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Precoder search and time domain CSI feedback in

MIMO-OFDM systems

Student: Tzu-Han Hsu Advisor: Dr. Wen-Rong Wu

Department of Communication Engineering
National Chiao-Tung University

Abstract

Precoding is an effective technique improving the performance of
MIMO-OFDM  systems. In practical systems, the precoding matrices are
pre-determined and only the'index’of the selected matrix is fed back. Since the
number of precoding matrices may be‘large, the search for the optimum precoder
requires high computatioral . complexity. In- this thesis, we first propose a
low-complexity precoder searching algorithm to solve the problem. Compared to the
exhaustive search, the proposed searching method can reduce about 80% searching
complexity with acceptable performance loss. Channel state information (CSI) is
useful in MIMO-OFDM communication systems. However, the information has to be
fed back from the receiver and this will requires a large amount of data. In the second
part of the thesis, we propose a time domain CSI feedback scheme to lower the
feedback data bits. Under some channel conditions, the proposed method only
requires a small amount of feedback data. Finally, for time-varying channels, we
propose to use a differential pulse code modulation (DPCM) scheme in our time
domain CSI feedback method such that the required feedback data can be further
reduced.
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Chapter 1 Introduction

In recent years, the demand for high data rate wireless communication increases
rapidly, e.g., high quality, real-time video and audio data streams. For this purpose,

many prospective techniques have been considered to increase channel capacity and

link reliability.

Multiple-input multiple output (MIMO) transceivers, created by having multiple
antennas at both the transmitter and the receiver, promises high spectral efficiency and
high reliability wireless communication links. Different space-time modulation
schemes can be chosen to exploit the benefits offered by MIMO channels, such as
space-time coding (STC) and, spatial multiplexing (SM). Spatial multiplexing (SM) is
a simple and practical spate-time modulation scheme that allows MIMO wireless
systems to obtain high spectral efficiencyrby dividing single bit stream into multiple

substreams sent over different antennas:

Unfortunately, SM is sensitive to the condition of the MIMO channels. When the
channel matrix becomes ill-conditioned, the performance of SM becomes poor. In
narrowband channels, linear precoding, a technique that pre-multiplying the
transmitted data streams by a precoding matrix, chosen based on channel information,
is one way to guard against rank deficiencies in the channel and to improve error
performance. Optimal precoder under different performance criteria has been
proposed in [1]. As mentioned, we need full channel state information (CSI) at
transmitter to conduct precoding. However, when the forward and reverse channels
are not reciprocal, full CSIT may be may be difficult to obtain due to limited

bandwidth of feedback channel. Thus, a codebook-based limited feedback precoding
1



scheme is often used. The main idea is that the receiver only sends the binary index of
optimal precoder chosen from a finite set of precoding matrices, called codebook,
known to both the receiver and the transmitter. The codeword selection criteria and
codebook design criteria are also discussed in [1]. The practical codebook
construction method used in [1] is described in [3], using the Fourier-based designs.
The work in [4] proposes a method to recursively quantize the precoding matrix with
Householder reflection, and the codebook is vector-wise and can be designed using

vector quantization (VQ) algorithm.

The precoding technique proposed for narrowband channels can be easily
extended to frequency selective channels by using orthogonal frequency division
multiplexing (OFDM). The combination of MIMO and OFDM, known as
MIMO-OFDM, converts a :broadband MIMOr channels into a series of parallel
narrowband MIMO channels, one for-each OFDM subcarrier. The codebook-based
limited feedback precoding schemercan be performed independently at each subcarrier.
However, in nonreciprocal channels, “‘this requires that the receiver computes and
sends the index of optimal precoding matrix for every active subcarrier. Thereby, the
feedback data generally grows in proportion to the number of active subcarriers. To
solve this problem, some techniques such as clustering or interpolation [5] are
developed. These methods exploit the correlation between adjacent subcarriers and
feedback the information about precoding matrices for only a fraction of all

subcarriers.

There is another problem in precoding; the receiver must search for the best
precoder from the codebook for each active subcarrier. Obviously, the searching

complexity is proportional to the number of active subcarriers and the number of



codewords in a codebook. In general, exhaustive codeword searching will require
large computational complexity. In this thesis, we propose a low complexity
codeword searching algorithm. For any arbitrary codebook, we first partition the
codebook with a distance comparison algorithm, and perform a tree search algorithm
to find the desired codeword. The simulation shows that while the performance is

only slightly affected, the searching complexity is decreased significantly.

