
國 立 交 通 大 學

電機與控制工程學系

碩士論文

設計與實作基於單次密鑰加密之無線網路認證協定

Design and Implementation of Secure Wireless Authentication

Protocol using One-Time Key

研 究 生：陸培華

Student: Pei-Hua Lu

指導教授：黃育綸 博士

Advisor: Dr. Yu-Lun Huang

中華民國九十七年八月

August, 2008



設計與實作基於單次密鑰加密之無線網路認證協定

Design and Implementation of Secure Wireless Authentication Protocol using

One-Time Key

研 究 生：陸培華 Student: Pei-Hua Lu

指導教授：黃育綸 博士 Advisor: Dr. Yu-Lun Huang

國 立 交 通 大 學

電機與控制工程學系

碩士論文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering

National Chiao Tung University

in partial Fulfill of the Requirements

for the Degree of

Master

in

Department of Electrical and Control Engineering

August, 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年八月



設計與實作基於單次密鑰加密之無線網路

認證協定
學生：陸培華 指導教授：黃育綸 博士

國 立 交 通 大 學電機與控制工程學系（研究所）碩士班

摘 要

換手的安全和效率問題變得越來越具重要性在現代的無線網路環境中。在安全及

效率中取得平衡是需要被考量的。我們提出了一個新的協定，使用單次密鑰來做為使

用者認證。這個提出的新協定可以有效的支援同領域及跨領域認證。我們利用金鑰發

行中心(KDC)來管理使用者和授權伺服器。此協定需要五個訊息來達到同領域的初始認

證；三個訊息完成後繼認證；以及五個給換手認證。在換手的過程中不需要金鑰發行

中心可減輕金鑰發行中心的負擔。我們實現一個整合802.1X和此協議的擴展認證協議

(EAP)，並和其他擴展認證協議做比較。這結果也給了一個應用我們的協議到現存的

802.11無線網路的簡單方法。最後，此協定被BAN邏輯所證明其正確性。
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Abstract

Handover security and efficiency have become more and more important in modern

wireless network designs. Balance between security and efficiency needs to be considered. We

propose a new protocol using one-time keys for user authentication, called OSNP. The

proposed protocol can support both intra-domain and inter-domain authentications efficiently.

Our protocol uses KDC (Key Distributed Center) to manage both users and authorization

servers. It requires five messages for intra-domain initial authentication; three for subsequent

authentication; and five for handover authentication. No KDC is needed during a handover

and our design reduces the load on it. We show an integration of EAP method from 802.1X

and our protocol, comparing the result with other EAP methods. It also gives an easy way to

apply our protocol in existing 802.11 wireless networks. In final, the protocol logic is proved

by BAN logic and its enhancement.
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Chapter 1

Introduction

We propose a handover authentication protocol for WiFi (802.11) networks. Our protocol

does not require a public key infrastructure and can be integrated with the 802.1X [1]

Extensible Authentication Protocol (EAP) for WLANs[2] [3].

To enhance the security in wireless networks, 802.11i [4] defined a new security model for

802.11 a/b/g networks, specified new standards for authentication, encryption and message

integrity, and implemented 802.1X [1] for user authentication and key distribution. 802.1X is a

port-based network access control mechanism that provides EAP and can be used in

conjunction with other mature authentication protocols, such as TLS, PEAP, CHAP, etc.

There are many EAP methods supporting 802.11i authentication, including EAP-TLS [5]

[6], EAP-FAST [7], and LEAP. EAP-TLS and EAP-FAST are used with public-key

cryptography for authentication. Compared to symmetric-key systems, public-key systems and

certificates produce stronger security, but require more computational power. LEAP, a

symmetric-key authentication protocol, requires less computational power and thus takes less

response time when performing user authentication. However, LEAP is vulnerable to several

attacks [8] such as weak encryption keys. To balance efficiency and security, an efficient

authentication is required for wireless networks, especially for roaming users.

There are many methods to approach the balance between efficiency and security by using

Kerberos [9]. In 2007, Zrelli et al. [10] presented an integration of the Kerberos protocol with

EAP framework, called EAP-Kerberos. Kerberos is known for its symmetric-key
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cryptography, strong per-person key and inter-domain authentication. However, it is still

inefficient in the WLAN environment bacause users need to use proxies to get tickets from the

Kerberos Key Distributed Center (KDC). In other words, in Kerberos, KDC is involved in the

handover of a roaming user. And Kerberos is also vulnerable to weak password-based attacks,

discussed in [11] [12].

We propose a more efficient authentication protocol supporting handover authentication

without a trusted of third-party. The paper is organized as follows. Related research is detailed

in Chapter 2. We present our authentication protocol and the integration with EAP in Chapter

3 and 4, respectively. Chapter 5 demonstrates intra-domain authentication methods of

EAP-OSNP by a experiment, comparing it with EAP methods. Chapter 6 analyses our system

to others and formally proves that our protocol can reach the goals of mutual authentication by

using BAN logic [13] and its enhancement [14]. Chapter 7 concludes the paper.
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Chapter 2

Related Work

2.1 Network Authentication Protocols

This section summarizes the characteristics and drawbacks of some related authentication

protocols.

• Kerberos

Kerberos [9] was developed as a solution to network security problems, such as

replaying, eavesdropping and sniffing packets. In Kerberos V5, seven messages are

required for initial intra-domain authentication. The number of message required for

inter-domain authentication depends on the number of KDCs between the visited and

home domains.

• One-Time Password/Kerberos

Since the traditional password authentication is vulnerable to dictionary and playback

attacks, in 2005, Cheng et al. [15] presented a new authentication method that integrates

the Kerberos protocol and a one-time password (OTP) system. The main idea of OTP

authentication is to add random factors during the initial login process and make the

password used vary from time to time. Similar to the Kerberos protocol, the OTP/

Kerberos protocol requires three steps to authenticate a user: authentication by the KDC,

request of tickets from the Ticket-Granting Server (TGS) and access to the server (S).

3



On the client, the OTP is generated by hashing the user's secret passphrase and the seed

from the KDC. By encrypting and decrypting messages with the OTP, the user and

server mutually authenticate each other. However, to generate an OTP for authentication

requires seven messages in the first step mentioned above. In other words, OTP/

Kerberos increases the communication cost for authenticating a user, resulting in longer

user authentication time, which is not practical for roaming users in wireless networks.

• Secure Network Protocol

In 1999, Shieh et al. [14] proposed a symmetric-key based protocol, Secure Network

Protocol (SNP), to provide an efficient way for both intra- and inter- domain

authentication. Compared to Kerberos, fewer messages are required in SNP to

authenticate client identity. For intra-domain authentication, SNP takes four messages to

authentication client identity and one more optional message for mutually authenticating

the server. For inter-domain authentication, it takes seven messages for initial

authentication, regardless of the number of hops between the visited and home domains.

Only two messages are required for subsequent authentication when requesting the same

service. To simplify the design, SNP replaces timestamps with nonces, reducing the

need for time servers. For faster authentication, a master key is shared by the

authentication server (AS) and the service servers (S). The unchanged master keys can

make the system vulnerable to various attacks.

