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摘要 

在文獻中已經指出，相較於使用同一位元映射規則於同一封包的多次傳輸， 

改變多次傳輸的位元映射規則可以提供更高的吞吐量。根據位元交錯編碼調變的 

通道容量分析，重傳時的位元映射規則必須隨著所操作的通道訊雜比的改變而改

變。因此我們提出了使用基因演算法找出對每個訊雜比而言最好的位元映射規

則。而當位元交錯編碼調變迭代解碼用在混合自動重傳機制時，由外來資訊轉換

圖的分析也可得知，對同一編碼方式而言，每個不同的訊雜比也應該有不同的位

元映射規則。因此我們在無限長度封包與無限迭代次數的假設下，針對每個訊雜

比設計出最佳的位元映射規則。而在實際有限長度封包的應用下，我們畫出了解

映射器與解碼器轉換圖相對於平均值的變動，同時建議在解映射器與解碼器的轉

換圖之間保留一些空間來設計有限長度封包的位元映射規則。 
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Abstract 

It has been shown in the literature that varying bit-to-symbol mappings for multiple 

transmissions of the same packet provides better throughput performance compared to 

using the same bit-to-symbol mapping throughout all the transmissions. The analysis 

of BICM capacity suggests that the retransmission mapping scheme should be 

adaptive to the operating SNR. Hence we propose using a genetic algorithm to find 

the optimal mapping for each SNR. When BICM with iterative decoding (BICM-ID) 

is applied in HARQ systems, the analysis of EXIT-chart also suggests that the suitable 

mapping for each SNR for the same code should be different. Therefore, we find 

optimal mapping for each SNR under the assumption of infinite block length and 

unlimited iteration number. In the real application of finite block length, we plot the 

variation of demapper and decoder transfer curve relative to the averaged one and 

suggest that margins between the demapper and the decoder transfer curve should be 

preserved for the finite block length design.   
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Chapter 1: Introduction  

One of the main challenges in wireless communication is the fluctuation of signal 

amplitude caused by fading. Many efforts have been put to mitigate this adverse effect. 

Trellis coded modulation (TCM), originally proposed by Ungerboeck for bandwidth- 

efficient communication over the additive white Gaussian noise (AWGN), has shown 

some drawbacks when transmitting over fading environment. In the design of TCM, 

modulation and coding is combined as an entity to improve the performance. The 

design goal is to maximize the minimum free Euclidean distance, and therefore it is 

often optimized over AWGN channel. However, when transmitting over fading 

channels, its performance is significantly degraded since the diversity order is usually 

low. To combat the adverse effect of fading channel, symbol interleaver is added and 

parallel transitions in the trellis should be avoided. However, since the minimum 

number of distinct symbols between two codewords limits the diversity order, the 

constraint length should be increased. The increased constraint length further results in 

exponentially increased decoding complexity which is unacceptable.  

In [2], Zehavi proposed an alternative approach called bit-interleaved coded 

modulation (BICM) to increase the diversity order to the minimum Hamming distance 

of the code. By placing a bit-wise interleaver at the encoder output, this allows large 

diversity order with moderate system complexity. In [4], Li and Ritcey showed that the 

performance of BICM can be further improved by iterative decoding between the 

demapper and the decoder, a scheme called bit-interleaved coded modulation with 

iterative decoding (BICM-ID). It has been shown in the literature that the design of the 

demapper is crucial to achieve a high coding gain over iteration. In [6], EXIT chart was 

proposed to describe the iterative decoding behavior through a decoding trajectory 

between the transfer curve of the demapper and decoder.  
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On the other hand, error control is also a main issue for data communication. 

Combined with the advantage of automatic-repeat-request (ARQ) mechanisms and 

forward-error-correction (FEC) schemes, HARQ is often adopted to achieve high 

reliability and high system throughput. In HARQ schemes, additional redundant parity 

bits are appended to the original message for both error correction and detection. When 

the presence of errors is detected, the receiver first tries to correct the erroneous bits. If 

the number of errors is beyond the designed error-correcting capability of the code, a 

retransmission request is send to the transmitter. The retransmitted packets can be 

exactly the same as the initial one or contain some extra redundant bits. When a new 

packet is received, the newly received packet can be decode alone or jointly decode 

with the previous ones.  

In this thesis we are concerned about the case that retransmission carry identical bits 

and all the received packets are combined together for decoding. Furthermore, BICM 

and BICM-ID in conjunction with HARQ is considered.  

It is known that the performance will be significantly improved by introducing 

packet combing. Chase combining [12] is the well known ML combing technique. It 

combines arbitrary number of coded packets into a single coded packet with lower 

code rate, thus improves the error-correcting capability of the code. However, 

Wengerter [15] showed that different bit to symbol mapping for retransmission can 

further improves the system performance. By simply swapping or taking logic 

inversion on the modulation bits to average out the unequal bit reliabilities, a method 

called constellation rearrangement, significant improvement has been observed. 

However, no optimality can be claimed on this method. In [16], an optimization 

criterion base on the BER upper bound has been proposed. The main deficiency of the 

mapping found by the minimization of the BER upper bound is that the upper bound is 

only tight at high SNR, the performance at low SNR can not be guaranteed. Murthy 
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[17] further suggested to change the criterion to maximize the sum of the magnitudes 

of the LLR of the bits forming the M-QAM symbols in different retransmissions. 

However, the maximization is made on the sum not on the individual bits LLR, no 

optimality can be guaranteed. Another criterion based on the augmented signal space 

after retransmission is to maximize the minimal accumulated (over transmission) 

squared Euclidean distance [18]. Gidlund [19] also aimed at increasing the Euclidean 

distance between signal points, thus applying the idea of set-partition in TCM to spread 

the signal points well in the augmented signal space. These designs ignore the 

relationship of the number of bit differences between nearest symbols; however, the 

number of bit differences is a crucial parameter for the design of BICM mappings. 

Hence is also not optimized for BICM systems.  

Those mapping designs described above are all independent of SNR. However, an 

analysis based on the BICM capacity under multiple transmission [14] showed that one 

single mapping can not be optimal for the whole interested SNR range. It was showed 

that constellation rearrangement (CoRe) outperforms the mapping obtained by the 

minimization of BER upper bound (MBER) at low SNR. However, at high SNR, 

MBER exhibits better performance than CoRe. Since there are different operating SNR 

region at different code rate, this paper suggests that mapping should be adaptive 

considering the targeted spectral efficiency (code rate). Although adaptive mapping 

scheme has been proposed, mappings that are optimized for each SNR is still an open 

problem. Hence we aim to find these optimal mappings.    

When iterative decoding is applied (BICM-ID), mapping design is especial crucial 

for obtaining large iterative decoding gain even for single transmission. Various 

mapping design methods have been proposed for single transmission. However, very 

few have addressed the issue of multiple transmissions mapping design. In [21], 

Roberson designed the retransmission mappings that optimize the uncoded zero prior 
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pairwise error probability and the uncoded ideal prior pair-wise error probability. Since 

the uncoded pair-wise error probability is independent of the underlying coding 

scheme, the design is not optimized for a particular code and may cause large 

performance degradation. By the analysis of the EXIT chart, the first intersection of the 

demapper transfer curve and the decoder transfer curve should be as high as possible. 

Since different mapping and coding have different transfer curve, their first 

intersection will be different. Therefore, a mapping that is good for a particular code 

may not be good for another one as well. Guided by the EXIT chart, mapping design 

should be dependent on the outer code. Furthermore, the dependency of the demapper 

transfer function on SNR also suggests that different mappings should be designed for 

the same code on different SNR. Hence we propose a method jointly considering the 

outer code and the operating SNR to design the retransmission mappings based on the 

EXIT chart.  
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Chapter 2: Overview of HARQ 

A major concern in data communication is how to control transmission errors caused 

by the channel noise so that error-free data can be delivered to the user. There are two 

basic error-control schemes for data communication: automatic-repeat-request (ARQ) 

schemes and forward-error-correction (FEC) schemes.  

In an ARQ error-control system, some parity bits are appended to the original 

information bits for error detection. When a codeword is received, the receiver 

computes its syndrome and determines if there is any erroneous bit. If the presence of 

errors is detected, the receiver discards the erroneously received codeword and 

requests a retransmission of the same codeword via a feed back channel.  

In an FEC error-control system, an error-correcting code is used for combating 

transmission errors. When the receiver detects the presence of errors in the received 

codeword, it attempts to correct them. After the error correction has been performed, 

the decoded codeword is then delivered to the users. If the receiver failed to detect the 

presence of errors or the number of erroneous bits exceeds the error-correcting 

capability of the code, a decoding error is committed.  

The advantages of ARQ scheme is simple and provides high system reliability. 

However, the throughput of ARQ system falls rapidly with increasing channel error 

rate. On the contrary, the FEC schemes maintain constant throughput (equal to the 

code rate) but is less reliable since the decoded message has to be delivered to the user 

regardless of whether it is correct or not. Thus to overcome the drawbacks in both 

ARQ and FEC schemes, a combination of these two called hybrid 

automatic-repeat-request (HARQ) scheme is proposed.  

A HARQ system consists of FEC subsystem contained in an ARQ system. When 
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errors are detected by the receiver, the receiver tries to correct the erroneous bits. If the 

receiver fails to correct all of them, a retransmission request is delivered to the 

transmitter. The system throughput is increased by correcting the error patterns that 

occur most frequently. The system reliability is increased by requesting a 

retransmission rather than passing the unreliably decoded message to the user. As a 

result, a proper combination of FEC and ARQ provides higher throughput than FEC 

system and higher reliability than ARQ system.  

There are three types of HARQ scheme, type I, type II and type III. In type I HARQ 

scheme the uncorrectable error packets are simply discarded and the receiver requests a 

retransmission of the same packet. Type I scheme is suitable for fairly static channel 

conditions since the error-correcting code can be designed specifically for this constant 

noise level. However, in applications with fluctuating channel conditions, type I has 

some drawbacks. When the bit error rate is small such that only small error correction 

capability is needed, the redundancy bits carried for correction of large bit errors 

represent a waste. When the channel is very noisy, the possibility of inadequate 

error-correcting capability will increase the frequency of retransmission and hence 

reduces the system throughput.  

