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Student: Che-Chun Lin Advisor: Dr. Wern-Ho Sheen

Department of Communication Engineering

National Chiao Tung University

Abstract

It has been shown in the literature that varying bit-to-symbol mappings for multiple
transmissions of the same packet provides-better. throughput performance compared to
using the same bit-to-symbol mapping:-throughout all the transmissions. The analysis
of BICM capacity suggests that the retransmission mapping scheme should be
adaptive to the operating SNR. Hence we propose using a genetic algorithm to find
the optimal mapping for each SNR. When BICM with iterative decoding (BICM-1D)
is applied in HARQ systems, the analysis of EXIT-chart also suggests that the suitable
mapping for each SNR for the same code should be different. Therefore, we find
optimal mapping for each SNR under the assumption of infinite block length and
unlimited iteration number. In the real application of finite block length, we plot the
variation of demapper and decoder transfer curve relative to the averaged one and
suggest that margins between the demapper and the decoder transfer curve should be

preserved for the finite block length design.
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Chapter 1: Introduction

One of the main challenges in wireless communication is the fluctuation of signal
amplitude caused by fading. Many efforts have been put to mitigate this adverse effect.
Trellis coded modulation (TCM), originally proposed by Ungerboeck for bandwidth-
efficient communication over the additive white Gaussian noise (AWGN), has shown
some drawbacks when transmitting over fading environment. In the design of TCM,
modulation and coding is combined as an entity to improve the performance. The
design goal is to maximize the minimum free Euclidean distance, and therefore it is
often optimized over AWGN channel. However, when transmitting over fading
channels, its performance is significantly degraded since the diversity order is usually
low. To combat the adverse effect of fading.channel, symbol interleaver is added and
parallel transitions in the trellis should sbe-avoided. However, since the minimum
number of distinct symbols between two codewords limits the diversity order, the
constraint length should be increased.-The increased constraint length further results in
exponentially increased decoding complexity which is unacceptable.

In [2], Zehavi proposed an alternative approach called bit-interleaved coded
modulation (BICM) to increase the diversity order to the minimum Hamming distance
of the code. By placing a bit-wise interleaver at the encoder output, this allows large
diversity order with moderate system complexity. In [4], Li and Ritcey showed that the
performance of BICM can be further improved by iterative decoding between the
demapper and the decoder, a scheme called bit-interleaved coded modulation with
iterative decoding (BICM-ID). It has been shown in the literature that the design of the
demapper is crucial to achieve a high coding gain over iteration. In [6], EXIT chart was
proposed to describe the iterative decoding behavior through a decoding trajectory

between the transfer curve of the demapper and decoder.



On the other hand, error control is also a main issue for data communication.
Combined with the advantage of automatic-repeat-request (ARQ) mechanisms and
forward-error-correction (FEC) schemes, HARQ is often adopted to achieve high
reliability and high system throughput. In HARQ schemes, additional redundant parity
bits are appended to the original message for both error correction and detection. When
the presence of errors is detected, the receiver first tries to correct the erroneous bits. If
the number of errors is beyond the designed error-correcting capability of the code, a
retransmission request is send to the transmitter. The retransmitted packets can be
exactly the same as the initial one or contain some extra redundant bits. When a new
packet is received, the newly received packet can be decode alone or jointly decode
with the previous ones.

In this thesis we are concerned about the case that retransmission carry identical bits
and all the received packets are .combined together for decoding. Furthermore, BICM
and BICM-ID in conjunction with HARQ:is.considered.

It is known that the performance will be. significantly improved by introducing
packet combing. Chase combining [12] is the well known ML combing technique. It
combines arbitrary number of coded packets into a single coded packet with lower
code rate, thus improves the error-correcting capability of the code. However,
Wengerter [15] showed that different bit to symbol mapping for retransmission can
further improves the system performance. By simply swapping or taking logic
inversion on the modulation bits to average out the unequal bit reliabilities, a method
called constellation rearrangement, significant improvement has been observed.
However, no optimality can be claimed on this method. In [16], an optimization
criterion base on the BER upper bound has been proposed. The main deficiency of the
mapping found by the minimization of the BER upper bound is that the upper bound is
only tight at high SNR, the performance at low SNR can not be guaranteed. Murthy
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[17] further suggested to change the criterion to maximize the sum of the magnitudes
of the LLR of the bits forming the M-QAM symbols in different retransmissions.
However, the maximization is made on the sum not on the individual bits LLR, no
optimality can be guaranteed. Another criterion based on the augmented signal space
after retransmission is to maximize the minimal accumulated (over transmission)
squared Euclidean distance [18]. Gidlund [19] also aimed at increasing the Euclidean
distance between signal points, thus applying the idea of set-partition in TCM to spread
the signal points well in the augmented signal space. These designs ignore the
relationship of the number of bit differences between nearest symbols; however, the
number of bit differences is a crucial parameter for the design of BICM mappings.
Hence is also not optimized for BICM systems.

Those mapping designs described above are all.independent of SNR. However, an
analysis based on the BICM capacity. under multiple transmission [14] showed that one
single mapping can not be optimal for. the-whole. interested SNR range. It was showed
that constellation rearrangement (CoRe). outperforms the mapping obtained by the
minimization of BER upper bound (MBER) at low SNR. However, at high SNR,
MBER exhibits better performance than CoRe. Since there are different operating SNR
region at different code rate, this paper suggests that mapping should be adaptive
considering the targeted spectral efficiency (code rate). Although adaptive mapping
scheme has been proposed, mappings that are optimized for each SNR is still an open
problem. Hence we aim to find these optimal mappings.

When iterative decoding is applied (BICM-ID), mapping design is especial crucial
for obtaining large iterative decoding gain even for single transmission. Various
mapping design methods have been proposed for single transmission. However, very
few have addressed the issue of multiple transmissions mapping design. In [21],
Roberson designed the retransmission mappings that optimize the uncoded zero prior
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pairwise error probability and the uncoded ideal prior pair-wise error probability. Since
the uncoded pair-wise error probability is independent of the underlying coding
scheme, the design is not optimized for a particular code and may cause large
performance degradation. By the analysis of the EXIT chart, the first intersection of the
demapper transfer curve and the decoder transfer curve should be as high as possible.
Since different mapping and coding have different transfer curve, their first
intersection will be different. Therefore, a mapping that is good for a particular code
may not be good for another one as well. Guided by the EXIT chart, mapping design
should be dependent on the outer code. Furthermore, the dependency of the demapper
transfer function on SNR also suggests that different mappings should be designed for
the same code on different SNR. Hence we propose a method jointly considering the
outer code and the operating SNR to design the retransmission mappings based on the

EXIT chart.



Chapter 2: Overview of HARQ

A major concern in data communication is how to control transmission errors caused
by the channel noise so that error-free data can be delivered to the user. There are two
basic error-control schemes for data communication: automatic-repeat-request (ARQ)
schemes and forward-error-correction (FEC) schemes.

In an ARQ error-control system, some parity bits are appended to the original
information bits for error detection. When a codeword is received, the receiver
computes its syndrome and determines if there is any erroneous bit. If the presence of
errors is detected, the receiver discards the erroneously received codeword and
requests a retransmission of the same codeword via a feed back channel.

In an FEC error-control system, an_error-correcting code is used for combating
transmission errors. When the receiver detects the presence of errors in the received
codeword, it attempts to correct them.: After'the error correction has been performed,
the decoded codeword is then delivered-to the users. If the receiver failed to detect the
presence of errors or the number of erroneous bits exceeds the error-correcting
capability of the code, a decoding error is committed.

The advantages of ARQ scheme is simple and provides high system reliability.
However, the throughput of ARQ system falls rapidly with increasing channel error
rate. On the contrary, the FEC schemes maintain constant throughput (equal to the
code rate) but is less reliable since the decoded message has to be delivered to the user
regardless of whether it is correct or not. Thus to overcome the drawbacks in both
ARQ and FEC schemes, a combination of these two called hybrid
automatic-repeat-request (HARQ) scheme is proposed.

A HARQ system consists of FEC subsystem contained in an ARQ system. When



errors are detected by the receiver, the receiver tries to correct the erroneous bits. If the
receiver fails to correct all of them, a retransmission request is delivered to the
transmitter. The system throughput is increased by correcting the error patterns that
occur most frequently. The system reliability is increased by requesting a
retransmission rather than passing the unreliably decoded message to the user. As a
result, a proper combination of FEC and ARQ provides higher throughput than FEC
system and higher reliability than ARQ system.

There are three types of HARQ scheme, type I, type Il and type I11. In type | HARQ
scheme the uncorrectable error packets are simply discarded and the receiver requests a
retransmission of the same packet. Type | scheme is suitable for fairly static channel
conditions since the error-correcting code can be designed specifically for this constant
noise level. However, in applications with fluctuating channel conditions, type | has
some drawbacks. When the bit error_rate is small such that only small error correction
capability is needed, the redundancy. bits_carried for correction of large bit errors
represent a waste. When the channgl..is very noisy, the possibility of inadequate
error-correcting capability will increase the frequency of retransmission and hence
reduces the system throughput.

To overcome the drawbacks of the type | scheme, incremental redundancy HARQ
(IR-HARQ) scheme is proposed. The basic idea is to transmit the additional
redundancy bits only when they are needed. When the channel condition is good, only
a small fraction of redundancy bits are transmitted to correct small bit errors. When a
retransmission request is delivered to the transmitter, additional redundancy bits are
transmitted to the receiver. The receiver than combine the newly received packet and
the previous ones to form a more powerful code with lower effective code rate. These
schemes offer higher throughput efficiency since the error correcting code redundancy
is adapted to the varying channel conditions. Depending on whether each retransmitted
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packets are self decodable or not, IR-HARQ can be further categorized into two classes:
type Il and type Ill schemes. Type Il scheme is also referred to as full incremental
redundancy scheme where only incremental redundancy bits to the initial transmission
are retransmitted. Type 111 scheme is also referred to as partial incremental redundancy
scheme where partly identical bits and partly incremental bits to the initial transmission
are retransmitted. The main drawback of type Il scheme is that the decoder has to rely
on both the previous received packets as well as the newly received one to decode. In
situation where a packet may be lost, it is not possible to use previous packet and
recover the original message. Thus it is desirable to have a scheme where incremental
coded bits are self decodable.

Another advantage that makes type Il and type Il HARQ scheme more attractable
than type | is that instead of simply:discard the erroneous packets, type 11 and type Il
scheme combine the previous received packets and-jointly decode them. Although
damaged by the channel noise,-these packets still' carry useful information that is
beneficial for decoding. Therefore,"decoding. with packet combining often performs

better than decoding without packet combining.



Chapter 3: System Model

3.1 Transmitter

mapper | X, Y,
> || channel —p»
b C It (Zuul)

—» encoder —p| 1 — mapper | X, v,
| channel —3
(7(1,”2) .

mapper | x. V.
(Zaﬂr) .| channel —p

Fig 3.1 BICM in HARQ transmitter model

Consider the system model described. by Fig3.1. A vector of binary bits
b=[b,b,,..,by ] with length N,~is .encoded ‘to binary codewords c=[c,,c,,...,cy ]
with length N_ . The encoded codewords‘are then fed into bit interleaver 7. The
interleaved codewords are denotedias I' =[I;, 15,1y 1, where I} =[If,I{,,.... I}, ]
,Ji=1..,N_ is a group of n, bits that will be mapped to a complex symbol. The
sequence of 2™ -ary complex symbols are denoted as X; =[X;,%,,..., X ]. The first
subscript indicates the i-th transmission ,i=1,....,T , and T is the maximum allowed
transmission number. Since different bit to symbol mappings can be adopted while

retransmission, we denote the i-th transmission mapper as z; andx;, = 4 (1 ) € 7 .

In our notation convention, we write random variables using upper case letters and
their realizations by the corresponding lower case letters. Bold case letters represent
vectors and underscore is used to represent a sequence of vectors. The same

terminology will be used throughout this thesis.



