i * > 3GPP 2 Radix—4 ifs #nf% 578 %

A Radix-4 Turbo Decoder for 3GPP

g L - 3

"%%ﬁ]{i;

i# * ¥ 3GPP 2. Radix-4 R 2 F
A Radix-4 Turbo Decoder for 3GPP

B2 IFEER Student : Ying-Chao Liao
hERE I EVE Advisor : Shang-Ho Tsai
Bo:o2d 4
T E A1 E
AL /<
A Thesis

Submitted to Department of Electrical and Control Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master

In Electrical and Control Engineering

December 2008
Hsinchu, Taiwan, Republic of China

M 3GPP [V Radix-4 3 %ﬁ?’fﬁiﬁ?é

24 EPe TR TR

b

ZRUESFIPEZA AT (FLT) AL

% £

P = A B P [) ’%’WHW*@ﬁW[ﬁﬁrHPOHJ«mﬁlﬁﬁﬁ?%ﬁ
Fur:tl]gn » [i[F[’ijJu;’rH% ﬁFradlx -4 7]E[T‘TT‘:? A kLT radix-4 Uy Ir Ffi@?‘:ﬁ‘ F’?‘gﬁliﬁ RE R 0
fH radix-4 i %”EFﬁFEaLE'EJ%ﬁ [E*nﬁﬁ W radix-2 iy Pﬁi’ﬁFa“a 2 [ﬁﬁ rhﬂmmuﬁ/ FITES e el
if‘gf[ljra - [ﬁg*%&ﬁj [ﬁ DRTTETI[1.62% » g LTI 3k }ﬁ*ﬂ |EIF~Log-MAP

0.025dB - "] li%—‘\F'Jﬁ‘ﬁ“ Al] liﬁi?‘_* 7% B (1™ | dual-RAM 2V (5% single-RAM >
%ﬁii[ﬂﬁbpﬁ?57$%bﬁ§bﬁ}’n8?% g# i RLFAE] TSMC 0.18 um CMOS BJRd » # =
HFF T 167TMHz » FL' 7 1.62 |4i1?°j ° "] 3GPP %H&TF} B 1/3 » ﬁ MEEEL 22Mb/s ™ » iﬁ £
AL 135mW > [Nl ,pip[%ﬂ% 2.65mm” .53 200K R

A Radix-4 Turbo Decoder for 3GPP

Student : Ying-Chao Liao Advisors - Dr. Shang-Ho Tsai

Department (Institute) of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT

Turbo code has been widely used in communication systems, because of its
outstanding error correction performance. To increase throughput and decrease the
required memory. Radix-4 architecture for Turbo decoder was studied. However, the
critical path of the recursive architecture in Radix-4 turbo decoder is long, As a result
conventional Radix-4 architecture [15] cannot achieve twice throughput over the
conventional Radix-2 architecture. In this thesis, we proposed a Look-Up Table
scheme for the recursive architecture and the throughput increases up to 62%. The
performance of the proposed scheme .isiworse. than the Log-MAP (optimal) by only
0.025dB. In VLSI implementation, we propose a method for input buffer and it can
reduce the dual-RAM by the single-RAM to save area and power. The proposed
method can reduce the area by 57.8% and the power by 71.83%. The chip is fabricated
in TSMC 0.18 um CMOS process, operating at 167MHz clock rate with voltage
supply 1.62V. The power consumption is-135mW at decoding rate 22Mb/s, with code
rate 1/3 for 3GPP standard. The core area 1s 2.65 mm?, contain 200K gate counts.

S el

LECRILIE Yol EIER E A S NS T AR - L s lCs
A R MO A i R RREY ERR s ESF L A EY o
BT PR FE o LR e RR F AT - - s+]
Pz REATUSEAT T o FRMA ST FL R HRARK
o HER ETEREREATELL LR B P L2 ko

T gdmEr ~E g Fla G mpaflt o A e
TR EIFEoLRE RAKE TS o4 BHE R AP
Fla 7 niPade » BAPAYT F g 4 oo

N
_—

(w

s AR P A AT S F R B R

E:0y
[N
=
(w,
gl
ol

FEg e d s FG finipend 3 2 0p iR 20 1) FlE 48 i 207

A Radix-4 Turbo Decoder for 3GPP

Ying-Chao Liao

Advisor: Dr. Shang-He Tsai
Department of Eleétrical and Centrol Engineering
National :Chico Tung University

December 4, 2008

Abstract

Turbo code has been widely used in communication systems, because of
its outstanding error correction performance. To increase throughput and
decrease the required memory. Radix-4 architecture for Turbo decoder
was studied. However, the critical path of the recursive architecture in
Radix-4 turbo decoder is long, As a result conventional Radix-4 architec-
ture [15] cannot achieve twice throughput over the conventional Radix-2
architecture. In this thesis, we proposed a Look-Up Table scheme for the
recursive architecture and the throughput increases up to 62%. The per-
formance of the proposed scheme is worse than the Log-MAP (optimal)
by only 0.025dB. In VLSI implementation, we propose a method for in-
put buffer and it can reduce the dual-RAM by the single-RAM to save
area and power. The proposed method can reduce the area by 57.8% and
the power by 71.83%. The chip is fabricated in TSMC 0.18 pum CMOS
process, operating at 167MHz clock rate with voltage supply 1.62V. The
power consumption is 135mW at decoding rate 22Mb/s, with code rate
1/3 for 3GPP standard. The core area is 2.65 mm?, contain 200K gate
counts.

Contents

Introduction
Turbo Code

2.1 Turbo Code Encoder

2.1.1
2.1.2

Recursive Systematic Convolution Codes
Termination of encoding process

2.2 Decoding Criterion8fcilee . oo 0oL oo

2.2.1
2.2.2

MAP criteria .5 0 . e e e e e e
Log-MAP and Max-Log-MAP:criteria

2.3 Decoding Algorithm =./0. o 0 i o Lo

2.3.1
2.3.2
2.3.3

Radix-2 algorithm . o oo o o2 o o000
Radix-4 algorithm «.ou iy Ao o o000
Deriving LLR for/Radix-4 ..«

2.4 Decoding Architecture . . LSRRI Lo

24.1

Sliding Window

Radix-4 Recursive Architecture

3.1 Conventional Architecture
3.2 Proposed Architecture,

3.2.1

Performance Comparison

3.3 Fixed point Analysis

VLSI Implementation

4.1 Hardware Design for 3GPP oo

4.1.1
4.1.2
4.1.3
414
4.1.5
4.1.6
4.1.7
4.1.8

Input Buffer oo oo
BMU(branch metric unit)
OACS(Offset-Add-Compare-Select)
LLR (Log-Likelihood Ratio)
Extrinsic Information and a Priori Information
Interleaver and De-interleaver
Hard Decision,
Sliding Window

21

4.2 Designflow 41

421 Systemmodel 41
422 RILcode 44
423 BIST 44
4.2.4 Synthesis 44
4.2.5 Gate-level simulation 44
426 DFT 45
427 ATPG 45
428 APR 45
429 DRCandLVS. 45
4.2.10 Post-layout level oL 46

4.3 Chip Layout and Comparison 47
5 Conclusion 49

ii

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8
2.9

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

The Turbo Code Encoder for 3GPP. 4
A general form of max*(+). oL 9
The trellis diagram of 12
The trellis diagram of 8. 13
The Radix-2 and Radix-4 trellis diagram. 15
The trellis diagram of LLR unit for stage ¢ : (a) LLR} and (b) LLR?. 18

The trellis diagram of LLR unit, for stage ¢ + 1 : (a) LLR},, and

(b) LLRY AT, L 18
An architecture of the turbo deeoder. . % 19
The sliding window diagram. .= f o L o oL oL L 20
Conventional Radix-4=Architecture... . '~ 22
Radix-4 recursion architecture of-{20] 23
Architecture of the propesed LUT used'in [20]. 24
Architecture of the proposed LUT." 25
Performance comparison among the Log-MAP and four approxi-

mated algorithms. oo 29
The turbo decoder architecture with a single SISO decoder.. . . . 31
The input data flow. 33
The proposed ROM and RAM scheme to achieve two-read and

two-write in one clock cycle. Lo 34
Timing diagram for the proposed RAM and ROM schemes. 35
The architectureof 7. Lo 36
The normalization of OACS. 37
The Architecture of LLR. 38
The hardware architecture of maz*(-). 38
Timing diagram of a priori information for two Dual-RAMs. . . . 39
The architecture of hard decision. 40
Calculating BMU, OACS and LLR. 41
Timing diagram of Sliding Window. 42
IC design flow. 43
Chip layout of the proposed Radix-4 Turbo Decoder for 3GPP. . . 47

iii

List of Tables

3.1
3.2
3.3
3.4

4.1
4.2

4.3
4.4

Approximation of [20]. L 24
The values of g(x), u(v), di, dy and py, po. . . - - o o o o oL 27
Comparison of various recursive architectures. 28
Quantization format for the proposed Turbo Decoder. 28
Summary of interleaver process with four case. 32
Comparision of area and power for implementing the input buffer

by dual-RAM and singl-RAM e o L 00 0 0oL oL L 33
The expected turbo decoder chip.summary. 48
Chip comparison. . .2 0 oo oL L 48

v

Chapter 1

Introduction

The basic concept of channel coding is to add redundance bits along with infor-
mation bits before transmission. These redundance bits can help the receiver to
decode data correctly with higher prebabilitys In 1984, Shannon proposed a limit
on the maximum achievable data rate over-a’channel. Many researchers attempt
various methods to close the Shanmnen limit. In 1993; Turbo Code was proposed by
Berrou, Glavieux and Thimajashima [1};"it is a powerful error correcting codes
whose performance is close to shannon limit. /In many mobile communication
systems, turbo code has been adopted toigain better performance, such as in
WCDMA, CDMA2000 [2], WIMAX and 3G [3] standards.

