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四通道即時 EEG 訊號獨立事件分析之

FPGA 實現 
學生：黃煒忠    指導教授：林進燈 博士 

 

國立交通大學電機與控制工程研究所  

中文摘要 

在真實世界的多感應器應用中，如何從混合訊號中分析出獨立訊號的瞎訊號

分離是一個常見的問題，例如:音訊和生醫訊號處理。本論文提出一個基於資訊

最大化之獨立事件分析方法應用於四通道 EEG 訊號分離。並用定點數實現於

FPGA,再藉由藍芽傳輸分離後的訊號。經由實驗的結果，本論文所提出的硬體方

式比軟體運算快 56 倍，且絕對相關係數和離線訊號處理比較至少有 80% 。 最

後，實際示範將用 Altera DE2 發展板展示，此設計使用 16605 邏輯單元。  

 而本論文所提出的四通道即時獨立事件分析系統也加入彈性的介面用於實

際 EEG 訊號分離的應用。用資訊最大化演算法的即時生醫訊號分離其取樣頻率

設定在 64Hz，並藉由整合性的算術運算架構可讓整體操作速度在 68MHz。  
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FPGA Implementation of 4-Channel ICA for 

On-line EEG Signal Separation 

Student：Wei-Chung Huang              Advisor : Dr. Chin-Teng Lin 

 

Department of Electrical and Control Engineering 

National Chiao Tung University  

Abstract 

Blind source separation of independent sources from their mixtures is a common 

problem for multi-sensor applications in real world, for example, speech or 

biomedical signal processing. This thesis presents an independent component analysis 

(ICA) method with information maximization (Infomax) update applied into 

4-channel one-line EEG signal separation. This can be implemented on FPGA with a 

fixed-point number representation, and then the separated signals are transmitted via 

Bluetooth. As experimental results, the proposed design is faster 56 times than soft 

performance, and the correlation coefficients at least 80% with the absolute value are 

compared with off-line processing results. Finally, live demonstration is shown in the 

DE2 FPGA board, and the design is consisted of 16,605 logic elements. 

The 4-channel On-line ICA accompanied with flexible communication interface 

for real EEG signal separation has been presented in this thesis. The proposed 

integrated mathematics architecture can allow high-speed at 68MHz and real-time 

biomedical signal separation with Infomax ICA at sampling rate 64 Hz. 
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Chapter1  
Introduction 

 
 

1-1 Motivation 
In recent years, Independent Component Analysis (ICA) has been proved as a 

powerful algorithm to solve blind source separation (BSS) [1] problems in a variety of 

signal processing applications such as speech [2], image, or biomedical signal 

processing. Especially biomedical signals, which are different signal sources from 

organs such as brain, heart, or muscles, push the ICA algorithm to process more 

channels than speech or image applications. However, the characteristic of general 

ICA is limited to only process off-line and enormous data. On clinic, this cannot assist 

doctors in real-time diagnosis. Thus, more researches focus on on-line and faster ICA 

from points of view on software or hardware implementation.  

The applications of ICA are separation of artifacts in Magnetoencephalography 

data, finding hidden factors in financial data, reducing noise in natural images, and 

telecommunications. Another, very different application of ICA is on feature 

extraction. A fundamental problem in digital signal processing is to find suitable 

representations for image, audio or other kind of data for tasks like compression and 

denoising. In On-line ICA application, it can detect the characteristic of biomedical 

signals immediately by On-line processing and send out the correct response to 

human. It is helpful to real-time biomedical monitor. Another application, it can used 
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for reduce dimension on high-channels data or extract noise in clamant environment.  

 Since the large number of matrix operation and complicated non-linear 

computation are required, it is hard to real-time process in embedded systems. 

However, the FPGA implementation not only accelerate the speed of the operation 

circuit by parallel processing, but also show real-time computation and low-power 

property by fast symmetrical non-linear lookup table.  

 

1-2 Goal and Summary  
The Infomax ICA algorithm which is based on the concept of information 

maximization is designed to solve the problems of blind signal separation (BSS). 

There are two problems: The algorithm is not suitable for on-line computation, and 

complicated mathematics operation which make Infomax ICA hard to implement in 

VLSI. The algorithm has been improved by a new effective hardware and overlap 

memory scheduling to solve those problems. Finally, the thesis using pipeline flow to 

increase calculation throughput, and add dynamic branch predict to overlapping 

memory access time in pipeline. 

1-3 Organization of the Thesis   
 This thesis is organized as follows. The Infomax theory and system level design 

are introduced in chapter 2 and chapter 3 individually. Chapter 4 describes FPGA 

implementation of ICA. The experimental results and discussions are presented in 

Chapter 5, and conclusions are made in the last chapter. 
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Chapter2  
ICA Algorithm  

 
 

2-1 Basic Concepts of ICA 
ICA could be used in different fields, for example: image, audio signal 

processing, and biomedical data analysis. In this section, the basic concepts of ICA 

from the viewpoints of signal processing and statistics are introduced. 

 

2-1-1  Problem Description  

ICA is created to solve cocktail-party problems in signal processing. There are 

situations where there are a number of signals produced by some physical sources. 

These signals could be, for example, electric signals from different brain areas, speech 

signals from different people speaking in the same room [3], or radio waves from 

different mobile phones in the same area [4]. The sensors are placed in different 

positions, so that mixtures are different from one another as a result of space factors. 

In practice, the information about the original signals and the mixing system are 

unknown, and the information of mixed signals from sensors. For this reason, drawing 

out original signals from those mixtures is professed Blind Source Separation. The 

BSS problem is illustrated in Fig. 2- 1. ICA is one of the useful methods to precede 
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BSS problems which separate signals mainly by independence. In the following 

contents, representations will be called components due to the name of ICA. 

 

 
Fig. 2- 1 Illustration of the BSS problem. 

 

 ICA looks for components that are both statistically independent and 

non-Gaussian from mixed data which distinguishes ICA from other BSS methods. 

Besides, ICA gives good representations of source signals through the linear 

combination of mixed signals with non-linear decorrelation methods. In practical 

situations, it is easy to find the components which are really non-Gaussian. 

 On the other hand, the best de-mixing matrix that makes the components really 

independent to each other can not be found in general. It should be noted that 

algorithms exist to make the components as independent as possible. 

 
2-1-2 Formulation  

Most of the work on BSS so far addresses the case of mixtures, where a linear 

mixture model is assumed: 

                     )()( tsAtx ×=                      (2.1) 

where s(t) is the vector of sources at instant t, A is the mixing matrix, and the 
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observed vector of mixtures (ignoring noise). ICA now consists of estimating both the 

matrix A and s when x is the only given signal. It should be noted that the number of 

independent components its )(  equals to the number of observed variables 

itx )( which is a simplifying assumption and is not completely necessary. ICA obtains 

a n×n matrix W where 
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Above the equation, )()()( txWtyts iii ×=≈ , iy  is called the representation of 

sources from the measurements. If is more similar to S, it is a better representation. 

Fig. 2- 2 shows the formulation of ICA. 

 

Fig. 2- 2 Illustration of ICA formulation. 

 
2-1-3  Independent Conditions  

Sources are assumed to be statistically independent and non-Gaussian in ICA. 

The condition is a critical technique that makes ICA different from other methods.   

According to the central limit theorem (CLT), sum of non-Gaussian random 

variables are closer to Gaussian than original ones. However, non-Gaussian 

assumption is also due to a natural disadvantage of ICA. In the statistical point of 

view, uncorrelated data are independent only when those data are Gaussian. Therefore, 

if the original independent components are Gaussian, their mixtures must be Gaussian. 

After mixtures are turned into uncorrelated by pre-processing, they are still Gaussian 

and already independent. However, those uncorrelated mixtures are always dissimilar 
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to the original independent components. There are two kinds of non-gaussian data: 

super-Gaussian and sub-Gaussian as illustrations in Fig. 2- 3. 

 
Fig. 2- 3 Illustration of probability density distribution. 

 

2-2 Two kinds of ICA Algorithm   
We consider methods for estimating solution to the unknowns in ICA problem. 

In the simple case, we assume noiseless ICA x=As are the elements of the mixing 

matrix, A, and the sources s which we consider as being estimated by a recovered 

source set a. 

2-2-1 The Concept of Entropy and Mutual Information   
The ICA algorithm assume all of the sources are independent in the module. The 

M sources together generate an M-dimensional probability density function (p.d.f) 

p(s). Statistical independence between the sources means that the joint source density 

factorizes as (2.3) 

                       p(s)=∏
=

M

m
m tsp

1

))((                    (2.3) 

 If the p.d.f of the estimated sources also factorizes then the recovered sources are 
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independent and the separation has been successful. Independence between the 

recovered sources is measured by their mutual information, which is defined in terms 

of entropies.The entropy of an M-dimensional random variable x with p.d.f p(x) is 

                    H[x]=H[p(x)]= )(log)( xpxp∑− .                 (2.4) 

The entropy measures the average amount of information that observation of x 

yields. The joint entropy H[x,y] of two random variable x and y is defined as: 

               H[x,y]=H[p(x,y)]= ),(log),( yxpyxp∑− ,               (2.5) 

where p(x,y) is the Joint probability density of variable x and y. We can consider the 

entropy of x and y as a set. In Fig. 2- 4, joint entropy H[x,y] is continuum of H[x] and 

H[y], for H[y]H[x]y]H[x, +≤ , if x and y are independent, H[y]H[x]y]H[x, += . 

