w3 i T EEG A BB F 2 447
2. FPGA 7 7

FPGA Implementation of Four-Channel ICA for

On-line EEG Signal Separation

Moy o4 i s

s ey B

PEAR 4L & =0

i TR EEG b § A 52
FPGA § 1L
FPGA Implementation of 4-Channel ICA for
On-line EEG Signal Separation

P R N & Student : Wei-Chung Huang
dp R e Advisor : Dr. Chin-Teng Lin

A Thesis
Submitted to Department of Electrical and Control Engineering
College of Electrical Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in

Electrical and Control Engineering

July 2008

Hsinchu, Taiwan, Republic of China

cligg’;g\]};],i;;_&;a

LErEFEEG AR F 24472

FPGA § %
FLoiwwd I yck T thit B4

X

AEFERDIRERERY P odem R £MELY 447 0 b2 3L apE L EL
AR~ BF LR AL blded el FOUBLASE - A Y- BAN TR
BoA 2 gpr EE A 2 R IBEG ELA A o © % T ERECY B
FPGA, £ dfd E7 B~ deid araf e fgd Roeenis % > A~ #7311 eha 4
RO BRI R 56 R 0 T G HHp M Adcfedr SULEL A T 80% o ke
o F T AlteraDE2 # B B 1 0 S5k % 16605 B4EH ~ o

Aok SRR e A TR AL S 4~ B G % 0 R
% EEG L yLm dLenfp® o % Tt x (i B iF e phd Faugis g i ol o

WAL 64Hz o X B A M B T BT R AR (FE & & 68MHz -

il

FPGA Implementation of 4-Channel ICA for
On-line EEG Signal Separation

Student : Wei-Chung Huang Advisor : Dr. Chin-Teng Lin

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

Blind source separation of independent sources from their mixtures is a common
problem for multi-sensor applications ,in. real world, for example, speech or
biomedical signal processing. This thesispresents an independent component analysis
(ICA) method with information maximization (Infomax) update applied into
4-channel one-line EEG signal Separation. This can-be implemented on FPGA with a
fixed-point number representation, and then'the separated signals are transmitted via
Bluetooth. As experimental results, the proposed design is faster 56 times than soft
performance, and the correlation coefficients at least 80% with the absolute value are
compared with off-line processing results. Finally, live demonstration is shown in the
DE2 FPGA board, and the design is consisted of 16,605 logic elements.

The 4-channel On-line ICA accompanied with flexible communication interface
for real EEG signal separation has been presented in this thesis. The proposed
integrated mathematics architecture can allow high-speed at 68MHz and real-time

biomedical signal separation with Infomax ICA at sampling rate 64 Hz.

il

A

B EG T A REF w0 o5 s EF O B R BT LA
R el 0 RAEE LG ki R R Ay T R
T AR R e gy SRR R o R R LR LA BN -
ﬁ,azw%ﬁwﬂﬁwé%ﬁpi*%°®ﬁ%ﬁﬁ%wmwtmp %
B RnT Rz sl E o ALY Yo d_bEFF,;;‘L-‘E"ﬂa‘ﬁ%-
TORALY PRS2 G R R RAEE RS

ARSI AT AR Rk E S FERRE L Ay
KA ##’i PR ICEE L BT R RE R K AN
HAMTRER L L ol Bip) AT - 8 RE - REHFsER
ﬁf‘*#?ﬁguﬂgi b o B R ANGSHY S e s R o BE LR
ERME LAY E’ﬂa‘ﬁéﬁ- s BTHRA T A2F 5 R RE o T b B IHE %
TGP o TR AR FE I EEE P B Ak S
a2 A S FB A B R FHTRE T U2
Feg Gk PRE AR BN TR NG R R0 2 A
SRR EL = g,t}% o

BB R BRA § ¥ S s e F A R R Ty
ALE AT M W] L A R R S R X s RRE R
AP ArRE o nd e aTRE RIS GATE 0 FS RS AP 3
FHFE- A arad o

e

v

Contents

P2 dE B s e e b bbb bbb ii
ADSEIACE.ccuueiitieiiicsnensenistensticstenssecsseessssessnsssssssesssssssssssssssssessssessanssssssssasssssssassssaesss iii
= iiiv
LiSt of FigUIesS.....uuuiicciiiiiviiiinnrinssenissnicssnicssencssssncssssscsssssssssscsssses vii
LISt Of TADIES..cuueeiuiiiiiirniniieitenniensnensaensnecsnicssnssssesssessssesssessssssssesssssssssssssssssassssessaass X
Chapter 1 INtroduction.....cceeecccceeicssiecssnnicssnnecssnnessssnessssnessssssssssossssssssssssssssssssnsass 1
1-1 MOtIVALION . cueeesueesssecsnnsssnsssnssssnessnssssnssssssssnsssasssssssssssssnssssssssesssssssssssassns 1

1-2 Goal aNd SUMMATY sececreeecssarecssaresssasesssasssssesssssasssssssssssssssnssssssssssnsssssnns 2

1-3 Organization Of the TRESIS veceereressseresssaresserssserssssesssssesssssssssssssssnssssanns 2
Chapter 2 ICA Algorithm 3
2-1 Basic Concepts Of ICAuuuiiiiccnseresssnncsssnnssssnssssasesssasssssassssssssssssssssnssssanes 3
2-1-1 Problem DeSCIIPLion ciceeeecssseesssssesssnsssssnssssanssssassssssssssssssssssssssnsssses 3

2-1-2 FOrmulation..eececeeisseecseensseinsnnsecnsnecssnicsesssensssecsssncssnssssnsssesnns 4

2-1-3 Independent CoONAItiONS iitsseeeesseessssssssssssssanesssanesssasessssssssssssssnsssses 5

2-2 Two kinds of ICA AlZOTithim e, i coiitnreeeiieeieeeieeeeeeee e, 6
2-2-1 The Concept of Entropy and Mutual Informationceeeeeeueeennee. 6

2-2-2 Infomax ICGAL,..- TGlcconeeeiicnnecsnncnsesssncsnnaens 8

2-2-3 FAST ICA .48 . S ELELIE - - oeeconnesersanssonsnsssnsssnesassanssonses 13

2-3 Main Structure of [CAMethods sieteeeeenseicseisseenseecsseicsunsssencsnecsencnees 18
2-3-1 The Choice of I[CA AlZOrTthMu..ecicseiesseesssnessesssasessanssssssasssassssasons 18

2-3-2 Solution of ON-1INE ICA ...uueieuiiseinniisiinteisensnesseessaessenssseesnns 18

Chapter 3 System Architecture Design and Simulation Result..............ccuceuu... 21
3-1 SYStemM ATCRItECTUIE cevueressanessssrssssarssssassssasesssasssssssssssssssssssssssssssnsssssans 21
3-1-1 ComPULING FIOW cecuveecssaresssarcsssanessansssasssssasssssssssssssssnssssssssssssssss 21

3-1-2 Specification 0f On-liNe ProCEsS..ueiecerecsseresssersssserssssesssssssssasssses 23

3-2 Comparison with off-line Sup-Gaussian BSS Methods.....eeeeeseeessseecees 24
3-2-1 Simulation 8-bit Super Gaussian Mixed Pattern 1.....ceeceeessseeenes 24

3-2-2 Simulation 8-bit Super Gaussian Mixed Pattern 2......ceeceressseeeses 28

3-3 Comparison with off-line EEG BSS MethodS...cceeiescercssnercssaescssanecnes 31
3-3-1 Simulation 8-bit EEG Mixed Pattern 1....cceevecseeessercseesencsnennns 31

3-3-2 Simulation 8-bit EEG Mixed Pattern 2....cueeeveecseeessercsneesseccsnennns 34

3-4 Summery of COMPATISON wueeeerseeesssresssaresssasesssassssssssssssssssssssssssssssssssssans 37
Chapter 4 Implementation of the On-line ICA System on FPGA..................... 38
4-1 Architecture of real-time SYStEMS uuececrseecsssresssaresssanesserssssessssssssssnsssses 38
4-1-1 Implementation of Recursive Operation CirCUit.eeeeesesesssesesssses 39

4-1-2 Implementation of system Controller ..ieeeeeceseresssescsssesesssesssnnees 46

4-1-3 INETface DESi@N uecccrerecssaressaresssnnssssnssssanssssasesssassssssssssssssssnsssssnsses 51

4-2 FPGA Simulation Result in Integrated SysStemMu.cceseeeesseressseressresesnsscses 55
4-2-1 FPGA Simulation in Recursive Operation CirCUit...eeeeeesssesesnsses 55

4-2-2 FPGA Simulation in System Controller..c.eeeeesseessseressesesssesssensees 57

4-2-3 FPGA Simulation in Interface Design ..ccceveeesseressasessserssssessssnnses 59

4-2-4 FPGA Simulation in Integrated SySteM.cccceeeeseressseresssercsssesssnnees 60

4-3 Device for Demonstration....eceeeceeecssecsssecssessssnsssecsssecssessssnsssesssssessees 62
4-3-1 Four channel EEG Brain-computer Interfaceceeeeesssesesssescsnnees 63

4-3-2 Wireless Transmission Model...ueccseecsensseecsenseccsnecssencssncsnnnens 67

4-3-3 GUI {Or DISPIAY teeeurecssaresssarcssanessasssssssssssassssssssssssssssnssssssssssssssss 69

4-4 SUIMMATY tevverecessssnnecssssssresssssssassssnsssasss 70
Chapter 5 Experimental Results........ccoeievveriirvnrinssnnicssnncsssnncssnrcssnnncssssncssssecsanns 71
5-1 Result Super Gaussian BSS Methods in GUI...cceeeeeccercssnerescnesesnnsenes 71

5-2 Comparison with other ICA DeESIZN cecererseresseressreresssessssssssssssssssnsssses 75
Chapter 6 CONCIUSIONucieuveiiivuriiirnnicisnrinssnnicsssnessssnesssnesssssosssssosssssssssssssssessanes 77
REfEIrENCES.ccuuiiiueiiriniiiiiniiieeisneeseeessisiotdesastitsnsseessaccssesssaesssesssasessasssassssasssssssansssassns 79

vi

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

List of Figures

2- 1 lustration of the BSS problem..........c.cccccuiieiiiieiiieceeeeeeeeeee e, 4
2- 2 Illustration of ICA formulationccoeceeiiiiiiiiiiiiee e 5
2- 3 Illustration of probability density diStributionccccccveeveieerciieincieeesieeenne, 6
2- 4 Entropy relationship by the concept of s€t........cccouveeiiiiiiiiiiiieeieeeeeeee, 7
2- 5 Blind separation network architectures for two-source mixtures.................... 9
2- 6 Illustration of Off-line and on-line algorithmc.ccoevveeriiiiiciiiieeee. 19
2- 7 Diagram flow of the computation of implementation of on-line ICA learning

Y Fe00) 11 110 0 RS 20
3- 1 Illustrate of time process in on-line ICAcceeeeiieeeiieeiiieeee e, 22
3- 2 Matlab eXeCUtION tIME.....cc.eeiiiiiiiiiieiie ettt et 23
3- 3 (a) original signal and p.d.f of original signal (b) mixed signal.................... 25
3- 4 Oftf-line EEGLAB t00IDOXcoiiiiiiiiiiiiieiceeeeee e 26
3- 5 Time-domain Comparison of on-line and off-line algorithm........................ 26
3- 6 Correlation coefficients Comparison of on-line and off-line algorithm........ 27
3- 7 FFT comparison of on-line and eff-line algorithmccccooinie. 27
3- 8 Time-Frequency Comparison of on-line and off-line algorithm................... 28
3- 9 (a) original signal andp.d.f of original signal (b) mixed signal.................... 29
3- 10 Time-domain Comparison of‘on=line and off-line algorithm...................... 29
3- 11 Correlation coefficients Comparison. of on-line and off-line algorithm......30
3- 12 FFT comparison of on-line and off-line algorithmcccccvveriennenne. 30
3- 13 Time-Frequency Comparison of on-line and off-line algorithm................. 31
3- 14 Mixed EEG Si@Nalccccuiiiiiiiiiiiciieeee ettt 32
3- 15 Time-domain Comparison of on-line and off-line algorithm...................... 32
3- 16 Correlation coefficients Comparison of on-line and off-line algorithm......33
3- 17 FFT comparison of on-line and off-line algorithmccceevererennnnns 33
3- 18 Time-Frequency Comparison of on-line and off-line algorithm................. 34
3- 19 Mixed EEG Si@NAI2oiiiiiieiiieiie ettt e 34
3- 20 Time-domain Comparison of on-line and off-line algorithm...................... 35
3- 21 Correlation coefficients Comparison of on-line and off-line algorithm......35
3- 22 FFT comparison of on-line and off-line algorithmccceeeervrennnnnns 36
3- 23 Time-Frequency comparison of on-line and off-line algorithm.................. 37
4- 1 (a) Top level hardware architecture...........cceeevieevieeeiiie e 38
4- 2 ICA main System archit€CtUreccveeeuieeriiieeriie e esree e eevee e 39
4- 3 Non-linear funCtioncoouiiiiiiiiiiiiieiee e 40
4- 4 Precision Symmetrical Non-linear Piecewise Look up Table....................... 41