The turbo encode consists of two Recursive Systematic Convolutional (RSC)
encoders [18] and one interleaver. For the turbo decoder, it consists of two
soft-input soft-output (SISO) decoders and one interleaver/deinterleaver between
them. The SISO decoder is used in turbo decoder. In addition, it is also applied
in some other algorithm such as SOVA (Soft Out Viterbi Algorithm) [4]-[6], Log-
MAP, Max-Log-MAP [7] and improved Max-Log-MAP [8] (approximations to
the MAP algorithm).

Interleaver design for 3GPP was proposed by [10]-[12], to support full block
length. In 2003, Lucent Bell Labs [15] proposed the radix-4 algorithm for turbo
decoder. The algorithm has two advantages. One is doubling the throughput
for a given clock rate over the radix-2 architecture, and the other is reducing the

memory. Hence, in recent years, radix-4 turbo code is studied, e.g. see [20], [21]

which proposed methods to improve the recursive architecture for radix-4 turbo
code decoder. As for VLSI implementation for turbo decoders, the sliding window
algorithm ([16], [17]) is proposed to avoid storing the metrics corresponding to
the entire codeword sequence to reduce the memory requirement.

In this thesis, we use Radix-4 algorithm, approximated Log-MAP [20] and
sliding window technique to implement turbo decoder for 3GPP standard. More-
over, we proposed a Look-Up Table scheme for the recursive architecture and
the throughput increases up to 62% over the traditional Radix2 algorithm. In
VLSI implementation, we propose a method for input buffer and it can reduce
the dual-RAM by the single-RAM to save area and power. The proposed method
can reduce the area by 57.8% and the power by 71.83%. The chip is fabricated
in TSMC 0.18 um CMOS process. The expected clock rate is 16TMHz, through-
put is 22Mb/s, and the power consumption is 135mW with code rate 1/3, block
length 512. The core area is 2.65 mumnm?, containing 200K gate counts.

The chapters are organized as follows. In Chapter 2, we describe the MAP
criteria, Log-MAP criteria and-Max=LiogsMAP criteria. Also we compare decod-
ing algorithm for radix-2 and radix=4. Operation of sliding window technique is
also described here. In Chapter 3 we introduce the proposed scheme for radix-4
recursive architecture, and compare it to various recursive architectures. Chapter
4 introduces the VLSI implementation, we describe how to use one single RAM
to achieve Dual-RAM operation for Radix-4 turbo decoder. Also we describe the
decoding flow with hardware architecture and show the chip layout as well as the

corresponding chip performance comparison.

Chapter 2

Turbo Code

In 1993, The turbo code was introduced by Berrou, Glavieux, and Thitima-
jshima [1], and achieved a bit-error probability of 1075 with a code rate of 1/2
over an AWGN (additive white Gaussiannoise) channel and BPSK modulation
at an Ejy /Ny of 0.7dB. Turbo code has beem adopted in many mobile communica-
tion systems, such as WCDMA,; GCDMA2000, WiMAX, 3G mobile. In 3GPP [3]
systems, the turbo encoder comsists of‘two Recursive Systematic Convolutional
(RSC) [18] codes in parallel and an interleaver-unit. For turbo decoder, it con-
sists of two Maximum A Posteriori (MAP) ‘decoders connected in series with a
feedback loop from the second output to the first input. Let us introduce the

codec more detailed in the following subsections.

2.1 Turbo Code Encoder

2.1.1 Recursive Systematic Convolution Codes

Fig. 2.1 is the turbo code encoder structure in 3GPP systems and code rate is
1/3. The encoder consists of two RSC codes and an interleaver. The generator

matrix of the RSC encode is:

G(D) = {1, gl(D)} , (2.1)

where

go(D)=1+D*+D? (2.2)

1st RSC Encoder z,
Na >D—

o o)

interleaver 2nd RSC Encoder z$

o Lo

A

A

d
v

1

B¢

xg

»

Figure 2.1: The Turbo Code Encoder for 3GPP.

is the feedback polynomial and
g D)= dD D? (2.3)

is the forward polynomial.

Initially, the registers from RSC must be zero ,and upper switch and lower
switch switch to A and A" After K numbers are inputted, thus the order of the
output from the turbo encoder is 1, 21, 2y, Ta, 22, 29,y Tk, 2K, 2j¢ Where 17,

Za,..., T are input bits and K is the number of input bits.

2.1.2 Termination of encoding process

The termination scheme is to let the encoder comes back to zero state and thus
it can decrease the bit error rate. When the K bits completes encoding process,
both the two RSCs need to generate 12 tail bits. First, the lower RSC in Fig.
2.1 is disable and the switch in the upper RSC is changed from position A to
position B, and then six tail bits are generated. Second, the last six tail bits

are generated by turning off the upper RSC and the switch in the lower RSC is

changed from position A" to position B. The 12 tail bits shall be:

TK+15 RK+1y K42, RK+2y TK+3; K43y TK+1y K41y TK+2; K42y TK+3; ZK+3-

(2.4)

2.2 Decoding Criterion

2.2.1 MAP criteria

The MAP algorithm has been developed by Bahl, Cocke, Jelinek, and Raviv in
1974 [13] and is termed as BCJR algorithm. Consider a situation that we received
a signal r over a discrete memoryless channel. The state transitions from state
m to state m i.e. S,,(t) at time t to S,/(t + 1) at time ¢ + 1, we can obtain a
joint probability:
Pr{Sp (1) 8 {t +1),7} (2.5)
= Pr{ St WSt F1)sm6 ",k vt
Using joint probability property
Pr(A, B) =Pr(A)Pr(B|A) (2.6)
or
Pr(A, B) = Pr(B) Pr(A|B), (2.7)
we can rewrite (2.5) as follows

Pr{Sm(t), St + 1), 7} (2.8)
= Pr{S,,(t), St + 1), 751 7} Pr{rN 1M Sm(t), St + 1), 7571, 1)

= Pr{Syu(t), 15} Pr{ Syt + 1), 7218, (1), 75} Pr{r 1 S,n(0), St + 1), 75711}
= Pr{Su(t), 75 "} Pr{Sut + 1), 74 S (8)} Pr{r{ 1" [Sult + 1)},

b

., means that receive signals from time instance a to time instance b.

where r

From (2.8), let us define three functions for description convenience, i.e.

a(Sm(t)) = Pr{Su(t), 75 '}, (2.9)
B(Su(t + 1)) = Pr{r] 1St + 1)}, (2.10)

and

Y(Sp(t), St + 1)) = Pr{S,At + 1), 7| Sm (%)} (2.11)

Hence (2.8) can be rewritten as:
Define S be the set of all the states at time t. We can further extend (2.9) as

a(Syslt + 1)) = Pr{Su(t + 1), 74}
= 3 Pr{Su(t), Sult + 1), 15}

Sm (t)eS
= 3 Pr{Su(t). Y Pr{Sult + 1), IS (t), 751}

Sm (t)eS

= > Pr{S, @i Rr{ St + 1), 7S, (t)}

Sm(t)eS

=) afS, (VS8 ult + 1)). (2.13)

Sm(t)eS

Similarly, define S be the set of-all the states at time £+ 1. We can further extend
(2.10) as

B(Sm(t)) = Pr{r) S, (t)}
= Y Pr{Su(t+1),7 " Su(t)}

SpAt+1)eS

= Y Pr{rTSwt + 1), 70, S (8)} Pr{Sudt + 1), 7| S (t)}

Splt+1)eS

= Y Pr{r3 St + 1), 7} Pr{Su{t + 1), 74 S (£)}
Sp(t+1)es”

= > BSudt+ 1))Y(Sm(1), Suilt + 1)) (2.14)

Sp(t+1)es”

Finally, the branch metric can be rewritten as

V(S (t), St + 1)) = Pr{ St + 1), 7| Sim (%)} (2.15)
From the Bayes’ rule oA B
Pr(A|B) = %,

we can rewrite (2.15) as

Pr{S,(t+ 1), Sn(t),r:}
Pr{S,(t)}
_ Pr{Sp(t + 1), Spn(t)} Pr{Sp(t + 1), Spu(t), 74}
Pr{S,.(t)} Pr{S,(t+1),Sn(t)}
= Pr{S,(t + 1)|S,(¢)} Pr{r¢| St + 1), Siu(t)}

= Pr(c;) Pr(re|wy), (2.16)

V(Sm(t), St + 1)) =

where ¢; is encoder input that make the state change from S,,(t) to S,A(t + 1),
and w; is the corresponding codeword.

Consider the log-likelihood ratio (LLR)
Pr{c, = +1|r}
Pr{c; = =dir}
> simtiectt Pr{Smll), Spdt + 1)|r}
> smmyec PE{ St)y St + 1)r}

where S(m,m) € ;' indicates-that, all-the states fiom state m to state m’ result

L(c;) =1n

(2.17)

=1In

in transmitting ¢, = +1 and ¢, = =1'respectively.- From (2.12), we can rearrange
(2.17) as

2 stmamectt ASm(E)V(Sm (), Snilt + 1)) B(Sm(t + 1))
2 stmamyeeyt USm ()Y (Sm(t), Smlt +1))B(Sm(t + 1))

From (2.18) is the LLR of turbo code. In VLSI design it is difficult to implement
the LLR as in (2.18), because the LLR of natural log function in hardware demand

L(c;) =1In

(2.18)

memory for look-up table. To overcome this, we will change the MAP criteria to

Log-MAP criteria and then apply the Log-MAP to the LLR.

