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摘要 

 

本研究的目的在於以不同的量化方法來分析禪坐心電訊號(ECG)的小波

係數(continuous wavelet coefficients, CWT)。研究中所採用的量化的方法包括：

不 變 矩 分 析 (invariant-moment analysis) 、 奇 異 值 分 解 (singular value 

decomposition, SVD) 、相關係數 (correlation coefficient) 以及變異數分析

(ANOVA)。本研究的實驗受測者共有 17 位，實驗組是 8 位有禪坐經驗的受測

者，而控制組是 9 位沒有禪坐經驗的受測者，兩組受測者的年齡相近。研究結

果顯示，控制組的 7 個不變矩數值下降，而實驗組則是上升。在相關係數分析

的部份，除了控制組的一位受測者之外，其餘受測者的心電訊號小波係數的主

成份，在不同狀態下皆呈現很高的相關性。變異數分析的結果則顯示，比起實

驗組，控制組的心電訊號小波係數在不同狀態下的差異較為顯著。因此，由以

上結果可以得知實驗組的心電訊號波形較控制組穩定。 
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Abstract 

The aim of this research was to quantify the continuous wavelet coefficients 

(CWT) of raw ECG data. Several methods employed in this thesis included 

invariant-moment analysis, singular value decomposition (SVD), correlation 

coefficient, and analysis of variance (ANOVA). This study included 17 subjects, 8 

experimental subjects with Zen-meditation experience and 9 control subjects in the 

same age range, yet, without any meditation experience. According to our results, the 

seven invariant moment values in control group tended to decrease, while the 

experimental group showed the tendency of increase. SVD analysis gives us another 

perspective. The correlation coefficients between major components of both groups 

showed a high value of correlation, although one result from the control group was 

considered to be moderately correlated. In ANOVA, differences appeared to be more 

significant in the control group than the experimental group. Thus, we may 

preliminarily suggest that ECG waveform patterns of experimental group behave 

more stably than those of control group in certain condition. 
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Chapter 1 
Introduction 

 

 

1.1 Background and Motivation 

The applications of digital signal processing methods play important role in 

processing, quantifying, analyzing, and identifying biomedical signals such as 

electrocardiogram (ECG or EKG), electroencephalogram (EEG) and electromyogram 

(EMG) signals. A lot of researches and studies focused on feature extraction and 

pattern recognition in the biomedical signal processing have achieved tremendous 

contributions to the clinical field today. 

Classical approach using time-domain method on quantitative electrocardiology 

involves measuring amplitude and duration of ECG waves. This method is not always 

feasible to adequately describe important features of the ECG signal. On the other 

hand, some researches reported that ECG abnormalities caused by cardiac diseases 

could not be explored by time-domain methods. Techniques based on frequency 

domain or time-frequency domain were found to be useful [1], [2].  

The frequency components of a signal can be obtained by using different 

methods, including the Fourier transformation and the autoregressive and/or 

moving-average method. Strictly speaking, ECG signals are not exactly periodic in 

spite of the rhythmic activity of heart beating. To analyze such kind of 

‘pseudo-periodic’ behavior, frequency component alone is not sufficient for 

characterizing ECG signals. Fourier transformation loses the time information after 

transforming time domain signal to frequency domain. Moreover, it does not give 

insight into time-dependent variation of frequency components. 
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The frequency component of the ECG involves multi-frequency complex 

evolving with time. For example, QRS complex contains sharp transient with 

higher-frequency spectrum, whereas the T wave is characterized by slowly varying 

pattern. Therefore it is essential to obtain “time-based” information when a particular 

frequency component occurs. The widely used method is short-term Fourier transform 

(STFT), yet its time-frequency precision is limited due to the fix kernel base of 

complex-exponential function. Other time-frequency methods such as Wigner 

distribution have better time-frequency resolution than STFT. Among all of these 

time-frequency transformations, the wavelet transformation, so called time-scale 

transformation, has aroused researchers’ attention and been used in ECG study [3], 

[4]. 

The applications of wavelet transform in analyzing biomedical signals, especially 

ECG signals, have been increasingly developed in the past decades. The wavelet 

transform has been applied to the ECG for a wide range of purposes. ECG data 

compression [4]-[6] has been an important technique in ECG processing systems. 

According to these preliminary reports, wavelet-based compression seems to be more 

efficient than the classic compression techniques. ECG pattern recognition [7], [8] 

based on wavelet analysis can accurately detect and classify different waves in the 

cardiac cycle, especially P and T wave recognition. Wavelet application to HRV 

analysis [9], [10] provides a promising alternative method beside fast Fourier 

transform (FFT). High resolution signal-averaged electrocardiography (HRECG) 

analysis [11], [12] seeks benefit from wavelet signal processing technique.       

As alternative medicine becomes more and more popular in western countries, 

scientific researches have been carried out to explore its effect and benefit to human 

health. One of the most well known and acceptable alternative medicine is meditation, 

on which many researches reported benefits of meditation to human health in various 
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aspects.  

Some researchers have tried to investigate meditation effect on ECG by using 

time-frequency techniques. In 1999, Peng et al. [13] observed extremely prominent 

oscillations in the 0.025-0.35 Hz band in heart rate dynamics during two forms of 

meditation (Chinese Chi and Kundalini yoga meditation). However, there still exists a 

wide scope of unknowns in meditation ECG and its effects. We considered that further 

analysis of wavelet-transform coefficients might provide us some new insight into the 

ECG time-varying rhythms.  

 

1.2 Aims of this Work 

Since our laboratory mainly focuses on the investigation of Zen-meditation 

effects on human physiological signals (EEG, ECG, respiratory signal, etc), we have 

been developing several methods and strategies to study these biomedical signals. 

This work was focused on ECG characteristics under various respiratory rates. We 

aimed to quantify the wavelet coefficient derived by analyzing raw ECG data. 

Theories and methods employed in this thesis include invariant-moment analysis, 

singular value decomposition (SVD), correlation coefficient, and analysis of variance 

(ANOVA). 

 

1.3 Organization of this Thesis 

This thesis is composed of five chapters. Chapter 1 describes the background, 

motivation, and main aim of this study. Chapter 2 includes an introduction to ECG 

and respiration system as well as the theory of wavelet analysis, invariant moments, 

SVD, correlation coefficient and ANOVA. In Chapter 3, the experimental setup and 

protocol are presented, and then the procedures for ECG wavelet coefficient 
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quantification are described. Chapter 4 reports and discusses the results. The last 

chapter makes a summary of this research and brings forward some issues for future 

study. 
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Chapter 2 
Theories and Methods 

 

 

Biomedical signals produced by human body may reflect the health condition in 

clinical diagnosis. The development of analyzing methods for such biomedical signals 

as EEG, ECG, EMG and respiratory signals has made a great impact on medical 

studies and clinical diagnosis. 