 

Fig. 2- 4 Entropy relationship by the concept of set. 

 

The conditional entropy of y given x is 

                    H[y|x]= )|(log)|( xypxyp∑− .                (2.6) 

Conditional entropy H[y|x] is entropy H[y] without H[x]. From which it follow that 

H[x,y] = H[x]+ H[y|x] 

                              = H[y]+ H[x|y].                     (2.7) 

H[x,y] 

H[x|y] H[y|x] I[x,y] 

H[x] H[y] 
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The above equation means that the sum of the information encoded by x alone 

and the information encoded by y given a knowledge of x. The entropy of each 

variable is related to probability of observations.  

The mutual information between two random variables x and y is defined in 

terms of their entropies as follow (2.8): 

I[x,y]=H[x]+H[y]-H[x,y] 

=H[x]-H[x|y] 

                             =H[y]-H[y|x].                         (2.8) 

From the equation above, the mutual information contains the sum of the entropy 

of each variables and the difference of the joint entropy of all variables.  

Using concept of mutual information, an m-dimensional random variable iy , 

i=1…n, the mutual information of all variable is defined as: 

                   ∑
=

−=
n

i
in yHyHyyyI

1
21 )()(),...,,( .                 (2.9) 

Where H is entropy, H(y) is the joint entropy H )...,( ,2,1 nyyy of variable iy , the 

value of mutual information always positive or zero. If and only if the value is zero, 

each variable is independent. If the target is finding the minimum mutual information 

between each variable, it is equal to find the direction of non-Gaussian distribution. 

Next section, we will describe two methods of ICA: Information maximization ICA 

and FastICA.   

 
2-2-2 Infomax ICA   

(1)Information maximization  

Bell and Sejnowski [5] proposed to learn the separating matrix W by minimizing 

the mutual information between components of y(t) = g(u(t)) , where g is a nonlinear 

function approximating the cumulative density function (cdf) of the sources. Bell & 
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Sejnowski formulated blind source separation algorithms in terms of information 

maximization. 

 Consider the information transmitted by mapping f: x→ y. K.Torkkola [6] 

consider the two-stage mapping, which might be implemented by a single layer 

feed-forward neural network in Fig. 2- 5, as follows: 

                             u=W*x,                            (2.10) 

                             y=g(u),                             (2.11) 

 

 

Fig. 2- 5 Blind separation network architectures for two-source mixtures. 

 

where W is a linear transformation and g is a bounded nonlinearity applied to each 

individual output u. The information transmitted by the mapping is the mutual 

information between the input and output: 

I[x,y]=H[x]+H[y]-H[x,y] 

                            =H[y]-H[y|x],                        (2.12) 

where H[y] is the entropy of the output, while H[y|x] is whatever entropy the output 

has which didn’t come from the input. In the case that we have no noise, the mapping 

between x and y is deterministic and H[y|x] has its lowest possible value. This 

X1 

X2 

W12 

W21 

W22 

W11 
g 

g 

y1 

y2 

∑

∑

G 
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divergence is one of the consequences of the generalization of information theory to 

continuous variables. In order to reduce complexities, the algorithm consider only the 

gradient of information theoretic quantities with respect to some parameter, w, in the 

network. 

 Since gradients are as well behaved as discrete variable entropies, the reference 

terms involved in the definition of differential entropies disappear. The above 

equation can be differentiated as follows, with respect to a parameter, w, involved in 

the mapping from x to y: 

                        )(),( yH
w

yxI
w ∂

∂
=

∂
∂ ,                     (2.13) 

H[y|x] does not depend on w, and lead 0)|( =
∂
∂ xyH
w

. Thus for invertible 

continuous deterministic mappings, the mutual information between inputs and 

outputs can be maximized by maximizing the entropy of the outputs alone. 

When a single input x pass through a transforming function g(x) to give an output 

variable y, both I(y| x) and H(y) are maximized when we align high density parts of 

the probability density function of x with highly sloping parts of the function g(x). 

This is the idea of “matching a neuron’s input-output function to the expected 

distribution of signals”. 

From another point of view, thus ∑
=

−=
n

i
in yHyHyyyI

1
21 )()(),...,,( , to 

minimize mutual information to each outputs iy  existence when 

),...()( 2,1 nyyyHyH = , and 0),...,,( 21 =nyyyI . Output iy  is independent. In order 

to let mutual information of outputs be zero, need to satisfy below situation: 

1. The choice of non-linear function g(.) is crucial. 

               ue
ugy −+

==
1

1)(    Wxu = .           (2.14) 

2. According to maximum entropy theorem, if bounded variable with 
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uniform distribution has the maximum entropy. iy must between 0~1 

because of it is the p.d.f of independent component iu . Therefore in 

order to maximize the entropy of output, we need output y uniform 

distribution 

The output y have to independent to satisfy both of situation. Although the 

transformation between y and u is a monotonic transform, information maximization 

using this concept to achieve the target of ICA. 

    

(2)Gradient information 

Consider a network with an input vector x, a weight matrix W, a bias 

vector 0w and a nonlinearly transformed output vector y=g(u), u= Wx+ 0w . 

Providing W is a square matrix and g is an invertible function, the multivariate 

probability density function of y can be written 

                            
||
)(

)(
J

xP
yP = ,                        (2.15) 

where |J| is the absolute value of the Jacobian of the transformation. Bell simplifies to 

the product of the determinant of the weight matrix and the  

derivative '
iy , of the outputs, iy , with respect to their net inputs: 

                          ∏
=

=
n

i
iyWJ

1

')(det .                       (2.16)  

For example, in the case where the nonlinearity is the logistic sigmoid: 

             ue
ugy −+

==
1

1)(  and )1(' yy
u
yy −=
∂
∂

= .               (2.17) 

We can perform gradient ascent in the information that the outputs transmit about 

inputs by noting that the information gradient is the same as the entropy gradient for 

invertible deterministic mappings. The joint entropy of the outputs is: 

              )]([ln|]|[ln)]([ln)( xPEJEyPEyH −=−= .             (2.18) 
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Weights can be adjusted to maximize H(y). As before, they only affect the E[ln |J|] 

term above: 

          ∏
=∂

∂
+

∂
∂

=
∂
∂

=
∂

∂
Δ

n

i
iy

W
W

W
J

WW
yHW

1

' ||ln|det|ln||ln)(α .      (2.19) 

For the full weight matrix, we use the definition of the inverse of a matrix, and the 

fact that the adjoint matrix, adj W, is the transpose of the matrix of cofactors. This 

gives: 

                         1][|det|ln −=
∂
∂ TWW
W

.                   (2.20) 

For the second term, we note that the product splits up into a sum of log-terms, only 

one of which depends on a particular w. 

     T
n

i

n

i

n

i
i xy

x
y
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y

W
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W
)21()()(||ln||ln

1

1

11

' −=
∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

=
∂
∂ ∏∏∏

=

−

==

.     (2.22) 

The resulting learning rules are familiar in form: 

                      TT xyWW )21(][ 1 −+∝Δ − .                    (2.23) 

Except that now x, y, W, and1, are vectors (1 is a vector of ones). But this 

learning rule is too complex to calculate because of the inverter matrix.  Multiplied 

by WW T  change the rescale of the rule, the new learning rules as follow: 

                WuuIWuyIW TT ))(())21(( ϕ+=−+=Δ .             (2.24) 

Thus, the simplification much uncomplicated than before, and this learning rules 

is suitable to separate blind sources. An ICA model consists of two distinct 

components, the first is the formulation of a valid contrast function and second is the 

algorithm for estimating the free parameters of the system.  

 Considering approaches which rely on the gradient of the contrast to ascend or 

descend to an extreme contrast measure. It is computationally attractive to have 

access, to the analytic form for the gradient of the contract function with respect to the 

free parameters. The bias of the contrast function to be that of a generative model 

approach, Gradient-ascent, or steepest-gradient, methods require this first order  
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information and update W in direction of the gradient. The update rule for W in 

discrete time t<-t+1 defined in equation as follows:    

                        WltWtW Δ+=+ )()1( .                     (2.25) 

where l is the adaptation parameter (learning rate) which is fixed this procedure 

corresponds to maximum likelihood re-estimation with an exponential weighting over 

successive samples. Note that this learning rule describes an online learning procedure 

because data are processed sequentially as they are received. Gradient ascent to the 

likelihood for a batch of T observation is performed with the modified rule 

                   ))()(1()()1(
1
∑
=

++=+
T

t

T tut
T

IltWtW ϕ .             (2.26) 

Since the learning rule (2.26) is obtained from (2.25) by dropping the averaging 

operation it is sometimes called stochastic gradient ascent. The use of 

steepest-gradient techniques to ascend the likelihood to near its supremum was 

formulated by Bell & Sejnowski [1995]. One of the key problems is their poor 

convergence in region of shallow gradient and in regions where the likelihood 

landscape is far from isotropic. To overcome some of these issues, Bell & Sejnowski 

utilized batching, whereby the mean gradient over a set of consecutive samples is 

utilized rather than the sample by sample estimate.  