3.2 Channel

The signal x, is send over the channel and y, =hx/ +n, is the received one,

where n; =[n;, N ;..M ] is AWGN and h;=[h,, h,,...h ] is the channel
fading gain. Each elements in n, is an iid complex Gaussian Random variable with

. N, . . . .
zero mean and variance 70 in real and imaginary part. When the channel is modeled

as a frequency non-selective fast fading channel,h;, is an iid complex Gaussian

. . : 1 . L
random variable with zero mean and variance rl in real and imaginary part. When

the channel is modeled as an AWGN channel, h, is 1 for all i and k. Finally, we

assume that SNR is the same for each retransmission.

3.3 Receiver
Here we denote L(u,v):(Ll(u,v),Lz(u,v),...,LNL (u,v)) as a sequence of log

likelihood ratio (LLR), where ue{D,AE},v.e{¢, ¢}. D stands for Detection, A for a

priori, and E for extrinsic. ¢ stands for the demapper and ¢ for the decoder.
Ly (uv)={L, (u,v), L, (V) L, (u,v)} is @ sequence of LLRs belong to the
k-th symbol {X, ., X, ... %} (Since the same coded bits are transmitted in each

retransmission, each k-th symbol carries the same coded bits.)



3.3.1 BICM Receiver Model

— JointmL | L(D:9) L(A¢)
—» ;1 ——| Decoder(p) ",

Demapper (¢)

Fig 3.3.1 BICM in HARQ receiver model
As shown in Fig 3.3.1, the joint ML demapper¢ receives a sequence of symbols

Y.,Y,,.., Y inall T transmissions and jointly detects them to compute the coded bit

LLRs L(D,;/}) for the decoder. After passing through the deinterleaver 7z to

restore the original bit order, the deinterleaved LLRL(A,;/}) is fed into the decoder.

The original information bitsb are then decoded by the decoder.

3.3.2 BICM-ID Receiver Model

Vi L(D.¢) L(E.¢) L(Ag)
— ) > ol >

Y,
™ Joint MAP

: Decod b

. |Demapper (¢) J ccoder(0)) 2
i, - T [ &)

L(A¢) L(E,¢) L(D.g

Fig 3.3.2 BICM-ID in HARQ receiver model

When iterative decoding is applied, the demapper not only receives the T

transmission symbols vy,,y,,...y; but also the a priori information L(A,¢)

generated by the decoder. The demapper then apply MAP detection algorithm to

10



compute the coded bit LLRs g(D,(zﬁ). Before passing to the decoder, the demapper
subtracts the a prior information L(A,qﬁ) to produce the extrinsic information
L(E,¢). The decoder applies similar pricinple to generate the extrinsic information

L(E,¢) and feed back to the decoder. Thus the signal is iteratively decoded by

mutually exchanging soft information between inner demapper and outer decoder. This

iteration process continues until a prescribed number of iteration is reached.

3.3.3 Joint MAP Demapper
The demapper computes the a posteriori probability for coded bits. Since the
modulation is memoryless, only the k-th_symbol is concerned when detecting the i-th

bit in the k-th symbol. Therefore,:for simplicity, we drop the subindex k in the k-th

label 1, and definel = (I;,13,.... i ) 21 = (Kl 5. |, ) € A For the i-th bit LLR in
the k-th  symbol, define L(uv)=L (uv) . Similarly, we define
X 2%V 2 Yoh 2h,,n2n,, and therefore y, =hx +n,. Perfect channel state

information is assumed at the receiver, thus the LLR for the i-th bit is calculated as

. P(K =11 Y3, Yoo Yoo 1y )
USSR ARSRTAN W e N

1og p(li‘=1)+log p(h by, by Ili‘=1)+Iog P(Ys Yoreon ¥r [ =L 00y, )
p(E=0) " (Pl [ =0) > P(Y Yoo VoIl =00y, )
p(i=1)  p(hhyab) (Yo Yo ¥ [N =100y, )
— | |
(! —0) () p(Yos Yoo el =0,h,h,,....hy )

yl’ y2""’yT’|t | I|t :O!hlyhzy---;h'r)

11



1Y =R (1) 1F ) 2

—Z 2 H

k=1 20 j=1

Yy = heas (1)1F )

- 207 H

k=1 j=1
J#i
Yy —hess (1)1
— ex
; 20° P
T 1y, —hes (1P
_ k k |2<( ) exp

k=1 20
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Chapter 4: Symbol Mapping Diversity in HARQ

4.1 Constellations under joint detection

When the same mappings are used during further retransmissions, the performance
improvement comes only from SNR gain. If the same signal is transmitted T times, 3T
dB gain will obtained at the receiver. However, when the retransmission mappings are
changed, the receiver will have the potential to get not only 3T dB gain but also
additional gain by the benefit of symbol mapping diversity. This can be well explained
by the enlarged signal space under joint detection. For the simplicity of exposition,

consider 4-PAM transmission in the following:

o e

00 10 11 01

Fig 4.1.1 constellations with Graysmapping:for the first transmission

s R ) .

00 10 11 01

Fig 4.1.2 constellations with the same mapping as the first transmission for the second
transmission

In our first example (Fig 4.1.1 and Fig 4.1.2), Gray mapping is transmitted at the

first time and the same mapping is adopted at the second transmission. Since the

receiver receives two signal and jointly detect them, the signal space under joint

detection is enlarged to two times the dimension of single transmission. As shown in

Fig 4.1.3, the signal space is now a two dimensional one instead of just one dimension.

13



second transmission

A
T o1 i
T 1®
| | | | o
| | | | >
00 lg | 11 01 First transmission
10
® T 00

Fig 4.1.3 constellation under joint detection
The abscissa in Fig 4.1.3 represents the caonstellation for the first transmission and
the ordinate represents the one for.the second transmission. Let us denote the minimum

Euclidean distance between the constellation points in'single transmission as d,. Then

the minimum Euclidean distance: - after-‘ithe  -second transmission will be
d, =d2+d2? =+/2d, Therefore the SNR'is"doubled after retransmission. However,

despite of the enlarged signal space dimension under joint detection, the constellation
are still aligned in one dimension. This implies the inefficiency of utilizing the same
mapping while retransmission.

Consider the case of re-mapping the second transmission as shown in Fig 4.1.4.

o oo

10 01 00 11
Fig 4.1.4 re-mapping for the second transmission
Thus the second mapping is not Gray anymore. The constellation after re-mapping is

shown in Fig 4.1.5.

14



second transmission
A

00

| | | | >
-

| | | [
00 10 11 0.1 First transmission

01

Fig 4.1.5 constellation after re-mapping
Observe that by the simple re-mapping technique, the constellation is now

augmented to two dimensional signal space;sand the minimum Euclidean distance is

enlarged to d, =./(2d,)? +d? =+/5d,. Comparing to~/2d,, the utilization of all the

available dimensions provides larger. minimum Euelidean distance than just doubling
the signal power. This comes at no additional power or bandwidth cost. For further
transmissions larger than two, similar arguments apply.

The possibility of larger Euclidean distance between signal points is similar to the

concept of binary coding. For a coding scheme with code rate R = % N coded bits

are used to transmit the original K information bits and N > K. For length N
coded bits, there are 2" codewords available, while only 2% codewords are needed
to represent the original message. Thus it is possible to assign 2 codewords
appropriately such that they are spaced far apart from each other to obtain larger
Hamming distance. Similarly, for a 2™ -ary modulation with T transmissions, there are
2™ constellation points available, while the source signal only requires 2"
constellation points ( Since type | HARQ is considered, the same bits are retransmitted.

15



Hence only 2™ constellation points are required despite of the number of transmissions).

Larger Euclidean distance can be provided by the extra 2™ —2™ constellation points
available. Therefore, retransmitting the same bits can be thought of as a form of coding
in symbol domain. Analogous to binary coding, retransmission without mapping
change can be considered as a form of repetition code which is not efficient in terms of
enlarging the Hamming distance. Hence appropriate design of retransmission mapping

is essential.

4.2 Coded Modulation Capacity

The benefits of mapping change can also be evaluated analytically from the CM
(coded modulation) capacity. A proper change of retransmission mappings will boost
the CM capacity. In our evaluation,.we normalize the CM capacity with respect to T to
take into account the increased- number of channel- uses after T transmission. For
AWGN channel, the coded modulation capacity under uniform input constraint is

evaluated as

Com_naro =%| (X0 X0 Xg3 Y3, Yy, Y )

=%I(Lt,L‘,...,I_t;Yl,Yz,...,YT)

:%| (LYY Yr)

:%{H (L) =H (L 1YY, Y 3
1 ! T P(Yr Yoo ¥r )

=—{log, 2" - 1" =2, Y1, Vg | dy,...d
—{log, .t;A yl_fw yjmp( i Yar Yoo Yy ) 100, SRR yr}
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where

= p(yl Yo Yo ||t :],j)p(lt :ﬂ’j)

=p(v 11" =4)p(y: 11 =25) p(1I' = 4;)

:p(ylllt:ﬂ'j) p(yT“t:ﬂ'j)Z];]s

=p(y1|ul(l‘=i,-))---p(yT|uT(l‘=i,-))2ins (42)

I'=4eA

= p(ylllt=/1.)p(y2|lt=/1.)---p(yT|I‘=i.)2ins
I'=4eA

= % p(wlalr =4))p(v (AR (1 - 4) 55 43
I'=4eA

With (4.2) and (4.3), (4.1) becomes
C

CM _HARQ

[¢]

=%{ns— | p(yllﬂl(lt=/1,-))---P(VT|%("Z%))Z_i'

It :/1]- eA Yy=—0  yr=-%

2 p(nlm(t=4))-p(v (1 =2))

dy,...dy, }

L Ye= s (1= 4) 1P ) 1
: exp[z « "(2 ) JZ_”

k=1 20

2 exr{i” honll =A.>||ZJ

|t:Z1- eA k=1

log dy,...dy. } (4.4)
i xo _i||yk—ﬂk(l‘=ﬂ,-)n2 S
k=1 20°

: n, . . I
Observe that the first term ?5 in the coded modulation capacity is constant
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regardless of the mapping scheme, hence it remains to minimize the term

M)~ Y | o Texp( gl uk(r .)||2J21n5_

It =Ajeh y;=—o Y, =0 k=1

— =21 )IP
5 exp{_inyk uk2(2 .)||J
=4 eA k=1 o
T ( )” dy,...dy;
exp[ Z yk /uk ]

k=1

log,

for the maximization of CM capacity. Therefore, it is only required to compare the

term A( 4, 44,,..., 44 ) 10 determine which mapping scheme has larger CM capacity.
Consider the two different mapping schemes y, and g, ,k =1,...,T . Suppose that the
relationship of the two mapping scheme can be expressed as 4 (4 )= s (4 )+

=1..,Mandk =1.., T, whereg, ;is-a complex humber and M-ary modulation is

considered. Then the for the firstmapping scheme ., ,k =1,..., T

A1t 1t

Ty - ,uk( A
o | g, B | |
=i 207 092 exp[ i“ Y, yk(lt j’l)nzl

It_z p( inyk uk( = )||J
| =JeA

° Ly - (1= 4) I =
+ L} J‘wexp{ Z; k kzo_z J_Z”S 09, O yk—ﬂk(“:ﬂ?)llz dy,...dy;
Y1 Yo exp _Z

;_x

dy,...dy;

== Y=

We further define
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8, (s o) =

exo| S 1Y =44 (A)IF
T T eXpL i” Y — ( j)”zjzinslogz |‘;EA p( kZ‘ 207 }

1
dy,...dy
a2 |yk—uk(z,-)||2J e

=P [_Z 20°

== yp=—0

Consider, for example, the first term in A( 4, tty, ..., 147 ),

a'l(/uluuzv--uuT):

o] exp[ i” Vi - (1'=2) I ]img 2

yy=—o Yy = 20° 2" 2
T exp| —
k

For the second mapping scheme £,k =1 5.4;T 5 the first term in A(z4, 143,..., 14} ) is

-1 20°

Iy, — 4 (1 =,11)||2}

illyl< i (I'= )||J

M*/_\

20°

,ﬂ

dy,...dy;

ool ST = 24 (4) IF
=[] exp[ EWJL,OQ -%A p[ 2 o ]
o 1 B exp[ ZMZM)”J

20

o)

dy,...dy;

