

國 立 交 通 大 學

電機與控制工程學系

碩 士 論 文

邊緣可適性即時數位影像放大硬體之 FPGA 實現

FPGA Implementation of Edge-Adaptive

Interpolation Hardware for Real-Time
Digital Image Resizing

 研 究 生：羅儀晟

 指導教授： 林進燈 博士

中華民國 九十七 年 七 月

 i

邊緣可適性即時數位影像放大硬體之

FPGA 實現
FPGA Implementation of Edge-Adaptive

Interpolation Hardware for Real-Time
Digital Image Resizing

研 究 生：羅儀晟 Student：Yi-Chen Lo

指導教授：林進燈 Advisor : Dr. Chin-Teng Lin

國立交通大學

電機與控制工程學系

碩士論文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master

in

Electrical and Control Engineering

July 2008

Hsinchu, Taiwan, Republic of China

中華民國 九十七 年 七 月

 ii

邊緣可適性即時數位影像放大硬體之

FPGA 實現
學生：羅儀晟 指導教授：林進燈 博士

國立交通大學電機與控制工程研究所

中文摘要

近年來，消費性影像產品如：數位像機、數位攝影機、手機…等的普及率以

相當快的速度提升。相對的，在轉換影像解析度以及大小所用到影像補插法，其

重要性也是隨之上升；影像補插主要的目的在於由低解析度的影像產生高解析度

之補插影像。一些傳統的影像補插方法例如雙線性補插以及雙立方補插並不能滿

足高畫質之需求，因為這些方法可能會使影像模糊或者在影像邊緣產生鋸齒狀。

再者，高畫質高解析度影像放大所處理的影像資料量及運算量非常大，因此需要

使用硬體來加速運算之處理速度。

本論文實現了一個即時影像放大硬體，能夠對於一般標準數位視訊訊號作即

時性的放大。本論文採用即時影像補插方法的特色是：(1)決策模組能夠自動辨

別輸入影像之特徵將其分類，來決定影像補插模組之使用。當輸入影像對肉眼不

明顯時，選用雙線性補插方法以節省計算能耗，若輸入影像對肉眼明顯且具有方

向性時，為了減少在影像邊緣所產生之鋸齒狀以及模糊狀，則選用邊緣可適性影

像補插模組。(2)使用CORDIC 電路來運算反三角函數之解，大幅度省去為了近

似角度時使用查表所造成硬體的大量使用。

本論文所實現之即時影像放大硬體若操作在95Mhz 頻率狀態下，每秒能夠

處理約300張大小為CIF (320×240) 之影像，並且在影像品質方面有相當好的效

果，能夠有效的消除傳統影像補插法在影像邊緣產生鋸齒狀及模糊狀之缺點，對

於使用者來說能夠擁有更佳的視覺效果。

 iii

FPGA Implementation of Edge-Adaptive Interpolation

Hardware for Real-Time Digital Image Resizing

Student：Yi-Chen Lo Advisor : Dr. Chin-Teng Lin

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

In recent years, consumer digital image and/or video devices such as digital still
cameras, digital video cameras, cell phones, etc, are more and more popular so that
image interpolation becomes an increasingly important technology for image
format/resolution conversion. The purpose of image interpolation is to transfer to a
high resolution image from a low resolution image. Traditional interpolation schemes
do not satisfy the requirement of high quality image due to jagged and blurry defects
appearing in an edge. Besides, due to the large amount of computation of high
resolution video data, it is necessary to accelerate the computation by using hardware.

In this thesis, a video scaling hardware is implemented on FPGA, and it can
achieve real-time scaling up to standard digital video signal. The video scaling
hardware has the following features. (1) It use fuzzy decision module to automatically
identify the characteristic of input image and to decide which interpolation module
will be used. If input image is not sensitive to human eyes, in order to reduce
computational power, the bilinear interpolation module will be chosen. Otherwise,
edge-adaptive image interpolation module will be selected to reduce blurry and
jagged defects in edge section. (2) CORDIC circuit is used to replace arc tangent
function which is used to calculate the orientations of input image. This method can
effectively save hardware resources compared with a large look-up table.

In this thesis, the proposed FPGA design can achieve real-time video scaling
processing in resolution of 320×240 (CIF image). While system frequency is at 95
MHz, the performance is above 300 frames per second. Compared with traditional
image interpolation methods, the proposed FPGA design has better visual quality due
to the reducing of blurry and jagged defects in edge section.

 iv

誌謝

兩年的研究所生涯隨著論文的完成劃上了句號，這兩年間，要感謝許多人的

鼓勵和幫忙，使我獲得充實的專業能力並順利完成研究所的學業。

首先要感謝的是我的指導教授-林進燈老師。林老師是國內十分傑出的一位

教授，在不同領域內都有相當好的研究成果。感謝老師提供了很理想的研究環

境、豐富的資源及正確的引導，使我在研究上非常順利。在老師悉心的指導下，

讓我學習到解決問題的能力及做研究應有的態度，使我獲益良多。還要感謝范倫

達教授時常關心我學業上的研究，時常與我討論論文方向及進度。以及特別感謝

蒲鶴章博士對於我研究上的指導，幫解決了我許多的問題。另外也感謝實驗室所

有的夥伴，經翔、德瑋、俊傑、靜瑩及智文等學長姐們。還有我的同學們，毓廷、

煒忠、建昇、孟修、寓鈞、舒愷、孟哲、俊彥、依伶。以及實驗室的學弟妹，昕

展、哲睿、介恩、家欣、有德，感謝大家在研究上及生活上的互相扶持及鼓勵。

最後要感謝家人爸爸、媽媽、妹妹的支持，讓我能專心於學術上的研究，渡

過所有難關，謝謝！

人生值得感謝的人其實很多，感謝老天、感謝許多親人、朋友和同學，在生

命的旅途中，因為有你們，因為我們彼此珍惜、相互扶持，才能有無比的力量。

 v

Contents
中文摘要..ii
Abstract .. iii
誌謝...iv
Contents ...v
List of Figures ..vii
List of Tables...ix
Chapter 1 Introduction ...1

1.1 Motivation..1
1.2 Thesis Organization ...3

Chapter 2 Principle of Image Scaling and related research ...4
2.1 Basic Principle of Image Scaling...4
2.2 Several Traditional Interpolation Schemes ..7

2.2.1 Nearest Neighborhood ..7
2.2.2 Bilinear..9
2.2.3 Bicubic ..10

2.3 Defects of Traditional Interpolation Schemes ...12
2.4 HVS-Based Edge-Adaptive Image Scaling ...14

2.4.1 Introduction...14
2.4.2 Architecture...15
2.4.3 HVS-Directed Image Analysis..17
2.4.4 Image Interpolation Computation ...27

Chapter 3 Hardware Design of Edge-Adaptive Real-Time Image Scaling28
3.1 Introduction..28
3.2 Hardware Architecture...29
3.3 Data Flow Control Circuit ...31
3.4 Image Interpolation Circuit..34

3.4.1 Architecture...34
3.4.2 Fuzzy Decision Module ..35
3.4.3 Angle Evaluation Module ...41
3.4.4 Image Interpolation Module ...45

3.5 Input Image Acquisition Circuit ..48
3.5.1 ITU-R.656 Decoder ..48
3.5.2 Memory Address Generator Circuit for Frame Buffer Design51

3.6 Output and Timing Generator Circuit..56
Chapter 4 Experimental Results...57

4.1 Simulation of HVS-Based Edge-Adaptive Image Scaling57

 vi

4.2 FPGA Implementation ...63
4.2.1 ITR-R.656 Signal Acquisition Unit ..64
4.2.2 Data Flow Control Unit ..65
4.2.3 Image Scaling Unit ...66
4.2.4 Output Timing and Data Address Generator Unit...............................67
4.2.5 Integration and Synthesis..68
4.2.6 Performance Estimation..69
4.2.7 Power Consumption..70

Chapter 5 Conclusions and Future Works..71
References..73
Appendix..76

A.1 Image Signal Formats ...76
A.1.1 Input Signal Format ...76
A.1.2 Output Signal Format...79
A.1.3 YCbCr to RGB Converter ..81

 vii

List of Figures
Fig. 1-1. SDTV and its resolution. ...1
Fig. 1-2. HDTV and its resolution. ..2
Fig. 2-1. Block diagram of signal reconstruction. ...4
Fig. 2-2. Ideal reconstruction filter. ...5
Fig. 2-3. Example of image scaling. ..7
Fig. 2-4. Time domain waveform of nearest neighborhood interpolation function...................8
Fig. 2-5. Algorithm of nearest neighborhood interpolation scheme. ...8
Fig. 2-6. Time domain waveform of bilinear interpolation function. ..9
Fig. 2-7. Algorithm of bilinear interpolation scheme. ...10
Fig. 2-8. Time domain waveform of bicubic interpolation function..11
Fig. 2-9. Algorithm of bicubic interpolation scheme...11
Fig. 2-10. (a) Image enlarged by nearest neighborhood interpolation, (b) Image enlarged

by bilinear interpolation, (c) original image. ..13
Fig. 2-11. Schematic block diagram of HVS-Based Edge-Adapted Image Scaling system....15
Fig. 2-12. (a) A 4 x 4 sliding (overlapping) block in original image, (b) The block after

two times interpolation. [1]...16
Fig. 2-13. Visibility thresholds corresponding to different background luminance. [1]..........18
Fig. 2-14. An illustration of the relation between SD parameter and the distribution of

pixels in a sliding block. ...21
Fig. 2-15. Membership functions of fuzzy sets on input variables VD, SD, and CD..............23
Fig. 2-16. Portions of four types of regions. ..24
Fig. 2-17. Flow diagram of angle evaluation...26
Fig. 2-18. Illustration of Dx and Dy in sliding block...26
Fig. 3-1. Video scaling method of our hardware. ..29
Fig. 3-2. Whole hardware of real-time HVS-based edge-adaptive video scaling....................30
Fig. 3-3. Architecture inside FPGA development board..31
Fig. 3-4. Block diagram of data flow control circuit. ..32
Fig. 3-5. Fast memory loading working scheme..34
Fig. 3-6. Architecture of image interpolation circuit. ..35
Fig. 3-7. Modified computation flow of VD..36
Fig. 3-8. Experiment result of VD modification..37
Fig. 3-9. Modified SD computation flow...39
Fig. 3-10. Experiment result of SD modification.. ..39
Fig. 3-11. Technique to avoid using comparators in threshold circuit.....................................40
Fig. 3-12. CORDIC operating principle. ...42