 
2-2-3 FAST ICA 

After we have defined a measure of non-gaussian, we have to develop a practical 

method for maximizing it. The basic method used in this kind of problems is the 

gradient method. However, FastICA is based on a fixed-point iteration scheme for 

finding a maximum of the non-gaussian of xW T . More rigorously, it can be derived 

as an approximative Newton iteration. The FastICA algorithm using negentropy 

combines the superior algorithmic properties resulting from the fixed-point iteration 

with preferable statistical properties due to negentropy. 
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(1)Fixed-point algorithm  

In this subsection, we will introduce Fixed-point algorithm. Fixed-point iteration 

would be equate W to the gradient measure of non-gaussian. This is because if W 

equals this gradient, then due to normalization to unit norm. This suggests the 

following fixed-point iteration: 

                       )]([ xWxgW Tε−< .                 (2.27) 

The iteration does not have good convergence properties. Therefore, the iteration 

has to be modified. Multiplied by constant α  and add W on both side of this 

equation as below:  

                  WxWxgW T αεα +=+ )]([)1( .              (2.28) 

Thus, by choosing α wisely, it may possible to obtain an algorithm that convergence 

very fast. 

The suitable coefficientα , and thus the FastICA algorithm, can be found using 

an approximative Newton method [7]. The Newton method is a powerful method for 

solving equations. When it is applied to the gradient, it gives optimization method that 

usually converges in a small number of steps. The problem with the Newton method 

is that it usually requires a matrix inversion at every step. Therefore, the total 

computational load may not be smaller than with gradient methods. This 

approximative Newton method gives a fixed-point algorithm of the form. 

 To derive the approximative Newton method, first note that the maxima of the 

approximative of the negentropy of xW T  are obtained at certain optima of 

)]([ xWG Tε . According to Kuhn-Tucker conditions, the optima of )]([ xWG Tε  under 

the constraint 1])[( 22 == WxW Tε  are obtained at points where 
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                      0)]([ =+ WxWg T βε ,                 (2.29) 

where β  is some constant. Denoting the function on the left-hand side by F, we 

obtain its Jacobian matrix JF(w) as 

                  IxWgxxWJF TT βε += )]([)( ' .               (2.30) 

To simplify the inversion of this matrix, we decide to approximate the first term. 

Since the data is sphered, a reasonable approximation seem to be   

           IxWgxWgxxxWgxx TTTTT )]([)]([][)]([ ''' εεεε =≈ .       (2.31) 

Thus the Jacobian matrix becomes diagonal, and can easily be inverted. Thus, 

obtain approximative Newton iteration: 

             βε
βε

+
+−= )]([

)]([
' xWg

WxWxgWW T

T
 .         (2.32) 

This algorithm can be further simplified by multiplying both sides by 

βε += )]([)( ' xWgWJF T . After straightforward algebraic simplification 

                ])]([)([ ' WxWgxWxgW TT εε −−< .             (2.33) 

This is the basic fixed-point iteration in FastICA. 

 

(2)Estimating several Independent Components 

The key point to estimate more than one independent component is based on the 

following property: the vectors iW corresponding to different independent 

components are orthogonal in whitened space. Thus, to estimate several independent 

components, we need to run any of the above one unit algorithm using several units 

with weight vectors, and to prevent different vectors from converging to the same 

maxima we must orthogonalize the vectors after every iteration. We present in the 

following different methods for achieving decorrelation. 

A simple way of orthogonalization is deflationary orthogonalization using the 

Gram-Schmidt method. This means that we estimation the independent components 
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one by one. When we have estimated p independent components, we run any one unit 

algorithm for 1+pW , and after every iteration step subtract from 1+pW  the 

‘projections’ pjWWW jj
T
p ,...1,)( = , of the previously estimated p vectors, and then 

renormalize 1+pW . The result FastICA algorithm [8] with deflationary 

orthogonalization is show in Table 2- 1. 

  

Table 2- 1 FastICA algorithm with deflationary orthogonalization 

Step Description 

1. Center the measured data x to make its mean zero. 

2. Whiten the zero-mean data to give x. 

3. Set counter p=1. Set m equals to the number of sources. 

4. Choose an initial value of unit norm for pW  randomly. 

5. Let WxWgxWxgW T
p

T
pp )]([)]([ 'εε −= , where g is defined nonlinearity 

function.  

6. 
jj

T
p

p

j
pp WWWWW )](

1

1
∑
−

=

−= . 

7. Let ppp WWW /= . 

8. If pW  has not converged, go back to 5. 

9. Set 1+← pp . If p = m, go back to step 4. 

 

 In certain application, it may be desirable to use a symmetric decorrelation, in 

which no vectors are ‘privileged’ over others. This means that the vectors iW  are not 

estimated one by one, instead, they are estimated in parallel. One motivation for this 

is that the deflationary method has the drawback that estimation errors in the first 
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vectors are accumulated in the subsequent ones by the orthogonalization. This is done 

by first doing the iteration step of one unit algorithm on every vector iW , and 

afterwards orthogonalization all the iW  by special symmetric methods. 

 The symmetric orthogonalization of W  can be accomplished by the classical 

method involving matrix square roots, 

                       WWWW T 2/1)( −=                   (2.34) 

The inverse square root is obtain the eigenvalue decomposition, 

               T
m

T EddEdiagWW ),...()( 2/12/1
1

2
1 −−− =              (2.34) 

Using the former symmetric orthogonalization, we give the correspond version of the 

FastICA algorithm in Table 2- 2.  

 

Table 2- 2 FastICA algorithm 

Step Description 

1. Center the measured data x to make its mean zero. 

2. Whiten the zero-mean data to give x. 

3. Choose m, the number of independent components to estimate.  

4. Choose initial values for the iW each of unit norm. 

5. For every i=1…m, WxWgxWxgW T
i

T
ii )]([)]([ 'εε −= , where g is defined 

nonlinearity function 

6. Do a symmetric orthogonalization of the matrix by WWWW T 2/1)( −←  

7. If not converged, go back to step 5. 
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2-3 Main Structure of ICA Methods  
 Base on the algorithm of off-line ICA flow, in order to achieve real-time 

calculation, we divide the input of mixed sources to process real-time signals 

individually, and overlap the previous mixed sources to calculate new separated 

signals. 

 
2-3-1  The Choice of ICA Algorithm   

We consider two reasons feasibility and complexity of real time to realize on-line 

ICA from two algorithms above. In order to reach real time, we need to choose a low 

complicated computation and suitable property for the separation of super Gaussian 

signals. The reason for why we choose infomax ICA is that the flexible transmission 

and unnecessary preprocessing, it can reduce complicated calculation when real-time.  

Though the infomax ICA constringency is harder than FastICA, we add a 

decrease parameter with growing data to accelerate the convergence. In next section, 

we will propose a solution to fix the order of weight in real time processing. 

 
2-3-2  Solution of on-line ICA 
 Since the original blind source separation algorithm by Jutten and Herault [9], 

several on-line and batch mode algorithms have been formulated under the umbrella 

of independent component analysis. While some of the batch ICA algorithms such as 

JADE [10] and FastICA [11] give relatively fast convergence in estimating W, they 

are not quite suitable for on-line implementation in a real-time setting. Depend on 

Gradient information learning rules, the weight need update at each new division. In 

order to fix the direction of weight are the same in every division, overlapping 

previous mixed sources will fix the order of the weight. The method of data-stream 

processing illustrate in Fig. 2- 6.   
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Fig. 2- 6 Illustration of off-line and on-line algorithm. 

 

Fig. 2- 7 show the ICA MODEL, X(t) are measure data. After preprocessing, the 

model will enter the main calculation unit, including non-linear transformation, and 

gradient information update. However, in on-line processing of data stream, each 

division data stream will flow through the ICA model, then, each time the weight be 

calculated for each division data. Briefly, we take eight seconds division data to 

processing, and updating two seconds because of the overlap are six seconds. Finally, 

if the weight is stable, Y(t) represent the independent components which is the 

product of input X(t) and weight matrix. 
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Fig. 2- 7 Diagram flow of the computation of implementation of on-line ICA learning 

algorithm.      
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Chapter3  
System Architecture Design and 

Simulation Result 
 
 

3-1 System Architecture  

In this chapter, we will discuss the execution flow of real time algorithm in 

software. With the system level simulation [12] and data stream flow, we can set 

specifications of overall system architecture, e.g. the resolution of input, the core 

speed, and the flexible interface.  