Our main focus is to investigate ECG signals in reference to respiratory signals 

(more specifically, respiration rate). Accordingly, on section 2.1 we briefly introduce 

ECG and respiratory signals. Section 2.2 describes the wavelet transformation. 

Section 2.3 discusses three methods proposed to quantify the wavelet coefficients, 

including invariant moments method, singular value decomposition integrated with 

correlation coefficient analysis, and the analysis of variance.  

 

2.1 Introduction to ECG and Respiratory Signals 

 

2.1.1 Introduction to ECG 

Heart electrical system controls events of blood pumping. This electrical system 

is called cardiac conduction system. The conduction system consists of four main 

parts. As shown in Fig. 2.1, sinoatrial (SA) node locates in the right atrium of the 

heart, atrioventricular (AV) node locates on the interatrial septum close to the 

tricuspid valve, Bundle of His locates in the walls of the ventricles, and Purkinje 

system locates along the walls of the ventricles. Electrical impulses from the heart 

muscle (the myocardium) cause the heart to beat (contract). In a normal heart, each 
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beat begins with a signal from SA node. This is why the SA node is sometimes called 

“natural pacemaker of the heart”. The electrical impulses (action potentials) spread 

across the cells of the right and left atria that cause the atria to contract. When the 

signal arrives at the AV node near the ventricles, it slows for an instant. The signal is 

released and moves to the Bundle of His. From the Bundle of His, the propagating 

route of electrical impulses is divided into left and right bundle branches through the 

Purkinje fibers that connect directly to the cells in the walls of the left and right 

ventricles. After the signal passes, the ventricular walls relax and await the signal of 

next cardiac cycle. In summary, the electrical-propagation pathway of a cardiac cycle 

is: SA node →  atria →  AV node →  Bundle of His →  Purkinje fibers → 

ventricles. 

 

 

Fig. 2.1 Cardiac conduction system. 

 

A typical ECG tracing of a normal heartbeat (or cardiac cycle) consists of a P 

wave, a QRS complex and a T wave, as shown in Fig. 2.2. The physiological meaning 
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of each ECG component is described below: 

P wave: During atrial depolarization, electrical impulses initiated by SA node 

propagate towards the AV node, and spread from the right atrium to the left 

atrium. This turns into the P wave on the ECG. 

QRS complex: this component represents ventricular depolarization. Activation of the 

anterioseptal region of the ventricular myocardium corresponds to the 

negative Q wave. The R wave is the point when half of the ventricular 

myocardium has been depolarized.  

T wave: The T wave represents ventricular repolarization and is longer in duration 

than depolarization. 

 

Fig. 2.2 Typical wave complex of ECG. 

 

PR interval: The PR interval corresponds to the time between the end of atrial 

depolarization to the onset of ventricular depolarization. 

ST interval: The ST interval represents the period from the end of ventricular 

depolarization to the beginning of ventricular repolarization. 

QT interval: The QT interval begins at the onset of the QRS complex and to the end 

of the T wave. It represents the time between the start of ventricular 
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depolarization and the end of ventricular repolarization. It is useful as a 

measure of the duration of repolarization. 

 

2.1.2 Introduction to Respiratory Signals 

Primary function of respiration is to supply oxygen to the body cells and 

eliminate carbon dioxide produced by cells. During inhalation, pathway of air is: nasal 

cavities (or oral cavity) > pharynx > trachea > primary bronchi (right & left) > 

secondary bronchi > tertiary bronchi > bronchioles > alveoli (site of gas exchange).  

Breathing is an active process requiring the contraction of skeletal muscles. The 

primary muscles of respiration include the external intercostal muscles (locatting 

between the ribs) and the diaphragm (a sheet of muscle located between the thoracic 

& abdominal cavities). 

As shown in Fig. 2.3, inspiration results from contraction of diaphragm 

(downward movement) and intercostals muscles (ribcage move up and outward). 

 

Fig. 2.3 Mechanics of inhalation (inspiration) and exhalation (expiration) 

 

Inspiration mechanism:  

Contraction of external intercostal muscles > elevation of ribs & sternum > 
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increased front- to-back dimension of thoracic cavity > lowers air pressure in 

lungs > air flows into lungs. 

Contraction of diaphragm > diaphragm moves downward > increases vertical 

dimension of thoracic cavity > lowers air pressure in lungs > air flows into lungs. 

Expiration mechanism: 

Relaxation of external intercostal muscles & diaphragm > return of diaphragm, 

ribs, & sternum to resting position > restores thoracic cavity to preinspiratory 

volume > increases pressure in lungs > air is expired. 

 

Respiration rate is the number of breaths in one-minute duration. The rate is 

usually measured when a person is at rest and simply involves counting the number of 

breaths for one minute. 

 

2.2 Wavelet Transformation 

 

Time-frequency signal analysis offers a comprehensive and inspired knowledge 

for better interpreting data both in time and frequency. It allows researchers to observe 

those local, transient or intermittent components. Several time-frequency methods are 

available for signal analysis, for examples, short-time Fourier transform (STFT), 

Wigner–Ville transform (WVT), Choi–Williams distribution (CWD), and wavelet 

transform (WT). The continuous wavelet transform (CWT) is one of the favorite tools 

used by researchers since wavelet transform has been developed for many 

applications in recent years. 

Wavelet transform enables time-frequency representations of the signal, with 

versatile resolutions: high resolution in time and low resolution in frequency for 
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high-frequency components, whereas low resolution in time and high in frequency for 

low-frequency components [14]. Wavelet transform can be implemented by either 

CWT or DWT (discrete wavelet transform) computational algorithms. In this work we 

applied the CWT-based algorithm for better manipulation of the time-frequency 

coefficients. 

Let C(a,b) denote the wavelet transform of a continuous time signal, x(t), relative 

to basic wavelet Ψ(t) at scale a and window-center time b. Wavelet transform is 

defined as the inner product between the complex-conjugate function Ψ*(t) and the 

signal function x(t): 

dtttxttxbaC baba )()()(),(),( ,, ∫== +∞
∞−

∗ψψ          (2.1) 

where Ψ(t) is called the “mother wavelet” and its complex conjugate Ψ*a,b(t) is 

defined as: 

⎟
⎠
⎞

⎜
⎝
⎛ −

=∗

a
bt

a
tba ψψ 1)(,                      (2.2) 

In this study we used the Morlet wavelet as mother wavelet [14] (the real valued 
Morlet wavelet is selected for CWT in order to isolate peaks and to distinguish 
positive and negative changes in the waveform) which is defined as follows, 

 
⎟
⎠
⎞

⎜
⎝
⎛−

= 2
0

2

)cos()(
t

ett ωψ                       (2.3) 

where ωo is the central frequency of the mother wavelet. Previous investigators have 

concentrated on wavelet transforms with ωo in the range 5–6 rad/s, where it can be 

performed without the correction term since it becomes very small. Fig. 2.4 below is 

the model of the real part of Morlet mother wavelet. 
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Fig. 2.4 Morlet mother wavelet (real part). 