2.2 EAP-based Authentication Protocols

EAP is an authentication framework used in various networks, such as WLANs and

Point-to-Point connections (PPP). EAP provides some common functions and a negotiation of
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the desired authentication methods, such as EAP-MD5, EAP-OTP, EAP-TLS, etc. In WLANs,

EAP authentication methods are normally supported with Remote Authentication Dial-In User

Service (RADIUS) [16] [17] [18] [19]. RADIUS is also a client/server protocol that enables

remote access servers to communicate with a centralized authentication server to authenticate

dial-in users. It also authorizes their access to the requested services. The RADIUS server

supporting various EAP methods then becomes the major authority of wireless networks. This

section summarizes EAP authentication methods supporting strong authentication for roaming

users in WLANs.

• EAP-TLS

EAP-TLS [5] [6] is a popular EAP method for securing WLANs with RADIUS. The

mobile node and RADIUS server must have certificates to mutually authenticate each

other. EAP-TLS is resilient to man-in-the-middle attacks. However, it requires a

trusted-third party (Certificate Authority) to support authentication between the mobile

node and RADIUS server. Also, it requires extra management for administrating and

distributing certificates, supported by cooperative network management systems (NMS)

or Operation, Administration, Maintenance and Provisioning (OAM&P).

• EAP-Kerberos

In 2007, S. Zrelli and Y. Shinoda [10] showed how to integrate the Kerberos protocol as

an authentication method in EAP-based authentication frameworks. They define the

architectural elements and specify the encapsulation of the Kerberos messages in EAP

packets. Such a design allows a mobile node to be authenticated using the Kerberos

systems. When a mobile node, for example, issues an initial authentication request, the

EAP-Kerberos client encapsulates the Kerberos messages into EAP packets and sends

them to the access node. The access node then delivers these EAP packets to the

5



RADIUS server via the AAA (Authentication Authorization and Accounting) protocol.

The server either validates these messages or forwards them to the Kerberos KDC, as

shown in Fig. 2.1.

Figure 2.1: Protocol stacks of the components of the EAP-Kerberos authentication framework.

• Kerberized Handover Keying (KHK)

In 2007, Ohba et al. [20] proposed a Kerberized media-independent handover key

management architecture for the existing link-layer technologies, including 802.11 and

802.16. The architecture uses Kerberos for securing key distribution between a mobile

node, an access point (authenticator) and a server. In KHK, two handover modes are

presented: proactive and reactive. In proactive mode, a mobile node uses a pre-obtained

credential to authenticate with the access point. In reactive mode, the access point acts

as a Kerberos client on behalf of the mobile node. In this architecture, Kerberos can be

bootstrapped from initial authentication using an EAP method. This makes KHK work

across multiple AAA domains. However, similar to Kerberos, the KDC is involved in

handover authentication in KHK. Thus, the handover performance for reactive mode

depends on the location of KDC. The larger the distance between a KDC and a mobile
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node, the longer the time required for a handover authentication. Also, such an

architecture incurs extra costs for setting up time servers for synchronizing machine time

in the network, as mentioned in the previous chapter.
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Chapter 3

Proposed Protocol: OSNP

We propose the integration of SNP, OTP and EAP for authenticating IEEE 802.11 mobile

nodes, giving us support for fast roaming ———One-time key Secure Network Protocol (OSNP).

3.1 Preliminaries

Table 3.1 shows the abbreviations and symbols used in our protocol. Similar to other

password-based authentication methods, our authentication servers or KDCs share secrets with

users and servers in their own domains. For example, the user chooses his own strong

password and shares it with his KDC; the server chooses its own strong password and shares it

with its KDC. These shared secrets are assumed to be stored in a secure storage system.

3.2 Intra-Domain Authentication

In our protocol, we give three methods for three types of intra-domain authentication:

initial, subsequent and handover authentication. In initial authentication, five messages are

required for mutually authenticating the user and server. To subsequently authenticate with the

same server, only three messages are used (we renew session keys without querying the KDC.)

Handover authentication requires five messages to renegotiate a new session key with another

server of the domain. Although five messages are required, the KDC is not involved, reducing

its load.

Since authentication occurs in a common domain, the notations Ua, Sa, and KDCa are

8



Table 3.1: Message Abbreviations

Abbreviation Description
TKTX Ticket issued by X
CHX Challenge issued by X
RESPX Response to CHX
AX Authenticator issued by X
authRQX Authentication request sent by entity X
authAKX Authentication response to authRQX
sauthRQX Subsequent authentication request issued by X
sauthAKX Authentication response to sauthRQX
hauthRQX Handover authentication request issued by X
hauthAKX Authentication response to hauthRQX
hauthV FX The verifier sent by the previous server X
iauthRQX Inter-domain authentication request issued by X
iauthAKX Authentication response to iauthRQX
iauthFWX Inter-domain authentication forwarding to X
Ua User principal in domain "a"
Sa Server principal in domain "a"
KDCa Key distribution center in domain "a"
PWX Password of entity X
NX Nonce generated by X
KSS Session key to secure the communication
Kg Group key for all servers under a KDC
KTU Temporary user key for subsequent authentication
OTKX One-time key of entity X
SID Session identification
V TX Local time of entity X
TUX Temporary user identity of entity X
rt The remaining time of the validate ticket
ct The current time of the local host

9



simplified to U , S, and KDC, respectively.

3.2.1 Initial Authentication

To initially access a server, the wireless client U sends the authentication request message

(M1) to the server. The message is then forwarded to the KDC with server credentials (M2).

The KDC authenticates the identities of user and server; generates a session key and sends the

message (M3) back to the server. The server then forwards the message with encrypted session

key (M4) to the user. The final acknowledge (M5) is sent back to the server for mutual

authentication. Fig. 3.1 shows the message flow of intra-domain initial authentication.

Figure 3.1: The intra-domain initial authentication protocol.

M1. U → S : authRQU

When the authentication process starts, the user generates an authentication request,

containing a nonce NU , the user's identity and an encrypted message using user's

one-time key OTKU : authRQU = U‖NU‖{U,NU}OTKU . The one-time key is a hashed

value of user's identity, password and nonce.

OTKU = Hash(U,NU , PWU)

The request is sent to the server for authentication.

10



M2. S → KDC : authRQS‖authRQU

After receiving the user request, S generates its request

authRQS = S‖NS‖{S,NS}OTKS . It then concatenates the two requests and sends them

to KDC.

M3. KDC → S : SID‖authAKS‖authAKU

To identify each session, theKDC generates a unique identity SID = U‖S‖NU for

each session after receiving the authentication requests. It also calculates the one-time

keys OTKU and OTKS to verify the requests. After authenticating both identities,

KDC randomly generates a session keyKSS . The session key, server's nonce, and

identity are encrypted with OTKS to acknowledge the server's authentication request.

authAKS = {NS, U,KSS}OTKS

A temporary user keyKTU is generated and encrypted with OTKU in the

acknowledgement.

authAKU = {NU , S,KSS, KTU}OTKU

The temporary user key can be used for subsequent authentication.

M4. S → U : authAKU‖CHS‖TKTS

Upon receiving the response fromKDC, S decrypts authAKS in M3 with OTKS and

gets the session key. The server generates a new challenge for authenticating the user.

The new challenge is made by encrypting a new nonce N ′S and the server's identity with

the session key KSS , represented as CHS = {S,N ′S}KSS . In addition, S can also

optionally generate a ticket for subsequently authenticating the same user.

TKTS = SID‖{U, V TS, KSS}OTKS

11



V TS is a validation time for TKTS . Since the validation of a ticket is determined by its

issuer, no time server is required.