Il i _(ﬂk (ﬂf.)+05k,i)||2
o ey~ (A )+ )P ) 1 ;exp[z 207 J
= I . I exp kZ:; 252 2_nsl 2 T |y —(ﬂ (ﬂ,l)+a )”2 yldyT
Y=—0 Y=o eXp[—Z k k20-2 k1 ]
(Y- a) - ﬂk(ﬂ».)nJ
F T ”( akl) :uk (&)”2 1 I‘%Aexp[ kZ:;‘ 20°
j [ exp| - ——log, dy,...dy;
p oyt = 2" [ U (Y, —a,) - (Al)n}
exp —kZ:; 5o
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Lety, =y, — ., k=1..T,then

& (s 1y

e e =y - uk A)IF) 1
- |- Xr{Z }2

/
Vi=—o—ayy  Yp=—0—ay,

exp[ iuyk uk(zﬂl) ] exp[i||y;—(yk(42)+2aki)+a“”J
I'=4 A, izl k o
log, :
exp(—i” V=t (%)l ]

= 20

j I exp[ ilnyk ﬂk(ﬂl)nglns.

exp(ki”y;’uk (2’11 )HZ}L S exp[—i” yﬁ—(ﬂk (;LIZ);ak')Jra“”ZJ

| 1 20 [L<ZeA, izl k=1 v d
0g, I ; Yi---dyr
i = ()l
exp| =
p[ kz:;‘ 20°

Compare &, (4, ty,-- pr ) With a, (s, 445,.... 11 ), the only difference is the term

T — It:/l 2
> exp[—znyk ﬂk(z ')”J The same argument applies to other

I'=4eA k=1 20

a (44, 1ty ),i=2,...,M as well. Hence to maximize the coded modulation capacity,

.
the term >’ exp( 2” oo 'uk( - )” J should be minimized. Observing the

|t:liEA k=1 20-

exponent term in this expression, the retransmission mapping should be designed so
that the combined Euclidean distance between signal points will be maximized.

Intuitively, two nearby signal points in the first transmission mapping should be
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assigned to signal points that are far apart from each other in the second transmission
mapping. Hence mappings designed to maximize the minimum Euclidean distance

between constellation points often achieves high CM capacity.

16QAM AWGN real channel capacity, T=2

18- A £ T b ]
1.6 ----mmm oo BN A e N
14 P i) b
1.2 R R EEEEE
oy l
§ M- A S —
Q |
] I
(&] |
08F--------1---—-—--77~ i i Tl it
0.6f-------- e e Rl Po-------
! ! —+—— max Dmin
0.4r---— o i —+— min BER -
l l <7 rearrangement
0.2 ¥ T T ning |
ol | | | ‘ Chase CPmblnlng
0 1 1 1 1 1
-10 -5 0 5 10 15 20
SNR

Fig 4.2.1 CM capacity of different mapping schemes
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distance distribution
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distance

Fig 4.2.2 distance distribution of different mapping schemes

Fig 4.2.1 compared the CM ‘capagcity_for 16QAM in AWGN channels for some
different mapping schemes in the literature and Fig 4.2.2 showed their corresponding
distance distribution between signal pairs. Mapping designed for maximizing the
minimum Euclidean distance (MDMIN) has high CM capacity since the nearest signal
points have been pulled far apart. Similar behavior has been presented in the mapping
designed for minimizing the BER upper bound (MBER) since the minimum Euclidean
distance dominates the BER upper bound. The distance distribution has confirmed that
they have largest minimum Euclidean distance. For constellation rearrangement,
although the minimum Euclidean distance has not been enlarged compared to Chase
combining, the number of signal pairs that have smallest distance have decreased.
Therefore its CM capacity is larger than Chase combining.

The above argument applied to frequency none-selective fast fading channel as well.
We assume that the receiver have perfect channel state information, the capacity
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derivation is quite similar to AWGN channel.

1
CCM_HARQ =? I (Xl,XZ""’ XT;Y17Y27"'7YT | H11 Hz’-'-’ HT)

1
== (LY Yoo Yo [Hy Hy e Hy )

:%{H (L' [Hy o He )= H (LY, Yy, Yy Hy Hy o H )

:%{H(Lt )= H (L 1Y, Yy Yo Hy Hyo Hy b

O 3T el =) ) (e L (= 2) ) (o ()

> (vl a1 =2)0)p (v Lo (1 =2) )

1 )
—log, == dy,...dy,dh,...dh; } (4.5)
2" p(ylllul(lt=ﬂ”j)'hl)"'p(yT|luT(lt=ﬂ’j)’hT) e

4.3 Bit-Interleaved Coded :Modulation Capacity

The above coded modulation capacity analysis applies for the ideal case that coding
and modulation are combined together and the channel code is powerful enough. This
analysis shows the performance limit when joint coding and modulation scheme is
applied. However, when BICM scheme is adopted, which separates coding and
modulation, the capacity will be different from the CM capacity. Similar to CM
capacity, the BICM capacity is also affected by the choice of retransmission mappings.
The derivation of BICM capacity with multiple transmissions is a direct extension of
the BICM capacity with single transmission [3].

Fig 4.3.1 shows the equivalent parallel channel model for BICM under the
assumption of ideal interleaving. S is the random variable whose outcome determines

the switch position and is i.i.d. uniformly distributed over{l,2,....,n}.
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— Binary input channel 1 ——

S f — Binary input channel 2 —— k
Encoder

—— Binary input channeln;, ——

Fig 4.3.1 Equivalent parallel channel model for BICM in the case of ideal interleaving

The BICM capacity with perfect CSl is given by (normalized with respect to T)

1
Coicu_rwwe == M1 (6Y0 0o Yo [ g HpoS)

1 (1&
==n, (—Z| (LiYy Yoo Yy [ HyeH HT,s=k)]

ns k=1

:%{;(H (L I Hy Hyes Hy )= HOYLY, o Yy HUH, o H

:%Z{(H(LL)—H (L 1Y, Yy Ve Hy Hy o Hy )

13 P(Ya Yareons Yooy i)
==31- 1 =D, Yy, Vv Voo 1y By B )

T kl{ |;b;,1} yl,__J:yT hl,,'[hT p( ‘ e 4 hl ’ hT) °9. p(l; =b,y1,y2,...,yT,hl,hz,...,hT
(4.6)
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where
P =B, Yo Yoo Y s )

= 20 P(YaYore Yool 10 =2, 1 =D)

= 2 (Yo Yo 1 =)

:,t:;m P(Yar Yareoos Y e e 10 = 4 ) p (D e (1= 2, )0 (1= 4y)

= 2 p( Y b= ) (R B )p(1 = 1)

-2 p(Yalh 1 =2;) p(y, 101 = 4;).p(ys |hT,It:/1j)p(h1,h2,...,hT)2—lns
=It:§Abp(yllhuﬂl(lt=/1,-))p(yzlhz,ﬂ2(lt=ﬂ,—)).--p(yTIhT,uT(l‘=ﬂ~,-))p(h,h2,---,hT)2—1ns (47)
P(Ya Yoreens Yoo Dy )

:.t_% S EVREVAN (W I L

- P(Vareons ¥ [ D hy e IS 2 o (R 1 =2 ) (1 = 4)

-z (v lh I =2) p(y, 11 =4 )op(¥r [0 1t = 4) p(h, by, by ) (10 = 4)

= 30 PO =A) D0l = AP 101 = AP ()

= p(yllhl,ul(lt=ﬂf.))p(yzlhz,uz(lt=ﬂf.))---p(yT|hT,uT(l‘=ﬂf.))p(h1,hz,---,hT)2ins (4.8)

I'=2eA

with (4.7) and (4.8) , (4.6) becomes

25



=—{Z(1— Y[ ] X el =) p(yr I (1= 2)) (R b ) o

=1 Ik SIS (UM VS VA | Il:’ijEAE
1
2 p(vlhoa (1 =2)) P (e I (1= ) )Ryt ) o
log, —4< Y. dy;dh,,...dh }
> (vl (1 =4))p (e 10 (1= 4,)) (P i) o
I'=2;eAp
1,& =Y —hes ( |‘ [§ 1
=0 > exp| -3 e M 4) JUES P
T3 I=be{01} y,,.., yThl ,,,,, h[ I'=4 eAb k=1 2"
2
Z exp[ i” Yo — k:uk = |
I'=A4eA k=1
log, ; dy,...dy;dh,...dh }
Y- kluk = ”
D exp|-Y,
I'=2;eAp k=1

Different from the CM capacity which is only determined by the configuration of
constellation points in the enlarged signal space; the BICM capacity also depends on

the number of bit differences between symbols. The

—h g, (AP
term Z exp(i” Y k/uk( ])”
K

> v Whigh-is; summed over those symbols whose
AjeAl =1 20

k-th bit is b, apparently depends strongly on the labeling on symbols. Since mappings
designed to have large CM capacity often aim to enlarge the Euclidean distance
between constellation points and ignore the effect of the number of bit differences

between symbols, they do not necessary achieves high BICM capacity.
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Fig 4.3.2 BICM capacity of different mapping schemes

As shown in Fig 4.3.2, MBER and MDMIN have low BICM capacity at low SNR
region, they outperform constellation rearrangement and Chase combining only at high
SNR region. Constellation rearrangement, on the other hand, has higher BICM
capacity than Chase Combining over the entire SNR range. Hence the behavior of
BICM capacity is different from CM capacity and the design criterion for BICM

systems should be different from CM systems.
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Chapter 5: Extrinsic Information Transfer Chart

Extrinsic information transfer chart (EXIT chart) was first proposed by S. ten Brink
[7] to visualize the convergence behavior of iterative demapping and decoding. Mutual
information between extrinsic log-likelihood ratio and coded bit are used to describe
the exchange of soft information between the demapper and the decoder. The iterative
processing is visualized as a decoding trajectory in the EXIT chart. Although primary
used to describe the behavior of iterative processing, it turns out to be useful as well

for the mapping design in BICM without iterative decoding.

5.1 Transfer characteristics

Y1 L

(D.¢) L(E4) L(A9)
. > >
Y,
—* Joint MAP
: Decod b
: Demapper(¢) T J eco er(¢)‘>
>
(A4) ) L(D.o

T |-
L

> -
L

(E.o

Fig.5.1.1 iterative demapping and decoding model
Fig 5.1.1 shows the iterative demapping and decoding model which is the same as in

Fig 3.3.2.We follow the same notation convention defined in chapter 3, where
L(u,v):(Ll(u,v),Lz(u,v),...,LNL(u,v)) ue{D,AE}ve{g o} and L, (u,v)
={L1 (V) L, (U,v),ees Ly (u,v)}. Similarly, the subindex k is left out and we
define L; (u,v) £ L; (u,v).

Consider a BPSK signal transmitted over AWGN channel, thus the received signal is

y=x+n wherex e {£1}and n is AWGN with zero men and variance o, .
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(y—x)?

2
20,

e

The conditional probability density function writes as p(y| x) =

2ro, '
Thus the corresponding log-likelihood ratio is calculated as
(1Y
e 26§
x=1 N
L=In Py ) =In 27[02“ :%y:%(x+n) (5.1)
p(ylx=-1) ) gt o
e 20‘,%
\N2ro,
From the above equation, the L can be further modeled as L =g, -x+n_
with
2
H=— (5.2)
O-n

and n_being Gaussian distributed with zero mean and variance

o =3= (5.3)

Thus, the mean and variance of L' satisfy-the following relationship
2
oL
=—L 5.4
i 2 (5.4)
We make use of the following observation for modeling a priori information.
1. For large interleavers the a priori L, (A;v),v e {¢, p}values remain fairly

uncorrelated from the respective channel observations y =[y,,..., y; Jover many

iterations.

2. The probability density functions of the extrinsic output values

L, (E;v),v e {9, p}approach Gaussian-like distributions with increasing number of

iterations.

Observation 1 and 2 suggest that the a priori input L (A;v),ve{# @} can be

2
modeled as an independent Gaussian random variable with mean ,uA:% and
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variance o in conjunction with the known transmitted bits x .