To overcome the drawbacks of the type I scheme, incremental redundancy HARQ 

(IR-HARQ) scheme is proposed. The basic idea is to transmit the additional 

redundancy bits only when they are needed. When the channel condition is good, only 

a small fraction of redundancy bits are transmitted to correct small bit errors. When a 

retransmission request is delivered to the transmitter, additional redundancy bits are 

transmitted to the receiver. The receiver than combine the newly received packet and 

the previous ones to form a more powerful code with lower effective code rate. These 

schemes offer higher throughput efficiency since the error correcting code redundancy 

is adapted to the varying channel conditions. Depending on whether each retransmitted 
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packets are self decodable or not, IR-HARQ can be further categorized into two classes: 

type II and type III schemes. Type II scheme is also referred to as full incremental 

redundancy scheme where only incremental redundancy bits to the initial transmission 

are retransmitted. Type III scheme is also referred to as partial incremental redundancy 

scheme where partly identical bits and partly incremental bits to the initial transmission 

are retransmitted. The main drawback of type II scheme is that the decoder has to rely 

on both the previous received packets as well as the newly received one to decode. In 

situation where a packet may be lost, it is not possible to use previous packet and 

recover the original message. Thus it is desirable to have a scheme where incremental 

coded bits are self decodable.  

Another advantage that makes type II and type III HARQ scheme more attractable 

than type I is that instead of simply discard the erroneous packets, type II and type III 

scheme combine the previous received packets and jointly decode them. Although 

damaged by the channel noise, these packets still carry useful information that is 

beneficial for decoding. Therefore, decoding with packet combining often performs 

better than decoding without packet combining.  
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Chapter 3: System Model 

3.1 Transmitter 

 

 

 

 

 

                                      

Fig 3.1 BICM in HARQ transmitter model 

                  

Consider the system model described by Fig3.1. A vector of binary bits 

1 2[ , ,..., ]
INb b b=b  with length IN  is encoded to binary codewords 1 2=[ , ,..., ]

cNc c cc  

with length cN . The encoded codewords are then fed into bit interleaver π . The 

interleaved codewords are denoted as 1 2[ , ,..., ]
L

t t t t
N=l l l l , where ,1 ,2 ,[ , ,..., ]

s

t t t t
i i i i nl l l=l  

, 1,...., Li N=  is a group of sn  bits that will be mapped to a complex symbol. The 

sequence of 2 sn -ary complex symbols are denoted as ,1 ,2 ,[ , , , ]
Li i i Nx x x=ix … . The first 

subscript indicates the i-th transmission , =1,....,i T , and T is the maximum allowed 

transmission number. Since different bit to symbol mappings can be adopted while 

retransmission, we denote the i-th transmission mapper as iμ  and ( ), 1
t

i k kx μ χ= ∈l .  

In our notation convention, we write random variables using upper case letters and 

their realizations by the corresponding lower case letters. Bold case letters represent 

vectors and underscore is used to represent a sequence of vectors. The same 

terminology will be used throughout this thesis.  

 

b c
π

( )1

mapper 
,χ μ

( )2

mapper 
,χ μ

( )
mapper 

, Tχ μ

encoder
tl

1y1x

2x

Tx

2y

Ty

#
#

#
#
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3.2 Channel  

The signal ix  is send over the channel and T= +i i i iy h x n  is the received one, 

where ,1 ,2 ,[ , ,...., ]
Li i i i Nn n n=n  is AWGN and ,1 ,2 ,[ , ,..., ]

Li i i Nh h h=ih  is the channel 

fading gain. Each elements in in  is an iid complex Gaussian Random variable with 

zero mean and variance 0

2
N  in real and imaginary part. When the channel is modeled 

as a frequency non-selective fast fading channel, ,i kh  is an iid complex Gaussian 

random variable with zero mean and variance 1
2

 in real and imaginary part.  When 

the channel is modeled as an AWGN channel, ,i kh  is 1 for all i and k. Finally, we 

assume that SNR is the same for each retransmission. 

 

3.3 Receiver  

Here we denote ( ) ( ) ( ) ( )( )1 2, , , , ,..., ,
LNu v u v u v u v=L L L L  as a sequence of  log 

likelihood ratio (LLR), where { , , }, { , }u D A E v φ ϕ∈ ∈ . D stands for Detection, A for a 

priori, and E for extrinsic. φ  stands for the demapper and ϕ  for the decoder.  

( ) ( ) ( ) ( ),1 ,2 ,, { , , , ,...., , }
sk k k k nu v L u v L u v L u v=L  is a sequence of LLRs belong to the 

k-th symbol 1, 2, ,{ , ,...., }k k T kx x x  (Since the same coded bits are transmitted in each 

retransmission, each k-th symbol carries the same coded bits.) 
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3.3.1 BICM Receiver Model 

 

 

 

 

 

Fig 3.3.1 BICM in HARQ receiver model 

As shown in Fig 3.3.1, the joint ML demapperφ  receives a sequence of symbols 

1, ,...,2 Ty y y  in all T transmissions and jointly detects them to compute the coded bit 

LLRs ( ),D φL  for the decoder. After passing through the deinterleaver 1π −  to 

restore the original bit order, the deinterleaved LLR ( ),A φL  is fed into the decoder. 

The original information bitsb are then decoded by the decoder. 

 

3.3.2 BICM-ID Receiver Model  

 

 

 

 

 

 

Fig 3.3.2 BICM-ID in HARQ receiver model 

 

When iterative decoding is applied, the demapper not only receives the T 

transmission symbols 1, ,...,2 Ty y y  but also the a priori information ( ),A φL  

generated by the decoder. The demapper then apply MAP detection algorithm to 

( )
 Joint MAP
Demapper φ

( )Decoder ϕ

π

1y

2y

Ty

( ),L E φ ( ),L A ϕ

( ),L A φ ( ),L E ϕ

b

( ),L D φ

( ),L D ϕ

1π −

#
#

( )
   Joint ML
Demapper φ ( )Decoder ϕ

1y

2y

Ty

( ),L A ϕ
b

( ),L D φ
1π −#

#
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compute the coded bit LLRs ( ),D φL . Before passing to the decoder, the demapper 

subtracts the a prior information ( ),A φL  to produce the extrinsic information 

( ),E φL . The decoder applies similar pricinple to generate the extrinsic information 

( ),E ϕL and feed back to the decoder. Thus the signal is iteratively decoded by 

mutually exchanging soft information between inner demapper and outer decoder. This 

iteration process continues until a prescribed number of iteration is reached. 

 

3.3.3 Joint MAP Demapper  

The demapper computes the a posteriori probability for coded bits. Since the 

modulation is memoryless, only the k-th symbol is concerned when detecting the i-th 

bit in the k-th symbol. Therefore, for simplicity, we drop the subindex k in the k-th 

label t
kl and define ( ) ( )1 2 ,1 ,2 ,, ,..., , ,...,

s s

t t t t t t t t
n k k k k nl l l l l l= =l l� ∈Λ .For the i-th bit LLR in 

the k-th symbol, define ( ) ( ),, ,i k iL u v L u v� . Similarly, we define 

, , , ,, , ,i i k i i k i i k i i kx x y y h h n n� � � � , and therefore i i i iy h x n= + . Perfect channel state 

information is assumed at the receiver, thus the LLR for the i-th bit is calculated as  

( ) ( )
( )

( )
( )

( )
( )

( )
( )

1 2 1 2

1 2 1 2

1 2 1 2 1 2

1 2 1 2 T 1 2

1| , ,..., , , ,...,
, log

0 | , ,..., , , ,...,

1 , ,..., | 1 , ,..., | 1, , ,...,
log log log  

0 , ,..., | 0 , ,..., | 0, , ,...,

t
i T T

i t
i T T

t t t
i T i T i T

t t t
i T i i T

p l y y y h h h
L D

p l y y y h h h

p l p h h h l p y y y l h h h

p l p h h h l p y y y l h h h

φ
=

=
=

= = =
= + +

= = =

( )
( )

( )
( )

( )
( )

( )
( )

1

1 2 1 21 2

1 2 1 2 T 1 2

1 2 1 2

1 2 1 2

1 , ,..., | 1, , ,...,, ,...,
log log log

, ,...,0 , ,..., | 0, , ,...,

, ,..., , | 1, , ,...,
, log

, ,..., , | 0, , ,...,

i

t t
i T i TT
t t

Ti i T

t t
T i T

i
t t

T i

p l p y y y l h h hp h h h
p h h hp l p y y y l h h h

p y y y l h h h
L A

p y y y l h h h
φ ∈Λ

= =
= + +

= =

=

= +
=

∑
tl

l

l( )
0t
i

T
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∑

l
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Chapter 4: Symbol Mapping Diversity in HARQ 

 

4.1 Constellations under joint detection  

When the same mappings are used during further retransmissions, the performance 

improvement comes only from SNR gain. If the same signal is transmitted T times, 3T 

dB gain will obtained at the receiver. However, when the retransmission mappings are 

changed, the receiver will have the potential to get not only 3T dB gain but also 

additional gain by the benefit of symbol mapping diversity. This can be well explained 

by the enlarged signal space under joint detection. For the simplicity of exposition, 

consider 4-PAM transmission in the following:     

 

Fig 4.1.1 constellations with Gray mapping for the first transmission 

 

Fig 4.1.2 constellations with the same mapping as the first transmission for the second 

transmission 

In our first example (Fig 4.1.1 and Fig 4.1.2), Gray mapping is transmitted at the 

first time and the same mapping is adopted at the second transmission. Since the 

receiver receives two signal and jointly detect them, the signal space under joint 

detection is enlarged to two times the dimension of single transmission. As shown in 

Fig 4.1.3, the signal space is now a two dimensional one instead of just one dimension.  



 14

 

              Fig 4.1.3 constellation under joint detection 

The abscissa in Fig 4.1.3 represents the constellation for the first transmission and 

the ordinate represents the one for the second transmission. Let us denote the minimum 

Euclidean distance between the constellation points in single transmission as 1d . Then 

the minimum Euclidean distance after the second transmission will be 

2 2
2 1 1 12d d d d= + =  Therefore the SNR is doubled after retransmission. However, 

despite of the enlarged signal space dimension under joint detection, the constellation 

are still aligned in one dimension. This implies the inefficiency of utilizing the same 

mapping while retransmission. 

Consider the case of re-mapping the second transmission as shown in Fig 4.1.4. 

 

 

Fig 4.1.4 re-mapping for the second transmission 

Thus the second mapping is not Gray anymore. The constellation after re-mapping is 

shown in Fig 4.1.5.  
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Fig 4.1.5 constellation after re-mapping 

Observe that by the simple re-mapping technique, the constellation is now 

augmented to two dimensional signal space, and the minimum Euclidean distance is 

enlarged to 2 2
2 1 1 1(2 ) 5d d d d= + = . Comparing to 12d , the utilization of all the 

available dimensions provides larger minimum Euclidean distance than just doubling 

the signal power. This comes at no additional power or bandwidth cost. For further 

transmissions larger than two, similar arguments apply. 