 

The term of scale in wavelet sometimes can be treated as frequency. The 

pseudo-frequency is a term which describes the relationship between scale and 

frequency, and it presents a broad sense of frequencies that exist in a signal. To obtain 

pseudo-frequency we have to calculate the central frequency Fc of the wavelet and use 

the following relationship: 

Δ⋅
=

a
F

F c
a                             (2.4) 

where 

a is a scale, 

Δ is the sampling period, 

Fc is the center frequency of a wavelet (Hz), 

Fa is the pseudo - frequency corresponding to the scale a (Hz). 

 

The contribution to the signal energy E(a,b) at the specific a scale and b location 

is given by the two-dimensional wavelet energy density function known as the 

scalogram (analogous to the spectrogram—the energy density surface of the STFT). 

The scalogram is defined below: 
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2),(),( baCbaE =                       (2.5) 

The schematic illustration for performing CWT is demonstrated in Fig. 2.5 that 

shows the scaling and shifting of mother wavelet [15]. 

 

 

Fig. 2.5 Illustration of constructing CWT. 

Result of the CWT will be plotted as the scalogram. Fig. 2.6 shows an example of 

scalogram of ECG [16]. 

(a)  

(b)  

Fig. 2.6 (a) Original ECG signal, (b) Morlet based scalogram of (a). 
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2.3 Quantification of Wavelet Coefficients 

Each ECG complexes create particular patterns in the wavelet scalogram. This 

study aimed to find degree of matching between these ECG wavelet patterns by 

quantifying the wavelet coefficient patterns. We proposed four methods that will be 

described in the next four sub-sections. 

 

2.3.1 Hu’s Invariant Moments 

Moment Invariants are mostly used for pattern recognition and shape descriptor. 

There are two types of shape descriptors: contour-based and region-based shape 

descriptor. Regular and widely used shape descriptor was derived by Hu [17]. This 

method has been used to recognize visual patterns or images that are independent of 

position, scale and orientation [18]. 

Geometric moment invariant introduced by Hu is derived from the theory of 

algebraic invariant. Two-dimensional moments of an M × M image with function of 

f(x, y), 0≤ x,y≤ M−1 are defined as: 

∑ ∑=
−

=

−

=

1

0

1

0
),().()(

M

x

M

y
yxfyxm qp

pq                  (2.6) 

where p, q (order of moment) = 0, 1, 2, 3 ... 

Then the central moments can be defined as 

∑∑ −−=
x y

yxfyyxx qp
pq ),().()(μ                (2.7) 

where  

00

10

m
m

x =  and 
00

01

m
m

y =  

 

When a scaling normalization is applied, the normalized central moments ηpq are, 
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1
2

,
00

+
+

==
qppq

pq γ
μ
μ

η γ                    (2.8) 

Hu defined seven invariant moments, computed by normalizing central moments 

through order of three. These seven moments are invariant to scale, position and 

orientation. The seven invariant moments are given below: 

1 20 02φ η η= +                           (2.9.1) 

( )2 2
2 20 02 4 11φ η η η= − +                      (2.9.2) 

( ) ( )2
3 30 12 21 033 3φ η η η η= − + − 2                  (2.9.3) 

( ) ( )2
4 30 12 21 03φ η η η η= + + + 2

2

                 (2.9.4) 

( )( ) ( ) ( )

( )( ) ( ) ( )

2 2
5 30 12 30 12 30 12 21 03

2
21 03 21 03 30 12 21 03

3 3

3 3

φ η η η η η η η η

η η η η η η η η

⎡ ⎤= − + + − + +⎣ ⎦
⎡ ⎤− + + − +⎣ ⎦

     (2.9.5) 

( ) ( ) ( ) ( )(2 2
6 20 02 30 12 21 03 11 30 12 21 034 )φ η η η η η η η η η η η⎡ ⎤= − + − + + + +⎣ ⎦  (2.9.6) 

( )( ) ( ) ( )

( )( ) ( ) ( )

2 2
7 21 03 30 12 30 12 21 03

2
12 30 21 03 30 12 21 03

3 3

3 3

φ η η η η η η η η

η η η η η η η η 2

⎡ ⎤= − + + − + +⎣ ⎦
⎡ ⎤− + + − +⎣ ⎦

   (2.9.7) 

 

2.3.2 Singular Value Decomposition (SVD) 

Singular value decomposition (SVD) is one important algorithm developed on 

the basis of matrix algebra. SVD has been applied to several areas, including fetal 

ECG extraction [19], image processing [20], filter design [21], data compression 

theory [22], etc. In this study, SVD integrated with correlation-coefficient analysis 

was adopted to quantify the distribution property of wavelet coefficients. 

Consider a matrix A with dimension n×m, there exists a n×n unitary matrix U 

(orthogonal if A is real), an m x m unitary matrix V (orthogonal if A is real) and an n x 

m matrix Σ = diagonal (σ1, …σs) ≥ 0 with σ1≥ σ2≥…≥ σs≥ 0, where s=min{n, m}, such 
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that the singular value decomposition  

TVUA Σ=                          (2.10) 

The elements σs are called the singular values (eigenvalues) of A and are 

non-negative numbers. The matrix U contains the left singular vectors of B 

(eigenvectors of A), and the matrix V contains the right singular vectors (weighting 

vectors for reconstructing matrix A), as illustrated in Fig. 2.7. 

The eigenvalues in matrix Σ represent the ‘energy’ distribution of data in matrix 

A, while each eigenvector in matrix U is involved with the characteristics of the 

column vectors in matrix A. The eigenvectors corresponding to the larger eigenvalues 

in Σ represent the more general features of column vector in A. 

 

 
Fig. 2.7 Singular Value Decomposition. 

 

2.3.3 Correlation Coefficient 

Evaluation of correlation coefficient (γ) provides a way to statistically measure 

strength and direction of a linear relationship between two signals, vectors, images or 

just random variables. Two-dimensional cross-correlation analysis is a method 

frequently used for pattern recognition in digital image processing [23]. 

Two-dimensional cross correlation was also evaluated between template 

spectra-temporal maps to detect beat-to-beat late potential activity [24]. But in this 
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work, one-dimensional correlation coefficients were computed to evaluate ECG 

wavelet pattern. 