Apart from precoding, many schemes can be applied in transmitters to improve
the performance of MIMO-OFDM systems provided the CSI is available. For
example, we can conduct bit-loading, resource management, multiuser diversity, and
dirty paper coding. Apparently, if CSI for all subcarrier are fed back, the data amount
will be very high. Taking the advantage of the sparse nature of wireless channels, we
then propose a time domain €SI, feedback method. The simulation shows that, under
some channel conditions, the time domain CSI feedback method only requires a small
amount of data. Even in the application of precoding, our method is comparable to the
conventional precoder feedback scheme such as clustering. Finally, for realistic
time-varying channel, we propose a differential pulse code modulation (DPCM)
scheme in our time- domain CSI feedback method such that the required feedback

data can be further reduced.

The rest of the thesis is organized as follows. In Chapter 2, we first review the
linear precoding scheme, including 1) system model, 2) criteria for precoding, 3)
codebook design and construction, and 4) limited feedback schemes. At the end of
Chapter 2, we propose a low complexity codeword searching algorithm. In Chapter 3,
we propose a time domain CSI feedback method. For realistic time-varying channel, a

modified time domain CSI feedback applying DPCM is also proposed. In Chapter 4,



simulation results are reported and analyzed. Finally, Chapter 5 gives some

conclusions and potential topics for future works.




Chapter 2 Precoding in MIMO-OFDM
systems
2.1 System model

A simplified block diagram for precoding in MIMO-OFDM transceiver is shown

below.
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The bit stream to be transmitted is first divided into M different bit streams and
sent into QAM mapper. Each of the M bit streams is then modulated independently
using the same constellation, e.g. QPSK or 16-QAM. This yields a symbol vector at

time k as:
Sk =[Sk o Scm T’ (2-1)

For convenience, we assume that the M data streams are equally-powered and

independent to each other. That is,
Els,s,1=1,, (2-2)

The notation A" denotes complex-conjugate of matrix A.

The symbol vector sy is then multiplied by an N; x M precoding matrix F

(which is chosen as a function ofithe channel using criteria to be described) producing

X, = /% Fs, (2-3)

where N; is the number of transmit antennas, and we assume that N;> M. E_ is the

a length M, vector xi

total transmit energy at time k. Then the symbol xiis sent into the MIMO channel,

and the received signal, of dimension N;x 1, can be written as:
r.=H-x, +n,

E (2-4)
=,—-H-F-s, +n,
M

where H is the N, x N; channel matrix and ny is the N, x 1 noise vector. N; is the

number of receive antennas. We assume that the entries of H are independent and



identically distributed (i.i.d.) and the distribution is CN (0,1). Similarly, the entries of

ng are also i.i.d. and the distribution is CN (0,Np).

Here, assume that the channel matrix H can be estimated perfectly, we consider

two kinds of MIMO receivers:
1. Maximum likelihood (ML) receiver:

The ML receiver is the optimal MIMO receiver and is a nonlinear receiver. That
is, we cannot perform ML decoding with simple matrix operations. The ML receiver

solves the optimization problem shown below:

r— EHFs
VM

where § is the decoded symbol vector, W™ is the multidimensional constellation of

§ =argmin (2-5)

sew

QAM mapping. Therefore, ML receiver needs exhaustive search and that results in

high computational complexity.

2. Linear receiver (ZF and MMSE):

A Linear receiver applies an M x N, matrix G, chosen according to some

criterion, to produce the decoded symbol vector §,

§=G r, (2-6)

We consider two different criteria: zero-forcing (ZF) and minimum mean square

error (MMSE). It can be shown that the optimum ZF receiver is

G = (HF)" (2-7)



where “+” denotes matrix pseudo-inverse. The ZF receiver is a simple linear receiver,
but it has the noise enhancement problem when signal to noise power ratio (SNR) is

low. It can also be shown that the optimum MMSE receiver is

-

G =[F'H'HF + MENO I,]'FH (2-8)

The MMSE receiver considers both the noise and the channel effect, and has
better performance. However, its computational complexity is higher. Note that, if we

set g% = 0, then the MMSE receiver will become a ZF receiver.

Once the receiver has estimated the channel matrix H, it needs to feed back the
information to the transmitter such that a precoding matrix can be determined. Two

different feedback schemes can be’chosen:

1. Directly feedback the quantized channel state information (CSI)

We can feedback the quantized coefficients of channel response either on
frequency domain or time domain. The transmitter can then calculate the precoder F
with some performance criteria. However, when the number of active subcarriers in
the OFDM system is large, it may not be practical to feed back the frequency domain
channel response of each active subcarrier. Nevertheless, under the condition that the
time domain channel only consists of few taps (i.e., sparse channels), the time domain
CSI feedback may be an efficient and feasible way. The time domain feedback CSI

method will be described in chapter 3.