The possibility of larger Euclidean distance between signal points is similar to the 

concept of binary coding. For a coding scheme with code rate KR
N

= , N  coded bits 

are used to transmit the original K  information bits and N K≥ . For length N  

coded bits, there are 2N  codewords available, while only 2K  codewords are needed 

to represent the original message. Thus it is possible to assign 2K  codewords 

appropriately such that they are spaced far apart from each other to obtain larger 

Hamming distance. Similarly, for a 2 sn -ary modulation with T transmissions, there are 

2 sTn  constellation points available, while the source signal only requires 2 sn  

constellation points ( Since type I HARQ is considered, the same bits are retransmitted. 
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Hence only 2 sn constellation points are required despite of the number of transmissions). 

Larger Euclidean distance can be provided by the extra 2 2s sTn n−  constellation points 

available. Therefore, retransmitting the same bits can be thought of as a form of coding 

in symbol domain. Analogous to binary coding, retransmission without mapping 

change can be considered as a form of repetition code which is not efficient in terms of 

enlarging the Hamming distance. Hence appropriate design of retransmission mapping 

is essential. 

 

4.2 Coded Modulation Capacity  

The benefits of mapping change can also be evaluated analytically from the CM 

(coded modulation) capacity. A proper change of retransmission mappings will boost 

the CM capacity. In our evaluation, we normalize the CM capacity with respect to T to 

take into account the increased number of channel uses after T transmission. For 

AWGN channel, the coded modulation capacity under uniform input constraint is 

evaluated as  

( )

( )

( )

( ) ( )

( ) ( )
( )1

_ 1, 2 1 2

1 2

1 2

1 2

1 2
2 1 2 2 1

1 2
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1 ; , ,...,
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T
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∞
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}              (4.1)
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where 
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With (4.2) and (4.3), (4.1) becomes  

( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

( )

1

1

_

1 1

1 1 1

2 1
1 1

2

2
1

1 1{ ... | ... |
2

| ... |
log ... }

| ... |

|| ||1 1{ ... exp
2 2

s
t

j T

t
i

s

T

CM HARQ

t t
s j T T j n

y y

t t
i T i

Tt t
j T T j

tT
k k j

s n
ky y

C

n p y p y
T

p y p y
dy dy

p y p y

y
n

T

λ

λ

μ λ μ λ

μ λ μ λ

μ λ μ λ

μ λ

σ

∞ ∞

= ∈Λ =−∞ =−∞

= ∈Λ

∞

==−∞

= − = = ⋅

= =

= =

⎛ ⎞− =
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

∑ ∫ ∫

∑

∑∫

l

l

l l

l l

l l

l

( )

( )

2

2
1

2 12

2
1

|| ||
exp

2
log ... }                                                            (4.4)

|| ||
exp

2

t
j

t
i

tT
k k i

k

TtT
k k j

k

y

dy dy
y

λ

λ

μ λ
σ

μ λ
σ

∞

= ∈Λ =−∞

== ∈Λ

=

⋅

⎛ ⎞− =
⎜ ⎟−
⎜ ⎟
⎝ ⎠

⎛ ⎞− =
⎜ ⎟−
⎜ ⎟
⎝ ⎠

∑ ∫

∑ ∑

∑

l

l

l

l

  Observe that the first term sn
T

 in the coded modulation capacity is constant 
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regardless of the mapping scheme, hence it remains to minimize the term  
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for the maximization of CM capacity. Therefore, it is only required to compare the 

term ( )1 2, ,..., TA μ μ μ  to determine which mapping scheme has larger CM capacity.  

Consider the two different mapping schemes and , 1,...,k k k Tμ μ′ = . Suppose that the 

relationship of the two mapping scheme can be expressed as ( ) ( ) ,k i k i k iμ λ μ λ α′ = +  

, 1,...,  and 1,...,i M k T= = , where ,k iα is a complex number and M-ary modulation is 
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Consider, for example, the first term in ( )1 2, ,..., TA μ μ μ , 
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For the second mapping scheme , 1,...,k k Tμ′ = , the first term in ( )1 2, ,..., TA μ μ μ′ ′ ′  is  
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Compare ( )1 1 2, ,..., Ta μ μ μ  with ( )1 1 2, ,..., Ta μ μ μ′ ′ ′ , the only difference is the term 
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.The same argument applies to other 

( )1,..., , 2,...,i Ta i Mμ μ =  as well. Hence to maximize the coded modulation capacity, 

the term 
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l
 should be minimized. Observing the 

exponent term in this expression, the retransmission mapping should be designed so 

that the combined Euclidean distance between signal points will be maximized. 

Intuitively, two nearby signal points in the first transmission mapping should be 
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assigned to signal points that are far apart from each other in the second transmission 

mapping. Hence mappings designed to maximize the minimum Euclidean distance 

between constellation points often achieves high CM capacity.  
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Fig 4.2.1 CM capacity of different mapping schemes 
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Fig 4.2.2 distance distribution of different mapping schemes 

Fig 4.2.1 compared the CM capacity for 16QAM in AWGN channels for some 

different mapping schemes in the literature and Fig 4.2.2 showed their corresponding 

distance distribution between signal pairs. Mapping designed for maximizing the 

minimum Euclidean distance (MDMIN) has high CM capacity since the nearest signal 

points have been pulled far apart. Similar behavior has been presented in the mapping 

designed for minimizing the BER upper bound (MBER) since the minimum Euclidean 

distance dominates the BER upper bound. The distance distribution has confirmed that 

they have largest minimum Euclidean distance. For constellation rearrangement, 

although the minimum Euclidean distance has not been enlarged compared to Chase 

combining, the number of signal pairs that have smallest distance have decreased. 

Therefore its CM capacity is larger than Chase combining.   

The above argument applied to frequency none-selective fast fading channel as well. 

We assume that the receiver have perfect channel state information, the capacity 
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derivation is quite similar to AWGN channel. 
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4.3 Bit-Interleaved Coded Modulation Capacity 

The above coded modulation capacity analysis applies for the ideal case that coding 

and modulation are combined together and the channel code is powerful enough. This 

analysis shows the performance limit when joint coding and modulation scheme is 

applied. However, when BICM scheme is adopted, which separates coding and 

modulation, the capacity will be different from the CM capacity. Similar to CM 

capacity, the BICM capacity is also affected by the choice of retransmission mappings. 

The derivation of BICM capacity with multiple transmissions is a direct extension of 

the BICM capacity with single transmission [3].  

Fig 4.3.1 shows the equivalent parallel channel model for BICM under the 

assumption of ideal interleaving. S is the random variable whose outcome determines 

the switch position and is i.i.d. uniformly distributed over{1, 2,...., }sn .  
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Fig 4.3.1 Equivalent parallel channel model for BICM in the case of ideal interleaving  

 

The BICM capacity with perfect CSI is given by (normalized with respect to T) 
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with (4.7) and (4.8) , (4.6) becomes 
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Different from the CM capacity which is only determined by the configuration of 

constellation points in the enlarged signal space, the BICM capacity also depends on 

the number of bit differences between symbols. The 

term
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∑ ∑ , which is summed over those symbols whose 

k-th bit is b, apparently depends strongly on the labeling on symbols. Since mappings 

designed to have large CM capacity often aim to enlarge the Euclidean distance 

between constellation points and ignore the effect of the number of bit differences 

between symbols, they do not necessary achieves high BICM capacity.  
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Fig 4.3.2 BICM capacity of different mapping schemes 

 

As shown in Fig 4.3.2, MBER and MDMIN have low BICM capacity at low SNR 

region, they outperform constellation rearrangement and Chase combining only at high 

SNR region. Constellation rearrangement, on the other hand, has higher BICM 

capacity than Chase Combining over the entire SNR range. Hence the behavior of 

BICM capacity is different from CM capacity and the design criterion for BICM 

systems should be different from CM systems.  
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Chapter 5: Extrinsic Information Transfer Chart 

Extrinsic information transfer chart (EXIT chart) was first proposed by S. ten Brink 

[7] to visualize the convergence behavior of iterative demapping and decoding. Mutual 

information between extrinsic log-likelihood ratio and coded bit are used to describe 

the exchange of soft information between the demapper and the decoder. The iterative 

processing is visualized as a decoding trajectory in the EXIT chart. Although primary 

used to describe the behavior of iterative processing, it turns out to be useful as well 

for the mapping design in BICM without iterative decoding.  

 

5.1 Transfer characteristics  

 

 

 

 

 

 

Fig.5.1.1 iterative demapping and decoding model 

Fig 5.1.1 shows the iterative demapping and decoding model which is the same as in 

Fig 3.3.2.We follow the same notation convention defined in chapter 3, where  

( ) ( ) ( ) ( )( )1 2, , , , ,..., ,
LNu v u v u v u v=L L L L { , , }, { , }u D A E v φ ϕ∈ ∈ and ( ),k u vL

( ) ( ) ( ),1 ,2 ,{ , , , ,...., , }
sk k k nL u v L u v L u v= . Similarly, the subindex k is left out and we 

define ( ) ( ),, ,i k iL u v L u v� . 

Consider a BPSK signal transmitted over AWGN channel, thus the received signal is 

y x n= +  where { 1}x∈ ± and n  is AWGN with zero men and variance nσ . 
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The conditional probability density function writes as ( )
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From the above equation, the L can be further modeled as L LL x nμ= ⋅ +  

with  

                              2

2
L
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μ
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=                            (5.2) 

and Ln being Gaussian distributed with zero mean and variance  
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Thus, the mean and variance of L  satisfy the following relationship  
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L
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We make use of the following observation for modeling a priori information. 

1. For large interleavers the a priori ( ); , { , }iL A v v φ ϕ∈ values remain fairly 

uncorrelated from the respective channel observations 1[ ,..., ]Ty y=y over many 

iterations.  

2. The probability density functions of the extrinsic output values 

( ); , { , }iL E v v φ ϕ∈ approach Gaussian-like distributions with increasing number of 

iterations. 

Observation 1 and 2 suggest that the a priori input ( ); , { , }iL A v v φ ϕ∈  can be 

modeled as an independent Gaussian random variable with mean 
2

2
A

A
σμ = and 
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variance 2
Aσ  in conjunction with the known transmitted bits x . 

( ), , { , }i A AL A v x n vμ φ ϕ= ⋅ + ∈                    (5.5) 

Therefore, the conditional probability density function for ( ), , { , }iL A v v φ ϕ∈  is given 

by 
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              (5.6) 

With (5.6), we can calculate the mutual information between the transmitted bits and 

the prior LLR.  

( )( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( )
,

,
2

1.1
, ,

; ,

|1 | log 1 12 | 1 | 1
2 2

i

L A vi

i i

A

i

L A v

x
L A v L A v

I

I X L A v

p X x
p X x d

p X p X

η
η η

η η

∞

−∞
=−

=

=
= =

= − + =
∑ ∫

   (5.7) 

with (5.6),(5.7) becomes  
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We define ( )A AJ Iσ � . Note that (5.8) can not be expressed in closed form; 

however, it is monotonically increasing in Aσ  and therefore reversible.  