M5. U → S : RESPS‖AU

The user receives the session key after decrypting authAKU . It then generates a

response RESPS = {U,N ′S}KSS to CHS . The response is generated by replacing the

server's identity with the user's. Then, the mutual authentication of the user and server

can be guaranteed by encrypting and decrypting these messages with the shared session

key. In addition, a temporary authenticator AU = {S, V TU , KSS}KTU is also appended

to the response message. The authenticator can be used to authenticate the user in

subsequent authentication rounds without queryingKDC. As above, no time server is

needed.

3.2.2 Subsequent Authentication

Subsequent authentication rounds occur when a user requests the same services within the

specified time. For intra-domain subsequent authentication, the user must send the ticket and

his temporary credential to the server, as shown in Fig. 3.2. Below is the flow for intra-domain

subsequent authentication.

M1. U → S : sauthRQU

To initiate a subsequent authentication, the user generates a subsequent authentication

request, consisting of a nonce and a ticket, and sends it to the server. The subsequent

authentication request can be represented as sauthRQU = NU‖TKTS .

M2. S → U : sauthAKU‖CHS‖AU

After receiving the sauthRQU , the server retrieves the user identity from the SID

12



Figure 3.2: The intra-domain subsequent authentication protocol.

contained in TKTS . Then, the server decrypts the ticket and checks its validation time

V TS . If the ticket is not expired, the server generates a nonce and a new session key.

The user nonce and a new session key are then encrypted with the previous session key

to acknowledge the request from user.

sauthAKU = {NU , K ′SS}KSS

Then, the server nonce and identity are encrypted with the new session key. This is a

new challenge for mutually authentication the user.

CHS = {S,NS}K′SS

A concatenation of sauthAKU , CHS with the temporary authenticator AU received in

the initial authentication is then sent back to the user.

M3. U → S : RESPS

The user decrypts the temporary authenticator AU to get V TU andKSS . It checks the

validation time of the temporary authenticator, if the authenticator is not expired, the

user decrypts sauthAKS , and obtains the new session key. The nonce NS and the user

identity are then encrypted using the new session key to respond the CHS . The

subsequent response is represented as RESPS = {U,NS}K′SS .

13



3.2.3 Handover Authentication

Handover authentication occurs when a user requests a server belonging to the same

domain as the previous server. In most network authentication protocols, an initial

authentication is required when contacting another server. This increases the load on the KDC.

In such a case, since the user is already authenticated by the KDC and recognized by the

previous server, re-authentication can be performed by the previous server to reduce the load

on the KDC. In this paper, we propose a 5-step handover authentication protocol for

intra-domain authentication. Fig. 3.3 illustrates the message flow.

Figure 3.3: The intra-domain handover authentication protocol.

M1. U → S : hauthRQU

Similar to subsequent authentication, a user sends a hauthRQU to initiate a handover

authentication. The hauthRQU is the same as sauthRQU , containing a user identity,

nonce and ticket to the previous server.

hauthRQU = U‖NU‖TKTSold

M2. S → Sold : CHS‖hauthRQU

S generates a CHS = {S,NS}Kg and forwards it together with the hauthRQU to its

previous server Sold in TKTSold .
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M3. Sold → S : SID‖hoauthV FSold

After validating the ticket, Sold retrieves the user identity, validation time V TSold and the

previous session key KSSold from the TKTSold . The server Sold then calculates the

remaining validation time for the ticket:

rt = ct− V TSold

The remaining validation time, user identity and the previous session key are encrypted

together with the response to CHS and the temporary authenticator AUold using the

group keyKg. hauthV FSold = {NS, U,KSSold , rt, AUold}Kg is sent to S securely.

M4. S → U : hauthAKU‖CH ′S‖TKTS‖AUold

Upon receiving M3, S decrypts the message with the group key and gets the previous

session key, the temporary authenticator and the remaining validation time of the

previous ticket. The temporary authenticator will be forwarded to the user for proving

the user's identity. When generating the new ticket TKTS for the user, S calculates its

validation time according to the remaining validation time.

V TS = ct− rt

An acknowledgement hauthAKU = {NU , KSS}KSSold is generated responding to

hauthRQU in M1. Also, a challenge CH ′S = {S,N ′S}KSS is sent to the user for mutual

authentication.

M5. U → S : RESPS‖AU

As above, the user decrypts messages to get the new session key and his temporary

authenticator AU . The new session key is used to generate the response

RESPS = {U,N ′S}KSS to the CHS and the new temporary authenticator

AU = {S, V TU , KSS}KTU .
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3.3 Inter-Domain Authentication

The proposed inter-domain authentication takes advantages of the SNP design. All KDCs

in the hierarchy share keys. This reduces the time required for querying and searching to locate

the home KDC of the visiting user. A user TUX roaming from domain X, for example, wants

to access a server SY in a foreign domain Y. His authentication request will be sent to SY and

then to the foreign KDCY. Since KDCY cannot authenticate the user, the authentication request

will be forwarded back to the previously visited KDCX after KDCY locates the KDCX. In our

proposal, a root KDCR identifies a previously visited KDC for a foreign KDC. Once TUX is

authenticated by KDCX, the user TUX will receive a temporary identity TUY for its subsequent

services in the domain Y. Fig. 3.4 illustrates the initial authentication flow for an inter-domain

authentication.

Figure 3.4: The inter-domain authentication protocol.
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3.3.1 Hierarchical KDC

In the previous section, we presented an authentication protocol for authenticating users

who registered in the same security domain. However, for a very large network, it is

impractical for all the users to be registered in a single domain. Instead, users and servers

should register with their own KDCs, which form a hierarchical structure. In such a structure,

each node in the hierarchy represents a domain, where parent domains manage all their children

domains. Each domain has one KDC to manage the authentication of its users and servers.

In the proposed inter-domain authentication protocol, every KDC must share a different

secret key with all its ancestors to perform inter-domain authentication efficiently.

Consequently, the root KDC needs a large database to store the shared keys for all descendant

KDCs. Fortunately, the size of a key is small, and the root KDC is able to store all the keys.

3.3.2 Protocol Description

Similar to the intra-domain initial authentication, our approach starts with a request from

the user from a foreign domain.

M1. TUX → SY : authRQTUX

Assume that a user, requesting a service in a new domain Y , has a temporary user

identity TUX for its previously visited domain X . It needs to send an authentication

request to the server SY in domain Y before accessing the desired services. The

authentication request authRQTUX consists of the temporary user identity TUX , a nonce

NTUX and an encrypted message containing TUX and NTUX using its previous

temporary key OTKTUX .

authRQTUX = TUX‖NTUX‖{TUX , NTUX}OTKTUX
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M2. SY → KDCY : authRQSY ‖authRQTUX

Similarly, the server SY generates its authentication request authRQSY , and sends the

request together with authRQTUX to its KDCY .

M3. KDCY → KDCR : iauthRQKDCY ‖authRQTUX

SinceKDCY cannot authenticate the visiting user, the user authentication request is

forwarded to the nearest common key distribution center (KDCR) for KDCX and

KDCY . The message also includes the server identity and an authentication request

from KDCY . The server identity is used to recognize the communication session while

iauthRQKDCY is used to authenticate the commonKDCR for KDCY .

iauthRQKDCY = KDCY ‖NKDCY ‖authRQTUX

The iauthRQKDCY message containsKDCY 's identity and a nonce NKDCY , in

plaintext.