2.2.2 Log-MAP and Max-Log-MAP criteria

In this section we derive the Log-MAP algorithm (2.18) can be rewritten to the

following
L(e) = In > semmyectt EXP[A(Sm (1)) + T (S (t), St + 1)) + B(Sue(t + 1))]
S cmmyeat SXDIA(Sm () + TS (1), St + 1)) + B(Smlt + 1))
(2.19)

where

a(S,(t+1)) =In(@(S,(t+1)))

Sm(t)eS

B(Sm(t)) = In(B(Sm(t))

ln{ 3 exp[a(Sm(t))—i—i(Sm(t),Sm'(t%—l))]}, (2.20)

(t+1)es

ln{ > eXp[B(Smf(t—i-l))+7(Sm(t),5mf(t+1))]}, (2.21)

and
F(Sm(t), St + 1)) = In(y(Spn(t), Spu(t + 1)). (2.22)

According to the Jacobian function [14], we have
In(exp(x) + exp(y)) 2 maa" (z, y)SMALEY) + In(1 + exp(—|o — y))). (2.23)
Referring to Fig. 2.2, a more general form: is given-by
d
ln(z exp(x;)) £ maz (1, T2y,)
i=1

= max*(..., max* (max (@ &2), max™ (r3, 14)), ...

,maz” (max™(Ta—3, Tag—2), mar™(Ta—1,q)),...). (2.24)

Thus (2.19) can be rewritten as

L(cr) = Max g et [A(Sm (1)) +7(Sm(t), St +1)) + B(Sut +1)] - (2.25)
- mS(mm)ec;l [@(Sm(t)) +F(Sm(t), St + 1)) + B(Sm'(t +1)]

From (2.20), (2.21) and (2.24), @(S,(t + 1)) and 3(S,,(t)) can be written as

a(Sp(t+ 1)) = mazs,,mes[@(Sn(t)) +7(Sm(t), St +1))], (2.26)

B(Su(t) = mazs, qurnes(B(Su(t + 1)) +7(Su(t), Smlt + 1)) (2.27)

Because the encoder starts at zero state and terminates at zero state, v and [

satisfied the following initial conditions:

a(So(t=0)) =1, a(S,(t=0)) =0 for m #£0,

max’

Figure 2.2: A general form of maz*(-).

and

B(So (t = N)) = TRBSHFZ NY) = 0 for m # 0.

Using natural log conditions:
a(Sy(t=0)) =0, a(S,(t=0)) = —oo for m # 0,

and
B(So (t=N)) =0, B(Sm(t = N)) = —o0 for m # 0.

Let us define a priori information:

Pr(c; = +1)

Lale) 20 =)

(2.28)

Taking the exponential operation on both sides in (2.28) and employing Pr(c; =
—1) =1—Pr(¢; = +1), we have

B B exp(Lq(cy)) B 1
Pr(c; = +1) = T+ oxp(La(c)) =1r xp(—Lu(@)) (2.29)

and

Pr(¢, = —1) = exp(—La(c))

1 +exp(—La(c))’ (2:30)

thus we can rewrite (2.29) and (2.30) as

expLa(e)/2

PI‘(Ct = :i:l) e —1 + eXp—La(ct) .

eXpCtLa(ct)/Q — At . expCtLa(ct)/2 s (231)

where

expLa(e)/2

1+ expLaler)’
According to (2.16), the probability P(r:|w;) in AWGN channel is

Prn @) = (=) o <_ S) —))

(Y (LE @) @)) (i (i) - wi(i)
() () e (Bt

V- exp (Z@c i) wt<z'>/2>> , (2:32)

=0

At:

where n is inverse of the code rate, L gis.channél reliable value defined as 4%,

o2 is the noise variance and

202

v (f—) o (_2?;01<r%<z'> +w3<z‘>>> |
2mo?

Substitute (2.16), (2.31) and (2.32)"inte(2.19), we find A; and V; are cancelled,

thus branch metric can obtained as following

(S (), Spdt +1)) = %(Ct + La(cr) + 2_: Le - m4(4) - we(3)), (2.33)

where 7,(7) are received signal and w, (i) are +1. Initially, the L,(¢;) is unknown.
In this case we assume that Pr(c; = +1) = Pr(¢, = —1), therefore L,(¢;) is zero
at the beginning. Combining (2.26), (2.27) and (2.33) to calculate the LLR in
(2.25), the received data can be decoded as follows

1 if L(e) =0
Ct = .
"Tl00 if L(g) <0

From (2.23) and (2.24), we can further simplify the max*(-) and maz(-) functions

(2.34)

as follows

maz(z,,z,,...,x,) = max(...,maz(maz(xy, ra3), max(rs, ta)), ... (2.35)

,max(maz(Tq_s, Tg_2), max(Tq_1,q)),...)-

10

Eq. (2.35) is obtained by removing the correction term and becomes maz(-)
maximum function. Replacing maz*(-) by maz(-) in (2.25), (2.26) and (2.27), we
have the LLR with Max-Log-MAP. There is a small performance degradation by
using LLR with MAX-Log-MAP instead of LLR with MAP. The degradation is

more pronounced in low SNR region.

2.3 Decoding Algorithm

2.3.1 Radix-2 algorithm

In this section we use the trellis diagram to explain how @, § and 7 are calculated
in the radix-2 and the radix-4 algorithm. Fig. 2.3 and Fig. 2.4 show the trellis
of @ and f respectively, where the dotted lines and solid lines stand for ¢, = 0
and ¢; = 1. An example will help-iinderstand.
Example 1: Calculation of @4n radix-2 algorithm.

Referring to Fig 2.3 to obtained a(Sg(t +1)), we know that there are two
paths connected to it. One path is'Sg(t)—==25.(t + 1) and the another path is
S1(t) — So(t + 1). Therefore F(Sp(t), So(t.4.1)) and F(S51(t), So(t + 1)) from

(2.33) can be expressed as

7(So(t), So(t+1)) = %-[(—U-La(ct = =)+ Le: (r(0)- (=1) +r:(1)-(=1)], (2.36)
and

F(S1(t), So(t+1)) = %-[(—H)-La(ct = +1)+ L. (r:(0)- (+1)+7¢(1)-(+1)]. (2.37)
Substituting (2.36) and (2.37) into (2.26) leads to @(So(t + 1)) as follows

a(So(t+1)) = maz™[@(So(t)) +7(So(t), So(t+1)), @(Si()) +7(S1(t), Solt+1))].
(2.38)

Example 2: Calculation of § in radix-2 algorithm.
Referring to Fig 2.4 to obtained 3(S,,(t), we know that there are two paths
connected to it. One path is So(t+1) — Sy(¢) and another path is Sy(t+1) —
So(t). Therefore 5(Sy(t), So(t + 1)) and F(So(t), Sa(t + 1)) from (2.33) can be

11

Sy (t) @ 00--—--—----»8 Sy (t + 1)

S,(t) e gl m Syt

~ -7
N

N

S,(t) e - A‘]f\ - / S,(t+1)
TS T

S5 (1) "/\74‘/752?::\/0 % S (t+1)

Se(t) e~ TTose S (t+1)
S,(t)e" 1 e S (t+1)

Figure 2.3;+The trellis diagram of a.

expressed as

(=1 Lalerm =)t (r:(0)- (=1)+7:(1)-(=1)], (2.39)

N | —

F¥(So(t), So(t+1)) =

and

[(=1)-La(c; = +1)+ Le- (14(0) - (+1) +74(1) - (+1)]. (2.40)

N | —

7(So(t), Sa(t+1)) =

Substituting (2.39) and (2.40) into (2.27) leads to 3(Sy(t)) as follows

B(So(t)) = max*[B(So(t+1))+7(So(t), So(t+1)), B(Sa(t+1))+7(So(t), Sa(t+1))].
(2.41)

2.3.2 Radix-4 algorithm

In 2003, the radix-4 algorithm was proposed by M. Bickerstaff [15] and has com-
monly used in hardware implementation, since the Radix-4 Log-MAP architecture

doubling the throughput for a given clock rate over the radix-2 architecture. In

12

b(S, (1) b(S,(t+1))

So(t) e a— 2 (t+1)

S, (t +1)
S, (t +1)
S, (t+1)
S, (t+1)
S, (t+1)
. Se(t+1)
S, (1) & e S (t +1)

Figure 2.4;<The trellis diagram of 3.

additional, it only calculate the even time stages as shown in Fig. 2.5 (with out
calculating stages t + 1, ¢ + 3, ... Thus it can further reduce the memory.

For convenience, we define the symbolsias follows

T () £ F(St + 1), Sl + 1+ 1),

and
Bivk £ B(Sm(t + k).

Let us give an example to derive the recursive units @ and 3 for Radix-4 algorithm.

Example 3: Calculating a}, , and BS in Radix-4 algorithm.

