Kt
Tﬁi
>t
i

BB { B d2=
B

il
i
A

sXaTEAE(EER EXBIRINE Z B R M ISDE I E
Design and Implementation of Secure Wireless Authentication

Protocol using One-Time Key

W 5% & - EEigE
Student: Pei-Hua Lu
BEHE =8 Bt

Advisor: Dr. Yu-Lun Huang

hERBA+TEFNA

August, 2008

aTEEFERERB RN & BREEEERE
Design and Implementation of Secure Wireless Authentication Protocol using

One-Time Key

o 5% A - PEIEE Student: Pei-Hua Lu

EERE E58m Bt Advisor: Dr. Yu-Lun Huang

BT TIRER
En574
AuThesis

Submitted to Department of Electrical and Control Engineering
College of Electrical Engineering
National Chiao Tung University
in partial Fulfill of the Requirements
for the Degree of
Master

in

Department of Electrical and Control Engineering

August, 2008

Hsinchu, Taiwan, Republic of China

hEREATEFNAR

s aTEREIFRRER R IBINE & B @
éﬂ%‘fg‘

B PEISE EEHR =84 BL
Bl T R B K SEWEZEFITESR (M%) ELY

‘E

T

BRFNLZEZNYUREESFTURBEEENERANEREFEBIRED - #REN
RIS TEHEEFEZREZEN - HMRDLT —EFNHE - ERERBRRBHE
AR#ERE - ERERELIFIHE oI AERNRIZER RIS ISFIATE - HMFIAZESE
FTHVKDC) REE E AEMIBEE MRS o IiE FEREM S RERERBAIRER
» ZEMESEREEE ¢ MRARGRFEE - ERFHEEPIERZRET
PO ETREERBRITPONEE - BAER—EES802. IXFILLHRARERE

Fil

(EAP) » AFIEhfERERE R MILE - EARMAT —EERRMNHREIRTN
802. 1MIRARMEEHIRSE K - Ri% © ILIREWRBANEEEFREEBAELIEREME -

Design and Implementation of Secure Wireless

Authentication Protocol using One-Time Key

Student: Pei-Hua Lu Advisor: Dr. Yu-Lun Huang

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

Handover security and efficiency have become more and more important in modern
wireless network designs. Balance between security and efficiency needs to be considered. We
propose a new protocol using one-tinmie keys+or user-authentication, called OSNP. The
proposed protocol can support both iitra-domainiand inter-domain authentications efficiently.
Our protocol uses KDC (Key Distributed Center) to manage both users and authorization
servers. It requires five messages for intra-domain initial authentication; three for subsequent
authentication; and five for handover authentication. No KDC is needed during a handover
and our design reduces the load on it. We show an integration of EAP method from 802.1X
and our protocol, comparing the result with other EAP methods. It also gives an easy way to
apply our protocol in existing 802.11 wireless networks. In final, the protocol logic is proved

by BAN logic and its enhancement.

i

TEEEEAERHAMNIEEEN - SERELIXRENTRMENSEHEREE
7o RTHRZH ERBEREFTHHBE—L —PHRETRHGE - HRBEEICAST
(The International Collaboration for Advancing Security Technology)ztElESa32 (it —1&
RIEKS - EHESEHEBMMBTH SR (University of California, Berkeley) + £
EEEISM - Doug TygarflAnthony D. Josephi{TiE—FERMBIHENSIERS - M
Ttk EREINE SRV ERMBIE 2SR SN—KHED - KFENBRIIX
EEFRIMRB AN EE) o WEHERNERERIT EAXDHE - #1PNEERIR
IBMARFREIL LSBMERITH o BREFHEITEIISWOONFEEMF TR AAEER
Bx - gEsfBUNb TS - BREHMEERTES LabMEEE -

il

e

Contents

[Table of Contents|

[List of Figures|

[Chapter 1 Introduction|

[Chapter2 Related Work|

2.1

Network Authentication Protocolsj s

[2.2 EAP-based AuthenticationProtocols|

[Chapter 3 Proposed Protocol: OSNP|

31

Preliminaries]

3.2

Intra-Domain Authentication|

[3.2.1 Initial Authentication|

[3.2.2 Subsequent Authentication|. 000

[3.2.3 Handover Authentication[.

3.3

Inter-Domain Authentication|

[3.3.1 Hierarchical KDC| . .

[3.3.2 Protocol Description|

......................

v

ii

ifi

v

vi

Vii

[Chapter 4 Software Architecture: EAP-OSNP|

4.1 EAPFrameworkl

4.2 BuildingBlocks|.

4.3 Software Modules|

[4.3.1 OSNPLibrary]

[4.3.2 KDCDaemon|

4.3.3 Authentication Server| . .

[4.3.4 WirelessClient|

4.4 ProtocolStacks

[Chapter 5 Experiments|

5.1 SWOONTestbed

0.2 Experiment|

>.2.1 Topology|4 . . d.

[>.2.2 Software Packages| .t v

>.2.3 Measurement|. . . .U

5.3 Results|]

[Chapter 6 Analysis and Comparisons

(6.1 Security Analysis|.

6.2 Performance Analysis|

6.3 OSNP Logic Proof|.

[6.3.1 Initial Authentication|. . .

[6.3.2 Subsequent Authentication|

[Chapter 7 Conclusion|

References

oooooooooooooooooooo

oooooooooooooooooooo

oooooooooooooooooooo

oooooooooooooooooooo

oooooooooooooooooooo

....................

21
21
23
24
24
28
29
30

31

32
32
33
33
34
36

36

38
38
40
41
42

44

46

47

List of Figures

[2.1 Protocol stacks of the components of the EAP-Kerberos authentication|

............................... 6
[3.1 Theintra-domain initial authentication protocol.| 10
[3.2 Theintra-domain subsequent authentication protocol.| 13
[3.3 Theintra-domain handover authentication protocol.|. 14
[3.4 Theinter-domain authentication protocol.|. 16
4.1 EAP-OSNP Message Flow: Intra-domain Initial Authentication.| 22
4.2 EAP-OSNP Packet Format: M1 of intra-domain initial authentication.|. . . 23
@3 TheOSNPLbrary] oo™ . 25
4.4 Authentication method decisionofU.f = 27
4.5 The program flow of S after receiving U2S HELLO.| 28
4.6 TheKDCDaemon.| 29
4.7 The EAP-OSNPserver.| oo oo 30

4.8 Protocolstacks of the components of the EAP-OSNP authentication frame-|

.................................. 31
.1 Wireless topology in SWOON GUI/real topology|. 33
5.2 Thetopology of theexperiment| 34
5.3 EAP methods comparisonresult] 37

vi

List of Tables

[3.1 Message Abbreviations|. oo e 9
4.1 EAP-OSNPMessages| o o v v v i it v v vttt 23
b.1 AverageResult|. o o oo 37
6.1 AuthenticationAnalysis| 0oL 40
6.2 Security Analysis|. oL 40
6.3 Performance Comparison: ComputationCost| 41
6.4 Performance Comparison: Communication and Storage Costs| 41

Vil

Chapter 1

Introduction

We propose a handover authentication protocol for WiFi (802.11) networks. Our protocol
does not require a public key infrastructure and can be integrated with the 802.1X

Extensible Authentication Protocol (EAP) for WLANs .

To enhance the security in wireless networks, 802.111 [4]] defined a new security model for
802.11 a/b/g networks, specified new standards for authentication, encryption and message
integrity, and implemented 802.1X [|1]] for user authentication and key distribution. 802.1X is a
port-based network access control mechanismithat provides EAP and can be used in

conjunction with other mature authentication protocols, such as TLS, PEAP, CHAP, etc.

There are many EAP methods supporting 802.111 authentication, including EAP-TLS
l6ll, EAP-FAST [[7]}, and LEAP. EAP-TLS and EAP-FAST are used with public-key
cryptography for authentication. Compared to symmetric-key systems, public-key systems and
certificates produce stronger security, but require more computational power. LEAP, a
symmetric-key authentication protocol, requires less computational power and thus takes less
response time when performing user authentication. However, LEAP is vulnerable to several
attacks [[§]] such as weak encryption keys. To balance efficiency and security, an efficient

authentication is required for wireless networks, especially for roaming users.

There are many methods to approach the balance between efficiency and security by using
Kerberos |E|] In 2007, Zrelli et al. presented an integration of the Kerberos protocol with

EAP framework, called EAP-Kerberos. Kerberos is known for its symmetric-key

cryptography, strong per-person key and inter-domain authentication. However, it is still
inefficient in the WLAN environment bacause users need to use proxies to get tickets from the
Kerberos Key Distributed Center (KDC). In other words, in Kerberos, KDC is involved in the
handover of a roaming user. And Kerberos is also vulnerable to weak password-based attacks,
discussed in .