 

3-1-1  Computing Flow   
Before setting specifications, we need to analyze the process of data stream in 

system. First, set the sample rate for 64Hz. In the system of algorithm, we put 512 

points data into ICA model with growing data. The 128 points are the set of result 

because of the old data overlap. Illustrate the system level process with Fig. 3- 1.  

However, we discuss the algorithm for on-line execution in MATLAB. In 

software simulation, we measure the weight update and memory access time by 

profile command that records information about once recursive time. Table 3- 1 shows 

the detail of measurement. Total recorded time means the average execution time in 

ones iteration. And Fig. 3- 2 show execution time with some test data and average 

execution time at last. The iteration includes two parts: weight update calculation and 
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memory access. We can find that 86 percent of the total time is Weight update 

calculation.  

 

 
Fig. 3- 1 Illustrate of time process in on-line ICA. 

 
Table 3- 1 Matlab profile 

Total recorded time 8.30956 ms  

Clock precision 0.00000006 s 
Clock Speed 1650 MHz 
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Fig. 3- 2 Matlab execution time. 

 

On the other hand, if the sample rate is 64Hz and the training needs 10 times, we 

can not finish the training in 16ms. As a result, the software execution time is not fast 

enough to achieve on-line processing. So we develop a suitable hardware for on-line 

ICA by FPGA. 

 
3-1-2 Specification of On-line Process   

In this system scheme, we need to formulate three parts: the resolution of the 

input signal, expected core speed, and the core speed. As a result of the quantity of 

four channels transmission and the restrictions of bus, the resolution of the input 

signal set as 8 bit. Since the memory bandwidths are 32 bits, it will read four channel 

data at the same time and it is efficient for memory controller design. While in the 

data stream, ICA model will process eight seconds data, it means if the sample rate is 

64 Hz, the model can process 512 points once, and next iteration, the new two second 

data combines with old six second data into the ICA model. In order to achieve 

real-time execution, the ICA model should finish the eight seconds data iteration 

before the next point into memory. Since it can be derived the required speed of 

overall system. We set the sample rate is 64 Hz because the frequency of the signal 
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which we analyze less than 32Hz. Most of the cerebral signal observed in the scalp 

EEG falls in the range of 1-20 Hz. So the required speed of overall system derived as 

follow: 

)__(___ decisionconvergecalculatewlooptrainratesamplespeedcore +××= (3.1) 

In equation (3.1), looptrain _  represent the maximum number of times of 

weight update. If the number of times of weight update greater than maximum value, 

the iteration would stop training. The calculatew _  represent the consumption of 

clock cycles in one iteration. And the decisionerage _cov  represent the number of 

clock cycles which calculate the difference between new weight and old weight for 

the decision of weight coverage. In the situation we defined, the core speed should be 

at least 68MHz for on-line execution.  

 

3-2 Comparison with off-line Sup-Gaussian BSS Methods   

This section introduces the on-line system simulation of Independent Component 

Analysis. In order to verify the algorithm is suit to on-line process, we will use 

MATLAB to simulate the accuracy of on-line ICA behavior, and, define the 

specification and resolution of real circuit architecture. Then implement the arithmetic 

operation circuit and memory control circuit by the real-time processing simulation. 

 

3-2-1  Simulation 8-bit Super Gaussian Mixed Pattern 1 
In verification of MATLB, we create four original signals which p.d.f histogram  

are super Gaussian with 8 bit resolution and 64Hz sample rate. In real case, we mixed 

these four signals with a linear mixed matrix, and, thus the mixed four signals are the 

inputs of real-time ICA model in Fig. 3- 3. 
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(a) 

 

(b) 

Fig. 3- 3 (a) original signal and p.d.f of original signal (b) mixed signal. 

(1)Time-domain Comparison 

In order to verify the algorithm, we compare with the EEGLAB which developed 

by UCSD in Fig. 3- 4. EEGLAB is an interactive Matlab toolbox for processing 

continuous and event-related EEG, MEG and other electrophysiological data using 

independent component analysis (ICA). EEGLAB provides an interactive graphic 

user interface (GUI) allowing users to flexibly and interactively process their 

high-density EEG and other dynamic brain data using independent component 

analysis (ICA) and/or time/frequency analysis (TFA), as well as standard averaging 
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methods. The algorithm of EEGLAB is suit to off-line process, but we just compare 

time domain and frequency domain result.   

 

Fig. 3- 4 Off-line EEGLAB toolbox. 

 

Fig. 3- 5 Time-domain Comparison of on-line and off-line algorithm. 

 

See above Fig. 3- 5, although the order of each result may different, and the 

amplitude may reverse, but the characteristic of output are the same. The result 

accords with restriction of the ICA algorithm.  

 

(2)Correlation coefficients Comparison 

The result of correlation coefficients between off-line and real-time algorithm in 
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Fig. 3- 6, it means the relation between each output signal. The negative value means 

each output of the first channel are reverse, and the value approach one means that 

these two signals are equivalent. 

 

Fig. 3- 6 Correlation coefficients Comparison of on-line and off-line algorithm. 

(3)Frequency-domain Comparison 

In this part, insure outputs from real-time algorithm are similar to off-line 

processing, we compare the Fast Fourier transform (FFT) of each output in Fig. 3- 7.  

 

Fig. 3- 7 FFT comparison of on-line and off-line algorithm. 

(4)Time-Frequency Comparison 

Besides, Fig. 3- 8 shows the time-frequency between off-line and real-time 
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algorithm. Time-frequency: frequency power spectral density estimate on a single 

channel. The horizontal axis is time domain and vertical axis is frequency domain. 

The colors represent the power spectral. 

 

Fig. 3- 8 Time-Frequency Comparison of on-line and off-line algorithm. 

 
3-2-2  Simulation 8-bit Super Gaussian Mixed Pattern 2 

The same as section 3-2-1, this section compare with another super Gaussian 

which has the same frequency like EEG about at 5Hz , 12Hz in Fig. 3- 9. We also 

compare with off-line tool box contains time-domain, frequency-domain, 

time-frequency, and correlation coefficients. 

 

 

(a) 
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(b) 

Fig. 3- 9 (a) original signal and p.d.f of original signal (b) mixed signal. 

(1)Time-domain Comparison 

As Fig. 3- 10 shows, although the amplitude may reverse, the characteristic of 

output are still the same. The result accords with restriction of the ICA algorithm. 

 

 

Fig. 3- 10 Time-domain Comparison of on-line and off-line algorithm. 

(2)Correlation coefficients Comparison 

Though the kurtosis of original signal are large than three, it can be regarded as 

pure super Gaussian. The result of correlation coefficients between off-line and 
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real-time algorithm are high in Fig. 3- 11. Software simulation has reached the target. 

 

 

Fig. 3- 11 Correlation coefficients Comparison of on-line and off-line algorithm. 

 (3)Frequency-domain Comparison 

We create four signals that two of them were 5 Hz, 12Hz like EEG frequency as 

Fig. 3- 12 shown. Alpha is the frequency range from 8 Hz to 12 Hz. It is brought out 

by closing the eyes and by relaxation. Theta is the frequency range from 4 Hz to 7 Hz. 

Theta is seen normally in young children. It may be seen in drowsiness or arousal in 

older children and adults. From the result of third and fourth channel, there have 

significant power at 5 Hz, 12Hz indeed.  

 

Fig. 3- 12 FFT comparison of on-line and off-line algorithm. 
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(4)Time-Frequency Comparison 

Fig. 3- 13 shows the time-frequency between off-line and real-time algorithm. 

The same, second and fourth channel in time-frequency there have significant power 

with red color.  

 
Fig. 3- 13 Time-Frequency Comparison of on-line and off-line algorithm. 

 

 

3-3 Comparison with off-line EEG BSS Methods   
The real EEG signals are given by NCTU BRC, which are recorded in real 

environment. The row data type with 8 bit resolution and 64Hz sample rate. 

 

3-3-1  Simulation 8-bit EEG Mixed Pattern 1   
In real environment, we can create pure EEG signals, and can not mix them as a 

mixed signal like Fig. 3- 14. We can analyze the measured signal as mixed signals 

directly.  
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Fig. 3- 14 Mixed EEG signal. 

 

(1)Time-domain Comparison 

In real environment, EEG signals may have EOG, Alpha, Beta, Theta etc. In 

order to analyze pure signal, we need to separate each signal by ICA algorithm. Fig. 

3- 15 shows the compare of off-line and real-time algorithm.  

 

Fig. 3- 15 Time-domain Comparison of on-line and off-line algorithm. 

 

(2)Correlation coefficients Comparison 

The Correlation coefficients of EEG signals show below, it shows the highest 

Correlation coefficient is up to 99% compare with off-line algorithm. But in real 
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environment with unknown noises may cause reduction of Correlation coefficients. 

According to the result of Correlation coefficient in Fig. 3- 16, the correlation at least 

80% compare with off-line is a good method for real-time.    