                         ( )1
A AJ Iσ −=                               (5.9)              

We can set up a table for the relationship of AI  and Aσ , thus generating a priori 

LLR for a specific value of AI  according to the Gaussian distribution 
2

,
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A
AN xσ σ
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Mutual information is also used to quantify the extrinsic information output of the 

demapper or decoder. 
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Note that no Gaussian assumption is imposed on the extrinsic output distribution 

( )
( )

,
|

L E vi
p X xη = . The conditional PDF of ( ),iL E v  is obtained by Monte Carlo 

simulation (histogram measurements).  

The joint map demapper takes not only the a priori information ( ),iL A φ but also the 

T channel outputs 1 2, ,..., TY Y Y  which is dependent on the /s oE N  value for each 

transmission. Furthermore, the mapping scheme 1 2, ,..., Tμ μ μ  also affects the extrinsic 

output. Therefore, we define the demapper transfer characteristics as 

( )1 2, / , , ,...,E de A s o TI T I E N μ μ μ= . For the decoder, only the a priori information is 

taken to compute the extrinsic information, thus we define the transfer characteristics 

for the decoder as ( )E dc AI T I=  

 

5.2 Transfer Characteristics of the Demapper  

 

5.2.1 Demapper Transfer Function 

To simplify our notation, we define the a priori and extrinsic information for the i-th 

symbol as ( )1 2( , ,..., ) ,
s

a a a a
n il l l L A= Φl � and ( )1 2( , ,..., ) ,

s

e e e e
n il l l L E= Φl � . [ ]

a
kl denotes 

the a priori information without the k-th bit prior [ ] 1 1 1( , , ,. .., )
s

a a a a a
k k k nl l l l− +=l … The 

demapper output mutual information is then computed by: 
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Where the validity of the second step has been proved to be true in [8] for the case of 

decoders and the same proof can be used for demappers. In (5.11) 
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Similarly, 
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With (5.13) and (5.14), (5.12) becomes  
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Equation (5.16) shows the demapper transfer function’ s dependency on the a priori 

information, SNR , transmission number and the mapping scheme for the subsequent 

transmissions.  

The demapper transfer function can also be obtained by assuming the a prior 

information ( ),iL A φ  to be Gaussian distributed and applying equation (5.10). 

 

5.2.2 Properties of the demapper transfer function  

The properties of the demapper transfer function for single transmission [8] apply to 

the case of multiple transmissions. We show these extensions in the following.   

 

5.2.2.1 Area property 

To simplify the analysis of the area property of the demapper transfer function, the a 

priori input is modeled as the output of the binary erasure channel (BEC) (Fig 5.2.2.1). 

 

 

 

 

 

 

                    Fig 5.2.2.1 Binary Erasure Channel  

For single transmission, it has been proved that when using the BEC model for the a 

priori input, the area under the demapper transfer function is CM

s

C
n

. The same result 

can be applied for multiple transmissions as well. For single transmission,  



 35

( )

( ) ( )( )

( )

( )
( ) ( )

( )

1

0

1

[ ]0
1

1

[ ]0
1

1

[ ]0
1

1 ; ,

1 | ,

11 | ,

11 |

|

;
                                                                 

s

s

s

E A

n
t a
k k A

ks

n
t t a
k k k A

ks
n

t a
k k A

ks

t

s

s

CM

s s

A I dI

I L Y dI
n

H L H L Y dI
n

H L Y dI
n

H Y
n

H X H X Y
n

I X Y C
n n

=

=

=

=

=

= −

= −

= −

−
=

= =

∫

∑∫

∑∫

∑∫

L

L

L

L

                                                (5.17)

 

where the fifth step have been proved to be true in [8]. Observing that this derivation 

is independent of the received symbol Y , we can extend (5.17) to the case of multiple 

transmission.  
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Although in both cases the area depend on the CM capacity, only in the case of 

multiple transmissions do the mapping scheme affects the area. Observe the CM 

capacity for single transmission: 
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The second term and the third term at the last line is independent of mapping changes, 

thus the CM capacity for single transmission is determined solely by the channel 

/b oE N . This implies that for a fix channel condition, the area under the demapper 

transfer function is fixed. 

   For the case of multiple transmissions,  
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   The term ( )( ) ( )( )1 1| ... |j T T jp y p yμ λ μ λ  is affected by different combinations of 

mapping scheme for each transmission, thus the area is not only determined by the 

channel /b oE N  but also the transmission mappings.  

 

5.2.2.2 Zero prior characteristics  

Comparing the BICM capacity (4.9) (for the special case of AWGN channel) with 

the demapper transfer function (5.16), they have quite similar form except that there 

are weightings ( )
1,

|
sn

a t
i i

i i k

p l l
= ≠
∏  in the summation of the conditional pdf. 

( )( ) ( )( )1 1| ... |t t
j T T jP y P yμ λ μ λ= =l l . In fact, it is the priori information that gives 

weightings contributes to the increasing of the demapper transfer function. The 
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similarity implies the close relationship of the BICM capacity and the demapper 

transfer function. Consider the case of zero prior input, the demapper transfer function 

is now given by 
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  In the second step, the prior LLR [ ]
a

kL  is just omitted due to the lack of a priori 

information. (5.19) shows the zero prior characteristics is just proportional to the 

BICM capacity; therefore, the BICM capacity can be interpreted as the demapper 

output mutual information when the demapper has zero prior input. This observation 

gives us a guideline to the design of the retransmission mapping in BICM.  

 

5.2.2.3 Summaries of the Properties of the Demapper Transfer Curve 

   

 

 

 

 

 

Fig 5.2.2.2 Properties of the Demapper Transfer Curve 

Here we summarize the properties of the demapepr transfer curve (Fig 5.2.2.3). The 

left end point of the demapper transfer curve is directly proportional to the BICM 
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capacity and the area under the demapper transfer curve is directly proportional to the 

CM capacity.We need to emphasis that the area property holds true only if the a priori 

input is modeled as the output from the BEC channel.    

 

5.2.2.4 Some Examples of Demapper Transfer Curve 

Fig 5.2.2.4.1 shows some example of different demapper transfer functions for 

single transmission when 16QAM modulation and AWGN channel is assumed. 

Although different demappers have different transfer curves, the area under them are 

approximately the same. When the channel SNR is changed as shown in Fig 5.2.2.4.2, 

the shape stays roughly the same and the demapper transfer function simply shifts up 

or down.  
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Fig 5.2.2.4.1 Various demapper transfer curve at the same SNR (T=1) 
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Fig 5.2.2.4.2 demapper transfer curve at different SNR (T=1) 

 

When there are multiple transmissions, the area under the demapper transfer curve 

can not be assumed to be the same and will be varied by the different mapping 

combinations. Fig 5.2.2.4.3 illustrates that the choice of retransmission mappings not 

only affects the shape of the joint demapper transfer curve but also the area under it. 

Also, the benefits of the change of the retransmission mappings can be seen by the 

potential larger area under the demapper transfer curve compared to chase combining.  
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Fig 5.2.2.4.3 Various demapper transfer curve at the same SNR(T=2) 

 

5.3 Transfer Characteristics of Decoder  

For the decoder transfer curve, the a priori input aI  is plotted on the ordinate and 

the extrinsic output eI  is on the abscissa. Fig 5.3.1 shows some commonly used 

decoder curve transfer curve. The generator polynomials for convolutional code are 

represented as octal numbers, with the most significant bit corresponding to the 

generator connection on the very left side of the shift register. As can be observed, 

different codes with different error correcting capability exhibit different transfer 

characteristics. A less powerful code has a smooth rise in the middle while a more 

powerful code behaves like a step function. This suggests that a less powerful code 

should be equipped with a demapper with steeper transfer curve to benefit from the 

iterative decoding gain, while a more powerful code should be designed with a 

demapper with a flatter transfer curve to avoid early intersection. 
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Fig 5.3.1 decoder transfer curve of different codes 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.3.2 decoder transfer curve of different code rate 
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Fig 5.3.2 shows the transfer curve of the same code punctured to different code rate. 

In [8], it has been proved that the area under the decoder transfer curve is equal to the 

code rate under the assumption of BEC a priori input. Thus a code with higher code 

rate has a large area, this requires higher SNR for the tunnel between the demapper and 

the decoder transfer curve to open.  

 

When a code has inner iteration between the component decoders, the number of 

inner iterations also affects the decoder transfer curve. Fig 5.3.3 plots the transfer curve 

of a turbo code with different inner iteration number. As can be observed, higher inner 

iteration number exhibits better transfer characteristics. For the iteration number above 

8, no significant further improvement has been observed, which is in agreement with 

the BER simulation. 
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Fig 5.3.3 decoder transfer curve of turbo code with different iteration number 
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5.4 Extrinsic Information Transfer Chart (EXIT Chart)   

To visualize the exchange of extrinsic information, we plot demapper and decoder 

characteristics into a single diagram which is referred to as Extrinsic Information 

Transfer Chart. The abscissa is the a priori input 
1AI  for the demapper and the 

ordinate is the demapper extrinsic output 
1EI . However, the abscissa becomes the 

decoder extrinsic output
2EI  and the ordinate is the a priori input

2AI  for the decoder. 

Let n be the iteration index. For a fixed SNR, transmission number and mapping 

scheme, the decoding trajectory starts at the left end point of the demapper transfer 

curve since no a priori information 
1,1 0AI =  is outputted from the decoder. The 

demapper then passes extrinsic information ( )1 1,1 ,1 0E de AI T I= =  to the decoder. The 

decoder takes 
1,1EI  as a priori information 

2 ,1AI  and computes the extrinsic 

information ( )2 2,1 ,1E dc AI T I=  for the demapper. The demapper then takes 
2 ,1EI  as 

1,2AI  and outputs ( )1 1,2 ,2E de AI T I=  to the decoder for the next iteration. This iteration 

process continues until the trajectory reaches the intersection of the two transfer curve. 

For large interleaver block size, the simulated decoding trajectory matches well with 

the transfer curve. However, for small interleaver block size, the rapid increasing of the 

correlation of the extrinsic information makes the decoding trajectory deviate from the 

predicted one.  
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Fig 5.4 Examples of decoding trajectory 

 

As Fig 5.4 illustrates, the iteration process stops at the intersection of the demapper 

and the decoder transfer curve. This intersection determines the final decoder output 

mutual information. The larger the decoder output mutual information, the better the 

BER performance. In our example, mapping A is a better choice for this decoder at this 

SNR, since the tunnel is opened and the first intersection is higher than mapping B. 