vii

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

4- 5 Comparison of floating-point and fix point functioncccceeevveeerveennee. 42
4- 6 Integrated COMPULING UNILcccuvveeiiieeiiieeiiee e et eeree e e e e e e e e 43
4- 7 Main Calculation Model architecture..............ccccceeiiiiniiniiiniiniieie e 44
4- 8 Final Result architeCture.eiiuieiiieiiieiieiieeiccee e 45
4- 9 Main controller architecture.............ccceeiiiiiiiiiiiiiieeee e 46
4- 10 Asynchronous memory controller Circuit..........ccceeevveeeviveerciieenciee e 47
4- 11 System cONtroller CITCUILeeeviiieiiieeciie et e e 48
4-12 System pipeline floOW.......ccccuveeiiiiiiiieeiieee e e 48
4- 13 Illustration of Micro-CoONtroller.........cocuiiiiiiiiiiiiiiiiieie e 49
4- 14 Dynamic Branch Predictioncocvveiiiiiiiiieciieecee e 50
4- 15 Branch Controller and Flush Line.........ccccoooiiiiiiiiiiiieceeee 50
4- 16 Illustration of RS232 Protocol..........ooiuieiiiiiiiiiiieiieceee e 52
4- 17 Receiver header controller architecture..............cooceeviiniiiniiniiiniiiiienes 53
4- 18 Transmitter header controller architectureccoceevieeiieniiiiienieeeene 54
4- 19 Illustration of Header Controller............ocooiiiiiiiiiiniiiiieiiiceceee 55
4- 20 Detail of compilation report (a) summary (b) timing...........ccceeevveeeeveennnee. 56
4- 21 post simulation of recursive,0peration CirCUit...........ceeveeerieenieirieenieenieene 57
4- 22 Time consumption of Weight calculation'«...............cccoevvvevienciiinieiiienns 57
4- 23 Detail of compilation report (2) summary (b) timing...........cccceeveerueenenne 58
4- 24 post simulation of system controller with no converge...........c..ccooeevrennennns 58
4- 25 post simulation of system controller With converge...........cccoveeeevieniienenns 59
4- 26 Detail of compilation report.(a) summary (b) timing..........ccceeevveeeenveennnee. 60
4- 27 post simulation of input INterface...........ccveeviieeriiieeiiie e 60
4- 28 post simulation of output INtErface..........cceevvieeriieeeiiieeciie e 60
4- 29 Detail of compilation report (a) summary (b) timing...........ccceeevveeeeuveennnee. 61
4- 30 post simulation of overall SyStemM..........cccueevviiiriiieeriieeeie e 62
4- 31 Illustration of demMONSIatioNcc.eieiuieiiiiiiieiieeeee e 62
4- 32 Medi-Trace 200c.ooiiiiiiiiiieieeie ettt ettt et 63
4- 33 Pin Configuration 0f AD7460ccccuveeviiiiiiieeiieeeie et 64
4- 34 Interfacing to the MSP430F 161cccooiiiiiiieeeeeeeee e 64
4- 35 MSP430 APPLICATIONS....cuviieeiiieeeiiieeiieeeriee e e eieeeetre e et e e ereeesaeeesareeenaaeas 65
4- 36 four channels brain-computer interface............cccceeeveveeeriieeencieeeeiee e, 66
4- 37 Pin Configuration of BMO203..........cccoeiiiiiiiieeee et 68
4- 38 EEG Graphical User INterface..........cccuveevivieiiiieniieeciie e 69
5- 1 left is pattern1 post simulation, and right is offline ICA result..................... 72
5- 2 left is pattern2 post simulation, and right is offline ICA result..................... 72
5- 3 left is EEG1 post simulation, and right is offline ICA result 72
5- 4 left is EEG2 post simulation, and right is offline ICA result 72

viii

Fig. 5- 5 (a) mixed signal (b) ICA signal..........ccocuvieriiiiiriiiieeieecee e 73

Fig. 5- 6 (a) mixed signal (b) ICA signal..........ccccvvieriiiieiiiiecieecee e 74
Fig. 5- 7 (a) mixed signal (b) ICA signal..........ccocuvieiiiiieiiiiieciie e 74
Fig. 5- 8 (a) mixed signal (b) ICA signal..........ccccuiiiriiiieiiiiieciie e 75
Fig. 6- 1 ICA prototype demonStration..........ccueeecuieeeiiieesiiieeniieeeieeeereeeveeeesveeseneeens 77

X

List of Tables

Table 2- 1 FastICA algorithm with deflationary orthogonalization...............c..cc.u...... 16
Table 2- 2 FastICA algorithimcocoviieiiiiiiicceece e 17
Table 3- 1T Matlab profileceeeciiieiiiieiiee e 22
Table 4- 1 Description of the non-linear CirCuit............cccceeeeciieeriieeniie e 41
Table 4- 2 Description 0f TeCUISIVE CITCUIL......uuiiriieeeiireeiieeeieeeeieeeeieeesveeeereeesereeenns 43
Table 4- 3 FSM of micro-controller............cuoiiiiiiiiiiiniiiieiceie e 49
Table 4- 4 FSM of Header Controller...........cooooiiiiiiiiiiiiiiieiecceeeeee e 55
Table 4- 5 low-cost transceiver MICTOCHIPScccviieiciieeiiie et 67
Table 4- 6 Detail pad deSCrIPLIONccueeeeiiieeiieeciee ettt ettt e e e eeaeeearee e 69
Table 4- 7 System SPeCIfICAtIONcccveiieiiiiiiieeciie ettt et e e e eveeeseaee e 70
Table 5- 1 Comparison with other ICA designcceeevveevciieeciiiecie e 76

Chapterl

Introduction

1-1 Motivation

In recent years, Independent Component Analysis (ICA) has been proved as a
powerful algorithm to solve blind source separation (BSS) [1] problems in a variety of
signal processing applications such'as ‘speech [2], image, or biomedical signal
processing. Especially biomedical signals, which are different signal sources from
organs such as brain, heart, ot muscles; push the ICA algorithm to process more
channels than speech or image applications. However, the characteristic of general
ICA is limited to only process off-line and enormous data. On clinic, this cannot assist
doctors in real-time diagnosis. Thus, more researches focus on on-line and faster ICA
from points of view on software or hardware implementation.

The applications of ICA are separation of artifacts in Magnetoencephalography
data, finding hidden factors in financial data, reducing noise in natural images, and
telecommunications. Another, very different application of ICA is on feature
extraction. A fundamental problem in digital signal processing is to find suitable
representations for image, audio or other kind of data for tasks like compression and
denoising. In On-line ICA application, it can detect the characteristic of biomedical
signals immediately by On-line processing and send out the correct response to

human. It is helpful to real-time biomedical monitor. Another application, it can used

for reduce dimension on high-channels data or extract noise in clamant environment.
Since the large number of matrix operation and complicated non-linear
computation are required, it is hard to real-time process in embedded systems.
However, the FPGA implementation not only accelerate the speed of the operation
circuit by parallel processing, but also show real-time computation and low-power

property by fast symmetrical non-linear lookup table.

1-2 Goal and Summary

The Infomax ICA algorithm which is based on the concept of information
maximization is designed to solve the problems of blind signal separation (BSS).
There are two problems: The algorithm is not suitable for on-line computation, and
complicated mathematics operation which make Infomax ICA hard to implement in
VLSI. The algorithm has been-improved by-a new-effective hardware and overlap
memory scheduling to solve those problems:-Finally, the thesis using pipeline flow to
increase calculation throughput, and-add dynamic branch predict to overlapping

memory access time in pipeline.

1-3 Organization of the Thesis

This thesis is organized as follows. The Infomax theory and system level design
are introduced in chapter 2 and chapter 3 individually. Chapter 4 describes FPGA
implementation of ICA. The experimental results and discussions are presented in

Chapter 5, and conclusions are made in the last chapter.

Chapter2
ICA Algorithm

2-1 Basic Concepts of ICA

ICA could be used in different fields, ,for example: image, audio signal
processing, and biomedical data analysis. In this section, the basic concepts of ICA

from the viewpoints of signal processing and statistics are introduced.

2-1-1 Problem Description

ICA is created to solve cocktail-party problems in signal processing. There are
situations where there are a number of signals produced by some physical sources.
These signals could be, for example, electric signals from different brain areas, speech
signals from different people speaking in the same room [3], or radio waves from
different mobile phones in the same area [4]. The sensors are placed in different
positions, so that mixtures are different from one another as a result of space factors.

In practice, the information about the original signals and the mixing system are
unknown, and the information of mixed signals from sensors. For this reason, drawing
out original signals from those mixtures is professed Blind Source Separation. The

BSS problem is illustrated in Fig. 2- 1. ICA is one of the useful methods to precede

BSS problems which separate signals mainly by independence. In the following

contents, representations will be called components due to the name of ICA.

unknow know

Source Measure

§ 1 \. X 1
Source Measure

5, \\-_‘ Mixed X,

matrix

Source / Measure

5, i X,

1]

Fig. 2- 1 Illustration of the BSS problem.

ICA looks for components.'that are both" statistically independent and
non-Gaussian from mixed data which distinguishes ICA from other BSS methods.
Besides, ICA gives good representations. .of. ‘'source signals through the linear
combination of mixed signals with non-linear decorrelation methods. In practical
situations, it is easy to find the components which are really non-Gaussian.

On the other hand, the best de-mixing matrix that makes the components really
independent to each other can not be found in general. It should be noted that

algorithms exist to make the components as independent as possible.

2-1-2 Formulation

Most of the work on BSS so far addresses the case of mixtures, where a linear
mixture model is assumed:
x(t)=Axs(t) (2.1)

where s(t) is the vector of sources at instant t, A is the mixing matrix, and the

observed vector of mixtures (ignoring noise). I[CA now consists of estimating both the
matrix A and s when x is the only given signal. It should be noted that the number of
independent components s(¢), equals to the number of observed variables

x(¢), which is a simplifying assumption and is not completely necessary. ICA obtains

a nxn matrix W where

S M X
S2 ~ yz :WX x2 (2 2)
Sﬂ y}’l x?‘l

Above the equation, s,(¢)= y,(t)=W xx,(t), p, is called the representation of
sources from the measurements. If is more similar to S, it is a better representation.

Fig. 2- 2 shows the formulation of ICA,

Fig. 2- 2 Illustration of ICA formulation.

2-1-3 Independent Conditions

Sources are assumed to be statistically independent and non-Gaussian in ICA.
The condition is a critical technique that makes ICA different from other methods.

According to the central limit theorem (CLT), sum of non-Gaussian random
variables are closer to Gaussian than original ones. However, non-Gaussian
assumption is also due to a natural disadvantage of ICA. In the statistical point of
view, uncorrelated data are independent only when those data are Gaussian. Therefore,
if the original independent components are Gaussian, their mixtures must be Gaussian.
After mixtures are turned into uncorrelated by pre-processing, they are still Gaussian

and already independent. However, those uncorrelated mixtures are always dissimilar

5

to the original independent components. There are two kinds of non-gaussian data:

super-Gaussian and sub-Gaussian as illustrations in Fig. 2- 3.

— super-Gaussian

Gaussian

/m;(;?ssi;n\

Fig. 2- 3 Tllustration of probability density distribution.

2-2 Two kinds of ICA Algorithm

We consider methods for estimating solution to the unknowns in ICA problem.
In the simple case, we assume noiseless ICA x=As are the elements of the mixing
matrix, A, and the sources s which we consider as being estimated by a recovered

source set a.

2-2-1 The Concept of Entropy and Mutual Information

The ICA algorithm assume all of the sources are independent in the module. The
M sources together generate an M-dimensional probability density function (p.d.f)
p(s). Statistical independence between the sources means that the joint source density

factorizes as (2.3)
p(&)=] [»Gs,, () (2.3)

If the p.d.f of the estimated sources also factorizes then the recovered sources are

independent and the separation has been successful. Independence between the
recovered sources is measured by their mutual information, which is defined in terms

of entropies.The entropy of an M-dimensional random variable x with p.d.f p(x) is
H[x]=H[p(x)]=- _ p(x)log p(x). (2.4)

The entropy measures the average amount of information that observation of x

yields. The joint entropy H[x,y] of two random variable x and y is defined as:
H[xy]=H[p(x;y)]=— D p(x,»)log p(x,y) , (2.5)

where p(x,y) is the Joint probability density of variable x and y. We can consider the
entropy of X and y as a set. In Fig. 2- 4, joint entropy H[x,y] is continuum of H[x] and

H[y], for H[x,y]< H[x]+ H[y], if x and y are independent, H[x,y]= H[x]+ H[y].

H[x,y]

e

/
H[x] Hly]

Fig. 2- 4 Entropy relationship by the concept of set.

The conditional entropy of y given x is
Hy[x]==_ p(y|x)log p(y | x). (2.6)
Conditional entropy H[y|x] is entropy H[y] without H[x]. From which it follow that
H[x,y] = H[x]+ H[y[x]

= H[yl+ H[x]y]. (2.7)

7

The above equation means that the sum of the information encoded by x alone
and the information encoded by y given a knowledge of x. The entropy of each
variable is related to probability of observations.

The mutual information between two random variables x and y is defined in
terms of their entropies as follow (2.8):

I[x,y]=H[x]+H[y]-H[x,y]
=H[x]-H[xly]
=H[y]-H[ylx]. (2.8)

From the equation above, the mutual information contains the sum of the entropy

of each variables and the difference of the joint entropy of all variables.

Using concept of mutual information, an m-dimensional random variable y,,

i=1...n, the mutual information of all variable 1s'defined as:
1(yy, y5e 59 = 2 H) —H(y) . (2.9)
i=1
Where H is entropy, H(y) is the joint entropy.'H(y, y, ...,y,) of variable y,, the

value of mutual information always positive or zero. If and only if the value is zero,
each variable is independent. If the target is finding the minimum mutual information
between each variable, it is equal to find the direction of non-Gaussian distribution.
Next section, we will describe two methods of ICA: Information maximization ICA

and FastICA.

2-2-2 Infomax ICA

(1)Information maximization
Bell and Sejnowski [5] proposed to learn the separating matrix # by minimizing
the mutual information between components of y(t) = g(u(t)) , where g is a nonlinear

function approximating the cumulative density function (cdf) of the sources. Bell &

Sejnowski formulated blind source separation algorithms in terms of information
maximization.

Consider the information transmitted by mapping f: x —y. K.Torkkola [6]
consider the two-stage mapping, which might be implemented by a single layer

feed-forward neural network in Fig. 2- 5, as follows:

u=W#*x, (2.10)
y=g(u), (2.11)
W11
X1 » D lg » yl
W12
W21
X2 >l g > y2
W22

G

Fig. 2- 5 Blind separation network architectures for two-source mixtures.

where W is a linear transformation and g is a bounded nonlinearity applied to each
individual output u. The information transmitted by the mapping is the mutual
information between the input and output:
1x,yI=H[x]+H[y]-H[xy]
=H[yl-H[ylx], (2.12)
where HJy] is the entropy of the output, while H[y|x] is whatever entropy the output
has which didn’t come from the input. In the case that we have no noise, the mapping

between x and y is deterministic and H[y|x] has its lowest possible value. This

divergence is one of the consequences of the generalization of information theory to
continuous variables. In order to reduce complexities, the algorithm consider only the
gradient of information theoretic quantities with respect to some parameter, w, in the
network.

Since gradients are as well behaved as discrete variable entropies, the reference
terms involved in the definition of differential entropies disappear. The above
equation can be differentiated as follows, with respect to a parameter, w, involved in

the mapping from x to y:

3} 3
5, () == H(y), (2.13)

H[y|x] does not depend on w, and lead aiH (y|x)=0. Thus for invertible
w

continuous deterministic mappings; ‘the mutual information between inputs and
outputs can be maximized by maximizing-the entropy of the outputs alone.