We propose a more efficient authentication protocol supporting handover authentication
without a trusted of third-party. The paper is organized as follows. Related research is detailed
in Chapter We present our authentication protocol and the integration with EAP in Chapter
and |4} respectively. Chapter demonstrates intra-domain authentication methods of
EAP-OSNP by a experiment, comparing it with EAP methods. ChapterlEl analyses our system
to others and formally proves that our protocol can reach the goals of mutual authentication by

using BAN logic and its enhancement . Chapter concludes the paper.

Chapter 2

Related Work

2.1 Network Authentication Protocols

This section summarizes the characteristics and drawbacks of some related authentication

protocols.

e Kerberos
Kerberos [EI] was developed as.a solution'te network security problems, such as
replaying, eavesdropping and sniffing packets. In Kerberos V5, seven messages are
required for initial intra-domain authentication. The number of message required for
inter-domain authentication depends on the number of KDCs between the visited and

home domains.

e One-Time Password/Kerberos
Since the traditional password authentication is vulnerable to dictionary and playback
attacks, in 2005, Cheng et al. presented a new authentication method that integrates
the Kerberos protocol and a one-time password (OTP) system. The main idea of OTP
authentication is to add random factors during the initial login process and make the
password used vary from time to time. Similar to the Kerberos protocol, the OTP/
Kerberos protocol requires three steps to authenticate a user: authentication by the KDC,

request of tickets from the Ticket-Granting Server (TGS) and access to the server (S).

On the client, the OTP is generated by hashing the user's secret passphrase and the seed
from the KDC. By encrypting and decrypting messages with the OTP, the user and
server mutually authenticate each other. However, to generate an OTP for authentication
requires seven messages in the first step mentioned above. In other words, OTP/
Kerberos increases the communication cost for authenticating a user, resulting in longer

user authentication time, which is not practical for roaming users in wireless networks.

e Secure Network Protocol
In 1999, Shieh et al. proposed a symmetric-key based protocol, Secure Network
Protocol (SNP), to provide an efficient way for both intra- and inter- domain
authentication. Compared to Kerberos, fewer messages are required in SNP to
authenticate client identity. For intra-domain authentication, SNP takes four messages to
authentication client identity and one more'optional message for mutually authenticating
the server. For inter-domain authentication, it takes seven messages for initial
authentication, regardless of the number of hops between the visited and home domains.
Only two messages are required for subsequent authentication when requesting the same
service. To simplify the design, SNP replaces timestamps with nonces, reducing the
need for time servers. For faster authentication, a master key is shared by the
authentication server (AS) and the service servers (S). The unchanged master keys can

make the system vulnerable to various attacks.

2.2 EAP-based Authentication Protocols

EAP is an authentication framework used in various networks, such as WLANSs and

Point-to-Point connections (PPP). EAP provides some common functions and a negotiation of

the desired authentication methods, such as EAP-MDS5, EAP-OTP, EAP-TLS, etc. In WLANSs,
EAP authentication methods are normally supported with Remote Authentication Dial-In User
Service (RADIUS) . RADIUS is also a client/server protocol that enables
remote access servers to communicate with a centralized authentication server to authenticate
dial-in users. It also authorizes their access to the requested services. The RADIUS server
supporting various EAP methods then becomes the major authority of wireless networks. This
section summarizes EAP authentication methods supporting strong authentication for roaming

users in WLAN:S.

e EAP-TLS
EAP-TLS [IEI] is a popular EAP method for securing WLANs with RADIUS. The
mobile node and RADIUS server must.have certificates to mutually authenticate each
other. EAP-TLS is resilient to man-in-the-middle attacks. However, it requires a
trusted-third party (Certificate Authority)to support authentication between the mobile
node and RADIUS server. Also, it requires extra management for administrating and
distributing certificates, supported by cooperative network management systems (NMS)

or Operation, Administration, Maintenance and Provisioning (OAM&P).

e EAP-Kerberos
In 2007, S. Zrelli and Y. Shinoda showed how to integrate the Kerberos protocol as
an authentication method in EAP-based authentication frameworks. They define the
architectural elements and specify the encapsulation of the Kerberos messages in EAP
packets. Such a design allows a mobile node to be authenticated using the Kerberos
systems. When a mobile node, for example, issues an initial authentication request, the
EAP-Kerberos client encapsulates the Kerberos messages into EAP packets and sends

them to the access node. The access node then delivers these EAP packets to the

5

RADIUS server via the AAA (Authentication Authorization and Accounting) protocol.

The server either validates these messages or forwards them to the Kerberos KDC, as

shown in Fig.

Client/ Access Node/ RADIUS server/ Kerberos KDC

EAP Peer EAP Pass-though Authenticator Back-end EAP Server
- eem mm Em Es En Em Em Em B B EE Em Ep BN BN EE EE B B B Em Ep E B Em Em =
| 11 | | |
Kerberos 1 K(;rﬁzrso)s 1 Kerberos
I | 11 11 : 11 1
| = 11 11 EAP- 11 1
| Kerberos I | I | Kerberos I | I
| |
| 11 i1 i1 |
EAP EAP EAP
| 11 i1 i1 |
| |
I 11 i1 i1 I
IAAA (RADIUS IAAA (RADIUS
I 1 () I I () I I I
| | | |
I 11 i1 i1 I
TCP/UDP TCP/UDP TCP/UDP TCP/UDP
I 11 7T L I
I 11 i1 i1 I
L2/L3 L2/L3
I L i1 i1 I
oo e oo o m oem e oemem lh e am em em am oem em w b m em am d

Figure 2.1: Protocol stacks of the components-of the EAP-Kerberos authentication framework.

e Kerberized Handover Keying (KHK)
In 2007, Ohba et al. proposed a Kerberized media-independent handover key
management architecture for the existing link-layer technologies, including 802.11 and
802.16. The architecture uses Kerberos for securing key distribution between a mobile
node, an access point (authenticator) and a server. In KHK, two handover modes are
presented: proactive and reactive. In proactive mode, a mobile node uses a pre-obtained
credential to authenticate with the access point. In reactive mode, the access point acts
as a Kerberos client on behalf of the mobile node. In this architecture, Kerberos can be
bootstrapped from initial authentication using an EAP method. This makes KHK work
across multiple AAA domains. However, similar to Kerberos, the KDC is involved in
handover authentication in KHK. Thus, the handover performance for reactive mode
depends on the location of KDC. The larger the distance between a KDC and a mobile

6

node, the longer the time required for a handover authentication. Also, such an
architecture incurs extra costs for setting up time servers for synchronizing machine time

in the network, as mentioned in the previous chapter.

Chapter 3

Proposed Protocol: OSNP

We propose the integration of SNP, OTP and EAP for authenticating IEEE 802.11 mobile

nodes, giving us support for fast roaming —— One-time key Secure Network Protocol (OSNP).

3.1 Preliminaries

Table shows the abbreviations and symbols used in our protocol. Similar to other
password-based authentication methods, our authentication servers or KDCs share secrets with
users and servers in their own domains. For example, the user chooses his own strong
password and shares it with his KDGC; the server chooses its own strong password and shares it

with its KDC. These shared secrets are assumed to be stored in a secure storage system.

3.2 Intra-Domain Authentication

In our protocol, we give three methods for three types of intra-domain authentication:
initial, subsequent and handover authentication. In initial authentication, five messages are
required for mutually authenticating the user and server. To subsequently authenticate with the
same server, only three messages are used (we renew session keys without querying the KDC.)
Handover authentication requires five messages to renegotiate a new session key with another
server of the domain. Although five messages are required, the KDC is not involved, reducing

its load.

Since authentication occurs in a common domain, the notations U,, S,, and K DC', are

Table 3.1: Message Abbreviations

Abbreviation | Description

TKTx Ticket issued by X

CHyx Challenge issued by X

RESPx Response to C Hx

Ax Authenticator issued by X

authRQ) x Authentication request sent by entity X
authAK x Authentication response to auth RQ) x
sauthRQ)x | Subsequent authentication request issued by X
sauthAKx | Authentication response to sauthR(Q) x
hauthR(Q)x | Handover authentication request issued by X
hauthAKx | Authentication response to hauthRQ) x
hauthV Fx | The verifiet sent by.the previous server X
tauthRQ) x Inter-domain‘authentication request issued by X
tauthAK x Authentication response to iauth RQ) x
tauthFWx | Inter-domain-authentication forwarding to X
U, User principal in domain "a"

S Server principalin domain "a"

KDC, Key distribution center in domain "a"

PWx Password of entity X

Nx Nonce generated by X

Kgg Session key to secure the communication

K, Group key for all servers under a KDC

Kry Temporary user key for subsequent authentication
OTKx One-time key of entity X

SID Session identification

VT Local time of entity X

TUx Temporary user identity of entity X

rt The remaining time of the validate ticket

ct The current time of the local host

simplified to U, S, and K DC/, respectively.