M4. KDCR → KDCX : iauthFWKDCX‖iauthAKKDCY

Upon receiving the request,KDCR sends a forwarding message to the previously

visitedKDCX . The forwarding message is encrypted using the shared key ofKDCR

andKDCX and can be represented as

iauthFWKDCX = {authRQTUX , TUY , OTKTUY , KSS}KKDCX .

The forwarding message includes not only the authentication request issued by user, but

also a new temporary principal name TUY , a new temporary user key and a new session

key. In addition,KDCR encrypts TUY ,KTUY ,KSS and the nonce in iauthRQKDCY

with the shared key ofKDCR andKDCY , and forwards it to KDCX . This message is

an authentication response toKDCY and can be represented as

iauthAKKDCY = {NKDCY , TUY , OTKTUY , KSS}KKDCY .
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M5. KDCX → KDCY : iauthAKTUX‖iauthAKKDCY

KDCX decrypts the authentication response iauthAKKDCX and gets the temporary

user identity-key pair and session key. Since thatKDCX only knows the nonce and

temporary user key for user TUX , it encrypts the original nonce and new temporary user

identity-key pair and session key with the pervious key OTKTUX . This is a message in

response to the authentication request issued by user TUX , the message is represented as

iauthAKTUX = {NTUX , TUY , OTKTUY , KSS}OTKTUX . The message is sent toKDCY

together with the authentication response iauthAKKDCY from KDCR.

M6. KDCY → SY : SID‖iauthAKSY ‖iauthAKTUX

KDCY decrypts the authentication response iauthAKKDCY , verifies the received nonce

NKDCY and extracts temporary user identity-key pair. Then,KDCY generates a new

session identity and an authentication response to server SY . The response of

authRQSY can be represented as iauthAKSY = {NSY , TUY , KSS}OTKSY , where

OTKSY = Hash(SY , NSY , PWSY ) is the one-time key of SY .

M7. SY → TUX : iauthAKTUX‖CHSY ‖TKTSY

Similar to the above description of intra-domain authentication, the server generates a

challenge CHSY = {SY , N ′SY }KSS and a service ticket

TKTSY = SID‖{TUY , V TSY , KSS}OTKSY .

M8. TUX → SY : RESPSY ‖ATUY

The user generates a new temporary authenticator using its handover key HKTUY . The

authenticator ATUY = {SY , V TTUY , KSS}OTKTUY can be used for subsequent

authentication. Then the user encrypts the nonce and temporary identity for the newly

visited domain with the session key and sends it back as a response to CHSY . The
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response is represented as RESPSY = {TUY , N ′SY }KSS .
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Chapter 4

Software Architecture: EAP-OSNP

This chapter discusses the integration of the proposed protocol and EAP framework,

which we call EAP-OSNP. EAP is a client/server protocol using different authentication

methods for authenticating users requesting access to the network. There are three entities in

the EAP protocol: the peer, the authenticator and the server. The EAP peer acts as a client

requesting authentication and network services. The authenticator is the entity that controls the

network access ports. The EAP server is capable of verifying users' credentials.

4.1 EAP Framework

Using intra-domain authentication as an example, the EAP peer builds an authentication

request authRQU and encapsulates it into EAP-OSNP messages. The EAP peer behaves

exactly as a wireless client (U) in OSNP. Fig. 4.1 illustrates the EAP message flow of

intra-domain initial authentication of EAP-OSNP. To comply with the EAP framework, one

more message EAP-Request (type = S2U HELLO) is required for initiating the EAP

authentication. The EAP-Request and EAP-Reponse messages carry the OSNP authentication

payload, but the messages exchanged between the EAP server and the KDC may optionally

follow the EAP framework. The EAP authentication successes when the wireless client

receives an EAP-Success message.

There are five fields in an EAP packet, as shown in Fig. 4.2. The Code field identifies the

type of the EAP packet: 1 for request and 2 for response. The Identifier is a sequence number
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Figure 4.1: EAP-OSNP Message Flow: Intra-domain Initial Authentication.

used to match the request and response packets. The Length indicates the total length of the

packet, in octet. The Type indicates the authentication method encapsulated in the EAP

message; hexadecimal 0xDD is reserved for EAP-OSNP in our implementation. The

Type-Data field contains the payload of EAP-OSNP message, which is composed of a

Message-Type and an OSNP-data. Fig. 4.2 shows an example EAP-OSNP packet for

requesting user authentication: theMessage-Type is U2S HELLO and the OSNP-Data is

authRQU .

Table 4.1 lists the Message-Type and the OSNP-Data defined for EAP-OSNP

intra-domain initial authentication.
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Figure 4.2: EAP-OSNP Packet Format: M1 of intra-domain initial authentication.

Table 4.1: EAP-OSNP Messages

Message-Type OSNP-Data
S2U HELLO S
U2S HELLO M1 of Init.: authRQU
S2KDC AUTH M2 of Init.: authRQS‖authRQU
KDC2S AUTH M3 of Init.: SID‖authAKS‖authAKU
S2U AUTH M4 of Init.: authAKU‖CHS‖TKTS
U2S AUTH M5 of Init.: RESPS‖AU
U2S VT VERIFY M1 of Sub.: sauthRQU
S2U VT VERIFY AUTH M2 of Sub.: sauthAKU‖CHS‖AU
U2S SUBSEQ AUTH M3 of Sub.: RESPS
U2S HOREQ M1 of Handover: hauthRQU
S2S HOVRF M2 of Handover: CHS‖hauthRQU
S2S HOVRF ACK M3 of Handover: SID‖hoauthV FSold
S2U HOACK M4 of Handover: hauthAKU‖CH ′S‖TKTS‖AUold
U2S HO AUTH M5 of Handover: RESPS‖AU

4.2 Building Blocks

We use several software components to implement EAP-OSNP authentication system.

There are four components: OSNP library, KDC server, EAP-OSNP server, and EAP-OSNP

client.

• OSNP library

The OSNP library provides the fundamental data structure, functions and application

programming interfaces (APIs) required for the OSNP parts. We encapsulate OSNP
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messages from this library into EAP framework. Moreover, it can be used in any other

authentication programs.

• KDC server

The KDC server is in charge of authenticating the EAP peer (the wireless client) and the

EAP server. It also manages both OSNP clients' and servers' accounts and permissions,

generates session keys for the EAP peers and the EAP servers.

• EAP-OSNP server

The EAP-OSNP server implements the server protocol of OSNP, including attaching and

detaching EAP-OSNP module. It is also in charge of initializing EAP-OSNP module

and processing EAP-OSNP packets according to the protocol defined in Chapter 3.

• EAP-OSNP client

The EAP-OSNP client implements the client protocol of OSNP, including receiveing

and responsing the identity request from early EAP methods.

4.3 Software Modules

This section depicts the implementation of the building blocks we mentioned in the

previous section.

4.3.1 OSNP Library

The OSNP library provides the data structures, functions and APIs for the EAP-OSNP

entities. The OSNP library is composed of osnp.h, osnp kdc.h, osnp s.h, osnp u.h, and

eaposnp mkeys.h as illustrated in Fig. 4.3.
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Figure 4.3: The OSNP Library.