When a single input x pass thtough a transforming:function g(x) to give an output
variable y, both I(y| x) and H(y) ‘are maximized when we align high density parts of
the probability density function of x with highly sloping parts of the function g(x).
This is the idea of “matching a neuron’s input-output function to the expected

distribution of signals”.
From another point of view, thus I(y,,7,,...»,)= ZH:H(y,.) -H(y), to
i=1
minimize mutual information to each outputs », existence when
H(y)=H(y,y,,y,),and I(y,,y,,...,y,)=0. Output y, is independent. In order

to let mutual information of outputs be zero, need to satisfy below situation:

1. The choice of non-linear function g(.) is crucial.

y=g(u)= l_ u=Wwx. (2.14)
l+e™

2. According to maximum entropy theorem, if bounded variable with

10

uniform distribution has the maximum entropy. y, must between 0~1
because of it is the p.d.f of independent component u,. Therefore in
order to maximize the entropy of output, we need output y uniform
distribution
The output y have to independent to satisfy both of situation. Although the
transformation between y and u is a monotonic transform, information maximization

using this concept to achieve the target of ICA.

(2)Gradient information

Consider a network with an input vector x, a weight matrix W, a bias

vector w, and a nonlinearly transformed output vector y=g(u), u= Wx+w,, .

Providing W is a square matrix and gristan invertible function, the multivariate

probability density function of y can be written
P(x)

P (y)= ;
(»)]

(2.15)

where |J| is the absolute value of the Jacobian of the transformation. Bell simplifies to

the product of the determinant of the weight matrix and the

derivative y;, of the outputs, y,, with respect to their net inputs:

J= (detW)ﬁ V. (2.16)

i=1

For example, in the case where the nonlinearity is the logistic sigmoid:

and y =

y=g) = ? W(1-y). 2.17)

l+e™ ou B

We can perform gradient ascent in the information that the outputs transmit about
inputs by noting that the information gradient is the same as the entropy gradient for
invertible deterministic mappings. The joint entropy of the outputs is:

H(y)=-E[InP(y)] = E[ln| J |]- E[In P(x)]. (2.18)

11

Weights can be adjusted to maximize H(y). As before, they only affect the E[In |J[]

term above:

CH(y) _ 0 8 0
o)) 0|t det |+ ln . 2.19
W oW In|J| o | | o]:[Iy, (2.19)

AWo

For the full weight matrix, we use the definition of the inverse of a matrix, and the
fact that the adjoint matrix, adj W, is the transpose of the matrix of cofactors. This
gives:

0
——In|detW |=[W"1". 2.20
o | =] (2.20)

For the second term, we note that the product splits up into a sum of log-terms, only

one of which depends on a particular w.

_ AT r
aW H|y’|‘ IH 1:[(= a) (1-2y)x". (222

i=1 i=

The resulting learning rules are familiar in form:
AWset] (1= 23) %" . (2.23)

Except that now x, y, W, andl, are-veectors (1 is a vector of ones). But this
learning rule is too complex to calculate because of the inverter matrix. Multiplied
by W'W change the rescale of the rule, the new learning rules as follow:

AW =T +A=2)u" YW = + e W . (2.24)

Thus, the simplification much uncomplicated than before, and this learning rules
is suitable to separate blind sources. An ICA model consists of two distinct
components, the first is the formulation of a valid contrast function and second is the
algorithm for estimating the free parameters of the system.

Considering approaches which rely on the gradient of the contrast to ascend or
descend to an extreme contrast measure. It is computationally attractive to have
access, to the analytic form for the gradient of the contract function with respect to the
free parameters. The bias of the contrast function to be that of a generative model

approach, Gradient-ascent, or steepest-gradient, methods require this first order

12

information and update W in direction of the gradient. The update rule for W in
discrete time t<-t+1 defined in equation as follows:

Wi+)=W(@)+IAW . (2.25)
where /is the adaptation parameter (learning rate) which is fixed this procedure
corresponds to maximum likelihood re-estimation with an exponential weighting over
successive samples. Note that this learning rule describes an online learning procedure
because data are processed sequentially as they are received. Gradient ascent to the
likelihood for a batch of T observation is performed with the modified rule

1

Wi+)=w@)+I1(+?;gp(t)uT (1)) . (2.26)

Since the learning rule (2.26) is obtained from (2.25) by dropping the averaging
operation it is sometimes called _stochastic gradient ascent. The use of
steepest-gradient techniques to .ascend "the' likelihood to near its supremum was
formulated by Bell & Sejnowski [1995]. One of the key problems is their poor
convergence in region of shallow "gradient-and in regions where the likelihood
landscape is far from isotropic. To overcome some of these issues, Bell & Sejnowski
utilized batching, whereby the mean gradient over a set of consecutive samples is

utilized rather than the sample by sample estimate.

2-2-3 FASTICA

After we have defined a measure of non-gaussian, we have to develop a practical
method for maximizing it. The basic method used in this kind of problems is the
gradient method. However, FastICA is based on a fixed-point iteration scheme for
finding a maximum of the non-gaussian of W' x. More rigorously, it can be derived
as an approximative Newton iteration. The FastICA algorithm using negentropy
combines the superior algorithmic properties resulting from the fixed-point iteration

with preferable statistical properties due to negentropy.

13

(1)Fixed-point algorithm

In this subsection, we will introduce Fixed-point algorithm. Fixed-point iteration
would be equate W to the gradient measure of non-gaussian. This is because if W
equals this gradient, then due to normalization to unit norm. This suggests the
following fixed-point iteration:

W < —¢e[xg(W"x)]. (2.27)

The iteration does not have good convergence properties. Therefore, the iteration
has to be modified. Multiplied by constant « and add W on both side of this
equation as below:

(1+)W = g[xgW x)]% aW . (2.28)
Thus, by choosing o wisely, it-may possible to obtain an algorithm that convergence
very fast.

The suitable coefficient , and thus the FastICA algorithm, can be found using
an approximative Newton method [7]. The Newton method is a powerful method for
solving equations. When it is applied to the gradient, it gives optimization method that
usually converges in a small number of steps. The problem with the Newton method
is that it usually requires a matrix inversion at every step. Therefore, the total
computational load may not be smaller than with gradient methods. This
approximative Newton method gives a fixed-point algorithm of the form.

To derive the approximative Newton method, first note that the maxima of the

approximative of the negentropy of W7'x are obtained at certain optima of

e[G(W"x)]. According to Kuhn-Tucker conditions, the optima of &[G(W " x)] under

the constraint g[(W'x)*]= ||W||2 =1 are obtained at points where

14

elgW'x)]+pwW =0, (2.29)
where [is some constant. Denoting the function on the left-hand side by F, we
obtain its Jacobian matrix JF(w) as

JEW) =¢g[xx"g W x)]+ I . (2.30)
To simplify the inversion of this matrix, we decide to approximate the first term.
Since the data is sphered, a reasonable approximation seem to be
elxx"g W) = elxx"Je[g W x)]=elg W X)) . (2.31)
Thus the Jacobian matrix becomes diagonal, and can easily be inverted. Thus,
obtain approximative Newton iteration:

_y_elxgW TN+ pw)
W=w e 0148 (2.32)

This algorithm can be further simplified by multiplying both sides by
JEW) =e[g W"x)]+ B . After straightforwatd algebraic simplification
W < —élxgW ' ' x)—slg W) W]. (2.33)

This is the basic fixed-point iteration‘in.-FastICA.

(2)Estimating several Independent Components
The key point to estimate more than one independent component is based on the

following property: the vectors W, corresponding to different independent

components are orthogonal in whitened space. Thus, to estimate several independent
components, we need to run any of the above one unit algorithm using several units
with weight vectors, and to prevent different vectors from converging to the same
maxima we must orthogonalize the vectors after every iteration. We present in the
following different methods for achieving decorrelation.

A simple way of orthogonalization is deflationary orthogonalization using the

Gram-Schmidt method. This means that we estimation the independent components

15

one by one. When we have estimated p independent components, we run any one unit

algorithm for W, , and after every iteration step subtract from W, the
‘projections’ (WPT WOW,,j=1..p, of the previously estimated p vectors, and then

renormalize W, .

The result FastICA algorithm [8] with deflationary

orthogonalization is show in Table 2- 1.

Table 2- 1 FastICA algorithm with deflationary orthogonalization

Step Description

1. Center the measured data x to make its mean zero.

2. Whiten the zero-mean data to give x.

3. Set counter p=1. Set m equals to the number of sources.
4. Choose an initial value of unit norm for. W, ' randomly.

S, Let W, :g[xg(WpTx)]—g[g'(WpTx)]W, where g is defined nonlinearity

function.

p-1
T
6w =W, =Y WWOW,.

J=1

T et w, =W, /.

8. If W, has not converged, go back to 5.

9. Set p <« p+1.If p=m, go back to step 4.

In certain application, it may be desirable to use a symmetric decorrelation, in

which no vectors are ‘privileged’ over others. This means that the vectors W, are not

estimated one by one, instead, they are estimated in parallel. One motivation for this

is that the deflationary method has the drawback that estimation errors in the first

16

vectors are accumulated in the subsequent ones by the orthogonalization. This is done
by first doing the iteration step of one unit algorithm on every vector W,, and
afterwards orthogonalization all the W, by special symmetric methods.
The symmetric orthogonalization of W can be accomplished by the classical
method involving matrix square roots,
w=mww"'"w (2.34)

The inverse square root is obtain the eigenvalue decomposition,
W'Y 2 = Ediag(d™">,..d"*)E" (2.34)

Using the former symmetric orthogonalization, we give the correspond version of the

FastICA algorithm in Table 2- 2.

Table 2- 2 FastICA algorithm

Step Description

1. Center the measured data x to make its‘mean zero.

2. Whiten the zero-mean data to give x.

3. Choose m, the number of independent components to estimate.
4.

Choose initial values for the W. each of unit norm.

1

For every i=1---m, W, =5[xg(WiTx)]—5[g'(VKTx)]W, where g is defined

nonlinearity function

6. | Do a symmetric orthogonalization of the matrix by W « (WW')"*Ww

7. If not converged, go back to step 5.

17

2-3 Main Structure of ICA Methods

Base on the algorithm of off-line ICA flow, in order to achieve real-time
calculation, we divide the input of mixed sources to process real-time signals
individually, and overlap the previous mixed sources to calculate new separated

signals.

2-3-1 The Choice of ICA Algorithm

We consider two reasons feasibility and complexity of real time to realize on-line
ICA from two algorithms above. In order to reach real time, we need to choose a low
complicated computation and suitable property for the separation of super Gaussian
signals. The reason for why we choose infomax ICA is that the flexible transmission
and unnecessary preprocessing, it can reduce complicated calculation when real-time.

Though the infomax ICA! constringency is harder than FastICA, we add a
decrease parameter with growinig data to-accelerate the convergence. In next section,

we will propose a solution to fix the order of weight in real time processing.

2-3-2 Solution of on-line ICA

Since the original blind source separation algorithm by Jutten and Herault [9],
several on-line and batch mode algorithms have been formulated under the umbrella
of independent component analysis. While some of the batch ICA algorithms such as
JADE [10] and FastICA [11] give relatively fast convergence in estimating W, they
are not quite suitable for on-line implementation in a real-time setting. Depend on
Gradient information learning rules, the weight need update at each new division. In
order to fix the direction of weight are the same in every division, overlapping
previous mixed sources will fix the order of the weight. The method of data-stream

processing illustrate in Fig. 2- 6.

18

MEED SIGIAL

ll 11' |

ICA
11 ﬂ % 11
]

T+1 o T

Off-line |

L

Fig. 2- 6 Illustration of off-line and on-line algorithm.

Fig. 2- 7 show the ICA MODEL, X(t) are measure data. After preprocessing, the
model will enter the main calculation unit;-ineluding non-linear transformation, and
gradient information update. However,.in on-line processing of data stream, each
division data stream will flow through the ICA model, then, each time the weight be
calculated for each division data. Briefly, we take eight seconds division data to
processing, and updating two seconds because of the overlap are six seconds. Finally,
if the weight is stable, Y(t) represent the independent components which is the

product of input X(t) and weight matrix.

19

ICA MODEL:

Measure signal
X(t)

\ 4

Preprocessing

ICA Optimal method

Y(H)=g(U) U(t)=Wx X(t)

Y()=gWU)=

Wy -U

[=]

l-e

P)

Wi+)=w@)+ AW

g

P(y) .i(___/
\.
-

Independent

Components
Y(£) =W x X (¢)

A 4

Fig. 2- 7 Diagram flow of the computation of implementation of on-line ICA learning

algorithm.

20

Chapter3
System Architecture Design and

Simulation Result

3-1 System Architecture

In this chapter, we will discuss the execution flow of real time algorithm in
software. With the system level simulation [12].and data stream flow, we can set
specifications of overall system architecture; €.g. the resolution of input, the core

speed, and the flexible interface:

3-1-1 Computing Flow

Before setting specifications, we need to analyze the process of data stream in
system. First, set the sample rate for 64Hz. In the system of algorithm, we put 512
points data into ICA model with growing data. The 128 points are the set of result
because of the old data overlap. Illustrate the system level process with Fig. 3- 1.

However, we discuss the algorithm for on-line execution in MATLAB. In
software simulation, we measure the weight update and memory access time by
profile command that records information about once recursive time. Table 3- 1 shows
the detail of measurement. Total recorded time means the average execution time in
ones iteration. And Fig. 3- 2 show execution time with some test data and average

execution time at last. The iteration includes two parts: weight update calculation and

21

memory access. We can find that 86 percent of the total time is Weight update

calculation.

A > 6S

A v~
512 points ——— 128 points 4
»| ICAMODEL > 28
R S — v
25 512 points (128 points

> ICAMODEL
|

I

512 points 128 points T
> 1CAMODEL >
e |
512 points) 128 points

> ICAMODEL

v

AL

¥_| 512 points 128 points

»
»

ICAMODEL

-
°
°
° °
512 points 128 points
I — ICA MODEL

Fig. 3- 1 Illustrate of time process in on-line ICA.

Table 3- 1 Matlab profile
8.30956 ms
0.00000006 s
1650 MHz

22

Matlab execution time

8 Weight update B Memory access

10

ms

S NN B~ O
T

DATAI DATA2 DATA3 DATA4 DATAS Average

Fig. 3- 2 Matlab execution time.

On the other hand, if the sample rate is 64Hz and the training needs 10 times, we
can not finish the training in 16ms. As a result, the software execution time is not fast
enough to achieve on-line processing. Sorwe develop a suitable hardware for on-line

ICA by FPGA.