3.2.1 Initial Authentication

To initially access a server, the wireless client U sends the authentication request message
(M1) to the server. The message is then forwarded to the KDC with server credentials (M2).
The KDC authenticates the identities of user and server; generates a session key and sends the
message (M3) back to the server. The server then forwards the message with encrypted session
key (M4) to the user. The final acknowledge (M5) is sent back to the server for mutual

authentication. Fig. shows the message flow of intra-domain initial authentication.

Wireless Authentication
Client Server Server
(V) (S) (KDC)

2 l M1: authRQu M2: authRQs|lauthRQy

M4: authAKgllC HSITKTs | M3: SID|authAKg|authAKy

M5: RESPs|| Ay

4

Figure 3.1: The intra-domain initial authentication protocol.

M1. U — S : authRQy
When the authentication process starts, the user generates an authentication request,
containing a nonce Ny, the user's identity and an encrypted message using user's
one-time key OT Ky;: authRQu = U||Ny||[{U, Nv }ork, . The one-time key is a hashed

value of user's identity, password and nonce.

OTKU = HCLSh(U, NU,PWU)

The request is sent to the server for authentication.

10

M2.

M3.

M4.

S — KDC' : authRQgl|lauthRQy
After receiving the user request, .S generates its request
authRQgs = S||Ns||{S, Ns}orks-. It then concatenates the two requests and sends them

to KDC.

KDC — S : SID||authAKg||lauthAKy

To identify each session, the K DC' generates a unique identity SID = U||S||Ny for
each session after receiving the authentication requests. It also calculates the one-time
keys OT Ky and OT K g to verify the requests. After authenticating both identities,

K DC randomly generates a session key Kgg. The session key, server's nonce, and

identity are encrypted with OT Kg to acknowledge the server's authentication request.

authAKs =4Ns, U, Kss}ork,

A temporary user key Ky is generated and encrypted with OT K/ in the
acknowledgement.

authAKy = {Ny, S, Kss, Kru }ork,

The temporary user key can be used for subsequent authentication.

S — U : authAKy||CHg||TKTs

Upon receiving the response from K DC', S decrypts authAKg in M3 with OT K¢ and
gets the session key. The server generates a new challenge for authenticating the user.
The new challenge is made by encrypting a new nonce Ng and the server's identity with
the session key Kgg, represented as CHg = {5, N} k... In addition, S can also

optionally generate a ticket for subsequently authenticating the same user.

TKTs = SID|{U,VTs, Kss}orks

11

VT is a validation time for 7'KTs. Since the validation of a ticket is determined by its

issuer, no time server is required.

MS. U — S : RESPs|Av
The user receives the session key after decrypting auth AKy . It then generates a
response RESPs = {U, N§} k4, to CHg. The response is generated by replacing the
server's identity with the user's. Then, the mutual authentication of the user and server
can be guaranteed by encrypting and decrypting these messages with the shared session
key. In addition, a temporary authenticator Ay = {S,VTy, Kss} k., is also appended
to the response message. The authenticator can be used to authenticate the user in
subsequent authentication rounds without querying K DC'. As above, no time server is

needed.

3.2.2 Subsequent Authentication

Subsequent authentication rounds occur when a user requests the same services within the
specified time. For intra-domain subsequent authentication, the user must send the ticket and
his temporary credential to the server, as shown in Fig. Below is the flow for intra-domain

subsequent authentication.

M1. U — S : sauthRQy
To initiate a subsequent authentication, the user generates a subsequent authentication
request, consisting of a nonce and a ticket, and sends it to the server. The subsequent

authentication request can be represented as sauthRQuy = Ny||TKTs.

M2. S — U : sauthAKy||CHg| Av

After receiving the sauth RQ)y, the server retrieves the user identity from the S1D

12

M3.

Wireless
Client Server

(U) (S)

M1: sauthRQyu

M2: sauthAKy||CHgsl|| Ay

M3: RESPg

Figure 3.2: The intra-domain subsequent authentication protocol.

contained in T'"K'Ts. Then, the server decrypts the ticket and checks its validation time
VTs. If the ticket is not expired, the server generates a nonce and a new session key.
The user nonce and a new session key are then encrypted with the previous session key

to acknowledge the request from user.
sauthARKy ={ Ny, Kig}ras

Then, the server nonce and identity are encrypted with the new session key. This is a

new challenge for mutually authentication the user.
CHS — {S, Ns}KgS

A concatenation of sauthAKy, C Hg with the temporary authenticator Ay received in

the initial authentication is then sent back to the user.

U— S:RESPq

The user decrypts the temporary authenticator Ay to get V1 and Kgg. It checks the
validation time of the temporary authenticator, if the authenticator is not expired, the
user decrypts sauthAKg, and obtains the new session key. The nonce Ng and the user
identity are then encrypted using the new session key to respond the C'Hg. The

subsequent response is represented as RESPs = {U, Ng} Kl

13

3.2.3 Handover Authentication

Handover authentication occurs when a user requests a server belonging to the same
domain as the previous server. In most network authentication protocols, an initial
authentication is required when contacting another server. This increases the load on the KDC.
In such a case, since the user is already authenticated by the KDC and recognized by the
previous server, re-authentication can be performed by the previous server to reduce the load
on the KDC. In this paper, we propose a 5-step handover authentication protocol for

intra-domain authentication. Fig. illustrates the message flow.

Wireless New Previous
Client Server Server
) (S) (S,,)
M1: hauthRQyu M2: CHgllhauthRQu

M4: hauth AKGlCHNTKTs| Ay, | M3: SID|hauthVFs

1 b’

M5: RESPSnAU

Figure 3.3: The intra-domain handover authentication protocol.

MI1. U — S : hauthRQy
Similar to subsequent authentication, a user sends a hauth R(Q)y to initiate a handover
authentication. The hauth RQy is the same as sauth R()y, containing a user identity,

nonce and ticket to the previous server.

hauthRQy = U||Ny|TKTs

old

M2. S — Sold : CHSHhCLUthRQU
S generates a CHg = {5, Ng} g, and forwards it together with the hauthRQy to its
previous server Sy in TKTg .

14

M3.

M4.

MS.

Sold — S SID“hOCLUthVFSOld
After validating the ticket, S, retrieves the user identity, validation time V7’ ,, and the

previous session key Kgg ,, from the T KT ,,. The server S, then calculates the

remaining validation time for the ticket:

rt =ct—VTg

old

The remaining validation time, user identity and the previous session key are encrypted

together with the response to C'Hg and the temporary authenticator Ay

., using the

group key K. hauthV Fs,, = {Ns,U, Kgs,,,,t, Av,,, } &, 1s sent to S securely.

old

S — U : hauthAKy ||CHg||TKTs|| Ay,
Upon receiving M3, S decrypts the message with the group key and gets the previous
session key, the temporary authenticator and.the remaining validation time of the

previous ticket. The temporary authenticator will be forwarded to the user for proving

the user's identity. When generating the new ticket 7'K7Ts for the user, S calculates its

validation time according to the remaining validation time.
Vig=ct—rt

An acknowledgement hauthAKy = {Ny, Kgs} i Sorg is generated responding to
hauthRQy in M1. Also, a challenge CHg = {5, N¢} i, 1s sent to the user for mutual

authentication.

U— S:RESPs| Ay

As above, the user decrypts messages to get the new session key and his temporary
authenticator Ay. The new session key is used to generate the response

RESPs = {U, N§} k. to the C'Hg and the new temporary authenticator

Ay ={S,VTy, Kss}rry-

15

3.3 Inter-Domain Authentication

The proposed inter-domain authentication takes advantages of the SNP design. All KDCs
in the hierarchy share keys. This reduces the time required for querying and searching to locate
the home KDC of the visiting user. A user TUx roaming from domain X, for example, wants
to access a server Sy in a foreign domain Y. His authentication request will be sent to Sy and
then to the foreign KDCy. Since KDCy cannot authenticate the user, the authentication request
will be forwarded back to the previously visited KDCy after KDCy locates the KDCx. In our
proposal, a root KDCy identifies a previously visited KDC for a foreign KDC. Once TUy is
authenticated by KDCy, the user TUx will receive a temporary identity TUy for its subsequent
services in the domain Y. Fig. illustrates the initial authentication flow for an inter-domain

authentication.

Figure 3.4: The inter-domain authentication protocol.

16

3.3.1 Hierarchical KDC

In the previous section, we presented an authentication protocol for authenticating users
who registered in the same security domain. However, for a very large network, it is
impractical for all the users to be registered in a single domain. Instead, users and servers
should register with their own KDCs, which form a hierarchical structure. In such a structure,
each node in the hierarchy represents a domain, where parent domains manage all their children
domains. Each domain has one KDC to manage the authentication of its users and servers.