 viii

Fig. 3-13. Architecture of CORDIC circuit. ..44
Fig. 3-14. Relation between input pixels and output pixels...46
Fig. 3-15. Experiment result of weights approximation. ...48
Fig. 3-16. Window used in ITU-R.656 decoder...49
Fig. 3-17. Operation method of finite state machine in ITU-R.656 decoder.50
Fig. 3-18. Separate Y from YCbCr data stream. ..52
Fig. 3-19. Scheme for checking if current input data is valid..52
Fig. 3-20. Working principle of Count_h...53
Fig. 3-21. Working principle of Count_v. ..54
Fig. 3-22. Mapping of input frame buffer and image capture window....................................55
Fig. 3-23. Architecture of output signal and timing generation circuit....................................56
Fig. 4-1. Experiment results of house image ...58
Fig. 4-2. Experiment results of car light image ...59
Fig. 4-3. Experiment results of jet fighter image ...60
Fig. 4-4. Experiment results of BW image ..61
Fig. 4-5. Demonstration platform. ...63
Fig. 4-6. Synthesis summary of ITU-R.656 signal acquire unit. ...64
Fig. 4-7. Timing report of ITU-R.656 signal acquire unit. ..64
Fig. 4-8. Synthesis summary of data flow control unit..65
Fig. 4-9. Timing report of data flow control unit...65
Fig. 4-10. Synthesis summary of image interpolation unit..66
Fig. 4-11. Post-simulation waveform of image interpolation unit. ..66
Fig. 4-12. Synthesis summary of output timing and data address generation unit.67
Fig. 4-13. Timing report of output timing and data address generation unit.67
Fig. 4-14. Full compilation summary of full system. ..68

 ix

List of Tables
Table 2-1. Experient results of fuzzy variables..25
Table 3-1. PSNR comparison of original and modified VD.38
Table 3-2. PSNR comparison of original and modified SD...40
Table 3-3. Relationship between Dx and Dy and Z. ..44
Table 3-4. States and their descriptions of Fig. 3-17. ..49
Table 3-5. Variables used to calculate memory address of input frame buffer.55
Table 4-1. PSNR comparison between each image interpolation method...................62
Table 4-2. System performance while clock frequency is 95.73 MHz.69
Table 4-3. System performance while clock frequency is 27 MHz.70

 1

Chapter 1
Introduction

1.1 Motivation

In recent years, consumer digital image and video devices such as digital still

cameras, digital video cameras, cell phones, etc, are more and more popular so that

image interpolation becomes an increasingly important technology for image

format/resolution conversion in digital image processing. With the development of

DTV broadcast and LCD HDTV, high resolution image can provide much more

detailed information to satisfy the needs of users. Since the traditional video does not

have the same resolution as HDTV, the images are needed to be scaled. For instance,

the source signal resolutions are in traditional standard resolution of 720 x 480, but

the HDTV LCD panel usually has higher resolution like 1920 x 1080. Fig. 1-1 and

Fig. 1-2 show the difference between SDTV and HDTV.

Fig. 1-1. SDTV and its resolution.

 2

Fig. 1-2. HDTV and its resolution.

If the video in SDTV resolution were played on HDTV, the resolution of the source

signal should be enhanced in advance to fit the panel resolution of HDTV. For this

reason, the quality to algorithm of resolution enhancement will affect visual

performance enormously.

There are several kinds of methods to enhance image resolution, and the most

famous are super-resolution reconstruction and image interpolation. The former

extract one high resolution image from continuous low resolution images, although

there are some differences between those low resolution images in space domain, but

they have correlations in time domain, so we can reconstruct high resolution image by

using approximating algorithm. However the image reconstruction algorithm needs a

great amount of computation, so it is not suitable for practical applications. Another

method is image interpolation which uses sampled data to convolute reconstruction

filter function. It will reconstruct sampled data to un-sampled analog signal, and then

re-sample the data finally. Common image interpolation functions are: nearest

neighbor interpolation function, bilinear interpolation function, bicubic interpolation

function. The quality of reconstructed signal will differ from which reconstruction

filter functions are chosen. Some interpolation methods will make reconstructed

 3

image losing high-frequency components, which are the edge sections of an image.

Losing high-frequency components will let blur and jag appear on an image.

In order to have better visual quality, it should have advance image interpolation

method to avoid blur and jag appear on interpolated images. The HVS-based

edge-adaptive interpolation [1] has been proved to solve this problem effetely, and the

algorithm is used in this thesis. An ideal interpolation scheme should always go along

the edge so that this area will not blur and the smoothness will be preserved.

Since the data stream of video signal is quite large, we need to do lots of

computation if we want to enhance the resolution of video signal by using advanced

interpolation technique, and the memory used to store temporary video data must

have high data transfer rate. Besides, video signal has its own regular input/output

timing, so we only have restricted time to do computation of image interpolation.

Since the advanced interpolation method requires lots of computation and is not able

to be real-time in software simulation, if we want to do video resolution enhancement

it in real-time, it is suitable to implement the video resolution enhancement hardware

in ASIC or FGPA platform.

1.2 Thesis Organization

This Thesis is organized in as follows. Chapter 2 introduces the principal of

image scaling, the defects of traditional image interpolation schemes and HVS-based

edge-adaptive image scaling which is used in this thesis. Chapter 3 introduces our

hardware of real-time video scaling and video spec. Chapter 4 is the experimental

results of our HVS-based edge-adaptive image scaling and practical hardware

implementation. Finally, Chapter 5 is the conclusions and future works of our study.

 4

Chapter 2
Principle of Image Scaling and related research

2.1 Basic Principle of Image Scaling

Image scaling is also called image resizing and can be divided into scaling up

and scaling down. In this thesis, we only discuss the situation of only scaling up, and

scaling down situation is neglected. In fact, the principle of image scaling is sampling

theorem of digital signal processing. It is mentioned that if we have samples of signal

and the periodic of sampling, then we can recover original signal information, but

aliasing is often generated while sampling the signal and this makes distortion to

reconstructed signal. To avoid this situation, the sampling rate must be twice faster

than signal rate when sampling signal, it is called nyquist sampling theorem. Fig. 2-1

is the block diagram of signal reconstruction and re-sampling, and it can explain the

process of image resizing.

)(ωjHr

)(nf)(tfrIdeal reconstruct

filter
Sampling M

)(nfm

Fig. 2-1. Block diagram of signal reconstruction.

The)(nf in Fig. 2-1 is a discrete sample of image signal, after)(nf passing ideal

low pass filter, the reconstructed output signal from low pass filter is (2.1).

 5

∑
∞

−∞=

−=
n

nTthnftf)()()(γγ , (2.1)

where T is sampling period of)(nf , and)(thγ is the impulse response of ideal

reconstruction filter withπ/T cut off frequency, and it can be expressed as (2.2).

Tt
Ttth

/
)/sin()(

π
π

γ = . (2.2)

Figure 2-2 shows the ideal reconstruction filter)(thγ .

Fig. 2-2. Ideal reconstruction filter.

So the reconstructed continues signal can be expressed as (2.3).

∑
∞

−∞= −
−

=
n TnTt

TnTtnftf
/)(

]/)(sin[)()(
π
π

γ (2.3)

In mathematically description, we can clearly know how to transfer discrete

signal into continues signal. Briefly, the mathematical meaning of signal

 6

reconstruction is the convolution of two functions, and the key point to the quality of

reconstructed signal is the difference between different reconstruction functions. It is

known that ideal reconstruction filter is sinc function, it a function with non zero

value when time closing to infinite but not realizable in real application, so sinc

function has to be replaced by other reconstruction functions. The quality of

reconstructed signal will be different if we use different function to replace sinc

function. To approximate perfect low pass filter and have least distortion, many

interpolation schemes use piecewise function to replace sinc function. Piecewise

function uses different functions in different temporal sections. Sinc function is

symmetrical when time is zero, so the functions which are used to replace sinc

function usually have same characteristic.

The goal of re-sampling in Fig.2-1 is to make continues signal)(tfγ back to

discrete digital signal and can be expressed as (2.4),

)()(
M
Tfnfm γ= , (2.4)

where M is to coefficient of sampling, if M > 1 means that it samples more data and

that will enlarge output image, if M = 1 means that the size of output image remains

unchanged, if 0 < M < 1 means the size of output image becomes smaller.

 Figure. 2-3 shows an example of image scaling up action. In the left is the

original image and output image is the image in the right side.

 7

Fig. 2-3. Example of image scaling.

We will introduce several traditional interpolation functions and discus their

advantages and disadvantages in next section.

2.2 Several Traditional Interpolation Schemes

2.2.1 Nearest Neighborhood

Nearest neighborhood interpolation scheme is the simplest and most efficient

interpolation function, it has very low computational complexity but has poor image

quality. During it process Image scaling, it usually generates jagged and blocking. Its

mathematical function can be expressed as (2.5) and the waveform of time domain is

shown in Fig. 2-4.

⎪⎩

⎪
⎨
⎧ <<−

=
otherwise

t
th

,0
2
1

2
1,1

)(γ . (2.5)

Scaling Up

 8

Fig. 2-4. Time domain waveform of nearest neighborhood interpolation function.

The algorithm of this interpolation scheme is to identify which original pixel is

closest to the new pixel, and use it as a new pixel, so the interpolated image will be

very sharp. Fig. 2-5 shows the algorithm of nearest neighborhood interpolation

scheme.

Fig. 2-5. Algorithm of nearest neighborhood interpolation scheme.

In Fig. 2-5, P is the new pixel that needed to be interpolated, and S1, S2, S3 and

S4 are original pixels. If S4 is closest to P, then we use S4 as P in interpolated image.

 9

2.2.2 Bilinear

Bilinear interpolation is popular in many applications, although it is more

complex than nearest neighborhood interpolation, but the quality of its result is much

better than the result of NN interpolation. Its computation time is longer than NN

interpolation due to the interpolated pixel needed to be calculated. The main

disadvantage of bilinear interpolation is that it usually generate blur and jag in the

edge section. The function of bilinear interpolation is as (2.6) and the waveform of

bilinear interpolation in time domain is shown in Fig. 2-6.

⎩
⎨
⎧

<
<≤−

=
||1,0
1||0,||1

)(
t

tt
thγ . (2.6)

Fig. 2-6. Time domain waveform of bilinear interpolation function.

Bilinear interpolation works in 2-dimension space, and 1 interpolated pixel is

decided by 4 sampled pixels, the algorithm of bilinear interpolation scheme is shown

in Fig. 2-7.

 10

Fig. 2-7. Algorithm of bilinear interpolation scheme.

As we can see in Fig. 2-7, P is the new pixel needed to be interpolated, and S1,

S2, S3 and S4 are original pixels. If an original pixel is closer to P, and the weight of

this original pixel to P will be higher, otherwise it will be smaller. In Fig. 2-7, dx and

dy are the distances from P to S1, S2, S3 and S4, x and y are the distances between

original pixels. Bilinear interpolation scheme can be expressed as (2.7).

