

國 立 交 通 大 學

電機與控制工程學系

碩 士 論 文

適用於 3GPP 之 Radix-4 渦輪碼解碼器

A Radix-4 Turbo Decoder for 3GPP

研 究 生：廖盈超

指導教授：蔡尚澕 教授

中 華 民 國 九 十 七 年 十二 月

適用於 3GPP 之 Radix-4 渦輪碼解碼器

A Radix-4 Turbo Decoder for 3GPP

研 究 生：廖盈超 Student：Ying-Chao Liao

指導教授：蔡尚澕 Advisor：Shang-Ho Tsai

國 立 交 通 大 學
電 機 與 控 制 工 程 學 系

碩 士 論 文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

In Electrical and Control Engineering

December 2008
Hsinchu, Taiwan, Republic of China

中華民國 九 十 七 年 十二 月

適用於 3GPP 之 Radix-4 渦輪碼解碼器

學生：廖盈超

指導教授：蔡尚澕

國立交通大學電機與控制工程學系﹙研究所﹚碩士班

摘 要

渦輪碼已經廣範使用在通訊系統，因為它有極佳的錯誤修正能力。為了增加扇出數和減少所需

的記憶，開始研究渦輪碼 radix-4 架構。可是在 radix-4 的渦輪解碼器所需的計算路徑較長，使

得 radix-4 渦輪解碼器的扇出數無法高於 radix-2 渦輪解碼器 2 倍。在這篇論文中我們在遞迴架

構中提出一個查表方針，使得扇出數增加 62%，在提出的方法下效能僅比 Log-MAP 差

0.025dB。應用在超大型積體電路上，我們在輸入緩衝器使用 dual-RAM 取代成 single-RAM，

這樣可以減少面積 57.8%及減少功率 71.83%。晶片是採用 TSMC 0.18 mμ CMOS 製程，操作

頻率在 167MHz，電壓為 1.62 伏特。使用 3GPP 規格碼率為 1/3，扇出數為 22Mb/s 下，消耗功

率為 135mW，而晶片的面積為 2.65 2mm 包含 200K 的邏輯閘數。

A Radix-4 Turbo Decoder for 3GPP

Student：Ying-Chao Liao

Advisors：Dr. Shang-Ho Tsai

Department﹙Institute﹚of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

Turbo code has been widely used in communication systems, because of its
outstanding error correction performance. To increase throughput and decrease the
required memory. Radix-4 architecture for Turbo decoder was studied. However, the
critical path of the recursive architecture in Radix-4 turbo decoder is long, As a result
conventional Radix-4 architecture [15] cannot achieve twice throughput over the
conventional Radix-2 architecture. In this thesis, we proposed a Look-Up Table
scheme for the recursive architecture and the throughput increases up to 62%. The
performance of the proposed scheme is worse than the Log-MAP (optimal) by only
0.025dB. In VLSI implementation, we propose a method for input buffer and it can
reduce the dual-RAM by the single-RAM to save area and power. The proposed
method can reduce the area by 57.8% and the power by 71.83%. The chip is fabricated
in TSMC 0.18 μm CMOS process, operating at 167MHz clock rate with voltage
supply 1.62V. The power consumption is 135mW at decoding rate 22Mb/s, with code
rate 1/3 for 3GPP standard. The core area is 2.65 mm², contain 200K gate counts.

誌 謝

 經過了兩年研究所的生涯終於告一段落了，此篇論文能夠順利的

完成非常感謝的是我的指導教授蔡尚澕教授，在兩年的研究生活中，

在研究上遭遇到很多困難，但老師很仔細的了解原因所在並一一地幫

忙解決，使得我可以繼續研究下去。並感謝我的口試委員:林源倍教

授、簡鳳村教授、董蘭榮教授提供我寶貴意見，以彌補論文不善之處。

 另外，感謝陳宇文、葉柏賢同學，因為有你們的幫忙，讓我在研

究之路上得到幫忙和勉勵，使我獲益良多。也感謝學弟妹們的加入，

因為有你們的加入使我們研究室的氣氛更加和樂。

 最後，我要感謝的是我的父母，因為有他們給我無後顧之憂才使

得研究可以完成，也因為有你們的支持與鼓勵讓我遇到困難都能迎刃

而解。

A Radix-4 Turbo Decoder for 3GPP

Ying-Chao Liao

Advisor: Dr. Shang-Ho Tsai

Department of Electrical and Control Engineering
National Chico Tung University

December 4, 2008

Abstract

Turbo code has been widely used in communication systems, because of
its outstanding error correction performance. To increase throughput and
decrease the required memory. Radix-4 architecture for Turbo decoder
was studied. However, the critical path of the recursive architecture in
Radix-4 turbo decoder is long, As a result conventional Radix-4 architec-
ture [15] cannot achieve twice throughput over the conventional Radix-2
architecture. In this thesis, we proposed a Look-Up Table scheme for the
recursive architecture and the throughput increases up to 62%. The per-
formance of the proposed scheme is worse than the Log-MAP (optimal)
by only 0.025dB. In VLSI implementation, we propose a method for in-
put buffer and it can reduce the dual-RAM by the single-RAM to save
area and power. The proposed method can reduce the area by 57.8% and
the power by 71.83%. The chip is fabricated in TSMC 0.18 µm CMOS
process, operating at 167MHz clock rate with voltage supply 1.62V. The
power consumption is 135mW at decoding rate 22Mb/s, with code rate
1/3 for 3GPP standard. The core area is 2.65 mm2, contain 200K gate
counts.

Contents

1 Introduction 1

2 Turbo Code 3
2.1 Turbo Code Encoder . 3

2.1.1 Recursive Systematic Convolution Codes 3
2.1.2 Termination of encoding process 4

2.2 Decoding Criterion . 5
2.2.1 MAP criteria . 5
2.2.2 Log-MAP and Max-Log-MAP criteria 7

2.3 Decoding Algorithm . 11
2.3.1 Radix-2 algorithm . 11
2.3.2 Radix-4 algorithm . 12
2.3.3 Deriving LLR for Radix-4 14

2.4 Decoding Architecture . 17
2.4.1 Sliding Window . 20

3 Radix-4 Recursive Architecture 21
3.1 Conventional Architecture . 21
3.2 Proposed Architecture . 21

3.2.1 Performance Comparison 26
3.3 Fixed point Analysis . 28

4 VLSI Implementation 30
4.1 Hardware Design for 3GPP . 30

4.1.1 Input Bu¤er . 30
4.1.2 BMU(branch metric unit) 34
4.1.3 OACS(O¤set-Add-Compare-Select) 36
4.1.4 LLR (Log-Likelihood Ratio) 36
4.1.5 Extrinsic Information and a Priori Information 37
4.1.6 Interleaver and De-interleaver 39
4.1.7 Hard Decision . 39
4.1.8 Sliding Window . 40

i

4.2 Design �ow . 41
4.2.1 System model . 41
4.2.2 RTL code . 44
4.2.3 BIST . 44
4.2.4 Synthesis . 44
4.2.5 Gate-level simulation . 44
4.2.6 DFT . 45
4.2.7 ATPG . 45
4.2.8 APR . 45
4.2.9 DRC and LVS . 45
4.2.10 Post-layout level . 46

4.3 Chip Layout and Comparison . 47

5 Conclusion 49

ii

List of Figures

2.1 The Turbo Code Encoder for 3GPP. 4
2.2 A general form of max�(�): . 9
2.3 The trellis diagram of �: . 12
2.4 The trellis diagram of �: . 13
2.5 The Radix-2 and Radix-4 trellis diagram. 15
2.6 The trellis diagram of LLR unit for stage t : (a) LLR1t and (b) LLR

0
t : 18

2.7 The trellis diagram of LLR unit for stage t + 1 : (a) LLR1t+1 and
(b) LLR0t+1. 18

2.8 An architecture of the turbo decoder. 19
2.9 The sliding window diagram. 20

3.1 Conventional Radix-4 Architecture. 22
3.2 Radix-4 recursion architecture of [20] 23
3.3 Architecture of the proposed LUT used in [20]. 24
3.4 Architecture of the proposed LUT. 25
3.5 Performance comparison among the Log-MAP and four approxi-

mated algorithms. 29

4.1 The turbo decoder architecture with a single SISO decoder. 31
4.2 The input data �ow. 33
4.3 The proposed ROM and RAM scheme to achieve two-read and

two-write in one clock cycle. 34
4.4 Timing diagram for the proposed RAM and ROM schemes. 35
4.5 The architecture of
: . 36
4.6 The normalization of OACS. 37
4.7 The Architecture of LLR. 38
4.8 The hardware architecture of max�(�): 38
4.9 Timing diagram of a priori information for two Dual-RAMs. . . . 39
4.10 The architecture of hard decision. 40
4.11 Calculating BMU, OACS and LLR. 41
4.12 Timing diagram of Sliding Window. 42
4.13 IC design �ow. 43
4.14 Chip layout of the proposed Radix-4 Turbo Decoder for 3GPP. . . 47

iii

List of Tables

3.1 Approximation of [20]. 24
3.2 The values of g(x); u(v); d1; d0 and p1; p0. 27
3.3 Comparison of various recursive architectures. 28
3.4 Quantization format for the proposed Turbo Decoder. 28

4.1 Summary of interleaver process with four case. 32
4.2 Comparision of area and power for implementing the input bu¤er

by dual-RAM and singl-RAM. 33
4.3 The expected turbo decoder chip summary. 48
4.4 Chip comparison. 48

iv

Chapter 1

Introduction

The basic concept of channel coding is to add redundance bits along with infor-

mation bits before transmission. These redundance bits can help the receiver to

decode data correctly with higher probability. In 1984, Shannon proposed a limit

on the maximum achievable data rate over a channel. Many researchers attempt

various methods to close the Shannon limit. In 1993, Turbo Code was proposed by

Berrou, Glavieux and Thimajashima [1], it is a powerful error correcting codes

whose performance is close to shannon limit. In many mobile communication

systems, turbo code has been adopted to gain better performance, such as in

WCDMA, CDMA2000 [2], WiMAX and 3G [3] standards.

The turbo encode consists of two Recursive Systematic Convolutional (RSC)

encoders [18] and one interleaver. For the turbo decoder, it consists of two

soft-input soft-output (SISO) decoders and one interleaver/deinterleaver between

them. The SISO decoder is used in turbo decoder. In addition, it is also applied

in some other algorithm such as SOVA (Soft Out Viterbi Algorithm) [4]-[6], Log-

MAP, Max-Log-MAP [7] and improved Max-Log-MAP [8] (approximations to

the MAP algorithm).