13

Referring to Fig. 2.5,)., and BS are derived as follows

a(t)JrQ = max" [angl + Vﬁ%(oa 0), atlJrl + ﬁﬁ(L 0)]

= maz* {maz*[a; +7;1(0,0), a; +7;7(1,0)] + 713 (0,0),
max*[a; +7,71(3,1), @ +7,71(2,1)] + 711(1,0)}

= maz™{Infexp(@) +7;71(0,0)) + exp(@; + 7,1 (1,0)] + Infexp(7;17(0,0))],
Infexp(@; +7;7(3,1)) + exp(@ +7;7(2,1))] + Infexp(7;11(1,0))]}

= maz* {In[exp(@; +7;1(0,0) +7;17(0,0)) + exp(@; +7;"(1,0) +713(0,0))],
Infexp(@; +7¢7(3,1) +717(1,0)) + exp(@? +7;7(2,1) + 7713 (1,0))]}

= maz*{maz*[a@; +7;1(0,0) +7;17(0,0), @ + 7, (1,0) +7,11(0,0)],

maz*[a +77(3,1) +7131(1,0), @ +7(2,1) + 3 (1,0)]},
(2.42)

and

By = maz*[71(0,4) + Byyy, 7E(0,0) = By]
= maz* {771(0,4) + max* [FHR(42) ¥ B/ . 4012 (4,6) + By).
7540, 0) + maa* (712 (0, 0V H7BY, 5, 7412(0,4) + Byyal)
= maz*{Infexp(7:(0,4))] + W[exp(To2(4,2) + Bryn) + exp(7i12(4,6) + Bryo)l,
)] + Infexp(7E2(0,0) + By 5) + exp(T412(0,4) + By,)]}
)

[
In[exp(7;"(0,0)
= maz* {In[exp (7.7 (0, 4)

Infexp(7;™(0,0) +713(0,0) + B}y,)] + Infexp(7:71(0,0) + 7113(0,4) + B.)
= maz* {maa*[77(0,4)) + TE3(4,2) + Brya), 7i70,4)) + 71134, 6) + L),

* [— -0 — — —4
maz* [¥;7(0,0) +7117(0,0) + B,y0, 7i71(0,0) +7i17(0,4) + 5t(+z]}-)
2.43

2.3.3 Deriving LLR for Radix-4

Because we use radix-4 algorithm to decode two stages of soft information in one
clock cycle, we need to use two LLR units. Let us derive LLR for stage ¢ and

stage t + 1. Define LLR? as the LLR for ¢; = b, where b € (0,1). For instance,

14

. —2 . . —6
)+ 73(4,2) + By o)) + Infexp(7,7(0,4)) + 71 11(4,6) + Bi0)],

Staget Stage t+1 Staget+2 Stage t Stage t+2

Ct:O 0 e = () 0
............................ e oy » 1
=1 Y 2
3 3 "
4 4 T4
5 A)
6 ./ 6 T o
74 ‘ .7 !

Figure 2.5: The Radix-2 and Radix-4 trellis diagram.

LLR} denotes the LLR for ¢; =1} aiid-\LLRY, | denotes the LLR for ¢;4; = 0.
Below, we derive the LLR for stage . Referring to Fig. 2.6 and Fig. 2.7, we have

LLR! = man(@ + 740, 4) + B, L +77(1,0) + Bryy.s
@+ 712, 1 WBETE +75(3,5) + Brya,s
T+ T4,6) + Bryy, @ +7(5,2) + By,
@+ FN6,3) + By o M) 4 By, (244)

Because in radix-4 algorithm we do not calculate f3, +1, we should replace Bz 15

0 <4 <7, by the trace-back values from stage t + 2 and rewrite (2.44) as follows

LLR} = maz(@l +7:71(0,4) + maa*(7:2(4,2) + Byra, 7013(4,6) + Byyo),
@b+ 77(1,0) + maz* (752(0,0) + By, 7172(0,4) + Byy),
@+ 72, 1) + maz(FEA(L,0) + Byyay 712(1,4) + Byya),
@+ 7 (3,5) + maz* (7:12(5,2) + Bryar 7113(5.6) + Byya),
@+ 7 (4,6) + maz® (TE2(6,3) + By Ti2(6,7) + Bran),
a7 +7071(5,2) + maz* (T13(2,1) + Byyne T13(2,5) + Brya):
@+ 7716, 3) + maz® (7033, 1) + By o, T172(3,5) + Byya).
& +7¢7(7,7) + maz* (T, 3) + Breas TN, T) + Bian))-
(2.45)
Similarly LLR} and LLR) can.be shown as follows
LLR? = maz (@) + 7710, 0) + mag (G2 (0, 0)3 Byrp, 703(0,4) + Br),
al + 7 (L, A (Tr (420 + By o, 7413(4,6) + By o),
@ + 7012, 5) + mdr G5(5,2) + Bryar Ti2(5,6) + Bpan),
@+ 7(3,1) + maz*(FHH(1,0) + Byyoe T2 4) + Byyo),
T+ T4, 2) + maz (TEH2,1) + Bryas 7413(2,5) + By o),
@ +7(5,6) + max® (T 13(6,3) + Brya M6, 7) +Ba).
@ +7(6,7) 4+ max (H(T.3) 4+ Brya, ME(TT) +Ba).
af + 7 (7,3) + mar’ (G 1) + By TH113,5) + Bl
(2.46)
Finally, the LLR at stage ¢t can be expressed as
LLR, = LLR! — LLR. (2.47)
Similarly, the LLR at stage t + 1 can be expressed as
LLR; = LLR},, — LLR),,, (2.48)

16

where

LLR, , = mazx(maz*(@ +7:71(0,0), a; +7:(1,0)) + Wﬁﬁ(o, 4) + B;z,
maz* (@ + 72, 1), @ +717(3,1)) + 712(1,0) + By,
maz* (@ +7:(4,2), @ +771(5,2)) + 752(2,1) + By,
maz* (@ +371(6,3), @) +77(7,3)) +772(3,5) + By,
maz*(@ +7:(0,4), @t +71(L4)) + 752(4,6) + By,
maz*(@ +7071(2,5), @ +771(3,5)) + 72(5,2) + Brpa,
maz* (@ +7:H(4,6), @ +7171(5,6)) + 726, 3) + By,
maz*(@ +7:H(6,7), @) + 7T T)) + T, T) + By,

(2.49)
and

LLRY,, = maz(maz* (@ +3 10,00 @ + 7151, 0)) + 512(0,0) + Bryo.
maa* (@2 + Toh(2A), T A (3, 1) +72(1,4) + Brao,
maz* (@i + 7 (G ONTET T 71(5,2)) + 72(2,5) + By,
maz* (@ +5:71(6,3), @y +7171(7,3)) + 7123, 1) + Brao,
maz*(@ +7:(0,4), @y +771(1,4)) + 752(4,2) + By,
maz* (@ +3(2,5), @ +77(3,5)) + 772(5,6) + By,
maa* (@ + 71 (4,6), @ +7171(5,6)) + 7126, 7) + Bran,
maz* (@ +77(6,7), @ + 77, 7)) + THA(7,3) + By +(2). |

2.50

2.4 Decoding Architecture

The decoder consists of two identical SISO decoders, interleavers and de-interleavers.
The architecture is shown in Fig. 2.8. Applying (2.19) and (2.33), the SISO de-

coder can be derived as follows

17

Figure 2.7: The trellis diagram of LLR unit for stage ¢ + 1 : (a) LLR},, and (b)
LLRY,,.

18

de interleaver =

L (c) 19(c) L% L%y
> SISO ¢ > Interleaver > SISO

0) —
:tt((l)) i decoderl 40) » decoder? L(c9

interleaver :
— de interleaver
r(2)
" hard decision —» dt
Figure 2.8: An architecture of the turbo decoder.
ZS(yectt 0 (Sm (1)) +7(Sul(8), S (EHL)) 4B (S(t+1)
L — 1 m,m C -
(c) =In > stmmy et €T) T RO e+ 1)
m,m Ct
D S(mmecit ez (1) Lale)FLers(O) (D] G (Sin (0)+5 575 Lere (1w (D) +B(SmAt+1)
— ln m,m C

ZS(et o3 [(—1)- Baler) BLeret@r (=0l . a(Sm (8))+5- 721" Lere(d)we(8)+B(Smlt+1)
m,m)cc,

ZS(m m)ec+1 ea(Sm(t)H R Lere(D)we (i) +B(Sp(t+1)

m,m ct

= Lo(ct) + Leri(0) + Le(cy), (2.51)

where the L.(c;) are called extrinsic information corresponding to ¢;. The L.(c;)

can be obtained from (2.51) as follows
Le(c;) = L(cy) — [La(c) + Lere(0)]. (2.52)

r+(0), r¢(1) and 7;(2) are the transmitter signals x;, z; and z; after passing
AWGN channel respectively. Initially, we set the a priori information L (cy) for
the first SISO decoder to zero. Then 7,(0), (1), and Ly (c;) are passed into the
first SISO decoder and obtain the extrinsic information L(l)(+) that can offer the
next SISO decoder more accurate information for L (+). After L (ct) and ()
pass the interleaver, we obtain the signal L{(¢;) and r,(t) respectively. Similarly,

the second SISO decoder can generate Lg)(c}) and L(c;) after the ng)'(c}), r(0)

19

Time | Block 0 . Block 1 Block 2 Block 3 Block 4

| | | | |
™. a | b | ! | !
b A a
Lo b A b |
T4 (q) | <+ . b i a b |
. - L) | i | o |

L(c)

O

Figure 2.9: The sliding window diagram.

and r4(2) pass it. When the maximum allewable number of iterations is reached,

d; can be obtained by de-interleavering L(c;). and then take hard decision.

2.4.1 Sliding Window

Theoretically, we need to calculate the LR according to the whole received data
in a block. However, when N is large;itis impractical to implement this ideal
in a hardware since we need large memory and latency in this case. To reduce
the memory and latency, a sliding window can be adopted [16]. In Fig. 2.9, the
received data stream is divided into n blocks, the dummy backward recursion (3,

When a block is computed, the

set initial value equal to log(—— 0} s)
value 3, is fed to (8 for initial boundary value. The larger the block length is, the
more accurate § we will obtain. As soon as 34 is ready for a specified received
data, we can obtain its corresponding L(¢;). At the same time, we can calculate

« for the next blocks. Repeat the same procedure, all of the data can be decoded.

20

Chapter 3

Radix-4 Recursive Architecture

3.1 Conventional Architecture

We derived a?,, in (2.42), however we must, take recursive value of (@, 3) approx-
imately (i.e. replace some max*{:} with maz{:}) in hardware implementation.