3-1-2 Specification of On-line Process

In this system scheme, we need to formulate three parts: the resolution of the
input signal, expected core speed, and the core speed. As a result of the quantity of
four channels transmission and the restrictions of bus, the resolution of the input
signal set as 8 bit. Since the memory bandwidths are 32 bits, it will read four channel
data at the same time and it is efficient for memory controller design. While in the
data stream, ICA model will process eight seconds data, it means if the sample rate is
64 Hz, the model can process 512 points once, and next iteration, the new two second
data combines with old six second data into the ICA model. In order to achieve
real-time execution, the ICA model should finish the eight seconds data iteration
before the next point into memory. Since it can be derived the required speed of

overall system. We set the sample rate is 64 Hz because the frequency of the signal

23

which we analyze less than 32Hz. Most of the cerebral signal observed in the scalp
EEG falls in the range of 1-20 Hz. So the required speed of overall system derived as
follow:
core _speed = sample rate x train _loop x (w_calculate + converge _decision) (3.1)
In equation (3.1), train loop represent the maximum number of times of
weight update. If the number of times of weight update greater than maximum value,
the iteration would stop training. The w_calculate represent the consumption of
clock cycles in one iteration. And the coverage decision represent the number of
clock cycles which calculate the difference between new weight and old weight for
the decision of weight coverage. In the situation we defined, the core speed should be

at least 68MHz for on-line execution.

3-2 Comparison with off-line Sup-Gaussian BSS Methods

This section introduces the-on-line system-simulation of Independent Component
Analysis. In order to verify the algorithm is suit to on-line process, we will use
MATLAB to simulate the accuracy of on-line ICA behavior, and, define the
specification and resolution of real circuit architecture. Then implement the arithmetic

operation circuit and memory control circuit by the real-time processing simulation.

3-2-1 Simulation 8-bit Super Gaussian Mixed Pattern 1

In verification of MATLB, we create four original signals which p.d.f histogram
are super Gaussian with 8 bit resolution and 64Hz sample rate. In real case, we mixed
these four signals with a linear mixed matrix, and, thus the mixed four signals are the

inputs of real-time ICA model in Fig. 3- 3.

24

Original Signal2

A AAMHRAD

0 1 2 3 4 5 6

Histogram of Original Signal 1 Histogram of Criginal Signal 2
1500

1000

T T T T ; 1000
z 500
ok 500
0 0
) -1 -0.5 0 -2 -1 0 1 2
0
5 Histogram of Original Signal 3 Histogram of Criginal Signal 4

WINN

1500
1000
1000

UWWWWNWMWWWMWWW . 500

0] 2 : s 5 6 % 2 4 6 10 0 10 20
(@)
data signal
100
O e A e bk A
100 : : : :
100 200 400 600 800 1000
o AMLAMMALAMLAM AL
100 ' - . -
2000 200 400 600 800 1000
0 prvmdipidv bl et vy
200 s - s -
00 200 400 600 800 1000
0
100 ' - . -
0 200 400 600 800 1000
(b)

Fig. 3- 3 (a) original signal and p.d.f of original signal (b) mixed signal.

(1)Time-domain Comparison

In order to verify the algorithm, we compare with the EEGLAB which developed
by UCSD in Fig. 3- 4. EEGLAB is an interactive Matlab toolbox for processing
continuous and event-related EEG, MEG and other electrophysiological data using
independent component analysis (ICA). EEGLAB provides an interactive graphic
user interface (GUI) allowing users to flexibly and interactively process their
high-density EEG and other dynamic brain data using independent component

analysis (ICA) and/or time/frequency analysis (TFA), as well as standard averaging

25

methods. The algorithm of EEGLAB is suit to off-line process, but we just compare

time domain and frequency domain result.

) EEGLAB v5.03 =3
Fil: Edit Tool: FPlot Datasets Help
—#1: CNT file resampled
Filename: ._aset\dataset\10_3mytest set
Channels per frame 4
Frames per epoch 15852
Epochs 1
Events 109
Sampling rate (Hz) 64
Epoch start (sec) 0.000
Epoch end (sec) 247 678
Average reference No
Channel locations Yes
ICA weights No
Dataset size (Mb) 06

Fig. 3- 4 Off-line EEGLAB toolbox.

tica signal offineica signal

-10 1 1 A0 1 I
0 100 200 300 400 500 GO0 OO 8OO 900 1000 0 100 200 300 400 500 GO0 700 8OO 900 1000

s oA

5 I !
0 100 200 300 400 500 GO0 700 8OO 900 1000

A

L
700 800 900 1000

B I
0 100 200 300 400 500 600 70O 800

1
900 1000

=

300 400

500 600

200

800

300 400 500 600 700

B I I I I
0 100 200 900 1000 50 100

_5 1 1 1 1 L 1 _5 1 L 1 Il 1 L
0 100 200 300 400 500 GO0 OO 8OO 900 1000 0 100 200 300 400 500 GO0 700 8OO 900 1000

Fig. 3- 5 Time-domain Comparison of on-line and off-line algorithm.

See above Fig. 3- 5, although the order of each result may different, and the
amplitude may reverse, but the characteristic of output are the same. The result

accords with restriction of the ICA algorithm.

(2)Correlation coefficients Comparison

The result of correlation coefficients between off-line and real-time algorithm in

26

Fig. 3- 6, it means the relation between each output signal. The negative value means
each output of the first channel are reverse, and the value approach one means that

these two signals are equivalent.

—— om-line signal —8— of f-line signal
l r 3 B -
0,95

_orrelaton
[]
0

0.E3

0.8 - - - -

Channel

Fig. 3- 6 Correlation coefficients Comparison of on-line and off-line algorithm.

(3)Frequency-domain Comparison

In this part, insure outputs from teal-time algorithm are similar to off-line

processing, we compare the Fast Fourier transform (FFT) of each output in Fig. 3- 7.

rtica fit tica fit offlineica fit offineica it
6 10 6 20

-20

40

-16 40 -16 -60
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 0 20 0 40

rtica fit tica fit offlineica fit offineica it

0 0
-10 -10

-10 -10
-20 -20

-20 -20

-30 40 -30 40
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 2 30 40
Fig. 3- 7 FFT comparison of on-line and off-line algorithm.

(4)Time-Frequency Comparison

Besides, Fig. 3- 8 shows the time-frequency between off-line and real-time

27

algorithm. Time-frequency: frequency power spectral density estimate on a single
channel. The horizontal axis is time domain and vertical axis is frequency domain.

The colors represent the power spectral.

rtica timefreq

50 55

offineica timefreq

30 3

40

45 50 55

Fig. 3- 8 Time-Frequency Comparison of on-line and off-line algorithm.

3-2-2 Simulation 8-bit Super Gaussian Mixed Pattern 2

The same as section 3-2-1, this|section compare with another super Gaussian

which has the same frequency like EEG about.at'5Hz , 12Hz in Fig. 3- 9. We also

compare with off-line

tool

time-frequency, and correlation coefficients.

T T T T 250
op AAAAAAAAAAAAAA 200 20
5 | | L L L 1500 1500
0 1 2 3 4 5 6
2 T T T T T 1000 1000
Y] ;
0 0
2 | I ! ! ! g : B
100 1 P 3 n 5 5 2 0 2 4 2 1 0 1
' ' ‘ ‘ ‘ Histogram of Original Signal 3 Histogram of Qriginal Signal 4
5 2000 2500
! ! 1500 4

1000

500

28

box contains

time-domain,

frequency-domain,

Histogram of Qriginal Signal 1
0

Histogram of Qriginal Signal 2
0

1500
1000

Mixed Signal
10

0
0 1 2 3 4 5 6
20 T T T T T
0 Mgttt e AL b
_2[] 1 1 1 1 1

10

?

10
0 1 2 3 4 5 6
10 T T T T T
o Ik haadnho ke s bty dpbi bt
_10 1 1 1 1 1
0 1 2 3 4 5 6
Times

Fig. 3- 9 (a) original signal and p.d.f of original signal (b) mixed signal.
(1)Time-domain Comparison

As Fig. 3- 10 shows, although the amplitude may reverse, the characteristic of

output are still the same. The result accords with resttiction of the ICA algorithm.

ttica signal offineica signal

10 T T T T T T 10 T T T T T T
ummwwwww - ”MWWWWWMW -
_10 1 1 1 1 1 1 1 _10 1 1 1 1 1 1 1
100 A0 100 150 200 250 300 350 400 100 A0 100 150 200 250 300 350 400
UMMLJWMM b UMDWMLMM b
_10 1 1 1 1 1 1 1 _10 1 1 1 1 1 1 1
5[]] 100 150 200 250 300 350 400 100] 100 150 200 250 300 350 400
_5 1 1 1 1 1 1l _10 1 1 1 1 1 1 1
5[]] 10 150 200 250 300 350 400 5[]] 100 150 200 250 300 350 400
_5 1 1 1 1 1 1 1 _5 1 1 1 1 1 1 1
0] 10 150 200 250 300 350 400 0] 100 150 200 250 300 350 400

Fig. 3- 10 Time-domain Comparison of on-line and off-line algorithm.

(2)Correlation coefficients Comparison

Though the kurtosis of original signal are large than three, it can be regarded as

pure super Gaussian. The result of correlation coefficients between off-line and

29

real-time algorithm are high in Fig. 3- 11. Software simulation has reached the target.

—— on-line signal —8— off-line signal

1 . - l__:

=
oo

_orrelaton
[]
i,

=
o

=
-

Channel

Fig. 3- 11 Correlation coefficients Comparison of on-line and off-line algorithm.

(3)Frequency-domain Comparison

We create four signals that two of them were.5 Hz, 12Hz like EEG frequency as
Fig. 3- 12 shown. Alpha is the frequency-range-from 8 Hz to 12 Hz. It is brought out
by closing the eyes and by relaxation. Theta.is the frequency range from 4 Hz to 7 Hz.
Theta is seen normally in young children. It may be seen in drowsiness or arousal in
older children and adults. From the result of third and fourth channel, there have

significant power at 5 Hz, 12Hz indeed.

ttica fit rtica fit offlineica fit offlineica fi

10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

rtica fit rtica fit offlineica fit offlineica fit
10 10 10 20

0 0 0 0

20

40

40 40 40 60
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Fig. 3- 12 FFT comparison of on-line and off-line algorithm.

30

(4)Time-Frequency Comparison
Fig. 3- 13 shows the time-frequency between off-line and real-time algorithm.
The same, second and fourth channel in time-frequency there have significant power

with red color.

ttica timefreq offlineica timefraq

| 1 = Il E|
5 10 15 20 25 30 35 40 45 50 55 5 10 15 20 25 30 3 40 45 50 55

Fig. 3- 13 Time-Frequency Comparison of on-line and off-line algorithm.

3-3 Comparison with off-line EEG BSS Methods

The real EEG signals are given by NCTU BRC, which are recorded in real

environment. The row data type with 8 bit resolution and 64Hz sample rate.

3-3-1 Simulation 8-bit EEG Mixed Pattern 1

In real environment, we can create pure EEG signals, and can not mix them as a
mixed signal like Fig. 3- 14. We can analyze the measured signal as mixed signals

directly.

31

eegl signal

400 T T

200 B

0 I I I I I I I I
0 1000 2000 3000 4000 5000 BO0OO 7OOO BOOO 9000

Wﬂwmww y
0

I I I I I I I I
0 1000 2000 3000 4000 5000 6000 70DO BOOO 8000

50

100wk|' N il "lh Py H' I‘ ””l”" ” ” I. B

150

. 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

100

50

1 1
0 1000 2000

1
3000

1
4000

1
5000

1 1 1
6000 7000 8000 9000

Fig. 3- 14 Mixed EEG signal.

(1)Time-domain Comparison

In real environment, EEG signals may have FOG, Alpha, Beta, Theta etc. In

order to analyze pure signal, we need to separate each signal by ICA algorithm. Fig.

3- 15 shows the compare of off-line.and real-time algorithm.

rtica signal

100 T T T T T T T

0] J . | | |
_100 1 1 L 1 L 1 1 L

200 1000 2000 3000 4000 5000 6000 7000 8OO0 9000
UWMWW 1
_20 1 1 L 1 L 1 1 L

100 1000 2000 3000 4000 5000 6000 7000 8OO0 9000
0

100 1000 2000 3000 4000 5000 6000 7000 8OO0 9000
_10 1 1 L 1 L 1 1 L

0 1000 2000 3000 4000 5000 6000 7000 8OO0 9000

offlineica signal

Fig. 3- 15 Time-domain Comparison of on-line and off-line algorithm.

(2)Correlation coefficients Comparison

100 T T T T T T T T
0 —M_—L——-L—-**-{ T R N,]
_100 1 1 L 1 L 1 1 L
200 1000 2000 3000 4000 5000 6000 7000 8000 9000
_20 1 1 L 1 L 1 1 L
1[][] 1000 2000 3000 4000 5000 6000 7000 8000 9000
40 I | . I . I I .
1[][] 1000 2000 3000 4000 5000 6000 7000 8000 9000
_10 1 1 L 1 L 1 1 L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

The Correlation coefficients of EEG signals show below, it shows the highest

Correlation coefficient is up to 99% compare with off-line algorithm. But in real

32

environment with unknown noises may cause reduction of Correlation coefficients.

According to the result of Correlation coefficient in Fig. 3- 16, the correlation at least

80% compare with off-line is a good method for real-time.

0.8

0.8

_orrelaton

0.4

Q.2

—+— on-line dgnal —8— off -line signal

Channel

Fig. 3- 16 Correlation coefficients Comparison of on-line and off-line algorithm.

(3)Frequency-domain Comparison

In this part, we compare the Fast Fouriet ‘transform (FFT) of each output.

Apparently the second and fourth channel of each algorithm with a little different in

Fig. 3- 17, and the frequency aliasing is caused by the less information with real-time

process.

rtica fit

ttica fit

20

-20

40

=
=
P
=

20
ttica fit

30

-20

-20

-30

-30
0

30 40 0

Fig. 3- 17 FFT comparison of on-line and off-line algorithm.

10

20

30

40

20

-20

40

33

offlineica fit offlineica fit
10
0
-10
-20
-30
0 10 20 30 40 10 20 30 40
offlineica fit offlineica fit
10
0
-10
-20
-30
10 20 30 40 10 20 30 40

(4)Time-Frequency Comparison

See Fig. 3- 18, the time-frequency show the frequency power spectral with little
difference at second and fourth channel. However, we can find from Fig. 3- 18, the

third channel with a significant power spectral at 10Hz.

rtica timefreq offlineica timefreq

Fig. 3- 18 Time-Frequency Comparison of on-line and off-line algorithm.