Interleaver design for 3GPP was proposed by [10]-[12], to support full block

length. In 2003, Lucent Bell Labs [15] proposed the radix-4 algorithm for turbo

decoder. The algorithm has two advantages. One is doubling the throughput

for a given clock rate over the radix-2 architecture, and the other is reducing the

memory. Hence, in recent years, radix-4 turbo code is studied, e.g. see [20], [21]

1

which proposed methods to improve the recursive architecture for radix-4 turbo

code decoder. As for VLSI implementation for turbo decoders, the sliding window

algorithm ([16], [17]) is proposed to avoid storing the metrics corresponding to

the entire codeword sequence to reduce the memory requirement.

In this thesis, we use Radix-4 algorithm, approximated Log-MAP [20] and

sliding window technique to implement turbo decoder for 3GPP standard. More-

over, we proposed a Look-Up Table scheme for the recursive architecture and

the throughput increases up to 62% over the traditional Radix2 algorithm. In

VLSI implementation, we propose a method for input bu¤er and it can reduce

the dual-RAM by the single-RAM to save area and power. The proposed method

can reduce the area by 57.8% and the power by 71.83%. The chip is fabricated

in TSMC 0.18 �m CMOS process. The expected clock rate is 167MHz, through-

put is 22Mb/s, and the power consumption is 135mW with code rate 1/3, block

length 512. The core area is 2.65 mm2, containing 200K gate counts.

The chapters are organized as follows. In Chapter 2, we describe the MAP

criteria, Log-MAP criteria and Max-Log-MAP criteria. Also we compare decod-

ing algorithm for radix-2 and radix-4. Operation of sliding window technique is

also described here. In Chapter 3 we introduce the proposed scheme for radix-4

recursive architecture, and compare it to various recursive architectures. Chapter

4 introduces the VLSI implementation, we describe how to use one single RAM

to achieve Dual-RAM operation for Radix-4 turbo decoder. Also we describe the

decoding �ow with hardware architecture and show the chip layout as well as the

corresponding chip performance comparison.

2

Chapter 2

Turbo Code

In 1993, The turbo code was introduced by Berrou, Glavieux, and Thitima-

jshima [1], and achieved a bit-error probability of 10�5 with a code rate of 1/2

over an AWGN (additive white Gaussian noise) channel and BPSK modulation

at an Eb=N0 of 0.7dB. Turbo code has been adopted in many mobile communica-

tion systems, such as WCDMA, CDMA2000, WiMAX, 3G mobile. In 3GPP [3]

systems, the turbo encoder consists of two Recursive Systematic Convolutional

(RSC) [18] codes in parallel and an interleaver unit. For turbo decoder, it con-

sists of two Maximum A Posteriori (MAP) decoders connected in series with a

feedback loop from the second output to the �rst input. Let us introduce the

codec more detailed in the following subsections.

2.1 Turbo Code Encoder

2.1.1 Recursive Systematic Convolution Codes

Fig. 2.1 is the turbo code encoder structure in 3GPP systems and code rate is

1/3. The encoder consists of two RSC codes and an interleaver. The generator

matrix of the RSC encode is:

G(D) =

�
1;
g1(D)

g0(D)

�
, (2.1)

where

g0(D) = 1 +D
2 +D3 (2.2)

3

DD D

DD D

interleaver

1st RSC Encoder

2nd RSC Encoder

kc

kc′

kx′

kx

kz

kz′

A

B

A′

B′

Figure 2.1: The Turbo Code Encoder for 3GPP.

is the feedback polynomial and

g1(D) = 1 +D +D
3 (2.3)

is the forward polynomial.

Initially, the registers from RSC must be zero ,and upper switch and lower

switch switch to A and A�. After K numbers are inputted, thus the order of the

output from the turbo encoder is x1; z1; z�1; x2; z2; z
�
2;...; xK ; zK ; z

�
K where x1;

x2;...; xK are input bits and K is the number of input bits.

2.1.2 Termination of encoding process

The termination scheme is to let the encoder comes back to zero state and thus

it can decrease the bit error rate. When the K bits completes encoding process,

both the two RSCs need to generate 12 tail bits. First, the lower RSC in Fig.

2.1 is disable and the switch in the upper RSC is changed from position A to

position B, and then six tail bits are generated. Second, the last six tail bits

are generated by turning o¤ the upper RSC and the switch in the lower RSC is

4

changed from position A�to position B�. The 12 tail bits shall be:

xK+1, zK+1, xK+2, zK+2, xK+3, zK+3, x�K+1, z�K+1, x�K+2, z�K+2, x�K+3, z�K+3:

(2.4)

2.2 Decoding Criterion

2.2.1 MAP criteria

The MAP algorithm has been developed by Bahl, Cocke, Jelinek, and Raviv in

1974 [13] and is termed as BCJR algorithm. Consider a situation that we received

a signal r over a discrete memoryless channel. The state transitions from state

m to state m�, i.e. Sm(t) at time t to Sm�(t + 1) at time t + 1, we can obtain a

joint probability:

PrfSm(t); Sm�(t+ 1); rg (2.5)

= PrfSm(t); Sm�(t+ 1); rt�10 ; rtt; r
N�1
t+1 g:

Using joint probability property

Pr(A;B) = Pr(A) Pr(BjA) (2.6)

or

Pr(A;B) = Pr(B) Pr(AjB), (2.7)

we can rewrite (2.5) as follows

PrfSm(t); Sm�(t+ 1); rg (2.8)

= PrfSm(t); Sm�(t+ 1); rt�10 ; rttgPrfrN�1t+1 jSm(t); Sm�(t+ 1); rt�10 ; rtt)

= PrfSm(t); rt�10 gPrfSm�(t+ 1); rttjSm(t); rt�10 gPrfrN�1t+1 jSm(t); Sm�(t+ 1); rt�10 ; rttg

= PrfSm(t); rt�10 gPrfSm�(t+ 1); rttjSm(t)gPrfrN�1t+1 jSm�(t+ 1)g,

where rba; means that receive signals from time instance a to time instance b.

From (2.8), let us de�ne three functions for description convenience, i.e.

�(Sm(t)) = PrfSm(t); rt�10 g; (2.9)

�(Sm�(t+ 1)) = PrfrN�1t+1 jSm�(t+ 1)g; (2.10)

5

and

(Sm(t); Sm�(t+ 1)) = PrfSm�(t+ 1); rtjSm(t)g: (2.11)

Hence (2.8) can be rewritten as:

PrfSm(t); Sm�(t+ 1); rg = �(Sm(t))
(Sm(t); Sm�(t+ 1))�(Sm�(t+ 1)): (2.12)

De�ne S be the set of all the states at time t. We can further extend (2.9) as

�(Sm�(t+ 1)) = PrfSm�(t+ 1); rt0g

=
X

Sm(t)2S

PrfSm(t); Sm�(t+ 1); rt0g

=
X

Sm(t)2S

PrfSm(t); rt�10 gPrfSm�(t+ 1); rtjSm(t); rt�10 g

=
X

Sm(t)2S

PrfSm(t); rt�10 gPrfSm�(t+ 1); rtjSm(t)g

=
X

Sm(t)2S

�(Sm(t))
(Sm(t); Sm�(t+ 1)): (2.13)

Similarly, de�ne S�be the set of all the states at time t+1. We can further extend

(2.10) as

�(Sm(t)) = PrfrN�1t jSm(t)g

=
X

Sm�(t+1)2S�

PrfSm�(t+ 1); rN�1t jSm(t)g

=
X

Sm�(t+1)2S�

PrfrN�1t+1 jSm�(t+ 1); rt; Sm(t)gPrfSm�(t+ 1); rtjSm(t)g

=
X

Sm�(t+1)2S�

PrfrN�1t+1 jSm�(t+ 1); rtgPrfSm�(t+ 1); rtjSm(t)g

=
X

Sm�(t+1)2S�

�(Sm�(t+ 1))
(Sm(t); Sm�(t+ 1)): (2.14)

Finally, the branch metric can be rewritten as

(Sm(t); Sm�(t+ 1)) = PrfSm�(t+ 1); rtjSm(t)g: (2.15)

From the Bayes�rule

Pr(AjB) = Pr(A;B)

Pr(B)
,

6

we can rewrite (2.15) as

(Sm(t); Sm�(t+ 1)) =
PrfSm�(t+ 1); Sm(t); rtg

PrfSm(t)g

=
PrfSm�(t+ 1); Sm(t)g

PrfSm(t)g
PrfSm�(t+ 1); Sm(t); rtg
PrfSm�(t+ 1); Sm(t)g

= PrfSm�(t+ 1)jSm(t)gPrfrtjSm�(t+ 1); Sm(t)g

= Pr(ct) Pr(rtjwt), (2.16)

where ct is encoder input that make the state change from Sm(t) to Sm�(t + 1),

and wt is the corresponding codeword.

Consider the log-likelihood ratio (LLR)

L(ct) � ln
Prfct = +1jrg
Prfct = �1jrg

(2.17)

= ln

P
S(m;m�)2c+1t

PrfSm(t); Sm�(t+ 1)jrgP
S(m;m�)2c�1t

PrfSm(t); Sm�(t+ 1)jrg
;

where S(m;m�) 2 c�1t indicates that all the states from state m to state m�result

in transmitting ct = +1 and ct = �1 respectively. From (2.12), we can rearrange
(2.17) as

L(ct) � ln
P

S(m;m�)2c+1t
�(Sm(t))
(Sm(t); Sm�(t+ 1))�(Sm�(t+ 1))P

S(m;m�)2c�1t
�(Sm(t))
(Sm(t); Sm�(t+ 1))�(Sm�(t+ 1))

: (2.18)

From (2.18) is the LLR of turbo code. In VLSI design it is di¢ cult to implement

the LLR as in (2.18), because the LLR of natural log function in hardware demand

memory for look-up table. To overcome this, we will change the MAP criteria to

Log-MAP criteria and then apply the Log-MAP to the LLR.