2. Feedback the quantized optimal precoder F

Since only the information about optimal precoder is necessary for the

transmitter to perform precoding, a reasonable solution is to quantize the optimal

8



precoder Foy rather than the full channel matrix H. Thus, a codebook-based limited
feedback scheme is often used. The idea is that the receiver only sends the index of
optimal precoder chosen from a finite set of precoding matrices, called codebook,
known to both the receiver and the transmitter. Although the data amount for feedback
is also proportional to the number of active subcarriers, some techniques such as

clustering or interpolation can be applied to reduce the total feedback data.

We have briefly described the system model of MIMO-OFDM precoding system
at Section 2.1, but we haven’t answered the question that what is the selection

criterion for optimal precoder. We will do that at Section 2.2.

2.2 Criteria for precoding

In this section, we discuss the critéria used-for choosing the optimal precoding
matrix from a given codebook. We will outline the criteria based on the ML receiver,
or linear receivers such as ZF and MMSE. The criterion for mutual information
maximization is also included. Using these precoder selection criteria, we will show
that the optimal un-quantized precoding matrix F,p for linear receiver is just the first

M columns of right singular matrix of H.
1. ML receiver

Equation (2-5) indicates the criterion for the ML receiver to optimize. Note that
for a given channel matrix, the ML receiver will give the minimum-error-rate. Thus,
we have to find an optimal precoder yielding the minimum the error rate. However, a
closed-form expression of the probability of symbol vector error is difficult to derive.

One approach is to use the property that the probability of the symbol vector error can

9



be upper bounded when the SNR is high. The bound, called the vector union bound, is
solely a function of the receive minimum distance dming of the multidimensional

constellation W" , which is given by

d min

1,8, ewM S, #S,
_[E 2-9)
= min —||HF(s1 —s2)||
s;.s,ew™ s 25, \| M

Thus, the precoder selection criterion for ML receiver can be approximated by

-

min,R —

picking F from the codebook C using (2-9),
ML Selection Criterion (ML-SC): Pick F such that

F = argmax.d
FeC

(2-10)

min, R

2. Linear receiver

e Zero forcing (ZF)

Equation (2-7) indicates the ZF linear receiver, and we want to find an optimal
precoder to minimize the error rate. It was shown in [6] that the SNR of the kg,

substream for ZF receiver is given by

SNR, = — (2-11)

where A;}k is entry (k,k) of A™'. In [6], it is shown that in order to minimize a

bound on the average probability of symbol vector error, the minimum substream

SNR must be maximized. However, the substream SNR is often difficult to estimate.

10



For this reason, [6] shows that the minimum SNR for ZF receiver is bounded as

SNR_. = min SNR,

1<k<M

E, (2-12)

> A2 {HF}- iV

min

0

where 4

‘min

{HF} is the minimum singular value of HF. Therefore, from (2-12), the
precoder selection criterion for ZF receiver can be approximated by picking F from

the codebook C maximizing the minimum singular value of HF.
Minimum Singular Value Selection Criterion (MSV-SC): Pick F such that

F =argmax A

‘min
FeC

{HF} (2-13)

e Minimum mean square error (MMSE)

Equation (2-8) indicates the MIMSE linear receiver, and we want to find an
optimal precoder to minimize the mean square error (MSE). The MSE matrix can be

expressed as follows:

MSE(F)=(I,, + ME,\SI F'H'HF)™ (2-14)

0

Therefore, the precoder selection criterion for MMSE receiver can be described
as picking F from the codebook C to maximize the trace or determinant of MSE

matrix.
Mean Squared Error Selection Criterion (MSE-SC): Pick F such that

F = arg mintrace(MSE(Fi)) (2-15)

FeC

11



3. Capacity criterion

The mutual information for an uncorrelated complex Gaussian source, with a

channel matrix H, and a precoder matrix F, can be expressed as

Capacity(F) = log, det(I,, + MEI\SI F'H HF) (2-16)

0

With this capacity expression, we can state the capacity inspired precoder
selection criterion as picking F from the codebook C to maximize the mutual

information.
Capacity Selection Criteriony(Capacity-SC): Pick F such that

F = argmax.Capacity(F,) (2-17)