Defined Pearson’s one-dimensional correlation coefficient (γ) below,  

( )( ) (( ){ }) 2
1

2222
),(

∑∑∑∑
∑∑∑

−−

−
=

yynxxn

yxxyn
yxγ             (2.12) 

where X and Y are two vectors to be compared. 

The value of γ is in the range -1 U<U γ U<U +1.  The + and – signs indicate positive 

linear correlations and negative linear correlations, described briefly below:  

• Positive correlation: if x and y have a strong positive linear correlation, γ is 

close to +1. A γ value of exactly +1 indicates a perfect positive match. In the 

case of positive correlation, values of y increase as values of x increase. 

• Negative correlation: if x and y have a strong negative linear correlation, γ is 

close to -1.  A γ value of exactly −1 indicates a perfect negative match. In the 

case of negative correlation, values of y decrease as values of x increase. 

•  No correlation: if there is no linear correlation or a weak linear correlation, γ 

is close to 0. A value near zero means that there exists the random, nonlinear 

relationship between two variables 

 

2.3.4 Analysis of Variance (ANOVA) 

ANOVA is a statistical tool to show whether data from several groups could be 

accounted for by the hypothesized factor. The objective of single-factor ANOVA 

problem is to decide whether the means for more than two treatments are identical 

[25]. In [26], ANOVA was used to compare stego-images (images that have been 

manipulated by steganographic methods) of several groups. 

There are two types of ANOVA: one-way and two-way ANOVA. One-way 
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ANOVA was employed in this study. The assumption of ANOVA is that test data are 

normally distributed. Table 2.1 typical data for one-way ANOVA. 

Table 2.1 One-way ANOVA typical data  

Treatment Observations Totals Averages 

1 y11 y12 ... y1n y1. .1y  

2 y21 y22… ... y2n y2. .2y  

…
 

…
 

…
 

... …
 

…
 

…
 

a ya1 ya2 ... yan ya. .ay  

     y.. ..y  

 

Let yi. represents the total of the observations under the ith treatment and .iy  

represents the average of the observations under the ith treatment. Similarly y.. 

represents the grand total of all observations and ..y  represents the grand mean of all 

observations. 

Procedure of analyzing one-way ANOVA is described below.  

1. Set null hypothesis H0 and alternative hypothesis H1 for the comparison of 

independent groups. 

H0: τ1 = τ2 =… τα = 0; Means of all the groups are equal. 

H1: τi ≠ 0 for at least one i; Means of two or more groups are not equal. 

 

2. Compute Sum of Squares Deviations of treatment, Error Sum of Squares 

and each freedom degrees. 
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Sum of Squares Deviations of treatment: 

(
2

1
...∑ −=

=

a

i
i

yynSSTr )                      (2.13) 

Error Sum of Squares: 

(
2

1 1
.∑ ∑ −=

= =

a n

iij
i j

yySSE )                      (2.14) 

Freedom degrees of SSTr and SSE are dftr = a-1 and dfe = a(n-1). 

3. Compute Mean Square for treatment and Mean Square of error 

Mean square for treatment MSTr: 

trdf
SSTrMSTr =                        (2.15) 

Mean square of error MSE: 

edf
SSEMSE =                         (2.16) 

4. Compute the F-test: 

MSE
MSTrFa =                          (2.17) 

5. Determine the significant level and select test statistics 

For given a significant level a (in this study 0.05), the cumulative 

probability of F > Fa is P{ F > Fa}, then P value = 2 * P{ F > Fa}. If F > 

Fa then we accept null hypothesis that the means of the groups are equal, 

otherwise we reject null hypothesis that means the groups are not equal. 

Also we give a significant level of 0.05, so any results of P value under 

0.05 will be significant different (means of groups are not equal). 
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In summary as in Table 2.2 below 

Table 2.2 ANOVA table 

 SS df MS F 
Between SSTr dftr = a-1 

trdf
SSTrMSTr =

MSE
MSTrF =  

Within SSE dfe = a(n-1) 
edf

SSEMSE =   

Total SSTr + SSE an-1   

 

Couderc et al. [11] used wavelet coefficient and ANOVA method to quantify 

ECG abnormalities of patients with and without ventricular tachycardia and long QT 

syndrome. The result of their work brings a new way of the ECG signal analysis. The 

same algorithm was used by N. Selmaoui [27] for detecting risks of sudden cardiac 

death on the patients who survived from acute myocardial infarction. 
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Chapter 3 
Experiment and Signal Analysis 

 

 

We will first introduce the experimental setup and protocol used in this study. In 

the second part, the implementation strategies and parameters are presented, including 

the procedure of applying wavelet transform to the raw ECG signal and quantifying 

the wavelet coefficient data. 

 

3.1 Experimental Setup and Protocol 

There were two groups of subjects involved in this study, the experimental group 

(subjects with Zen-meditation experience) and the control group (subjects without any 

meditation experience). Background of subjects in each group is summarized in Table 

3.1. The experimental protocol is illustrated in Fig. 3.1. 

Experimental Group 

Rest Meditation 

Control Group 

Session 1 
10 minutes 

Session 2 
20 minutes 

Rest Rest 

Fig. 3.1 Experimental protocol. 

Session 1 
10 minutes 20 minutes 

Session 2 
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Table 3.1 Subjects of experimental and control groups 

 Experimental group Control group 

Number of subjects 8 9 

Gender (male : female) 5 : 3 8 : 1 

Age (years) 26.1 ± 2.1 25.3 ± 3.3 

Meditation experience (years) 5 ± 3.4  

 

The experiments included two continuous sessions (sessions 1 and 2). During 

Session 1, subjects of both groups rested with eyes closed for 10 minutes. During 

Session 2, subjects of control group continued resting for 20 minutes. On the other 

hand, experimental subjects began meditation for 20 minutes. The Experimental 

subjects meditated with either full-lotus or half-lotus posture, with eyes closed. All 

subjects breathed naturally in both sessions. 

ECG and respiratory signals were measured using PowerLab biosignal recording 

system (ADInstruments, Sydney, Australia) and then displayed and saved on a 

personal computer using the software Chart4 (ADInstruments, Bella Vista, Australia), 

as shown in Fig. 3.2. 

  

3.1.1 Measurement of ECG Signal 

The ECG signal was recorded using Lead I of standard bipolar limb leads (frontal 

plane), as shown in Fig. 3.3(a). Electrode site on the left (right) arm was connected to 

the amplifier’s positive (negative) input, with the ground on the inside of left ankle. 