2.2.2 Log-MAP and Max-Log-MAP criteria

In this section we derive the Log-MAP algorithm (2.18) can be rewritten to the

following

L(ct) = ln

P
S(m;m�)2c+1t

exp[�(Sm(t)) +
(Sm(t); Sm�(t+ 1)) + �(Sm�(t+ 1))]P
S(m;m�)2c�1t

exp[�(Sm(t)) +
(Sm(t); Sm�(t+ 1)) + �(Sm�(t+ 1))]
,

(2.19)

7

where

�(Sm�(t+ 1)) = ln(�(Sm(t+ 1)))

= ln

8<: X
Sm(t)2S

exp [�(Sm(t)) +
(Sm(t); Sm�(t+ 1))]

9=; , (2.20)

�(Sm(t)) = ln(�(Sm(t))

= ln

8<: X
Sm�(t+1)2S�

exp[�(Sm�(t+ 1)) +
(Sm(t); Sm�(t+ 1))]

9=; ; (2.21)
and

(Sm(t); Sm�(t+ 1)) = ln(
(Sm(t); Sm�(t+ 1)): (2.22)

According to the Jacobian function [14], we have

ln(exp(x) + exp(y)) , max�(x; y) = max(x; y) + ln(1 + exp(�jx� yj)): (2.23)

Referring to Fig. 2.2, a more general form is given by

ln(
dX
i=1

exp(xi)) , dmax(x1; x2; ..., xd)
= max�(:::;max�(max�(x1; x2);max

�(x3; x4)); :::

;max�(max�(xd�3; xd�2);max
�(xd�1; xd)); :::): (2.24)

Thus (2.19) can be rewritten as

L(ct) = dmaxS(m;m�)2c+1t [�(Sm(t)) +
(Sm(t); Sm�(t+ 1)) + �(Sm�(t+ 1)] (2.25)

� dmaxS(m;m�)2c�1t [�(Sm(t)) +
(Sm(t); Sm�(t+ 1)) + �(Sm�(t+ 1)]:
From (2.20), (2.21) and (2.24), �(Sm�(t+ 1)) and �(Sm(t)) can be written as

�(Sm�(t+ 1)) = dmaxSm(t)2S[�(Sm(t)) +
(Sm(t); Sm�(t+ 1))]; (2.26)

�(Sm(t) = dmaxSm�(t+1)2S[�(Sm�(t+ 1)) +
(Sm(t); Sm�(t+ 1))]: (2.27)

Because the encoder starts at zero state and terminates at zero state, � and �

satis�ed the following initial conditions:

�(S0 (t = 0)) = 1; �(Sm(t = 0)) = 0 for m 6= 0,

8

*max *max *max *max *max *max *max *max

*max *max

*max

*max *max *max *max

1x 2x 3x 4x . . . 3dx − 2dx − 1dx − dx

.
.

.

Figure 2.2: A general form of max�(�):

and

�(S0 (t = N)) = 1; �(Sm(t = N)) = 0 for m 6= 0:

Using natural log conditions:

�(S0 (t = 0)) = 0; �(Sm(t = 0)) = �1 for m 6= 0,

and

�(S0 (t = N)) = 0; �(Sm(t = N)) = �1 for m 6= 0:

Let us de�ne a priori information:

La(ct) , ln
Pr(ct = +1)

Pr(ct = �1)
(2.28)

Taking the exponential operation on both sides in (2.28) and employing Pr(ct =

�1) = 1� Pr(ct = +1), we have

Pr(ct = +1) =
exp(La(ct))

1 + exp(La(ct))
=

1

1 + exp(�La(ct))
(2.29)

and

Pr(ct = �1) =
exp(�La(ct))

1 + exp(�La(ct))
, (2.30)

9

thus we can rewrite (2.29) and (2.30) as

Pr(ct = �1) =
exp�La(ct)=2

1 + exp�La(ct)
� expctLa(ct)=2 = At � expctLa(ct)=2 , (2.31)

where

At =
exp�La(ct)=2

1 + exp�La(ct)
:

According to (2.16), the probability P (rtjwt) in AWGN channel is

Pr(rt(i)jwt(i)) =
�

1p
2��2

�n
� exp

�
Pn�1

i=0 (rt(i)� wt(i))2
2�2

!

=

�
1p
2��2

�n
� exp

�
Pn�1

i=0 (r
2
t (i) + w

2
t (i))

2�2

!
� exp

 Pn�1
i=0 rt(i) � wt(i)

�2

!

= Vt � exp

n�1X
i=0

(Lc � rt(i) � wt(i)=2)
!
, (2.32)

where n is inverse of the code rate, Lc is channel reliable value de�ned as 4ESN0 ,

�2 is the noise variance and

Vt =

�
1p
2��2

�n
� exp

�
Pn�1

i=0 (r
2
t (i) + w

2
t (i))

2�2

!
:

Substitute (2.16), (2.31) and (2.32) into (2.19), we �nd At and Vt are cancelled,

thus branch metric can obtained as following

(Sm(t); Sm�(t+ 1)) =
1

2
(ct � La(ct) +

n�1X
i=0

Lc � rt(i) � wt(i)); (2.33)

where rt(i) are received signal and wt(i) are �1. Initially, the La(ct) is unknown.
In this case we assume that Pr(ct = +1) = Pr(ct = �1), therefore La(ct) is zero
at the beginning. Combining (2.26), (2.27) and (2.33) to calculate the LLR in

(2.25), the received data can be decoded as follows

ct =

�
1 if L(ct) > 0
0 if L(ct) < 0

: (2.34)

From (2.23) and (2.24), we can further simplify themax�(�) and dmax(�) functions
as follows

dmax(x1 ; x2 ; :::; xd) t max(:::;max(max(x1; x2);max(x3; x4)); ::: (2.35)

;max(max(xd�3; xd�2);max(xd�1; xd)); :::):

10

Eq. (2.35) is obtained by removing the correction term and becomes max(�)
maximum function. Replacing max�(�) by max(�) in (2.25), (2.26) and (2.27), we
have the LLR with Max-Log-MAP. There is a small performance degradation by

using LLR with MAX-Log-MAP instead of LLR with MAP. The degradation is

more pronounced in low SNR region.

2.3 Decoding Algorithm

2.3.1 Radix-2 algorithm

In this section we use the trellis diagram to explain how �, � and
 are calculated

in the radix-2 and the radix-4 algorithm. Fig. 2.3 and Fig. 2.4 show the trellis

of � and � respectively, where the dotted lines and solid lines stand for ct = 0

and ct = 1. An example will help understand.

Example 1: Calculation of � in radix-2 algorithm.

Referring to Fig 2.3 to obtained �(S0(t + 1)), we know that there are two

paths connected to it. One path is S0(t) �! S0(t + 1) and the another path is

S1(t) �! S0(t + 1). Therefore
(S0(t); S0(t + 1)) and
(S1(t); S0(t + 1)) from

(2.33) can be expressed as

(S0(t); S0(t+1)) =
1

2
�[(�1)�La(ct = �1)+Lc �(rt(0)�(�1)+rt(1)�(�1)], (2.36)

and

(S1(t); S0(t+1)) =
1

2
�[(+1)�La(ct = +1)+Lc �(rt(0)�(+1)+rt(1)�(+1)]: (2.37)

Substituting (2.36) and (2.37) into (2.26) leads to �(S0(t+ 1)) as follows

�(S0(t+1)) = max
�[�(S0(t))+
(S0(t); S0(t+1)); �(S1(t))+
(S1(t); S0(t+1))]:

(2.38)

Example 2: Calculation of � in radix-2 algorithm.

Referring to Fig 2.4 to obtained �(Sm(t), we know that there are two paths

connected to it. One path is S0(t+1) �! S0(t) and another path is S4(t+1) �!
S0(t). Therefore
(S0(t); S0(t + 1)) and
(S0(t); S4(t + 1)) from (2.33) can be

11

0 ()S t

1 ()S t

2 ()S t

3 ()S t

4 ()S t

5 ()S t

6 ()S t

7 ()S t

01

00

01

01

01

00

00
0 (1)S t +

1 (1)S t +

2 (1)S t +

3 (1)S t +

4 (1)S t +

5 (1)S t +

6 (1)S t +

7 (1)S t +

m(S (t))α m(S (t+1))α ′

11

10

10

00

11

11

10

10

11

Figure 2.3: The trellis diagram of �:

expressed as

(S0(t); S0(t+1)) =
1

2
�[(�1)�La(ct = �1)+Lc �(rt(0)�(�1)+rt(1)�(�1)], (2.39)

and

(S0(t); S4(t+1)) =
1

2
�[(�1)�La(ct = +1)+Lc �(rt(0)�(+1)+rt(1)�(+1)]: (2.40)

Substituting (2.39) and (2.40) into (2.27) leads to �(S0(t)) as follows

�(S0(t)) = max
�[�(S0(t+1))+
(S0(t); S0(t+1)); �(S4(t+1))+
(S0(t); S4(t+1))]:

(2.41)

2.3.2 Radix-4 algorithm

In 2003, the radix-4 algorithm was proposed byM. Bickersta¤ [15] and has com-

monly used in hardware implementation, since the Radix-4 Log-MAP architecture

doubling the throughput for a given clock rate over the radix-2 architecture. In

12

0 ()S t

1 ()S t

2 ()S t

3 ()S t

4 ()S t

5 ()S t

6 ()S t

7 ()S t

01

11

0 (1)S t +

1 (1)S t +

2 (1)S t +

3 (1)S t +

4 (1)S t +

5 (1)S t +

6 (1)S t +

7 (1)S t +

m(S (t))β m(S (t+1))β ′

11

11

10

10

1001

10

00

00
01

11

00

00

01

Figure 2.4: The trellis diagram of �:

additional, it only calculate the even time stages as shown in Fig. 2.5 (with out

calculating stages t+ 1; t+ 3; :::). Thus it can further reduce the memory.

For convenience, we de�ne the symbols as follows

�m�t+k , �(Sm�(t+ k));

t+u+1t+u (m;m�) ,
(Sm(t+ u); Sm�(t+ u+ 1));

and

�
m

t+k , �(Sm(t+ k)):

Let us give an example to derive the recursive units � and � for Radix-4 algorithm.

Example 3: Calculating �0t+2 and �
0

t in Radix-4 algorithm.