))(())(())(())((
y

dy
x

dxS
y

dy
x
dxxS

y
dyy

x
dxS

y
dyy

x
dxxSP +

−
+

−
+

−−
= (2.7)

2.2.3 Bicubic

Bicubic interpolation is somewhat like bilinear interpolation, and the

interpolation core of bicubic interpolation is more similar to sinc function than

bilinear interpolation is. Bicubic interpolation uses near-by 16 pixels to compute

interpolated pixels, so it is not as efficiency as bilinear interpolation. The result of

bicubic interpolation is better than previous two interpolation schemes, but the

 11

disadvantages of bicubic interpolation are that there is still blur in edge part and large

amounts of computation. Mathematical function of bicubic interpolation is shown as

(2.8), and the waveform of bicubic interpolation in time domain is shown in Fig. 2-8.

⎪
⎩

⎪
⎨

⎧

≤
<≤−+−

<≤−

=
||2,0
2||1,||||5||84
1||0,||1

)(32

t
tttt
tt

thγ (2.8)

Fig. 2-8. Time domain waveform of bicubic interpolation function.

Fig. 2-9. Algorithm of bicubic interpolation scheme.

 12

Fig. 2-9 shows the algorithm of bicubic interpolation scheme, where P is the new

pixel needed to be interpolated, and),(jiS are original pixels S1 ~ S16,),(jiW

are weights of S1 ~ S16. P is calculated by summing the products of S1 ~ S16 with

their weights and it can be expressed as (2.9).

∑∑
= =

=
4

1

4

1

),(*),(
i i

jiWjiSP (2.9)

2.3 Defects of Traditional Interpolation Schemes

The image quality will change if we use different schemes to do interpolation, so

we will discuss the defects of nearest neighborhood interpolation scheme and bilinear

interpolation scheme in this section. The common defects in interpolated images are

as below.

(1) Blur

If blur occurs in an image, it will be hard to focus or identify the object in an

image, and the quality of image is reduced. The occurring of blur is because that the

reconstruction filter is usually a low pass filter, and low pass filter will filter high

frequency parts of signal. In image signal, high frequency parts are usually in edge

section. Therefore, if we filter high pass parts of image signal, the information of edge

section will be lost. We use bilinear interpolation as an illustration, Fig. 2-10 (b) is an

image enlarged by bilinear interpolation, and we can find blurry defects in this image.

 13

(2) Block & Jag

In real interpolation application, data is sampled in finite quantity, and the pixel

of sampling point will be affected by near-by pixels and this cause jag appearing in

edge sections of image. The effect of block and jag will be more obviously if the time

domain waveform curve of interpolation function is more oblique. We use nearest

neighborhood interpolation as an illustration, Fig. 2-10 (a) is an image enlarged by

nearest neighborhood interpolation, and it contains obvious block and jag in edge

section.

Fig. 2-10. (a) Image enlarged by nearest neighborhood interpolation, (b) Image enlarged by bilinear

interpolation, (c) original image.

 14

2.4 HVS-Based Edge-Adaptive Image Scaling

2.4.1 Introduction

It has been known that conventional interpolation techniques such as the bilinear

and the bicubic interpolations do not satisfy the requirement of high quality image

since these methods tends to some obvious defects such as blur and jag. Recently,

several adaptive nonlinear methods have been proposed to tackle these problems. In

these methods, the image is analyzed at first to achieve better interpolation quality

[2]-[5].

Since human eyes are more sensitive to the edge areas than smooth areas within

an image, many algorithms [6]-[16] have been proposed to improve the subjectively

visual quality of edge regions in the images that need to apply interpolation. However,

how to design the optimal-adaptive filter and how to judge the quality of interpolated

images are the challenges for these methods.

To avoid the disadvantage of conventional interpolation, this thesis use

HVS-based edge-adaptive image scaling scheme [1]. This image interpolation method

combines the bilinear interpolation and an edge-adaptive image interpolation. By

using a fuzzy decision system [17], [18] inspired by the human visual system to

classify the input image into human perception non-sensitive regions and sensitive

regions to determine either the bilinear interpolation module or edge-adaptive

interpolation module is selected to operate for each region.

 15

2.4.2 Architecture

The schematic block diagram of HVS-based edge-adaptive image scaling

scheme is shown in Fig. 2-11. This scheme consists of a fuzzy decision module, an

angle evaluation module, an edge-adaptive interpolation module and a bilinear

interpolation module. Fuzzy decision module designates each sliding block as shown

in Fig. 2-12; it receives for one of a plurality of predefined classifications. Based on

this classification, one of the bilinear interpolation and edge-adaptive interpolation

modules is selected for actuation in generating the supplementary image pixels

necessary to support resolution enhancement. When the edge-adaptive interpolation is

actuated, the angle evaluation module will compute the dominant orientation of the

sliding block in the original images and use it as one of the input data of

edge-adaptive interpolation module.

Fig. 2-11. Schematic block diagram of HVS-Based Edge-Adapted Image Scaling system.

 16

(a) (b)
Fig. 2-12. (a) A 4 x 4 sliding (overlapping) block in original image, (b) The block after two times

interpolation. [1]

When an original image enters our system, it is firstly divided into 4 x 4 sliding

(overlapping) blocks. In other words, an image is constructed by many overlapped

sliding blocks. The block is shown in Fig. 3-2 as an illustration, where),(jiO are

the pixels of the original image and P(1,0), P(0,-1), P(1,-1) are the pixels needed to be

interpolated in current block for 2 times interpolation. The weighted interpolation is

used and can be presented as (2.10),

∑∑
= =

=
3

0

3

0
,,),(),(),(

i j
nm jiWjiOnmP θ (2.10)

where the weights),(,, jiW nmθ are derived from edge-adaptive interpolation module,

it will be introduced in later section.

 17

2.4.3 HVS-Directed Image Analysis

It is well known that classical linear interpolation techniques often suffer from

blurring edges or introducing artifacts around edges. An ideal interpolation scheme

should always go alone the edge orientation because it would not blur the edge and

well preserve the smoothness along the edge orientation.

In order to achieve optimal edge-directed interpolation, we make use of the

properties of the human visual system to be our foundation by which we procure the

futures of images. We could also realize which region would be worth processing for

us in particular by using the properties of HVS, since human eyes would be usually

more sensitive to this region.

1. Fuzzy Decision

Researches have been made on the characteristics of human visual system (HVS).

It was found that the perception of HVS is more sensitive to luminance contrast rather

than uniform brightness. The ability of human eyes to tell the magnitude difference

between an object and its background depends on the average value of background

luminance. As shown in Fig. 2-13, visibility threshold is lower when the background

luminance is within the interval from 70 to 150, and the visibility threshold will

increase if the background luminance becomes brighter or darker away from this

interval. In addition, high visibility threshold will occur when the background

luminance is in very dark region [19].

 18

Fig. 2-13. Visibility thresholds corresponding to different background luminance. [1]

In addition to the magnitude difference between object and the background,

different structures of images also cause different perceptions for HVS. Human eyes

are more sensitive to high contrast regions such as texture or edge regions than the

smooth regions. Since we have to make a balance between image quality, processing

speed and power consumption, in our interpolation method, a novel fuzzy decision

system inspired by HVS is used to classify the input image into human perception

non-sensitive regions and sensitive regions. For non-sensitive regions, the bilinear

interpolation module is used to reduce the power consumption. For sensitive regions,

the edge-adaptive interpolation module is used to archive better visual quality.

There are three input variables in our fuzzy decision system, visibility degree

(VD), structure degree (SD) and complexity degree (CD). VD is used to check if the

object in the sliding block can be easily seen by human eyes, SD and CD are used to

 19

check if image in sliding block have characteristic of edge structure. The fuzzy

decision system has an output that which interpolation module should be used. We

will introduce fuzzy decision system in detail in fellow five sub-sections.

 (1) Visibility degree

In order to obtain the input variables corresponding to each sliding block, two

index parameters should be calculated at first. Parameter background luminance (BL)

[19] is the average luminance of the sliding block and can be calculated by (2.12).

BL= ∑∑
= =

×
3

0

3

0
),(),(

23
1

i j
jiBjiO , (2.11)

Where

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1111
1222
1202
1222

),(jiB . (2.12)

Parameter D is the difference between the maximum pixel value and the

minimum pixel value in the sliding block and can be calculated by (2.13).

)),(min()),(max(jiOjiOD −= (2.13)

A nonlinear function V(BL) is used to approximate the relation between the

visibility threshold and background luminance (as Fig. 3-3), and can be represented as

(2.14).

 20

BLBL eeBLV 008.003.066.20)(+= − . (2.14)

After BL, D and V(BL) are obtained, we can calculate the input variables (VD,

SD and CD) of the fuzzy decision system. Parameter VD is defined as the difference

between D and V(BL) and can be represented as (2.15).

)(BLVDVD −= . (2.15)

If VD > 0, it means the magnitude difference between the object and its

background exceeds the visibility threshold and the object is sensible. Otherwise, this

object is not sensible.

 (2) Structure degree

SD shows if the sliding block is a high contrast region and the pixels in the block

can be obviously separated into two clusters. It is calculated by (2.16).

[]
)),(min()),(max(

)),(min()),(()),(()),(max(
jiOjiO

jiOjiOmeanjiOmeanjiO
SD

−

−−−
= (2.16)

where

∑∑
= =

=
3 3

0
),(

16
1)),((

oi j
jiOjiOmean (2.17)

An illustration of (2.16) is shown in Fig. 2-14. According to Fig. 3-4, if we

make)),(()),(max(1 jiOmeanjiO −=σ ,)),(min()),((2 jiOjiOmean −=σ , (2.16) can

 21

be expressed by (2.18).

)(21

21

σσ
σσ

+

−
. (2.18)

Fig. 2-14. An illustration of the relation between SD parameter and the distribution of pixels in a

sliding block.

So the SD can be normalized to [0, 1]. If SD is small (close to zero) and 1σ and

2σ are close [as Fig. 2-14(a)], it means that pixels in the block can be separated into

two even clusters. The block may contain edge or texture structure. On the contrary, if

SD is a large value (021 >>−σσ) [as Fig. 2-14(b)], it means that pixel number of

one cluster and that of the other cluster are not even; thus, the block may contain

noise.

 (3) Complexity degree

When we get SD variable of current sliding block, if value of SD is small, sliding

block may contain edge or texture, and we have to separate them up. In this situation,

we need the CD variable. CD is based on the local gradient process and can be

 22

calculated by (2.19).

∑∑
= =

−+++−++−=
3

0

3

0
)]1,(')1,('),1('),1('[),('4

i j
jiOjiOjiOjiOjiOCD (2.19)

Where),(' jiO is the binarized version of input to eliminate the influence of

image intensity. Each pixel in the 4 x 4 sliding block takes the four-directional local

gradient operation, and the CD is the summation of the 16 local gradient values. If the

CD is a large value, it means the block may contain texture structure. On the contrary,

if the CD is a small value, the block may contain delineated edge structure.