• osnp.h

This header file defines the major data structures, like CIPHER METHOD: ciphersuite

types, and OSNP MSG TYPE: message types. OSNP MSG TYPE, for example, defines

the message types listed in Table 4.1.

typedef enum {

OSNP_INIT,

OSNP_S2KDC_INIT,

OSNP_KDC2S_INIT,

OSNP_S2U_HELLO,

// Initial authentication

OSNP_U2S_HELLO,

OSNP_U2S_AUTH,

OSNP_S2U_AUTH,

OSNP_S2KDC_AUTH,

OSNP_KDC2S_AUTH,

// Subsequent authentication

OSNP_U2S_VT_VERIFY,

OSNP_S2U_VT_VERIFY_AUTH,

OSNP_U2S_SUBSEQ_AUTH,
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// Handover authentication

OSNP_U2S_HOREQ,

OSNP_S2S_HOVRF,

OSNP_S2S_HOVRF_ACK,

OSNP_S2U_HOACK,

OSNP_U2S_HO_AUTH,

OSNP_DONE

} OSNP_MSG_TYPE;

It also defines the fundamental functions for all the entities, these functions are invoked

in another part of OSNP library, such as

int otp_key_generator(unsigned char *key,

const char *id, unsigned char id_len,

const char *pw, unsigned char pw_len,

const unsigned char *nonce);

int osnp_encrypt(const unsigned char *in, int len,

ENCRYPT_DATA *p_encrypt_data,

const CIPHER_CTX *ctx, CIPHER_METHOD select);

int osnp_decrypt(unsigned char **p_out, int *p_len,

const ENCRYPT_DATA *p_encrypt_data,

const CIPHER_CTX *ctx, CIPHER_METHOD select);

• osnp kdc.h

This header file contains essential data structures for building a KDC daemon. It uses a

structure, OSNP PRIV KDC, to store information for the APIs for the daemon. There

are three APIs for the daemon: s2kdc initialize, s2kdc authenticate, and sid generator.

s2kdc initialize negotiates ciphersuites and the group key for servers. s2kdc authenticate

authenticates both U and S in OSNP S2KDC AUTH message. sid generator generates

SID mentioned in Chaper 3. SID contains information about S 's address timestamp

when SID generated.

• osnp s.h

This header defines the ticket format and fundamental data structures and APIs for a

server For example, kdc2s initialize processes the data from s2kdc initialize on the
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KDC. u2s hello and u2s authenticate processes messages form users in intra-domain

initial authentication.

• osnp u.h

This header file provides fundamental data structures and APIs for a user. We deal with

authentication policies in function s2u hello. Fig. 4.4 shows current authentication

method decision. The data structure OSNP PRIV U stores the encrypted tickets

obtained from Ss which have connected. First, we decide whether U can use

Figure 4.4: Authentication method decision of U .

subsequent authentication by searching ticket form S. Once there is no ticket from S, we

will use the first ticket from ticket cache of OSNP PRIV U to process handover

authentication. Otherwise, the initial authentication are performed.

• eaposnp mkeys.h

The header file declares that OSNP library supports key generation after OSNP

authentication. For example, Pairwise Master Key (PMK) for 802.11i can be generated

from OSNP by eaposnp gen pmks. The function declares as the following:

void eaposnp_gen_pmks(const unsigned char *key_ss, const char *prf_label,

const unsigned char *nonce_u, const unsigned char *nonce_s,

unsigned char *out);
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The OSNP library provides fourteen authentication functions for various OSNP message

types, including S2U HELLO, U2S HELLO, S2KDC AUTH, KDC2S AUTH, S2U AUTH,

U2S AUTH, etc. Taking U2S HELLO as an example, the server randomly generates a nonce,

calculates the one-time key, refreshes the private data and then generates the output message

S2KDC AUTH after it receives U2S HELLO message. The flow of S2KDC AUTH is

described in Fig. 4.5.

Figure 4.5: The program flow of S after receiving U2S HELLO.

4.3.2 KDC Daemon

The KDC daemon (KDCd) module offers an administrative interface for managing both

user accounts and servers permissions. The program flow of the KDCd is illustrated in

Fig. 4.6. Fig. 4.6a shows the main thread of KDCd. At first, KDCd reads the account files,

storing into the access lists. Then KDCd binds socket to wait for clients. After accepting the

socket, the main thread generates the kdc thread to deal with the authentication processes. The

program flow of kdc thread shows as Fig. 4.6b. Atfer checking the packet, this thread calls

differnet APIs with corresponding message types.
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(a) Initialization and of
main thread.

(b) The kdc thread program flow.

Figure 4.6: The KDC Daemon.

4.3.3 Authentication Server

The server module processes the EAP-OSNP, as illustrated in Fig. 4.7. The module checks

message types with correct statuses and calls corresponding APIs to deal with the EAP

packets. We implement the EAP-OSNP server module on FreeRADIUS [21], the open source

RADIUS server with version 1.1.7 on Linux operating system.

FreeRADIUS is a modular RADIUS server. It provides several EAP authentication

through AAA packets. And it is easy to add an EAP authentication sub-module by using

EAP TYPE structure.

typedef struct eap_type_t {

const char *name;

int (*attach)(CONF_SECTION *conf, void **type_data);

int (*initiate)(void *type_data, EAP_HANDLER *handler);

int (*authorize)(void *type_data, EAP_HANDLER *handler);

int (*authenticate)(void *type_data, EAP_HANDLER *handler);

int (*detach)(void *type_data);

} EAP_TYPE;
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Figure 4.7: The EAP-OSNP server.

4.3.4 Wireless Client

The client module is a revision of wpa supplicant [22], which is an open source package

that implements key negotiation with a WPA authenticator and controls the roaming and IEEE

802.11 authentication/association of the WLAN driver.
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4.4 Protocol Stacks

The protocol stacks of components defined in prevous sections are ilustrated in Fig. 4.8.

Each role uses the OSNP library except the pass-though authenticator. The pass-though

authenticator is used to convert EAP packets into AAA packets and supplies connection for

EAP peers. We deploy the pass-though authenticator by using hostapd [23].

Figure 4.8: Protocol stacks of the components of the EAP-OSNP authentication framework.
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Chapter 5

Experiments

We implement our EAP-OSNP on Linux operating system. We also use the SWOON

testbed [24]to test and compare the performance of various EAP methods. This chapter

describes the our experiments and results.

5.1 SWOON Testbed

The SWOON testbed is a comprehensive and flexible wireless testbed allowing designers

to test their systems without actually building a physical test environment. We can design the

network topology and deploy machines with several kinds of wireless networks, such as WiFi

and WiMAX. Not like ns-2 [25], it is based on Emulab [26] [27] and DETER [28] [29], the

network emulation testbed. They use NS files to describe network topology. We can set link

properties between machines to shape networks, also the operating system types. Emulab

deploys machines and VLANs from NS files. It reduces time of preparing experiment

environments.

Besides, SWOON provides heterogeneous networks in the topology. It provides virtual

wireless network through the real wired network and transformes wireless topology into wired

topology connected within one switch. For example, Fig. 5.1a shows the designed topology

showed in SWOON GUI. There are two parts in the GUI; WiFi part are composed of AP1,

AP2, Alice, Bob, and Eve; and WiMAX part consists of BS and SS. The topology is

transformed to the other wired topology shown in Fig. 5.1b.
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(a) Wireless topology shows in SWOON GUI. (b) Emulated wireless topology are connected
through wired switch.

Figure 5.1: Wireless topology in SWOON GUI/real topology

SWOON uses virtual wireless devices which encapsulate packets over ether UDP

broadcast packets. Therefore, it can supply four basic wireless commucation properties:

broadcast, packet latency, packet loss, and eavesdropping by network shaper. We can generate

desired topology by SWOON.