The disposable ECG electrodes (Medi-Trace 200 Foam Electrodes, Kendall, USA) as 

shown in Fig. 3.3 (b) were used on the experiment. The ECG was pre-filtered by a 

0.3-200 Hz bandpass filter and digitized by a sampling rate of 1000 Hz. 
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Physiological 
signal 

 
 
 

Physiological 
signal recording 

system (PowerLab)

USB port

 
Personal Computer 

(Chart4 software) 

 

 

Fig. 3.2 The physiological signal recording system. 

 

(a) (b) 

Fig. 3.3  (a) LeadⅠconfiguration of bipolar limb leads,  
  (b) Disposable ECG electrode. 

 

3.1.2 Measurement of Respiratory Signal 

Respiratory signals were recorded using piezo-electric transducer as shown in 

Fig. 3.4 (model 1132 Pneumotrace II (R), UFI, Morro Bay, CA, USA). The transducer 
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was wrapped around the belly passing the navel. The respiration signal was 

pre-filtered by a lowpass filter with cutoff frequency 5 Hz and digitized at the 

sampling rate of 1000 Hz. An example of respiratory signal is shown in Fig. 3.5. The 

amplitude of respiration signal increases during inspiration and decreases during 

expiration. 

 

 
Fig. 3.4. Piezo-electric respiratory transducer. 

 

 

Fig. 3.5 Respiratory signal.  

 

Inspiration Expiration 
3

3.2 Wavelet Transform of ECG Signal 

We performed the continuous wavelet transformation on raw ECG signals. The 

flow chart of wavelet transform is shown in Fig. 3.6. The first step is the 

pre-processing stage where the R peaks of ECG and the inspiration peaks were 

detected. In addition, respiration rate was estimated; and band-pass filter was applied 

Time (second) 

0 2 4 6 8 10 12 14 16 18 20
-2

-1
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1
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m
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itu

de
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to ECG to remove baseline drift and other noises. For the pre-processed ECG signal, 

the scale (frequency) parameter was determined to perform continuous wavelet 

transform. Finally, CWT coefficients of interest were stored for further, advanced 

analysis. 

Step 1. Pre-processing  

We focused on the frequency range of 2-40 Hz for ECG signals [28] to preserve 

P, QRS, and T components of ECG. In this pre-processing stage, both the ECG and 

respiratory signals were down-sampled to the rate of 200 samples per second. Then 

algorithm in Appendix A was applied to detect R peaks of ECG and inspiration peaks 

of respiratory signals and to estimate the range (class) of respiration rate. 

 

 

Fig. 3.6 Flow chart of continuous wavelet transforms. 

 

Step 2. Determination of CWT parameters 

To perform continuous wavelet transformation, we need to define the parameters 

such as scale, mother wavelet, etc. 
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The scale a can be determined by equation (2.4) as follows: 
Δ⋅

=
a

c

F
F

scale , 

where Δ is the sampling period, Fc is the center frequency of a wavelet (Hz), Fa is the 

pseudo - frequency corresponding to the scale (Hz). 

In our study, Morlet prototype was adopted as mother wavelet, where ω0 = 5 

rad/s.  

 

Step 3. CWT analysis and evaluation 

To perform CWT computation, the MATLAB build-in function with a 

pseudo-frequency of 1 – 40 Hz was employed, based on Morlet mother wavelet. 

Result of this wavelet transformation is the ECG wavelet coefficients which are stored 

for later analysis based on different quantitative methods. 

As an example, the wavelet scalogram for a control subject during session 1 is 

shown in Fig. 3.7. 

 

Fig. 3.7 The wavelet scalogram of a control subject during Session 1. 
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3.3 Quantification of Wavelet Coefficients 

In this section, we will describe the strategies for quantifying the 

wavelet-coefficient patterns produced by continuous wavelet transform. Three 

different methods having been introduced in chapter 2 were applied: Hu’s invariant 

moments, SVD with correlation coefficient, and the ANOVA analysis. 

The analysis of each method requires the following features derived at the first 

stage, that is, the R peaks detected and CWT coefficients. We analyzed CWT 

coefficients with reference to various respiration rate ranges (A: rate < 14 

beats/minute, B: 14 beats/minute ≤ rate < 18 beats/minute, and C: rate ≥ 18 

beats/minute). The CWT coefficients of each ECG complex were segmented based on 

R peaks data. Finally, these features and parameters were ready to be analyzed by 

each algorithm. The flow chart of the strategy is shown in Fig. 3.8.  

 

 

Fig. 3.8 Flowchart of CWT quantification strategy. 
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Fig. 3.9 illustrates the results of extracted R-based ECG complexes, 

corresponding wavelet coefficients, and the respiration rate (range-A, -B, or -C). In 

Fig. 3.9 (a), the R peaks detected are marked with ‘*’. The window size we used is 46 

time points left side and 75 time points right side from R peaks, so total size is 122 

time points wide. Based on these R peaks, we extracted ECG wavelet-coefficient 

array within the same, constant frame. The resulted wavelet ‘image’ is shown in Fig. 

3.9 (b). 

(a)  

Fig. 3.9 (a) Extraction of ECG complexes based on R peaks  

(b) One ECG complex wavelet coefficient template. 
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(b)  

Fig. 3.9 (Continued). 

In Fig. 3.9 (b), the dark curve is one ECG complex in alignment with the 

distribution of wavelet coefficients. 

 

3.3.1 Invariant Moments Analysis 

The implementation of Hu’s invariant moments algorithm in our study directly 

followed equations (2.6)-(2.9), as shown in Fig. 3.10. 

 

Fig. 3.10 Flow chart of Hu’s Invariant Moments Algorithm. 
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Here, the CWT coefficients were displayed in logarithmic scale to reduce 

dynamic range. In addition, moment-invariant analysis was applied to absolute CWT 

coefficients to avoid dealing with the complex number.  

 

 (b) 

 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 

Mean 4.39 5.88 11.24 11.21 22.42 14.48 19.48 

std 0.93 2.29 3.15 3.17 6.33 4.27 5.63 

 

Fig. 3.11 (a) Wavelet coefficient of one subject from control group,  

 (b) Seven invariant moments values. 

 

Fig. 3.11 (b) demonstrates the results of analyzing Hu’s invariant moments of 

CWT coefficients for one control subject. 

 

3.3.2 SVD Integrated with Correlation Coefficient 

The second scheme we proposed to quantify wavelet coefficients was singular 

value decomposition integrated with correlation-coefficient analysis. ECG CWT 

coefficients were treated as a two dimensional matrix that was further decomposed 

with SVD into U, Σ and V. The flow chart of this algorithm is shown in Fig. 3.12.  

 29



 
Fig. 3.12 Flow chart of SVD and correlation coefficient algorithm. 