(4) Fuzzy output

Variable VD has two fuzzy sets, N(negative) and P(positive), variable SD has

three fuzzy sets, S(small), M(medium) and B(big), variable CD also has three fuzzy

sets, S(small), M(medium) and B(big). The membership functions corresponding to

the VD, SD, and CD are shown in Fig. 2-15 (a)–(c), respectively. Seven fuzzy

decision rules are used in fuzzy decision system and represented as follows:

1. If VD is N then Mo is BL.

2. If SD is B then Mo is BL.

3. If CD is B then Mo is BL.

4. If VD is P and SD is S and CD is S then Mo is AA.

5. If VD is P and SD is S and CD is M then Mo is BL.

6. If VD is P and SD is M and CD is S then Mo is AA.

7. If VD is P and SD is M and CD is M then Mo is BL.

 23

When the output of fuzzy decision system is AA, system will choose

edge-adaptive interpolation module, otherwise the bilinear interpolation module

would be used.

Fig. 2-15. Membership functions of fuzzy sets on input variables VD, SD, and CD.

(5) Experiment of Fuzzy Input Variables

Fig. 2-16 shows four different image structures to illustrate the operations of the

fuzzy decision system. Fig. 2-16 (a)–(d), represents smooth, texture, edge, and noise

regions, respectively. The VD, SD, and CD values of these regions are shown in Table

2-1.

According to the VD values in Table 3-1, only Fig. 2-16 (a) (smooth region) is

negative, which activates fuzzy rule 1 and follows the assumption that “if VD >0, it

contains visible objects.＂ The SD value of Fig. 2-16 (d) (noise) is large (B), which

 24

activates fuzzy rule 2 and follows the assumption that “If SD is a large value, the

block may contain noise.＂ The SD values of Fig. 2-16 (b) (texture region) and Fig.

2-16 (c) (edge region) are small (S), which follows our assumption that “if SD is

small, the block may contain edge or texture structure. The CD value of Fig. 2-16 (b)

is medium (M), which activates fuzzy rules 5 and it follows the assumption that “If

CD is a large value, the block may contain texture structure.＂ The CD value of Fig.

2-16 (c) is small (S), which activates fuzzy rule 4 and follows the assumption that “If

CD is a small value, the block may contain edge structure.＂

Fig. 2-16. Portions of (a) smooth region, (b) texture region, (c) edge region, and (d) noise region.

 25

Table 2-1. Processing results of the fuzzy decision system corresponding to three
different structures shown in Fig. 2-16.

Smooth
Region

Texture
Region

Edge
region

Noise

VD -1.42 25.71 144.34 114.83
SD 0.42 0.007 0.29 0.67
CD 0 22 10 4

Output BL BL EA BL

2. Angle Evaluation

According to Fig. 2-11, when fuzzy decision module selects edge-adaptive

interpolation module, angle evaluation is performed to determine the dominate

orientation of the sliding block. The flow diagram of angle evaluation is shown in Fig.

2-17. When angle evaluation is operating, the orientation angle of each neighborhood

original image pixel is computed. According to Fig. 2-12, when the orientation angle

of),(jiO denoted as),(jiA is computed, the luminance values of the original

pixels nearby),(jiO are used for the following computations as (2.20)-(2.21), and

we use Fig. 3-8 to illustrate (2.20) and (2.21).

))1,1(),1(2)1,1((
)1,1(),1(2)1,1(),(

+++++−+−
+−+−+−−=

jiOjiOjiO
jiOjiOjiOjiDx (2.20)

))1,1()1,(2)1,1((

)1,1()1,(2)1,1(),(

++++++−−

−++−+−−=

jiOjiOjiO

jiOjiOjiOjiDy (2.21)

)]
),(
),(([tan180),(1

jiDx
jiDyjiA −−=

π
 (2.22)

where 30 ≤≤ i , 30 ≤≤ j .

 26

Fig. 2-17. Flow diagram of angle evaluation.

Fig. 2-18. Illustration of Dx and Dy in sliding block.

The obtained orientation angle of each neighborhood original image pixel is

quantized into eight quantization sectors such as k×= 5.22θ degrees, where k=0,

1… 7. The system will gather the most frequently occurring quantized orientation and

send into edge-adaptive interpolation module.

 27

2.4.4 Image Interpolation Computation

If the output of fuzzy decision module is BL, it means that the input image is not

edge structure, so we just simply use bilinear interpolation to interpolate the image.

On the contrary, when fuzzy decision outputs AA, it means that current image input

has edge structure, and needed to be interpolated by edge-adaptive interpolation

module. Angle evaluation module will calculate the dominate orientation of the input

image, and send the orientation information to edge-adaptive module for weight

generation. In (2.10),),(,, jiW nmθ are the weights corresponding to the orientation of

input image. Weights will differ from different orientation and the location that

needed to be interpolated. Weighting matrix),(,, jiW nmθ can be represented as

follow:

. (2.23)

Three interpolated pixels will be generated from one sliding block, generating

one interpolated pixel need 16 weights, so a sliding block need 48 weights to

complete interpolation of three pixels. To reduce system complexity, all weights are

pre-trained by back propagation neural network and saved in a table.

 28

Chapter 3
Hardware Design of Edge-Adaptive

Real-Time Image Scaling

3.1 Introduction

With the development of DTV broadcast and LCD HDTV, high resolution image

can provide much more detailed information to satisfy the needs of users. Since the

traditional video does not have the same resolution as HDTV, the images are needed

to be scaled. For instance, the source signal resolutions are in traditional standard

resolution of 720 x 480, but the HDTV LCD panel usually has higher resolution like

1920 x 1080. If the video in SDTV resolution were played on HDTV, the resolution of

the source signal should be enhanced in advance to fit the panel resolution of HDTV.

Due to the data stream of video signal is quite large, we need to do lots of

computation if we want to enhance the resolution of video signal by using advanced

interpolation technique, and the memory used to store temporary video data must

have high data transfer rate. Because video signal has its own regular input/output

timing, so we only have restrict time to do computation of image interpolation. If we

want to make video resolution enhancement in real-time, it is suitable to implement

the video resolution enhancement system in ASIC or FGPA platform [20]-[26].

In order to verify our edge-adaptive image interpolation hardware can operate in

real-time, we have designed a real-time HVS-based edge-adaptive video scaling

hardware. The ITU-R.656 standard input signal is provided by video decoder, and the

 29

resolution of input signal is 720 x 480 pixels. Our hardware outputs scaled video

signal to LCD monitor with resolution of 320 x 240.

Fig. 3-1. Video scaling method of our hardware.

The method of video scaling in our hardware is shown in Fig. 3-1. At beginning,

we capture an image from input video frame, and the size of capturing window is 160

x 120. After input image acquiring, the hardware will enhance resolution of input

image in factor of 2, the output image resolution will be 320 x 240, and then the

processed image will be output to LCD monitor for observation. It will have no

flexibility if the location of capturing window is fixed in some specific area. In our

hardware, user can freely control the movement of capturing window through the

push bottoms on FPGA development board.

3.2 Hardware Architecture

Figure 3-2 shows whole hardware of real-time edge-adaptive video scaling. Our

hardware is based on Altera FPGA development board, this development board has

equipped composite video interface and video decoder ADV7180 made by Analog

 30

Device, this video decoder can receive analog video signal such as NTSC, PAL and

SCREAM and outputs ITU-R.656 standard digital video data stream. We connect a

LCD monitor to FPGA development board through GPIO interface and user can

directly observe the result of scaled image by watching LCD monitor. Besides, users

are able to control our hardware through switches and bottoms on the board.

Fig. 3-2. Whole hardware of real-time HVS-based edge-adaptive video scaling.

Figure 3-3 shows the architecture inside FPGA development board. After

ADV7180 transform analog NTSC signal into ITU-R.656 standard digital data stream,

the digital data stream needs to be decoded by ITU-R.656 decoder, and capture the

image block which we want to interpolate into input frame buffer for following

computation. Data flow control unit is responsible for data transition from one

function unit to another, it read the data that needed by scaling circuit from input

frame buffer and transfer them to scaling circuit and output frame buffer in the same

time. Output data address and timing generation circuit generate timing information

for LCD monitor and corresponding data address in output frame buffer. Finally, the

interpolated image data is sent to LCD monitor through GPIO interface.

 31

Fig. 3-3. Architecture inside FPGA development board.

3.3 Data Flow Control Circuit

After input image capturing is complete, data flow control circuit takes charge of

data transmission between input frame buffer, output frame buffer and image

interpolation circuit. Block diagram of data flow control circuit is shown in Fig. 3-4,

and its operating methods are as below.

1. Before input image capturing is complete, the status of circuit is

Wait_for_start and does nothing.

2. After input image capturing is complete, input image acquiring circuit will

inform data flow control circuit and data flow control circuit will change to

next status, and it takes one cycle to complete this action.

3. When circuit starts working, it will firstly enter Load_mem_36 stage. Image

interpolation circuit needs 36 input registers, so we have to fill them with

correct image data. Meanwhile, data flow control circuit calculates the

 32

location of image data in output frame buffer according to its location in

input frame buffer, then store image data to output frame buffer. This action

can save time to store data from registers. It takes 37 cycles to finish this

stage.

Fig. 3-4. Block diagram of data flow control circuit.

 33

4. After all data needed by image interpolation circuit are loaded, the status

changes to compute stage. In this stage, image interpolation circuit use 36

input data to compute the corresponding answer. When the computation is

finished, image interpolation circuit will send generated pixels to data flow

control circuit. The numbers of cycles to finish this stage is according to

different clock cycle time because the time period of computation is fixed

and have nothing to do with clock cycle time.

5. When computation is over, data flow control circuit calculates their address

in output frame buffer according to the address of input data and store them

into output frame buffer. It takes three cycles to finish this stage.

6. After interpolated pixels are stored into output frame buffer, data flow control

circuit will identify current position of sliding block. If all input image data is

processed, status will back to Wait_for_start stage; Else if sliding block is on

the right border, status changes to Load_mem_36 stage and load data needed

by next sliding block; Else if sliding block is not on the border of image,

status will changes to Load_mem_6 status.

7. If sliding block is not on the right border of image, then it is overlapped with

next sliding block, there will be 30 pixels the same as next sliding block. It

will waste too much time if we load all 36 pixels from input frame buffer; it

takes 37 cycles to load 36 pixels. So we use Load_mem_6 in this situation,

this stage change positions of 30 pixels in input registers, and the other pixels

are loaded from input frame buffer. Fig. 3-5 shows how Load_mem_6 works,

and it takes only 7 cycles to finish loading operation. This action boosts

hardware performance from 112 FPS to 300 FPS.

 34

Fig. 3-5. Fast memory loading working scheme.

3.4 Image Interpolation Circuit

3.4.1 Architecture

Fig. 3-6 shows the architecture of image interpolation circuit, the inputs of this

circuit are 36 pixels image data and the outputs are three interpolated pixels. There are

three modules in this circuit, fuzzy decision module, angle evaluation module and

image interpolation module. Fuzzy decision module will identify characteristics of

input image data and evaluate if current input is worthy of using edge-adaptive

interpolation. Angle evaluation module estimate dominate orientation of input image.