L (A V)= p,-x+n,,ve{s o} (5.5)

Therefore, the conditional probability density function for L, (A,v),v e{g,p} isgiven

by

1
-— 5.6
N2rzo, 20, )

With (5.6), we can calculate the mutual information between the transmitted bits and
the prior LLR.

IA

=1(X;L(AV))

(5.7)
» X =X
=% S [ o, (71X =x)log, 1 Py (2] 1 ) dn
x=-11 E pLi(A,v) (77| X = _1)+§ pLi(A,v) (77| X :1)
with (5.6),(5.7) becomes
.
I, =1—[; NE 7 log, (1+e7)dy (5.8)
A

We define J(o,)=1,. Note that (5.8) can not be expressed in closed form;
however, it is monotonically increasing ino, and therefore reversible.

O'A:J‘l(IA) (5.9)

We can set up a table for the relationship of 1, and o,, thus generating a priori

2
LLR for a specific value of 1, according to the Gaussian distribution N (% X, aAj

Mutual information is also used to quantify the extrinsic information output of the

demapper or decoder.
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IE

=1(X;L(E,v))

1 o
:EX_ZLlI—w pLi(E,v) (Ul X = X) |Og2 1
2

pLi(E,v)(77| X = X)

1
Puen (71X ==1)+5 Pey (1 X =1)

dn (5.10)

Note that no Gaussian assumption is imposed on the extrinsic output distribution

Pey (7] X =x). The conditional PDF of L, (E,v) is obtained by Monte Carlo

simulation (histogram measurements).
The joint map demapper takes not only the a priori information L, (A,¢) but also the

T channel outputs VY,,Y,,...,Y; which is dependent on the E /N, value for each
transmission. Furthermore, the mapping scheme 1, 1,,..., 1, also affects the extrinsic

output. Therefore, we defines the demapper transfer characteristics as
le =Ty (10 Eg/ Ny, 14y, 445,..., 41 ) For the decoder, only the a priori information is
taken to compute the extrinsic information,-thus we define the transfer characteristics

for the decoderas 1. =T, (1,)

5.2 Transfer Characteristics of the Demapper

5.2.1 Demapper Transfer Function

To simplify our notation, we define the a priori and extrinsic information for the i-th

symbol as 1% =(I7,1,...17) 2 L (A @) and I° = (I7,I3,...,I; ) = L, (E, @) . I, denotes

n [k]
the a priori information without the k-th bit prior I, =(17,....I¢,, I8, 17) The

demapper output mutual information is then computed by:

31



(LY Yoo e Ly ) (5.11)

Where the validity of the second step has been proved to be true in [8] for the case of

decoders and the same proof can be used for demappers. In (5.11)

(LYY, Yo LSy |

=H (Ltk)—H (I—tk |Y11Y21""YT’L6EK])

I ASRTAN &
=1- Z -[y Yar ¥ jliak] p(llz :b, Yir¥areen Yoo I[ak])logz (p(yl & d [k]) dyl-.dy‘rdl[ak] (512)

t
l=befozy” 72T P Ik =b, Yir Yore Y10 I[ak])

where

P(hi =b, Yir Yoren Yoo If‘k])

= 2 P(I'=2, =0y, Vo0 ¥ g)

|t:lj eA

= z P(It =lj,y1,ya’--’yT’|Fk])

I'=2; €A}

= 2 P(yl,yz rolgg 11 =4 )p(|t=,1]_)

t b
I'=2jeAy

P(yl’yZ""yTllt ) ([k]|It )21”5

I'=2; €A}
=2i”5 PVl =2 )P(v: 1" =4)-P(¥: 1= 4)) 1”_[ JUaly
I'=2; Al i=L,ixk
1 t t t s a gt
=5 2 PUula(t=2))P(yelas (1 =2))-P(yr L (1 =2)) [T p(FIK) (513
I'=2; A} i=Liz
Similarly,
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P(¥ar Yoo Y1)

It_AHZGAp(yl,yz Vel = 4)
=It%Z€Ap(y1,yz,--,yTllf‘k]Ilt=i.)p(lt=/1.)
Z p(yl Yoo Yr [1'= ) ([k]llt )p(lt:/?“')
I'=4eA
=2%I;Ap(yl|lt A)P(va It =A)p(vr 1 =2) TT p(111)
;;Ap(ylm( ))p(yz|uz(lt=ﬂ1))...p(yT|%(It=ﬂ1))i=1:£kp(lia|li‘) (5.14)
With (5.13) and (5.14), (5.12) becomes
(LYo Yo e LSy |
-y [ . & Z PV, a1 =4 NP (v 1 (1 =2)) TT p(1211)
It =befo,13 711720 7K n =Aje i=Lizk
> p(ilea (1 =4))-b(y: 2 (E=A)) TE p (12 11)
-log, =2 Jdy, . dy, di, (5.15)
> Pyl (1 =2))-P (Ve ba (I = %)) [T p(1%)
I'=2; A} i=Lix
Thus
|E=ninzs|(|_‘k;|_e)
s k=1
Zn%é'(“k”l ARAANLE
1& 1 ~ ~ .
:1_n_skll g{“m}".ylyz YT'|.I[k]{n_| ;Ab (yl|ﬂl(|t_lj))'"P(yT|‘L1T(It_lj))i=llkp(li “It)
p(y1|M(lt=4))...p(yTm(l%))_f‘] p (1 11)
-log, -4 Yoy, . dy, dI, (5.16)
Pyl (1= 2))P(ve e (1= 4)) TT p(111)
I'=2;eA} i=Lizk
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Equation (5.16) shows the demapper transfer function’ s dependency on the a priori
information, SNR , transmission number and the mapping scheme for the subsequent
transmissions.

The demapper transfer function can also be obtained by assuming the a prior

information L, (A,¢) to be Gaussian distributed and applying equation (5.10).

5.2.2 Properties of the demapper transfer function
The properties of the demapper transfer function for single transmission [8] apply to

the case of multiple transmissions. We show these extensions in the following.

5.2.2.1 Area property
To simplify the analysis of the area property-of the, demapper transfer function, the a

priori input is modeled as the output of the binary erasure channel (BEC) (Fig 5.2.2.1).

1=0

0 » 0
o

e
o

1 » 1
1-6

Fig 5.2.2.1 Binary Erasure Channel

For single transmission, it has been proved that when using the BEC model for the a

o ... C
priori input, the area under the demapper transfer function is —*-. The same result
n

S

can be applied for multiple transmissions as well. For single transmission,
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nS
1(X;Y
_HXY) _ Co (5.17)
nS nS
where the fifth step have been proved to.be true in [8]. Observing that this derivation
is independent of the received symbol Y pwe can extend (5.17) to the case of multiple
transmission.
1
A= 1edl,
1 1 c t. a d
=Ln—5k_lI(Lk,Yl,YZ,...,YT,L[k]) l,
11 & a
_ On_kz_;(H(Ltk)—H(L‘k|Y1,Y2,...YT,L[k]))dIA
_ H (X)— H (X |Y1,Y2,...,YT)
nS
Ti (XYY, Yr) 1c
__T - = C“:]—HARQ (5.18)

Although in both cases the area depend on the CM capacity, only in the case of
multiple transmissions do the mapping scheme affects the area. Observe the CM

capacity for single transmission:
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CCM

m 1 ;‘Kp(ylﬂ(ij))
== 2 P(ru(A) g lon s

=n-> [ p(ylu(4 )5 IogzZp(ylu/l )dy+Zj p(ylu(4 )lns log, p(y|u(4))dy
=ns—fiw[%logzép(ylu( ))]Zp VI a(A)y+[ Zp ylu(4 )i log, p(yx(4))dy

The second term and the third term at the last line is independent of mapping changes,
thus the CM capacity for single transmission is determined solely by the channel

E, /' N, . This implies that for a fix channel condition, the area under the demapper
transfer function is fixed.

For the case of multiple transmissions,

c CM _HARQ

Y. p(vela(4))--p (e L2 (4))

=—{n —ZIM-I Cop(val e (A)) (yTlﬂr(ﬂb.))z1 Iogzl‘eg(ylmw)” ) dy,...dy, }

PV 1 (4

The term p(y1 | ,ul(/lj ))...p(yT | 1t (}tj )) Is affected by different combinations of

mapping scheme for each transmission, thus the area is not only determined by the

channel E, /N, butalso the transmission mappings.

5.2.2.2 Zero prior characteristics
Comparing the BICM capacity (4.9) (for the special case of AWGN channel) with

the demapper transfer function (5.16), they have quite similar form except that there

are weightings H p(lf‘||§) in the summation of the conditional pdf.
i=1,i=k

P(yllyl(lt :/11.))...P(yT m (It :/1j)). In fact, it is the priori information that gives

weightings contributes to the increasing of the demapper transfer function. The
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similarity implies the close relationship of the BICM capacity and the demapper
transfer function. Consider the case of zero prior input, the demapper transfer function

is now given by

(1, =0E Nyt =2 S (150)
s ka1
IERSHAS
== (LY Yy Yy )
N =
Tl _
:n_s?kll(Ltk,Yl,Yz,...,YT)
T
= n Caiom_rarg (5.19)

In the second step, the prior LLR Le[‘k] is just omitted due to the lack of a priori

information. (5.19) shows the zero prior characteristics is just proportional to the
BICM capacity; therefore, the BICM capacity can, be interpreted as the demapper
output mutual information when the demappér has zero prior input. This observation

gives us a guideline to the design*of the retransmission mapping in BICM.

5.2.2.3 Summaries of the Properties of the Demapper Transfer Curve

T

IE (IA = 0) :n_CBICM_HARQ

S

Fig 5.2.2.2 Properties of the Demapper Transfer Curve
Here we summarize the properties of the demapepr transfer curve (Fig 5.2.2.3). The

left end point of the demapper transfer curve is directly proportional to the BICM
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capacity and the area under the demapper transfer curve is directly proportional to the
CM capacity.We need to emphasis that the area property holds true only if the a priori

input is modeled as the output from the BEC channel.

5.2.2.4 Some Examples of Demapper Transfer Curve

Fig 5.2.2.4.1 shows some example of different demapper transfer functions for
single transmission when 16QAM modulation and AWGN channel is assumed.
Although different demappers have different transfer curves, the area under them are
approximately the same. When the channel SNR is changed as shown in Fig 5.2.2.4.2,
the shape stays roughly the same and the demapper transfer function simply shifts up

or down.

16QAM AWGN.-channel T=1

Fig 5.2.2.4.1 Various demapper transfer curve at the same SNR (T=1)
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16QAM AWGN channel T=1

—&— AE/N,;=3dB

“— A E, /N, =4dB
—+— A E/N,=5dB .
—x—— Gray Eb/NO=3dB
—+— Gray E /N;=4dB i

—+— Gray Eb/NO=5dB

0.6 0.8 1

Fig 5.2.2.4.2 demapper.transfer curve at different SNR (T=1)

When there are multiple transmissions, the.area under the demapper transfer curve
can not be assumed to be the same and will be varied by the different mapping
combinations. Fig 5.2.2.4.3 illustrates that the choice of retransmission mappings not
only affects the shape of the joint demapper transfer curve but also the area under it.
Also, the benefits of the change of the retransmission mappings can be seen by the

potential larger area under the demapper transfer curve compared to chase combining.
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16QAM AWGN channel T=2

] —c—2nd (A,A)
0.25 T Lo . | —=—o2nd (A,B) |
1 1 | ——2nd (A,C)
0f--mo- IERREEEES P - 7 2nd(AD) |-
0 | | | |
0 0.2 0.4 0.6 0.8 1

Fig 5.2.2.4.3 Various demapper transfer curve at the same SNR(T=2)

5.3 Transfer Characteristics of Decoder

For the decoder transfer curve, the a priori input I, is plotted on the ordinate and
the extrinsic output 1, is on the abscissa. Fig 5.3.1 shows some commonly used
decoder curve transfer curve. The generator polynomials for convolutional code are
represented as octal numbers, with the most significant bit corresponding to the
generator connection on the very left side of the shift register. As can be observed,
different codes with different error correcting capability exhibit different transfer
characteristics. A less powerful code has a smooth rise in the middle while a more
powerful code behaves like a step function. This suggests that a less powerful code
should be equipped with a demapper with steeper transfer curve to benefit from the
iterative decoding gain, while a more powerful code should be designed with a
demapper with a flatter transfer curve to avoid early intersection.
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comparison of different codes
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Fig 5.3.2 decoder transfer curve of different code rate
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Fig 5.3.2 shows the transfer curve of the same code punctured to different code rate.
In [8], it has been proved that the area under the decoder transfer curve is equal to the
code rate under the assumption of BEC a priori input. Thus a code with higher code
rate has a large area, this requires higher SNR for the tunnel between the demapper and

the decoder transfer curve to open.