 

Fig. 3- 16 Correlation coefficients Comparison of on-line and off-line algorithm. 

 

(3)Frequency-domain Comparison 

In this part, we compare the Fast Fourier transform (FFT) of each output. 

Apparently the second and fourth channel of each algorithm with a little different in 

Fig. 3- 17, and the frequency aliasing is caused by the less information with real-time 

process.  

 

Fig. 3- 17 FFT comparison of on-line and off-line algorithm. 
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(4)Time-Frequency Comparison 

See Fig. 3- 18, the time-frequency show the frequency power spectral with little 

difference at second and fourth channel. However, we can find from Fig. 3- 18, the 

third channel with a significant power spectral at 10Hz. 

 

Fig. 3- 18 Time-Frequency Comparison of on-line and off-line algorithm. 

 

3-3-2  Simulation 8-bit EEG Mixed Pattern 2   

The second pattern shows in Fig. 3- 19. The characteristic of pattern output are 

like each other. This is because the sensors are located closely, the signals we measure 

will be very much like. 

 

Fig. 3- 19 Mixed EEG signal2. 
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(1)Time-domain Comparison 

The same as section 3-3-1, this section discuss the different between on-line and 

off-line in real environment. The result of ICA with more noise than before, because 

the sensors are located closely in Fig. 3- 20.   

 

Fig. 3- 20 Time-domain Comparison of on-line and off-line algorithm. 

(2)Correlation coefficients Comparison 

The correlation coefficients of second pattern are lower than before in Fig. 3- 21, 

but at least 80% in absolute value is also an acceptable method for real-time.  

 

Fig. 3- 21 Correlation coefficients Comparison of on-line and off-line algorithm. 
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(3)Frequency-domain Comparison 

Fig. 3- 22 shows the FFT result comparison. We can see the result of the fourth 

channel with more error than others. But there is still more than 80 percent of the 

correlation. 

 

 

Fig. 3- 22 FFT comparison of on-line and off-line algorithm. 

(4)Frequency-domain Comparison 

Fig. 3- 23 shows that the first and second channel has more information at 10 Hz 

than third and fourth channel. Besides, Alpha is the frequency range from 8 Hz to 12 

Hz. This is activity in the 8-12 Hz range seen in the posterior regions of the head on 

both sides, being higher in amplitude on the dominant side. It is brought out by 

closing the eyes and by relaxation. As a result, it is more helpful to analyze the 

measured signal than without ICA process. 
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Fig. 3- 23 Time-Frequency comparison of on-line and off-line algorithm. 

 

3-4 Summery of Comparison 

The simulation results from the above we can know that the amplitude of signal 

may be reverse or different in the ICA algorithm. These problems conform to the 

constraints referred in Chapter II. However, in real-time and off-line comparison, we 

can find the analysis result is better if the original signals are pure super Gaussian 

distribution. In real environment, the EEG measurement will contain many unknown 

noise or non-super Gaussian signal, and makes the effect drop in EEG analysis. In the 

comparison between on-line and off-line, because the on-line process collect small 

amount of information than off-line process, the correlation of on-line system might 

be different from off-line. But we can accept such a result that correlations are at least 

more than 80%. 

 
 
 
 
 
 
 
 



 

 38

 
 
 
 
 

Chapter4  
Implementation of the On-line ICA 

System on FPGA 
 
 

Top level real-time hardware architecture shown in Fig. 4- 1.  

 
(a) 

 
(b) 

Fig. 4- 1 (a) Top level hardware architecture 
        (b) Illustration of real-time systems. 

 

4-1 Architecture of real-time Systems   
In this section we discuss the architecture of the digital circuit of implementation 

mem mem  
ICA module64Hz 64Hz 

68MHzmem & sys control mem & sys control

Real time
ICA
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of the algorithm. In overall system, the main architecture required three parts in Fig. 

4- 2: Infomax operation circuit, memory control circuit, and interface control circuit. 

Arithmetic operation circuit consists of matrix operation circuit and non linear 

transform. Though a large number of computation in ICA arithmetic operation circuit, 

the memory access will be frequently and complex. By using efficient memory 

controller to optimize the memory scheduling and reduce the circuit power 

consumption. The concept of the non linear transform, it is hard to execute for 

real-time cause of the DSP processor will approximate the value by loop iteration. If 

we implement by FPGA, it will be developed with very low cost hardware, and 

reduce unnecessary operation, and fast enough to execute for real-time. 

 

 

Fig. 4- 2 ICA main system architecture. 

 

4-1-1  Implementation of Recursive Operation Circuit  

The stability and high-precision are the properties of the recursive operation 

circuit. The errors may grow up with the growing iteration. In order to reduce errors 

in iteration, we develop a precision symmetrical non-linear piecewise look up table. 

Besides, we simplify the complex weight updating by deep pipeline design. And if the 
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final weight coverage, the effective and fast matrix multiplier would be also designed 

in the system. We will discuss these three parts as follows: 

(1)Precision symmetrical non-linear piecewise look up table 

Considerations in design of non-linear look up table. We will focus on accuracy, 

hardware area, and computing time. On the accuracy, sign-bit fix point and 

symmetrical look-up table will be used by the property of non-linear symmetry and 

the simulation results of the algorithm [13]. It can reduce half areas by using 

symmetrical look-up table. For accuracy, in order to reduce errors, it will be 11 bits 

resolution for the symmetrical look-up table. However, the error estimates about  

                             ierror ×= ε ,                         (4.1) 

whereε  represent the resolution error of look-up table, and i  represent the number 

of the system iteration. Then error  is the approximation of maximum error. As a 

result, the error will increase each iteration. 

                         ue
ugy −+

==
1

1)( .                        (4.2) 

 

 
Fig. 4- 3 Non-linear function. 
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Table 4- 1 Description of the non-linear circuit 
Name Description 

In[22:0] xwu ×=  

Out[10:0] 
ue−+1

1  

 

Fig. 4- 3 and Fig. 4- 4 show the non-linear function and circuit block diagram. 

The operation can use symmetry due to non-linear function is singular function. 

Symmetry in block diagram is the judgement of whether input is less than zero or not. 

If input less than zero, it will use the same table to operate. As a result, it can save half 

area or double precision with the same table. Table 4- 1 shows the description of the 

non-linear look-up table.   

 

 
Fig. 4- 4 Precision Symmetrical Non-linear Piecewise Look up Table. 

 

The error tolerance in block diagram is the need to verify. In MATLAB, all 

equation calculated by floating point. So we compare difference between fix point and 

floating-point. The root mean square error (RMSE) is 0.00029956 

Index

IN Integer Decimal 

OUT  Symmetry 

MM

Decimal 
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Fig. 4- 5 Comparison of floating-point and fix point function. 

 

Left Fig. 4- 5 shows nonlinear function do precision computing by floating-point, 

and right show the look up table result. It can be seen slight error, but has been 

reached the real time implementation by increasing in non-linear processing. 

 

(2)Weight Recursive operation 

In this section, we integrate the weight update of infomax in a module. The 

module is the mathematical core of overall system. The processing speed decides 

whether to real time. So in this complex computing module, in order to increase the 

core speed and throughput, we use the method of deep pipeline. Although the 

integrated computing module will increase some areas, it is suitable for memory 

controller design. With less memory access times, we can save more power 

consumption. Besides, we can use more than one integrated computing unit to 

improve system efficiency. We will focus on the design of integrated computing 

module. The mathematics expressions as follow: 

 WuuIWuyIW TT ))(())21(( ϕ+=−+=Δ ,            (4.3) 

                  WltWtW Δ+=+ )()1( .                            (4.4) 
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Table 4- 2 Description of recursive circuit 

Name Description 
Weight[15:0] Initial weight or previous weight 

data[10:0] Sample data from ADC 
bias For infomax non-linear 
lrate Initial learning rate is 820039.0 −≈ , 1−∝ tlrate  

New weight[15:0] Gradient information update 
New bias Gradient information compensation 

 

In hardware, however, fixed-point numeric is more practical. Although several 

groups have implemented floating-point adders and multipliers using FPGA, very few 

practical systems exist. The main disadvantages using floating-point in hardware are 

high resource requirements and high clock frequency. We use 16-bit fixed-point 

numeric, and the rough precision of the fixed point number representation can reach 

0.000030518. Two bits for integer part, and 14 bits for the fractional part. When 

performing Infomax operations, normalization was performed to avoid overflow and 

make sure that the data path was always best utilized. The detail description is in 

Table 4- 2.  