In the proposed inter-domain authentication protocol, every KDC must share a different
secret key with all its ancestors to perform inter-domain authentication efficiently.
Consequently, the root KDC needs a large database to store the shared keys for all descendant

KDCs. Fortunately, the size of a key is small, and the root KDC is able to store all the keys.

3.3.2 Protocol Description

Similar to the intra-domain initial authentication, our approach starts with a request from

the user from a foreign domain.

M1. TUx — Sy : authRQru,
Assume that a user, requesting a service in a new domain Y, has a temporary user
identity T'Ux for its previously visited domain X. It needs to send an authentication
request to the server Sy in domain Y before accessing the desired services. The
authentication request auth RQ) 1y, consists of the temporary user identity 7'Ux, a nonce
Nry, and an encrypted message containing 7'Ux and Npy, using its previous

temporary key OT Kry, .

authRQruy = TUx||N7uy [{TUx, Nruy Yorkry,

17

M2.

M3.

M4.

Sy — KDCy : authRQg,, ||authRQry,
Similarly, the server Sy generates its authentication request authR()s, , and sends the

request together with authRQry, to its K DCy-.

KDCy — KDCpg : iauthRQkpey ||authRQru,

Since K DC'y cannot authenticate the visiting user, the user authentication request is
forwarded to the nearest common key distribution center (K DCg) for K DC'x and

K DCy-. The message also includes the server identity and an authentication request
from K DC'y. The server identity is used to recognize the communication session while

tauthRQ) k pcy 1s used to authenticate the common K DCy for K DCly.
iauthRQKDCY = KDOY ||NKDCY ||authRQTUX

The tauthRQ) k pc, message contains# D ('y's identity and a nonce N pc,, in

plaintext.

KDCr — KDCx :iauthFWgkpey |tauthAK g pe,
Upon receiving the request, K DC'r sends a forwarding message to the previously
visited K DC'x. The forwarding message is encrypted using the shared key of K DCgr
and K DC'x and can be represented as

iauthFWgpe, = {authRQru,, TUy, OT K1y, , KSS}KKDCX .
The forwarding message includes not only the authentication request issued by user, but
also a new temporary principal name 7'Uy, a new temporary user key and a new session
key. In addition, K DCy, encrypts T'Uy, Ky, , Kgs and the nonce in tauthRQ) x pcy,
with the shared key of K DCr and K DCy, and forwards it to K DC'y. This message is

an authentication response to K DCy and can be represented as

iauthAKKDCY = {NKpcy,TUy, OTKTUy, KSS}KKDCY .

18

Ms5S.

Mé.

M7.

MS.

KDCx — KDCy :iauthAKry,||iauthAKkpey,

K DCx decrypts the authentication response tauthAK i pc, and gets the temporary
user identity-key pair and session key. Since that K DC'x only knows the nonce and
temporary user key for user T'Uy, it encrypts the original nonce and new temporary user
identity-key pair and session key with the pervious key OT K1, . This is a message in
response to the authentication request issued by user 7'Ux, the message is represented as
iauthAKry, = {Nrv,, TUy, OT K1y, , Kss}OTKTUX- The message is sent to K DC'y

together with the authentication response tauthAKkpc, from K DCh.

KDCy — Sy : SIDlliauthAKg, ||iauthAK 7y,

K DC'y decrypts the authentication response iauthAK g pe,, , verifies the received nonce
Nk pc, and extracts temporary user identity-key pair. Then, K DCy generates a new
session identity and an authentication response to server Sy . The response of
authRQ)s, can be represented-as iguthAK s, = {Ng, ,TUy, K SS}OTKsy, where

OTKg, = Hash(Sy, Ns,., PWs,)'is the one-time key of Sy

Sy — TUX : iauthAKTUX ||CHSY ||TKTSY
Similar to the above description of intra-domain authentication, the server generates a
challenge CHg, = {Sy, Ng, } ks and a service ticket

TKTs, = SID|{TUy,VTs,, Kss}orks, -

TUx — Sy : RESPs, ||Aru,

The user generates a new temporary authenticator using its handover key H Kry, . The
authenticator Ary,, = {Sy,VTru,, Kss}or Krr, can be used for subsequent
authentication. Then the user encrypts the nonce and temporary identity for the newly

visited domain with the session key and sends it back as a response to C'Hg,.. The

19

response is represented as RESPs, = {TUy, Ng, } k-

20

Chapter 4

Software Architecture: EAP-OSNP

This chapter discusses the integration of the proposed protocol and EAP framework,
which we call EAP-OSNP. EAP is a client/server protocol using different authentication
methods for authenticating users requesting access to the network. There are three entities in
the EAP protocol: the peer, the authenticator and the server. The EAP peer acts as a client
requesting authentication and network services. The authenticator is the entity that controls the

network access ports. The EAP server is capable of verifying users' credentials.

4.1 EAP Framework

Using intra-domain authentication as an example, the EAP peer builds an authentication
request auth RQ)y and encapsulates it into EAP-OSNP messages. The EAP peer behaves
exactly as a wireless client (U) in OSNP. Fig. illustrates the EAP message flow of
intra-domain initial authentication of EAP-OSNP. To comply with the EAP framework, one
more message FAP-Request (type = S2U_HELLO) is required for initiating the EAP
authentication. The EAP-Request and EAP-Reponse messages carry the OSNP authentication
payload, but the messages exchanged between the EAP server and the KDC may optionally
follow the EAP framework. The EAP authentication successes when the wireless client

receives an EAP-Success message.

There are five fields in an EAP packet, as shown in Fig. The Code field identifies the

type of the EAP packet: 1 for request and 2 for response. The Identifier is a sequence number

21

EAP Peer EAP Server Authentication Server
) (S) (KDC)
802.11
Association Reguest >
Association Response
EAPOL
EAPOL -Start >

<«———EAP-Request/identity ___
EAP-Response/ldentity N

r EAP-OSNP
EAP-Request/OSNP (S2U HELLO |
| EAP-Response/OSNP (U2S HELLO/M1) S2KDC_AUTH/M2 .

EAP-Request/OSNP (S2U AUTH/M4) J KDC2S AUTH/M3 ~
EAP-Response/OSNP (U2S AUTH/M51 |

¢ EAP-Success

L |- — — — 1 — — — — |—
EAPOL-Key

¢ (Pairwise key four-way handshake) N
EAPOL-Key (Group key handshake) R

EAPOL-Logoff >

Figure 4.1: EAP-OSNP:Message Flow: Intra-domain Initial Authentication.

used to match the request and response packets. The Length indicates the total length of the
packet, in octet. The Type indicates the authentication method encapsulated in the EAP
message; hexadecimal 0z DD is reserved for EAP-OSNP in our implementation. The
Type-Data field contains the payload of EAP-OSNP message, which is composed of a
Message-Type and an OSNP-data. Fig. shows an example EAP-OSNP packet for
requesting user authentication: the Message-Type is U2S_HELLO and the OSNP-Data is
authRQy.

Table lists the Message-Type and the OSNP-Data defined for EAP-OSNP

intra-domain initial authentication.

22

1 1 2 1 Variable length

Code | Identifier Length Type Type Data
1: Request L OXDD (EAP-OSNP) .
2: Response ,/' RR
. 1 Variable length S
Message-Type OSNP-Data
OSNP frame format (U2S HELLO) (ML: authRQy)

Figure 4.2: EAP-OSNP Packet Format: M1 of intra-domain initial authentication.

Table 4.1: EAP-OSNP Messages

Message-Type OSNP-Data

S2U_HELLO S

U2S_HELLO M1 of Init.: authRQy

S2KDC_AUTH M2 of Init.: authRQg||lauthRQu
KDC2S_AUTH M3 of Init.: SID|authAKg||authAKy
S2U_AUTH M4 of Init.: authAKy||CHg||TKTs
U2S_AUTH M5 of Init,: RESPs|| Ay
U2S_VT_VERIFY Mlof Sub.: sauth RQy

S2U_VT_VERIFY_AUTH | M2 bfSub.: satthAKy||C Hs|| Ay
U2S_SUBSEQ_AUTH | M3'of Sub.: RES Py

U2S_HOREQ M1 of Handover: hauthRQ;

S2S_HOVRF M2 of Handever: C' Hg|lhauthRQu

S2S_ HOVRF_ACK M3 of Handover: SID| hoauthV Fs,,,
S2U_HOACK M4 of Handover: hauthAKy | CHY||TKTs||Au,,,
U2S_HO_AUTH M5 of Handover: RES Ps|| Ay

4.2 Building Blocks

We use several software components to implement EAP-OSNP authentication system.