3-3-2 Simulation 8-bit EEG Mixed Pattern 2

The second pattern shows in Fig. 3- 19. The characteristic of pattern output are
like each other. This is because the sensors are located closely, the signals we measure

will be very much like.

rtica signal
400 T

200 1 : 'I Fl l’ ! ul) " B
I

1 1 1 1
0 1000 2000 3000 4000 5000 G000 7000 8OO0 9000

400

200] ' : F i ﬁ ' II ' E

0 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

400

200 . B
|

0 1 1 1 1
2000 1000 2000 3000 4000 5000 GOODO 7000 &O0OO 9000

mwmmwmmwm]

U 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 G000 7000 8OO0 9000

Fig. 3- 19 Mixed EEG signal?2.

34

(1)Time-domain Comparison
The same as section 3-3-1, this section discuss the different between on-line and
off-line in real environment. The result of ICA with more noise than before, because

the sensors are located closely in Fig. 3- 20.

offineica signal

ftica signal
10 T T T T T T T T T 10
e i WA :
_10 L L 1 1 1 1 1 1 1 _10 L L L L 1 1 L 1 1
100 200 400 600 8O0 1000 1200 1400 1600 1800 2000 m[J 200 400 600 800 1000 1200 1400 1600 1800 2000

_10 L 1 1 1 1 1 1 = L L L 1 1 L 1 1
00 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 OO 1000 1200 1400 1600 1800 200

=

_10 L L 1 1 1 1 1 1 1 L L L 1 1 L 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000 m[] 200 400 600 800 1000 1200 1400 1600 1800 2000
A) ”WWWMWW
_10 L L 1 1 1 1 1 1 1 _10 L L L L 1 1 L 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 GO0 1000 1200 1400 1600 1800 2000

Fig. 3- 20 Time-domain Comparison of on-line and off-line algorithm.

(2)Correlation coefficients Comparison

The correlation coefficients of second pattern are lower than before in Fig. 3- 21,

but at least 80% in absolute value is also an acceptable method for real-time.

—e— on-line signal —e— off-line sigmal

1 a a o

=
oo

orrelaton
[am]
(5%

=
s

=
(%]

Charrel

Fig. 3- 21 Correlation coefficients Comparison of on-line and off-line algorithm.

35

(3)Frequency-domain Comparison

Fig. 3- 22 shows the FFT result comparison. We can see the result of the fourth

channel with more error than others. But there is still more than 80 percent of the

correlation.
tica fit tica fit offlineica ft offlineica fit
10 10, 10 10
0 0 0 0
-10 -10 -10 -10
-20 -20 -20 -20
-30 -30 -30 -30
-400 10 20 30 40 400 10 20 30 40 400 020 30 40 400 10 20 30 40
tica fit tica fit offlineica ft offlineica fit
10 10 10 10
0 0 0 0
-10 -10 -10 -10
20 20 20 20
-30 -30 -30 -30
-40[] 10 20 30 40 '40[] 10 20 30 40 400 10 20 30 40 400 10 20 30 40

Fig. 3- 22 FFT comparison of on-line and off-line algorithm.

(4)Frequency-domain Comparison

Fig. 3- 23 shows that the first and second channel has more information at 10 Hz
than third and fourth channel. Besides, Alpha is the frequency range from 8 Hz to 12
Hz. This is activity in the 8-12 Hz range seen in the posterior regions of the head on
both sides, being higher in amplitude on the dominant side. It is brought out by
closing the eyes and by relaxation. As a result, it is more helpful to analyze the

measured signal than without ICA process.

36

rtica timefrag offineica timefreq

60 80 100 120

Fig. 3- 23 Time-Frequency comparison of on-line and off-line algorithm.

3-4 Summery of Comparison

The simulation results from the above we can know that the amplitude of signal
may be reverse or different in t_l}e '-I'CA.ailgorit-h_m_. These problems conform to the
constraints referred in Chapter IIrHoweVér,m feafltime and off-line comparison, we
can find the analysis result is Ilgét.ter:'. if -ﬂ&e—eﬁglnal éignals are pure super Gaussian
distribution. In real environment,. the EEG n&easﬁfément will contain many unknown
noise or non-super Gaussian signal, and makes the effect drop in EEG analysis. In the
comparison between on-line and off-line, because the on-line process collect small
amount of information than off-line process, the correlation of on-line system might

be different from off-line. But we can accept such a result that correlations are at least

more than 80%.

37

Chapter4
Implementation of the On-line ICA
System on FPGA

Top level real-time hardware architecture shown in Fig. 4- 1.

mem & sys control 68MHz mem & sys control

mem mem

64H7 > | ICAmodule | [——— > 64Hz

(@)

data signal 10

200 T T T T T T T
0

rtica signal

a1 P

sl G0 000 100 2000 2500 3000 300 _d00o ol 50 W00 150 200 250 00 350 400 450 500

200 | UMMJ\MAMAMJ\,M
R P I

h b o i A eal time

ool B0 1000 1500 2000 200 3000 eoo domm “ ol S0 100 150 200 250 300 360 400 450 600

ICA obAAAALAAMARAMULAAAA MR AAAREARAY

T . ‘ ‘ ‘ , ‘ ‘ 0 S,

1ol U0 f000 100 2000 zoo0 3000 3500 aomm gb &9 il Dz 2dl Gil g5 Al dE) il

L L L L h L L L
) .
36500 4000 0 50 100 150 200 250 300 350 400 450 500

(b)
Fig. 4- 1 (a) Top level hardware architecture

n | 1 A 1
0 500 1000 1500 2000 2500 3000

(b) Ilustration of real-time systems.

4-1 Architecture of real-time Systems

In this section we discuss the architecture of the digital circuit of implementation

38

of the algorithm. In overall system, the main architecture required three parts in Fig.
4- 2: Infomax operation circuit, memory control circuit, and interface control circuit.
Arithmetic operation circuit consists of matrix operation circuit and non linear
transform. Though a large number of computation in ICA arithmetic operation circuit,
the memory access will be frequently and complex. By using efficient memory
controller to optimize the memory scheduling and reduce the circuit power
consumption. The concept of the non linear transform, it is hard to execute for
real-time cause of the DSP processor will approximate the value by loop iteration. If
we implement by FPGA, it will be developed with very low cost hardware, and

reduce unnecessary operation, and fast enough to execute for real-time.

SAMPLE DATA l
{64Hz)

UART ——MEMORY ———

lf—
OUT DATA
SYSTEM
CONTROLER MEMORY

+
Infomax —/
Operati
Cﬁifit on . CONVERGE? J

J]

Fig. 4- 2 ICA main system architecture.

4-1-1 Implementation of Recursive Operation Circuit

The stability and high-precision are the properties of the recursive operation
circuit. The errors may grow up with the growing iteration. In order to reduce errors
in iteration, we develop a precision symmetrical non-linear piecewise look up table.

Besides, we simplify the complex weight updating by deep pipeline design. And if the

39

final weight coverage, the effective and fast matrix multiplier would be also designed

in the system. We will discuss these three parts as follows:

(1)Precision symmetrical non-linear piecewise look up table

Considerations in design of non-linear look up table. We will focus on accuracy,
hardware area, and computing time. On the accuracy, sign-bit fix point and
symmetrical look-up table will be used by the property of non-linear symmetry and
the simulation results of the algorithm [13]. It can reduce half areas by using
symmetrical look-up table. For accuracy, in order to reduce errors, it will be 11 bits
resolution for the symmetrical look-up table. However, the error estimates about

error = & X1, 4.1)
where ¢ represent the resolution error of look-up table, and i represent the number
of the system iteration. Then error is the approximation of maximum error. As a

result, the error will increase each iteration.

y=g() = 4.2)

1 +gall®

1 ; : ; | ; -
09}t
08}

|
|
L
07k I
|
|

If

05f ,r -

i !
04 /

afu)

0.2} r

01} /

~ |

8 I 4 2 0 2 4 6 8
1]

|
|
|
S
|
|
|
|

Fig. 4- 3 Non-linear function.

40

Table 4- 1 Description of the non-linear circuit

Name Description
In[22:0] U=wxx
Out[10:0] 1
l+e™

Fig. 4- 3 and Fig. 4- 4 show the non-linear function and circuit block diagram.
The operation can use symmetry due to non-linear function is singular function.
Symmetry in block diagram is the judgement of whether input is less than zero or not.
If input less than zero, it will use the same table to operate. As a result, it can save half
area or double precision with the same table. Table 4- 1 shows the description of the

non-linear look-up table.

IN | Integer Decimal

H'_,\ Y —
Index

—> ° °

[] []

[] []

vy
Symmetry ——» OUT Decimal

Fig. 4- 4 Precision Symmetrical Non-linear Piecewise Look up Table.

The error tolerance in block diagram is the need to verify. In MATLAB, all
equation calculated by floating point. So we compare difference between fix point and

floating-point. The root mean square error (RMSE) is 0.00029956

41

095} { ogsf
09f {1 ost
085} { ossf

08f {1 sl /
075} { o7t
ol / {1 o1t
065} { osesf

06} 1 o8}

056} { osst

05 1 1 1 1 1 1 L 05 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Fig. 4- 5 Comparison of floating-point and fix point function.

Left Fig. 4- 5 shows nonlinear function do precision computing by floating-point,
and right show the look up table result..It can be seen slight error, but has been

reached the real time implementation by, in¢reasing in non-linear processing.

(2)Weight Recursive operation

In this section, we integrate the weight update of infomax in a module. The
module is the mathematical core of overall system. The processing speed decides
whether to real time. So in this complex computing module, in order to increase the
core speed and throughput, we use the method of deep pipeline. Although the
integrated computing module will increase some areas, it is suitable for memory
controller design. With less memory access times, we can save more power
consumption. Besides, we can use more than one integrated computing unit to
improve system efficiency. We will focus on the design of integrated computing
module. The mathematics expressions as follow:

AW =T +A=2y)u" W = +pu)u" W, 4.3)
Wi+1)=W(@)+IAW . (4.4)

42

Table 4- 2 Description of recursive circuit

Name

Description

Weight[15:0]

Initial weight or previous weight

data[10:0] Sample data from ADC
bias For infomax non-linear
Irate Initial learning rate is 0.0039 ~ 2™, Irate oct™

New weight[15:0]

Gradient information update

New bias

Gradient information compensation

In hardware, however, fixed-point numeric is more practical. Although several

groups have implemented floating-point adders and multipliers using FPGA, very few

practical systems exist. The main disadvantages using floating-point in hardware are

high resource requirements and high clock frequency. We use 16-bit fixed-point

numeric, and the rough precision of ‘the fixed point number representation can reach

0.000030518. Two bits for integer |part,- and 14 bits for the fractional part. When

performing Infomax operations, normalization was performed to avoid overflow and

make sure that the data path was always best utilized. The detail description is in

New_weight

>

New_bias

»

Table 4- 2.
weight
MATRIX MUL MATRIX MUL MATRIX MUL
data
f
bias
»——| ADD | NON_LINEAR MUL ADD
Lrate T l
ACC —f{ MUL ADD
f

Fig. 4- 6 Integrated computing unit.

43

>

Fig. 4- 6 shows the integrated computing unit, it can process 4*512 matrix
operation. The unit includes three 4*4 matrix operation, one accumulation, and
mathematics operator. All speed must be greater than 68MHz to achieve real time
execution. Then we design the calculation module with pipeline. In order to on-line
execution, we estimate the consumption of cycle must less than 8300 cycles when
core speed is 68MHz and 128 times training. As a result, the unit consumes 8192
cycles to find a new weight with gradient information update. The expressions as

follow

core _speed

operation_cycle= (4.5)

sample _rate*iteration’

ICA Control Signal Gradient

Information
Update

ICA Weight

Memory Buffer
Controller 1616

l ICA_DONE

Weight
Converge
Decision

Fig. 4- 7 Main Calculation Model architecture.

44

Fig. 4- 7 shows the hierarchy architecture of main calculation model which with
other components in iteration. In informax iteration, weight coverage decision
determine whether the weight coverage. Because it is four-channel design, weight
buffer would be 16 entries and 16bits resolution. Through each update, controllers
will receive signals from the convergence module to decide whether the completion of
the iterative. When weight converges, the memory controller will send a signal

ICA_DONE to the result module.

(3)Fast matrix multiplier

When ICA completed the algorithm iteration, result module will receive a signal
ICA_DONE from memory controller in Fig. 4- 8. Then read original signal multiplied
by weight from IN. MEMORY. And the characteristic of this circuit is using parallel
computing to find the four channels results‘at the same time in one cycle. It includes
mean calculation and matrix multiplication, and also using pipeline design to increase

throughput in unit time. Then put the'resultiinto OUT MEMORY.

ICA Memory Control
Memory
Controller IN
MEMORY
32x512
u ICA_DONE
A 4
Matrix Multiply
WxX
u Weight
Independent Components Buffer
16x16

Fig. 4- 8 Final Result architecture.

45

4-1-2 Implementation of system Controller

We would introduce overall system controller in this section. In Fig. 4- 9, it
includes asynchronous memory controller and ICA system controller. In the system
controller is mainly control the data from UART and sent the control signal to various

modules in computing. Block diagram as follow:

ICA _ENABLE
Sample valid
———> Asynchronous v
Sample data Memory

——> Controller ¢:>

Memory Control

IN
DO _ICA
I - MEMORY
A
32x512
ICA

System <2¢(>

Controller Memory Control

ICA Control Signal

Fig. 4- 9 Main controller architecture.

X ¢ 2 m g -~ X a £

(1)Asynchronous Memory Controller

In asynchronous memory controller, because of the external frequency is
different from internal in Fig. 4- 10, so to use asynchronous conversion to the same
speed of system input. External data would be sent into the system memory by a
similar way as interrupted. We also placed a data counter that can be judged by the

amount of data, and the ICA system controller would send signals to the correct path.

46

System CLE
)
Baud rate CLE ICA ENAELE

i — Data DO ICA g
_ Counter = >

Sample valid Asynchronous i

— | transfer W en

Sample data — memory Data N
[— control Address -

h 4

Fig. 4- 10 Asynchronous memory controller circuit.