In [15], Lucent Bell Labs propesed the following approximation

@yo & maz* {maz(@; + 7,0, 0h550050) Ja; +7,7 (1, 0) +7:11(0,0)),
maz[a; + 7,7 (3, WA (LO)ar +7,7(2, 1) + 715 (1L, 0)] -
(3.1)
Fig. 3.1 is a radix-4 architecture for (3.1), the critical path (with dash line)
consists of four multi-bit additions, one 2-to-1 MUX and one LUT, where the
LUT is implemented using look-up table for correction term. In next section, we

proposed an architecture for LUT which can reduce the critical path.

3.2 Proposed Architecture

Because the hardware of the recursive unit in radix-4 is more complicated than
that of radix-2, the critical path is too long so that it cannot achieve exactly
twice of the throughput over radix-2. Thus our goal is to reach twice of the
throughput while the area is as small as possible. From [20], Z. Wang proposed

an architecture for high speed recursion and approximation for @ and /5 shown

21

—t+l —t+2
g, (0,0)+g,, (0,0 >
—1
at
—t+l —t+2 —
9. 1L,0)+g,,(0,0)
—2

a: —»

—t+l —t+2 JF A
g, 2)+g., (L0 ™ !

—3
at

—t+l —t+2 >
9 BD+g..(L0) ™

-

v
Jr
G
}
®

A
o

+ 0

Figure 3.1: Conventional Radix-4 Architecture.

as follows

ay, o ~ maz{max*[ey + 7, 50)0) + 7 13(0,0), @ +7;7'(1,0) +7,13(0,0)],
maz*[@; + 7, By F F10), @) + 7,7 (2,1) + 7,13 (1,0)]},
(3.2)

and

B, = maz" {maz”[7;7(0,4) +7111(4,2) + Blyo), 7 0,4) +7134,6) + By,
maz*[757(0,0) +7513(0,0) + Byrar 7571(0,0) +753(0,4) + By]

(3.3)
Applying (3.2) to the hardware in Fig. 3.2. At the first stage we use carry
save adder (CSA) to convert three additions to two additions. At last stage
of Fig. 3.1, @},, is divided into two parts as in Fig. 3.2. One is max(-)
value and the other is the correction term that both are removed to the first
stage adder, which is called Offset-Add-Compare-Select (OACS) operation [19].
Conventionally, in LUT block we need to take a absolute value and then take table
look-up. Therefore the computation time of the LUT is larger than the MUX
marked with dash line. Hence the LUT dominates the critical path. In [20] a

method was proposed to reduce computation time of the LUT. The computation

22

. >l |

aga N N —o

1 ai+2B

—t+l —t+2 ais
g. (00)+g..,(0,0)
—1
iiA —p +
—t+l —t+2 ats
9. 1L0)+g..(0,0)

Al
Jr
=1
/
v

|
l

—2

il

2 f

—t+1 —ts2 GtB

(2 (2!1)+gt+1 (:LO) —
—3
&A’4J$>r

—t+l —t+2 AtB

9. 31)+9.,(10)

Figure 3.2: Radix-4 recussion architecture of [20]

time is reduced since it does mot-need to.-perform absolute operation. Let us
explain as follows.

In Fig. 3.3, assume the input of the LUT is a n-bits sign number, the g(-) function
is used to detect the absolute vaue of'the input which is less than 2.0, i.e. z =1
of the input is less than 2.0. The ELUT block is a small LUT with 3-bits input
and 2-bits output. It is used to simple the logic design. Table 3.1 shows the LUT
approximation where x and g(z) are the quantized input and output of ELUT.

The final output of the LUT is d; and dy. The general form of z can be derived

as follows:
2 ="bp_1by_o+by_3,...,+b3+ f(bp_1 = 1,02 ..., b1, bp),
di =z
and
dy = 2z - ¢,

where f(-) is a combination circuit that consists of b, ..., b1, by when b,_; = 1.
The proposed structure of LUT is in Fig. 3.4. The inputs of the LUT are

quantized to integer number and then use simple logic design to obtain the output.

23

[z 100 [05] 1.0 | 15 | =2
g(z) 107505025025 0

Table 3.1: Approximation of [20].

bn-l bn—Z bn-3 : . : Q bz Lbl
LER SRR R | /
g3 ELUT

g g

N -«

d e d,

Figure 3.3: Architecture of the proposed: LUT used in [20].

In Table 3.2, we observe the dynamie range of the input can be divided as [-1
-0.25], [-2 -1.25], [0 0.75] and [1 1.75] and use combination logic to obtain the
output p; and pg, which is independent of b; and by. Therefore we do not need
to take care of part of the input signal, and the logic gate can somewhat be.
The performance comparison for various algorithm is as shown in Fig. 3.5, we
see the proposed method and Arch-Z achieve nearly the same performance. The
approximated values of the proposed method are given by
05, —-1<wv<l1

u(v) =4¢ 025, —2<v<-—-lorl<wv<2
0, otherwise

7 (3.4)

where v and u(v) are the input and output of the proposed LUT. In (3.4), we
eliminate that u(v) equal to 0.75 (compared to Table 3.1), if we consider the case
that u(v) equal to 0.75, we find the output p, is dependent of b; and by. Thus
we ignore the value 0.75 of u(v). In section 3.3, the comparison of the proposed

LUT and the LUT is shown in Table 3.1. The BER performance with the two

24

b |belbs| - - - B |nln b
LR SRR S
combinational logic

v

P Po

Figure 3.4: Architecture of the proposed LUT.

LUT are nearly same. In Fig. 3.4, p; and p, are used to simplify the combination

logic shown as follows

D1 :bn_l'...'bg'bg-i-bn_l'...'a'bg
and

p():bn_l'...'b3'b_2+bn_1'...'b3'b2.

We give an example to compare the two LUTs as follows
Example 4: Refer to Table. 3.2, Fig. 3.3 and Fig. 3.4, assume the input bit-
length of the LUT is 13, and that of the output is 2 . We define the notations as

follows

b[12 : 0] : input of the LUT which is 13-bit with the 2 LSBs be the fractional bits.

[
[

¢1 ¢o) : output of the ELUT consisting of simple combination.
dy dp] : output of the LUT in [20].
[p1 pol : output of the LUT in the proposed method.

(1). The method in [20]: z is given by
Z:E'bn'...'b4'b3+612'b11'...‘b4'bg‘(b2+b1+b0),

¢1 =bia+ by + byg - by - (b1 + bo),

and

co = (b1a + b3) - b1 - by - (by @ by).

25

The out results of the LUT is
d1 =ZzZ-C1,

and

doIZ‘Co.

(2). The proposed method: the output [p; po| of the LUT is as follows

pl:blg'bll'...'bg'bg-‘r%'b_n'...'bg'g, (35)

and

pgzblgbllbgb_2+@b_11b3b2 (36)

From (3.5) and (3.6), we find ;thatsp;, and py have common terms and
the logic can share the common terms to'reduce complexity. Define the

following two terms:
COMBl q blg Y b11 .. bg

and

COMBy = by - byq - ... - b3 = bya + b1 + ... + bs.
Rearrange (3.5) and (3.6), we have

P1 = COMBl b2+COMBQ 'E,

and
po = COMB; - by + COM By - bs.

3.2.1 Performance Comparison

We compare five recursive architectures (including the proposed one) in terms of
their critical path, area and throughput as shown in Table. 3.3. The architectures

used for comparison are explained as follows:

26

Binary of input b[12 : 0] | Decimal | ¢(x) | dy | do | u(v) | p1 | po
: : 0 0]0 0 010
1111111110111 -2.25 0 0] 0 0 00
1111111111000 -2 0 010025011
1111111111001 -1.75 02510110250 |1
1111111111010 -1.5 025/ 0] 1]025]0 |1
1111111111011 -1.25 02510]1]025]0 |1
1111111111100 -1 02510110510
1111111111101 -0.75 05110105 |10
1111111111110 -0.5 05110105110
1111111111111 -0.25 075711105 1|0
0000000000000 0 075711105 1|0
0000000000001 0.25 075711105 1|0
0000000000010 0.5 05| 1]0,05 |10
0000000000011 0.75 05100105 |10
0000000000100 1 0250|1102 011
0000000000101 1.25 025 0] 10250 |1
0000000000110 1.5 025970 | 1]025|0 |1
0000000000111 1.75 0250 | 10250 |1
0000000001000 2 0 0|0 0 010
0000000001001 2.25 0 010 0 010
: ; 0 0] 0 0 00

Table 3.2: The values of g(x), u(v), di, dy and py, po.

(1). Arch-O: traditional radix-2 architecture.
(2). Arch-L: the radix-4 architecture proposed by Lucent [15].
(3). Arch-Y: the radix-4 architecture proposed by [21].

(4). Arch-Z: the radix-4 architecture proposed by [20].

We find that Arch-Y has the largest area and the fastest throughput rate, its
approximation is the same as in (3.1). Thus the performance degradation is
large. In Example 4, we compared Arch-Z and the proposed scheme, Assume
that AND, OR ,XOR and NOT gates have the same delay time (one unit time),

the delay time in Arch-Z is about five unit times and that of the proposed scheme

27

Architecture || Maximum Relative Relative Power Con-
Clock Freq. | Area Throughput | sumption
Arch-O 286 1 1 3.5478 mW
Arch-L [15] | 217 1.53 1.52 4.4691 mW
Arch-Y [21] | 240 3.08 1.68 8.5570 mW
Arch-7Z [20] || 231 1.83 1.62 5.2784 mW
Proposed 232 1.80 1.62 5.2839 mW

Table 3.3: Comparison of various recursive architectures.

is about four unit times. Therefore our propose method can somewhat reduce

the critical path. As a result the clock rate can be somewhat increased, and the

power consumption and BER performance (see Fig. 3.5) are nearly the same.