There are four components: OSNP library, KDC server, EAP-OSNP server, and EAP-OSNP

client.

e OSNP library
The OSNP library provides the fundamental data structure, functions and application

programming interfaces (APIs) required for the OSNP parts. We encapsulate OSNP

23

messages from this library into EAP framework. Moreover, it can be used in any other

authentication programs.

e KDC server
The KDC server is in charge of authenticating the EAP peer (the wireless client) and the
EAP server. It also manages both OSNP clients' and servers' accounts and permissions,

generates session keys for the EAP peers and the EAP servers.

e EAP-OSNP server
The EAP-OSNP server implements the server protocol of OSNP, including attaching and
detaching EAP-OSNP module. It is also in charge of initializing EAP-OSNP module

and processing EAP-OSNP packets according to the protocol defined in Chapter

e EAP-OSNP client
The EAP-OSNP client implemients the ¢client protocol of OSNP, including receiveing

and responsing the identity request from early EAP methods.

4.3 Software Modules

This section depicts the implementation of the building blocks we mentioned in the

previous section.

4.3.1 OSNP Library

The OSNP library provides the data structures, functions and APIs for the EAP-OSNP
entities. The OSNP library is composed of osnp.h, osnp_kdc.h, osnp_s.h, osnp_u.h, and

eaposnp_mkeys.h as illustrated in Fig.

24

osnp.h

m eaposnp_mkeys.h

osnp_kdc.h osnp_s.h osnp_u.h eaposnp_mkeys.c

osnp_kdc.c oshp_s.c osnp_u.c

Osnp_de.h int s2kdc_initialize(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_KDC *priv_kdc);
osnp de c int s2kdc_authenticate(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_KDC *priv_kdc);

int s_initialize(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_S *priv_s);

int kdc2s_initialize(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_S *priv_s);

int u2s_hello(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_S *priv_s);

int kdc2s_authenticate(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_S *priv_s);

osn s h int u2s_authenticate(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_S *priv_s);
p— . int u2s_vt_verify(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_S *priv_s);
osnp S.C int u2s_subseq_authenticate(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_S *priv_s);

int u2s_horeq(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_S *priv_s);

int s2s_ho_verify(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_S *priv_s);

int s2s_ho_verify_ack(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_S *priv_s);
int u2s_ho_authenticate(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_S *priv_s);

osn u h int s2u_hello(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_U *priv_u);
p_ . int s2u_authenticate(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_U *priv_u);
osnp u.c int s2u_vt_verify_authenticate(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_U *priv_u);

int s2u_hoack_authenticate(const unsigned char *in, int in_len, unsigned char **p_out, int *p_out_len, OSNP_PRIV_U *priv_u);

Figure 4.3: The OSNP Library.

e osnp.h
This header file defines the major data structures, like CIPHER_METHOD: ciphersuite
types, and OSNP_MSG_TYPE: message types. OSNP_MSG_TYPE, for example, defines

the message types listed in Table

typedef enum {
OSNP_INIT,
0SNP_S2KDC_INIT,
0SNP_KDC2S_INIT,

0SNP_S2U_HELLO,

// Initial authentication
0SNP_U2S_HELLO,
OSNP_U2S_AUTH,
OSNP_S2U_AUTH,
0SNP_S2KDC_AUTH,

0SNP_KDC2S_AUTH,

// Subsequent authentication
0SNP_U2S_VT_VERIFY,
0SNP_S2U_VT_VERIFY_AUTH,

0SNP_U2S_SUBSEQ_AUTH,

25

// Handover authentication
OSNP_U2S_HOREQ,
OSNP_S2S_HOVRF,
0SNP_S2S_HOVRF_ACK,
O0SNP_S2U_HOACK,

0SNP_U2S_HO_AUTH,

0SNP_DONE

} OSNP_MSG_TYPE;

It also defines the fundamental functions for all the entities, these functions are invoked

in another part of OSNP library, such as

int otp_key_generator(unsigned char *key,
const char *id, unsigned char id_len,
const char *pw, unsigned char pw_len,
const unsigned char *nonce);
int osnp_encrypt(const unsigned char *in, int len,
ENCRYPT_DATA *p_encrypt_data,
const CIPHER_CTX *ctx, CIPHER_METHOD select);
int osnp_decrypt (unsigned char **p_out, int *p_len,
const ENCRYPT_DATA *p_encrypt_data,

const CIPHER_CTX *ctx, CIPHER_METHOD ;select);

e osnp_kdc.h
This header file contains essential data structures for building a KDC daemon. It uses a
structure, OSNP_PRIV_KDC, to store information for the APIs for the daemon. There
are three APIs for the daemon: s2kdc_initialize, s2kdc_authenticate, and sid_generator.
s2kdc_initialize negotiates ciphersuites and the group key for servers. s2kdc_authenticate
authenticates both U and S in OSNP_S2KDC_AUTH message. sid_generator generates
S1D mentioned in Chaper S1D contains information about S's address timestamp

when S7D generated.

e osnp_s.h
This header defines the ticket format and fundamental data structures and APIs for a

server For example, kdc2s_initialize processes the data from s2kdc_initialize on the

26

KDC. u2s_hello and u2s_authenticate processes messages form users in intra-domain

initial authentication.

osnp_u.h

This header file provides fundamental data structures and APIs for a user. We deal with
authentication policies in function s2u_hello. Fig. shows current authentication
method decision. The data structure OSNP_PRIV_U stores the encrypted tickets

obtained from Ss which have connected. First, we decide whether U can use

i Is any ticket from S?

F:
= OSNP PRIV_U contains tickeLom
F:
Subsequent authentication Handover authentication Initial authentication

Figure 4.4: Authentication method decision of U.

subsequent authentication by searching ticket form S. Once there is no ticket from .S, we
will use the first ticket from ticket cache of OSNP_PRIV_U to process handover

authentication. Otherwise, the initial authentication are performed.

eaposnp_mkeys.h
The header file declares that OSNP library supports key generation after OSNP
authentication. For example, Pairwise Master Key (PMK) for 802.111 can be generated

from OSNP by eaposnp_gen_pmks. The function declares as the following:

void eaposnp_gen_pmks(const unsigned char *key_ss, const char *prf_label,
const unsigned char *nonce_u, const unsigned char *nonce_s,

unsigned char *out);

27

The OSNP library provides fourteen authentication functions for various OSNP message
types, including S2U_HELLO, U2S_HELLO, S2KDC_AUTH, KDC2S_AUTH, S2U_AUTH,
U2S_AUTH, etc. Taking U2S_HELLO as an example, the server randomly generates a nonce,
calculates the one-time key, refreshes the private data and then generates the output message

S2KDC_AUTH after it receives U2S_HELLO message. The flow of S2KDC_AUTH is

described in Fig.

Get input data Ny ||[{Nv,U}ork,

!

Generate Ng

!

Use S, PWg, and Ng to
calculate OT Kg

]

Refresh private data

i

Generate output message S2KDC_AUTH

Figure 4.5: The program flow of S after receiving U2S_HELLO.

4.3.2 KDC Daemon

The KDC daemon (KDCd) module offers an administrative interface for managing both
user accounts and servers permissions. The program flow of the KDCd is illustrated in
Fig. Fig. shows the main thread of KDCd. At first, KDCd reads the account files,
storing into the access lists. Then KDCd binds socket to wait for clients. After accepting the
socket, the main thread generates the kdc_thread to deal with the authentication processes. The
program flow of kdc_thread shows as Fig. Atfer checking the packet, this thread calls
differnet APIs with corresponding message types.

28

Initialize OSNP_PRIV_KDC
data

Read config file

¥

Read S's password file and
store credentials in linked list

k2 Parse packet to get OSNP
message type and data

Read U's password file and
store credentials in linked list

k 2

Open and bind socket to listen

F
'S message type
2KDC_AUTH
T
Call function
s2kdc_z {) and
pass necessary arguments to if Call function

T s2kdc_initialize() and

[pass necessary arguments to it
Initialize KDC_THREAD_INFO @
data F

T

Teale thread [0 execuie ‘Encapsulate output message
in packet and write it to socket

function kdc_thread() and

pass KDC_THREAD_INFO r 3
io it
(wal b Close socket
(a) Initialization and of (b) The kdc_thread program flow.

main thread.
Figure 4.62:The KDC Daemon.

4.3.3 Authentication Server

The server module processes the EAP-OSNP; as illustrated in Fig. The module checks
message types with correct statuses and calls corresponding APIs to deal with the EAP
packets. We implement the EAP-OSNP server module on FreeRADIUS , the open source
RADIUS server with version /./.7 on Linux operating system.