When a code has inner iteration between the component decoders, the number of
inner iterations also affects the decoder transfer curve. Fig 5.3.3 plots the transfer curve
of a turbo code with different inner iteration number. As can be observed, higher inner
iteration number exhibits better transfer characteristics. For the iteration number above
8, no significant further improvement has been observed, which is in agreement with

the BER simulation.

Turbo ¢ode with different iteration number

Fig 5.3.3 decoder transfer curve of turbo code with different iteration number
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5.4 Extrinsic Information Transfer Chart (EXIT Chart)
To visualize the exchange of extrinsic information, we plot demapper and decoder

characteristics into a single diagram which is referred to as Extrinsic Information

Transfer Chart. The abscissa is the a priori input 1, for the demapper and the
ordinate is the demapper extrinsic output I . However, the abscissa becomes the

decoder extrinsic output I and the ordinate is the a priori input |, for the decoder.

Let n be the iteration index. For a fixed SNR, transmission number and mapping

scheme, the decoding trajectory starts at the left end point of the demapper transfer

curve since no a priori information 1,,=0 is outputted from the decoder. The
demapper then passes extrinsic information .l , =Tde(l Al :O) to the decoder. The

decoder takes I, as a pridri information | and computes the extrinsic

AL

information IEZ'lszC(I AZJ) for_the'.demapper; The demapper then takes I, as

l,. and outputs I, :Tde(l,w) to the 'decoder for the next iteration. This iteration

A2
process continues until the trajectory reaches the intersection of the two transfer curve.
For large interleaver block size, the simulated decoding trajectory matches well with
the transfer curve. However, for small interleaver block size, the rapid increasing of the
correlation of the extrinsic information makes the decoding trajectory deviate from the

predicted one.
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HARQ 16QAM AWGN 133,171 T=1
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0df -

decoder |

0 0.2 0.4 0.6 0.8 1

Fig 5.4 Examples of decoding trajectory

As Fig 5.4 illustrates, the iteration process stops at the intersection of the demapper
and the decoder transfer curve. This intersection determines the final decoder output
mutual information. The larger the decoder output mutual information, the better the
BER performance. In our example, mapping A is a better choice for this decoder at this
SNR, since the tunnel is opened and the first intersection is higher than mapping B.
Hence it is essential to design the mapping scheme so that the intersection will be as

right as possible.
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Chapter 6: Mapping Design Criterion for BICM in HARQ

6.1 Motivation

We have already showed in chapter 3 that mappings should be changed for
retransmissions. The additional benefit gained from the mapping diversity is the
potential to increase the minimum squared Euclidean distance between the joint
constellation points. Mapping diversity gain can also be evaluated from the coded
modulation capacity and the bit-interleaved coded modulation capacity. A proper
design of the retransmission mapping will increase either CM capacity or BICM
capacity compared to chase combining. This comes at no extra power or bandwidth
cost.

Although both the CM capacity and BICM capacity can reflect the effects of
mapping change, BICM capacity .is a betten-performance measurement for the HARQ
system that adopt BICM scheme. This can be well explained from the analysis of the
EXIT chart. BICM without iterative decoding can be seen as a special case of
BICM-ID with only one iteration number.: Therefore the decoder output mutual
information is only determined by the demapper output mutual information with zero
prior input. The higher the demapper input mutual information to the decoder, the
higher the decoder output mutual information. The higher the decoder output mutual
information, the lower the BER will be. Thus the demapper output mutual information
with zero prior input will determine the final performance of this BICM system. As

already proved in the previous chapter, the output of the demapper transfer function

with zero prior input is equal to lCBICM waro - Therefore the BICM capacity is a
n .

S

good performance measurement to evaluate different mapping schemes.

45



16QAM AWGN real channel C

BICM

1.8 // i el |
1.6 : ””””
%)

1.4 i

—_
N

capacity

©
®

©
[o)]
T
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

—o— rearrangement

0.4 —+— min BER 7
0.2 —fF— max Dmin |

' " chase combining

0 1 1

-15 10 15 20

Fig 6.1 BICM capacity for.various mapping schemes

Fig 6.1 plots the BICM capacity for different 16QAM mapping schemes with 2
transmissions. Three different mapping schemes proposed by previous work have been
plotted together to compare their relative performance. As already being observed by
[14], three distinct operation regions can be identified according to the relative
performance order of different mappings. In the first operation region corresponds to
SNR less than 1 dB, rearrangement [15] outperforms all the other schemes. While
minimum BER upper bound (min BER) [16] and maximum minimum Euclidean
distance (max Dmin) [18] perform even worse than Chase combining (no mapping
change). In the second operation region defined by SNR range from 1dB to 4dB, min
BER and max Dmin starts to surpass Chase combining. For SNR larger than 4dB, min
BER and max Dmin scores best among rearrangement and chase combining. From the
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observations above, mappings that perform well at low SNR region does not necessary
perform well at high SNR region.

Conversely, mappings that are good at high SNR region are not necessary good at
low SNR region as well. This suggests that mapping should be changed according to
different channel code and code rate, since the operating SNR region will be different.

There will have inevitable performance loss if only single mapping scheme is adopted.

6.2 Design Criterion
Motivated by the pervious observation, we state our design problem and propose the

optimization criterion as follows:

Problem Statement:
Given a specific SNR and the previous 1,2,..., T-I mappings, we want to find the

T-th transmission mapping such that the BER:is-as small as possible.

Since there is a close relationship between BICM capacity and BER, we can state

our optimization criterion as following:

Optimization Criterion:

mfx CBICM_HARQ (SNR'M""HUT)

T
= Mmax n_CBICM_HARQ (SNR’M’"-UUT)

#T s

=max Ig (1, =0,5NR, t, .., tr )

Hr

under a prescribed SNR and 24, t4y ..., t4 4
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Chapter 7:Mapping Design Criterion for BICM-ID in HARQ

7.1 Motivation

Base on the analysis of the EXIT chart, the process of iterative decoding can be
visualized as a decoding trajectory between the demapper transfer curve and the
decoder transfer curve. The final output mutual information is determined by the first
intersection of the demapper transfer curve and the decoder transfer curve. The higher
the first intersection, the higher the decoder output mutual information. Since there will
have different decoder transfer curve for different code and code rate, it is essential to
design mapping specifically for a give code and code rate such that the first
intersection is the highest. Mapping that is good for a specific code is not necessary
good for another code. Fig 7.1.1 shows, two sets of demapper and decoder transfer

curve at a specific SNR.

0.9~ - - - -
0.8 === == fmm o s :
07T

0.6F--------k---mo-lo LT e

<, 0.5f -~ o=
— 4

| Lt ] R
0.4 lf R A
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¢ }r —<— turbo code i=8
02K - _____| — = convolutional code (133,171) |

‘ ——+— Mapping A E /N _=3.2dB
01%------- -

----| ——— Mapping B Eb/No=3.2dB M

0 0.2 0.4 0.6 0.8 1
[/l

a e

Fig 7.1.1 different decoder and demapper transfer curve
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Comparing the two different mappings A and B, mapping A is more suitable for
convolutional code than mapping B in terms of the first intersection point. Conversely,
mapping B is more suitable for turbo code than mapping A. Thus mapping should be
adapted for different code to obtain better iterative decoding performance.

The demappers not only have to be designed for different code and code rate, they
should also be adapted for different SNR. As shown in Fig 7.1.2, mapping A is better
than mapping C at 3.2 dB since higher SNR allows steeper demapper transfer curve to
obtain higher intersection point. However, lower SNR requires flatter demapper
transfer curve to avoid early intersection, thus mapping C is more suitable for low SNR.

This implies different mappings should be chosen for different SNR.

1 T T T T
09
08—~ SRR R oo
R s S *
06 AR T
_® F T -
S 0-5 e R A
0AF e
| | convolutional code (133,171)
0.3 ---—---- ~--| —+—Mapping AE, /N =3.2dB |
1 Mapping C E, /N_=3.2dB
021~ PPNS™ =" .
| —+— Mapping A Eb/No=2.5dB
01—~ F---- Mapping C E /N =2.5dB |-
0 , , , ,
0 0.2 0.4 0.6 0.8 1
Ia/le

Fig 7.1.2 mappings at different SNR
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7.2 Design Criterion For infinite Block Length

The transfer curve in the EXIT chart is based on the assumption that the block length
is infinite so that the decoding trajectory matches quite well with the transfer curve.
Hence we can predict the final decoding performance by the transfer curve.
Furthermore, infinite iteration number is assumed so that the trajectory will get
thorough even when a small tunnel is opened. Based on these assumptions, we state

our design problem and suggest the optimization criterion in the following.

Problem Statement:
Given a specific SNR and the previous 1,2,..., T-1 mappings, we want to find the

T-th transmission mapping such that the BER.is as small as possible.

We define the demapper transfer curve asi-if and the inverse decoder

U .., fir +SNR ( I A)

transfer curve as g‘l(l A). The firstintersection point between the decoder transfer

curve and the demapper transfer curve®is I, . 1, can be defined formally:

frermsne (14)> 07 (1,) V1 <Ipandf, o (13)=07(1,) . Since 1
determines the final decoder output mutual information, the optimization criterion can
be stated as:

Optimization Criterion:

max 1,
Yz

=max li...... since g (IA) is none-decreasing function

Hr

where 11 =g (1)
under a prescribed SNR and 24, 1,,..., ttr 4

In the second step we applied the none-decreasing property of the decoder transfer

50



function. The reason to switch from the decoder final output to the decoder final input
is that the mutual information output of the decoder at high SNR is difficult to discern.
The scale is quite small and requires a huge amount of simulations to obtain high
numerical precision. Therefore we aim to maximize the final decoder input for ease of
the demand of numerical precision.
7.3 EXIT chart for Finite Block Length

In fact, the block length of a packet can not be infinite in real applications. Typically,
the block length is finite and short in terms of the requirement of long block length for
the assumption of EXIT chart to hold true. For short block length, the real transfer
curve will deviate from the infinite one and the increased correlation in the iteration

process will cause the decoding trajectory to die out at middle.

HARQ 16QAM AWGN-133,171 5000 T=1

IE1’IA2

S A
0.4 -7

(2 A s S
0.3 47 77777777 L 777777777 i 7777777777 a 6dB _
i i i decoder
02l - R o ' —<— b=10000 | |
| | ‘|~ b=30000
o L S | — b=50000 |_.
| | | b=100000
0 | | | |
0 0.2 0.4 0.6 0.8 1

Fig 7.3.1 Decoding trajectory for finite block length
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Fig 7.3.1 shows the decoding trajectory for different block length. As can be
observed, the convergence point of the trajectory of finite block length codes disagree
with the intersection of the demapper and decoder transfer curve. The shorter the block
length is, the earlier the trajectory converges.

Since the original transfer curve of the EXIT chart is accurate only for large block
length. For practical short block length design, we need to characterize the behavior of
transfer curve. Instead of obtaining histogram from the extrinsic LLRs of many blocks,

we measure the histogram only by one single block. After calculating the individual I,

for each block, we average them and obtain an averaged transfer curve.