13

Referring to Fig. 2.5, �0t+2 and �
0

t are derived as follows

�0t+2 = max
�[�0t+1 +

t+2
t+1(0; 0); �

1
t+1 +

t+2
t+1(1; 0)]

= max�fmax�[�0t +
t+1t (0; 0); �1t +

t+1
t (1; 0)] +
t+2t+1(0; 0);

max�[�3t +

t+1
t (3; 1); �2t +

t+1
t (2; 1)] +
t+2t+1(1; 0)g

= max�fln[exp(�0t +
t+1t (0; 0)) + exp(�1t +

t+1
t (1; 0)] + ln[exp(
t+2t+1(0; 0))],

ln[exp(�3t +

t+1
t (3; 1)) + exp(�2t +

t+1
t (2; 1))] + ln[exp(
t+2t+1(1; 0))]g

= max�fln[exp(�0t +
t+1t (0; 0) +
t+2t+1(0; 0)) + exp(�
1
t +

t+1
t (1; 0) +
t+2t+1(0; 0))],

ln[exp(�3t +

t+1
t (3; 1) +
t+2t+1(1; 0)) + exp(�

2
t +

t+1
t (2; 1) +
t+2t+1(1; 0))]g

= max�fmax�[�0t +
t+1t (0; 0) +
t+2t+1(0; 0); �
1
t +

t+1
t (1; 0) +
t+2t+1(0; 0)];

max�[�3t +

t+1
t (3; 1) +
t+2t+1(1; 0); �

2
t +

t+1
t (2; 1) +
t+2t+1(1; 0)]g;

(2.42)

and

�
0

t = max
�[
t+1t (0; 4) + �

4

t+1;

t+1
t (0; 0) + �

0

t+1]

= max�f
t+1t (0; 4) +max�[
t+2t+1(4; 2) + �
2

t+2;

t+2
t+1(4; 6) + �

6

t+2];

t+1t (0; 0) +max�[
t+2t+1(0; 0) + �
0

t+2;

t+2
t+1(0; 4) + �

4

t+2]g

= max�fln[exp(
t+1t (0; 4))] + ln[exp(
t+2t+1(4; 2) + �
2

t+2) + exp(

t+2
t+1(4; 6) + �

6

t+2)],

ln[exp(
t+1t (0; 0))] + ln[exp(
t+2t+1(0; 0) + �
0

t+2) + exp(

t+2
t+1(0; 4) + �

4

t+2)]g

= max�fln[exp(
t+1t (0; 4)) +
t+2t+1(4; 2) + �
2

t+2)] + ln[exp(

t+1
t (0; 4)) +
t+2t+1(4; 6) + �

6

t+2)],

ln[exp(
t+1t (0; 0) +
t+2t+1(0; 0) + �
0

t+2)] + ln[exp(

t+1
t (0; 0) +
t+2t+1(0; 4) + �

4

t+2)]

= max�fmax�[
t+1t (0; 4)) +
t+2t+1(4; 2) + �
2

t+2);

t+1
t (0; 4)) +
t+2t+1(4; 6) + �

6

t+2];

max�[
t+1t (0; 0) +
t+2t+1(0; 0) + �
0

t+2;

t+1
t (0; 0) +
t+2t+1(0; 4) + �

4

t+2]g:
(2.43)

2.3.3 Deriving LLR for Radix-4

Because we use radix-4 algorithm to decode two stages of soft information in one

clock cycle, we need to use two LLR units. Let us derive LLR for stage t and

stage t + 1. De�ne LLRbt as the LLR for ct = b, where b 2 (0; 1): For instance,

14

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Radix­2 Radix­4

0tc =

1tc =

Stage t Stage t+1 Stage t+2 Stage t+2Stage t

Figure 2.5: The Radix-2 and Radix-4 trellis diagram.

LLR1t denotes the LLR for ct = 1, and LLR0t+1 denotes the LLR for ct+1 = 0.

Below, we derive the LLR for stage t. Referring to Fig. 2.6 and Fig. 2.7, we have

LLR1t = dmax(�0t +
t+1t (0; 4) + �
4

t+1; �
1
t +

t+1
t (1; 0) + �

0

t+1;

�2t +

t+1
t (2; 1) + �

1

t+1; �
3
t +

t+1
t (3; 5) + �

5

t+1;

�4t +

t+1
t (4; 6) + �

6

t+1; �
5
t +

t+1
t (5; 2) + �

2

t+1;

�6t +

t+1
t (6; 3) + �

3

t+1; �
7
t +

t+1
t (7; 7) + �

7

t+1); (2.44)

15

Because in radix-4 algorithm we do not calculate �t+1, we should replace �
i

t+1;

0 � i � 7; by the trace-back values from stage t+2 and rewrite (2.44) as follows

LLR1t = dmax(�0t +
t+1t (0; 4) +max�(
t+2t+1(4; 2) + �
2

t+2;

t+2
t+1(4; 6) + �

6

t+2);

�1t +

t+1
t (1; 0) +max�(
t+2t+1(0; 0) + �

0

t+2;

t+2
t+1(0; 4) + �

4

t+2);

�2t +

t+1
t (2; 1) +max�(
t+2t+1(1; 0) + �

0

t+2;

t+2
t+1(1; 4) + �

4

t+2);

�3t +

t+1
t (3; 5) +max�(
t+2t+1(5; 2) + �

2

t+2;

t+2
t+1(5; 6) + �

6

t+2);

�4t +

t+1
t (4; 6) +max�(
t+2t+1(6; 3) + �

3

t+2;

t+2
t+1(6; 7) + �

7

t+2);

�5t +

t+1
t (5; 2) +max�(
t+2t+1(2; 1) + �

1

t+2;

t+2
t+1(2; 5) + �

5

t+2);

�6t +

t+1
t (6; 3) +max�(
t+2t+1(3; 1) + �

1

t+2;

t+2
t+1(3; 5) + �

5

t+2);

�7t +

t+1
t (7; 7) +max�(
t+2t+1(7; 3) + �

3

t+2;

t+2
t+1(7; 7) + �

7

t+2)):
(2.45)

Similarly LLR1t and LLR
0
t can be shown as follows

LLR0t = dmax(�0t +
t+1t (0; 0) +max�(
t+2t+1(0; 0) + �
0

t+2;

t+2
t+1(0; 4) + �

4

t+2);

�1t +

t+1
t (1; 4) +max�(
t+2t+1(4; 2) + �

2

t+2;

t+2
t+1(4; 6) + �

6

t+2);

�2t +

t+1
t (2; 5) +max�(
t+2t+1(5; 2) + �

2

t+2;

t+2
t+1(5; 6) + �

6

t+2);

�3t +

t+1
t (3; 1) +max�(
t+2t+1(1; 0) + �

0

t+2;

t+2
t+1(1; 4) + �

4

t+2);

�4t +

t+1
t (4; 2) +max�(
t+2t+1(2; 1) + �

1

t+2;

t+2
t+1(2; 5) + �

5

t+2);

�5t +

t+1
t (5; 6) +max�(
t+2t+1(6; 3) + �

3

t+2;

t+2
t+1(6; 7) + �

7

t+2);

�6t +

t+1
t (6; 7) +max�(
t+2t+1(7; 3) + �

3

t+2;

t+2
t+1(7; 7) + �

7

t+2);

�7t +

t+1
t (7; 3) +max�(
t+2t+1(3; 1) + �

1

t+2;

t+2
t+1(3; 5) + �

5

t+2):
(2.46)

Finally, the LLR at stage t can be expressed as

LLRt = LLR
1
t � LLR0t : (2.47)

Similarly, the LLR at stage t+ 1 can be expressed as

LLRt+1 = LLR
1
t+1 � LLR0t+1; (2.48)

16

where

LLR1t+1 = dmax(max�(�0t +
t+1t (0; 0); �1t +

t+1
t (1; 0)) +
t+2t+1(0; 4) + �

4

t+2;

max�(�2t +

t+1
t (2; 1); �3t +

t+1
t (3; 1)) +
t+2t+1(1; 0) + �

0

t+2;

max�(�4t +

t+1
t (4; 2); �5t +

t+1
t (5; 2)) +
t+2t+1(2; 1) + �

1

t+2;

max�(�6t +

t+1
t (6; 3); �7t +

t+1
t (7; 3)) +
t+2t+1(3; 5) + �

5

t+2;

max�(�0t +

t+1
t (0; 4); �1t +

t+1
t (1; 4)) +
t+2t+1(4; 6) + �

6

t+2;

max�(�2t +

t+1
t (2; 5); �3t +

t+1
t (3; 5)) +
t+2t+1(5; 2) + �

2

t+2;

max�(�4t +

t+1
t (4; 6); �5t +

t+1
t (5; 6)) +
t+2t+1(6; 3) + �

3

t+2;

max�(�6t +

t+1
t (6; 7); �7t +

t+1
t (7; 7)) +
t+2t+1(7; 7) + �

7

t+2);
(2.49)

and

LLR0t+1 = dmax(max�(�0t +
t+1t (0; 0); �1t +

t+1
t (1; 0)) +
t+2t+1(0; 0) + �

0

t+2;

max�(�2t +

t+1
t (2; 1); �3t +

t+1
t (3; 1)) +
t+2t+1(1; 4) + �

4

t+2;

max�(�4t +

t+1
t (4; 2); �5t +

t+1
t (5; 2)) +
t+2t+1(2; 5) + �

5

t+2;

max�(�6t +

t+1
t (6; 3); �7t +

t+1
t (7; 3)) +
t+2t+1(3; 1) + �

1

t+2;

max�(�0t +

t+1
t (0; 4); �1t +

t+1
t (1; 4)) +
t+2t+1(4; 2) + �

2

t+2;

max�(�2t +

t+1
t (2; 5); �3t +

t+1
t (3; 5)) +
t+2t+1(5; 6) + �

6

t+2;

max�(�4t +

t+1
t (4; 6); �5t +

t+1
t (5; 6)) +
t+2t+1(6; 7) + �

7

t+2;

max�(�6t +

t+1
t (6; 7); �7t +

t+1
t (7; 7)) +
t+2t+1(7; 3) + �

3

t+2):
(2.50)

2.4 Decoding Architecture

The decoder consists of two identical SISO decoders, interleavers and de-interleavers.

The architecture is shown in Fig. 2.8. Applying (2.19) and (2.33), the SISO de-

coder can be derived as follows

17

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

t t+1 t+2 t t+1 t+2

0kc =

1kc =

(a) (b)

Figure 2.6: The trellis diagram of LLR unit for stage t : (a) LLR1t and (b) LLR
0
t :

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

t t+1 t+2 t t+1 t+2

0kc =

1kc =

(a) (b)

Figure 2.7: The trellis diagram of LLR unit for stage t+ 1 : (a) LLR1t+1 and (b)
LLR0t+1.

18

SISO
decoder1

(0)tr
interleaver SISO

decoder2

interleaver

de­interleaver

(1)tr

(2)tr

(0)tr′

(1) ()e tL c
(2) ()a tL c′ ′ (2) ()e tL c′ ′(1) ()a tL c

()tL c′

de­interleaver

hard decision td

Figure 2.8: An architecture of the turbo decoder.