FreeRADIUS is a modular RADIUS server. It provides several EAP authentication
through AAA packets. And it is easy to add an EAP authentication sub-module by using

EAP_TYPE structure.

typedef struct eap_type_t {

const char *name;

int (*attach) (CONF_SECTION *conf, void **type_data);
int (*initiate) (void *type_data, EAP_HANDLER *handler);
int (*authorize) (void *type_data, EAP_HANDLER *handler);
int (*authenticate) (void *type_data, EAP_HANDLER *handler);
int (*detach) (void *type_data);

} EAP_TYPE;

Parse EAP packet

|s EAP packet legal?
T

s message type T | Open socket and connect
U2S_HELLO? u lile) 7 to KDC
F]
s message type : Fncapsulate output message
U2S_AUTH? U e - T [into EAP packet and write it
F

u2s_vt_verify()

Ir
S message type o
S VT_VERIF
F I
=
F F

=p] ret status = FAILURE |« Read and close socket

ret_status = SUCCESS |4 3
T
T

FEncapsulate output messagq
into EAP packet

¥

1 ret_status = REQUEST

subseq_authemtica

Figure 4.7: The EAP-OSNP server.

4.3.4 Wireless Client

The client module is a revision of wpa_supplicant , which is an open source package
that implements key negotiation with a WPA authenticator and controls the roaming and IEEE

802.11 authentication/association of the WLAN driver.

30

4.4 Protocol Stacks

The protocol stacks of components defined in prevous sections are ilustrated in Fig.
Each role uses the OSNP library except the pass-though authenticator. The pass-though
authenticator is used to convert EAP packets into AAA packets and supplies connection for

EAP peers. We deploy the pass-though authenticator by using hostapd .

Client/ Access Node/ RADIUS server/

EAP Peer EAP Pass-though Authenticator Back-end EAP Server OSNP KDC

— m Em Em me o Em Em Em Em Em Em Em oy EE Em Em Em Em Em Em Em oy Em Em = E=

I 11 11 11 I
OSNP OSNP(NAS) OSNP

I 11 1! 11 I

1 1 1
I 11 1! 11 I
EAP-OSNP EAP-OSNP EAP-OSNP EAP-OSNP

. 1 ¥ ! . 1 1 I 1 .

I 11 1! 11 I
EAP EAP EAP EAP EAP

I 11 1! 11 I

1 1
I 11 1! 11 I
IAAA (RADIUS IAAA (RADIUS
I i (| g) 0 I
| |

I 11 i 11 I
TCP/UDP TCP/UDP TCP TCP

I 11 T L I

I 11 i 11 I

L2/L3 L2/L3
| 11 i1 i1 |
e U U S |

Figure 4.8: Protocol stacks of the components of the EAP-OSNP authentication framework.

31

Chapter 5

Experiments

We implement our EAP-OSNP on Linux operating system. We also use the SWOON
testbed to test and compare the performance of various EAP methods. This chapter

describes the our experiments and results.

5.1 SWOON Testbed

The SWOON testbed is a comprehensive and flexible wireless testbed allowing designers
to test their systems without actually building a physical test environment. We can design the
network topology and deploy machines with several kinds of wireless networks, such as WiFi
and WiIMAX. Not like ns-2 || , it is based on Emulab and DETER , the
network emulation testbed. They use NS files to describe network topology. We can set link
properties between machines to shape networks, also the operating system types. Emulab
deploys machines and VLANSs from NS files. It reduces time of preparing experiment
environments.

Besides, SWOON provides heterogeneous networks in the topology. It provides virtual
wireless network through the real wired network and transformes wireless topology into wired
topology connected within one switch. For example, Fig.[5.1alshows the designed topology
showed in SWOON GUI. There are two parts in the GUI; WiFi part are composed of AP1,
AP2, Alice, Bob, and Eve; and WiMAX part consists of BS and SS. The topology is

transformed to the other wired topology shown in Fig.

32

feliio0N; dome2 experiment iy, , EEE|
E—— = | —
[viewparam || S5 - e~
N — -
(@ Q = Start Exp. - -
L\
4, 8,
: am
DO Eth
Update
] \'J?
(a) Wireless topology shows in SWOON GUI. (b) Emulated wireless topology are connected

through wired switch.

Figure 5.1: Wireless topology in SWOON GUI/real topology

SWOON uses virtual wireless devices which encapsulate packets over ether UDP
broadcast packets. Therefore, it can supply fourbasic wireless commucation properties:
broadcast, packet latency, packet loss, and eavesdropping by network shaper. We can generate

desired topology by SWOON.

5.2 Experiment

We setup an experiment for validating performance of intra-domain authentications. We
compare EAP-OSNP and other authentication methods: EAP-TLS, EAP-TTLS/MDS5, and

PEAPvO/MS-CHAPV2.

5.2.1 Topology

The real topology is shown as Fig. The WiFi environment is composed of s0, s/, and
sta connected on switch wireless. kdc, s0, and sI are connected with private LAN switch, plan.
And dst is located on outside public network. kdc is the KDC server of OSNP. s0 and s/ act the

33

Figure 5.2: The topology of the experiment

access points and the RADIUS servers. sta is a wireless station, and dst is a outside service.

5.2.2 Software Packages

We run experiments on kernel version 2.6.20-21 with the kernel cryptographic API
enabled. We deploy one wireless client, one wireless access point, one RADIUS server, and

one KDCd.

e KDCd
On the KDCd, we need to install OSNP library, and the kdcd tools. We modify the
kdcd.conf for the kdc key and suitable ciphersuites. We use osnp_useradd, osnp_userdel,
and osnp_passwd to manage accounts on this domain. There are two server accounts and
one user account for all three initial authentication methods: initial, subsequent, and

handover.

e RADIUS Server

The RADIUS server acts as S, and we install OSNP library and a revision of

34

FreeRADIUS on it. The server can use either 128-bit or 256-bit AES (Advanced
Encryption Standard) ciphersuite as OSNP data encryption. The ip address and port of
KDCd is 10.1.2.3 and 14000. VT is 3600 seconds. The OSNP section of configuration

file eap.conf for S1 is shown as following:

osnp {

s_identity = eapserverl

s_passwd = gnitset

ciphersuite = "C_AES_128_CBC, C_AES_256_CBC"
kdc_ip = 10.1.2.3

kdc_port = 14000

kdc_timeout = 4

vt_interval = 3600

s_port = 14000 }

Wireless Access Point
We use hostapd as our wireles access point with version 0.5.70. The hostapd
daemon is configured as a pass-though authenticator with specified ip address of

RADIUS server in the hostapd-configuration file.

ssid=wpa-osnp

ieee8021x=1
auth_server_addr=127.0.0.1
auth_server_port=1812
auth_server_shared_secret=secure
acct_server_addr=127.0.0.1
acct_server_port=1813

acct_server_shared_secret=secure

Wireless Client

We install OSNP library and a revision of wpa_supplicant of version 0.5.8. This
client is open source software supporting WPA?2 authentication in several platforms. In
this experiment, the supplicant uses EAP-OSNP for the connected access points with
SSID "wpa-osnp". Both stations and access points use 256-bit AES (Advanced
Encryption Standard) as the ciphersuite of OSNP. V'I}; for this supplicant is 4800

seconds. The configuration file of wpa_supplicant is like following:

35

network={
ssid="wpa-osnp"
key_mgmt=WPA-EAP
eap=0SNP
pairwise=CCMP
group=TKIP
identity="eapuser"
password="testing"
ciphersuite="C_NULL, C_AES_256_CBC"
vt_interval=4800

priority=20 }

5.2.3 Measurement

We use a packet sniffer and protocol analyzer, wireshark version /.0.0, on the
wireless client. We measure time cost and message counts during the authentication process

between EAP-Response/EAP-Identity and EAP-Success as Fig.

5.3 Results

We compare EAP-OSNP with other EAP method using for WPA2. The result shows on
Table and Fig. The experiment runs 100 times for each authentication method. Each
data point in Fig. is the average per 10 runs. The table shows the mean for these average
and message counts. All OSNP authentication methods are faster than other methods. The
subsequent authentication method is faster than the initial method. However, the handover is
almost equal to initial authentication, but it reduce the loading of KDC. It shows that OSNP is

more efficient than other EAP methods.