5.2 Experiment

We setup an experiment for validating performance of intra-domain authentications. We

compare EAP-OSNP and other authentication methods: EAP-TLS, EAP-TTLS/MD5, and

PEAPv0/MS-CHAPv2.

5.2.1 Topology

The real topology is shown as Fig. 5.2. The WiFi environment is composed of s0, s1, and

sta connected on switch wireless. kdc, s0, and s1 are connected with private LAN switch, plan.

And dst is located on outside public network. kdc is the KDC server of OSNP. s0 and s1 act the
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Figure 5.2: The topology of the experiment

access points and the RADIUS servers. sta is a wireless station, and dst is a outside service.

5.2.2 Software Packages

We run experiments on kernel version 2.6.20-21 with the kernel cryptographic API

enabled. We deploy one wireless client, one wireless access point, one RADIUS server, and

one KDCd.

• KDCd

On the KDCd, we need to install OSNP library, and the kdcd tools. We modify the

kdcd.conf for the kdc key and suitable ciphersuites. We use osnp useradd, osnp userdel,

and osnp passwd to manage accounts on this domain. There are two server accounts and

one user account for all three initial authentication methods: initial, subsequent, and

handover.

• RADIUS Server

The RADIUS server acts as S, and we install OSNP library and a revision of
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FreeRADIUS [21] on it. The server can use either 128-bit or 256-bit AES (Advanced

Encryption Standard) ciphersuite as OSNP data encryption. The ip address and port of

KDCd is 10.1.2.3 and 14000. V TS is 3600 seconds. The OSNP section of configuration

file eap.conf for S1 is shown as following:

osnp {

s_identity = eapserver1

s_passwd = gnitset

ciphersuite = "C_AES_128_CBC, C_AES_256_CBC"

kdc_ip = 10.1.2.3

kdc_port = 14000

kdc_timeout = 4

vt_interval = 3600

s_port = 14000 }

• Wireless Access Point

We use hostapd [23] as our wireles access point with version 0.5.10. The hostapd

daemon is configured as a pass-though authenticator with specified ip address of

RADIUS server in the hostapd configuration file.

ssid=wpa-osnp

ieee8021x=1

auth_server_addr=127.0.0.1

auth_server_port=1812

auth_server_shared_secret=secure

acct_server_addr=127.0.0.1

acct_server_port=1813

acct_server_shared_secret=secure

• Wireless Client

We install OSNP library and a revision of wpa supplicant [22] of version 0.5.8. This

client is open source software supporting WPA2 authentication in several platforms. In

this experiment, the supplicant uses EAP-OSNP for the connected access points with

SSID "wpa-osnp". Both stations and access points use 256-bit AES (Advanced

Encryption Standard) as the ciphersuite of OSNP. V TU for this supplicant is 4800

seconds. The configuration file of wpa supplicant is like following:

35



network={

ssid="wpa-osnp"

key_mgmt=WPA-EAP

eap=OSNP

pairwise=CCMP

group=TKIP

identity="eapuser"

password="testing"

ciphersuite="C_NULL, C_AES_256_CBC"

vt_interval=4800

priority=20 }

5.2.3 Measurement

We use a packet sniffer and protocol analyzer, wireshark [30] version 1.0.0, on the

wireless client. We measure time cost and message counts during the authentication process

between EAP-Response/EAP-Identity and EAP-Success as Fig. 4.1.

5.3 Results

We compare EAP-OSNP with other EAP method using for WPA2. The result shows on

Table 5.1 and Fig. 5.3. The experiment runs 100 times for each authentication method. Each

data point in Fig. 5.3 is the average per 10 runs. The table shows the mean for these average

and message counts. All OSNP authentication methods are faster than other methods. The

subsequent authentication method is faster than the initial method. However, the handover is

almost equal to initial authentication, but it reduce the loading of KDC. It shows that OSNP is

more efficient than other EAP methods.
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Figure 5.3: EAP methods comparison result

Table 5.1: Average Result

OSNP OSNP OSNP TLS TTLS PEAPv0
initial subsequent handover MD5 MS-Chapv2

Δt (ms) 10.37 4.43 10.68 69.47 59.32 66.24
Authentication
messages 4 4 4 14 12 18

37



Chapter 6

Analysis and Comparisons

6.1 Security Analysis

• Trivial Substitutions and Replay Attack

Since all of the proposed protocols are nonce-based and every credential and ticket in

our protocols contains the nonces used to verify the freshness of that credential, trivial

substitutions and replays attacks can be easily detected. Similar to other nonce-based

protocols, the challenger starts a timer and waits for a response. If the timer expires

before receiving the response, the challenger assumes that the message is either lost or

corrupted and must issue a new challenge.

• 802.1X Identity Privacy

When an eavesdropper is listening on network traffic, the authentication process exposes

the identity of the EAP peer. Even with a stolen identity, the eavesdropper still cannot

login into the system without the correct one-time key. Taking intra-domain initial

authentication as an example, suppose the eavesdropper stores the user's identity from

previous sessions. It could then generate a forged authentication request authRQU .

However, the request would fail authentication.

• Man-in-the-middle Attack

Since all critical messages in our protocol are encrypted to prevent eavesdropping, it is
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nearly impossible to modify the messages exchanged between entities. However, if an

attacker A eavesdrops the communication channel between U and S, he can replace the

authentication request authRQU with authRQA. The replaced authRQA is forwarded

to theKDC together with authRQS . The attacker may be successfully authenticated by

the KDC if he is a legitimate user in the system, but the man-in-the-middle attack still

fails because the attacker cannot generate a correct authAKU to respond to the

authRQU . Therefore, we conclude that a man-in-the-middle attack would not succeed

against the OSNP protocol.

• User Impersonation Attack with Compromised Session Keys

Since each session key is used only for a single authentication session and is discarded

after authentication, an impersonation attack with a compromised session key can be

prevented. In our authentication protocols, we do not rely on timestamps or temporary

keys. Taking intra-domain initial authentication as an example, this kind of attack can be

easily detected by a server in M3 by checking the freshness of the nonce in authAKS . If

the intruder substitutes NS in M2 and replays M3, the server can still detect that M3 is

simply a forged message by verifying the nonce in authAKS . The intruder will be

rejected even if he holds a compromised session key.

• Forward Secrecy

Our protocol addresses forward secrecy. The disclosure of long-term secret keying

material used to derive an agreed key does not compromise the secrecy of agreed keys

from earlier runs [20]. In our protocol, keys are chosen randomly, and the one-time key

itself is used as a key which changes with each use.

Table 6.2 and 6.1 analyze some EAP methods, including EAP-TLS, EAP-OTP,

EAP-Kerberos and EAP-OSNP, and compares their characteristics and capability against
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Table 6.1: Authentication Analysis

EAP Methods TLS OTP Kerberos OSNP
Server Authentication Certificate None Password OTK
Client Authentication Certificate OTK Password OTK
Mutual Authentication Yes No Yes Yes

Table 6.2: Security Analysis

EAP Methods TLS OTP Kerberos OSNP
Replay Attack Yes Yes Yes Yes
Dictionary Attack Yes No No No
Brute-Force Attack No Yes No Yes
Identity Privacy Protection No No Yes No
Man-in-the-middle Attack Yes No Yes Yes
User Impersonation Attack No No Yes Yes
Forward Secrecy No Yes Yes Yes

attacks.