L(ct) = ln

P
S(m;m�)2c+1t

e�(Sm(t))+
(Sm(t);Sm�(t+1))+�(Sm�(t+1)P
S(m;m�)2c�1t

e�(Sm(t))+
(Sm(t);Sm�(t+1))+�(Sm�(t+1)

= ln

P
S(m;m�)2c+1t

e
1
2
�[(+1)�La(ct)+Lc�rt(0)�(1)] � e�(Sm(t))+ 1

2
�
Pn�1
i=1 Lc�rt(i)wt(i)+�(Sm�(t+1)P

S(m;m�)2c�1t
e
1
2
�[(�1)�La(ct)+Lc�rt(0)�(�1)] � e�(Sm(t))+ 1

2
�
Pn�1
i=1 Lc�rt(i)wt(i)+�(Sm�(t+1)

= La(ct) + Lcrt(0) + ln

P
S(m;m�)2c+1t

e�(Sm(t))+
1
2
�
Pn�1
i=1 Lc�rt(i)wt(i)+�(Sm�(t+1)P

S(m;m�)2c�1t
e�(Sm(t))+

1
2
�
Pn�1
i=1 Lc�rt(i)wt(i)+�(Sm�(t+1)

= La(ct) + Lcrt(0) + Le(ct), (2.51)

where the Le(ct) are called extrinsic information corresponding to ct: The Le(ct)

can be obtained from (2.51) as follows

Le(ct) = L(ct)� [La(ct) + Lcrt(0)]: (2.52)

rt(0); rt(1) and rt(2) are the transmitter signals xt; zt and z�t after passing

AWGN channel respectively. Initially, we set the a priori information L(1)a (ct) for

the �rst SISO decoder to zero. Then rt(0); rt(1), and L
(1)
a (ct) are passed into the

�rst SISO decoder and obtain the extrinsic information L(1)e (ct) that can o¤er the

next SISO decoder more accurate information for L(2)a (ct). After L
(1)
e (ct) and r0(t)

pass the interleaver, we obtain the signal L(2)a �(c�t) and r0�(t) respectively. Similarly,

the second SISO decoder can generate L(2)e (c�t) and L(c�t) after the L
(2)
a �(c�t), rt�(0)

19

 0Block 1Block 2Block 3Block ... 4Block

α dβ

β α dβ

β
β
α

α
dβ

dβ()tL c
()tL c

()tL c

Time

1T
2T

3T

4T

…

Figure 2.9: The sliding window diagram.

and rt(2) pass it. When the maximum allowable number of iterations is reached,

dt can be obtained by de-interleavering L(c�t) and then take hard decision.

2.4.1 Sliding Window

Theoretically, we need to calculate the LLR according to the whole received data

in a block. However, when N is large, it is impractical to implement this ideal

in a hardware since we need large memory and latency in this case. To reduce

the memory and latency, a sliding window can be adopted [16]. In Fig. 2.9, the

received data stream is divided into n blocks, the dummy backward recursion �d

set initial value equal to log(1
Number of the states

). When a block is computed, the

value �d is fed to � for initial boundary value. The larger the block length is, the

more accurate � we will obtain. As soon as �d is ready for a speci�ed received

data, we can obtain its corresponding L(ct). At the same time, we can calculate

� for the next blocks. Repeat the same procedure, all of the data can be decoded.

20

Chapter 3

Radix-4 Recursive Architecture

3.1 Conventional Architecture

We derived �0t+2 in (2.42), however we must take recursive value of (�, �) approx-

imately (i.e. replace some max�f�g with maxf�g) in hardware implementation.
In [15], Lucent Bell Labs proposed the following approximation

�0t+2 t max�fmax[�0t +
t+1t (0; 0) +
t+2t+1(0; 0); �
1
t +

t+1
t (1; 0) +
t+2t+1(0; 0)];

max[�3t +

t+1
t (3; 1) +
t+2t+1(1; 0); �

2
t +

t+1
t (2; 1) +
t+2t+1(1; 0)]g:

(3.1)

Fig. 3.1 is a radix-4 architecture for (3.1), the critical path (with dash line)

consists of four multi-bit additions, one 2-to-1 MUX and one LUT, where the

LUT is implemented using look-up table for correction term. In next section, we

proposed an architecture for LUT which can reduce the critical path.

3.2 Proposed Architecture

Because the hardware of the recursive unit in radix-4 is more complicated than

that of radix-2, the critical path is too long so that it cannot achieve exactly

twice of the throughput over radix-2. Thus our goal is to reach twice of the

throughput while the area is as small as possible. From [20], Z. Wang proposed

an architecture for high speed recursion and approximation for � and � shown

21

LUT

1

0

1

0

1

0

D

0
tα

1 2

1(0,0) (0,0)
t t

t tγ γ
+ +

++

1
tα

1 2

1(1,0) (0,0)
t t

t tγ γ
+ +

++

2
tα

1 2

1(2,1) (1,0)
t t
t tγ γ
+ +

++
3
tα

1 2

1(3,1) (1,0)
t t
t tγ γ
+ +

++

0
2tα +

Figure 3.1: Conventional Radix-4 Architecture.

as follows

�0t+2 t maxfmax�[�0t +
t+1t (0; 0) +
t+2t+1(0; 0); �
1
t +

t+1
t (1; 0) +
t+2t+1(0; 0)];

max�[�3t +

t+1
t (3; 1) +
t+2t+1(1; 0); �

2
t +

t+1
t (2; 1) +
t+2t+1(1; 0)]g;

(3.2)

and

�
0

t = max
�fmax�[
t+1t (0; 4)) +
t+2t+1(4; 2) + �

2

t+2);

t+1
t (0; 4)) +
t+2t+1(4; 6) + �

6

t+2];

max�[
t+1t (0; 0) +
t+2t+1(0; 0) + �
0

t+2;

t+1
t (0; 0) +
t+2t+1(0; 4) + �

4

t+2]g:
(3.3)

Applying (3.2) to the hardware in Fig. 3.2. At the �rst stage we use carry

save adder (CSA) to convert three additions to two additions. At last stage

of Fig. 3.1 , �0t+2 is divided into two parts as in Fig. 3.2. One is max(�)
value and the other is the correction term that both are removed to the �rst

stage adder, which is called O¤set-Add-Compare-Select (OACS) operation [19].

Conventionally, in LUT block we need to take a absolute value and then take table

look-up. Therefore the computation time of the LUT is larger than the MUX

marked with dash line. Hence the LUT dominates the critical path. In [20] a

method was proposed to reduce computation time of the LUT. The computation

22

LUT

LUT

1

0

1

0

1

0

1

0

D

D

0
t Aα
0
t Bα

0
2t Aα +

0
2t Bα +1 2

1(0,0) (0,0)
t t

t tγ γ
+ +

++
1
t Aα
1
t Bα1 2

1(1,0) (0,0)
t t

t tγ γ
+ +

++

2
t Aα
2
t Bα1 2

1(2,1) (1,0)
t t

t tγ γ
+ +

++
3
t Aα
3
t Bα1 2

1(3,1) (1,0)
t t

t tγ γ
+ +

++

Figure 3.2: Radix-4 recursion architecture of [20]

time is reduced since it does not need to perform absolute operation. Let us

explain as follows.

In Fig. 3.3, assume the input of the LUT is a n-bits sign number, the g(�) function
is used to detect the absolute vaue of the input which is less than 2:0, i.e. z = 1

of the input is less than 2:0. The ELUT block is a small LUT with 3-bits input

and 2-bits output. It is used to simple the logic design. Table 3.1 shows the LUT

approximation where x and g(x) are the quantized input and output of ELUT.

The �nal output of the LUT is d1 and d0: The general form of z can be derived

as follows:

z = bn�1 � bn�2 + bn�3; :::;+b3 + f(bn�1 = 1; bn�2;:::; b1; b0),

d1 = z � c1

and

d0 = z � c0,

where f(�) is a combination circuit that consists of bn�2;:::; b1; b0 when bn�1 = 1:
The proposed structure of LUT is in Fig. 3.4. The inputs of the LUT are

quantized to integer number and then use simple logic design to obtain the output.

23

jxj 0.0 0.5 1.0 1.5 > 2
g(x) 0.75 0.5 0.25 0.25 0

Table 3.1: Approximation of [20].

2nb − 3nb − 3b 2b 1b 0b

ELUT

• • •

• • •

z
1c 0c

1d 0d

1nb −

()g ⋅

Figure 3.3: Architecture of the proposed LUT used in [20].

In Table 3.2, we observe the dynamic range of the input can be divided as [-1

-0.25], [-2 -1.25], [0 0.75] and [1 1.75] and use combination logic to obtain the

output p1 and p0, which is independent of b1 and b0. Therefore we do not need

to take care of part of the input signal, and the logic gate can somewhat be.

The performance comparison for various algorithm is as shown in Fig. 3.5, we

see the proposed method and Arch-Z achieve nearly the same performance. The

approximated values of the proposed method are given by

u(v) =

8<:
0:5,
0:25,
0,

�1 � v < 1
�2 � v < �1 or 1 � v < 2
otherwise

; (3.4)

where v and u(v) are the input and output of the proposed LUT. In (3.4), we

eliminate that u(v) equal to 0.75 (compared to Table 3.1), if we consider the case

that u(v) equal to 0.75, we �nd the output p0 is dependent of b1 and b0. Thus

we ignore the value 0.75 of u(v). In section 3.3, the comparison of the proposed

LUT and the LUT is shown in Table 3.1. The BER performance with the two

24

2nb − 3nb − 3b 2b 1b 0b

combinational logic

• • •

• • •

1p
0p

1nb −

Figure 3.4: Architecture of the proposed LUT.

LUT are nearly same. In Fig. 3.4, p1 and p0 are used to simplify the combination

logic shown as follows

p1 = bn�1 � ::: � b3 � b2 + bn�1 � ::: � b3 � b2

and

p0 = bn�1 � ::: � b3 � b2 + bn�1 � ::: � b3 � b2:

We give an example to compare the two LUTs as follows

Example 4: Refer to Table. 3.2, Fig. 3.3 and Fig. 3.4, assume the input bit-

length of the LUT is 13, and that of the output is 2 . We de�ne the notations as

follows

b[12 : 0] : input of the LUT which is 13-bit with the 2 LSBs be the fractional bits.

[c1 c0] : output of the ELUT consisting of simple combination.

[d1 d0] : output of the LUT in [20].

[p1 p0] : output of the LUT in the proposed method.

(1). The method in [20]: z is given by

z = b12 � b11 � ::: � b4 � b3 + b12 � b11 � ::: � b4 � b3 � (b2 + b1 + b0),

c1 = b12 + b2 + b13 � b2 � (b1 + b0);

and

c0 = (b12 + b2) � b12 � b2 � (b1 � b0):

25

The out results of the LUT is

d1 = z � c1;

and

d0 = z � c0:

(2). The proposed method: the output [p1 p0] of the LUT is as follows

p1 = b12 � b11 � ::: � b3 � b2 + b12 � b11 � ::: � b3 � b2, (3.5)

and

p0 = b12 � b11 � ::: � b3 � b2 + b12 � b11 � ::: � b3 � b2: (3.6)

From (3.5) and (3.6), we �nd that p1 and p0 have common terms and

the logic can share the common terms to reduce complexity. De�ne the

following two terms:

COMB1 = b12 � b11 � ::: � b3

and

COMB2 = b12 � b11 � ::: � b3 = b12 + b11 + :::+ b3:

Rearrange (3.5) and (3.6), we have

p1 = COMB1 � b2 + COMB2 � b2;

and

p0 = COMB1 � b2 + COMB2 � b2:

3.2.1 Performance Comparison

We compare �ve recursive architectures (including the proposed one) in terms of

their critical path, area and throughput as shown in Table. 3.3. The architectures

used for comparison are explained as follows:

26

Binary of input b[12 : 0] Decimal q(x) d1 d0 u(v) p1 p0
...