Hence it is essential to design the mapping scheme so that the intersection will be as 

right as possible.  
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Chapter 6: Mapping Design Criterion for BICM in HARQ 

6.1 Motivation  

We have already showed in chapter 3 that mappings should be changed for 

retransmissions. The additional benefit gained from the mapping diversity is the 

potential to increase the minimum squared Euclidean distance between the joint 

constellation points. Mapping diversity gain can also be evaluated from the coded 

modulation capacity and the bit-interleaved coded modulation capacity. A proper 

design of the retransmission mapping will increase either CM capacity or BICM 

capacity compared to chase combining. This comes at no extra power or bandwidth 

cost.  

Although both the CM capacity and BICM capacity can reflect the effects of 

mapping change, BICM capacity is a better performance measurement for the HARQ 

system that adopt BICM scheme. This can be well explained from the analysis of the 

EXIT chart. BICM without iterative decoding can be seen as a special case of 

BICM-ID with only one iteration number. Therefore the decoder output mutual 

information is only determined by the demapper output mutual information with zero 

prior input. The higher the demapper input mutual information to the decoder, the 

higher the decoder output mutual information. The higher the decoder output mutual 

information, the lower the BER will be. Thus the demapper output mutual information 

with zero prior input will determine the final performance of this BICM system. As 

already proved in the previous chapter, the output of the demapper transfer function 

with zero prior input is equal to _  BICM HARQ
s

T C
n

. Therefore the BICM capacity is a 

good performance measurement to evaluate different mapping schemes.  

    

 



 46

 

-15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Es/No

ca
pa

ci
ty

16QAM AWGN real channel CBICM  T=2

 

 

rearrangement
min BER
max Dmin
chase combining

 

Fig 6.1 BICM capacity for various mapping schemes 

 

Fig 6.1 plots the BICM capacity for different 16QAM mapping schemes with 2 

transmissions. Three different mapping schemes proposed by previous work have been 

plotted together to compare their relative performance. As already being observed by 

[14], three distinct operation regions can be identified according to the relative 

performance order of different mappings. In the first operation region corresponds to 

SNR less than 1 dB, rearrangement [15] outperforms all the other schemes. While 

minimum BER upper bound (min BER) [16] and maximum minimum Euclidean 

distance (max Dmin) [18] perform even worse than Chase combining (no mapping 

change). In the second operation region defined by SNR range from 1dB to 4dB, min 

BER and max Dmin starts to surpass Chase combining. For SNR larger than 4dB, min 

BER and max Dmin scores best among rearrangement and chase combining. From the 
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observations above, mappings that perform well at low SNR region does not necessary 

perform well at high SNR region.   

Conversely, mappings that are good at high SNR region are not necessary good at 

low SNR region as well. This suggests that mapping should be changed according to 

different channel code and code rate, since the operating SNR region will be different. 

There will have inevitable performance loss if only single mapping scheme is adopted.  

 

6.2 Design Criterion  

Motivated by the pervious observation, we state our design problem and propose the 

optimization criterion as follows:  

 

Problem Statement: 

Given a specific SNR and the previous 1,2,…, T-1 mappings, we want to find the 

T-th transmission mapping such that the BER.is as small as possible.  

 

Since there is a close relationship between BICM capacity and BER, we can state 

our optimization criterion as following:  

 

Optimization Criterion:  
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Chapter 7:Mapping Design Criterion for BICM-ID in HARQ 

7.1 Motivation 

Base on the analysis of the EXIT chart, the process of iterative decoding can be 

visualized as a decoding trajectory between the demapper transfer curve and the 

decoder transfer curve. The final output mutual information is determined by the first 

intersection of the demapper transfer curve and the decoder transfer curve. The higher 

the first intersection, the higher the decoder output mutual information. Since there will 

have different decoder transfer curve for different code and code rate, it is essential to 

design mapping specifically for a give code and code rate such that the first 

intersection is the highest. Mapping that is good for a specific code is not necessary 

good for another code. Fig 7.1.1 shows two sets of demapper and decoder transfer 

curve at a specific SNR. 
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             Fig 7.1.1 different decoder and demapper transfer curve 
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Comparing the two different mappings A and B, mapping A is more suitable for 

convolutional code than mapping B in terms of the first intersection point. Conversely, 

mapping B is more suitable for turbo code than mapping A. Thus mapping should be 

adapted for different code to obtain better iterative decoding performance.  

The demappers not only have to be designed for different code and code rate, they 

should also be adapted for different SNR. As shown in Fig 7.1.2, mapping A is better 

than mapping C at 3.2 dB since higher SNR allows steeper demapper transfer curve to 

obtain higher intersection point. However, lower SNR requires flatter demapper 

transfer curve to avoid early intersection, thus mapping C is more suitable for low SNR. 

This implies different mappings should be chosen for different SNR. 
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7.2 Design Criterion For infinite Block Length 

The transfer curve in the EXIT chart is based on the assumption that the block length 

is infinite so that the decoding trajectory matches quite well with the transfer curve. 

Hence we can predict the final decoding performance by the transfer curve. 

Furthermore, infinite iteration number is assumed so that the trajectory will get 

thorough even when a small tunnel is opened. Based on these assumptions, we state 

our design problem and suggest the optimization criterion in the following.  

 

Problem Statement: 

Given a specific SNR and the previous 1,2,…, T-1 mappings, we want to find the 

T-th transmission mapping such that the BER.is as small as possible.  

 

We define the demapper transfer curve as ( )
1 2, ,..., ,T SNR Af Iμ μ μ  and the inverse decoder 

transfer curve as ( )1
Ag I− . The first intersection point between the decoder transfer 

curve and the demapper transfer curve is *
AI . *

AI  can be defined formally:  

( ) ( ) ( ) ( )
1 2 1 2

1 * * 1 *
, ,..., , , ,..., ,,  and 

T TSNR A A A A SNR A Af I g I I I f I g Iμ μ μ μ μ μ
− −> ∀ < = . Since *

AI  

determines the final decoder output mutual information, the optimization criterion can 

be stated as:  

Optimization Criterion:  

( )
( )

*

* 1

* 1 *

max  

max  .............since  is none-decreasing function

where 
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under a prescribed SNR and 1 2 1, ,..., Tμ μ μ −  

In the second step we applied the none-decreasing property of the decoder transfer 
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function. The reason to switch from the decoder final output to the decoder final input 

is that the mutual information output of the decoder at high SNR is difficult to discern. 

The scale is quite small and requires a huge amount of simulations to obtain high 

numerical precision. Therefore we aim to maximize the final decoder input for ease of 

the demand of numerical precision.        

7.3 EXIT chart for Finite Block Length 

In fact, the block length of a packet can not be infinite in real applications. Typically, 

the block length is finite and short in terms of the requirement of long block length for 

the assumption of EXIT chart to hold true. For short block length, the real transfer 

curve will deviate from the infinite one and the increased correlation in the iteration 

process will cause the decoding trajectory to die out at middle.  

 
                  Fig 7.3.1 Decoding trajectory for finite block length 
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Fig 7.3.1 shows the decoding trajectory for different block length. As can be 

observed, the convergence point of the trajectory of finite block length codes disagree 

with the intersection of the demapper and decoder transfer curve. The shorter the block 

length is, the earlier the trajectory converges.  

Since the original transfer curve of the EXIT chart is accurate only for large block 

length. For practical short block length design, we need to characterize the behavior of 

transfer curve. Instead of obtaining histogram from the extrinsic LLRs of many blocks, 

we measure the histogram only by one single block. After calculating the individual eI  

for each block, we average them and obtain an averaged transfer curve.  

 

 

 

 

 

 

 

 

 

 

 

 

        Fig 7.3.2 Variation of decoder transfer curve for different block length 
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Fig 7.3.3 Variation of demapper transfer curve for different block length 

 

The effect of finite block length can be seen clearly from these figures. A finite 

block length decoder or demapper will cause the transfer curve to swing back and forth 

around its mean value. The variation is larger for short block length. Although different 

block length exhibit different variations, their mean value are approximately the same 

as the transfer curve of very long block length.   
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7.4 Distribution of Output Extrinsic Mutual Information 

We further plot the histogram of eI  corresponds to different aI  and compared 

them with normal distribution. The normal distribution is generated with the same 

mean and variance as the original data. 

 

Distribution of demapper eI  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.4.1 Distribution of demapper transfer curve 
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Fig 7.4.2 Distribution of decoder transfer curve 

 

Observe that the histogram of eI  is very similar to normal distribution, except for 

decoder eI  with large a priori input aI . Hence the demapper eI  and most part of the 

decoder eI  can be approximated as a Gaussian random variable.  
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7.5 Design Criterion for finite block length  

Since the transfer curve of short bock length swings, the first intersection between 

the demapper and decoder transfer curve as predicted by the infinite one will no longer 

hold. If the transfer curve of demapper shifts down or the decoder shifts up for some 

realization, they will intersect each other too early. Hence this suggests that some 

margin between the demapper and decoder transfer curve should be preserved for 

tunnel to open in most realizations. Hence we modify the original criterion for infinite 

block length as following: 

 

( )
( ) ( )
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* 1

* 1
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max  

max  .............since  is none-decreasing function

subjuct to  - ,  
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∀ < > +

 

 

Where *
AI  is defined to be the first intersection as before. The only modification is 

the additional margin constraint. We limit the minimum distance between the decoder 

and the demapper transfer curve to beδ . Note that the minimum distance constraint is 

applied for AI  before *
AI σ−  only. σ  is preserved so that the demapper and decoder 

will intersect with each other.  

Since the demapper and decoder eI  can be approximated as a Gaussian random 

variable, we can calculate the probability that the demapper or decoder will be in some 

particular region. Therefore, the margin δ  can be chosen so that the tunnel will open 

for some percentage of realizations.   
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Chapter 8: Search Algorithm 

8.1 Simplified Model 

To evaluate the BICM capacity requires the computation of multiple integral which 

grows linearly with the transmission number T. Furthermore, the large number of 

intermediate mapping results during searching process demands huge amount of 

simulation which is unmanageable, thus it is required to simply the calculation of the 

demapper transfer function. In [9], a simplified model is proposed and a closed-form 

demapper transfer function is obtained for single transmission. Here we extend the 

result of [9] to the case of multiple transmission to facilitate the searching process. 
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                  Fig.8.1 simplified channel model  

 

8.1.1 Hard-decision Virtual Channel  

The virtual channel is defined as a hard-decision channel that has the same capacity 

as the real channel in the simplified model (Fig 8.1). The output of the virtual channel 

, 1,...,iy i Tχ∈ =  is hard-decisioned to one of the transmitted signal point 

, 1,...,ix i Tχ∈ = . Therefore, the output alphabet is the same as the input alphabet. The 

virtual channel can be characterized by a sequence of transmission matrix 
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1 2[ , ,..., ]TQ Q Q=Q . Each elements k
ijq  in the matrix kQ  denotes the transition 

probability with input signal k
is  and output signal k

js , 

( )| ,  , ,  , 1, 2,..., , 1, 2,...,k k k k k
ij k j k i i jq p y s x s s s i j M k Tχ= = = ∈ = = . Since SNR is the 

same for each retransmission, the transmission matrix is the same : 1 2 ... TQ Q Q= = = . 