36

80.000

70.000 A A A
24 4 34 434 44
60.000p —p P> > P> > > >
50,000 B OSNP_init
g ¢ OSNP_sub
— 40.000 vV OSNP_ho
< ATLS
g oo > TTLS/MD5
20.000 < PEAPVO/MSCHAPV2
10000 M M W M W U M U u
® & ¢ o 6 O o o o
0.000
100 200 300 400 500 600 700 800 900 1000
Figure 5.3: EARmethods comparison result
Table 5.1: Average Result
OSNP OSNP OSNP TLS | TTLS | PEAPvO
initial | subsequent | handover MDS5 | MS-Chapv2
At (ms) 10.37 4.43 10.68 | 69.47 | 59.32 66.24
Authentication
messages 4 4 4 14 12 18

37

Chapter 6

Analysis and Comparisons

6.1 Security Analysis

e Trivial Substitutions and Replay Attack
Since all of the proposed protocols are nonce-based and every credential and ticket in
our protocols contains the nonces used to verify the freshness of that credential, trivial
substitutions and replays attacks can be easily detected. Similar to other nonce-based
protocols, the challenger starts-a timer and waits for a response. If the timer expires
before receiving the response, the challenger assumes that the message is either lost or

corrupted and must issue a new challenge.

e 802.1X Identity Privacy
When an eavesdropper is listening on network traffic, the authentication process exposes
the identity of the EAP peer. Even with a stolen identity, the eavesdropper still cannot
login into the system without the correct one-time key. Taking intra-domain initial
authentication as an example, suppose the eavesdropper stores the user's identity from
previous sessions. It could then generate a forged authentication request auth RQy .

However, the request would fail authentication.

e Man-in-the-middle Attack

Since all critical messages in our protocol are encrypted to prevent eavesdropping, it is

38

nearly impossible to modify the messages exchanged between entities. However, if an
attacker A eavesdrops the communication channel between U and S, he can replace the
authentication request auth RQ)y with authR(Q) 4. The replaced auth R(Q) 4 is forwarded
to the K DC together with auth R(Q)s. The attacker may be successfully authenticated by
the K DC if he is a legitimate user in the system, but the man-in-the-middle attack still
fails because the attacker cannot generate a correct auth AKy to respond to the
authR(Q)y. Therefore, we conclude that a man-in-the-middle attack would not succeed

against the OSNP protocol.

User Impersonation Attack with Compromised Session Keys

Since each session key is used only for a single authentication session and is discarded
after authentication, an impersonation attack with a compromised session key can be
prevented. In our authentication protocols, we-do not rely on timestamps or temporary
keys. Taking intra-domain initial authentication as an example, this kind of attack can be
easily detected by a server in M3 by'checking the freshness of the nonce in authAKg. If
the intruder substitutes Ng in M2 and replays M3, the server can still detect that M3 is
simply a forged message by verifying the nonce in auth AKg. The intruder will be

rejected even if he holds a compromised session key.

Forward Secrecy

Our protocol addresses forward secrecy. The disclosure of long-term secret keying
material used to derive an agreed key does not compromise the secrecy of agreed keys
from earlier runs . In our protocol, keys are chosen randomly, and the one-time key

itself is used as a key which changes with each use.

Table[6.2]and[6.1]analyze some EAP methods, including EAP-TLS, EAP-OTP,
EAP-Kerberos and EAP-OSNP, and compares their characteristics and capability against

39

Table 6.1: Authentication Analysis

EAP Methods TLS OTP | Kerberos | OSNP
Server Authentication | Certificate | None | Password | OTK
Client Authentication | Certificate | OTK | Password | OTK
Mutual Authentication Yes No Yes Yes
Table 6.2: Security Analysis
EAP Methods TLS | OTP | Kerberos | OSNP
Replay Attack Yes | Yes Yes Yes
Dictionary Attack Yes | No No No
Brute-Force Attack No | Yes No Yes
Identity Privacy Protection | No | No Yes No
Man-in-the-middle Attack | Yes | No Yes Yes
User Impersonation Attack | No | No Yes Yes
Forward Secrecy No | Yes Yes Yes

attacks.

6.2 Performance Analysis

In Sec. we show the performance of EAP-OSNP. Furthermore, this section presents
the performance of OSNP. Tables and 6.4 show the performance of Kerberos and OSNP, in

terms of computation, communication and storage.

Table|6.4|shows the number of messages for mutual authentication and the number of
messages submitted by a user. OSNP requires a constant number of messages independent of
the number of KDCs between the user's visited domain and home domain. This reduces the
time required for roaming from one domain to another. Compared with the Kerberos protocol,
OSNP requires only two messages on the user side. This is feasible and practical for mobile

networks with low data rates and bandwidth. It is also good for battery-powered mobile

devices.

40

Table 6.3: Performance Comparison: Computation Cost

Auth | Operation | KDC Soid S U

Init | Hash

En/decrypt
Random -l -] - -
Sub | Hash - - -
En/decrypt | - | - | -
Random - - -
Ho | Hash - - -
En/decrypt | - | - | -

K
Random 2
4
6

N = WA = Nwn =0
| I |
n O =l or~=luwm~—~—0O

W = O
1

Table 6.4: Performance Comparison: Communication and Storage Costs

#Msg for | #Msg | Type | #Shared | Mobility
Mutual | from of Keys Support
Auth User | Trust
Krb 2m +4 | m+424, P&H | O(N) No
OSNP 8 2 P&H | O(N) Yes

m: number of KDCs between the user's visited domain and home domain
N: number of domains

P&H Peer and Hierarchical

Table|6.4|also compares the number of shared keys among these protocols. Consider a
hierarchy with N domains. The number of shared keys in OSNP is proportional to the number

of domains, which is the same as the number of shared keys in Kerberos V5.

6.3 OSNP Logic Proof

We use BAN logic [|13[] and its enhancement to explain why our protocol can reach
the goals of mutual authentication for initial and subsequent authentication of intra-domain

authentication. The intra-domain handover is a derivation of initial authentication, replacing

41

K DC' with the previous server and the inter-domain authentication is an extension of the
initial authentication; the security of these two types of authentication is guaranteed by that of

the initial authentication.

The BAN logic states that the mutual authentication is complete between two parties A

and B, if there is a K such that

A believes A <2 B,
B believes A <= B,
A believes B believes A <~ B ,

B believes A believes A <~ B.

6.3.1 Initial Authentication

The objectives of the initial authentication are to prove: the presence of both parties to

each other, and the receipt of a ticket and a session key at the user side. Assume that

U believes U 228 K DC, and (6.1)
S believes S 2% K DC. (6.2)

The proof is given in two parts: to authenticate S by U, and to authenticate U by S.

For the first part, since U receives authAKy, CHg and T KTs in M4, he can decrypt

authAK and get the session key K gg. By applying annotation rule and formula[6.1] we

42

obtain
U believes U =¥ KDC,
U sees {Ny, S, U Kss, SYOT Ky, and
U believes K DC said (Ny, S, U &ss, S).
Since that Ny is generated by U, we have the following hypothesis:
U believes fresh (N, S, U <5 S).
The nonce-verification rule applies and yields
U believes U &35
By decrypting the C'Hg, U verifies the server identity. Similarly, we obtain
U sees {5, NghKgs,
U believes S said (S, N, U &ss, S),
U believes S believes U £25
The second part is proved by M3 and M5. S receives authAKg in M3, and he can decrypt the
token and extract the session key Kgg. Then, S decrypts RES Ps using Kgg to get N§.

Similarly, applying the annotation, the message-meaning, jurisdiction rules, and forrnula

we obtain

S believes S 55 KDC,

S sees {Ng, U, U Hss, S}OTKg, and
S believes K DC said (Ng, U, U £).
Since that N is generated by S, we have the following hypothesis:

S believes fresh (Ng, U, U Lss,), and

S believes U £55

43

Similarly, V¢ is generated by S, we apply the nonce-verification rule and jurisdiction rule and

obtain

S sees {N;} K,

S believes fresh (N, U £55% 9),

S believes U said (N, U £55), and

S believes U believes U &5

It proves that our initial authentication can achieve the following goals at the end of the

authentication round:

U believes U £55% S
S believes: ' &85, g
Kss

U believes S believes:U —— S, and

S believes. U believes U &35

6.3.2 Subsequent Authentication

In our subsequent authentication, S decrypts T'K'Ts and extracts U, V'Ts and Kgg. After

checking the validation of V'Ts, Kgg is still validate. We can apply the above formal rules, and

44

obtain

U believes U £55 g,
U sees { Ny, U Js, S}Kss,
; . Kss
U believes S said (Ny, U < S),
U believes fresh (N, U, U s,), and

U believes S believes U Kss,

For S, we also prove that

S believes S 155 KDC,

S sees {U, VTs, U &35 SYOTKs,

S believes K'DC said (U, VTs, U Kss, S).
So,
. Kss
S believes U

After receiving RES Pg, which contains a nonce Ng and a new session key K¢ generated by

S, we obtain

S sees { Ng } Kg,

. Kss
S believes fresh (Ng, U <= S),
S believes U said (Ng, U Sss, S),

S believes U believes U Kss,

This proves that our subsequent authentication can achieve the above goals. 0

45

Chapter 7

Conclusion

In this paper, we integrated one-time keys with a nonce-based authentication protocol,
which efficiently supports initial, subsequent and handover authentication. In design part, our
protocol requires five messages for initial authentication; three for subsequent authentication
and five for handover authentication. Although five messages are required for handover
authentication, no KDC is involved in authenticating the roaming user. Then, we extended the
intra-domain authentication protocol to an inter-domain authentication protocol, which
requires eight messages for mutual authentication, regardless of the number of hops between
the visited and home domains. In all our authentication protocols, only two messages are sent
by the user. Such a design is very feasible and practical for a mobile network with limited
bandwidth and for those battery-powered mobile devices.