... 0 0 0 0 0 0
1111111110111 -2.25 0 0 0 0 0 0
1111111111000 -2 0 0 0 0.25 0 1
1111111111001 -1.75 0.25 0 1 0.25 0 1
1111111111010 -1.5 0.25 0 1 0.25 0 1
1111111111011 -1.25 0.25 0 1 0.25 0 1
1111111111100 -1 0.25 0 1 0.5 1 0
1111111111101 -0.75 0.5 1 0 0.5 1 0
1111111111110 -0.5 0.5 1 0 0.5 1 0
1111111111111 -0.25 0.75 1 1 0.5 1 0
0000000000000 0 0.75 1 1 0.5 1 0
0000000000001 0.25 0.75 1 1 0.5 1 0
0000000000010 0.5 0.5 1 0 0.5 1 0
0000000000011 0.75 0.5 0 0 0.5 1 0
0000000000100 1 0.25 0 1 0.25 0 1
0000000000101 1.25 0.25 0 1 0.25 0 1
0000000000110 1.5 0.25 0 1 0.25 0 1
0000000000111 1.75 0.25 0 1 0.25 0 1
0000000001000 2 0 0 0 0 0 0
0000000001001 2.25 0 0 0 0 0 0

...
... 0 0 0 0 0 0

Table 3.2: The values of g(x); u(v); d1; d0 and p1; p0.

(1). Arch-O: traditional radix-2 architecture.

(2). Arch-L: the radix-4 architecture proposed by Lucent [15].

(3). Arch-Y: the radix-4 architecture proposed by [21].

(4). Arch-Z: the radix-4 architecture proposed by [20].

We �nd that Arch-Y has the largest area and the fastest throughput rate, its

approximation is the same as in (3.1). Thus the performance degradation is

large. In Example 4, we compared Arch-Z and the proposed scheme, Assume

that AND, OR ,XOR and NOT gates have the same delay time (one unit time),

the delay time in Arch-Z is about five unit times and that of the proposed scheme

27

Architecture Maximum
Clock Freq.

Relative
Area

Relative
Throughput

Power Con-
sumption

Arch-O 286 1 1 3.5478 mW
Arch-L [15] 217 1.53 1.52 4.4691 mW
Arch-Y [21] 240 3.08 1.68 8.5570 mW
Arch-Z [20] 231 1.83 1.62 5.2784 mW
Proposed 232 1.80 1.62 5.2839 mW

Table 3.3: Comparison of various recursive architectures.

is about four unit times. Therefore our propose method can somewhat reduce

the critical path. As a result the clock rate can be somewhat increased, and the

power consumption and BER performance (see Fig. 3.5) are nearly the same.

3.3 Fixed point Analysis

Table 3.4 shows the quantization format of the Proposed scheme. Fig. 3.5 also

shows the �xed-point performance of the proposed scheme. We see that the Max-

Log-MAP degrade the performance about 0.4dB of Log-MAP. In Arch-L, because

his method only use an LUT, which leads to less accuracy, its performance is worst

than Arch-Z and the proposed one. In addition, the proposed scheme has worse

performance than the Log-MAP by only 0.025dB. The �x-point simulation, we

�nd the performance is smaller than 0.1dB compared with log-MAP.

Functions n Word Length Integer Parts (include sign bit) Fraction Parts
Received Bits 2 2
Channel Reliable (Lc) 2 2
State Metrics (�, �) 8 2
Branch Metrics (
) 8 2
Extrinsic (Lex) 6 2
LLR 10 2

Table 3.4: Quantization format for the proposed Turbo Decoder.

28

Figure 3.5: Performance comparison among the Log-MAP and four approximated
algorithms.

29

Chapter 4

VLSI Implementation

In this chapter, we describe the decoding �ow with hardware architecture and

show the chip layout as well as the corresponding chip performance comparison.

4.1 Hardware Design for 3GPP

Fig. 4.1 is the overall turbo decoder architecture. Because we use radix-4 al-

gorithm to decode data, we can deal with two stages of data per clock cycle.

In order to achieve this goal, we can use Dual-RAM which can either read or

write two samples of data per clock cycle. However using Dual-RAM doubles the

memory area as well. In the proposed VLSI scheme, we will use one Single-RAM

which can either read or write one sample of data per clock cycle, we divide this

Single-RAM into two smaller RAMs to save even indexed data and odd indexed

data. Below, we describe the subblock of decoder operation.

4.1.1 Input Bu¤er

In Fig. 4.2, there are two paths, path 1 is for SISO Decoder 1 and path 2 is for

SISO Decoder 2. In the beginning, the input data (rt(0); rt(1) and rt(2)) are saved

in RAM1, RAM3 and RAM4, and rt(0) is fed to Interleaver and then the output

of the interleaver are saved in RAM2. We proposed a solution to save memory. In

the proposed scheme, we divide one Single-RAM into two smaller RAMs to save

even indexed data and odd indexed data. Also, the ROM in interleaver is divided

30

Input Buffer BMU OACS LLR
Hard

decision

De­
interleaver

Interleaver/De­
interleaver

Extric
Information

SISO Decoder

A Prior
Information

Figure 4.1: The turbo decoder architecture with a single SISO decoder.

into smaller ROMs to save even indexed address and odd indexed address. We

take two address (Address 1 and Address 2) from two smaller ROMs (Sub-ROM

(E) and Sub-ROM (O), where E for even and O for odd) as shown in Fig. 4.3.

Refering to Fig. 4.4, the data corresponding to bAddress 1
2

c and bAddress 2
2

c is saved
in Sub-RAM2 (E) and Sub-RAM2 (O), and according to Address 1 and Address

2 within two clock cycles, we have the following four cases

1. Case 1: Address 1 is even number and Address 2 is odd number.

Address 1 is equal to 500 at T0 and it corresponds to the address 250 (b5002 c)
in Sub-RAM2 (E). Thus it enables sub-RAM2 (E) and disables sub-RAM2

(O). Then d0 is saved to sub-RAM2 (E) at address 250. Address 2 is equal

to 201 at T1 and it corresponds to the address 100 (b2012 c) in Sub-RAM2
(O). Thus it disables sub-RAM2 (E) and enables sub-RAM2 (O). Then d1

is saved to sub-RAM2 (O) at address 100.

2. Case 2: Address 1 is odd number and Address 2 is even number.

Address 1 is equal to 211 at T2 and it corresponds to the address 105 in

Sub-RAM2 (O). Thus it enables sub-RAM2 (O) and disables sub-RAM2

(E). Then d2 is saved to sub-RAM2 (O) at address 105. Address 2 is equal

31

T(0; 2; :::)
Number of
Address1

Number of
Address2

Input of Sub-RAM2(E) Input of Sub-RAM2(O)

even odd bAddress 1
2

c �
odd even � bAddress 1

2
c

even even bAddress 1
2

c �
odd odd � bAddress 1

2
c

T(1; 3; :::)
even even � bAddress 2

2
c

odd odd bAddress 2
2

c �
even even bAddress 2

2
c �

odd odd � bAddress 2
2

c

Table 4.1: Summary of interleaver process with four case.

to 510 at T3 and it corresponds to the address 255 in Sub-RAM2 (E). Thus

it disables sub-RAM2 (O) and enables sub-RAM2 (E). Then d3 is saved to

sub-RAM2 (E) at address 255.

3. Case 3: both of Address 1 and Address 2 are even number.

At T4 and T5, Address 1 is 520 and Address 2 is 530. Therefore d4 and d5

will be saved to sub-RAM2 (E). Thus we enable sub-RAM2 (E) and disable

sub-RAM2 (O). Then, d4 and d5 are saved in sub-RAM2 (E) at address 260

and 265.

4. Case 4: both of Address 1 and Address 2 are odd number.

At T6 and T7, Address 1 is 221 and Address 2 is 301. Therefore d6 and d7

will be saved to sub-RAM2 (O). Thus we enable sub-RAM2 (O) and disable

sub-RAM2 (E). Then, d6 and d7 are saved in sub-RAM2 (O) at address 110

and 150.

We summary the interleaver process with four cases as in Table 4.1, where the

notation � denotes don�t care.
Table 4.2, is a comparision of input bu¤er implemented by Single-RAM and

Dual-RAM. From the table, if we use the Dual-RAM the area is larger than the

32

RAM1

RAM3

RAM4

RAM2

(0)tr

(1)tr

(2)tr

(0)tr ′

Path 1

Path 2

Path 2

Path 1

(2)tr

(1)tr

(0)tr

Interleaver
ROM

Path 1 SISO Decoder 1 Path 2 SISO Decoder 2

LIFO (A)

LIFO (B)

()dβBMU

Figure 4.2: The input data �ow.

Relative area Relative power
Single-RAM (proposed) 1 1
Dual-RAM 2.37 3.55

Table 4.2: Comparision of area and power for implementing the input bu¤er by
dual-RAM and singl-RAM.

Single-RAM by 2.37 times, and the power is larger than the Single-RAM by 3.55

times. Thus our proposed method reduced the area and power signi�cant.

33

Interleaver
ROM

Sub­
ROM(E)

Sub­
ROM(O)

Sub­
RAM2(E)

Sub­
RAM2(O)

Address1 Address2

MUXA MUXB

RAM2

Figure 4.3: The proposed ROM and RAM scheme to achieve two-read and two-
write in one clock cycle.

4.1.2 BMU(branch metric unit)

The BMU is used to computate the branch metrics
: The BMU correspond to

equation is (2.33). In 3GPP std.,
 can as shows as follows

t+1t (0; 4) =
t+1t (1; 0) =
t+1t (6; 3) =
t+1t (7; 7) =
1

2
[La(ct))� (rt(0) + rt(1))];

t+1t (2; 1) =
t+1t (3; 5) =
t+1t (6; 4) =
t+1t (5; 2) =
1

2
[La(ct)) + (rt(0)� rt(1))];

(4.1)

and

t+1t (0; 0) =
t+1t (1; 4) =
t+1t (6; 7) =
t+1t (7; 3) = �
t+1t (0; 4);

t+1t (2; 5) =
t+1t (3; 1) =
t+1t (4; 2) =
t+1t (5; 6) = �
t+1t (2; 1): (4.2)

In (4.1) and (4.2), we only calculate
t+1t (0; 4),
t+1t (2; 1),
t+1t (0; 0) and
t+1t (2; 5)

and the other
 can obtained.from these four values. Fig. 4.5 shows a hardware

architecture for
. Here we ignore divide-by-2, because in VLSI implementation

divide-by-2 operation is just a shift operation.