 

Fig. 3.13 displays an example to illustrate the whole process of SVD and 

correlation-coefficient analysis scheme. First we averaged 8 sets data of 

ECG-complex CWT-coefficient matrices from each respiration rate range either on 

session 1 or session two. Then SVD analysis was performed on these average 

CWT-coefficient matrices from different respiration rates range. As a consequence, 

several matrices U were extracted from two different sessions of average 

CWT-coefficient matrices. As being well known, columns of matrix U contain 

eigenvectors corresponding to eigenvalues in diagonal matrix Σ. We took only the 

biggest eigenvalue (σ1) and the corresponding eigenvector in the first column of 

matrix U. 
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Fig. 3.13 Illustration of SVD Extraction algorithm 

 

In Fig. 3.13 an illustration of SVD from control subject on slow respiration at 

both session. After we got the 1st eigenvectors from different respiration ranges, we 

then calculated the correlation coefficient γ between them. 
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3.3.3 Analysis of Variance (ANOVA) Procedure 

The illustration of ANOVA algorithm is shown in Fig. 3.14. 

 

Fig. 3.14 Illustration of ANOVA algorithm. 

 

The first step of ANOVA is to select wavelet coefficients at the same scale 

(frequency) a and time (sample) b position from several ECG-complex 

CWT-coefficient templates of two different sessions. Secondly, their p-value was 

evaluated through calculating their sum of square, mean square, and F-test as 

described in equations (2.13) – (2.17). The above scheme was conducted for all (scale, 

time) range of the ECG CWT-coefficient templates. For example, considering a 

CWT-coefficient template of size 79×122, then there required totally 79×122 

repetitions. 
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Fig. 3.15 demonstrates the flowchart of conducting ANOVA in our study. 

 
Fig. 3.15 Flowchart of ANOVA algorithm. 

 

The result of this ANOVA algorithm is the map of p-values that measure how 

significant the difference between two populations. To demonstrate the result, we 

mapped the p-values onto the same time-frequency plane as the CWT-coefficient 

template. We defined significantly different into two types (increasing or decreasing 

energy) based on wavelet energy (eq. 2.5) comparison.  

For example we got one of the P-value = 0.02 (considered as significantly 

different) from the ANOVA between slow breathing and fast breathing on session 1 of 

control group, then we have to test the wavelet energy between these comparison: if 

slow breathing > fast breathing we called increasing energy, other than that decreasing 

energy.   

So increased energy are given as positive p-value colored red and depressed 

energies are given as negative p-value colored blue. Void-colored pixel indicates the 

condition of being NOT significant so called NOT Significant colored white. These 

p-values are ranked according to color scale. 
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Fig. 3.16 P-value Map as result of ANOVA. 
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Chapter 4 
Results 

 

 This chapter presents the results of applying invariant moments, SVD and 

ANOVA to quantification of ECG-complex CWT-coefficient behaviors in various 

respiration-rate ranges. 

 

4.1 Results of Invariant Moments Analysis 

In this section, we will present the results of invariant moments analysis applied 

to ECG wavelet coefficients. Hu’s invariant moments are normally adopted for pattern 

recognition. This study, however, was aimed to use the invariant moments to quantify 

the differences of ECG CWT coefficients in different conditions. 

We compared seven invariant moments derived from three respiration-rate 

ranges. The results are summarized in Table 4.1 and further explained in the following 

sub-section. 

 

Table 4.1 Mean values of three respiration rate ranges analyzed for the  

              experimental and control group on session 1 and 2.  

 Seven Invariant Moments of Control Group Session 1 
 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 
A 5.7±0.3 9.4±0.8 15.2±0.9 15.1±0.9 30.3±1.9 20.1±1.3 25.9±2.1
B 5.3±0.6 8.5±1.7 14.0±1.6 14.0±1.6 27.9±3.2 18.5±2.4 22.6±2.9
C 4.8±0.6 7.1±1.6 12.7±1.9 12.6±1.9 25.3±3.9 16.5±2.7 20.3±2.9
 Seven Invariant Moments of Control Group Session 2 
 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 
A 5.0±0.2 7.6±0.6 12.9±0.6 12.7±0.6 25.5±1.3 16.8±0.8 22.1±1.6
B 5.0±0.5 7.7±1.4 13.2±1.5 13.1±1.5 26.3±3.0 17.2±2.2 21.4±2.5
C 4.8±0.6 7.1±1.6 12.5±1.9 12.5±1.9 25.1±3.8 16.4±2.7 19.8±3.4
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 Seven Invariant Moments of Experimental Group Session 1 
 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 
A 6.4±0.8 11.1±1.8 17.9±2.1 17.9±2.1 35.8±4.2 23.6±3.0 30.2±4.1 
B 6.1±0.9 10.3±2.2 16.7±3.3 16.6±3.5 33.2±6.9 21.8±4.7 28.0±5.5 
C 6.1±1.4 10.4±3.2 16.5±5.4 16.4±5.6 32.8±11.1 21.7±7.2 27.4±9.4 
 Seven Invariant Moments of Experimental Group Session 2 
 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 
A 6.7±0.9 11.8±2.1 18.7±3.2 18.7±3.2 37.4±6.4 24.8±4.2 31.5±5.4 
B 6.9±1.7 12.1±3.9 19.4±5.7 19.4±5.7 38.8±11.4 25.6±7.5 32.8±10.3
C 8.1±2.2 14.8±4.8 23.3±7.4 23.3±7.4 46.6±14.8 30.9±9.8 39.3±13.8

 

4.1.1 Comparison of Invariant Moments at Different Respiration 

Rates 

First comparison is conducted for results of analyzing ECG within the same 

session (session 1 or 2) yet in different respiration-rate ranges (A, B, C). Figs. 4.1 and 

4.2 display the results of seven invariant moments for both control group and 

experimental group. 
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Fig. 4.1 Result of Control Group Invariant Moments S1 and S2. 
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(b) 
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Fig. 4.1 (Continued). 
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Fig. 4.2 Result of Experimental Group Invariant Moment S1 and S2. 

 

Apparently, seven invariant moments decrease with respiration rate for the 

control subjects during session S1. On the other hand, seven invariant moments 
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increase with respiration rate for the experimental subjects under meditation (session 

S2). 

 

4.1.2 Comparison of Invariant Moments in Different Sessions 

Given the same respiration rate, the results of invariant moments for subjects in 

different sessions are shown in Figs. 4.3 and 4.4, respectively, for control group and 

experimental group.  