The result of fuzzy decision module and angle evaluation module will be sent to

image interpolation, then choosing interpolation method and calculate output data.

 35

Fig. 3-6. Architecture of image interpolation circuit.

3.4.2 Fuzzy Decision Module

There are three sub-modules in fuzzy decision module, visibility degree module

(VD), structure degree module (SD) and complexity degree module (CD). These

modules identify the characteristics of input image and evaluate that if input image is

sensitive to human eyes, if the answer is true, use edge-adaptive interpolation,

otherwise use bilinear interpolation.

 36

(1) Visibility Degree Module

In original adaptive image scaling algorithm, variable VD is calculated by (3.1).

)(BLVDVD −= (3.1)

where

)),(min()),(max(jiOjiOD −= (3.2)

BLBL eeBLV 008.003.066.20)(+= − (3.3)

V is sum of two exponential functions, and they are not simple exponential

function, so it is difficult to implement them in hardware because of high complexity

and overusing resource. In order to overcome this problem, VD must be approximated;

Fig. 3-7 shows modified computation flow of VD.

Fig. 3-7. Modified computation flow of VD.

 37

Original VD use the comparison between luminance difference and the variable

visibility threshold to identify if object is visible, and we can fix the visibility

threshold to a proper value. What we have to do is comparing luminance difference

with the fixed visibility threshold [20]. Since visibility threshold is fixed, the

condition of luminance difference exceeding visibility threshold is slightly reduced.

Fig. 3-8. Experiment result of VD modification. (a) difference, (b) original VD, (c) modified VD.

Fig. 3-8 shows the experiment result of modified VD, the difference between (b)

and (c) mostly occurs in smooth region, only very few of them occur in edge region.

There is only little difference between their PSNR comparisons.

(a)

(b) (c)

 38

Table 3-1. PSNR comparison of original and modified VD.

 Original VD Modified VD

PSNR 27.742 dB 27.598 dB

(2) Structure Degree Module

In original edge-adaptive image scaling algorithm, variable VD is calculated by

(3.4).

[]
)),(min()),(max(

)),(min()),(()),(()),(max(
jiOjiO

jiOjiOmeanjiOmeanjiO
SD

−

−−−
= (3.4)

In (3.4), the result of SD will locate between zero to one, we can not use decimal

fraction unless using floating point computation, but that will cost too much resource

and processing time to use floating point computation. Besides, original SD

computation contains division, and this makes lower circuit speed and higher resource

usage. Due to several reasons mentioned above, variable SD must be modified.

 As mentioned in previous, SD can be normalized to [0, 1], that is when the

answer of (3.4) is larger than 0.5, SD is set to 1, otherwise SD is set to 0. The

denominator and the numerator of (3.4) are both 8-bit fix-point integers, when we

want to know if (3.4) is larger than 0.5, we can just do comparison between [7:1] bits

of denominator and [6:0] bits of numerator, if [7:1] bits of denominator is larger than

[6:0] bits of numerator, it means that (3.4) is small than 0.5, so we set output of SD

module to 0, otherwise output of SD is 1. After modifying, the complexity of

computing variable SD is reduced substantially, and the modified computation flow is

shown in Fig. 3-9.

 39

Find Mean

Find Max data

Input
image
data

Find Min data

Max-Mean-
(Mean-Min)

Max+Min

ABS circuit

Right Shift 1
Bit

Compare Structure
Degree

Fig. 3-9. Modified SD computation flow.

(a)

(b) (c)
Fig. 3-10. Experiment result of SD modification. (a) difference, (b) original VD, (c) modified VD.

The action of SD modification is the as the same as changing the parameter of

SD. As shown in Fig. 3-10, modified SD computation makes almost no difference in

visual observation with little improvement in PSNR performance.

 40

Table 3-2. PSNR comparison of original and modified SD.

 Original SD Modified SD

PSNR 27.742 dB 27.615 dB

(3) Complexity Degree Module

Because of the computations in variable CD are all simple integer computations,

so we don＇t have to modify the computation of CD. But there is a threshold circuit

in this computation, if the data reach the threshold, the circuit will output 1 as answer,

and otherwise the answer will be 0. We use adaptive thresholding to binarize pixels

into 0 and 1. The result of adaptive thresholding is mean value of pixels in sliding

block. We use the outputs of threshold circuit to do computation in (2.19) then get the

result of variable CD. Fig 3-11 shows full architecture of fuzzy variables computation

circuit.

Fig. 3-11. Full architecture of fuzzy variables computation circuit.

 41

3.4.3 Angle Evaluation Module

The principle of angle computation in angle evaluation module is sobel operator,

in (3.5) ~ (3.7), Dx and Dy only use normal integer additions an subtractions, but

when (4.7) use Dx and Dy to compute angle information, it also use arc tangent

function, besides, this arc tangent function contains a division Dx/Dy. If we use look

up table to find the angle information of Dx and Dy, it will cost too much hardware

resource and make complexity too high.

Therefore, we adopt CORDIC circuit to estimate angle information by using Dx

and Dy. After all, a sliding will generate 16 angle information, and we have to find out

which angle appear most frequently and set this angle as output of angle evaluation

module.

))1,1(),1(2)1,1((
)1,1(),1(2)1,1(),(

+++++−+−
+−+−+−−=

jiOjiOjiO
jiOjiOjiOjiDx (3.5)

))1,1()1,(2)1,1((

)1,1()1,(2)1,1(),(

++++++−−

−++−+−−=

jiOjiOjiO

jiOjiOjiOjiDy (3.6)

)]
),(
),(([tan180),(1

jiDx
jiDyjiA −−=

π
 (3.7)

(1) CORDIC Module

The full name of CORDIC is COordinate Rotation DIgital Computer, and it is a

very simple and efficient algorithm to compute many hyperbolic and trigonometric

 42

functions. Comparing to huge look up tables, CORDIC circuit can calculate many

functions by only using shifter, adder, subtract, and a very small look up table.

Fig. 3-12 shows how CORDIC operates, CORDIC uses approaching technique to

find the answer. In Fig. 3-10, if β is 56.25 degrees and we want find β. We start from

V0 which is 0 degree, and current angle is smaller than β, so we add 45 degrees to V0

and become V1. At V1, current angle is still smaller than β, so we add 22.5 degrees to

V1 and become V2. At V2, current angle becomes larger than β, so we have to

subtract 11.25 degrees and become V3, and V3 is exact on β which we desired for.

Fig. 3-12. CORDIC operating principle.

Now we explain CORDIC in mathematic aspect, in (3.8), x and y change while

β rotate θ degrees.

)sin()cos('
)sin()cos('

θθ
θθ

xyy
yxx

+=
−=

 (3.8)

 43

If we take out cos(θ) in (3.8), it will become (3.9), we have not done any simplified

action at this step.

))tan()(cos('
))tan()(cos('

θθ
θθ

xyy
yxx

+=
−=

 (3.9)

If we restrict rotation angle θ and make i−±= 2)tan(θ , the multiplications of tan(θ)

in (3.9) can be replaced by simple shift operations.

(3.10) is iterative rotations of CORDIC and is modified from (3.9), where di is

1± and Ki is constant.

)2(tan

))2((

))2((

1
1

1

1

i
iii

i
iiiii

i
iiiii

dzz

dxyKy

dyxKx

−−
+

−
+

−
+

−=

+=

−=

 (3.10)

Before every iteration, di has to be decided, (3.11) shows how di is decided.

⎩
⎨
⎧
−

<+
=

.1
01

otherwise
yif

d i
i (3.11)

After n times iterations, ny will be close to 0, now we have results blow.

)(tan

0

)(1

0

01
0

2
0

2
0

x
y

zz

y

yx
K

x

n

n

n

−+=

≈

+=

 (3.12)

 44

Where nz is the angle information)(tan
0

01

x
y− that we need, 0z is initial angle and

it will be different according to different Dx and Dy. Table 3-3 is the relationship

between Dx and Dy and 0z .

Table 3-3. Relationship between Dx and Dy and Z.

Dx + - -
Dy ± + -

0z 0 90 -90

The architecture of CORDIC circuit is shown in Fig. 3-13; it contains adders,

substrates, shifters, and constant look up table. Basically, the accuracy of CORDIC is

based on how many times it iterates. The accuracy that need by edge-adaptive image

scaling is 11.25 degrees, so CORDIC has to iterate five times to satisfy our

requirement.

Fig. 3-13. Architecture of CORDIC circuit.

 45

(2) Main Angle Decision Module

A sliding block contains 16 angle information, so we have to identify which

angle appears most frequently and provide this information for image interpolation

module to use.

While evaluate dominate angle, we have to mention that if the value of Dx and

Dy are rational, if both Dx and Dy are zero, this situation is not reasonable and the

current angle information is useless, so we have to abandon this angle information.

3.4.4 Image Interpolation Module

There are two sub modules in image interpolation module, bilinear interpolation

module and edge-adaptive interpolation module. Which sub module will be used is

according to the answer of fuzzy decision module and angle evaluation module.

(1) Bilinear interpolation module

If the answer of fuzzy decision is that the input image is not sensitive to human

eyes, we use bilinear interpolation to interpolate the image, and the method of bilinear

interpolation that we used is shown in Fig. 3-14 and (3.13). In (3.13), O(i , j) are

input image pixels and P(i , j) are interpolated output pixels.

 46

Fig. 3-14. Relation between input pixels and output pixels.

2))2,2()2,1()1,2()1,1(()1,1(
1))2,1()1,1(()1,0(

1))1,2()1,1(()0,1(

>>+++=−
>>+=−

>>+=

OOOOP
OOP

OOP
 (3.13)

(2) Edge-Adaptive Interpolation Module

While the answer of fuzzy decision module is that the input image is sensitive to

human eyes, we use edge-adaptive interpolation to interpolate the image as shown in

(3.14).

∑∑
= =

=
3

0

3

0
,,),(),(),(

i j
nm jiWjiOnmP θ (3.14)

Edge-adaptive interpolation module will decide),(,, jiW nmθ according to the

angle information provided by angle evaluation module. The weighting matrix is

shown in (3.15).

 47

 (3.15)

In software simulation, all the weights of),(,, jiW nmθ are with precision of

0.000000001, but if we use the same accurate weights in hardware, there will be some

problems such as long computation time and larger computation circuit area, so we

have to do approximation on weights.

Figure 3-15 is the experiment result of weights approximation. (a) is the image

which we used in this experiment, and (b) is the difference between the image

interpolated by original weights and the image interpolated by weights with precision

of 1/128, and the weights used in (c), (d) are with precision of 1/256 and 1/512. While

using weights with precision of 1/128 to interpolate image the max single pixel

difference is 12, and the most frequently occurring difference are above 3 ~ 6. When

we use weight with precision of 1/256, the max single pixel difference is 5 and the

most frequently occurring difference are above 1.5 ~ 2.5. If we use weight with

precision of 1/512, the max single pixel difference is 4 and the most frequently

occurring difference are above 1 ~ 2.