(2)ICA System Controller

In this section, ICA system controller is the most important and complex core. It
is like the microcontroller of the system. ICA'.system controller control various
components which includes operate unit and memory unit. In order to keep from the
control signal conflict, we divide the controeller. into, two parts: system control signal
and memory control signal. The control signals of system in Fig. 4- 11, old weight,
data have sent to operated in weight update module. And the result is given into
converge module, new weight is sent into weight buffer for initial parameter of next
iteration. In the memory control, we use an effective memory scheduling. In DSP
instruction scheduling, it may waste on memory space and the efficiency of execution
because of the data hazard may cause by read after write (RAW). In Fig. 4- 12
System pipeline flow,we use two recursive circuits and pipeline flow to reduce half
amount of memory access. It is an effective memory scheduling.

In our design, we make the memory scheduling close together to reduce waiting
time for hazard and to achieve on-line. In another hand, we also use enable signal in
memory. All memory registers ports are controlled by the enable signal. When system

needs access memory, the signal will trigger memory. We add a counter in memory

47

bank, when specific memory block was accessed, the counter would count up. And
the counter reached a critical value, controller will found that the memory has no
demand for access. Therefore, the memory can into the power save mode. It can save

power at memory access dynamically.

jmmm e b .
| 1
1
] Old Weight !
: o
: Data |
> 1
! oo
1
| Result o
1 w !
| 1
! New Weight |
< !
System CLK . !
. . 1
> Finite @ | t---demomm !
DO _ICA State ICA Control Signal
» Machine
N
| W en !
1 # |
: !
! Data |
T > :
1
1
| Address o
: o
o Q :
D] !
! |
L |
Memory Control Signal
Fig. 4- 11 System controller circuit.
1 1 1 1 1 1
Processing | Processing | Processing | | Processing i Processing | Processing
cyclel , cycle2 i cycle3 X . cyclel28 | cyclel29 | cyclel30
R ~ I I N | | |
1
Stagel] Mem-access Loop 1 Loop 2 Loop3 | Loop 128 '
1
_____ \ y, y \ |
4 N\ N 4
Stage2| W-update Loop 1 Loop2 | Loop27 Loop 128
----- — | <
1
Stage3| Converge ' Loop1 | Loop126 Loop127 Loop128
|
P N [N
1
1
1
1

Fig. 4- 12 System pipeline flow.

48

See Fig. 4- 13, DO _ICA which will drive the entire system controller, the detail

of finite state machine show in Table 4- 3. The state IDLE means that the system is

receiving data, and can not doing operate. The state Training that is being execution

mainly informax computing. Each time the training will consume 8192 cycles, and it

will jump to next state Coverage when computing end. The state will jump to Done

when the largest to 128 times of neural training. When state is Done, the data can only

be written into memory. So the overall core speed depends on sample rate. The whole

design detail of the micro-controller shows as follows:

TRAINING

Converge

w

£ 3 -\. 3 _--_-".fi'
Fig. 4- 13 Illustration/of micro-controller.

Table 4- 3 FSM of micro-controller

If((&counter)&
(&block))
CONVERGE

else

TRAINING

If(decision_step)
If(&step)
DONE
else
TRAINING
else
CONVERGE

If(DOICA)
IDLE

else
DONE

49

Idle

Predict

Not taken

Not taken

Fig. 4- 14 Dynamic Branch Prediction.

System Branch

Taken or not taken

a

controller

controller

Weight
update

mem

A 4

Converge

A 4
A 4

A 4
A

Fig. 4- 15 Branch Controller and Flush Line.

In order to overlapping memory access time by pipeline, this thesis use dynamic

branch prediction in Fig. 4- 14. And add flush line to clear forward pipeline register in
Fig. 4- 15. According to the characteristic of ICA algorithm, the branch prediction can

reduce memory access time effectively. Fig. 4- 15 illustrate that we predict the branch

50

always not taken, the branch controller would send a flush signal to clear forward

pipeline register if taken happen and state at idle.

4-1-3 Interface Design
(1)RS232

RS232 is the old standard and is starting to become obsolete. Few if any laptops
even have RS232 ports (serial ports) today, with USB becoming the new universal

standard for attaching hardware.

(2)Tx and Rx

Tx represents transmit and Rx represents receive. The transmit pin always
transmits data, and the receive pin always receives it. Notice Tx is connected to Rx,

and Rx is connected to Tx.

(3)Baud Rate

Baud is a measurement of transmission speed in asynchronous communication.
The computer, any adaptors, and the UART must all agree on a single speed of

information - bits per second (bps).

(4)Asynchronous Serial Transmission

Baud rate defines bits sent per second. But baud only has meaning if the two
communicating devices have a synchronized clock. Asynchronous transmission
allows data to be transmitted without the sender having to send a clock signal to the
receiver. Instead, the sender and receiver must agree on timing parameters in advance
and special bits are added to each word which are used to synchronize the sending and

receiving units.

51

When a word is given to the UART for Asynchronous transmissions in Fig. 4- 16,
a bit called the "Start Bit" is added to the beginning of each word that is to be
transmitted. The Start Bit is used to alert the receiver that a word of data is about to be
sent, and to force the clock in the receiver into synchronization with the clock in the
transmitter. These two clocks must be accurate enough to not have the frequency drift

by more than 10% during the transmission of the remaining bits in the word.

\
TX Start_bit / Stop_bit

Data bit
Start bit Input first
Transition data bit 12
Detected cycle later

Fig. 4- 16 Illustration of RS232 Protocol.

When data is being transmitted, the sender does not know when the receiver has
'looked' at the value of the bit - the sender only knows when the clock says to begin

transmitting the next bit of the word.

When the receiver has received all of the bits in the data word, it may check for
the Parity Bits, and then the receiver looks for a Stop Bit. If the Stop Bit does not
appear when it is supposed to, the UART considers the entire word to be garbled and
will report a Framing Error to the host processor when the data word is read. The
usual cause of a Framing Error is that the sender and receiver clocks were not running

at the same speed, or that the signal was interrupted. Regardless of whether the data

52

was received correctly or not, the UART automatically discards the Start, Parity and
Stop bits. If the sender and receiver are configured identically, these bits are not
passed to the host. If another word is ready for transmission, the Start Bit for the new

word can be sent as soon as the Stop Bit for the previous word has been sent.

(5)HEADER controller

In the header controller, we divide into two parts. One is receiver header
controller and another is transmitter header controller. In whole system with four
channels, transmit and receive from UART respectively. Fig. 4- 17 shows receiver
header controller design. We define the transmitter protocol first. When receiver
header controller receives data FF, it means that the FF is the header of the next four
channels. Hence we combine the .four channel'data as a memory bandwidth. It is
helpful and efficient to control these data show in GUI. However, the addresses of
memory are 512 entries, it means that we process 512 data in each iteration. The

signal Sample data is the main module input with 32 bit bandwidth.

Flexible Interface

UART RS232
Enable Sample valid
 — >
Data HEADER controller Sample data

—

Baud rate: 115200bps

Fig. 4- 17 Receiver header controller architecture.

On the other hand, we also develop a transmitter header controller. It is harder

design than receiver. It is because the system frequency higher than interface. In order

53

to transmit system data, we need an asynchronous (first in first out) FIFO buffer to
control the result data. The design shows in Fig. 4- 18. the asynchronous FIFO with
two different CLK, represent the speed of input and output respectively. The numbers
of entry are 128, because we update the result data are two second with 64Hz sample
rate. And in transmitter header controller design, we add an encoder to encode the fix
point result to 8 bit integer. As a result of the transmitter protocol is the same as the
receiver, we also add a header FF in front of the result data. Finally, we connect the

header controller with the TX module.

Flexible Interface

Baud rate CLK
System CLK
) HEADER
Baud rate CLK Controller

Asynchronous [N| &
FIFO —v| Encoder

32x128

Independent

Components

E— r—

TX >

Baud rate: 115200bps

Fig. 4- 18 Transmitter header controller architecture.

In HEADER Controller design, we add header FF and control data in order by

using finite state machine. The detail FSM and control signal show in Fig. 4- 19 and

Table 4- 4.

54

HEADER DATA

Fig. 4- 19 Illustration of Header Controller.

Table 4- 4 FSM of Header Controller

If(empty) SEND DATA If(empty && state=stop)
IDLE IDLE
else AR, else if(state=stop &&
K o .';"“C'*I-."-a-
HEADER -:-;;F':, g ';':]:E_:;"':iﬂ:& counter=4)
= =N ® HEADER
- Ik il
= ki*”'-:: [" [fhelse
~ Wrrm /| SEND_DATA
E r':: — r:."_‘;'-"-.l""a
"TEARRAN

4-2 FPGA Simulation Result in Integrated System

We develop the algorithm by VHDL which gives the implementation not only
better performance but also less consumption of gate array in the FPGA. In this
section, we will show the FPGA simulation result in each component. It contains

compilation report, timing report, and simulation report.

4-2-1 FPGA Simulation in Recursive Operation Circuit

We can see Fig. 4- 20, it show the device type and the detail of logic elements.
We synthesized using Altera DE2 targeted for Cyclone II family. The design has
introduced in 4-1-1, our system frequency depend on the recursive core speed.

Because of we use deep pipeline to enhance the performance, the result will cause

55

increase of the number of register and area. On the other hand, we also use embedded

multiplier to improve the system speed.

Analysiz & Swmthesiz Status Successful - Bat Apr 12 17:42:52 2008
Chuartos IT Version 7.2 Build 151 09426/2007 21 Full Versdon
Revision Name MAIN CALCULATE
Top-level Entity Name MAIN_ CALCULATE
Fammily Cyclone IT
Total logic elements 3,757
Tatal combinational functinns 3,757
Dedicated logic registers 2,840
Total registers 3840
Total pins 172
Total wirtnal pinz 1]
Total memory bits 1]
Embedded kMultiplier 9-bit elements 70
Total PLL= 1]

Timing Analyzer Summary

Type Slack. ?i?nqeulred #';I:_I:L;al
1E Worst-caze tau i, Mone 10.763 nz
i YWorst-caze boo M Mone 2.014 ne
| 3| Worst-case th A2 Mone 0.865 nz
i Clock Setup: 'CLE! 0075 ng 7300 MHz [penod = 13698 nz | 73.41 MHz [penod = 13623 nz |
5| Clack Hald: 'CLE! 0391 ne| 73.00 MHz [period = 13.698 nz || NAA
E T atal number of failled paths

(b)

Fig. 4- 20 Detail of compilation report (a) summary (b) timing.

The hardware simulation we used by ModelSim, the post simulation result
shown in Fig. 4- 21. The library provided by Altera. The recursive operation circuit
design should calculate new weight in 8192 cycles. If the maximum numbers of
training are 128, it may cost 13ms totally and less than sample time 16ms. Fig. 4- 22
provides the speed consumption of recursive circuit compare with software. The

weight update performance is 56 times faster than software.

56

0ld Wei‘ght 8192cycle

L
i

—

T G D

Previous New Weight New Weight

Fig. 4- 21 post simulation of recursive operation circuit.

Weight updating speed comparison

B Weight updating speed

speed

56 times <

Software FPGA

Fig. 4- 22 Time consumption of Weight calculation.

4-2-2 FPGA Simulation in System Controller
The system controller detail report shown in Fig. 4- 23. We can find that the

system controller implementation with very low cost logic elements. This is because
we simplify the controller into two parts: data controller and memory controller.
There are a lot of pins in controller because it connects all components that include

main calculate operation, weight buffer, and memory.

57

Flow Status

Cuartuz [T Yerson
Revizion Name
Top-level Entity Name

Successul - Mon Jun 16 17:52:09 2008
72 Build 151 09262007 5 Full ¥erson
ICA_CONTROLER

ICA CONTEOLEERE

Farmnily Carclone 1T

Device EP2C35F0TICE0

Timing Models Final

Met timing requirements Yes

Total logic elements 5733216 0=19%)

Tatal combimational fumetions 304733216 0(=19)
Dedicated logic registers gBasa3ilal=1 %)

Total registers a0

Total ping 469 /475 (99 %)

Total wirtual pins]

Total memory bits 0/483,340 (0 %)

Embedded Multiplier 9-bit element: 0470 {0 %)

Total PLLs Of4 09

(a)
Timing Analyzer Snmmary
Required Actual

Type Slack Time Time
Worst-case tau Mt Hone £.949 nz
Wiorgt-caze too M/, Mone 13541 n=z
“Worgt-caze tpd M A, MHone 13596 n=
Worst-caze th M/, MHaone 0626 nz

Clock Setup: 'CLE!
Clock Hald: ‘CLE'

1
2]
3
4
l
5]
1 Total nurmber of failed paths

9227 nz| 7000 MHz [period = 13.333 ne | 243.55 MHz [period = 4106 nz |
0.391 nz| 7500 MHz [period = 13.333 ne || MAA

“Tisc I

Fig. 4- 23 Detail of compilation repo_r'"c v(é) summary (b) timing.

The behavior simulation shows in Fig. 4- 24 and Fig. 4- 25. The flow path of

finite state machine is simple. Fig. 4- 24 illustrates the situation of the signal DOICA

triggers the system controller and the new weight do not coverage. Fig. 4- 25 show

that if new weight converge, the FSM will jump to next stat DONE.

8192cycle

F
k|

» TRAINING

T

IDLE TRAINING

CONVERGE

Fig. 4- 24 post simulation of system controller with no converge.

58

8192cycle DONE

F
w

1
0l
T

IDLE TRAINING CONVERGE

Fig. 4- 25 post simulation of system controller with converge.

4-2-3 FPGA Simulation in Interface Design
In interface hardware design, we choose UART with baud rate 115200bps. The

implementation contains RS232 transmitter, receiver, header controller, encoder and
asynchronous FIFO.

The interface behavior simulation show in Fig. 4- 27 and Fig. 4- 28 individually.
Input interface receive EEG sig,;nzlﬂ by RX,and the-data format will stream in with
header. Fig. 4- 27 shows that th.é SAMPLEDATA are 32bits finally. And Fig. 4- 28
shows transmitter format. Signal PUSH m_.eans.- mtl;lat push results in asynchronous

FIFO, then pop them in order by header controller.