133,171 comparison of different block size
1 T T T T

Fig 7.3.2 Variation of decoder transfer curve for different block length
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demapper,comparison of different block size
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Fig 7.3.3 Variation of demapper transfer curve for different block length

The effect of finite block length'.can be seen ‘Clearly from these figures. A finite
block length decoder or demapper will cause the transfer curve to swing back and forth
around its mean value. The variation is larger for short block length. Although different
block length exhibit different variations, their mean value are approximately the same

as the transfer curve of very long block length.
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7.4 Distribution of Output Extrinsic Mutual Information

We further plot the histogram of |

e

corresponds to different

and compared

Ia

them with normal distribution. The normal distribution is generated with the same

mean and variance as the original data.
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Fig. 7.4.1 Distribution of demapper transfer curve

54



Distribution of decoder I,
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Fig 7.4.2 Distribution of decoder transfer curve

Observe that the histogram of 1 is very similar to normal distribution, except for

e

decoder I, with large a priori inputl,. Hence the demapper |, and most part of the

decoder I, can be approximated as a Gaussian random variable.
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7.5 Design Criterion for finite block length

Since the transfer curve of short bock length swings, the first intersection between
the demapper and decoder transfer curve as predicted by the infinite one will no longer
hold. If the transfer curve of demapper shifts down or the decoder shifts up for some
realization, they will intersect each other too early. Hence this suggests that some
margin between the demapper and decoder transfer curve should be preserved for
tunnel to open in most realizations. Hence we modify the original criterion for infinite

block length as following:

=max | ... since g *(1,) is none-decreasing function

subjuctto VI, <l,-0, f, e (14)> @it (1, )+6

Where I, is defined to be thé-first intersection as before. The only modification is
the additional margin constraint. We:limit the minimum distance between the decoder
and the demapper transfer curve to be 5 . Note that the minimum distance constraint is
applied for I, before I, —o only. o is preserved so that the demapper and decoder
will intersect with each other.

Since the demapper and decoder |, can be approximated as a Gaussian random

variable, we can calculate the probability that the demapper or decoder will be in some
particular region. Therefore, the margin ¢ can be chosen so that the tunnel will open

for some percentage of realizations.
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Chapter 8: Search Algorithm

8.1 Simplified Model

To evaluate the BICM capacity requires the computation of multiple integral which

grows linearly with the transmission number T. Furthermore, the large number of

intermediate mapping results during searching process demands huge amount of

simulation which is unmanageable, thus it is required to simply the calculation of the

demapper transfer function. In [9], a simplified model is proposed and a closed-form

demapper transfer function is obtained for single transmission. Here we extend the

result of [9] to the case of multiple transmission to facilitate the searching process.

Binary b
data
source

_ | Serial to
7| parallel

It

A

Y

2

\

mapper | X1 | yiral
(2. 14) | channel
mapper | X | il
(;(,,uz) | channel
mapper | Xret iyl
(2, 1) “| channel

MAP
demapper

M

. | Extrinsic
"| channel

Fig.8.1 simplified channel model

8.1.1 Hard-decision Virtual Channel

The virtual channel is defined as a hard-decision channel that has the same capacity

as the real channel in the simplified model (Fig 8.1). The output of the virtual channel

y, € x,i=1..,T is hard-decisioned to one of the transmitted signal

point

X. € y,i=1,...,T. Therefore, the output alphabet is the same as the input alphabet. The

virtual channel can be characterized by a sequence of transmission matrix
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Q=[Q,,Q,,...Q;]. Each elements g; in the matrix Q, denotes the transition
ag= - - - k - k
probability  with input  signal S and output  signal S;

d =p(Ye =5 1% =5) sfsfex i,j=12..Mk=12.,T . Since SNR is the
same for each retransmission, the transmission matrix is the same : Q, =Q, =...=Q; .

The virtual channel SNR y, is chosen to ensure that the capacity of the virtual

channel C, (rv) Is equal to the capacity of the real channel C, (;/r) for a fixed real

channel SNR .

Let 1" eA,i=12,..,T denotes the label corresponds to the received signaly,, so

that " =,ui‘1(yi), Given a sequence of transmission matrixQ, the capacity of the

virtual channel is computed as:
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Fig 8.1.1 shows some examples of the virtual channel capacity and the real channel

capacity.

16QAM AWGN CM capacity, T=2

capacity

—©— Real Channel (Gray,Gray)

0.2g SRR EEEEEEEEE m ~—* Virtual channel (Gray,Gray) |-
0 | | | | |
-10 -5 0 5 10 15 20
SNR

Fig 8.1.1 CM capacity of real channel and virtual channel (T=2)
As shown in Fig 8.1.1, the capacity of the virtual channel is always less than the real
channel since some information is lost in the process of making hard-decision. Thus

the SNR of the virtual channel should be raised so that its capacity will be the same as

the real one. Since the capacity Cv(7v) is a monotonically increasing function of
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SNR, we can define its inverse function and find the corresponding

SNRy, =C,*(C=C,(7,)) tocompute the transmission matrixQ .

8.1.2 Extrinsic Channel

1-6
0 » 0
o
e
o
1 » 1
1-6

Fig 8.1.2 binary erasure channel

The a priori input to the demapper is modeled.as the output of the BEC channel with

erasure probability o . Let A[ak] be the set of all the possible values of the a priori
information with the k-th bit prioremitted and I, € A, . The cardinality of Ay, for
BEC is |Afk] |= 3" . The transition probability is

o I =e
p(I711)=41-5 I1=12,12 = e (8.2)

0 I} #1312 =e

The mutual information between the binary input and the erasure channel output is

then given by 1, =1-6. Thus, for a specific value of I, , the corresponding value of

o can be determined.
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8.1.3 Closed Form Demapper Transfer Function

With the help of the simplified hard decision virtual channel and the BEC extrinsic
channel, we can obtain a closed form demapper transfer curve. The derivation is quite
similar to section 5.2.1 except that the original integration is replaced by discrete

summation.
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Here we plot some example of the virtual-and-real-demapper transfer curve to

confirm the accuracy of the virtual channel'simplification.

virtual and real demapper function (T=1)
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Fig 8.1.3.1 Various virtual and real channel demapper (T=1)
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virtual and real demapper function (T=2)
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Fig 8.1.3.2 Various virtual-and real.channel demapper (T=2)

8.2 Genetic Algorithms

8.2.1 Introduction

We propose using genetic algorithm to find the optimal mapping. It is proposed in
light of its robustness over a variety of optimization problems. Genetic algorithms
were first developed by John Holland in the late 1960s and early 1970s. Since its
conception, genetic algorithms have been used widely as a tool in computer
programming and artificial intelligence, optimization, neutral training, and many other
areas.

Genetic algorithms are search algorithms base on the mechanics of natural selection
and natural genetics. Through the mechanics of selection, the fittest ones survive while
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the worse ones die out. By crossover and mutation, useful parts are exchanged and
occasionally new parts are tried for good measure. They efficiently exploit historical
information to speculate on new search points for better performance.
Genetic algorithms surpass other conventional search methods by its robustness.
They are different in four ways:
1. GAs work with a coding of the parameter set, not the parameter themselves.
2. GAs search from a population of points, not a single point.
3. GAs use payoff (object function) information, not derivatives or other auxiliary
knowledge.
4. GAs use probabilistic transition rules, not deterministic rules.

GAs operate on the coding of the parameter set to exploit coding similarities, as a
result, they are largely unconstrained by the limitations of other methods (continuity,
derivative existence, single peak-, and so on).

Many optimization methods suffer. from the dangerous of location false peaks in
many-peaked search spaces since only:single paint is tried for optimization. Instead,
GAs work with many points simultaneously in the search space. Thus the probability
of finding a false peak is reduced by climbing many peaks in parallel.

No need for other auxiliary information except the objective function values makes
GAs applicable for wide variety of problems. After all, every search problem has a
metric to optimize; however, different search problems have vastly different forms of
auxiliary information. Thus the sole dependence on the objective function values
makes GAs robust.

Taken these four features together, genetic algorithms are robust and advantageous

over other commonly used techniques.
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8.2.2 General Procedure

Randomly generate
first generation P(0)

'
P(k+1)

P Mutation |——» Evaluate P(k)

T

P Crossover

Stopping
criterion
satisfied?

Selection

YES

Output the best
solution

Fig 8.2.2 Flow chart for genetic algorithm
First we have to encode the points in the search space as strings of symbols. These

strings are called chromosomes. Each symbol in a string is a gene. At the beginning of

the genetic algorithm, we randomly generate a set of chromosomes p(O)with size N in
the search space. During the k-th iteration of the process, we evaluate the objective
function for each chromosome in p(k). If the stopping criterion is not satisfied, we
continue to the selection process. At the selection process, each chromosome in p(k) is

selected according to its value in the objective function. The better the fitness measure

in the objective function, the higher the probability of survival. After selection, a
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mating pool M (k) with the same size as the initial population is formed for the

crossover operation. Each chromosome in the mating pool has a probability of P, to be
chosen for crossover. The crossover operation takes a pair of chromosomes, called the
parents, from the mating pool and gives a pair of offspring chromosomes. The
operation involves exchanging substrings of the two parent chromosomes in the hope
of giving birth to a pair of better chromosomes. Next, we apply the mutation operation.
The mutation takes each chromosome from the mating pool and randomly exchanges
each symbol of the chromosome with a give probability p,, . Typically, the value of p,

is very small, so that only a few chromosomes will undergo a change due to mutation.

After applying the crossover and mutation operation to the mating pool M (k) we

obtain the new population p(k +1)«These procedures of selection, crossover and

mutation are applied iteratively until certain stopping criterion is reached. Here we stop
the iteration process when the best-se-far.chromosome does not change significantly
form iteration to iteration. Note that throughout the entire process, the population

size N is always kept the same.

8.2.3 Representation Scheme

2
A
5 4
H ® B
o ()
3G@ @C’
F. .D
6 L 1
E
0

Fig 8.2.3 8 PSK constellation
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Let the alphabets A, B,C,...denote the constellation points in the signal space. We
encode the mapping as a string of decimal digits L,L,,...,L,, which are the
corresponding labels in the constellation points A, B,C,..... Take 8PSK mapping as an

example, as shown in Fig 8.2.3,247 10 6 3 5 is an encoding of this mapping.

8.2.4 Selection

To improve the convergence rate of the algorithm, we adopt a scheme called elitism.
In the elitist strategy, we copy the best-so-far I chromosomes directly, and the rest N-I
chromosomes are selected from the original population according to the roulette-wheel

scheme. In the roulette-wheel scheme, chromosomes are selected into mating pool with
probability proportional to their fitness. Let f(xi) be the objective function and

X, 1=12,..,N be the i-th chromosomes:A.chromosome x; will be selected with

f(x)

N

2 F(%)

i=1

probability equal to = Thus the better the:fitness measure the higher the

chance of this chromosome will be selected. The resulting population after selection is

called mating pool for the following crossover operation.

8.2.5 Crossover

Apart from the best-so-far | chromosomes which are preserved according to elitism,
we randomly choose two parent from the mating pool and perform crossover operation
with crossover probability Pc. If there is no crossover, we just copy parents directly.
For crossover operation, we first generate two distinct uniformly distributed random
numbers a, b with values range from 0 to L-1, where L is the number of genes in a
chromosome. In our example, L is just equal to the number of labels in a mapping. On
pair of parent can give birth to two children. For the first child, the labels in parent 1 in
the position from a to b is copied directly to the first child. For the rest labels not
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assigned to the first child, they are assigned with the same order as in the second parent.
In this way, the labels from a to b in parent 1 is preserved in their absolute position
while the rest labels from parents 2 is preserved only in their relative position. For the
second child, the role of parent 1 and parent 2 are just exchanged.

As shown is Fig 8.2.5, the two random number a and b is 2 and 5. Labels from
position 2 to 5 in parent 1 is copied directly to child 1, while the rest labels 0,6,1,7 are
assigned according to their orders in parent 2. Child 2 is created in the same way,
except that labels in position 2 to 5 is copied from parent 1 and the rest are arranged in

the same order as in parent 1.

2 Child 1

Parent 1 011

Sl U (4]

Parent 2 4 | 5|2 ([0 3 11 7

Child 2

Parent1 | 0 B 2 | 3 2731 6 [Z

BN

P 1 A4
T =

Parent 2 4 |5

Fig 8.2.5 crossover operation

8.2.6 Mutation
Except for the best-so-far I chromosomes, each chromosome has a probability of

p,, to mutate. The mutation operation is quite simple; we just randomly pick two
labels in a chromosome and swap them. Fig 8.2.6 shows an example, the two positions

4 and 7 are picked and the corresponding labels 0 and 1 are just swapped.