We can find that when the precision of weights upgrade from 1/128 to 256, the

difference between the result of modified algorithm and the original algorithm is

reduced, and the maxima single pixel difference is reduced from 12 to 5. But when

the precision of weights upgrade from 1/256 to 1/512, the range of difference

reducing is limited, so we decided set the precision of weights to 1/256. In this

situation, the ratio of max difference to brightness scale is 5:255, less than 2

percentages, so it is not easily to be detected by human eyes.

 48

Fig. 3-15. Experiment result of weights approximation.

3.5 Input Image Acquisition Circuit

3.5.1 ITU-R.656 Decoder

A 32-bit window is used as the input of ITU-R.656 decoder. All signals enter

hardware by passing through this window as Fig 3-16. The window is composed of

four 8-bit blocks, we can also see this window as a FIFO memory, and it provides

information for finite state machine in ITU-R.656 decoder.

 49

Fig. 3-16. Window used in ITU-R.656 decoder.

We use a finite state machine with three states to decode ITU-R.656 signal and

acquire it, Fig. 3-17 shows operation method of finite state machine, and three states

are listed in table 3-4 with their descriptions.

Table 3-4. States and their descriptions of Fig. 3-17.

States descriptions

BLANK Data is invalid at this moment.

ODD FIELD Data is valid, odd field.

EVEN FIELD Data is valid, even field.

 50

Fig. 3-17. Operation method of finite state machine in ITU-R.656 decoder.

ITU-R.656 decoder works according to the information provided by the window,

when the first three blocks are FF 00 00, it means that window contains information

of timing reference in this situation, and F, H. V are in the three bits of X in forth

block, all decisions in Fig. 3-17 are happened in this situation.

In Fig. 3-17, initial state is BLANK, in this state circuit is idled and does nothing.

When the identification of F, V, H is 000, it means that follow-up signal will be odd

field, and the state will change to ODD FIELD; If the identification of F, V, H is 100,

it means that follow-up signal will be even field, and the state will change to EVEN

FIELD; If F, H, V is not 000 or 100, the state will remain unchanged.

 51

When the state is ODD FIELD, it also identifies F, H, V, the state will remain

ODD FIELD if F, H, V is 000 or 001, else the state will change to BLANK.

When the state is EVEN field, it works like ODD FIELD. The difference

between them is that the state will remain EVEN FIELD if F, H, V is 100 or 101.

3.5.2 Memory Address Generator Circuit for Frame Buffer Design

In order to have a 320 x 240 pixels output image, we have to capture a 160 x 120

pixels image from video data stream and put it into appropriate location in input

frame buffer. Fig. 3-19 shows the scheme used to check if current input data is valid.

1. Data_valid signal is initialized to 0, firstly we check the state of finite

state machine in Fig. 3-15, if state is BLANK, Data_valid is set to 0; If

state is ODD FIELD or EVEN FIELD, then identify if the first three

blocks of window contain FF 00 00 or not, if the answer is not, do

follow-up identification. Otherwise, Data_valid is set to zero.

2. In second step, we decide if current input data is needed by us according

to variables Count_v, Count_h and coordinate inputted by user, we will

do next decision if the answer is true, otherwise Data_valid is set to 0.

Finally we have to separate Y elements from YCbCr data stream, we can

use a 4-bit counter to do this operation as shown in Fig. 3-18, data is Y

element when counter value is 1 or 3.

 52

Fig. 3-18. Separate Y from YCbCr data stream.

Fig. 3-19. Scheme for checking if current input data is valid.

 53

Let us to introduce work principle of Count_h and Count_v used in Fig. 3-20.

Count_h is used to recognize the horizontal position of video data, and Count_v is

used to recognize the vertical position of video data. Fig. 3-20 shows operation mode

of Count_h, Count_h is initialized to 0, then identify the state of finite state machine

in Fig. 3-17, if state is BLANK, Count_h will be set to 0. Otherwise, it will keep

identifying F, V, H in timing reference. If F, V, H is 000 or 100, it is SAV of odd field

or even field, and set Count_h to 0. Otherwise, keep identifying 4-bit counter in Fig.

3-20 and Count_h will plus 1 if current data is Y component.

Fig. 3-20. Working principle of Count_h.

 54

Fig. 3-21. Working principle of Count_v.

Figure 3-21 shows working principle of Count_v, it identify the status of input

signal at beginning, if state is BLANK, Count_v is set to 0; If state is ODD FIELD,

Count_v will plus 1 when F, H, V is 000(SAV). Otherwise, Count_v will remain

unchanged; If state is EVEN FIELD, Count_v will plus 1 when F, H, V is 100(SAV),

else Count_v remain unchanged.

As shown in Fig. 3-22, we have to put captured input image into new position in

one dimension input frame buffer, so we use the original position of image pixel to

generate corresponding address in one dimension memory. Variables used to calculate

memory address of input frame buffer are listed in table 3-3, there are five variables,

Count_h, Count_v, Start_x, Start_y and input_window_width. Start_x and Start_y are

controlled by user through the bottoms on FPGA development board.

 55

161

19480……………………19320

19319……………………19159

…

……………………

…

…

……………………

…

321……………………161

160……………………0

19480……………………19320

19319……………………19159

…

……………………

…

…

……………………

…

321……………………161

160……………………0

19480…1932019319…19159………321…161160…0 19480…1932019319…19159………321…161160…0

Original Image

1-D Memory Array

161

121

19481
Fig. 3-22. Mapping of input frame buffer and image capture window.

Their purposes are to slide image capture window on whole input frame.

Input_window_width is the width of image capture window. The formula of memory

address generation in odd field is (3.16) and (3.17) in even field. If we want to modify

the size of input and output image, we can just change the value of

input_window_width.

((count_v-start_y)*(input_window_width*2))+(count_h-start_x) (3.16)

((count_v-start_y)*(input_window_width*2))+(count_h-start_x)+input_windowwidth (3.17)

Table 3-5. Variables used to calculate memory address of input frame buffer.

Variables Count_v Count_h Start_y Start_x input_window_width

 56

Function V_position H_position
User

control

User

control
Input window size

3.6 Output and Timing Generator Circuit

After finishing interpolate an image and storing into output frame buffer, output

signal and timing generation circuit begins reading output frame buffer, then generate

timing reference signal which is required by LCD monitor. Fig. 3-22 shows

architecture of output signal and timing generation circuit.

Fig. 3-23. Architecture of output signal and timing generation circuit.

 57

Chapter 4
Experimental Results

4.1 Simulation of HVS-Based Edge-Adaptive Image Scaling

We will demonstrate the experiment result of HVS-based edge-adaptive image

scaling, all input images are in the resolution of 160 x 120 and scaled by factor of 2,

so resolution of output images are 320 x 240. In Fig. 4-1 ~ Fig.4-4, each of them

contains five images (a) ~ (e), (a) is original image, (b) is image interpolated by

nearest neighborhood method, (c) is image interpolated by bicubic method, (d) is

image interpolated by HVS-based Edge-adaptive interpolation in MATLAB, and (e) is

the image interpolated by post simulation of synthesized verilog code.

Since PSNR is not one hundred percent stand for quality of image interpolation

algorithm, so we can not just observe PSNS comparison table and decide which image

interpolation method is best. In addition we also have to check the result images by

human eyes. AS shown in Fig. 4-1 ~ Fig.4-4, the results from HVS-based

edge-adaptive interpolation outperform traditional interpolations in edge parts, (d) and

(e) has less jag and blur than (b) and (c). And table 4-1 is their PSNR comparison.

 58

(a)

(b) (c)

(d) (e)

Fig. 4-1. Portions of (a) original house image, (b) scaled image by nearest neighborhood interpolation,

(c) scaled image by bilinear interpolation, (d) scaled image by HVS-based edge-adaptive interpolation

(MATLAB), (e) scaled image by dge-adaptive interpolation (FPGA post simulation)

 59

(a)

(b) (c)

(d) (e)

Fig. 4-2. Portions of (a) original house image, (b) scaled image by nearest neighborhood interpolation,

(c) scaled image by bicubic interpolation, (d) scaled image by HVS-based edge-adaptive interpolation

(MATLAB), (e) scaled image by edge-adaptive interpolation (FPGA post simulation)

 60

(a)

(b) (c)

(d) (e)

Fig. 4-3. Portions of (a) original fighter image, (b) scaled image by nearest neighborhood interpolation,

(c) scaled image by bicubic interpolation, (d) scaled image by HVS-based edge-adaptive interpolation

(MATLAB), (e) scaled image by edge-adaptive interpolation (FPGA post simulation)

 61

(a)

(b) (c)

(d) (e)

Fig. 4-4. Portions of (a) original BW image, (b) scaled image by nearest neighborhood interpolation, (c)

scaled image by bicubic interpolation, (d) scaled image by HVS-based edge-adaptive interpolation

(MATLAB), (e) scaled image by edge-adaptive interpolation (FPGA post simulation)

 62

Table 4-1 shows the PSNR comparison between each image interpolation

method. As shown in table 4-1, HVS-based edge-adaptive interpolation has better

PSNR than traditional interpolation techniques, and our approximated algorithm also

has good performance.

Table 4-1. PSNR comparison between each image interpolation method.

 NN Bilinear Bicubic
Proposed
(software)

Proposed
(hardware)

House 21.963 23.891 24.023 24.287 24.114

Car Light 26.031 28.234 28.502 28.804 28.648

Fighter 22.493 26.691 26.844 27.742 27.552
BW 15.908 18.472 19.1 20.324 20.192

 63

4.2 FPGA Implementation

Our real-time HVS-based edge-adaptive video scaling hardware is based on

DE2-70 FPGA development board, using composite connector on the board to

connect image device to development board, and ADV7180 video decoder decode

NTSC signal into ITU-R.656 digital video data stream, then sent into FPGA chip to

do computation. The FPGA chip on the development board is Cyclone II EP2C70

with 68416 logic elements and 1.1 Mbits embedded memory. We synthesis our

Verilog HDL code with Quartus II and program the FPGA chip. After all, a LCD

monitor is connected to FGPA development board through GPIO interface; we can

now observe the result by directly watching this monitor. Fig. 4-5 is the photo of our

hardware demonstration.

Fig. 4-5. Demonstration platform.

 64

4.2.1 ITR-R.656 Signal Acquisition Unit

After ITU-R.656 signal acquire unit is synthesized by Quartus II, it uses 317

logic elements and working frequency of clock is up to 95.73 MHz. Fig. 4-6 shows

summary of synthesis and Fig. 4-7 shows timing report.

Fig. 4-6. Synthesis summary of ITU-R.656 signal acquire unit.

Fig. 4-7. Timing report of ITU-R.656 signal acquire unit.

