The robustness and transient 

performance of the QFT/H∞ control are better. Since the reference signal is at single 

frequency, the prefilter in the QFT/H∞ controller can be removed to eliminate the 

system delay and erroneous demodulation. In such a case, the loop becomes an output 

feedback loop, which is easier for realization compared to the conventional H∞ control 

which is a state feedback loop. 

 

5.2 Future work 

The transfer function of the QFT/H∞ controller is a 4th-order function. For 

realization, to reduce the order of the function to 3rd-order even 2nd-order may be 

required. In this thesis, the angular rate is 100°/sec and the Coriolis force is 35 times 

larger than the quadrature error term. In the future, it is necessary to consider the 
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effect on the system response caused by the quadrature error term when the angular 

rate is smaller. Besides, the effect on the system robustness caused by the structure 

asymmetry of the two axes when x ym m≠  should be considered. 
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