Fig. 8.2.6 mutation operation
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8.2.7 Suggested GA Parameters

There many parameters that should be assigned properly for GA to work well.
Parameters such as population size, elite number, crossover probability and mutation
probability are important for a better convergence behavior. Here we have
experimented some different values and suggested a set of proper parameter values.

In our experiments, we use Gray as the first transmission mapping and design the
second mapping for BICM. For each parameter test, the other parameters are fixed to
isolate the effects of the testing parameter. The best values in the objective function are

plotted against iteration number to observe the convergence behavior.

8.2.7.1 Population Size

Gray, T=2,Pc=0.9,Pm=0.01,€lite num=50
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iteration number

Fig 8.2.7.1 population size comparison
One of the features in GA is that it searches with multiple points in the search space
instead of moving from one single point to another. This feature makes it robust in
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problems with many-peaked search spaces since the possibility of locating false peak is
reduced by climbing many hills simultaneously. On the other way, tying many possible
solutions at the same time also increases the chance of finding the best solution.
Therefore, it seems that the larger the population size the higher the rate of
convergence. As Fig 8.2.7.1 indicates, increasing the population size from 50 to 200
accelerates the convergence rate. However, increasing the population size from 200 to
300 exhibits similar behavior. This suggests that there is a threshold such that no
further improvements will be gained after passing this threshold. Thus we suggest
choosing population size to 100 as a proper value since the convergence rate is similar

to the one with size 200 and 300.

8.2.7.2 Elite Number

Gray, T=2,pop num=100;Pm=0.01,Pc=0.9
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Fig 8.2.7.2 elite number comparison
Some researchers in the GA field have point out that by reproducing always the best
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individuals in the current population do leads to a faster convergence of the algorithm.
However, there is also some dangerous of “premature convergence”, making the
algorithm converges to a local solution. Since the initial population is generated
randomly due to the blindness of the location of the global optimum, it will happen that
a significant part of the individuals represents points of the search space which are far
from the global optimum Thus these best individuals may only represent the regions
where local optimum is located. This suggests the number of elites that will be
preserved should be chosen properly to avoid premature convergence.

Fig 8.2.7.2 shows the effects of different elite number. The increasing of the elite
number accelerates the convergence rate can be seen for elite number ranging from 20
to 50. However, increasing the elite number to 80 leads to premature convergence.
Thus we suggest elite number 50 as.a proper value.

8.2.7.3 Crossover Probability

Gray, T=2,pop num=100,Pm=0:01,elite. hum=50
0.53

0.52

0.51

0.49

0.48

0.47

iteration number

Fig 8.2.7.3 crossover probability comparison
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Crossover is the main operation to explore the search space. Crossover combines
parts of the genes from the mating parents in the hope to produce a child which inherits
both the good traits from parents. Generally, the crossover probability should be large
for the whole population to evolve. If the crossover probability is too small, the
population almost stays the same and no new solutions are explored. Fig 8.2.7.3
indicates that higher crossover probability contributes to higher convergence. Thus

crossover probability 0.9 is recommended for better convergence rate.

8.2.7.4 Mutation Probability

Gray,T=2,pop num=100,elite num=50,Pc=0.9
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Fig 8.2.7.4 mutation probability comparison
Although the crossover operator is a very potent means of exploring search spaces, it
does have a disadvantage. Ideally, good genes should be preserved and be combined
with the other good genes to form a new chromosome. However, as the random natural
of the crossover operator, it is possible that the good genes will be eliminated after the
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crossover operation. Since there is no way that the crossover operator can bring back
the lost genes, the mutation operator is created to reintroducing those missing genes
back into the genetic pool. Since the operator proceeds by performing a random
modification on the individual, the mutation probability should be small to avoid
ruining the evolution mechanism introduced by crossover. As shown in Fig 8.2.7.4, too
small or large mutation probability results in premature convergence, hence we advise

using mutation probability 0.01.

8.2.7.5 Summary of the Suggested GA Parameters

Here we summarized the suggested GA parameters in the following.

Population size Elite number Crossover Mutation
probability probability
100 50 0.9 0.01
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Chapter 9: Mapping Search Results

9.1 Mappings for BICM

In [3], it is showed that the BICM capacity is upper bounded by the CM capacity,
and the BICM capacity of Gray mapping is quite close to its corresponding CM
capacity over the entire SNR region. Our search results also confirmed that Gray
mapping is the optimal one. Hence we adopt Gray mapping as the first transmission
mapping. For the second transmission mappings, we searched the label from

% =—4dB (virtual channel SNR) to% =12dB, and the increment is 1 dB. The results

0 0o

are presented in the following.

2 @ %

(5]
(2]

0 0 0. @
0 @ Ok @
0 0= 0= @
o @x|®

Fig 9.1.1 16QAM constellation
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Table 9.1.1 BICM mappings (T=2):

SNR SNR | X | % | Xg | X | X | Xs | % | Xg | %o | Xo | X | Xo | X | X | X5 | X6
(virtual) | (real)

-4 -4.8 3|5 (157 |9 |1 |11 |3 |12 |4 |14 |6 |8 |0 |10 (2
-3 -3.8 135 (157 |9 |1 |11 |3 |12 |4 |14 |6 |8 |0 |10 (2
-2 -2.7 135 (157 |9 |1 |11 |3 |12 |4 |14 |6 |8 |0 |10 (2
-1 -1.7 10 |14 (3 |11 |2 |6 |7 |15|8 |12 |13 |9 |0 |4 |5 1
0 -07 |2 |6 |11 (3 |10 |14 |15 |7 |8 |12 |13 |9 |0 |4 |5 1
1 0.3 135 (3 |7 |9 |1 |11 |15|12 |4 |14 |6 |8 |0 |10 (2
2 1.2 135 (3 |7 |9 |1 |11 |15|12 |4 |14 |6 |8 |0 |10 (2
3 2.2 157 |14 |10 |1k8sq46 |2 |13 |9 |12 |8 |5 |1 |4 |O
4 3.1 4 |0 |5 |2 112118 |9 |13 (6 (107 |3 |14 |2 |15 |11
5 4 13/9 (1288 |1 (5 (4 |0 |15|11 |6 |10 |7 |3 |14 |2
6 4.8 8112 |2 |10 (0" (4 |146 |5 |11 |3 |15 |1 |13 |7 9
7 5.7 1319 |5 |8 63 |15|2 |12 |11 |7 |10 |4 |1 (14 |0
8 6.6 8|7 |10 /0 |3 (132 |15|12 |9 |5 |11 |6 |14 |1 |4
9 7.5 138 (152 |9 |7 |3 |10| 6|14 |11 |5 |12 |1 |4 |O
10 8.6 12 |9 |6 |8 2114 |3 |13 |10 |5 |11 |7 |4 |1 |15 |0
11 9.6 5 /8 |15|0 |9 |3 |4 |11 |13 |7 |14 |6 |2 |10|1 12
12 107 |4 |1 |14 2 |11 |15|5 (9 |7 |8 |3 |12 |0 |13|10 |6
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To compare each mapping’s relative performance, we also plot the BICM capacity of
each mapping. In our legend, the real channel SNR is labeled on the left, and the

virtual channel SNR is labeled on the right.

16QAM AWGN real channel CBICM T=2
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Fig 9.1.2 BICM capacity of mappings designed for different SNR (T=2)

As can be predicted, the mappings designed for low SNR achieves high capacity at

low SNR; however, the capacity decrease at high SNR, and vice versa.
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16QAM AWGN real channel CBICM T=2
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Fig 9.1.3 Comparison of BICM.capacity of different mapping schemes (T=2)

We also compared some of our designed mappings with the previous mappings in
the literature. It is shown that the constellation rearrangement has similar behavior as
the mapping designed for low SNR, hence the capacity decreases at high SNR.
Mapping designed to minimize the BER upper bound or maximize the minimum
Euclidean distance have similar capacity as mappings designed for high SNR. Thus
they are suitable for the applications that operate at high SNR and not suitable at low

SNR.
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Table 9.1.2 BICM mappings (T=3)

SNR SNR | X0 | X | Xg | Xy | X5 | X | Xg | Xg | Xg | Xy | Xyg | Xpp | Xyg | K| X5 | Xpg
(virtual) | (real)

-3 -3.8 312 (5 (0 (9 |7 (2 |4 |11 |13 |8 |6 |15 10|14 |12
-2 -2.7 5/ 04 (121 |13(8 |6 |9 |7 |2 |14 |3 |11|15 |10
-1 -1.7 14 14 |12 {13 |6 |0 (8 |9 |2 |10 |11 |5 |15 |7 |3 1
0 -0.7 12 |14 |6 |4 |8 |10|7 |0 |9 |15 |3 |2 |13 |11 |1 5
1 0.3 1 (157 (145 |9 |11 |6 |4 |13 |3 |12 /0 |2 |38 10
2 1.2 1 (0 (5 (4 |15 |7 |11 |6 |8 |13 |3 |12 |9 [10]|2 14
3 2.2 12 |6 (4 |14 |13 |10 (11 |3 |8 |7 |5 |2 |9 |15|0 1
4 3.1 0O |2 |15|8 |10 |1 |11 (12 |7 |3 |14 |13 |4 |5 |6 9
5) 4 0O |1 |10 |5 ({1342 . 8%/9 (14 7 |15|3 |12 |6 (11 |4
6 4.8 12 |3 |5 414 |11 |7/ |8 |6 |15|2 |10 |1 |O |13|9 |4
7 5.7 9 |0 |15 %6 4 1311 y2 |8 |7 |3 |[10(1 |14|5 12
8 6.6 1319 |0 |5 {114 {6 |8 |2 |3 |14 |15 |12 |10|7 1
9 7.5 101 (3 (149 |13|5 |6 |0 |12 |11 |8 |7 |15|2 |4

The behavior of BICM capacity for transmit 3 times is similar to the behavior of

BICM apacity for transmit 2 times. Mappings that have high capacity at high SNR

have low capacity at low SNR, and vice versa. For the comparison to other mappings,

similar to transmit 2 times, the capacity of constellation rearrangement is high only at

low SNR, and the capacity of MBER and MDMIN is only high at high SNR.
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9.2 Mappings for BICM-ID with infinite block length

Table 9.2.1 BICM-ID mappings for infinite block length (T=2, 1st)

Virtual | Real | X | X, | X | X | X5 | X | Xp | Xg | Xg | X | Xgy | Xpp | Xz | Xyg | X5 | X
SNR | SNR

0 -07 j11/9 |1 |3 (10|8 |0 |2 |14 |12 |4 |6 |15 |13 (5 |7
1 03 |11}9 |1 (3 (108 |0 |2 (14|12 |4 |6 |15 |13 |5 |7
1.5 08 (119 |1 (3 (108 |0 |2 (14|12 |4 |6 |15 |13 |5 |7
2 12 119 |1 |3 |10(8 |0 |2 (14|12 (4 |6 |15 |13 |5 |7
3 22 |(11}9 |1 (3 (108 |0 |2 (14|12 |4 |6 |15 |13 |5 |7
4 31 |11/9 |1 |3 (10|8 |0 |2 |14 |12 |4 |6 |15 |13 |5 |7
5 4 119 |1 |3 |10|8 |0 |2 |14 |12 |4 |6 |15 |13 |5 |7
6 48 |11}9 |1 |3 [108_/0.(2.|14 |12 |4 |6 |15 |13 |5 |7
7 524 |0 |4 |8 |9-|22 |5 |13 |14 156 |7 |11 |10 |2 |1 |3
7.5 6 1112 |6 |10-}14 {3 71541213 |4 |5 |0 |7 |1 |9 |8
8 66 |(10|6 |15 |9 (0“41245 3 (4 |7 |14 |2 |1 |13 |11 |8
9 75 |9 |5 |10|15(12|0 |6 |3 |7 |11 (13 (8 (2 |14 |1 |4
10 86 |2 |1 |11|8 (4 |7 |13|14|9 |10 |0 (3 |15 |12 |6 |5
11 96 |7 |2 |13 144 |1 |8 |11 (10|15 |6 |5 |9 |12 |3 |O
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Table 9.2.2 BICM-ID mappings for infinite block length (T=2, 2st)