 
 

 
Fig. 4- 6 Integrated computing unit. 
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Fig. 4- 6 shows the integrated computing unit, it can process 4*512 matrix 

operation. The unit includes three 4*4 matrix operation, one accumulation, and 

mathematics operator. All speed must be greater than 68MHz to achieve real time 

execution. Then we design the calculation module with pipeline. In order to on-line 

execution, we estimate the consumption of cycle must less than 8300 cycles when 

core speed is 68MHz and 128 times training. As a result, the unit consumes 8192 

cycles to find a new weight with gradient information update. The expressions as 

follow 

             iterationratesample
speedcorecycleoperation

*_
__ = .            (4.5) 

 
 

 
Fig. 4- 7 Main Calculation Model architecture. 
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Fig. 4- 7 shows the hierarchy architecture of main calculation model which with 

other components in iteration. In informax iteration, weight coverage decision 

determine whether the weight coverage. Because it is four-channel design, weight 

buffer would be 16 entries and 16bits resolution. Through each update, controllers 

will receive signals from the convergence module to decide whether the completion of 

the iterative. When weight converges, the memory controller will send a signal 

ICA_DONE to the result module.  

(3)Fast matrix multiplier 

When ICA completed the algorithm iteration, result module will receive a signal 

ICA_DONE from memory controller in Fig. 4- 8. Then read original signal multiplied 

by weight from IN_MEMORY. And the characteristic of this circuit is using parallel 

computing to find the four channels results at the same time in one cycle. It includes 

mean calculation and matrix multiplication, and also using pipeline design to increase 

throughput in unit time. Then put the result into OUT_MEMORY. 

 

Fig. 4- 8 Final Result architecture. 
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4-1-2  Implementation of system Controller  

We would introduce overall system controller in this section. In Fig. 4- 9, it 

includes asynchronous memory controller and ICA system controller. In the system 

controller is mainly control the data from UART and sent the control signal to various 

modules in computing. Block diagram as follow: 

 
Fig. 4- 9 Main controller architecture. 

 

(1)Asynchronous Memory Controller 

In asynchronous memory controller, because of the external frequency is 

different from internal in Fig. 4- 10, so to use asynchronous conversion to the same 

speed of system input. External data would be sent into the system memory by a 

similar way as interrupted. We also placed a data counter that can be judged by the 

amount of data, and the ICA system controller would send signals to the correct path. 
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Fig. 4- 10 Asynchronous memory controller circuit. 

 

(2)ICA System Controller  

In this section, ICA system controller is the most important and complex core. It 

is like the microcontroller of the system. ICA system controller control various 

components which includes operate unit and memory unit. In order to keep from the 

control signal conflict, we divide the controller into two parts: system control signal 

and memory control signal. The control signals of system in Fig. 4- 11, old weight, 

data have sent to operated in weight update module. And the result is given into 

converge module, new_weight is sent into weight buffer for initial parameter of next 

iteration. In the memory control, we use an effective memory scheduling. In DSP 

instruction scheduling, it may waste on memory space and the efficiency of execution 

because of the data hazard may cause by read after write (RAW). In Fig. 4- 12  

System pipeline flow,we use two recursive circuits and pipeline flow to reduce half 

amount of memory access. It is an effective memory scheduling. 

 In our design, we make the memory scheduling close together to reduce waiting 

time for hazard and to achieve on-line. In another hand, we also use enable signal in 

memory. All memory registers ports are controlled by the enable signal. When system 

needs access memory, the signal will trigger memory. We add a counter in memory 
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bank, when specific memory block was accessed, the counter would count up. And 

the counter reached a critical value, controller will found that the memory has no 

demand for access. Therefore, the memory can into the power save mode. It can save 

power at memory access dynamically.     

 

Fig. 4- 11 System controller circuit. 
 

 
Fig. 4- 12  System pipeline flow. 
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See Fig. 4- 13, DO_ICA which will drive the entire system controller, the detail 

of finite state machine show in Table 4- 3. The state IDLE means that the system is 

receiving data, and can not doing operate. The state Training that is being execution 

mainly informax computing. Each time the training will consume 8192 cycles, and it 

will jump to next state Coverage when computing end. The state will jump to Done 

when the largest to 128 times of neural training. When state is Done, the data can only 

be written into memory. So the overall core speed depends on sample rate. The whole 

design detail of the micro-controller shows as follows: 

 

 
Fig. 4- 13 Illustration of micro-controller. 

 
 
 

Table 4- 3 FSM of micro-controller 
 State: IDLE State: TRAINING State: CONVERGE State: DONE 
Next 
state 

TRAINING If((&counter)& 
(&block)) 

   CONVERGE  
else 
  TRAINING 

If(decision_step) 
  If(&step) 
   DONE 
 else  

    TRAINING 
else 
   CONVERGE 

If(DOICA) 
    IDLE 
else 
   DONE 
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Fig. 4- 14 Dynamic Branch Prediction. 

 
Fig. 4- 15 Branch Controller and Flush Line. 

 

 In order to overlapping memory access time by pipeline, this thesis use dynamic 

branch prediction in Fig. 4- 14. And add flush line to clear forward pipeline register in 

Fig. 4- 15. According to the characteristic of ICA algorithm, the branch prediction can 

reduce memory access time effectively. Fig. 4- 15 illustrate that we predict the branch 
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always not taken, the branch controller would send a flush signal to clear forward 

pipeline register if taken happen and state at idle.    

 

4-1-3  Interface Design 

(1)RS232 

RS232 is the old standard and is starting to become obsolete. Few if any laptops 

even have RS232 ports (serial ports) today, with USB becoming the new universal 

standard for attaching hardware. 

(2)Tx and Rx  

Tx represents transmit and Rx represents receive. The transmit pin always 

transmits data, and the receive pin always receives it. Notice Tx is connected to Rx, 

and Rx is connected to Tx.  

(3)Baud Rate 

Baud is a measurement of transmission speed in asynchronous communication. 

The computer, any adaptors, and the UART must all agree on a single speed of 

information - bits per second (bps). 

 

(4)Asynchronous Serial Transmission  

Baud rate defines bits sent per second. But baud only has meaning if the two 

communicating devices have a synchronized clock. Asynchronous transmission 

allows data to be transmitted without the sender having to send a clock signal to the 

receiver. Instead, the sender and receiver must agree on timing parameters in advance 

and special bits are added to each word which are used to synchronize the sending and 

receiving units.  
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When a word is given to the UART for Asynchronous transmissions in Fig. 4- 16, 

a bit called the "Start Bit" is added to the beginning of each word that is to be 

transmitted. The Start Bit is used to alert the receiver that a word of data is about to be 

sent, and to force the clock in the receiver into synchronization with the clock in the 

transmitter. These two clocks must be accurate enough to not have the frequency drift 

by more than 10% during the transmission of the remaining bits in the word.  

 

Fig. 4- 16 Illustration of RS232 Protocol. 
 

When data is being transmitted, the sender does not know when the receiver has 

'looked' at the value of the bit - the sender only knows when the clock says to begin 

transmitting the next bit of the word.  

When the receiver has received all of the bits in the data word, it may check for 

the Parity Bits, and then the receiver looks for a Stop Bit. If the Stop Bit does not 

appear when it is supposed to, the UART considers the entire word to be garbled and 

will report a Framing Error to the host processor when the data word is read. The 

usual cause of a Framing Error is that the sender and receiver clocks were not running 

at the same speed, or that the signal was interrupted. Regardless of whether the data 
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was received correctly or not, the UART automatically discards the Start, Parity and 

Stop bits. If the sender and receiver are configured identically, these bits are not 

passed to the host. If another word is ready for transmission, the Start Bit for the new 

word can be sent as soon as the Stop Bit for the previous word has been sent. 

(5)HEADER controller 

In the header controller, we divide into two parts. One is receiver header 

controller and another is transmitter header controller. In whole system with four 

channels, transmit and receive from UART respectively. Fig. 4- 17 shows receiver 

header controller design. We define the transmitter protocol first. When receiver 

header controller receives data FF, it means that the FF is the header of the next four 

channels. Hence we combine the four channel data as a memory bandwidth. It is 

helpful and efficient to control these data show in GUI. However, the addresses of 

memory are 512 entries, it means that we process 512 data in each iteration. The 

signal Sample data is the main module input with 32 bit bandwidth.  

       

 

Fig. 4- 17 Receiver header controller architecture. 

 

On the other hand, we also develop a transmitter header controller. It is harder 

design than receiver. It is because the system frequency higher than interface. In order 
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to transmit system data, we need an asynchronous (first in first out) FIFO buffer to 

control the result data. The design shows in Fig. 4- 18. the asynchronous FIFO with 

two different CLK, represent the speed of input and output respectively. The numbers 

of entry are 128, because we update the result data are two second with 64Hz sample 

rate. And in transmitter header controller design, we add an encoder to encode the fix 

point result to 8 bit integer. As a result of the transmitter protocol is the same as the 

receiver, we also add a header FF in front of the result data. Finally, we connect the 

header controller with the TX module. 

 

 
Fig. 4- 18 Transmitter header controller architecture. 

 

In HEADER Controller design, we add header FF and control data in order by 

using finite state machine. The detail FSM and control signal show in Fig. 4- 19 and 

Table 4- 4. 
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Fig. 4- 19 Illustration of Header Controller. 