(a) 
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Fig. 4.3 Seven invariant moments from S1 to S2 for respiration rate (a) A: slow   

        breathing, (b) B: normal breathing, and (c) C: fast breathing (control group). 
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(c) 
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Fig. 4.3 (Continued). 
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Fig. 4.4 Seven invariant moments from S1 to S2 for respiration rate (a) A: slow  

breathing, (b) B: normal breathing, and (c) C: fast breathing (experimental group). 
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(b) 
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Fig. 4.4 (Continued). 

 

While comparing the invariant moments between sessions (Figs. 4.3 and 4.4), we 

notice that the seven invariant moments tend to decrease for control group, yet 

increase for experimental group when proceeding from session one to session two.  

In [17], Hu interpreted two physical meanings of seven invariant moments, that 

is, 02201 μμφ +=  and ( ) 2
11

2
02202 4μμμφ +−=  respectively reflecting “spread” 

and “slenderness”. These two invariant moments have been also employed in the 
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interpretation of the spread and slenderness of gene [29]. Fig. 4.5 sketches 2φ  

versus φ1 curves for (a) control and (b) experimental group in sessions S1 (left) and 

S2 (right). 

 

(a) 

 

(b) 

Fig. 4.5 Second order moments in (a) control group and (b) experimental group. 
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Apparently, the range of 1φ  and 2φ  changes from session S1 to session S2 

for both groups. For control group, the second order moments seem to cluster together 

in S2, but spread out in S1. Whereas for experimental group, second order moments 

clustered in S1, yet spread in S2. At the current stage, we still cannot correlate our 

preliminary findings to the physiological meanings of circulatory system. 

 

4.2 Results of Singular Value Decomposition Analysis 

 The goal of SVD analysis is to extract the major component of the ECG wavelet 

coefficients and try to identify the intra-session and inter-session differences by using 

the correlation-coefficient analysis. In Fig. 4.6, we present the results of analyzing 

two samples, one sample from control group and one sample from experimental 

group. 

(a)  

Fig. 4.6 Singular value decomposition of (a) a control subject and (b) an experimental 

subject (from top: CWT-coefficient map, the first and the second eigenvector). 
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(b)  

Fig. 4.6 (Continued). 

 

Fig. 4.6 plots the two major components (1st eigenvector and 2nd eigenvector), 

decomposed by SVD, corresponding to the largest two eigenvalues. Their weighting 

percentages are listed in Table 4.2. The 1st eigenvalue contributes the biggest portion 

to the CWT-coefficient map.  

Table 4.2 Weighted percentage of each eigenvalues 

CONTROL 

GROUP    

EXPERIMENTAL 

GROUP   

 A (Slow Breath)   A (Slow Breath) 

eigenvector 1st 2nd  eigenvector 1st 2nd 

weighted percentage 19.3 % 14.9 %  weighted percentage 18.4% 13.9% 

 

Later in our study, we only analyzed the 1st eigenvector. Comparisons and 

correlation-coefficient analysis will be conducted for both groups under various 

conditions: different respiration rates as well as different sessions S1 and S2. 
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(a) 

 

(b) 

Fig. 4.7 (a) Control Subject and (b) Experimental subject 1st eigenvector 

             and their correlation coefficient between respiration ranges 
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Table 4.3 is the summary of correlation coefficient between various respiration 

rates and between recording sessions for control and experimental group. 

 

Table 4.3 Correlation-coefficient analysis of the first eigenvector of 

ECG-complex CWT-coefficient maps. 

EXPERIMENTAL GROUP      

Correlation coefficient Session 1 Correlation coefficient Session 2 

 B C   B C  

A 0.9976 -0.99436  A 0.9953 0.96552  

B   -0.99763  B   0.98096  

        

 Correlation coefficient different sessions   

    S2    

   A B C   

  A 0.99472   

 S1 B 0.9966   

  C -0.97052   

       

       

CONTROL GROUP      

Correlation coefficient Session 1 Correlation coefficient Session 2 

 B C   B C  

A 0.99235 0.91251  A 0.86111 0.95564  

B   0.94545  B   0.92572  

        

 Correlation coefficient different sessions   

    S2    

   A B C   

  A 0.74461*   

 S1 B 0.99953   

  C 0.99631   

A < 14 beats/minute; 14 beats/minute≤ B <18 beats/minute;, C≥18 beats/minute; S1 = session 1;  

S2 = session2; *correlation coefficient below 0.85 (moderate correlation). 
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Fig. 4.8 Control subject 1st eigenvector between S1 and S2 slow breathing 

 

As we can see from table 4.3 that most of correlation coefficient values is 

considered high (highly correlate), only one result considered moderate correlation. 

So we need to see the results came from ANOVA analysis in next subchapter. 

 

4.3 Results of ANOVA 

ANOVA analysis provides a way to evaluate the degree of statistical significance 

of quantitative results obtained by previous methods, under various experimental 

conditions. 
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Fig. 4.9 ANOVA analysis for control group (intra-session, different rates of  

respiration). 
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Fig. 4.10 analysis for experimental group (intra-session, different rates of  

respiration). 

 

In the first part, ANOVA analysis was conducted for the quantitative results 

obtained in the same session, yet under different respiration rates. Figs. 4.8 and 4.9 

plot respectively the ANOVA results for the control and experimental group. Different 

colors (red and blue) are used to indicate positive significantly increasing energy and 

negative significantly decreasing energy, while color-void indicates no significant 
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difference. We used the wavelet energy to make comparison between wavelet 

coefficient in term of The color degraded from dark blue or red (p-value < 0.01) to 

indicate more significant to light blue or red (p-value < 0.05) just plain significant. 

We observe that, during either session S1 or S2 in control group, significant 

difference occurred between slow breathing and fast breathing especially at S-T 

segment (decreasing energy since it colored blue). Moreover, results of analyzing 

QRS complex revealed significantly decreasing energy between slow breathing and 

normal breathing on session S2. 

Other condition had few significant differences as in S1 and S2 fast breathing 

compared with normal breathing, significantly decreasing energy on high frequency at 

S-T segment also occurred. 

If we see the ANOVA result on experimental group there were significant 

differences in S1; slow breathing compared with fast breathing, slow breathing 

compared with normal breathing, and session two slow breathing compared with 

normal breathing. In session one between slow and fast breathing occurred 

significantly increasing energy on S-T segment at the high frequency. It even had 

more significantly increasing energy between slow and normal breathing in session 

one. 