Virtual | Real | X, | Xy | X5 | X, | X5 | Xo | X7 | Xg [ Xg | X | Xy | Xpp | Xz | X | X5 | X6
SNR | SNR

0 -07 (/0O (8 |1 |9 |4 (12 |5 |13|2 |10 |3 |11 |6 |14 |7 |15
1 03 |0 |13|9 (12 |4 |11 |6 |2 |5 |15 (3 |14 |1 |10 |7 |8
1.5 08 |4 |8 |13 |6 |14}2 |11 |1 |7 |3 |10 |12 |9 |15 |5 |O
2 12 |6 |5 |3 (8 |0 |15|11 |14 }12|9 |2 |4 |10 |7 |1 |3
3 22 |9 |12|/0 (5 |10|15 |3 |6 |2 |7 (11 |14 |4 |1 |13 |8
4 31 (0 (1012 |6 |9 |3 |15|5 |13 |7 |11 |1 |14 |4 |2 |8
5 4 1 |8 (13|14 4 |7 |11 /6 |2 |15 |3 |0 |10 |9 |12 |5
6 48 (0 |6 |14 |13 |3 (5 |11 |8 |12 |15 2 |1 |9 |10 |7 |4
7 524 |13 (4 |7 |2 43 |8 .14 11 |6 |10 |15 |1 |5 |12 |0 |9
7.5 6 3 10 |9 |5 |6 |10 |12 |'15-/13 |14 |7 |2 |8 (11 |1 |4
8 66 (0 (6 |5 |12 {11 ¢87[10 |15|2 |13 |9 |3 |7 |14 |1 |4
9 75 |6 |5 |12 |11 |3 jA5 2|1 (109 |4 |8 (O |7 |14 |13
10 86 |7 (11}12|0 |2 |8 |5 |6 |1 |14 |15 |9 |13 |4 |3 |10
11 9 1 |12}13|6 |2 |11 |7 (108 |14 |9 |0 |15 |4 |5 |3

Since the block length is assumed to be infinite, the trajectory will get through even

when only a very small tunnel is opened. Hence no margin is preserved between the

demapper and the decoder transfer curve.
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9.3 Mappings for BICM-ID with finite block length
Transmit one time

Here we choose the block length to be 2500 and margin of two times the standard
deviation is preserved in both the demapper and the decoder to allow the tunnel to have
about a chance of 97.7% to open. Therefore 6 =2-std _demapper +2-std _decoder,
and o is properly chosen to beo=0.1, where o,6 is the same as that defined in
chapter 7.

Table 9.3.1 BICM-ID mappings for finite block length (T=1)

Virtual | Real | X, | X, | X3 | Xg | X5 | Xo | Xp | Xg | Xg | Xyo | Xpg | Xpp | Xig | Xig | X5 | Xgg
SNR SNR
7 524 ({1119 |1 |3 |10(8 |0 |2 |14 |12 |4 6 15 |13 |5 7
7.5 6 1211411 |9 (3310 |3 |8 |4 |5 2 10 |6 7 15 |11
8 6.6 9 [12|8 |13 |5 (4 11~ (10¢10 |2 15 |11 |7 6 14 | 3
133,171 virtual channel"”AWGN 16QAM T=1
1 I I I I
09 - b e e -
A ISR SO S .
g
0.7} b - - .
| H]
0.6 b =2
p e S sssciSSesSSSSSt
< 05 e E PR

Fig 9.3.1 demapper transfer curve for finite block length (T=1)

0.4 —+— ideal 8dB i
03 L . —— ideal 7.5dB |

' —S— ideal 7dB
ool —— sigma=0.1 delta=2*std 8dB | |

—H— sigma=0.1 delta=2*std 7.5dB
0ql-—————__t____| 9 sigma=0.1 delta=2"std 7dB
! 133,171
0 l l l l
0 0.2 0.4 0.6 0.8
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Transmit 2 times

Table 9.3.2 BICM-ID mappings for finite block length (T=2,1st)

Virtual | Real | X | X, | X3 | X, | X5 | X | X7 | Xg | Xg | Xyo | Xy | Xpp | Xpg | Xy | X5 | X
SNR SNR
1.5 08 (119 |1 |3 |10|8 |0 |2 |14 |12 |4 |6 |15 |13 |5 |7
Table 9.3.3 BICM-ID mappings for finite block length (T=2,2nd)
Virtual | Real | X | X, | X3 | X, | X5 | Xg | X7 | Xg | X | Xpo | X | X | Xz | X | X5 | X6
SNR SNR
1.5 08 |12|6 |9 |8 |10|3 |15|7 |0 |14 |4 |1 |5 |2 |11 |13

] 133,171 virtual channel, AWGN 16QAM T=2

09l - +énd Ideal1.gdB | T |

— 2nd sigma=0.1 delta=0.5"std 1.5dB
ogl |+ tstisB | i

Fig 9.3.2 demapper transfer curve for finite block length (T=2)

133,171

83




Chapter 10: Simulation Results

Since a HARQ system is packet oriented, one of the performances metric is its
throughput. Throughput is defined as the number of successful received information
bits per second. Suppose n is the number of coded bits in a packet, r is the code rate
andR is the packet rate (packet/sec). Define N, to be the total number of transmitted

packets and N_ to be the total number of successful received packets. Then the

throughput is defined as %z%-n-rﬂ. Sincen,randR is fixed for a given
t t

MCS, we define % as its throughput performance metric.
t

10.1 BICM
The simulation parameter is as follows
Code Code rate Block Modulation | Channel
length
Convolutional 1 14400 16QAM AWGN
3
code 1
+ 9600
(133,171) 2
3 6400
4
Turbo code l 15012
3
13,15
(13.15) 1 10012
2
3 6680
4
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To verify whether the throughput performance of each mapping is the same as
suggested by the BICM capacity, we simulated the throughput of each mapping
designed for a specific SNR. We are interested in those SNR regions which correspond
to throughput range from 0 to 1. Capacity approaching turbo code and commonly used
convolutional code is simulated. Since the operating SNR regions are different, we also
experiment codes with different code rate obtained from puncturing the same mother
code

Comparing the relative throughput performance of each mapping, the results match
quite well with the prediction from the BICM capacity. Each mapping performs best or
at least not worse than others at their designed SNR. Also, a mapping that has high
throughput at high SNR does not necessary has high throughput at low SNR, and vice
versa. This confirms the idea that- mappings should be adaptive to SNR.

Since different codes with different, code. rate_have-different operating SNR region,
mapping should be designed specifically for different code. The simulation results
show that different codes have their different best mapping scheme. Furthermore,
although theoretically mapping scheme should be adaptive for different SNR, the
simulation results shows that it is possible to design a single mapping scheme that is
suitable for the whole interested SNR region. Comparing with the best throughput
contour, mappings that are designed for the SNR region where throughput is 0 to 0.5
usually perform well at the whole SNR range. Hence this suggests that one mapping
scheme can be designed for a specific MCS (modulation coding scheme).

We also compared the available mapping schemes in the literature. As can be

observed, constellation rearrangement achieves high throughput for codes with code

rate%when transmit two times (Fig 10.1.1.2 and Fig 10.1.2.2). However, when
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applying codes with higher code rate such as rate %(Fig 10.1.1.4 and Fig 10.1.2.4)

and rate %(Fig 10.1.1.6 and Fig 10.1.2.6), the throughputs fall below the best

throughput contour. The performance degradation is even more prominent when the

rate is raised to% For transmitting three times, constellation rearrangement performs

poor even for rate %(Fig. 10.1.1.8). Therefore the behavior of constellation

rearrangement is quite similar to the mappings designed for low SNR and is only
suitable for certain SNR region.

For the other two mapping schemes MBER (minimize the BER upper bound) and
MDMIN (maximize the minimum Euclidean distance), they are both similar to the

behavior of mappings designed for high. SNR. The throughputs are far below best
contour at code rate % (Fig 10.1:1.2 and Fig 10.1:2:2). The throughput gaps between
MBER (or MDMIN) and the best contour increases with the increasing code rate.
However, they are close to optimal only when rate % convolutional code is applied

(in our case). Hence MBER and MDMIN are only suitable for the application of high
code rate that operates at high SNR region.

Note that in the legend in the following, the real channel SNR (E, /N, ) is labeled

first and the virtual channel SNR is the next. .

86



10.1.1 Turbo Codes
Transmit 2 times, Code Rate 1/3

AWGN 16QAM turbo(13,15) i=8 #info=5000 R=1/3 throughput, T=2
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Fig 10.1.1.1. Throughput of turbo.code-with code rate:% , T=2
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Fig 10.1.1.2 Throughput of turbo code with code rate:%, best candidates, T=2
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Transmit 2 times, Code Rate 1/2

=2

1/2 thrughut,

8 #info=5000 R=
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Transmit 2 times, Code Rate 3/4
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Transmit 3 times, Code Rate 1/3
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Transmit 3 times, Code Rate 3/4
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10.1.2 Convolutional Codes
Transmit 2 times, Code Rate 1/3
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Transmit 2 times, Code Rate 1/2
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Transmit 2 times, Code Rate 3/4
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10.2 BICM-ID
In our simulations, to ensure the iteration number is large enough for the trajectory

to reach the first intersection, we set the iteration number to 20.

10.2.1 Mappings for Infinite Block Length

133,171 T=1i=20
10 ::::::::t:::::::i::::i::i:

| —<— b=50000 6.6dB(8) : 32222
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b=9600 4.8dB(6)
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(
(
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BER

6| | 5 b=2500 6.1dB(7.5)
—+— b=25005.7dB(7)  |:
—+—b=25004.8dB(6) [ 1 [ ‘-

5 5.5

10

.
o

Fig 10.2.1.1 BER of different block length
As illustrates before, mappings designed under the assumption of infinite block
length will suffer performance degradation when the block length is finite. The
simulation results show that the BER for most of the mapping is not lowest at their
designed SNR. Since shorter block length will cause greater variations of the transfer
curve and increased correlation of the output extrinsic information, the performance
degrades more than larger block length. Hence for the performance to close to optimal,

very large block length should be applied, which is impractical for real applications.
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AWGN 133,71,i=20,R=1/2,T=2
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Fig 10.2.1.2 Throughput of-block length =2500
The behavior of throughput performance of finite block length is similar and each

mapping is not optimal under their designed SNR.
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10.2.2 Mappings for Finite Block Length
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Fig 10.2.2.1 BER comparison of finite.length demapper and infinite length demapper
(T=1)

Although no optimality can be claimed, the BER of those demappers designed for
2500 block length have showed significant performance improvement over those
designed for infinite block length. Margin of two times the standard deviation is
preserved in both the demapper and the decoder to allow the tunnel to have about a

chance of 97.7% to open.
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Fig 10.2.2.2 Throughput comparison.of finite length demapper and infinite length

demapper (T=2)

The throughput is also expected‘to be improved when margin is preserved to allow

some percentages of tunnels to open.
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Chapter 11: Conclusions

We proposed using genetic algorithm to efficiently search the optimal mappings
for each SNR when BICM is adopted in HARQ. Since different modulation and coding
scheme (MCS) operates on different SNR region, mapping scheme should be adaptive
to different MCS and the simulation results showed performance gains over the
none-adaptive one using existing mappings in the literature. Although theoretically the
optimal mappings for each SNR should be designed specifically, the throughput
simulation suggests that one single mapping can achieve approximately optimal
performance given a specific MCS.

For the mapping design of BICM-ID in HARQ, we also proposed using genetic
algorithm to find the optimal mappings for.each SNR under the assumption of infinite
block length and iteration number. For thespractical. mappings design of finite block
length, some margin is advised:to ‘preserve to allow some percentages of tunnels to
open. The simulation results showed significant perfarmance gain over the design with

no margin when finite block length code is applied.
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