3.3 Fixed point Analysis

Table 3.4 shows the quantization format of the Proposed scheme. Fig. 3.5 also

shows the fixed-point performanee of the proposed scheme. We see that the Max-

Log-MAP degrade the performanee about 0.4dB ef Log-MAP. In Arch-L, because

his method only use an LUT, which leads to'less accuracy, its performance is worst

than Arch-Z and the proposed one. In addition, the proposed scheme has worse

performance than the Log-MAP by only 0.025dB. The fix-point simulation, we

find the performance is smaller than 0.1dB compared with log-MAP.

Functions \ Word Length | Integer Parts (include sign bit) | Fraction Parts
Received Bits 2 2
Channel Reliable (L,) 2 2
State Metrics (@, 3) 8 2
Branch Metrics (%) 8 2
Extrinsic (L.,) 6 2
LLR 10 2

Table 3.4: Quantization format for the proposed Turbo Decoder.

28

—4— Max-Log-MAF [----- .
1" | —5— Arch-L, Arch-Y
] —&— Proposed{fix-point)
1 —%— Arch-Z
1 —HE— Proposed(float-paint) [oo_. |
Log-MAP: rate=1/3,

block length=512,

b iterations
e S
m g

8 L S N
10-4 pi=pepaieiafaiel fufaefafaafofel fajaebelefepaiel aefefeelfee) nhefagelefefeeie nefebeegefegeis) --3j--Z---Z--Zjy--:ooh
a 02 0.4 0B (IR 1 1.2 1.4 16 1.8
Eb/MO

Figure 3.5: Performance comparison among the Log-MAP and four approximated
algorithms.

29

Chapter 4

VLSI Implementation

In this chapter, we describe the decoding flow with hardware architecture and

show the chip layout as well as the corresponding chip performance comparison.

4.1 Hardware Design for 3GPP

Fig. 4.1 is the overall turbo decoder architecture. Because we use radix-4 al-
gorithm to decode data, we can deal with two stages of data per clock cycle.
In order to achieve this goal, we'can use Dual-RAM which can either read or
write two samples of data per clock cycle. However using Dual-RAM doubles the
memory area as well. In the proposed VLSI scheme, we will use one Single-RAM
which can either read or write one sample of data per clock cycle, we divide this
Single-RAM into two smaller RAMs to save even indexed data and odd indexed

data. Below, we describe the subblock of decoder operation.

4.1.1 Input Buffer

In Fig. 4.2, there are two paths, path 1 is for SISO Decoder 1 and path 2 is for
SISO Decoder 2. In the beginning, the input data (7:(0), r:(1) and (2)) are saved
in RAM1, RAM3 and RAM4, and r,(0) is fed to Interleaver and then the output
of the interleaver are saved in RAM2. We proposed a solution to save memory. In
the proposed scheme, we divide one Single-RAM into two smaller RAMs to save

even indexed data and odd indexed data. Also, the ROM in interleaver is divided

30

SISO Decoder

| l
 — «L Hard
Input Buffer :> BMU OACS LLR decision
e I
l
: A Prio.r Extric | Do
l e Information] | interleaver
r !
Interleaver/De
interleaver

Figure 4.1: The turbo decoder architecture with a single SISO decoder.

into smaller ROMs to save eved'indexéd address.and odd indexed address. We
take two address (Address 1 and Address 2) from two smaller ROMs (Sub-ROM
(E) and Sub-ROM (O), where-E for'even and O for odd) as shown in Fig. 4.3.
Refering to Fig. 4.4, the data corresponding to L%J and |[494ress 2 | s saved
in Sub-RAM2 (E) and Sub-RAM2 (O);and according to Address 1 and Address

2 within two clock cycles, we have the following four cases

1. Case 1: Address 1 is even number and Address 2 is odd number.

Address 1 is equal to 500 at Tp and it corresponds to the address 250 (| %°])
in Sub-RAM2 (E). Thus it enables sub-RAM2 (E) and disables sub-RAM?2
(O). Then d, is saved to sub-RAM2 (E) at address 250. Address 2 is equal
to 201 at 7 and it corresponds to the address 100 (|22!]) in Sub-RAM?2
(O). Thus it disables sub-RAM2 (E) and enables sub-RAM2 (O). Then d;
is saved to sub-RAM2 (O) at address 100.

2. Case 2: Address 1 is odd number and Address 2 is even number.

Address 1 is equal to 211 at T3 and it corresponds to the address 105 in
Sub-RAM2 (O). Thus it enables sub-RAM2 (O) and disables sub-RAM?2
(E). Then dj is saved to sub-RAM2 (O) at address 105. Address 2 is equal

31

Tio, 2, ..)
Number of | Number of | Input of Sub-RAM2(E) | Input of Sub-RAM2(0O)
Address1 Address2
even odd | Address 1] X
odd even X | Address 1|
even even | Address 1| X
odd odd X | Address 1]
T, s, ..)
even even X | Address 2 |
odd odd % X
even even | Address 2 | X
odd odd X | Address 2 |

Table 4.1: Summary of interleaver process with four case.

to 510 at T3 and it corresponds to the address 255 in Sub-RAM2 (E). Thus
it disables sub-RAM2 (O) and enables sub-RAM?2 (E). Then dj3 is saved to
sub-RAM2 (E) at address 255.

3. Case 3: both of Address 1 and- Address 2 arereven number.

At T, and T5, Address 1 is 520 and "Address 2 is 530. Therefore d, and ds
will be saved to sub-RAM2 (E). Thus we enable sub-RAM2 (E) and disable
sub-RAM2 (O). Then, d, and d; are saved in sub-RAM2 (E) at address 260

and 265.

4. Case 4: both of Address 1 and Address 2 are odd number.

At Ty and T, Address 1 is 221 and Address 2 is 301. Therefore dg and dy
will be saved to sub-RAM2 (O). Thus we enable sub-RAM2 (O) and disable
sub-RAM2 (E). Then, dg and d; are saved in sub-RAM2 (O) at address 110

and 150.

We summary the interleaver process with four cases as in Table 4.1, where the

notation x denotes don’t care.

Table 4.2, is a comparision of input buffer implemented by Single-RAM and
Dual-RAM. From the table, if we use the Dual-RAM the area is larger than the

32

— —Path I
r.(0)
I (O) RAMI1 ¢(>
L/ r.40)
Interleaver :‘t >
ROM j: RAM2

— —Path2 — >
— —DPahl — >
(D
rt(l)j> RAM3 [
r(2)
£(2) j> RAMA [—
—— — Path 2>

—Path 1=» SISO Decoder 1

LIFO (A)

BMU (b,) >

U

LIFO (B)

)

il

—DPath 288 "SISO Decoder 2

Figure-4.2: The input data:flow.

Relative area

Relative power

Single-RAM (proposed) /1

1

Dual-RAM

2.37

3.55

Table 4.2: Comparision of area and power for implementing the input buffer by

dual-RAM and singl-RAM.

Single-RAM by 2.37 times, and the power is larger than the Single-RAM by 3.55

times. Thus our proposed method reduced the area and power significant.

33

Interleaver

ROM
Sub Sub
ROM(E) ROM(O)
‘ |
Addressl } i} i —‘ Address?2
MUXA MUXB
A e y
| Sub Sub |
RAMZTI RAM2E) RAM2(0) ||

Figure 4.3: The proposed ROM and RAM!scheme to achieve two-read and two-
write in one clock cycle.

4.1.2 BMU(branch metrie unit)

The BMU is used to computate the branch metrics 7. The BMU correspond to
equation is (2.33). In 3GPP std., 7 can as shows as follows

TE0,4) =37 (1,0) = 7 (6,3) = 7 (1,7) = S [Lule) — (n(0) + (1),

TR = HE.5) = 76,4 = 771(5,2) = G [La(e) + ((0) = r(D)]
(4.1)
and
7H0,0) =7, (1,4) = 7,76, 7) =7 1H(7,3) = =771(0,4),
725 =76) =7 (4,2) =7 (5,6) = =7 (2,1). (4.2)
In (4.1) and (4.2), we only calculate 7:71(0,4), 71 (2, 1), 7:71(0,0) and 7.7 (2, 5)
and the other 7 can obtained.from these four values. Fig. 4.5 shows a hardware

architecture for 7. Here we ignore divide-by-2, because in VLSI implementation

divide-by-2 operation is just a shift operation.

34

L LY L LY

CASE 1 CASE 2 CASE 3 CASE 4

I
|+TO*|+T1*+T2 +T3*I+T4*|+TS*+T6*I+T7*|

I ER Y ER Y CR i e e
Addressl }%[5}5_0}: s00 K 11 : 211 Xfm}l 520><221 221>:
><(a5
B e
|

|
|
Addressof

SubIRAM2(E) : | % | f26<: f265 X | x
sff&fﬁﬁ%)}(x | [1?9}* 235 | X >i< J o 10 | 150 }
| 265[d5| |[d5 [d5
| 2o[@d| d4! [d4] [d4
SubfRAM2(E) | 255[d3| |d3| |d3| |[d3| |d3
| sold0| @0 @0 [0 [do| [do] [@o] [do
| I | 1
150 d7
| 110[d6| [d6
SUbIRAM2(0) | N v = = =
| wodl] @1 [d@i] (61| @i [di]| [dd

Figure 4.4: Timing diagram for the proposed RAM and ROM schemes.

35

v
0>+ | 5"00
v

g, (0,9)

\/

L.(G)—

. (0)—] -39

s
0. (21

+ - | -
\j

L.(G)—>

Figure 4.5: The architecture of 7.