6.2 Performance Analysis

In Sec. 5.3, we show the performance of EAP-OSNP. Furthermore, this section presents

the performance of OSNP. Tables 6.3 and 6.4 show the performance of Kerberos and OSNP, in

terms of computation, communication and storage.

Table 6.4 shows the number of messages for mutual authentication and the number of

messages submitted by a user. OSNP requires a constant number of messages independent of

the number of KDCs between the user's visited domain and home domain. This reduces the

time required for roaming from one domain to another. Compared with the Kerberos protocol,

OSNP requires only two messages on the user side. This is feasible and practical for mobile

networks with low data rates and bandwidth. It is also good for battery-powered mobile

devices.
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Table 6.3: Performance Comparison: Computation Cost

Auth Operation KDC Sold S U
K O K O K O K O

Random 2 2 - - 0 2 2 1
Init Hash 4 2 - - 3 1 4 1

En/decrypt 6 5 - - 5 5 5 5
Random - - - - - 2 - 1

Sub Hash - - - - - 1 - 0
En/decrypt - - - - - 4 - 4
Random - - - 0 - 3 - 1

Ho Hash - - - 1 - 1 - 0
En/decrypt - - - 3 - 5 - 5

Table 6.4: Performance Comparison: Communication and Storage Costs

#Msg for #Msg Type #Shared Mobility
Mutual from of Keys Support
Auth User Trust

Krb 2m+ 4 m+ 2 P&H O(N) No
OSNP 8 2 P&H O(N) Yes

m: number of KDCs between the user's visited domain and home domain

N: number of domains

P&H Peer and Hierarchical

Table 6.4 also compares the number of shared keys among these protocols. Consider a

hierarchy with N domains. The number of shared keys in OSNP is proportional to the number

of domains, which is the same as the number of shared keys in Kerberos V5.

6.3 OSNP Logic Proof

We use BAN logic [13] and its enhancement [14] to explain why our protocol can reach

the goals of mutual authentication for initial and subsequent authentication of intra-domain

authentication. The intra-domain handover is a derivation of initial authentication, replacing
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KDC with the previous server and the inter-domain authentication is an extension of the

initial authentication; the security of these two types of authentication is guaranteed by that of

the initial authentication.

The BAN logic states that the mutual authentication is complete between two parties A

and B, if there is aK such that

A believes A K←→ B,

B believes A K←→ B,

A believes B believes A K←→ B,

B believes A believes A K←→ B.

6.3.1 Initial Authentication

The objectives of the initial authentication are to prove: the presence of both parties to

each other, and the receipt of a ticket and a session key at the user side. Assume that

U believes U OTKU←→ KDC, and (6.1)

S believes S OTKS←→ KDC. (6.2)

The proof is given in two parts: to authenticate S by U , and to authenticate U by S.

For the first part, since U receives authAKU , CHS and TKTS in M4, he can decrypt

authAKC and get the session keyKSS . By applying annotation rule and formula 6.1, we
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obtain

U believes U OTKU←→ KDC,

U sees {NU , S, U
KSS←→ S}OTKU , and

U believesKDC said (NU , S, U
KSS←→ S).

Since that NU is generated by U , we have the following hypothesis:

U believes fresh (NU , S, U
Kss←→ S).

The nonce-verification rule applies and yields

U believes U KSS←→ S.

By decrypting the CHS , U verifies the server identity. Similarly, we obtain

U sees {S,N ′S}KSS,

U believes S said (S,N ′S, U
KSS←→ S),

U believes S believes U KSS←→ S.

The second part is proved by M3 and M5. S receives authAKS in M3, and he can decrypt the

token and extract the session keyKSS . Then, S decrypts RESPS usingKSS to get N ′S .

Similarly, applying the annotation, the message-meaning, jurisdiction rules, and formula 6.2,

we obtain

S believes S OTKS←→ KDC,

S sees {NS, U, U
KSS←→ S}OTKS , and

S believesKDC said (NS, U, U
Kss←→ S).

Since that NS is generated by S, we have the following hypothesis:

S believes fresh (NS, U, U
KSS←→ S), and

S believes U KSS←→ S.
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Similarly, N ′S is generated by S, we apply the nonce-verification rule and jurisdiction rule and

obtain

S sees {N ′S}KSS,

S believes fresh (N ′S, U
KSS←→ S),

S believes U said (N ′S, U
KSS←→ S), and

S believes U believes U KSS←→ S.

It proves that our initial authentication can achieve the following goals at the end of the

authentication round:

U believes U KSS←→ S,

S believes U KSS←→ S,

U believes S believes U KSS←→ S, and

S believes U believes U KSS←→ S

¤

6.3.2 Subsequent Authentication

In our subsequent authentication, S decrypts TKTS and extracts U , V TS andKSS . After

checking the validation of V TS ,KSS is still validate. We can apply the above formal rules, and
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obtain

U believes U KSS←→ S,

U sees {NU , U
K′SS←→ S}KSS,

U believes S said (NU , U
K′SS←→ S),

U believes fresh (NU , U, U
K′SS←→ S), and

U believes S believes U
K′SS←→ S.

For S, we also prove that

S believes S OTKS←→ KDC,

S sees {U, V TS, U
KSS←→ S}OTKS,

S believesKDC said (U, V TS, U
KSS←→ S).

So,

S believes U KSS←→ S.

After receiving RESPS , which contains a nonce NS and a new session keyK ′SS generated by

S, we obtain

S sees {NS}K ′SS,

S believes fresh (NS, U
K′SS←→ S),

S believes U said (NS, U
K′SS←→ S),

S believes U believes U
K′SS←→ S.

This proves that our subsequent authentication can achieve the above goals. ¤
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Chapter 7

Conclusion

In this paper, we integrated one-time keys with a nonce-based authentication protocol,

which efficiently supports initial, subsequent and handover authentication. In design part, our

protocol requires five messages for initial authentication; three for subsequent authentication

and five for handover authentication. Although five messages are required for handover

authentication, no KDC is involved in authenticating the roaming user. Then, we extended the

intra-domain authentication protocol to an inter-domain authentication protocol, which

requires eight messages for mutual authentication, regardless of the number of hops between

the visited and home domains. In all our authentication protocols, only two messages are sent

by the user. Such a design is very feasible and practical for a mobile network with limited

bandwidth and for those battery-powered mobile devices.

Since KDCs are transparent to users in OSNP, only registered servers can communicate

with KDCs directly. This architecture is suitable for the current mobile network, where mobile

devices only need to connect to a visited server for authentication, without knowing the

location of KDCs.

In implementation part, the intra-domain authentication methods are completely

implemented with modular design. Using the revision of open source authentication

applications is convenient for integrating our protocol with other authentication protocols, also

convenient for comparisons.

46



References

[1] IEEE, ''IEEE Standard for Local and metropolitan area networks Port-Based Network

Access Control,'' 2004, pp. 1--169.

[2] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz, ''Extensible

Authentication Protocol (EAP),'' RFC 3748 (Proposed Standard), Jun. 2004. [Online].

Available: http://www.ietf.org/rfc/rfc3748.txt

[3] D. Stanley, J. Walker, and B. Aboba, ''Extensible Authentication Protocol (EAP) Method

Requirements for Wireless LANs,'' RFC 4017 (Informational), Mar. 2005. [Online].