 
Table 4- 4 FSM of Header Controller 

 IDLE HEADER SEND_DATA 
Next state If(empty) 

  IDLE 
else 
  HEADER 

SEND_DATA If(empty && state=stop) 
   IDLE 
else if(state=stop  && 
      counter=4) 
   HEADER 
else 
  SEND_DATA 

 
 

4-2 FPGA Simulation Result in Integrated System   
We develop the algorithm by VHDL which gives the implementation not only 

better performance but also less consumption of gate array in the FPGA. In this 

section, we will show the FPGA simulation result in each component. It contains 

compilation report, timing report, and simulation report. 

 
4-2-1  FPGA Simulation in Recursive Operation Circuit   

We can see Fig. 4- 20, it show the device type and the detail of logic elements. 

We synthesized using Altera DE2 targeted for Cyclone II family. The design has 

introduced in 4-1-1, our system frequency depend on the recursive core speed. 

Because of we use deep pipeline to enhance the performance, the result will cause 
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increase of the number of register and area. On the other hand, we also use embedded 

multiplier to improve the system speed.      

 

 

(a) 

 

(b) 
Fig. 4- 20 Detail of compilation report (a) summary (b) timing.  

 

The hardware simulation we used by ModelSim, the post simulation result 

shown in Fig. 4- 21. The library provided by Altera. The recursive operation circuit 

design should calculate new weight in 8192 cycles. If the maximum numbers of 

training are 128, it may cost 13ms totally and less than sample time 16ms. Fig. 4- 22 

provides the speed consumption of recursive circuit compare with software. The 

weight update performance is 56 times faster than software. 
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Fig. 4- 21 post simulation of recursive operation circuit. 

 

 
Fig. 4- 22 Time consumption of Weight calculation.  

 

4-2-2  FPGA Simulation in System Controller  
The system controller detail report shown in Fig. 4- 23. We can find that the 

system controller implementation with very low cost logic elements. This is because 

we simplify the controller into two parts: data controller and memory controller. 

There are a lot of pins in controller because it connects all components that include 

main calculate operation, weight buffer, and memory.     
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(a) 

 
(b) 

Fig. 4- 23 Detail of compilation report (a) summary (b) timing.  
 

The behavior simulation shows in Fig. 4- 24 and Fig. 4- 25. The flow path of 

finite state machine is simple. Fig. 4- 24 illustrates the situation of the signal DOICA 

triggers the system controller and the new weight do not coverage. Fig. 4- 25 show 

that if new weight converge, the FSM will jump to next stat DONE.   

 
Fig. 4- 24 post simulation of system controller with no converge.  
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Fig. 4- 25 post simulation of system controller with converge. 

 
4-2-3  FPGA Simulation in Interface Design 

In interface hardware design, we choose UART with baud rate 115200bps. The 

implementation contains RS232 transmitter, receiver, header controller, encoder and 

asynchronous FIFO.   

The interface behavior simulation show in Fig. 4- 27 and Fig. 4- 28 individually. 

Input interface receive EEG signal by RX, and the data format will stream in with 

header. Fig. 4- 27 shows that the SAMPLEDATA are 32bits finally. And Fig. 4- 28 

shows transmitter format. Signal PUSH means that push results in asynchronous 

FIFO, then pop them in order by header controller. 

 
(a) 
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(b) 

Fig. 4- 26 Detail of compilation report (a) summary (b) timing.  
 

 
Fig. 4- 27 post simulation of input interface.  

 

 
Fig. 4- 28 post simulation of output interface. 

 
4-2-4 FPGA Simulation in Integrated System 

The system total logic elements shown in Fig. 4- 29, it costs about 16600 logic 

elements. And the memory bits about 24576, it accords with the initial design. The 

total memory bits show as blow:  

entriesfifobandwidthdataentriesmemorybandwidthdatamemorybitstotal _____ ×+×=
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(a) 

 

(b) 
Fig. 4- 29 Detail of compilation report (a) summary (b) timing. 

 

Since add the efficient memory scheduling, the core frequency determines the 

system performance. Fig. 4- 29 shows the core frequency, and in order to achieve 

real-time operation in real environment, we need to overdesign the system. The 

system speed is up to 80 MHz actually.  

The behavior simulation shows in Fig. 4- 30. It means that the ICA did 20 times 

Infomax weight training in this division with 512 point. The total process time is 

about 2.1ms, trainingtimecycletimeprocess ××= 8192__ , and the result will write 

in system memory before next input data. The maximum input-output delay is 13.7ms 

with 128 training loops. Another way, reduce memory access time by overlap 
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processing can speed up total system perform 69 times than software at 68 MHz. If 

the core speed up to 80 MHz, the total system perform can 81 times than software. 

 

Fig. 4- 30 post simulation of overall system. 
 
 

4-3 Device for Demonstration 
In the part of demonstration, we need to integrate three parts into a prototype 

system. Fig. 4- 31 illustrates the main components of the prototype system that we 

developed. We will discuss these three parts in next subsection. 

 

 
Fig. 4- 31 Illustration of demonstration. 
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4-3-1 Four channel EEG Brain-computer Interface   
As well as invasive experiments, we have been experiments in humans using 

non-invasive neuroimaging technologies as interfaces. Although they are easy to wear, 

non-invasive implants produce poor signal resolution because the skull dampens 

signals, dispersing and blurring the electromagnetic waves created by the neurons. 

Although the waves can still be detected it is more difficult to determine the area of 

the brain that created them or the actions of individual neurons. So we need ICA 

process to split these signals wave. 

(1)Electrode 

 

Fig. 4- 32 Medi-Trace 200. 
 

We use Medi-Trace 200 in Fig. 4- 32. All electrodes have an Ag/AgCl sensor of 

the highest quality and a push button. These electrodes us a solid gel which is an 

excellent adhesive and conducts perfectly. The electrodes use a new gel which sticks 

faster to the skin and reduces the skin-impedance even further. 

(2)ADC 

The AD7466 is 12-bit, high speed, low power, successive approximation 

analog-to-digital converters (ADCs) in Fig. 4- 33. In order to fit our specification, we 

truncate to 8-bit resolution. The parts operate from a single 1.6 V to 3.6 V power 

supply and feature throughput rates up to 200 kSPS with low power dissipation. The 

parts contain a low noise, wide bandwidth track-and-hold amplifier, which can handle 

input frequencies in excess of 3 MHz.  
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Fig. 4- 33 Pin Configuration of AD7466. 
 

The serial interface on the AD7466 allows the parts to be connected directly to 

many different micro-processors. This section explains how to interface the AD7466 

with some of the more common microcontroller and DSP serial interface protocols. 

 
Fig. 4- 34 Interfacing to the MSP430F161. 

 

Fig. 4- 34 shows the connection diagram. For signal processing applications, it is 

imperative that the frame synchronization signal from the MSP430F1611 provide 

equidistant sampling. 
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(3)Microcontroller 

The MSP430 is a microcontroller family from Texas Instruments in Fig. 4- 35. 

Built around a 16-bit CPU, the MSP430 is designed for low cost, low power 

consumption embedded applications. The architecture is reminiscent of the DEC 

PDP-11. The MSP430 is particularly well suited for wireless RF or battery powered 

applications. 

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the 

application. All operations, other than program-flow instructions, are performed as 

register operations in conjunction with seven addressing modes for source operand 

and four addressing modes for destination operand. The CPU is integrated with 16 

registers that provide reduced instruction execution time. The register-to-register 

operation execution time is one cycle of the CPU clock. Peripherals are connected to 

the CPU using data, address, and control buses, and can be handled with all 

instructions. 

 

 
Fig. 4- 35 MSP430 Applications. 

 

The MSP430f161 devices have a second hardware universal 

synchronous/asynchronous receive transmit (USART1) peripheral module that is used 
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for serial data communication. The USART supports synchronous SPI and 

asynchronous UART communication protocols, using double-buffered transmit and 

receive channels. 

 

(4)BCI (brain-computer interface) 

The detail of BCI we discuss above. As we know capability and specification in each 

component, we can integrate them into a BCI. Fig. 4- 36 shows the detail signal 

connection of BCI. The EEG signal recoded by sensor, then transmit them by 

AD7466 with Serial Peripheral Interface protocol. If a single slave device is used, the 

CS pin may be fixed to logic low if the slave permits it. With multiple slave devices, 

an independent CS signal is required from the master for each slave device. Most 

devices have tri-state outputs that become high impedance when the device is not 

selected. Devices without tri-state outputs can't share SPI bus segments with other 

devices; only one such slave may talk to the master, and only its CS may be activated. 

 
Fig. 4- 36 four channels brain-computer interface. 
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4-3-2 Wireless Transmission Model 

Bluetooth is a standard and communications protocol primarily designed for low 

power consumption, with a short range in Table 4- 5  based on low-cost transceiver 

microchips in each device. Bluetooth enables these devices to communicate with each 

other when they are in range. The devices use a radio communications system, so they 

do not have to be in line of sight of each other, and can even be in other rooms, as 

long as the received transmission is powerful enough. Bluetooth device class indicates 

the type of device and the supported services of which the information is transmitted 

during the discovery process.  