The virtual channel SNR vγ  is chosen to ensure that the capacity of the virtual 

channel ( )v vC r  is equal to the capacity of the real channel ( )r rC γ  for a fixed real 

channel SNR rγ .  

Let , 1, 2,....,irl i T∈Λ =  denotes the label corresponds to the received signal iy , so 

that ( )1ir
i il yμ−= , Given a sequence of transmission matrixQ , the capacity of the 

virtual channel is computed as: 
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Fig 8.1.1 shows some examples of the virtual channel capacity and the real channel 

capacity. 
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Fig 8.1.1 CM capacity of real channel and virtual channel (T=2) 

As shown in Fig 8.1.1, the capacity of the virtual channel is always less than the real 

channel since some information is lost in the process of making hard-decision. Thus 

the SNR of the virtual channel should be raised so that its capacity will be the same as 

the real one. Since the capacity ( )v vC γ  is a monotonically increasing function of 
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SNR, we can define its inverse function and find the corresponding 

SNR ( )( )1
v v r rC C Cγ γ−= =  to compute the transmission matrixQ . 

 

8.1.2 Extrinsic Channel  

 

 

 

 

 

 

                   Fig 8.1.2 binary erasure channel 

The a priori input to the demapper is modeled as the output of the BEC channel with 

erasure probability δ . Let [ ]
a
kΛ  be the set of all the possible values of the a priori 

information with the k-th bit prior omitted and [ ] [ ]
a a
k k∈Λl . The cardinality of [ ]

a
kΛ  for 

BEC is [ ]| | 3 sna
kΛ = . The transition probability is 
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The mutual information between the binary input and the erasure channel output is 

then given by 1AI δ= − . Thus, for a specific value of AI  , the corresponding value of 

δ  can be determined.  
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8.1.3 Closed Form Demapper Transfer Function   

With the help of the simplified hard decision virtual channel and the BEC extrinsic 

channel, we can obtain a closed form demapper transfer curve. The derivation is quite 

similar to section 5.2.1 except that the original integration is replaced by discrete 

summation. 
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   Here we plot some example of the virtual and real demapper transfer curve to 

confirm the accuracy of the virtual channel simplification.  
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Fig 8.1.3.1 Various virtual and real channel demapper (T=1) 
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Fig 8.1.3.2 Various virtual and real channel demapper (T=2) 

 

8.2 Genetic Algorithms 

 

8.2.1 Introduction 

We propose using genetic algorithm to find the optimal mapping. It is proposed in 

light of its robustness over a variety of optimization problems. Genetic algorithms 

were first developed by John Holland in the late 1960s and early 1970s. Since its 

conception, genetic algorithms have been used widely as a tool in computer 

programming and artificial intelligence, optimization, neutral training, and many other 

areas. 

Genetic algorithms are search algorithms base on the mechanics of natural selection 

and natural genetics. Through the mechanics of selection, the fittest ones survive while 
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the worse ones die out. By crossover and mutation, useful parts are exchanged and 

occasionally new parts are tried for good measure. They efficiently exploit historical 

information to speculate on new search points for better performance.  

 Genetic algorithms surpass other conventional search methods by its robustness.  

They are different in four ways: 

1. GAs work with a coding of the parameter set, not the parameter themselves. 

2. GAs search from a population of points, not a single point. 

3. GAs use payoff (object function) information, not derivatives or other auxiliary 

knowledge.  

4. GAs use probabilistic transition rules, not deterministic rules. 

GAs operate on the coding of the parameter set to exploit coding similarities, as a 

result, they are largely unconstrained by the limitations of other methods (continuity, 

derivative existence, single peak , and so on). 

Many optimization methods suffer from the dangerous of location false peaks in 

many-peaked search spaces since only single point is tried for optimization. Instead, 

GAs work with many points simultaneously in the search space. Thus the probability 

of finding a false peak is reduced by climbing many peaks in parallel.  

No need for other auxiliary information except the objective function values makes 

GAs applicable for wide variety of problems. After all, every search problem has a 

metric to optimize; however, different search problems have vastly different forms of 

auxiliary information. Thus the sole dependence on the objective function values 

makes GAs robust.  

Taken these four features together, genetic algorithms are robust and advantageous 

over other commonly used techniques. 
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Fig 8.2.2 Flow chart for genetic algorithm 

First we have to encode the points in the search space as strings of symbols. These 

strings are called chromosomes. Each symbol in a string is a gene. At the beginning of 

the genetic algorithm, we randomly generate a set of chromosomes ( )0p with size N in 

the search space. During the k-th iteration of the process, we evaluate the objective 

function for each chromosome in ( )p k . If the stopping criterion is not satisfied, we 

continue to the selection process. At the selection process, each chromosome in ( )p k is 

selected according to its value in the objective function. The better the fitness measure 

in the objective function, the higher the probability of survival. After selection, a 
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mating pool ( )M k  with the same size as the initial population is formed for the 

crossover operation. Each chromosome in the mating pool has a probability of cP  to be 

chosen for crossover. The crossover operation takes a pair of chromosomes, called the 

parents, from the mating pool and gives a pair of offspring chromosomes. The 

operation involves exchanging substrings of the two parent chromosomes in the hope 

of giving birth to a pair of better chromosomes. Next, we apply the mutation operation. 

The mutation takes each chromosome from the mating pool and randomly exchanges 

each symbol of the chromosome with a give probability mp . Typically, the value of mp  

is very small, so that only a few chromosomes will undergo a change due to mutation. 

After applying the crossover and mutation operation to the mating pool ( )M k , we 

obtain the new population ( )1p k + . These procedures of selection, crossover and 

mutation are applied iteratively until certain stopping criterion is reached. Here we stop 

the iteration process when the best-so-far chromosome does not change significantly 

form iteration to iteration. Note that throughout the entire process, the population 

size N is always kept the same. 

 

8.2.3 Representation Scheme 

 

 

 

 

 

 

 

Fig 8.2.3 8 PSK constellation 
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Let the alphabets , , ,...A B C denote the constellation points in the signal space. We 

encode the mapping as a string of decimal digits 1 2, ,..., ML L L  which are the 

corresponding labels in the constellation points , , ,....A B C . Take 8PSK mapping as an 

example, as shown in Fig 8.2.3, 2 4 7 1 0 6 3 5 is an encoding of this mapping.  

 

8.2.4 Selection   

To improve the convergence rate of the algorithm, we adopt a scheme called elitism. 

In the elitist strategy, we copy the best-so-far I chromosomes directly, and the rest N-I 

chromosomes are selected from the original population according to the roulette-wheel 

scheme. In the roulette-wheel scheme, chromosomes are selected into mating pool with 

probability proportional to their fitness. Let ( )if x  be the objective function and 

ix 1,2,....,i N=  be the i-th chromosomes. A chromosome ix  will be selected with 

probability equal to ( )

( )
1

i
N

i
i

f x

f x
=
∑

. Thus the better the fitness measure the higher the 

chance of this chromosome will be selected. The resulting population after selection is 

called mating pool for the following crossover operation.  

 

8.2.5 Crossover  

Apart from the best-so-far I chromosomes which are preserved according to elitism, 

we randomly choose two parent from the mating pool and perform crossover operation 

with crossover probability Pc. If there is no crossover, we just copy parents directly. 

For crossover operation, we first generate two distinct uniformly distributed random 

numbers a, b with values range from 0 to L-1, where L is the number of genes in a 

chromosome. In our example, L is just equal to the number of labels in a mapping. On 

pair of parent can give birth to two children. For the first child, the labels in parent 1 in 

the position from a to b is copied directly to the first child. For the rest labels not 
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assigned to the first child, they are assigned with the same order as in the second parent. 

In this way, the labels from a to b in parent 1 is preserved in their absolute position 

while the rest labels from parents 2 is preserved only in their relative position. For the 

second child, the role of parent 1 and parent 2 are just exchanged.  

As shown is Fig 8.2.5, the two random number a and b is 2 and 5. Labels from 

position 2 to 5 in parent 1 is copied directly to child 1, while the rest labels 0,6,1,7 are 

assigned according to their orders in parent 2. Child 2 is created in the same way, 

except that labels in position 2 to 5 is copied from parent 1 and the rest are arranged in 

the same order as in parent 1.  

 

 

                         Fig 8.2.5 crossover operation  

 

8.2.6 Mutation  

Except for the best-so-far I chromosomes, each chromosome has a probability of 

mp  to mutate. The mutation operation is quite simple; we just randomly pick two 

labels in a chromosome and swap them. Fig 8.2.6 shows an example, the two positions 

4 and 7 are picked and the corresponding labels 0 and 1 are just swapped. 

 
                     Fig. 8.2.6 mutation operation  
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8.2.7 Suggested GA Parameters  

There many parameters that should be assigned properly for GA to work well. 

Parameters such as population size, elite number, crossover probability and mutation 

probability are important for a better convergence behavior. Here we have 

experimented some different values and suggested a set of proper parameter values.  

In our experiments, we use Gray as the first transmission mapping and design the 

second mapping for BICM. For each parameter test, the other parameters are fixed to 

isolate the effects of the testing parameter. The best values in the objective function are 

plotted against iteration number to observe the convergence behavior.  

 

8.2.7.1 Population Size 
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                  Fig 8.2.7.1 population size comparison  

One of the features in GA is that it searches with multiple points in the search space 

instead of moving from one single point to another. This feature makes it robust in 

50 
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200 300 
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problems with many-peaked search spaces since the possibility of locating false peak is 

reduced by climbing many hills simultaneously. On the other way, tying many possible 

solutions at the same time also increases the chance of finding the best solution. 

Therefore, it seems that the larger the population size the higher the rate of 

convergence. As Fig 8.2.7.1 indicates, increasing the population size from 50 to 200 

accelerates the convergence rate. However, increasing the population size from 200 to 

300 exhibits similar behavior. This suggests that there is a threshold such that no 

further improvements will be gained after passing this threshold. Thus we suggest 

choosing population size to 100 as a proper value since the convergence rate is similar 

to the one with size 200 and 300. 

 

8.2.7.2 Elite Number 

 
Fig 8.2.7.2 elite number comparison  

Some researchers in the GA field have point out that by reproducing always the best 
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individuals in the current population do leads to a faster convergence of the algorithm. 

However, there is also some dangerous of “premature convergence”, making the 

algorithm converges to a local solution. Since the initial population is generated 

randomly due to the blindness of the location of the global optimum, it will happen that 

a significant part of the individuals represents points of the search space which are far 

from the global optimum Thus these best individuals may only represent the regions 

where local optimum is located. This suggests the number of elites that will be 

preserved should be chosen properly to avoid premature convergence.  