Available: http://www.ietf.org/rfc/rfc4017.txt

[4] IEEE, ''Information technology - Telecommunications and information exchange between

systems - Local and metropolitan area networks - Specific requirements Part 11: Wireless

LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications (Includes

IEEE Std 802.11, 1999 Edition; IEEE Std 802.11a.-1999; IEEE Std 802.11b.-1999; IEEE

Std 802.11b.-1999/Cor 1-2001; and IEEE Std 802.11d.-2001),'' 2005, pp. 1--721.

[5] B. Aboba and D. Simon, ''PPP EAP TLS Authentication Protocol,'' RFC 2716

(Experimental), Oct. 1999, obsoleted by RFC 5216. [Online]. Available:

http://www.ietf.org/rfc/rfc2716.txt

[6] D. Simon, B. Aboba, and R. Hurst, ''The EAP-TLS Authentication Protocol,'' RFC 5216

(Proposed Standard), Mar. 2008. [Online]. Available: http://www.ietf.org/rfc/rfc5216.txt

[7] N. Cam-Winget, D. McGrew, J. Salowey, and H. Zhou, ''The Flexible Authentication via

47

http://www.ietf.org/rfc/rfc3748.txt
http://www.ietf.org/rfc/rfc4017.txt
http://www.ietf.org/rfc/rfc2716.txt
http://www.ietf.org/rfc/rfc5216.txt


Secure Tunneling Extensible Authentication Protocol Method (EAP-FAST),'' RFC 4851

(Informational), May 2007. [Online]. Available: http://www.ietf.org/rfc/rfc4851.txt

[8] K.-H. Baek, S. W. Smith, and D. Kotz, ''A Survey of WPA and 802.11i RSN

Authentication Protocols,'' Dept. of Computer Science, Dartmouth College, Hanover,

NH, Tech. Rep. TR2004-524, November 2004. [Online]. Available:

http://www.cs.dartmouth.edu/~dfk/papers/baek-survey-tr.pdf

[9] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, ''The Kerberos Network Authentication

Service (V5),'' RFC 4120 (Proposed Standard), Jul. 2005, updated by RFCs 4537, 5021.

[Online]. Available: http://www.ietf.org/rfc/rfc4120.txt

[10] S. Zrelli and Y. Shinoda, ''Specifying Kerberos over EAP: Towards an integrated network

access and Kerberos single sign-on process,'' in Advanced Information Networking and

Applications, 2007, pp. 490--497, AINA '07. 21st International Conference.

[11] A Real-World Analysis of Kerberos Password Security, 1999. [Online]. Available:

citeseer.ist.psu.edu/wu99realworld.html

[12] S. M. Bellovin and M. Merritt, ''Limitations of the kerberos authentication system,''

SIGCOMM Comput. Commun. Rev., vol. 20, no. 5, pp. 119--132, 1990.

[13] M. Burrows, M. Abadi, and R. Needham, ''A logic of authentication,'' ACM Trans.

Comput. Syst., vol. 8, no. 1, pp. 18--36, 1990.

[14] S.-P. Shieh, F.-S. Ho, and Y.-L. Huang, ''An Efficient Authentication Protocol for Mobile

Networks,'' J. Inf. Sci. Eng., vol. 15, no. 4, pp. 505--520, 1999.

[15] C. Xiao-rong, F. Qi-yuan, D. Chao, and Z. Ming-quan, ''Research and realization of

authentication technique based on OTP and Kerberos,'' in High-Performance Computing

48

http://www.ietf.org/rfc/rfc4851.txt
http://www.cs.dartmouth.edu/~dfk/papers/baek-survey-tr.pdf
http://www.ietf.org/rfc/rfc4120.txt
citeseer.ist.psu.edu/wu99realworld.html


in Asia-Pacific Region, 2005. Proceedings. Eighth International Conference on, Nov./

Dec. 2005.

[16] C. Rigney, S. Willens, A. Rubens, and W. Simpson, ''Remote Authentication Dial In User

Service (RADIUS),'' RFC 2865 (Draft Standard), Jun. 2000, updated by RFCs 2868,

3575, 5080. [Online]. Available: http://www.ietf.org/rfc/rfc2865.txt

[17] C. Rigney, W. Willats, and P. Calhoun, ''RADIUS Extensions,'' RFC 2869

(Informational), Jun. 2000, updated by RFCs 3579, 5080. [Online]. Available:

http://www.ietf.org/rfc/rfc2869.txt

[18] B. Aboba and P. Calhoun, ''RADIUS (Remote Authentication Dial In User Service)

Support For Extensible Authentication Protocol (EAP),'' RFC 3579 (Informational), Sep.

2003, updated by RFC 5080. [Online]. Available: http://www.ietf.org/rfc/rfc3579.txt

[19] D. Nelson and A. DeKok, ''Common Remote Authentication Dial In User Service

(RADIUS) Implementation Issues and Suggested Fixes,'' RFC 5080 (Proposed Standard),

Dec. 2007. [Online]. Available: http://www.ietf.org/rfc/rfc5080.txt

[20] Y. Ohba, S. Das, and A. Dutta, ''Kerberized handover keying: a media-independent

handover key management architecture,'' inMobiArch '07: Proceedings of first ACM/

IEEE international workshop on Mobility in the evolving internet architecture. New

York, NY, USA: ACM, 2007, pp. 1--7.

[21] ''FreeRADIUS -- The world's most popular RADIUS Server.'' http://www.freeradius.org/.

[22] ''Linux WPA/WPA2/IEEE 802.1X Supplicant,'' http://hostap.epitest.fi/wpa_supplicant/.

[23] ''hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS Authenticator,''

http://hostap.epitest.fi/hostapd/.

49

http://www.ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc2869.txt
http://www.ietf.org/rfc/rfc3579.txt
http://www.ietf.org/rfc/rfc5080.txt
http://www.freeradius.org/
http://hostap.epitest.fi/wpa_supplicant/
http://hostap.epitest.fi/hostapd/


[24] Y. L. Huang, H. Y. L. J. D. Tygar, L. Y. Yeh, H. Y. Tsai, K. Sklower, S. P. Shieh, C. C. Wu,

P. H. Lu, S. Y. Chien, Z. S. Lin, L. W. Hsu, C. W. Hsu, C. T. Hsu, Y. C. Wu, and M. S.

Leong, ''SWOON: A Testbed for Secure Wireless Overlay Networks,'' in CSET' 08, 2008.

[25] ''The Network Simulator - ns-2,'' http://www.isi.edu/nsnam/ns/.

[26] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,

C. Barb, and A. Joglekar, ''An integrated experimental environment for distributed

systems and networks,'' SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 255--270, 2002.

[27] ''Emulab - Network Emulation Testbed,'' http://www.emulab.net/.

[28] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R. Ostrenga, and

S. Schwab, ''Experience with deter: a testbed for security research,'' Testbeds and

Research Infrastructures for the Development of Networks and Communities, 2006.

TRIDENTCOM 2006. 2nd International Conference on, pp. 10 pp.--, March 2006.

[29] ''cyber-cyber-Dcyber-DEfense Technology Experimental Research laboratory Testbed,''

http://www.isi.edu/deter/.

[30] ''Wireshark: network protocol analyzer.'' http://www.wireshark.org/.

50

http://www.isi.edu/nsnam/ns/
http://www.emulab.net/
http://www.isi.edu/deter/
http://www.wireshark.org/