 

Table 4- 5 low-cost transceiver microchips 

Class Maximum Permitted Power mW Range (approximate) 
Class1 100 mW ~100 meters 
Class2 2.5 mW ~10 meters 
Class3 1 mW ~1 meter 

 

Bluetooth exists in many products, such as telephones, printers, modems and 

headsets. The technology is useful when transferring information between two or 

more devices that are near each other in low-bandwidth situations. Bluetooth is 

commonly used to transfer sound data with telephones or byte data with hand-held 

computers. Bluetooth simplifies the discovery and setup of services between devices. 

Bluetooth devices advertise all of the services they provide. This makes using services 

easier because there is no longer a need to set up network addresses or permissions as 

in many other network. 
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Fig. 4- 37 Pin Configuration of BM0203. 

 

When we have defined the transmission protocol, it can conform to various 

application of transmission interface easily. We choose wireless transmission by using 

Bluetooth. BM0203 is an integrated Bluetooth module to ease the design gap and 

increase time-to-market performance. BM0203 uses CSR BuleCore4-External as the 

major Bluetooth chip. With simple commands to communicate with BM0203, the 

host does not need to worry about the details and complexity of Bluetooth profiles. 

The application allows Bluetooth object-transfer capability to be easily added to 

systems with no Bluetooth capability.  

We use the pad to connect FPGA and Bluetooth show in Fig. 4- 37. The detail 

pad description in Table 4- 6.  
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Table 4- 6 Detail pad description 

Power 
and 

Signal 

Pad 
and 

Number 
Pad Type Description 

GND GND 20 Ground 
Ground 

connections for 
digital 

VCC3.3 V3.3 19 Regulator input Voltage supplier 
from 2.8 to 4V 

UART_RX UART_RX 09 
CMOS input with 

weak 
internal 

UART data input 

RF RF OUT 33 RF RF Output 
 
 
4-3-3 GUI for Display 

The EEG GUI (Graphical User Interface) develop by JAVA, it can receive data 

from Bluetooth. The receiver format stare with header FF and the channel data can be 

transmitted one by one in order. The button on the top is detection of Bluetooth device 

(SPP service) and stare Bluetooth streams. The GUI display in Fig. 4- 38. 

 

Fig. 4- 38 EEG Graphical User Interface. 
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4-4 Summary  
In the fourth chapter, we discuss circuit design of the system. We design overall 

system up to down from software simulation of system level to real hardware 

implementation. In the hardware design, we assess the speed of system should have 

by software first. Then simplified whole system into a few individual and achieve 

them. However, in the error estimation we found that the fix-point calculation with 

more aliasing than floating point calculation. But we make a choice to reduce circuit 

area and accelerate the overall system speed. And the error tolerance is under our 

control. On the other hand, the transmission control protocol design tally with the 

front-end circuit (MSP430) interface particularly, and the back-end protocol also tally 

with wireless transmission method. In order to achieve faster computing, we using the 

precise symmetric look-up table and parallel computing operation. The specification 

of the hardware we developed show in Table 4- 7 which with input sample rate 64Hz, 

128 times iteration in neural training, each training spends 8192 cycles, and system 

frequency is 68MHz with UART transmission interface. 

 

Table 4- 7 System specification 

 Operate Frequency 68MHz 
Sample Rate 64Hz 

Gate Counts(million) 0.315 
Operate Voltage  3.3v 

Transmission Interface UART 115200bps 
Embedded Memory (M4K) 24576bits 

ADC Resolution 8-bits 
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Chapter5  
Experimental Results 

 
 

In this section, we will show the real-time calculation result in GUI and 

comparison with other ICA design. 

 

5-1 Result Super Gaussian BSS Methods in GUI 
We compare software simulation result in chapter 3, and in this part we will 

verify the real ICA hardware results in real-time with GUI display. The 

post-simulation and off-line correlation has shown in Fig. 5- 1, Fig. 5- 2, Fig. 5- 3, 

and Fig. 5- 4 individually. In Fig. 5- 5(a) and Fig. 5- 6(a) show the GUI display of 

four channel mixed signals. In GUI display, we set the data bandwidth are 8-bit and 

the header is FF. However, in Fig. 5- 5(b) and Fig. 5- 6(b) show the ICA result in GUI 

display, we can find that if the original signals are pure super-Gaussian like this, the 

system will has a good result. Another way, we discuss EEG signal that has less 

information without ICA process apparently in Fig. 5- 7(a), and Fig. 5- 8(a). After 

ICA infomax update, the analysis signals will have more distinct information than 

original signals without ICA process. The ICA result of EEG signals shows in Fig. 5- 

7(b), and Fig. 5- 8(b). In real-time ICA verification, we divided into two parts: 

super-Gaussian signals and EEG signal in real environment.  
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(1) Post-Simulation and Off-line Correlation  

 
Fig. 5- 1 left is pattern1 post simulation, and right is offline ICA result. 

 

 
Fig. 5- 2 left is pattern2 post simulation, and right is offline ICA result. 

 

 
Fig. 5- 3 left is EEG1 post simulation, and right is offline ICA result. 

 

 
Fig. 5- 4 left is EEG2 post simulation, and right is offline ICA result. 
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(2)Super Gaussian in GUI 
1. Super Gaussian Pattern 1 

 
(a) 

 
(b) 

Fig. 5- 5 (a) mixed signal (b) ICA signal. 
2. Super Gaussian Pattern 2 

 
(a) 
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(b) 

Fig. 5- 6 (a) mixed signal (b) ICA signal. 

(3)EEG in GUI 
1. EEG Pattern 1 

 
(a) 

 
(b) 

 Fig. 5- 7 (a) mixed signal (b) ICA signal. 
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2. EEG Pattern 2 

 
(a) 

 
(b) 

Fig. 5- 8 (a) mixed signal (b) ICA signal. 
 

 
 

5-2 Comparison with other ICA Design  
There have been few studies about the real-time implementation of ICA which 

has been implemented as an ASIC by FPGA. In this thesis, we will discuss with the 

differentiation between our proposed and others in Table 5- 1. 

In recent years, there have been few studies about the real-time implementation 
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of ICA. In 2002, Scatter and Charayaphan [14] implement an ICA-based BSS 

algorithm on Xilinx Virtex E that contains 0.6 million logic gates. In 2004, Du and Qi 

[15] proposed an FPGA implementation of parallel ICA on a pilchard board, and used 

dual inline memory module (DIMM) random access memory (RAM) slot as an 

interface to communicate with central processing unit (CPU) and exchange data with 

memory in a SUN workstation. Charoensak and Sattar [16] proposed an FPGA design 

for real-time ICA-based BSS in 2005, using software to translate the high-level 

language, MATLAB Simulink, into hardware description language (HDL) code. And 

Pipelined FastICA[17] using the hardware floating-point (FP) arithmetic units to 

increase the numbers precision in 2008. 

 

Table 5- 1 Comparison with other ICA design 
Name Application Channel Gate counts Speed 

Low cost 
2002[14] 

speech 2CH 0.6  million gates 20 MHz 

Parallel ICA 
2004[15] 

hyperspectral 
image 

N/A 0.226 million gates 20.1MHz 

A Single-Chip 
FPGA 

2005[16] 
speech 2CH 0.1 million gates 71.2MHz 

Pipelined 
FastICA 
2008[17] 

speech 2CH N/A 50MHz 

This work EEG 4CH 0.315 million gates 68MHz 
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Chapter6  
Conclusion  

 
 

In this thesis, we had implemented four channels on-line ICA accompanied with 

flexible UART interface for real environment signal processing at 68MHz. We 

proposed integrated mathematics architecture allows high-speed real-time signal 

processing of Infomax ICA with sample rate up to 64Hz. Furthermore, the effective 

system controller and memory scheduling provide a high performance processing for 

real-time execution. And the system memory with enable signal is a low power 

method for portable application. The prototype demonstration in Fig. 6- 1, we have 

complete four channels EEG receive interface, Bluetooth wireless transmission and a 

GUI program for portable device. In our system, it is helpful for real-time biomedical 

monitor. 

 
Fig. 6- 1 ICA prototype demonstration. 
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In the future, the design can be developed for two parts: 

1. We can improve the operation precision and system error tolerance by floating 

point calculating in next generation..  

2. We can integrate ICA into a system chip as an intellectual property. By integrating 

with ADC, micro processor, and ICA itself to achieve SOC design. 

3. If the number of channels up to eight, it can be used more than one integrated  

operate modules for on-line processing, than the memory buffer and controller 

might be modified a little bit. 

4. In practical applications, we can use the characteristics of real-time analysis to 

replace the thing which offline did and to achieve real-time detection processing. 

For example, immediately detect sleep signals to send a warning to driver. We use 

on-line ICA to substantially increase accuracy than without ICA process. 
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