4.1.3 OACS(Offset-Add-Cempare-Select)

The OACS is used to calculate 3., @ and B. The architecture is shown in Fig.

3.2. Since the OACS is a recursive unit, its-.computation result will increase after

each iteration. Hence the final résult.may saturate. In order to overcome this

situation, we adopt the normalization scheme proposed in [21]. Fig. 4.6 shows an

example for @}, , with normalization. When one of the values, @, , 4 ~ @/, 5 4,

are large than or equal to 2°72, where L is the word length of the state metrics
(0~7)

(aﬁi}fg and B,,5 4)), we subtract 2272 from all of the state metrics to avoid

saturation.

4.1.4 LLR (Log-Likelihood Ratio)

The LLR output for the radix-4 turbo decoder can be calculated according to
(2.48)-(2.50) and the corresponding hardware is shown in Fig. 4.7, where maz*
(see (2.23)) can be express as hardware shown in Fig. 4.8, and the LUT is the
proposed structure in section 3.2. In LLR unit, we used pipeline skill to reduce
the critical path with the penalty of increasing 28 registers. The processing time

for each SISO decoding is three clock cycles.

36

. T

a

—0
+ 1 aah! 28

]

ats
—t+1 —t+2
9. (0,0)+g,.,(0,0

—t+ —t+2
9. (1L0)+g,..(0,0)

—2
2y B
—t+l —t+2 die
g (21)+6..(10) —
—3
B4 ™0 =¥
—t+l —t+2 Q1B aHZA) Normali
g, (3!1)+gt+1 (1,0) L

dw2p zation

W

+
W

Al

l
b

[

Figure 4.6;=The normalization of OACS.

4.1.5 Extrinsic Information and a ‘Priori Information

When the computation of LLR is completed, we calculate L. (c;) refer to (2.52).
Le(c;) is to be sent to interleaver/de-interleaver and then saved as the a Priori
information. The a Priori information is saved in two RAMs, where we use two
Dual-RAMs to achieve this, because adopting one Dual-RAM will lead to data
hazard. Fig. 4.9 is the timing diagram for read/write situation in Dual-RAM 1
and Dual-RAM 2. Assume the data block length is Np and the window legnth is
Ny, operating at SISO decoder 1. At SISO decoder 1 period, the Dual-RAM 1 is
in write-mode and the Dual-RAM 2 is in read-mode. At Ty, a priori information
is read from Dual-RAM 2 to calculate the extric information and then obtain
extric information e4 and e5. The e4 and e5 are passed into interleaver and then
are saved to dual-RAM 1 at Address 1 and Address 0. Here if we adopt one
Dual-RAM at T5, we will extract a priori information at Address 0 and Address

1, however this a priori information has been updated at Ty. Therefore we need to

37

Pipeline
Stagel

Pipeline
Stage?2

Pipeline
Stage3

LLR

Pipeline
Stage3

Pipeline
Stage2

Pipeline
Stagel

Figure 4.7: The Architecture of LLR.

L} L: LUTQ
[

Figure 4.8: The hardware architecture of maz*(-).

38

| | | | |uISO decoder 1 period | I | | >
Window Block <—W0 WNL1 |
Time <—T2—><—T1—><—To—> T (NLM)* 3+2>LT(N|_1) *3+1 94— T(NL1)*3— 9
Extric ; ;
. le0 e14«e2 e34«e44»e5— «eno 6€eno 5J<eNu4 €No 3J<ean eNo1-|
Information
coe [O N
Address 0 1 2 3 4 5 Np6 ; No5, No4 | No3 , No2 , Np1
Dual RAM 1 e5 e4 | e3 | e2 | el | el ©not | ©no2 | ©No3 | ©Noid | ENos | o
(write)
Dual RAM 2
(read) a0 | a1l | a2 a3 | a4 | a5 Anos | Anos | Anoig | Aoz | Aoz | Aot

Figure 4.9: Timing diagram of a priori information for two Dual-RAMs.

save extric information e4 and €5 to Dual-RAM 2:to avoid data hazard. Operating
at SISO decoder 2 period, the Dual-RANM:1is in read-mode and the Dual-RAM

2 is in write-mode, its operation is similar with that in SISO decode 1 period.

4.1.6 Interleaver and De-interleaver

The Interleaver has two purposes. One is to interleave 7,(0) mentioned in Input
Buffer. The other is to interleave L.(c;) mentioned in Extrinsic Information
and a Priori information. De-interleaver is used to de-interleave L.(c;). In Input
Buffer, we only use interleaver once. Then the interleaver is used to interleave
Le(c;) in iteration procedure. Hence we only need one interleaver. Since we need
to use it several times in iteration process and only once to de-interleaver the

output the LLR. Also, we only need one de-interleaver.

4.1.7 Hard Decision

The number of iteration is in general limited, when the number of limitation
iteration is reached, the output of the LLR will take hard decision (refer to (2.34)
) to decode two information bits. Fig. 4.10 is an architecture for the hard decision,

assuming the LLR has n bits. We only consider the sign bit of the LLR. If the

39

L P

0—»1

1 —»0

Figure 4.10: The architecture of hard decision.

sign bit is 1, the output is 0; otherwise the output is 1.

4.1.8 Sliding Window

Here we describe the sliding window approach. Referring to Fig. 4.11 and Fig
4.12, after all of the data are saved to RAM in:Input Buffer. Then the data are
taken from RAMI1 and RAM3 /RAM2 and RAM4 and saved in LIFO (A) for
SISO Decoder 1/SISO Decoder 2. The data-EIFQ (A) are then shift to LIFO (B).
At the begining, we delay k/2 (k is'windew length) clock cycles to take data from
RAM with data address from k/2 — 1 to 0 and save them in LIFO(A). In second
k/2 clock cycles, we take data from RAM with data address from k£ — 1 to k/2,
and save them in LIFO(A). At this duration, take data from the input buffer and
LIFO(A) and then fed to BMU (3,) and BMU (@) to calculate branch metrics 34
and @. In the third /2 clock cycles, the data in LIFO (B) is fed to BMU (f) to
calculate branch metric 3. The OACS (3;) and OACS (@) is calculated 3; and @
at second the k/2 clock cycles, and the calculated @ is saved in buffer (@). At the
end of the second k/2 clock cycles, 3, is ready to calculate 3 by OACS (5). In
the third k/2 clock cycles, we obtain a boundary value 3, to begin to calculate 3,
and output 3. At the third k/2 clock cycles, all of the data (i.e. @, # and 7) are
fed to LLR to decide the soft information. If the number of iteration limitation
is reached, we stop the process and fed the output of the LLR to hard decision

and then perform De-interleaving for the decoded information bits.

40

r,(0)/r%0) . _
BMU (b,) > OACS (by)|
@/ (2)

LIFO (A) :> BMU (a) :> OACS(a) > buffer (a)
< <
LIFO (B) :|> BMU (b) j> OACS (b) % LLR

4}

Figure 4.11: Calculating BMU, OACS and LLR.

4.2 Design flow

In the section, we will introduce the design'flow for the proposed turbo decoder.

The cell-based design flow is as shown in Fig. 4.13.

4.2.1 System model

First the encoder is created according to the 3GPP standard, and we use the
proposed architecture to decoder. The simulation platform was built on Matlab.
In VLSI impelmentation, we quantize the floating-point to fixed-point and adjust
the bit length so that the BER performance is close to floating-point simulation
result. When the bit length is decided, we can generate input and output test
patterns for RTL.

Using tool: Matlab.

41

Time

Input data

LIFO (A)

LIFO (B)

buffer (a)

le—k/2—la—k/2—fak/ 2tk

Block 1

Block 2

Block 3

Block 4

N

\
Block \1

Block 2

Block 3

| PPt

|
.

Block 1

Block 2

\ |\ 5 |5 |
| (alockZ) | (?Iock 3)
a

\J) | @ |
| (Block 1) | (aock 2) ' (Block 3)
| |

| (Block 4) |

| 5 |

%
(Block 1) | (Block 2)
a a
(Block 1) (Block 2)
l | LLR LLR l

(Block 1) | (Block 2)

Figure 4.12: Timing diagram of Sliding Window.

42

Specification
development
System model

v

System model

(Matlab)

!

RTL code
(Verilog)

Bit ture simulation

NC-verilogand |
modelsim
T

RTL verification

L]

Logic systhesis
(Design complier)

!

Gate level netlist

Scan chain with
netlist
(DFT complier)

Fault coverage
analyze
(TetraMax)

Gate level
simulation
(NC-verilog)

Gate Level pre-layout

verification

v

Place & Route

(SOC Encounter)

verification

Gate Level post-layout

v Y) v
Layout verification RC Extraction
Gatelevel STA (DRCILVS) Power andlyze Delay Calculation

A,

)

l

Layout Merging

Layout verification

Circuit Extraction

Circuit L

evel

(Cdlibre) (DRC/LVS) L. .
e veri fication
Circuit -level Circuit -level
simulation STA
y
Tapeout

Figure 4.13: IC design flow.

43

4.2.2 RTL code

We use Verilog-HDL to describe the hardware architecture. The general design
method is hierarchically method. Hence we need to divide the overall design
into serval basic modules first. Then, connecting among the basic modules to
complete the rough structure. Finally we need to perform bit true in order to
make sure the output signals of RTL code and Matlab are same with same input
signals. In addition, we have using memory in our architecture, so we use the
memory compiler to generate.

Using tools: memory compiler, NC-verilog, modelsim, and Debussy nWave.

4.2.3 BIST

Because there are memory in our architecture, we need to add BIST circuit on
memory control for the testability of ICEAfter, adding BIST circuit, there are two
mode in circuit, i.e. function mode and test mode. Function mode means that
normal Turbo decoding can be performed, and test mode can be used test that

there are have any error in memaory.