 65

4.2.2 Data Flow Control Unit

After data flow control unit is synthesized by Quartus II, it uses 2305 logic

elements and working frequency of clock is up to 146.2 MHz. Fig. 4-8 shows

summary of synthesis and Fig. 4-9 shows timing report.

Fig. 4-8. Synthesis summary of data flow control unit.

Fig. 4-9. Timing report of data flow control unit.

 66

4.2.3 Image Scaling Unit

After image scaling unit is synthesized by Quartus II, it uses 13949 logic

elements, Fig. 4-10 shows summary of synthesis. It takes 69.92ns for this circuit to

calculate the correct answer, Fig 4-11 is the waveform of post simulation, three

outputs are 71, 53 and 88. The average computational time of one interpolated pixels

is 23.3 ns.

Fig. 4-10. Synthesis summary of image interpolation unit.

Fig. 4-11. Post-simulation waveform of image interpolation unit.

 67

4.2.4 Output Timing and Data Address Generator Unit

After output timing and data address generation unit is synthesized by Quartus II,

it uses 727 logic elements and working frequency of clock is up to 153 MHz. Fig.

4-12 shows summary of synthesis and Fig. 4-13 shows timing report.

Fig. 4-12. Synthesis summary of output timing and data address generation unit.

Fig. 4-13. Timing report of output timing and data address generation unit.

 68

4.2.5 Integration and Synthesis

After all units are integrated, we use Quartus II to synthesis the whole hardware,

and it uses 19913 logic elements, the usage of total logic elements in FPGA is 29%.

Besides, we also use 775760 bits embedded memory, 155848 bits are used by input

frame buffer and 618888bit are used by output frame buffer. Fig. 4-14 shows full

compilation summary of full system.

Fig. 4-14. Full compilation summary of full system.

 69

4.2.6 Performance Estimation

We estimate out hardware performance in situation of: size of input image is 160

x 120, scaling factor is 2, size of output image is 320 x 240, system clock is 95.73

MHz. Table 4-2 shows system performance and FPS is calculated by (4.1), after

calculation, our circuit can process 299 frames per second. When output image is in

the NTSC standard resolution 720 x 480, our hardware performance is above 66 FPS.

Table 4-2. System performance while clock frequency is 95.73 MHz.

 cycles times All cycles Total time

wait_for_start 1 1 1 10.446ns

load_mem_36 37 115 4255 44448ns

load_mem_6 7 17825 124775 1303405ns

data_out 3 17980 53940 563460ns

check_finish 1 17980 17980 187820ns

compute 17980 1245834ns

Total 3344977ns

955.298
10*3344977

1
9 =−ns

s (4.1)

 70

If we lower the clock frequency to 27 MHz, the performance is shown in Table

4-3 and (4.2), FPS is above 115.

Table 4-3. System performance while clock frequency is 27 MHz.

 cycles times All cycles Total time

wait_for_start 1 1 1 37.037ns

load_mem_36 37 115 4255 157593ns

load_mem_6 7 17825 124775 4621296ns

data_out 3 17980 53940 1997778ns

check_finish 1 17980 17980 665926ns

compute 17980 1245834ns

Total 8688464ns

095.115
10*8688464

1
9 =−ns

s (4.2)

4.2.7 Power Consumption

Power consumption of our hardware is 658.78mW while clock frequency is 27

MHz, where embedded memory cost 112.58mW.

 71

Chapter 5
Conclusions and Future Works

In this thesis, the edge-adaptive interpolation for digital image resizing has been

implemented on FPGA. This proposed design uses the fuzzy decision module to

automatically identify the characteristic of input image and to decide which

interpolation module will be used. If input image is not sensitive to human eyes, in

order to reduce computational power, the bilinear interpolation module will be chosen.

Otherwise, edge-adaptive image interpolation module will be selected to reduce

blurry and jagged defects in edge section. CORDIC circuit is used to replace arc

tangent function which is used to calculate the orientations of input image. This

method can effectively save hardware resources compared with a large look-up table.

In this thesis, the proposed FPGA design can achieve real-time video scaling

processing in resolution of 320×240 (CIF image). While system frequency is at 95

MHz, the performance is above 300 frames per second. Compared with traditional

image interpolation methods, the proposed FPGA design has better visual quality due

to the reducing of blurry and jagged defects in edge section.

The method of image scaling in this thesis is only one of many image scaling

applications, other applications such as enhancement of low resolution signal source

to fit different resolutions of LCD panels, or digital zooming of digital video

capturing devices. The proposed image scaling circuit can be used in many image

scaling applications.

Although this thesis has implemented image scaling in real-time processing, we

still have to improve the following problems in the future.

 72

1. Different scaling factor

 The image scaling hardware may have adjustable and bigger scaling

factor to output images in different sizes. Maybe we can use re-scaling loops

to achieve different scaling factor.

2. Tunable scaling ratio between length and width

A tunable scaling ratio between length and width of output image is

design to fit different LCD displayers. Maybe it can be achieved by

neglecting some input pixels.

3. I2C interface

Use I2C interface to change the parameters in our hardware to achieve

adaptive hardware functions.

4. Pipeline design

Involve pipeline design in our hardware to accelerate the processing

speed. While designing pipeline, it is better to make all stages have same

computational time. Firstly we have to measure computational time of each

part in scaling circuit, and then figure out how to make all stages have same

computational time.

5. Color display

Since human eyes are not sensitive to Cb and Cr, we can use bilinear

interpolation to scale Cb and Cr, and then we can use YCbCr to RGB

coveter to achieve color display.

 73

References
[1] Chin-Teng Lin; Kang-Wei Fan; Her-Chang Pu; Shih-Mao Lu; Sheng-Fu Liang,

"An HVS-Directed Neural-Network-Based Image Resolution Enhancement
Scheme for Image Resizing," Fuzzy Systems, IEEE Transactions on , vol.15, no.4,
pp.605-615, Aug. 2007.

[2] Xue K.; Winans, A.; Walowit, E. “An edge-restricted spatial interpolation
algorithm,” Image Processing, 1992. ICIP 92. Proceedings. 1992 International
Conference on , vol., no., pp.153-161 vol.2, 3-7 Oct 1992.

[3] Unser, M.; Aldroubi, A.; Eden, M., "Enlargement or reduction of digital images
with minimum loss of information," Image Processing, IEEE Transactions on ,
vol.4, no.3, pp.247-258, Mar 1995.

[4] Jensen, K.; Anastassiou, D., "Subpixel edge localization and the interpolation of
still images ," Image Processing, IEEE Transactions on , vol.4, no.3, pp.285-295,
Mar 1995.

[5] H. C. Ting; H. M. Hang, “Spatially adaptive interpolation of digital images using
fuzzy inference,” Image Processing, 1996. Proceedings., International
Conference on , vol.2, no., pp.1206-1217 vol.2, 15-18 Sep 1996.

[6] Lee S. W.; Paik J. K., “Image interpolation using adaptive fast b-spline filtering,”
Acoust., Speech, Signal Process, 1993. Proceedings., International
Conference on 1993, vol. 5, pp. 177–180 vol.5, 8-13 Mar 1993.

[7] Adams, J. E. “Interactions between color plane interpolation and other image
processing functions in electronic photography,” SPIE 1995. Proceedings.,
International Conference on 1995, vol. 2416, pp. 144–151 vol.2416, 75-80 Oct
1995.

[8] Morse, B.S.; Schwartzwald, D., "Isophote-based interpolation," Image
Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on , vol.,
no., pp.227-231 vol.3, 4-7 Oct 1998.

[9] Ratakonda, K.; Ahuja, N., "POCS based adaptive image magnification," Image
Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on , vol.,
no., pp.203-207 vol.3, 4-7 Oct 1998.

[10] Call D.;Montantanvert A., “Superresolution inducing of an image,” Image
Processing, 1998. Proceedings., International Conference on , vol.5, no.,
pp.232-235 vol.2, 15-18 Mar 1998.

[11] Allebach, J.; Ping Wah Wong, "Edge-directed interpolation," Image Processing,
1996. Proceedings., International Conference on , vol.3, no., pp.707-710 vol.3,
16-19 Sep 1996.

 74

[12] Carrato, S.; Ramponi, G.; Marsi, S., "A simple edge-sensitive image interpolation
filter," Image Processing, 1996. Proceedings., International Conference on ,
vol.3, no., pp.711-714 vol.3, 16-19 Sep 1996.

[13] Xin Li; Orchard, M.T., "New edge-directed interpolation," Image Processing,
IEEE Transactions on , vol.10, no.10, pp.1521-1527, Oct 2001.

[14] Muresan, D.D.; Parks, T.W., "Adaptive, optimal-recovery image interpolation,"
Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01).
2001 IEEE International Conference on , vol.3, no., pp.1949-1952 vol.3, 2001.

[15] Muresan, D.D.; Parks, T.W., "Adaptively quadratic (AQua) image interpolation,"
Image Processing, IEEE Transactions on , vol.13, no.5, pp. 690-698, May 2004.

[16] Candocia, F.M.; Principe, J.C., "Super-resolution of images based on local
correlations," Neural Networks, IEEE Transactions on , vol.10, no.2, pp.372-380,
Mar 1999.

[17] Chin-Teng Lin; Lee C. S. G., Neural Fuzzy Systems: A Neuro-Fuzzy Synergism
to Intelligent Systems. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[18] Chin-Teng Lin; Yin-Cheung Lee; Her-Chang Pu, "Satellite sensor image
classification using cascaded architecture of neural fuzzy network," Geoscience
and Remote Sensing, IEEE Transactions on , vol.38, no.2, pp.1033-1043, Mar
2000.

[19] Chun-Hsien Chou; Yun-Chin Li, "A perceptually tuned subband image coder
based on the measure of just-noticeable-distortion profile," Circuits and Systems
for Video Technology, IEEE Transactions on , vol.5, no.6, pp.467-476, Dec 1995.

[20] Raghupathy, A.; Chandrachoodan, N.; Liu, K.J.R., "Algorithm and VLSI
architecture for high performance adaptive video scaling," Multimedia, IEEE
Transactions on , vol.5, no.4, pp. 489-502, Dec. 2003.

[21] Jianping Xiao; Xuecheng Zou; Zhenglin Liu; Xu Guo, "Adaptive Interpolation
Algorithm for Real-time Image Resizing," Innovative Computing, Information
and Control, 2006. ICICIC '06. First International Conference on , vol.2, no., pp.
221-224, 30-01 Aug. 2006.

[22] Ramachandran, S.; Srinivasan, S., "Design and FPGA implementation of a video
scalar with on-chip reduced memory utilization," Digital System Design, 2003.
Proceedings. Euromicro Symposium on , vol., no., pp. 206-213, 1-6 Sept. 2003.