Fig 8.2.7.2 shows the effects of different elite number. The increasing of the elite 

number accelerates the convergence rate can be seen for elite number ranging from 20 

to 50. However, increasing the elite number to 80 leads to premature convergence. 

Thus we suggest elite number 50 as a proper value.  

8.2.7.3 Crossover Probability 

 

                Fig 8.2.7.3 crossover probability comparison  
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Crossover is the main operation to explore the search space. Crossover combines 

parts of the genes from the mating parents in the hope to produce a child which inherits 

both the good traits from parents. Generally, the crossover probability should be large 

for the whole population to evolve. If the crossover probability is too small, the 

population almost stays the same and no new solutions are explored. Fig 8.2.7.3 

indicates that higher crossover probability contributes to higher convergence. Thus 

crossover probability 0.9 is recommended for better convergence rate.  

 

8.2.7.4 Mutation Probability 

 

 

 

 

 

 

 

 

 

 

 

 

                 Fig 8.2.7.4 mutation probability comparison  

Although the crossover operator is a very potent means of exploring search spaces, it 

does have a disadvantage. Ideally, good genes should be preserved and be combined 

with the other good genes to form a new chromosome. However, as the random natural 

of the crossover operator, it is possible that the good genes will be eliminated after the 
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crossover operation. Since there is no way that the crossover operator can bring back 

the lost genes, the mutation operator is created to reintroducing those missing genes 

back into the genetic pool. Since the operator proceeds by performing a random 

modification on the individual, the mutation probability should be small to avoid 

ruining the evolution mechanism introduced by crossover. As shown in Fig 8.2.7.4, too 

small or large mutation probability results in premature convergence, hence we advise 

using mutation probability 0.01.  

 

8.2.7.5 Summary of the Suggested GA Parameters  

  Here we summarized the suggested GA parameters in the following.  

Population size  Elite number  Crossover 

probability  

Mutation 

probability  

100 50 0.9 0.01 

 

 

 

 

 

 

 

 

 

 

 

 



 73

1x 2x 3x 4x

5x 6x 7x 8x

9x 10x 11x 12x

13x 14x 15x 16x

Chapter 9: Mapping Search Results 

 

9.1 Mappings for BICM 

In [3], it is showed that the BICM capacity is upper bounded by the CM capacity, 

and the BICM capacity of Gray mapping is quite close to its corresponding CM 

capacity over the entire SNR region. Our search results also confirmed that Gray 

mapping is the optimal one. Hence we adopt Gray mapping as the first transmission 

mapping. For the second transmission mappings, we searched the label from 

4s

o

E dB
N

= − (virtual channel SNR) to 12s

o

E dB
N

= , and the increment is 1 dB. The results 

are presented in the following.  

 

 

 

 

 

 

 

                      Fig 9.1.1 16QAM constellation  
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Table 9.1.1 BICM mappings (T=2): 

 

 

 

 

 

SNR 

(virtual) 

SNR 

(real) 

1x 2x  3x  4x 5x 6x 7x 8x 9x 10x

 

11x

 

12x

 

13x

 

14x

 

15x

 

16x

 

-4 -4.8 13  5 15 7 9 1  11 3 12 4 14 6 8 0 10 2 

-3 -3.8 13  5 15 7 9 1  11 3 12 4 14 6 8 0 10 2 

-2 -2.7 13  5 15 7 9 1  11 3 12 4 14 6 8 0 10 2 

-1 -1.7 10  14  3  11 2   6 7 15 8   12 13 9 0   4 5 1 

0 -0.7 2   6 11 3 10  14 15 7 8   12 13 9 0   4 5 1 

1 0.3 13  5 3 7 9   1 11 15 12  4 14 6 8   0 10 2 

2 1.2 13  5 3 7 9   1 11 15 12  4 14 6 8   0 10 2 

3 2.2 15  7 14 10 11  3 6 2 13  9 12 8 5   1 4 0 

4 3.1 4   0 5 1 12  8 9 13 6   10 7 3 14 2 15 11

5 4 13  9 12 8 1   5 4 0 15  11 6 10 7   3 14 2 

6 4.8  8  12 2 10 0   4 14 6 5   11 3 15 1   13 7 9 

7 5.7 13  9 5 8 6  3 15 2 12  11 7 10 4   1 14 0 

8 6.6  8  7 10 0 3   13 2 15 12  9 5 11 6   14 1 4 

9 7.5 13  8 15 2 9 7 3 10 6  14 11 5 12  1 4 0 

10 8.6 12  9 6 8 2  14 3 13 10  5 11 7 4   1 15 0 

11 9.6 5   8 15 0 9   3 4 11 13  7 14 6 2   10 1 12

12 10.7 4   1 14 2 11  15 5 9 7   8 3 12 0   13 10 6 
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To compare each mapping’s relative performance, we also plot the BICM capacity of 

each mapping. In our legend, the real channel SNR is labeled on the left, and the 

virtual channel SNR is labeled on the right.  
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Fig 9.1.2 BICM capacity of mappings designed for different SNR (T=2) 

 

As can be predicted, the mappings designed for low SNR achieves high capacity at 

low SNR; however, the capacity decrease at high SNR, and vice versa.  
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Fig 9.1.3 Comparison of BICM capacity of different mapping schemes (T=2) 

 

We also compared some of our designed mappings with the previous mappings in 

the literature. It is shown that the constellation rearrangement has similar behavior as 

the mapping designed for low SNR, hence the capacity decreases at high SNR. 

Mapping designed to minimize the BER upper bound or maximize the minimum 

Euclidean distance have similar capacity as mappings designed for high SNR. Thus 

they are suitable for the applications that operate at high SNR and not suitable at low 

SNR. 
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Table 9.1.2 BICM mappings (T=3) 

SNR 

(virtual) 

SNR 

(real) 

1x  2x  3x  4x 5x 6x 7x 8x 9x 10x

 

11x

 

12x

 

13x

 

14x

 

15x

 

16x

 

-3 -3.8 3  1 5 0 9 7 2 4 11 13 8 6 15 10 14 12

-2 -2.7 5  0 4 12 1 13 8 6 9 7 2 14 3 11 15 10

-1 -1.7 14 4  12 13 6 0 8 9 2 10 11 5 15 7 3 1 

0 -0.7 12 14 6 4 8 10 7 0 9 15 3 2 13 11 1 5 

1 0.3 1 15 7 14 5 9 11 6 4 13 3 12 0 2 8 10

2 1.2 1 0 5 4 15 7 11 6 8 13 3 12 9 10 2 14

3 2.2 12 6 4 14 13 10 11 3 8 7 5 2 9 15 0 1 

4 3.1 0 2 15 8 10 1 11 12 7 3 14 13 4 5 6 9 

5 4 0 1 10 5 13 2 8 9 14 7 15 3 12 6 11 4 

6 4.8 12 3 5 14 11 7 8 6 15 2 10 1 0 13 9 4 

7 5.7 9 0 15 6 4 13 11 2 8 7 3 10 1 14 5 12

8 6.6 13 9 0 5 11 4 6 8 2 3 14 15 12 10 7 1 

9 7.5 10 1 3 14 9 13 5 6 0 12 11 8 7 15 2 4 

 

The behavior of BICM capacity for transmit 3 times is similar to the behavior of 

BICM apacity for transmit 2 times. Mappings that have high capacity at high SNR 

have low capacity at low SNR, and vice versa. For the comparison to other mappings, 

similar to transmit 2 times, the capacity of constellation rearrangement is high only at 

low SNR, and the capacity of MBER and MDMIN is only high at high SNR. 
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Fig 9.1.4 BICM capacity of mappings design for different SNR (T=3) 
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Fig 9.1.5 Comparison of BICM capacity of different mapping schemes (T=3) 
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9.2 Mappings for BICM-ID with infinite block length 

Table 9.2.1 BICM-ID mappings for infinite block length (T=2, 1st) 

Virtual 

SNR 

Real 

SNR 

1x 2x  3x  4x 5x 6x 7x 8x 9x 10x 11x 12x  13x  14x 15x 16x

 

0 -0.7 11 9 1 3 10 8 0 2 14 12 4 6 15 13 5 7 

1 0.3 11 9 1 3 10 8 0 2 14 12 4 6 15 13 5 7 

1.5 0.8 11 9 1 3 10 8 0 2 14 12 4 6 15 13 5 7 

2 1.2 11 9 1 3 10 8 0 2 14 12 4 6 15 13 5 7 

3 2.2 11 9 1 3 10 8 0 2 14 12 4 6 15 13 5 7 

4 3.1 11 9 1 3 10 8 0 2 14 12 4 6 15 13 5 7 

5 4 11 9 1 3 10 8 0 2 14 12 4 6 15 13 5 7 

6 4.8 11 9 1 3 10 8 0 2 14 12 4 6 15 13 5 7 

7 5.24 0 4 8 9 12 5 13 14 15 6 7 11 10 2 1 3 

7.5 6 11 2 6 10 14 3 15 12 13 4 5 0 7 1 9 8 

8 6.6 10 6 15 9 0 12 5 3 4 7 14 2 1 13 11 8 

9 7.5 9 5 10 15 12 0 6 3 7 11 13 8 2 14 1 4 

10 8.6 2 1 11 8 4 7 13 14 9 10 0 3 15 12 6 5 

11 9.6 7 2 13 14 4 1 8 11 10 15 6 5 9 12 3 0 
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Table 9.2.2 BICM-ID mappings for infinite block length (T=2, 2st) 

Virtual 

SNR 

Real 

SNR 

1x 2x  3x  4x 5x 6x 7x 8x 9x 10x 11x  12x  13x  14x 15x 16x

0 -0.7 0 8 1 9 4 12 5 13 2 10 3 11 6 14 7 15 

1 0.3 0 13 9 12 4 11 6 2 5 15 3 14 1 10 7 8 

1.5 0.8 4 8 13 6 14 2 11 1 7 3 10 12 9 15 5 0 

2 1.2 6 5 3 8 0 15 11 14 12 9 2 4 10 7 1 3 

3 2.2 9 12 0 5 10 15 3 6 2 7 11 14 4 1 13 8 

4 3.1 0 10 12 6 9 3 15 5 13 7 11 1 14 4 2 8 

5 4 1 8 13 14 4 7 11 6 2 15 3 0 10 9 12 5 

6 4.8 0 6 14 13 3 5 11 8 12 15 2 1 9 10 7 4 

7 5.24 13 4 7 2 3 8 14 11 6 10 15 1 5 12 0 9 

7.5 6 3 0 9 5 6 10 12 15 13 14 7 2 8 11 1 4 

8 6.6 0 6 5 12 11 8 10 15 2 13 9 3 7 14 1 4 

9 7.5 6 5 12 11 3 15 2 1 10 9 4 8 0 7 14 13 

10 8.6 7 11 12 0 2 8 5 6 1 14 15 9 13 4 3 10 

11 9 1 12 13 6 2 11 7 10 8 14 9 0 15 4 5 3 

 

  Since the block length is assumed to be infinite, the trajectory will get through even 

when only a very small tunnel is opened. Hence no margin is preserved between the 

demapper and the decoder transfer curve.  