Since KDCs are transparent to users in OSNP, only registered servers can communicate
with KDCs directly. This architecture is suitable for the current mobile network, where mobile
devices only need to connect to a visited server for authentication, without knowing the
location of KDCs.

In implementation part, the intra-domain authentication methods are completely
implemented with modular design. Using the revision of open source authentication
applications is convenient for integrating our protocol with other authentication protocols, also

convenient for comparisons.

46

References

[1] IEEE, "IEEE Standard for Local and metropolitan area networks Port-Based Network

Access Control," 2004, pp. 1--169.

[2] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz, "Extensible

Authentication Protocol (EAP)," RFC 3748 (Proposed Standard), Jun. 2004. [Online].

Available: [ttp://www.ietf.org/rfc/rfc3748.tx1

[3] D. Stanley, J. Walker, and B. Aboba, "Extensible Authentication Protocol (EAP) Method

Requirements for Wireless LANs," RFC 4017 (Informational), Mar. 2005. [Online].

Available: |http://www.ietf.org/rfc/rfe4017 4xt]

[4] IEEE, "Information technology:= Telecommunications and information exchange between
systems - Local and metropolitan area networks - Specific requirements Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications (Includes
IEEE Std 802.11, 1999 Edition; IEEE Std 802.11a.-1999; IEEE Std 802.11b.-1999; IEEE

Std 802.11b.-1999/Cor 1-2001; and IEEE Std 802.11d.-2001)," 2005, pp. 1--721.

[5] B. Aboba and D. Simon, "PPP EAP TLS Authentication Protocol," RFC 2716

(Experimental), Oct. 1999, obsoleted by RFC 5216. [Online]. Available:

Ittp://www.ietf.org/rfc/rfc2716.tx1]

[6] D. Simon, B. Aboba, and R. Hurst, "The EAP-TLS Authentication Protocol," RFC 5216

(Proposed Standard), Mar. 2008. [Online]. Available: |http://www.ietf.org/rfc/rfc5216.txt]

[7] N. Cam-Winget, D. McGrew, J. Salowey, and H. Zhou, "The Flexible Authentication via

47

http://www.ietf.org/rfc/rfc3748.txt
http://www.ietf.org/rfc/rfc4017.txt
http://www.ietf.org/rfc/rfc2716.txt
http://www.ietf.org/rfc/rfc5216.txt

Secure Tunneling Extensible Authentication Protocol Method (EAP-FAST)," RFC 4851

(Informational), May 2007. [Online]. Available: |ttp://www.ietf.org/rfc/rfc4851 .tx{]

[8] K.-H. Baek, S. W. Smith, and D. Kotz, "A Survey of WPA and 802.11i RSN
Authentication Protocols," Dept. of Computer Science, Dartmouth College, Hanover,

NH, Tech. Rep. TR2004-524, November 2004. [Online]. Available:

[ttp://www.cs.dartmouth.edu/~dfk/papers/baek-survey-tr.pd]

[9] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, "The Kerberos Network Authentication

Service (V5)," RFC 4120 (Proposed Standard), Jul. 2005, updated by RFCs 4537, 5021.

[Online]. Available: |http://www.ietf.org/rfc/rfc4120.tx1

[10] S. Zrelli and Y. Shinoda, "Specifying Kerberos over EAP: Towards an integrated network
access and Kerberos single sign-on process," in Advanced Information Networking and

Applications, 2007, pp. 490--497, AINA '07. 21st International Conference.

[11] A Real-World Analysis of Kerberos Password Security, 1999. [Online]. Available:

[citeseer.ist.psu.edu/wu99realworld.html|

'

[12] S. M. Bellovin and M. Merritt, "Limitations of the kerberos authentication system,’'

SIGCOMM Comput. Commun. Rev., vol. 20, no. 5, pp. 119--132, 1990.

[13] M. Burrows, M. Abadi, and R. Needham, "A logic of authentication," ACM Trans.

Comput. Syst., vol. 8, no. 1, pp. 18--36, 1990.

[14] S.-P. Shieh, F.-S. Ho, and Y.-L. Huang, "An Efficient Authentication Protocol for Mobile

Networks," J. Inf- Sci. Eng., vol. 15, no. 4, pp. 505--520, 1999.

[15] C. Xiao-rong, F. Qi-yuan, D. Chao, and Z. Ming-quan, "Research and realization of
authentication technique based on OTP and Kerberos," in High-Performance Computing

48

http://www.ietf.org/rfc/rfc4851.txt
http://www.cs.dartmouth.edu/~dfk/papers/baek-survey-tr.pdf
http://www.ietf.org/rfc/rfc4120.txt
citeseer.ist.psu.edu/wu99realworld.html

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

in Asia-Pacific Region, 2005. Proceedings. Eighth International Conference on, Nov./

Dec. 2005.

C. Rigney, S. Willens, A. Rubens, and W. Simpson, "Remote Authentication Dial In User

Service (RADIUS)," RFC 2865 (Draft Standard), Jun. 2000, updated by RFCs 2868,

3575, 5080. [Online]. Available: |http://www.ietf.org/rfc/rfc2865.tx1]

C. Rigney, W. Willats, and P. Calhoun, "RADIUS Extensions," RFC 2869

(Informational), Jun. 2000, updated by RFCs 3579, 5080. [Online]. Available:

Ittp://www.ietf.org/rfc/rfc2869.txt]

B. Aboba and P. Calhoun, "RADIUS (Remote Authentication Dial In User Service)

Support For Extensible Authentication Protocol (EAP)," RFC 3579 (Informational), Sep.

2003, updated by REC 5080. [Online].. Available: |http://www.ietf.org/rfc/rfc3579.tx{

D. Nelson and A. DeKok, "Common Remeote Authentication Dial In User Service

(RADIUS) Implementation Issues and 'Suggested Fixes," RFC 5080 (Proposed Standard),

Dec. 2007. [Online]. Available: |http://www.ietf.org/rfc/rfc5080.tx{]

Y. Ohba, S. Das, and A. Dutta, "Kerberized handover keying: a media-independent
handover key management architecture," in Mobidrch '07: Proceedings of first ACM/
IEEFE international workshop on Mobility in the evolving internet architecture. New

York, NY, USA: ACM, 2007, pp. 1--7.

"FreeRADIUS -- The world's most popular RADIUS Server." fhttp://www.freeradius.org/|

"Linux WPA/WPA2/IEEE 802.1X Supplicant," http://hostap.epitest.fi/wpa supplicant/|

"hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS Authenticator,"

Ittp://hostap.epitest.fi/hostapd/|

49

http://www.ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc2869.txt
http://www.ietf.org/rfc/rfc3579.txt
http://www.ietf.org/rfc/rfc5080.txt
http://www.freeradius.org/
http://hostap.epitest.fi/wpa_supplicant/
http://hostap.epitest.fi/hostapd/

[24] Y. L. Huang, H. Y. L. J. D. Tygar, L. Y. Yeh, H. Y. Tsai, K. Sklower, S. P. Shieh, C. C. Wu,
P.H. Lu, S. Y. Chien, Z. S. Lin, L. W. Hsu, C. W. Hsu, C. T. Hsu, Y. C. Wu, and M. S.

Leong, "SWOON: A Testbed for Secure Wireless Overlay Networks," in CSET" 08, 2008.

[25] "The Network Simulator - ns-2," fhttp://www.isi.edu/nsnam/ns/|

[26] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar, "An integrated experimental environment for distributed

systems and networks," SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 255--270, 2002.

[27] "Emulab - Network Emulation Testbed," |http://www.emulab.net/|

[28] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R. Ostrenga, and
S. Schwab, "Experience with deter: a testbed for security research," Testbeds and

Research Infrastructures for the Dévelopment of Networks and Communities, 2006.

TRIDENTCOM 2006. 2nd International-Gonference on, pp. 10 pp.--, March 2006.

[29] "cyber-cyber-Dcyber-DEfense Technology Experimental Research laboratory Testbed,"

Ittp://www.isi.edu/deter/|

[30] "Wireshark: network protocol analyzer." |ttp://www.wireshark.org/|

50

http://www.isi.edu/nsnam/ns/
http://www.emulab.net/
http://www.isi.edu/deter/
http://www.wireshark.org/