We can see there was significantly decreasing energy spread along P-QRS-T area 

at frequency between 5 – 20 Hz in session two between slow and normal breathing 

rate. 
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Fig. 4.11 ANOVA analysis for Control Group (inter session, same rates of respiration) 
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Fig. 4.12 ANOVA analysis for Experimental Group (inter session, same rates of 

respiration) 
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Fig. 4.10 and Fig. 4.11 are results from applied ANOVA between sessions on 

both groups. We take three comparison based on three respiration ranges between S1 

and S2. In control group we found both significantly little increasing and more 

decreasing energy (p-value <0.01) spread on ECG complex when we performed 

ANOVA to investigate slow breathing between both sessions, while on fast breathing 

we even didn’t find any significant difference and normal breathing we did not found 

big significant difference. 

In experimental group we found significantly increasing energy on slow 

breathing between S1 and S2. The contrary to slow breathing is on fast breathing 

between S1 and S2, we found significantly decreasing energy occurred in several 

ECG segment either low or high frequency. 

On normal breathing of experimental group between both sessions we just found 

small significant difference on T segment at frequency around 23 – 27 Hz.  
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Chapter 5 
Conclusion and Discussion 

 

 

5.1 Preliminary Conclusion 

In this study we have studied the applications of continuous wavelet 

transformation to ECG analysis. The main aim of this thesis was to investigate the 

effects of Zen meditation on the ECG wavelet coefficients of the experimental 

(meditating) and control (non-meditating) group. In this study, respiration rate was 

adopted as a reference for comparing ECG time-frequency properties. 

 In chapter 4, we have reported the results obtained by Hu’s invariant-moment 

analysis, correlation-coefficient analysis of SVD components, and ANOVA approach. 

In regard to the study of Hu’s invariant moment on ECG CWT-coefficient maps, on 

control group the values of seven invariant moments, at a given respiration rate, 

tended to decrease for the control group, while the values for the experimental group 

showed the tendency of increase. According to the second order moments, we may 

conclude that control group has wavelet coefficient patterns more concentrated than 

experimental group by the value of ( ) 2
11

2
02202 4μμμφ +−= . At the current stage, 

we are, however, still not ready to correlate the physiological meaning with each 

particular invariant moment due to insufficient amount of data. 

In the SVD study, experimental group exhibited large correlation correlations in 

most of the comparisons, indicating that the major components of wavelet coefficients 

are close to each other. While in control group, we notified one moderate 

correlation-coefficient value on comparison between sessions S1 and S2 slow 
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breathing state, but still most results had high correlation coefficient values. 

Finally, ANOVA analysis provides a way to evaluate the significance of 

differences of ECG CWT-coefficient templates. The results reported in chapter 4 

revealed more significant differences in control group than in experimental group. In 

control group the tendency of significantly differences is decreasing energy in some 

segments of ECG wavelet coefficients, as in slow breathing compared with fast 

breathing on both sessions S1 and S2. On the other hand, the tendency of significance 

in experimental group appeared to be the increasing energy as in slow breathing 

compared with fast or normal breathing on S1. 

 

5.2 Future Work 

In the preliminary study, we presented the idea and results of applying Hu’s 

seven invariant moments. Further study is to be conducted to correlate the quantitative 

results with the physiological meaning. In addition, other image-based methods or 

approaches can be investigated and employed in the analysis of ECG (or other 

physiological signals) CWT-coefficient templates. Finally, experimental protocol may 

be designed to include EEG signals as the reference, in addition to the respiration 

signal, of various consciousness, mental, or even meditation states. 
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Appendix A 
Detection of ECG R Peak and 
Respiratory Peak 

 

 

A.1 R-Peak Detection 

 The flow chart of R peak detection is shown in Fig. A.1.  

 

Raw ECG signal originally sampled at 1000 Hz 

Downsample with new rate: 200 Hz 

Apply a 10-30 Hz bandpass filter  

Magnify R peaks by )(nx , x(n): ECG after the above pre-processes  

Detect R peaks by adaptive threshold 

Derive the time position of each R peak 

Fig. A.1 Flow chart of R peak detection.  

 

Step 1. Downsampling of Raw ECG Signal 

Raw ECG signal originally recoded at 1000Hz (required by the other researches) 

was firstly downsampled with new sampling rate of 200 Hz, utilizing Matlab’s 
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built-in polyphase filter implementation, including an anti-aliasing (lowpass) FIR 

filter.  

Step 2. Noise Reduction by Bandpass Filtering 

ECG signal after downsampling was then filtered by a 10-30 Hz bandpass filter 

to reduce the baseline drift and high frequency noise (e.g. 60Hz power line noise, 

EMG signal) and further enhance the R peaks.  

Step 3. Magnification of R Peaks 

R peaks were magnified by multiplying ECG signal  by its absolute-valued 

signal 

)(nx

)(nx  to generate an R-magnified signal )()()( nxnxnx ×=′ . As shown in 

Fig. A.2, the ECG signal before and after preprocessing is presented. Note that the 

amplitudes of R peaks are obviously enhanced and cleansed.  

Step 4. R-Peak Detection by Adaptive Threshold 

The threshold for R peak detection was determined for every one-minute frame, 

that was selected to be 0.3 time of the maximum ECG amplitude within the frame. 

Adaptive-threshold scheme was adopted for the reason that the range of ECG 

amplitude varies among subjects. Moreover, inter-subject variations are often 

inevitable in biomedical signals.  

Step 5. Acquisition of R-Peak Locations in Time 

For each QRS complex, there will exhibit a time duration that its amplitude 

bigger than the threshold as shown in Fig. A.3. The maximum amplitude during this 

time duration was determined, and its time position was employed as the time position 

of R peak.  
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Fig. A.2 The raw ECG and preprocessed ECG. 

time duration 
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0
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Time (second) 

Fig. A.3 R peak detection by threshold. 
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A.2 Respiratory Peak Detection and Respiration Rate 

The flow chart of Respiratory peak detection and respiration rate is shown in Fig. 

A.4 . 

Raw respiratory signal 
originally sampled at 1000 Hz

Downsample with new rate: 
200Hz

Respiration peak detection

Calculate the intervals 
between consecutive peaks

Calculate respiration rate of 
each respiration

Median value of respiration 
rate for every one minute 
respiration is calculated 

 

Fig. A.4 Flow chart of Respiratory peak detection and respiration rate. 

 

Step 1. Downsampling of Raw Respiratory Signal 

The raw respiratory signal originally recorded at 1000 Hz (required by the other 

researches) was firstly downsampled with new sampling rate of 200 Hz, utilizing 

Matlab’s built-in polyphase filter implementation, including an anti-aliasing (lowpass) 

FIR filter.  

Step 2. Respiration Peak Detection 

We used the peak detection algorithm named complex demodulation. 

Step 3. Calculate Respiration rate 

After we got the respiration peak we calculate the intervals between consecutive 

peaks, from there we can count respiration rate of each respiration and take median 
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value of respiration rate for every one minute respiration signal. 
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