Flow Status muccessful - Mon Jon 02 15:47:00 2003
Quartuz II Version 7.2 Build 151 094262007 5T Full Yersion
Eevizon Name RETX
Top-level Entity Name RETE _TOP
Fammnilyr Cuclone IT
Dievice EP2C35FaT2CE
Timing Maodels Final
ket timing requirements Vs
Total logic elements 1,017 /33,216 (3 %)

Total combinational funchons TA3 133,216 (2 %)

Dedicated logic registers T13033216 02 %)
Total registers 713
Total pins grATL (2 %)
Total wirtnal ping 1]
Total memory bits 2,192 /483,840 (2 %)
Embedded Multiplier 9-bit element: 0/70 (0 %)
Total PLLs O/40(0%)

(a)

59

Timing Analyzer Summary

Tope Slack, ?i?anUIrEd '?;:F;L;al
1F Worst-caze tzu N Mone 5123 he
2| “Worst-caze too M4 MNone 11.929 ns
3| Worst-caze tpd M A Maone 2812 he
4| “Worst-caze th M A8 MNone 1.925 ns
A Clock Setup: ‘altera_internal_jtag™TCEUTAP'| 2. 386 ngz| 75.00 MHz [period =13.333 nz]| 116.82 MHz [period = 8.560 nz |
G| Clock Setup: "SCLE! 3.974 nz| 75.00 MHz [penod = 13333 nz 1| 106.85 MHz [period = 9.359 nz)
7| Clock Hold: 'SCLE' 0,391 nz| 75.00 bMHz [period =13.333 ng || MNAA
8| Clock Hold: 'altera_intemal_jtag™TCEUTAP" |0.391 nz| 75.00 kMHz [penod =13.333 nz | Mid
9| Total number of failled paths

(b)
Fig. 4- 26 Detail of compilation report (a) summary (b) timing.

/\C_I L_Jl__J__J_TLW_J_L ﬂ

fe 1 J% e O
\ N\ \ AN
{00000 Jo0000Ge T000ece e Tk
M SAMPLE DATA'

FF

= . IE \..-_'-L_H_ _'..'_u'
Fig. 4- 27 post simulation of input interface.
" Tk, P
3 i

SRR

o

o il

FIFO DATA

UL U]
‘ J ‘ I N ‘ '\, ‘ A, |

FF CH1 CH2 CH3 CH4

Fig. 4- 28 post simulation of output interface.

4-2-4 FPGA Simulation in Integrated System
The system total logic elements shown in Fig. 4- 29, it costs about 16600 logic

elements. And the memory bits about 24576, it accords with the initial design. The
total memory bits show as blow:

total memorybits = data _bandwidth x memory _entries + data _bandwidth x fifo _entries

60

Flow Status successful - Mon fon 16 20:16:29 2008

Cruartoz IT Verson 7.2 Build 151 092642007 2T Full Versdon

Eevizion Name DEMO2

Top-level Entity Wame DEMO2

Fammily Cyclone IT

Dievice EP2C35FaTACH

Timndng Madelz Final

Met timing requirements Yez

Taotal logic elements 16,605 ¢ 23,216 (50 %)

Total combinationsl functions 15074 123,210 (47 %)
Dedicated logic registers 6,208 /33,216 (19 %)

Total re gisters a203

Total ping 33HTS (T ED

Total wirtnal ping 1]

Tatal memors bits 24,576 /483,840 (5 %)

Embedded Multiplier 9-bit elements 70/ 70 ¢ 100 %)

Taotal PLL= 074 (0%

(a)
Timing Analyzer Sommary

Type Slack ?i?nqeulred ?';f_g‘;al
Whorst-casze tzu M A Maone 16101 n=
Whorst-case tco A Mone 9938 ns
Whorst-caze th I A Maone -1.254 ng

Clack, Setup: 'S%'S_CLE! 0882 ng 7R.00MHz [period =13.333 n2 1 8031 MHz [period = 12451 nz]
Clock Hald: "S%'S_CLE! 0,391 nz| 75.00 MHz [period = 13.333 na || WAL
Tatal number of failed paths

[m]on]e=]w]ra]=

(b)
Fig. 4- 29 Detail of compilation report (a) summary (b) timing.

Since add the efficient memory scheduling, the core frequency determines the
system performance. Fig. 4- 29 shows the core frequency, and in order to achieve
real-time operation in real environment, we need to overdesign the system. The
system speed is up to 80 MHz actually.

The behavior simulation shows in Fig. 4- 30. It means that the ICA did 20 times
Infomax weight training in this division with 512 point. The total process time is
about 2.1ms, process _time = cycle timex 8192 x training , and the result will write
in system memory before next input data. The maximum input-output delay is 13.7ms

with 128 training loops. Another way, reduce memory access time by overlap

61

processing can speed up total system perform 69 times than software at 68 MHz. If

the core speed up to 80 MHz, the total system perform can 81 times than software.

Training Result

500 us 1ms 1500 ug 2ms

—

2.1ms

Fig. 4- 30 post simulation of overall system.

4-3 Device for Demonstration .
'I-'..; :-;:! C + ‘:".
In the part of demonstration, We'ﬁgéd:I géi"'iﬂté'gi‘,ate three parts into a prototype

system. Fig. 4- 31 illustrates tﬁé' malheemp?ﬂentsof the prototype system that we

developed. We will discuss these three parts.in next subsection.

ADC —
ADC —
» NMSP430 Bluetooth
ADC —
wireless
ADC —
GUI

Fig. 4- 31 Illustration of demonstration.

62

4-3-1 Four channel EEG Brain-computer Interface

As well as invasive experiments, we have been experiments in humans using
non-invasive neuroimaging technologies as interfaces. Although they are easy to wear,
non-invasive implants produce poor signal resolution because the skull dampens
signals, dispersing and blurring the electromagnetic waves created by the neurons.
Although the waves can still be detected it is more difficult to determine the area of
the brain that created them or the actions of individual neurons. So we need ICA

process to split these signals wave.

(1)Electrode

o w z
O
Fig. 4- 32 Medi-Trace 200.

We use Medi-Trace 200 in Fig. 4- 32.7All electrodes have an Ag/AgCl sensor of
the highest quality and a push button. These electrodes us a solid gel which is an
excellent adhesive and conducts perfectly. The electrodes use a new gel which sticks

faster to the skin and reduces the skin-impedance even further.
(2)ADC

The AD7466 is 12-bit, high speed, low power, successive approximation
analog-to-digital converters (ADCs) in Fig. 4- 33. In order to fit our specification, we
truncate to 8-bit resolution. The parts operate from a single 1.6 V to 3.6 V power
supply and feature throughput rates up to 200 kSPS with low power dissipation. The

parts contain a low noise, wide bandwidth track-and-hold amplifier, which can handle

input frequencies in excess of 3 MHz.

63

Yoo
™

vin €

I

N

12-1048-BIT
SUCCESSIVE
APPROXIMATION
ADC

CONTROL
LOGIC

——

AD7466/AD7467/ADT7468

L
GHD

‘-'m:-E
GND | ?
SCLK
Vin |2
SDATA
cs

" -

AD7466/
AD7467/
AD7468

TOP VIEW
(Not to Scale)

Fig. 4- 33 Pin Configuration of AD7466.

The serial interface on the AD7466 allows the parts to be connected directly to

many different micro-processors. This section explains how to interface the AD7466

with some of the more common:microcontroller and DSP serial interface protocols.

AD7466/
AD7467/
AD7468"

SCLK(

SDATA

&
w

MSP430F1611

CLKX

CLKR

DR

FSX
FSR

Fig. 4- 34 Interfacing to the MSP430F161.

Fig. 4- 34 shows the connection diagram. For signal processing applications, it is

imperative that the frame synchronization signal from the MSP430F1611 provide

equidistant sampling.

(3)Microcontroller

The MSP430 is a microcontroller family from Texas Instruments in Fig. 4- 35.
Built around a 16-bit CPU, the MSP430 is designed for low cost, low power
consumption embedded applications. The architecture is reminiscent of the DEC
PDP-11. The MSP430 is particularly well suited for wireless RF or battery powered
applications.

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the
application. All operations, other than program-flow instructions, are performed as
register operations in conjunction with seven addressing modes for source operand
and four addressing modes for destination operand. The CPU is integrated with 16
registers that provide reduced instruction. execution time. The register-to-register
operation execution time is one ¢ycle of _the CPU clock. Peripherals are connected to
the CPU using data, address; and cont.rol buses,- and can be handled with all

instructions.

| Ref J— Power Mana ementh Hef4
-~ l g

DSP

MSP430 s
DAC A -

{Ultra-Low Power MCU) mp

MicroSystems |
(MSC Products)

Clack&Timers‘7 [Interface 7

Fig. 4- 35 MSP430 Applications.

The MSP430f161 devices have a second hardware universal

synchronous/asynchronous receive transmit (USART1) peripheral module that is used

65

for serial data communication. The USART supports synchronous SPI and
asynchronous UART communication protocols, using double-buffered transmit and

receive channels.

(4)BCI (brain-computer interface)

The detail of BCI we discuss above. As we know capability and specification in each
component, we can integrate them into a BCI. Fig. 4- 36 shows the detail signal
connection of BCI. The EEG signal recoded by sensor, then transmit them by
AD7466 with Serial Peripheral Interface protocol. If a single slave device is used, the
CS pin may be fixed to logic low if the slave permits it. With multiple slave devices,
an independent CS signal is required from the master for each slave device. Most
devices have tri-state outputs that become high impedance when the device is not
selected. Devices without tri-state outputs can't share SPI bus segments with other

devices; only one such slave may talk to the master, and only its CS may be activated.

SENSOR ADC MICRO-CONTROLLER
[] W —
AD7486 |5 *
[5]sDaTA —
[¢]scLk
2, B) L] e =T
: .:-.%H Voo [" ap7aes |75
‘Ej;;\ @D [2] (5] soata — DSP
A — vy, 3] (4] scLk
\gs‘ " MISO | MSP430 T
—*| (Ultra-Low Power MCU) »
.
. T3 - MicroSystems
AD7466 |[4°8 Y
[5] spata — {MSC Products)
[¢4] scLk
L] e ==
AD7466 |S1C° *
[5] spata —
[4] scLk

Fig. 4- 36 four channels brain-computer interface.

66

4-3-2 Wireless Transmission Model

Bluetooth is a standard and communications protocol primarily designed for low
power consumption, with a short range in Table 4- 5 based on low-cost transceiver
microchips in each device. Bluetooth enables these devices to communicate with each
other when they are in range. The devices use a radio communications system, so they
do not have to be in line of sight of each other, and can even be in other rooms, as
long as the received transmission is powerful enough. Bluetooth device class indicates
the type of device and the supported services of which the information is transmitted

during the discovery process.

Table 4- 5 low-cost transceiver microchips

~100 meters

~10 meters

F ~1 meter

Bluetooth exists in many products, such as telephones, printers, modems and
headsets. The technology is useful when transferring information between two or
more devices that are near each other in low-bandwidth situations. Bluetooth is
commonly used to transfer sound data with telephones or byte data with hand-held
computers. Bluetooth simplifies the discovery and setup of services between devices.
Bluetooth devices advertise all of the services they provide. This makes using services
easier because there is no longer a need to set up network addresses or permissions as

in many other network.

67

@1 PI010 o) 34 GND

@2 PIO11 133 RF OUT|
03 PI02 32 GND

@4 AlOQ 31 PIO9

@5 AlO1 30 PIO8

@6 PIOJ 29 PIO1

@7 USB D+ 28 PIO@

@8 USB D- 27 GND

|09 UART RX | 26 V1.8

1@ UART CTS 25 SPI MISO
11 UART RTS 24 SPI CLK

12 UART TX 23 SPI CSB
13 V3.3 22 SPI MOSI
14 PIO4

15 PIOS

16 PIO6 21 RESETB

17 PIO7 20 GND

18 GND 19 V3.3

Fig. 4- 37 Pin Configuration of BM0203.

When we have defined the tramsmission protocol, it can conform to various
application of transmission interface easily. We choose wireless transmission by using
Bluetooth. BM0203 is an integrated Bluetooth module to ease the design gap and
increase time-to-market performance. BM0203 uses CSR BuleCore4-External as the
major Bluetooth chip. With simple commands to communicate with BM0203, the
host does not need to worry about the details and complexity of Bluetooth profiles.
The application allows Bluetooth object-transfer capability to be easily added to
systems with no Bluetooth capability.

We use the pad to connect FPGA and Bluetooth show in Fig. 4- 37. The detail

pad description in Table 4- 6.

68

Table 4- 6 Detail pad description

Ground
GND GND 20 Ground connections for
digital
VCC3.3 V3319 Regulator input | .0\tage supplier
)) from 2.8 to 4V
CMOS input with
UART RX UART RX 09 weak UART data input
internal
RF RF OUT 33 RF RF Output

4-3-3 GUI for Display
The EEG GUI (Graphical User Interface) develop by JAVA, it can receive data

ol %

. . .l o ._._I__.r "‘-_'4'.,) ‘ ‘

transmitted one by one in order. The Eouﬁﬁilhqnqﬂﬂﬁ &, :s detection of Bluetooth device
| Bl bl S N

from Bluetooth. The receiver format stare with-header FF and the channel data can be

= o Al S i
(SPP service) and stare Bluetooth streq;gﬁ-ﬁﬁé-GUI display in Fig. 4- 38.
A Yerrtrs X

ik

hEnEE EEGEAY
S 1 B EREE
CH1
RE4ATEAH

CHZ
FAtEEN
G ERE . . .
BEEYE lueToo thesi . . . CH3
HIEEFEGEEED ., .
BB SPEARTE. . ..
HFIEECERRES . |

CH4
Faeelamdk . ..

Fig. 4- 38 EEG Graphical User Interface.

69

4-4 Summary

In the fourth chapter, we discuss circuit design of the system. We design overall
system up to down from software simulation of system level to real hardware
implementation. In the hardware design, we assess the speed of system should have
by software first. Then simplified whole system into a few individual and achieve
them. However, in the error estimation we found that the fix-point calculation with
more aliasing than floating point calculation. But we make a choice to reduce circuit
area and accelerate the overall system speed. And the error tolerance is under our
control. On the other hand, the transmission control protocol design tally with the
front-end circuit (MSP430) interface particularly, and the back-end protocol also tally
with wireless transmission method. In order to achieve faster computing, we using the
precise symmetric look-up table and parallel computing operation. The specification
of the hardware we developed show in Table 4- 7 which with input sample rate 64Hz,
128 times iteration in neural training, each training spends 8192 cycles, and system

frequency is 68MHz with UART transmission interface.

Table 4- 7 System specification

68MHz
64Hz
0.315
3.3v
UART 115200bps
24576bits
8-bits

70

Chapter5

Experimental Results

In this section, we will show the real-time calculation result in GUI and

comparison with other ICA design.