Using tool: TurboBIST.

4.2.4 Synthesis

In this step, we start to synthesize our circuit. Before this step, our program is
just hardware language, is not real gate. By using Synopsys Design Compiler
to do the synthesis, our program can be translate as real gate. And we can get
the rough area and some timing information of the gate. In our decoder design,
all modules except the one port and two port register files are synthesized with
TSMC 0.18m CMOS process technology.

Using tool: Design Compiler.

4.2.5 Gate-level simulation

After synthesis, we can get timing information of gate. So we can perform our

circuit to check have any error with real time. We use NC-Verilog to do the

44

gate-level simulation and use Debussy nWave to check waveform. By checking
waveform, we can observe function exactitude with our predetermined clock pe-
riod.

Using tools: NC-Verilog, and Debussy nWave.

4.2.6 DFT

For IC testing, we need to add mux in front of Flip-Flop and scan chains for
the testability of IC. After adding mux, we can get there is any error between
Flip-Flop and Flip-Flop by passing mux input signal. We use to Synopsys DFT
Compiler to do scan chain insertion.

Using tool: DFT compiler.

4.2.7 ATPG

In the step, we use ATPG (automatic test pattern generator) of Synopsys Tetra-
Max to generate test patterns#for chip measurement.

Using tool: Synopsys TetraMax.

4.2.8 APR

We use SOC encounter to do automatical placement and routing (APR). Before
placing and routing, we need to add power I1/O and core I/O on Gate-level netlist
and arrange location of input, output, I/O power, and core power on pad CIC
supported. We need to consider core utilization, location of one port and two
port register files, number of power ring, location and number of stripe to meet
timing constraints from SDC file.

Using tool: SOC encounter.

4.2.9 DRC and LVS

In general, we usually have consider DRC (design rule checking) and LVS (layout
V.S. schematic) in APR. But there is just rough check result in SOC encounter.
So we need to do detail verification. We use the Calibre DRC to check whether

45

there is any error with design rule and use the Calibre LVS to make sure that
whether the layout and the schematic are identical or not.

Using tool: Calibre.

4.2.10 Post-layout level

In order to check function, we take the netlist and file of timing information
generated by SOC encounter to run NC-Verilog. We can observe wave to find
whether is any error by Debussy nWave. This is the last step to check function
on myself work.

Using tools: NC-Verilog, and Debussy nWave.

46

Il 1“ LLI

Figure 4.14: Chip layout of the proposed Radix-4 Turbo Decoder for 3GPP.

4.3 Chip Layout and Comparison

The turbo decoder is implemented by using the TSMC 0.18 um 1P6M CMOS
process. It achieves the maximum clock rate of 167YMHz. The chip layout is
shown in Fig. 4.14 and the chip summary is also listed in Table 4.3. Comparing
to [15], [23] and [24] as shown in Table 4.4, the core size and area of the proposed
scheme is relative high. However the proposed scheme can achieve higher clock
rate. In our proposed, the throughput is worst than the [15], but faster than the
[23] and [24].

47

Technology TSMC 0.18 um 1P6M CMOS

Chip size 7.28 mm?
Core size 2.65 mm?
Gate count 200K

Embedded SRAM | 28K bits
Embedded ROM 9K bits
Clock rate 167 MHz
Power consumption | 135mW

Table 4.3: The expected turbo decoder chip summary.

| [15] | [23] | [24] | Proposed design |
Technology 0.18 pm | 0.25 pm | 0.18 pm | 0.18 pum
Block Length 5114 5114 5114 512
Core Size (mm?) 14.5 9 9 2.65
Clock Rate (MHz) 145 135 88 167
Throughput (Mb/s) 24 5.48 2 22
Number of iteration 6 6 10 6
Energy efficiency (nJ/b/iter.) || 10 6.98 14.60 1.02

Table 4.4: Chip comparison.

48

Chapter 5

Conclusion

In this thesis, we proposed a LUT architecture, so the speed of MUX and LUT
are nearly the same. As a result, the critical path is reduced. Because the
decoder uses the Radix-4 algorithmy’which' deals with 2 stages of data in one
clock cycle, we proposed a ROM and RAMread/write scheme to avoid the use
of Dual-RAM. In chip implementation, the ¢hip-isfabricated in TSMC 0.18 um
CMOS process, operating at 167MHz clock rate with voltage supply 1.62V. The
power consumption is 135mW at decoding rate 22Mb /s with code rate 1/3 for

3GPP standard. The core area is 2.65 mm?, contains 200K gate counts.

49

Reference

1]

2]

3]

[4]

[5]

[6]

7]

C. Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding:Turbo-Codes,” Proc. of IEEE 1CC"93,
Geneva, pp. 1064-1070, Volume 2, May 1993.

TIA/EIA/CDMA2000, “Physical layer standard for CDMA-2000 standards

for spread spectrum systems,” June, 2000.

“Technical Specification Group Radio"Access Network, Multiplexing and
channel coding (FDD) (15725.212°V8.2.0)” -:3rd Generation Partnership
Project (3GPP).

J. Hagenauer and P. Hoeher, “A*Viferbi‘algorithm with soft-decision outputs
and its applications,” in Proc. IEEE GLOBECOM, Dallas, TX, pp. 47.1.1-
47.1.7, Nov. 1989.

J. Hagenauer et al., “Decoding turbo codes with the soft-output Viterbi algo-
rithm (SOVA),” in Proc. IEEFE Int. Symp. Information Theory, Trondheim,
Norway, pp. 164, 1994.

L. Papke and P. Robertson, “Improved decoding with the SOVA in a parallel
concatenated (turbo-code) scheme,” in Proc. IEEE Int. Conf. Communica-

tions, pp. 102-106, 1996.

P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
suboptimal MAP decoding algorithms operating in the log domain,” in Proc.

IEEE Int. Conf. Communications, pp. 1009-1013, 1995.

50

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Vogt and A. Finger, “Improving the MAX-LOG-MAP turbo decoder,”
Electron. Lett., vol. 36, pp. 1937-1939, Nov. 2000.

J. Hagenauer et al., “Iterative (turbo) decoding of systematic convolutional
codes with the MAP and SOVA algorithms,” in Proc. ITG, Munich, Ger-
many, pp. 21-29, Oct. 1994.

M. Shin and I.-C. Park, “Processor-based turbo interleaver for multiple thrid-
generation wireless standards,” IEEE Commun. Lett., vol. 7, no. 5, pp. 210—
12, May 2003.

P. Ampadu and K. Kornegay, “An efficient hardware interleaver for 3G turbo
decoding,” Proc. RAWCON’03, pp. 199-201, Aug. 2003.

Z. Wang and Q. Li, “Very low-complexity hardware interleaver for turbo
decoding,” IEEE Trans. Circuits Syst. I, Exp. Briefs, vol. 54, no. 7, pp.
636-640, Jul. 2007.

L. R. Bahl, J. Cocke, F. Jelinek,;and-J-"Raviv, “Optimal decoding of linear
codes for minimizing symbol,” ‘\IEEE-Trans. Inform. Theory, no. I'T-20, pp.
284287, Mar. 1974.

J. A. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol
detectors with parallel structures for ISI channels,” IEEE Trans. Commun.,

vol. 42, no. 2/3/4, pp. 1261-1271, Feb./Mar./Apr. 1994.

M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, C. Nicol, “A 24 Mb/s
Radix-4 LogMAP Turbo Decoder for 3GPP-HSDPA Mobile Wireless,” in
Proc. IEEE Int. Solid-State Chircuit Conf., pp. 1-10, 2003.

A. J. Viterbi, “A intuitive justification and a simplified implementation of
the map decoder for convolutional codes,” IEEFE J. Select. Areas Commun.,

vol. 16, no. 2, pp. 260-264, Feb. 1998.

S. A. Barbulescu, “Iterative decoding of turbo codes and other concatenated

codes,” Ph.D. dissertation, Univ. South Australia, 1996.

51

[18]

[19]

[20]

[21]

[22]

23]

[24]

S. Benedetto and G. Montorsi, “Design of paralle concatenated convolutional

coddes,” IEEE Trans. Commun., vol. 44, no. 5, pp. 591-600, May 1996.

E Boutillon, W. Gross, and P. Gulak, “VLSI architectures for the MAP
algorithm,” IEEFE Trans. Commun., vol. 51, no. 2, pp. 175-185, Feb. 2003.

Z. Wang, “High-speed recursion architectures for MAP-based turbo de-
coders,” IEEE Trans. on VLSI Syst., vol. 15, no. 4, pp. 470-474, Apr. 2007.

Y. Zhang and K.K. Parhi, “High-Throughput Radix-4 LogMAP Turbo De-
coder Architecture,” Proc. of 40th Asilomar Conf. on Signals, Systems and
Computers, pp. 1711-1715, Oct. 2006.

Z. Wang, H. Suzuki and K. K. Parhi, "VLSI Implementation Issues of Turbo
Decoder Design for Wireless Applications";«Proc. of 1999 IEEE Workshop on
Signal Processing Systemss Design -and Implementation, Taipei, Oct. 1999.

M.-C. Shin and I.-C. Park, “Alprogrammable turbo decoder for multiple
3G wireless standards,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech.
Papers, pp. 154-155, Feb. 2003.

M. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup, G. Zhou, C.
Nicol, and R.-H. Yan, “A unified Turbo/Viterbi channel decoder for 3GPP
mobile wireless in 0.18 m CMOS,” in IEEE Int. Solid-State Circuits Conf.
Dig. Tech. Papers, pp. 90-91, Feb. 2002.

52