34

500 500 211 211 520 520 221

201 201 510 510 530 530 301

221

301

CASE 1 CASE 2 CASE 3 CASE 4

d0 d1 d2 d3 d4 d5 d6 d7(0)tr

d0

d1100

105

d3

d1

255

d0

d1
d2d2

d3
d0

d4260

d3
d0

d4

265 d5

d1
d2

d1
d2

d1
d2
d6110

d1
d2
d6
d7150

Sub­RAM2(E)

Sub­RAM2(O)

d0 d0250

T0 T1 T2 T3 T4 T5 T6 T7

250 105 260 265

Address1

Address2

Address of
Sub­RAM2(E)

Address of
Sub­RAM2(O)

100 255 x 110 150x

x x

x

x x

x

d3
d0

d4
d5

d3
d0

d4
d5

Figure 4.4: Timing diagram for the proposed RAM and ROM schemes.

35

(0)tr

(1)tr

()a tL c
1
(0,4)

t
tγ
+

0

1
(0,0)

t

tγ
+

(0)tr

(1)tr

()a tL c 1
(2,1)

t

tγ
+

0

1
(2,5)

t

tγ
+

Figure 4.5: The architecture of
:

4.1.3 OACS(O¤set-Add-Compare-Select)

The OACS is used to calculate �d; � and �. The architecture is shown in Fig.

3.2. Since the OACS is a recursive unit, its computation result will increase after

each iteration. Hence the �nal result may saturate. In order to overcome this

situation, we adopt the normalization scheme proposed in [21]. Fig. 4.6 shows an

example for �0t+2 with normalization. When one of the values, �
0
t+2, A s �7t+2, A;

are large than or equal to 2L�2, where L is the word length of the state metrics

(�(0s7)t+2, A and �
(0s7)
t+2, A)), we subtract 2

L�2 from all of the state metrics to avoid

saturation.

4.1.4 LLR (Log-Likelihood Ratio)

The LLR output for the radix-4 turbo decoder can be calculated according to

(2.48)-(2.50) and the corresponding hardware is shown in Fig. 4.7, where max�

(see (2.23)) can be express as hardware shown in Fig. 4.8, and the LUT is the

proposed structure in section 3.2. In LLR unit, we used pipeline skill to reduce

the critical path with the penalty of increasing 28 registers. The processing time

for each SISO decoding is three clock cycles.

36

LUT

LUT

1

0

1

0

1

0

1

0

D

0
t Aα
0
t Bα

0
2t Aα +

0
2t Bα +1 2

1(0,0) (0,0)
t t

t tγ γ
+ +

++
1
t Aα
1
t Bα1 2

1(1,0) (0,0)
t t

t tγ γ
+ +

++

2
t Aα
2
t Bα1 2

1(2,1) (1,0)
t t

t tγ γ
+ +

++
3
t Aα
3
t Bα1 2

1(3,1) (1,0)
t t

t tγ γ
+ +

++ Normali­
zation

1
2t Aα +

D

2
2t Aα +

3
2t Aα +

4
2t Aα +

5
2t Aα +

6
2t Aα +

7
2t Aα +

Figure 4.6: The normalization of OACS.

4.1.5 Extrinsic Information and a Priori Information

When the computation of LLR is completed, we calculate Le(ct) refer to (2.52).

Le(ct) is to be sent to interleaver/de-interleaver and then saved as the a Priori

information. The a Priori information is saved in two RAMs, where we use two

Dual-RAMs to achieve this, because adopting one Dual-RAM will lead to data

hazard. Fig. 4.9 is the timing diagram for read/write situation in Dual-RAM 1

and Dual-RAM 2. Assume the data block length is ND and the window legnth is

NL, operating at SISO decoder 1. At SISO decoder 1 period, the Dual-RAM 1 is

in write-mode and the Dual-RAM 2 is in read-mode. At T0, a priori information

is read from Dual-RAM 2 to calculate the extric information and then obtain

extric information e4 and e5. The e4 and e5 are passed into interleaver and then

are saved to dual-RAM 1 at Address 1 and Address 0. Here if we adopt one

Dual-RAM at T2, we will extract a priori information at Address 0 and Address

1, however this a priori information has been updated at T0. Therefore we need to

37

*max

Pipeline
Stage1

Pipeline
Stage2

Pipeline
Stage3

*max *max

*max

*max *max

*max

*max

*max *max

*max

*max *max

*max

*max

*max

Pipeline
Stage1

Pipeline
Stage2

Pipeline
Stage3

*max *max

*max*max *max*max

*max *max *max *max *max *max *max *max

LLR

Figure 4.7: The Architecture of LLR.

LUT

1

0

Figure 4.8: The hardware architecture of max�(�):

38

T2 T1 T0 T(NL­1)*3+2 T(NL­1)*3+1 T(NL­1)*3

W0 WNL­1

e0 e1 e2 e3 e4 e5 eND­6 eND­5 eND­4 eND­3 eND­2 eND­1

e5 e4 e3 e2 e1 e0 eND­1 eND­2 eND­3 eND­4 eND­5 eND­6

Address 0 1 2 3 4 5 ND­6 ND­5 ND­4 ND­3 ND­2 ND­1

a0 a1 a2 a3 a4 a5 aND­6 aND­5 aND­4 aND­3 aND­2 aND­1

Time

Extric
Information

Dual­RAM 1
(write)

Dual­RAM 2
(read)

Window Block

SISO decoder 1 period

Figure 4.9: Timing diagram of a priori information for two Dual-RAMs.

save extric information e4 and e5 to Dual-RAM 2 to avoid data hazard. Operating

at SISO decoder 2 period, the Dual-RAM 1 is in read-mode and the Dual-RAM

2 is in write-mode, its operation is similar with that in SISO decode 1 period.

4.1.6 Interleaver and De-interleaver

The Interleaver has two purposes. One is to interleave rt(0) mentioned in Input

Bu¤er . The other is to interleave Le(ct) mentioned in Extrinsic Information

and a Priori information. De-interleaver is used to de-interleave Le(ct). In Input

Bu¤er, we only use interleaver once. Then the interleaver is used to interleave

Le(ct) in iteration procedure. Hence we only need one interleaver. Since we need

to use it several times in iteration process and only once to de-interleaver the

output the LLR. Also, we only need one de-interleaver.

4.1.7 Hard Decision

The number of iteration is in general limited, when the number of limitation

iteration is reached, the output of the LLR will take hard decision (refer to (2.34)

) to decode two information bits. Fig. 4.10 is an architecture for the hard decision,

assuming the LLR has n bits. We only consider the sign bit of the LLR. If the

39

2nb − 3nb − 0b• • •1nb −

1

0

0

1

td

Figure 4.10: The architecture of hard decision.

sign bit is 1, the output is 0; otherwise the output is 1.

4.1.8 Sliding Window

Here we describe the sliding window approach. Referring to Fig. 4.11 and Fig

4.12, after all of the data are saved to RAM in Input Bu¤er. Then the data are

taken from RAM1 and RAM3 /RAM2 and RAM4 and saved in LIFO (A) for

SISO Decoder 1/SISO Decoder 2. The data LIFO (A) are then shift to LIFO (B).

At the begining, we delay k=2 (k is window length) clock cycles to take data from

RAM with data address from k=2� 1 to 0 and save them in LIFO(A). In second

k=2 clock cycles, we take data from RAM with data address from k � 1 to k=2,
and save them in LIFO(A). At this duration, take data from the input bu¤er and

LIFO(A) and then fed to BMU (�d) and BMU (�) to calculate branch metrics �d

and �. In the third k=2 clock cycles, the data in LIFO (B) is fed to BMU (�) to

calculate branch metric �. The OACS (�d) and OACS (�) is calculated �d and �

at second the k=2 clock cycles, and the calculated � is saved in bu¤er (�). At the

end of the second k=2 clock cycles, �d is ready to calculate � by OACS (�). In

the third k=2 clock cycles, we obtain a boundary value �d to begin to calculate �,

and output �. At the third k=2 clock cycles, all of the data (i.e. �, � and
) are

fed to LLR to decide the soft information. If the number of iteration limitation

is reached, we stop the process and fed the output of the LLR to hard decision

and then perform De-interleaving for the decoded information bits.

40

()αBMU

()dβBMU

()βBMU

()dβOACS

()αOACS

()βOACS LLR

LIFO (A)

LIFO (B)

(0) / (0)t tr r′

(1) / (2)t tr r

()αbuffer

Figure 4.11: Calculating BMU, OACS and LLR.

4.2 Design �ow

In the section, we will introduce the design �ow for the proposed turbo decoder.

The cell-based design �ow is as shown in Fig. 4.13.

4.2.1 System model

First the encoder is created according to the 3GPP standard, and we use the

proposed architecture to decoder. The simulation platform was built on Matlab.

In VLSI impelmentation, we quantize the �oating-point to �xed-point and adjust

the bit length so that the BER performance is close to �oating-point simulation

result. When the bit length is decided, we can generate input and output test

patterns for RTL.

Using tool: Matlab.

41

Time
k/2 k/2 k/2 k/2

Input data Block 1 Block 2 Block 3 Block 4

LIFO (A)

LIFO (B) Block 1 Block 2

Block 1 Block 2 Block 3

(Block 2)
dβ

(Block 3)
dβ

(Block 4)
dβ

(Block 1)
α

(Block 2)
α

(Block 3)
α

(Block 1)
β

(Block 2)
β

buffer ()α (Block 1)
α

(Block 2)
α

(Block 1)
LLR

(Block 2)
LLR

Figure 4.12: Timing diagram of Sliding Window.

42

Specification
development

System model

System model
(Matlab)

RTL code
(Verilog)

Bit ture simulation
NC­verilog and

modelsim

RTL verification

Logic systhesis
(Design complier)

Gate level netlist

Scan chain with
netlist

(DFT complier)

Fault coverage
analyze

(TetraMax)

Gate level
simulation

(NC­verilog)

Gate Level pre­layout
verification

Place & Route
(SOC Encounter)

Layout verification
(DRC/LVS) Power analyze

RC Extraction
Delay CalculationGate level STA

Gate Level post­layout
verification

Circuit Level
verification

Layout Merging
(Calibre)

Layout verification
(DRC/LVS) Circuit Extraction

Circuit ­level
simulation

Circuit ­level
STA

Tapeout

Figure 4.13: IC design �ow.