S5-1 Result Super Gaussian'BSS Methods in GUI

We compare software simulation result in. chapter 3, and in this part we will
verify the real ICA hardware results in real-time with GUI display. The
post-simulation and off-line correlation has shown in Fig. 5- 1, Fig. 5- 2, Fig. 5- 3,
and Fig. 5- 4 individually. In Fig. 5- 5(a) and Fig. 5- 6(a) show the GUI display of
four channel mixed signals. In GUI display, we set the data bandwidth are 8-bit and
the header is FF. However, in Fig. 5- 5(b) and Fig. 5- 6(b) show the ICA result in GUI
display, we can find that if the original signals are pure super-Gaussian like this, the
system will has a good result. Another way, we discuss EEG signal that has less
information without ICA process apparently in Fig. 5- 7(a), and Fig. 5- 8(a). After
ICA infomax update, the analysis signals will have more distinct information than
original signals without ICA process. The ICA result of EEG signals shows in Fig. 5-
7(b), and Fig. 5- 8(b). In real-time ICA verification, we divided into two parts:

super-Gaussian signals and EEG signal in real environment.

71

(1) Post-Simulation and Off-line Correlation

GUI signal
200 T T T T T T T T T

100 * " ““l““'” 1 " vy

0 1 n . L n s n 1 n
2000 100 200 300 400 500 600 700 8O0 900 100Q

lWlﬁr ‘!QD 200

3uo 4nn snn m anu ann 1004
200
150 M ﬁl
100
2000 Tﬂﬂ 200 3']0 400 500 ﬁﬂﬂ TDD B[m 900 1000

100

0.96

0.98

0.95

0.95

offline slgnal

IDD 200 300 400 500 500 700 ﬂ[l[l 900 10

MMMMMMM&MMMUU&M@

0 100 200 300 400 500 SDD ?Dﬁ 800 900

1000

A umwwmmumwwmmmmm

. 1 n s . n 1 ' .
0 100 200 300 400 500 600 700 800 900

1000

A AR A A

o 100 200 300 400 500 600 70O 800 900

00 160 260 360 4[‘]0 560 GI;ID ?60 860 960 100 1000
Fig. 5- 1 left is pattern] post simulation, and right is offline ICA result.
GUI signal offline signal
200 10 T T T T T
100 ‘”“”PW WNMMWWWWWWﬁM 21 095 "WWMWMWWWWWW |
U l] WUU 15[] 200 250 3UU 35!] 400 v EIU 1(‘]0 1.}10 260 2;0 3(‘)0 3éU 400
ZUU 10 T T T T T T T
150 w.h/bw MVJM B O 99 0 MMMW g
122 100 350 400 -1:0 5‘0 160 150 260 2;0 3‘00 3é0 400
WWWMWWWWWW {097 | |
50 IJ 100 150 200 250 300 350 400 7:’;0 5‘0 1(‘10 1&";0 260 250 300 3&0 400
bl 11 0.86 | cpubilibulaidbabommabibitablny
100 150 200 250 300 350 400 -50 5‘0 160 1‘50 260 2%0 360 Séﬁ 400
Flg. 5- 2 left is pattern2 post simulation, and right is offline ICA result.
GUI signal offline signal
400 T T T T T T T T 50 T T T T T T T T
200 - E 090 0 ,A__M_vb___,_,,”_JL_,__»_,_ B
ZHEO 260 460 560 860 1ﬂhﬂ 12‘00 14‘00 15‘00 1801 igﬂ 260 460 Saﬂ 860 1ﬂhﬂ 12‘00 14‘00 15‘00 1800
100 - - 0.85 0 WWM -
ZUEO 260 460 560 860 1ﬂhﬂ 12‘00 14‘00 15‘00 1801 fgﬂ 260 460 Saﬂ 860 1ﬂhﬂ 12‘00 14‘00 15‘00 1800
100 WWWMWMW 11 0.92 7 W‘\WMMWW ,
ZHE ZUU 4UU BUU EUU 1UUU 12CIU 14UU WBUU 1801 _120 260 460 BEIU 860 1U‘UU 12‘00 14‘UU 1BIUU 1800
100 %WMMWMMWH 11 0.78 | o WWWMMWMWWMWM _
U[] 200 400 SHU Sﬂ[] 1000 1200 1400 1500 1801 400 260 460 Saﬂ 860 1ﬂhﬂ 12‘00 14‘00 15‘00 1800

Fig. 5- 3 left is EEG1 post simulation, and right is offline ICA result.

GUI signal

0 . n n . n . n n .
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0 | L L | L I L L I
1500 200 400 600 8O0 1000 1200 1400 1600 1800 2000)

‘“”WMMWWWWMWM

50 . L L .
sz 200 400 600 600 1000 1200 1400 1600 1800 2000|

N gV G TR o e

| L L | L I L L I
0 200 400 800 8OO 1000 1200 1400 1600 1800 200

0.89

0.83

0.88

-0.77

offineica signal

L n n n n 1 L n n
0 200 400 GO0 800 1000 1200 1400 1600 1800 2000

aall i L A LR P R

| L L L L I L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

| | L L L L I L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0 200 400 600 8OO 1000 1200 1400 1600 1800 2000

Fig. 5- 4 left is EEG2 post simulation, and right is offline ICA result.

72

(2)Super Gaussian in GUI

1. Super Gaussian Pattern 1

=(=)E3

EEGERY

CH1

[t 3 j\(‘]

CH

FAmER \

BEfAIEITEIEE »
BEBSE lueToo thEd . . . CH2 W

EEEEEGEED Ww MW

BREYSFPRRTS
HEIEECRIAEE . .
Faraath. .

X}

CH4

THRERE EEG#E

w MWWWWWWWWWM

BEBYElueToo thesii . . . CH2]
EEEEEEEG . ﬂ[
BEENSPPRETE
HEHIEECRHEIRSE . .. o \[\
FEnTh. . |
(b)

Fig. 5- 5 (a) mixed signal (b) ICA signal.

CH

%]

2. Super Gaussian Pattern 2

=1(E)

TTTTT—

CH2
FaEEn ‘ !
BEfGAENEENGE q
BEBE lueToo thegil . . . CHI
SEIEEREGEEED |
BiEISPRRRTE
HRTIEEGEBIEE . | . o ‘
Famaaik. ..

73

[E5ECHw2

| i

[EEECH

C

j=s)

EEGER

1 w\»wwwwwwwwwwmm

(35 =3 A
BEBYElueToo theEif . . . CH3 \}\ \N
EEEFECEER . ..
EQEUSPPEE?’%I. T
(b)
Fig. 5- 6 (a) mixed signal (b) ICA signal.
(3)EEG in GUI

1. EEG Pattern 1

TSSO
ZH1
-
o «M-M WM«rWWM
CH2
R WMM’V‘
BSOS . i WWW T et
FERYElueToo thas . . . CH2 |
EFE{EEEECHEEH . . ,#
BECRY SPEAHTS . .
HBIEECRAIEEE . . .
Rt .
(@)
EEG [=0(E3
TGS EEGIEA
b f \ﬁ"‘“’“/\’\ r}""ﬁ,M
o ottt WNM\LMM
n
WW A o T Sl
TR N'W \mﬁ]
BT .
BIBEB lneToo theRi. . . CH3 WWWWW
EiEEEECEBS . .
BiEhoPPRETS. . ..
HFIEECREERE . e MMMW W
Foraliaib . ..

(b)
Fig. 5- 7 (a) mixed signal (b) ICA signal.

74

2. EEG Pattern 2

i=1[E)

IhEERE EEG#EY

[s o

o WM‘WWWWWNWWWWW

FAmER

FRIGIEN SR

BERYE lueToo thE . . . CH2

: ol Pt e
ol e WLWWW ol

BUEISPERRTS

HEIECRAEEE e ot e P A A s M A A p g

Faisad. .

CEX

ThHGRE EEG#EY

&L iEERER

T e

xR I M
:gﬁﬁjlfth$?ﬁ CH3 ‘N‘m WW\M”WMMW MVWM

EEEERCEED .

BREISPRARES . . . ‘

HEIEECRIMEE .. - . MMWW@WW%
Rt .. ;

(b)
Fig. 5- 8 (a) mixed signal (b) ICA signal.

ja=]

5-2 Comparison with other ICA Design
There have been few studies about the real-time implementation of ICA which
has been implemented as an ASIC by FPGA. In this thesis, we will discuss with the

differentiation between our proposed and others in Table 5- 1.

In recent years, there have been few studies about the real-time implementation

75

of ICA. In 2002, Scatter and Charayaphan [14] implement an ICA-based BSS
algorithm on Xilinx Virtex E that contains 0.6 million logic gates. In 2004, Du and Qi
[15] proposed an FPGA implementation of parallel ICA on a pilchard board, and used
dual inline memory module (DIMM) random access memory (RAM) slot as an
interface to communicate with central processing unit (CPU) and exchange data with
memory in a SUN workstation. Charoensak and Sattar [16] proposed an FPGA design
for real-time ICA-based BSS in 2005, using software to translate the high-level
language, MATLAB Simulink, into hardware description language (HDL) code. And
Pipelined FastICA[17] using the hardware floating-point (FP) arithmetic units to

increase the numbers precision in 2008.

Table 5- 1 Cor_npa'r'isdri with other ICA design

-

Low cost | - : -
speech = 2 GH 0.6 million gates 20 MHz
2002[14] - 2
Parallel ICA hyperspectral | - o
) i N/A_ . +| 0.226 million gates | 20.IMHz
2004[15] image g i
A Single-Chip
FPGA speech 2CH 0.1 million gates 71.2MHz
2005[16]
Pipelined
FastICA speech 2CH N/A 50MHz
2008[17]
This work EEG 4CH 0.315 million gates 68MHz

76

Chapter6

Conclusion

In this thesis, we had implemented four channels on-line ICA accompanied with
flexible UART interface for real environment signal processing at 68MHz. We
proposed integrated mathematics architecture allows high-speed real-time signal
processing of Infomax ICA with sample tate up to 64Hz. Furthermore, the effective
system controller and memory scheduling.provi.de. a high performance processing for
real-time execution. And the System m.e.mory wi.th- enable signal is a low power
method for portable application. The prc-)totype- demonstration in Fig. 6- 1, we have
complete four channels EEG receive interface, Bluetooth wireless transmission and a
GUI program for portable device. In our system, it is helpful for real-time biomedical

monitor.

J \vml“m,fu\‘n.\ . PM’“’W%

- s g,
« it W«W\Wﬂw

P T iy

9 WWWMJ‘* A an uﬂm q/\fU"MW\l JVWM%

o byl o

ICADSP

6]

2ass

.88 88

Fig. 6- 1 ICA prototype demonstration.

77

In the future, the design can be developed for two parts:

We can improve the operation precision and system error tolerance by floating
point calculating in next generation..

We can integrate ICA into a system chip as an intellectual property. By integrating
with ADC, micro processor, and ICA itself to achieve SOC design.

If the number of channels up to eight, it can be used more than one integrated
operate modules for on-line processing, than the memory buffer and controller
might be modified a little bit.

In practical applications, we can use the characteristics of real-time analysis to
replace the thing which offline did and to achieve real-time detection processing.
For example, immediately detectsleep signals to send a warning to driver. We use

on-line ICA to substantially increase accuracy than without ICA process.

78

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

T-W Lee, "Independent Component Analysis - Theory and Applications",
Kluwer Academic Publishers, 1998.

C. M. Kim and S. Y. Lee, “A digital chip for robust speech recognition in noisy
environment,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing,
Vol. 2, pp. 1089-1092, 2001.

Saruwatari, H., Kawamura, T., Sawai, K.; Kaminuma, A., Sakata, M, “Blind
source separation based on fast-convergence algorithm using ICA and
beamforming for real convolutive mixture,” IEEE International Conference on

Acoustics, Speech, and Signal Processing, Vol. 1, pp. 13-17, 2002

Ristaniemi, T.and Joutsensalo, J. “Advanced ICA-based receivers for DS-CDMA
systems,” Personal, Indoor and Mobile Radio Communications, Vol. 1, pp. 276
-281, 2000

A. J. Bell and T. J. Sejnowski, “An information. maximization approach to blind
separation and blind deconvolution,” Neurocomputing, Vol. 7, pp. 1129- 1159,
1995.

K. Torkkola, "Blind separation of convolved sources based on information
maximization", IEEE Workshop Neural Networks for Signal Processing, Kyoto,
Japan, Sept 4-6, 1996.

A. Hyvirinen and E. Oja. “A Fast Fixed-Point Algorithm for Independent
Component Analysis,” Neural Computation, Vol. 9, pp. 1483-1492, 1997

A. Hyvérinen. “Fast and Robust Fixed-Point Algorithms for Independent
Component Analysis.” IEEE Transactions on Neural Networks 10(3), 626-634,
1999.

C. Jutten and J. Herault, “Blind Separation of Sources 1. An Adaptive Algorithm Based
on Neuromimetic Architecture,” Signal Processing, Vol. 24, pp 1-10, 1991.

J.F. Cardoso, A. Souloumiac, “Blind Beamforming for Non-Gaussian Signals,” /EE
Proc.F Vol. 140, pp. 362-370, 1993.

79

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. Hyvérinen and E. Oja. “A Fast Fixed-Point Algorithm for Independent
Component Analysis,” Neural Computation, Vol. 9, pp. 1483-1492, 1997

C. Charoensak, and F. Sattar, "System-level design of low-cost FPGA hardware
for real-time ICA-based blind source separation,”" SOC Con. 2004. Proceedings.
IEEEInternat ional, pp. 139 - 140, 2004.

H. Amin., K.M. Curtis, and B.R. Hayes-Gill, “Piecewise Linear Approximation
Applied to Nonlinear Function of a Neural Network, > IEE Proc. Crcuits Divices
syst, Vol. 144, pp. 313-3171, 1997

F. Sattar and C. Charayaphan, Low-cost design and implementation of an
ICA-based blind source separation algorithm, 15th Annual IEEE International
ASIC/SOC Conference, pp.15-19, 2002.

H. Du and H. Qi1, “An FPGA implementation of parallel ICA for dimensionality
reduction in hyperspectral images,”in. Proc.-IEEE Int. Symp. Geosci. Remote
Sens., Sep. 2004, vol. 5, pp. 3257-3260.

C. Charoensak and F. Sattar, “AT7single-chip FPGA design for real-time
ICA-based blind source separation algorithm,” in Proc. IEEE Int. Symp. Circuits
Syst., Vol. 6, pp. 5822-5825, 2005.

Kuo-Kai Shyu and Ming-Huan Lee, “Implementation of Pipelined FastICA on

FPGA for Real-Time Blind Source Separation” in Proc IEEE TRANSACTIONS
ON NEURAL NETWORKS, vol. 19, 2008

80