 



 81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ia/Ie

I e/I
a

AWGN virtual channel Es/No

 

 

133,171
1st 11dB
1st 10dB
1st 9dB
1st 8dB
1st 7.5dB
1st 7dB
1st 6dB
1st 5dB
1st 4dB
1st 3dB
1st 2dB
1st 1.5dB
1st 1dB
1st 0dB

 

Fig 9.2.1 demapper transfer function for inifinite block length (T=1) 
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Fig 9.2.2 demapper transfer function for inifinite block length (T=2) 
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9.3 Mappings for BICM-ID with finite block length  

Transmit one time 

Here we choose the block length to be 2500 and margin of two times the standard 

deviation is preserved in both the demapper and the decoder to allow the tunnel to have 

about a chance of 97.7% to open. Therefore 2 _ 2 _std demapper std decoderδ = ⋅ + ⋅ , 

andσ is properly chosen to be 0.1σ = , where ,σ δ  is the same as that defined in 

chapter 7. 

Table 9.3.1 BICM-ID mappings for finite block length (T=1)  

Virtual 

SNR 

Real 

SNR 

1x 2x  3x  4x 5x 6x 7x 8x 9x 10x 11x 12x  13x  14x 15x 16x

7 5.24 11 9 1 3 10 8 0 2 14 12 4 6 15 13 5 7 

7.5 6 12 14 1 9 13 0 3 8 4 5 2 10 6 7 15 11 

8 6.6 9 12 8 13 5 4 1 10 0 2 15 11 7 6 14 3 
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Fig 9.3.1 demapper transfer curve for finite block length (T=1) 
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Transmit 2 times 

Table 9.3.2 BICM-ID mappings for finite block length (T=2,1st) 

Virtual 

SNR 

Real 

SNR 

1x 2x  3x  4x 5x 6x 7x 8x 9x 10x 11x 12x  13x  14x 15x 16x

1.5 0.8 11 9 1 3 10 8 0 2 14 12 4 6 15 13 5 7 

 

Table 9.3.3 BICM-ID mappings for finite block length (T=2,2nd) 

Virtual 

SNR 

Real 

SNR 

1x 2x  3x  4x 5x 6x 7x 8x 9x 10x 11x 12x  13x  14x 15x 16x

1.5 0.8 12 6 9 8 10 3 15 7 0 14 4 1 5 2 11 13 
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Fig 9.3.2 demapper transfer curve for finite block length (T=2) 
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Chapter 10: Simulation Results  

Since a HARQ system is packet oriented, one of the performances metric is its 

throughput. Throughput is defined as the number of successful received information 

bits per second. Suppose n is the number of coded bits in a packet, r  is the code rate 

and R  is the packet rate (packet/sec). Define tN to be the total number of transmitted 

packets and rN  to be the total number of successful received packets. Then the 

throughput is defined as 
/

r r

t t

N n r N n r R
N R N
⋅ ⋅

= ⋅ ⋅ ⋅ . Since n , r and R  is fixed for a given 

MCS, we define r

t

N
N

 as its throughput performance metric.  

 

10.1 BICM 

The simulation parameter is as follows  

Code  Code rate  Block 

length 

Modulation  Channel  

1
3

 14400 

1
2

 9600 

Convolutional 

code 

(133,171) 
3
4

 6400 

1
3

 15012 

1
2

 10012 

Turbo code 

(13,15) 

3
4

 6680 

16QAM AWGN 
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To verify whether the throughput performance of each mapping is the same as 

suggested by the BICM capacity, we simulated the throughput of each mapping 

designed for a specific SNR. We are interested in those SNR regions which correspond 

to throughput range from 0 to 1. Capacity approaching turbo code and commonly used 

convolutional code is simulated. Since the operating SNR regions are different, we also 

experiment codes with different code rate obtained from puncturing the same mother 

code    

Comparing the relative throughput performance of each mapping, the results match 

quite well with the prediction from the BICM capacity. Each mapping performs best or 

at least not worse than others at their designed SNR. Also, a mapping that has high 

throughput at high SNR does not necessary has high throughput at low SNR, and vice 

versa. This confirms the idea that mappings should be adaptive to SNR.  

Since different codes with different code rate have different operating SNR region, 

mapping should be designed specifically for different code. The simulation results 

show that different codes have their different best mapping scheme. Furthermore, 

although theoretically mapping scheme should be adaptive for different SNR, the 

simulation results shows that it is possible to design a single mapping scheme that is 

suitable for the whole interested SNR region. Comparing with the best throughput 

contour, mappings that are designed for the SNR region where throughput is 0 to 0.5 

usually perform well at the whole SNR range. Hence this suggests that one mapping 

scheme can be designed for a specific MCS (modulation coding scheme).  

We also compared the available mapping schemes in the literature. As can be 

observed, constellation rearrangement achieves high throughput for codes with code 

rate 1
3

when transmit two times (Fig 10.1.1.2 and Fig 10.1.2.2). However, when 
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applying codes with higher code rate such as rate 1
2

(Fig 10.1.1.4 and Fig 10.1.2.4) 

and rate 3
4

(Fig 10.1.1.6 and Fig 10.1.2.6), the throughputs fall below the best 

throughput contour. The performance degradation is even more prominent when the 

rate is raised to 3
4

. For transmitting three times, constellation rearrangement performs 

poor even for rate 1
3

(Fig. 10.1.1.8). Therefore the behavior of constellation 

rearrangement is quite similar to the mappings designed for low SNR and is only 

suitable for certain SNR region.  

For the other two mapping schemes MBER (minimize the BER upper bound) and 

MDMIN (maximize the minimum Euclidean distance), they are both similar to the 

behavior of mappings designed for high SNR. The throughputs are far below best 

contour at code rate 1
3

 (Fig 10.1.1.2 and Fig 10.1.2.2). The throughput gaps between 

MBER (or MDMIN) and the best contour increases with the increasing code rate. 

However, they are close to optimal only when rate 3
4

 convolutional code is applied 

(in our case). Hence MBER and MDMIN are only suitable for the application of high 

code rate that operates at high SNR region. 

Note that in the legend in the following, the real channel SNR ( /s oE N ) is labeled 

first and the virtual channel SNR is the next. . 
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10.1.1 Turbo Codes 

Transmit 2 times, Code Rate 1/3 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.1.1. Throughput of turbo code with code rate= 1
3

, T=2 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.1.2 Throughput of turbo code with code rate= 1
3

, best candidates, T=2  
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Transmit 2 times, Code Rate 1/2 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.1.3 Throughput of turbo code with code rate= 1
2

, T=2 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.1.4 Throughput of turbo code with code rate= 1
2

, best candidates, T=2 
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Transmit 2 times, Code Rate 3/4 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.1.5 Throughput of turbo code with code rate= 3
4

, T=2 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.1.6 Throughput of turbo code with code rate= 3
4

, best candidates, T=2  
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Transmit 3 times, Code Rate 1/3 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.1.7 Throughput of turbo code with code rate= 1
3

, T=3 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.1.8 Throughput of turbo code with code rate= 1
3

, best candidates T=3 
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 Transmit 3 times, Code Rate 3/4 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.1.9 Throughput of turbo code with code rate= 3
4

, T=3 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.1.10 Throughput of turbo code with code rate= 3
4

, best candidates T=3 
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10.1.2 Convolutional Codes 

Transmit 2 times, Code Rate 1/3 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.2.1 Throughput of convolutional code with code rate= 1
3

, T=2 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.2.2 Throughput of convolutional code with code rate= 1
3

, best candidates, T=2 
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Fig 10.1.2.3 Throughput of convolutional code with code rate= 1
2

, T=2 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.2.4 Throughput of convolutional code with code rate= 1
2

, best candidate, T=2 
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Fig 10.1.2.5 Throughput of convolutional code with code rate= 3
4

, T=2 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.1.2.6 Throughput of convolutional code with code rate= 3
4

, best candidates, T=2 
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10.2 BICM-ID  

In our simulations, to ensure the iteration number is large enough for the trajectory 

to reach the first intersection, we set the iteration number to 20.  

 

10.2.1 Mappings for Infinite Block Length 
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Fig 10.2.1.1 BER of different block length 

As illustrates before, mappings designed under the assumption of infinite block 

length will suffer performance degradation when the block length is finite. The 

simulation results show that the BER for most of the mapping is not lowest at their 

designed SNR. Since shorter block length will cause greater variations of the transfer 

curve and increased correlation of the output extrinsic information, the performance 

degrades more than larger block length. Hence for the performance to close to optimal, 

very large block length should be applied, which is impractical for real applications.  
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Fig 10.2.1.2 Throughput of block length =2500 

The behavior of throughput performance of finite block length is similar and each 

mapping is not optimal under their designed SNR. 
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10.2.2 Mappings for Finite Block Length 
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Fig 10.2.2.1 BER comparison of finite length demapper and infinite length demapper 

(T=1) 

Although no optimality can be claimed, the BER of those demappers designed for 

2500 block length have showed significant performance improvement over those 

designed for infinite block length. Margin of two times the standard deviation is 

preserved in both the demapper and the decoder to allow the tunnel to have about a 

chance of 97.7% to open.  
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Fig 10.2.2.2 Throughput comparison of finite length demapper and infinite length 

demapper (T=2) 

 The throughput is also expected to be improved when margin is preserved to allow 

some percentages of tunnels to open.  
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Chapter 11: Conclusions 

  We proposed using genetic algorithm to efficiently search the optimal mappings 

for each SNR when BICM is adopted in HARQ. Since different modulation and coding 

scheme (MCS) operates on different SNR region, mapping scheme should be adaptive 

to different MCS and the simulation results showed performance gains over the 

none-adaptive one using existing mappings in the literature. Although theoretically the 

optimal mappings for each SNR should be designed specifically, the throughput 

simulation suggests that one single mapping can achieve approximately optimal 

performance given a specific MCS.  

 For the mapping design of BICM-ID in HARQ, we also proposed using genetic 

algorithm to find the optimal mappings for each SNR under the assumption of infinite 

block length and iteration number. For the practical mappings design of finite block 

length, some margin is advised to preserve to allow some percentages of tunnels to 

open. The simulation results showed significant performance gain over the design with 

no margin when finite block length code is applied. 
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