[23] Uyar, Baris; Sayinta, Murat; Akgun, Toygar; Orencik, Bulent; Altunbasak, Yucel,
"Spatial Feature Based Video Scaling Scheme and its FPGA Implementation for
Video Standards Conversion," Signal Processing Systems, 2007 IEEE Workshop
on , vol., no., pp.267-272, 17-19 Oct. 2007.

[24] Hudson, R.D.; Lehn, D.I.; Athanas, P.M., "A run-time reconfigurable engine for
image interpolation," FPGAs for Custom Computing Machines, 1998.

 75

Proceedings. IEEE Symposium on , vol., no., pp.88-95, 15-17 Apr 1998.
[25] Nuno-Maganda, M.A.; Arias-Estrada, M.O., "Real-time FPGA-based

architecture for bicubic interpolation: an application for digital image scaling,"
Reconfigurable Computing and FPGAs, 2005. ReConFig 2005. International
Conference on , vol., no., 8 pp.-, 28-30 Sept. 2005.

[26] Amanatiadis, A.A. A.; Andreadis, I.I.; Konstantinidis, K.K., "Design and
Implementation of a Fuzzy Area-Based Image-Scaling Technique,"
Instrumentation and Measurement, IEEE Transactions on , vol., no.,
pp1-1, 2003.

[27] Analog devices, ADV7180 SDTV video decoder, datasheet, 2007. Website is
available at www.analog.com/static/imported-files/data_sheets/ADV7180.pdf.

[28] Toppoly, RGB Driver/Timing controller IC For LTPS TFT LCD, datasheet.

 76

Appendix

A.1 Image Signal Formats

A.1.1 Input Signal Format

The input signal of our hardware is standard ITU-R.656 digital video data stream

generated by ADV7180 Video decoder. In ITU-R.656 standard, images are displayed

in interlace method. Fig. A-1 shows one example of an interlaced image, a complete

image is the combination of odd lines field and even lines field, odd field contains the

image information of odd lines, even field contains the image information of even

lines. Odd field will displayed on monitor at first, then even field will be displayed on

monitor right after, so it is called “interlaced display”.

Fig. A-1. Example of an interlaced image.

 77

Fig. A-2 is horizontal scan line waveform of ITU-R.656 digital video data stream,

table A-1 shows timing parameters of horizontal scan lines in Fig. A-2, and Fig. A-3

shows waveform of vertical frames.

Fig. A-2.Horizontal scan lines waveform of ITU-R.656 digital video data stream.

Table A-0-1. Timing parameters of horizontal scan lines in Fig. 4-5.

Fig. A-3.Vertical frame waveform of ITU-R.656 digital video data stream.

 78

There are four parts in horizontal scan lines, SAV (Start of Active Video), EAV

(End of Active Video), H BLANK and active video. Active contains three types of

valid video data, Y (luminance), Cb (blue chroma) and Cr (red chroma), and they

appear in active video data in the order of (A.1).

 (A.1)

Where Y is luminance and it is the main element of image contours, Cb and Cr are

elements that affect color behavior.

SAV and EAV are very important for identifying the position of images in video

stream. SAV and EAV are embedded in ITU-R.656 data stream and they are located in

the beginning and ending of active video with length of 32 bits, SAV and EAV can be

expressed as FF 00 00 XY in hexadecimal. XY is called timing reference of

ITU-R.656, it will change if the position of scan line changes. X is composed of four

bits and can be expressed as X=1, F, V, H. Frame partition of ITU-R.656 signal is

shown in Fig. A-4, and table A-2 is different timing reference corresponding to Fig.

A-4.

 79

Fig. A-4. Frame partition of ITU-R.656 digital signal.

Table A-0-2. Different timing reference corresponding to Fig. A-3.

A.1.2 Output Signal Format

Output of our video scaling hardware uses GPIO interface to transfer data to

TPG015 TFT LCD Driver IC on LCD module, waveform of horizontal scan line in

shown in Fig. A-5, and its timing parameters are listed at table A-3.

 80

Fig. A-5. Waveform of output horizontal scan line. [28]

Table A-0-3. Timing parameters of Fig. A-5. [28]

Due to LCD monitor use progressive display instead of interlaced display, so

there is no difference between odd field and even field, every single field is a

complete frame. Fig. A-6 shows vertical frame waveform of LCD output signal, its

timing parameters are shown in table A-4.

 81

Fig. A-6. Vertical frame waveform of LCD output signal. [28]

Table A-0-4. Timing parameters of Fig. A-6. [28]

A.1.3 YCbCr to RGB Converter

YCbCr can be transform to RGB format by follow equations.

 82

口試委員意見
林進燈老師 1. DEMO 可以弄得更動態、生動一點。

A: 已改，目前可使用開關之調整，由一開始之原圖，變為放大過

後之影像，如下圖所示。

160X120
(原圖)

320X240
(未補點)

320X240
(補點，可選擇補插法)

蘇文鈺老師 1. 將來可發展為放大非整數倍率會更有價值。
A: 此為我們未來的目標之一，不過如要放大非整數倍率，就得對

於演算法作相當的改變。 論文 Page. 72
2. 將來可考慮使用 BLOCK BASED(16*16)的方塊來處理影像。
A: 這為此演算法先天之限制，由於本演算法需要使用 overlapping

之 BLOCK，BLOCK BASED 的方法可能沒有辦法實現於本演算

法中。
3. 在八角型影像轉角的部分可以處理的更漂亮一點。
A: 這個在原始演算法中也會出現相同結果，可能對於角度需要更

嚴謹的判斷，目前已加強過對於角度判斷的嚴謹度了，原始演算

法中一個 BLOCK 只會產生四個角度資訊，我將計算角度之

BLOCK 延伸，使得一個 BLOCK 會擁有 16 個角度資訊，並且判

別最常出現角度次數是否大於一定的次數，故對於角度判斷之嚴

謹度是比較高的。
蒲鶴章老師 1. PSNR 如何算出?

A: 利用圖 A(原尺寸)所產生之圖 B(1/2 尺寸)，之後將圖 B 放大兩

倍成為圖 C(原呎吋)，最後將圖 C 和圖 A 相比較。
2. 如輸出 NTSC 尺寸之影像大概還有多少 FPS?
A: 經過計算，在 93MHz 的狀況下如要輸出 NTSC 尺寸(720X240)

之影像，效能還有 66FPS。 論文 Page. 69
3. 耗電量數值? 如和一般 LCD 耗電量比較是否能夠接受? 請將耗

電量數值補上論文以及比較當使用內建以及外接記憶體時耗電

量之不同。
A: 在 27MHz 的狀態下整體能耗為 657mW，而內建記憶體則佔了

其中之 112mW。相較於 LCD 常見之 30~100W 或是 HDTV 之

200~300W 來說所佔的能耗比例是較小的。 論文 Page. 70
4. 將來可考慮使用 LINE BUFFER 之做法。
A: 因為本電路之訊號來源為 interlaced 訊號源，須作 de-interlace 的

 83

動作，所以必須使用 FRAME BUFFER 是比較適合的。如果訊號

來源為 progressive 訊號源，則可使用 LINE BUFFER。
柯立偉老師 1. 權重近似之判別依據?

A: 如論文 Page. 47 所示。在軟體模擬時，權重皆為精確度至

0.000000001 之數，但是在電路中如果使用相同精準度之權重會

造成運算時間過長以及運算電路過大之問題，因此我們勢必要對

於權重作出近似之動作。下圖(a)~(d)為實驗之結果，圖(a)為使用

來比較之原圖，而圖(b)則是由權重精準度至 1/128 所補插出來之

影像與未經過權重近似所補插出來之影像作差值，而圖(c)、圖(d)
使用之權重精準度分別為 1/256 及 1/512。當權重精準度至 1/128
時，與使用原始權重作補插之影像作差值，單點差值最大值為

12，而大部分出現之差值大約為 3~6 之間。當權重精準度至 1/256
時，單點差值最大值為 5，而大部分出現之差值大約為 1~2.5 之

間。如當當權重精準度至 1/512 時，單點差值最大值為 4，而大

部分出現之差值大約為 1~2 之間。我們能夠發現當權重精準度由

1/128 提升為 1/256 時，差值減少了許多，最大差值由 12 降為 5。

但是權重精準度再由 1/256 提升為 1/512 時，改善的幅度卻有限，

最大差值只由 5 降為 4。故我們決定將權重精準度設為 1/256，此

時與原圖相差之最大值與整個色階之比例為 5/255，不到百分之

二，故對人眼並不明顯。

2. 硬體和軟體處理之速度比較?
A: 以 MATLAB 於 PC 上每處理一張之影像需要 6.3 秒，而本硬體

在 93Mhz 時處理相同影像需要 1/300 秒。如以此情況相比，硬體

處理之速度為軟體處理速度之 1890 倍

 84

鍾仁峰老師 1. 一般 DECODER 之 CLOCK 為 27MHz，和此硬體使用之頻率相

同，這樣是否來的及處理影像資料?
A: 經過計算，在目前之影像處理方式是來的及的，如要採用大尺

寸的輸出，則必須使用兩個輸入暫存記憶體。此需視硬體效能而

定，若硬體效能為 60FPS 且擷取之影像高度大於 240 像素，則需

使用兩個輸入暫存記憶體來切換。
2. 如由灰階改為彩色運算，運算量是否增加很多?
A: 由於人眼對於 U 以及 V 值並沒有這麼敏感，所以可以只採用

BILINEAR 對其運算即可，運算量上不會增加太多，不過記憶體

可能會需要兩倍的容量。
3. 將來可考慮使用 I2C 介面修改硬體參數。
A: 會列入將來設計的考量。 論文 Page. 72

陳慶瀚老師 1. 如只使用兩倍放大，可能有些會出現效果的地方會看不出來，將

來可考慮使用更大放大倍率。
A: 這為我們主要的 FUTURE WORKS 之一。 論文 Page. 71
2. 如將輸出解析度提升為 720*480，可能 FPS 會不到 10，此硬體

效能不算高之原因為何?
A: 如以本論文之設計，輸出影像解析度為 320x240，在時脈為

93Mhz 之狀況下，有 300FPS 之效能，若輸出影像解析度提升為

720x480 時，則效能為 66FPS，造成此現象之原因為本設計尚未

使用 Pipeline，由於在目前的情況還不需要使用 Pipeline 即可達到

REAL-TIME 的效果，所以為了降低硬體複雜度，在此並沒有使

用 Pipeline。
3. 之後硬體可加上 PIPELINE 之設計以提升效能。
A: 如 果 將 來 要 作 高 倍 率 以 及 大 尺 寸 的 影 像 處 理 的 話 ， 加 上

PIPELINE 為必要的 FUTURE WORK。 論文 Page. 72
4. CORE CIRCUIT 需要多少時間運算才是重點，不要漏列，以及一

個 pixel 需要多少時間產生?
A: 如論文 Page.66 所示，一個 BLOCK 需要的運算時間為 69.29ns

並且可產生三個 pixel，平均產生一個 pixel 需要 23ns。