43

4.2.2 RTL code

We use Verilog-HDL to describe the hardware architecture. The general design

method is hierarchically method. Hence we need to divide the overall design

into serval basic modules �rst. Then, connecting among the basic modules to

complete the rough structure. Finally we need to perform bit true in order to

make sure the output signals of RTL code and Matlab are same with same input

signals. In addition, we have using memory in our architecture, so we use the

memory compiler to generate.

Using tools: memory compiler, NC-verilog, modelsim, and Debussy nWave.

4.2.3 BIST

Because there are memory in our architecture, we need to add BIST circuit on

memory control for the testability of IC. After adding BIST circuit, there are two

mode in circuit, i.e. function mode and test mode. Function mode means that

normal Turbo decoding can be performed, and test mode can be used test that

there are have any error in memory.

Using tool: TurboBIST.

4.2.4 Synthesis

In this step, we start to synthesize our circuit. Before this step, our program is

just hardware language, is not real gate. By using Synopsys Design Compiler

to do the synthesis, our program can be translate as real gate. And we can get

the rough area and some timing information of the gate. In our decoder design,

all modules except the one port and two port register �les are synthesized with

TSMC 0:18�m CMOS process technology.

Using tool: Design Compiler.

4.2.5 Gate-level simulation

After synthesis, we can get timing information of gate. So we can perform our

circuit to check have any error with real time. We use NC-Verilog to do the

44

gate-level simulation and use Debussy nWave to check waveform. By checking

waveform, we can observe function exactitude with our predetermined clock pe-

riod.

Using tools: NC-Verilog, and Debussy nWave.

4.2.6 DFT

For IC testing, we need to add mux in front of Flip-Flop and scan chains for

the testability of IC. After adding mux, we can get there is any error between

Flip-Flop and Flip-Flop by passing mux input signal. We use to Synopsys DFT

Compiler to do scan chain insertion.

Using tool: DFT compiler.

4.2.7 ATPG

In the step, we use ATPG (automatic test pattern generator) of Synopsys Tetra-

Max to generate test patterns for chip measurement.

Using tool: Synopsys TetraMax.

4.2.8 APR

We use SOC encounter to do automatical placement and routing (APR). Before

placing and routing, we need to add power I/O and core I/O on Gate-level netlist

and arrange location of input, output, I/O power, and core power on pad CIC

supported. We need to consider core utilization, location of one port and two

port register �les, number of power ring, location and number of stripe to meet

timing constraints from SDC �le.

Using tool: SOC encounter.

4.2.9 DRC and LVS

In general, we usually have consider DRC (design rule checking) and LVS (layout

V.S. schematic) in APR. But there is just rough check result in SOC encounter.

So we need to do detail veri�cation. We use the Calibre DRC to check whether

45

there is any error with design rule and use the Calibre LVS to make sure that

whether the layout and the schematic are identical or not.

Using tool: Calibre.

4.2.10 Post-layout level

In order to check function, we take the netlist and �le of timing information

generated by SOC encounter to run NC-Verilog. We can observe wave to �nd

whether is any error by Debussy nWave. This is the last step to check function

on myself work.

Using tools: NC-Verilog, and Debussy nWave.

46

Input
Buffer

BMU OACS

Bufferα
LLR

D
u

a
l­R

A
M

(
L
e
x
)

D
u

a
l­R

A
M

(
L
e
x
)

Figure 4.14: Chip layout of the proposed Radix-4 Turbo Decoder for 3GPP.

4.3 Chip Layout and Comparison

The turbo decoder is implemented by using the TSMC 0:18 �m 1P6M CMOS

process. It achieves the maximum clock rate of 167MHz. The chip layout is

shown in Fig. 4.14 and the chip summary is also listed in Table 4.3. Comparing

to [15], [23] and [24] as shown in Table 4.4, the core size and area of the proposed

scheme is relative high. However the proposed scheme can achieve higher clock

rate. In our proposed, the throughput is worst than the [15], but faster than the

[23] and [24].

47

Technology TSMC 0.18 �m 1P6M CMOS
Chip size 7.28 mm2

Core size 2.65 mm2

Gate count 200K
Embedded SRAM 28K bits
Embedded ROM 9K bits
Clock rate 167 MHz
Power consumption 135mW

Table 4.3: The expected turbo decoder chip summary.

[15] [23] [24] Proposed design
Technology 0.18 �m 0.25 �m 0.18 �m 0.18 �m
Block Length 5114 5114 5114 512
Core Size (mm2) 14.5 9 9 2.65
Clock Rate (MHz) 145 135 88 167
Throughput (Mb/s) 24 5.48 2 22
Number of iteration 6 6 10 6
Energy e¢ ciency (nJ/b/iter.) 10 6.98 14.60 1.02

Table 4.4: Chip comparison.

48

Chapter 5

Conclusion

In this thesis, we proposed a LUT architecture, so the speed of MUX and LUT

are nearly the same. As a result, the critical path is reduced. Because the

decoder uses the Radix-4 algorithm, which deals with 2 stages of data in one

clock cycle, we proposed a ROM and RAM read/write scheme to avoid the use

of Dual-RAM. In chip implementation, the chip is fabricated in TSMC 0.18 �m

CMOS process, operating at 167MHz clock rate with voltage supply 1.62V. The

power consumption is 135mW at decoding rate 22Mb/s with code rate 1/3 for

3GPP standard. The core area is 2.65 mm2, contains 200K gate counts.

49

Reference

[1] C. Berrou, A. Glavieux, P. Thitimajshima, �Near Shannon limit error-

correcting coding and decoding:Turbo-Codes,� Proc. of IEEE ICC�93,

Geneva, pp. 1064-1070, Volume 2, May 1993.

[2] TIA/EIA/CDMA2000, �Physical layer standard for CDMA-2000 standards

for spread spectrum systems,�June, 2000.

[3] �Technical Speci�cation Group Radio Access Network, Multiplexing and

channel coding (FDD) (TS 25.212 V8.2.0)� 3rd Generation Partnership

Project (3GPP).

[4] J. Hagenauer and P. Hoeher, �A Viterbi algorithm with soft-decision outputs

and its applications,�in Proc. IEEE GLOBECOM, Dallas, TX, pp. 47.1.1�

47.1.7, Nov. 1989.

[5] J. Hagenauer et al., �Decoding turbo codes with the soft-output Viterbi algo-

rithm (SOVA),�in Proc. IEEE Int. Symp. Information Theory, Trondheim,

Norway, pp. 164, 1994.

[6] L. Papke and P. Robertson, �Improved decoding with the SOVA in a parallel

concatenated (turbo-code) scheme,� in Proc. IEEE Int. Conf. Communica-

tions, pp. 102�106, 1996.

[7] P. Robertson, E. Villebrun, and P. Hoeher, �A comparison of optimal and

suboptimal MAP decoding algorithms operating in the log domain,�in Proc.

IEEE Int. Conf. Communications, pp. 1009�1013, 1995.

50

[8] J. Vogt and A. Finger, �Improving the MAX-LOG-MAP turbo decoder,�

Electron. Lett., vol. 36, pp. 1937�1939, Nov. 2000.

[9] J. Hagenauer et al., �Iterative (turbo) decoding of systematic convolutional

codes with the MAP and SOVA algorithms,� in Proc. ITG, Munich, Ger-

many, pp. 21�29, Oct. 1994.

[10] M. Shin and I.-C. Park, �Processor-based turbo interleaver for multiple thrid-

generation wireless standards,�IEEE Commun. Lett., vol. 7, no. 5, pp. 210�

12, May 2003.

[11] P. Ampadu and K. Kornegay, �An e¢ cient hardware interleaver for 3G turbo

decoding,�Proc. RAWCON�03, pp. 199�201, Aug. 2003.

[12] Z. Wang and Q. Li, �Very low-complexity hardware interleaver for turbo

decoding,� IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 7, pp.

636�640, Jul. 2007.

[13] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, �Optimal decoding of linear

codes for minimizing symbol,�IEEE Trans. Inform. Theory, no. IT-20, pp.

284�287, Mar. 1974.

[14] J. A. Erfanian, S. Pasupathy, and G. Gulak, �Reduced complexity symbol

detectors with parallel structures for ISI channels,�IEEE Trans. Commun.,

vol. 42, no. 2/3/4, pp. 1261�1271, Feb./Mar./Apr. 1994.

[15] M. Bickersta¤, L. Davis, C. Thomas, D. Garrett, C. Nicol, �A 24 Mb/s

Radix-4 LogMAP Turbo Decoder for 3GPP-HSDPA Mobile Wireless,� in

Proc. IEEE Int. Solid-State Circuit Conf., pp. 1-10, 2003.

[16] A. J. Viterbi, �A intuitive justi�cation and a simpli�ed implementation of

the map decoder for convolutional codes,�IEEE J. Select. Areas Commun.,

vol. 16, no. 2, pp. 260�264, Feb. 1998.

[17] S. A. Barbulescu, �Iterative decoding of turbo codes and other concatenated

codes,�Ph.D. dissertation, Univ. South Australia, 1996.

51

[18] S. Benedetto and G. Montorsi, �Design of paralle concatenated convolutional

coddes,�IEEE Trans. Commun., vol. 44, no. 5, pp. 591�600, May 1996.

[19] E Boutillon, W. Gross, and P. Gulak, �VLSI architectures for the MAP

algorithm,�IEEE Trans. Commun., vol. 51, no. 2, pp. 175-185, Feb. 2003.

[20] Z. Wang, �High-speed recursion architectures for MAP-based turbo de-

coders,�IEEE Trans. on VLSI Syst., vol. 15, no. 4, pp. 470�474, Apr. 2007.

[21] Y. Zhang and K.K. Parhi, �High-Throughput Radix-4 LogMAP Turbo De-

coder Architecture,�Proc. of 40th Asilomar Conf. on Signals, Systems and

Computers, pp. 1711-1715, Oct. 2006.

[22] Z. Wang, H. Suzuki and K. K. Parhi, "VLSI Implementation Issues of Turbo

Decoder Design forWireless Applications", Proc. of 1999 IEEEWorkshop on

Signal Processing Systems: Design and Implementation, Taipei, Oct. 1999.

[23] M.-C. Shin and I.-C. Park, �A programmable turbo decoder for multiple

3G wireless standards,� in IEEE Int. Solid-State Circuits Conf. Dig. Tech.

Papers, pp. 154�155, Feb. 2003.

[24] M. Bickersta¤, D. Garrett, T. Prokop, C. Thomas, B. Widdup, G. Zhou, C.

Nicol, and R.-H. Yan, �A uni�ed Turbo/Viterbi channel decoder for 3GPP

mobile wireless in 0.18 m CMOS,� in IEEE Int. Solid-State Circuits Conf.

Dig. Tech. Papers, pp. 90�91, Feb. 2002.

52