EeC
Several important results have been proved in [1] and [2],

(a) The optimal un-quantized precoding matrix F, has unit-norm column

vectors that are orthogonal to each other. That is, F,, cU(N,,M), where U(N;,M)

denotes the set of N; x M matrices with orthonormal columns. Therefore, when

designing the codebook, each codeword F in the codebook must also be contained

within U(N,,M). In other words, codebook design is just the quantization to the set

U(N,,M). We will discuss codebook design issues in Section 2.3

Let the singular value decomposition (SVD) of channel matrix H be given by
H=V, XV, (2-18)

12



where V, cU(N,,N,) is called left singular matrix, V, cU(N,,N,) is called

right singular matrix, V, and V., are both unitary matrices (i.e.,
V,=V;', V; =V ), and ¥ isanN; x N, diagonal matrix with 4 {H} denoting

the ky, largest singular value of H.

(b) The optimal precoder over U(N,M) for MSV-SC, MSE-SC, and

Capacity-SC is

F =V, (2-19)

where V, is the first M columns of the right singular matrix V.

Equation (2-19) is a mathematical restit, and we can look at this result from a
more intuitive way. With SVD, we can ¢easily see that the MIMO channel matrix can
be decomposed to R equivalent parallel SISO ‘channel, where R is the rank of the
channel matrix and also the namber of nonzero singular values. The diagonal matrix
X indicates the gain of each parallel SISO channel, e.g. A {H} denotes the power
gain of kg, parallel SISO channel. If we want to send M data streams over MIMO
channel H, where M =R. Undoubtedly, the best strategy is to choose M strongest
equivalent parallel SISO channels for transmission. From (2-19), we see that the
optimal precoder is the first M columns of the right singular matrix V, and it just
corresponds to the M largest singular values and also the M strongest equivalent

parallel SISO channels.

Equation (2-18) and (2-19) are important results, and they can be used to
calculate the optimal precoding matrix (with known channel matrix H). They also
give some hints to design a good codebook (or we can say, how to well quantize the

13



optimal precoder F,,; with finite codewords). In the next section, we will describe the

codebook design criteria and practical codebook construction method.

2.3 Codebook design and construction

2.3.1 Codebook design criteria

Before stating the codebook design criteria, we present some relevant

background about finite sets in U(N,,M). The set U(N,,M) defines the complex
Stiefel manifold [7] of real dimension 2N,M —M?*. Each matrix in U(N,,M)

represents an M-dimensional subspace of Ni-dimensional complex vector space. The

set of all M-dimensional subspaces spanned by-matrices in U(N,,M) is the complex

Grassmann manifold, denoted as* g(N,,M).

What is the difference -between U(N; ;M) and g(N,M)? We answer this
question with non-uniqueness of the optimal precoding matrix Foy. From (2-19), we
know that optimal precoder consists of first M columns of the right singular matrix
V.. However, if Foy is multiplied by any M x M unitary matrix U, that is, F* = Fy

U,, F’ will also be an optimal precoding matrix. For example, if Fo, maximizes

A

min

{HF} , then so does Fop U, for any M x M unitary matrix U,. Same result can be

obtained for the MSE-SC and Capacity-SC. Therefore, the optimal precoding matrix
Fop: 1s not unique. If we refer a matrix X in the set U(N,,M) as optimal precoding
matrix, then XU, for any M x M unitary matrix U, can be referred as a
M-dimensional subspace spanned by the matrix X. All the M-dimensional subspaces
spanned by matrices in U(N,,M) is denoted as g(N,,M). Therefore, U(N,,M)is

the set of matrices, and g(N,,M)is the set of subspaces.

14



Our codebook C, which consists of a finite number of matrices chosen from
U(N,,M), thus represents a set, or packing, of subspaces in the Grassmann manifold
g(N,,M). Determination of the set of L matrices that maximize the minimum
subspace distance (where distance can be chosen as a number of different ways) is
known as Grassmannian subspace packing [8], [9]. First, we give three defined

distances between two subspaces F; and F.

1. Chordal distance:

1 * *
dchord (Fl > Fz) = ﬁ“FlFl - Fze

F

v (2-20)
= \/M - > AH{FF}
i=1
where || ||F denotes the matrix Frobenius.norm
2. Projection two-norm distance:
Ay (F, ) = [REEEE]| o)
where || ||2 denotes the matrix two-norm
3. Fubini-Study distance:
des(FLF,) = arccos‘det(Fl*Fz)‘ (2-22)

Details about these definitions and implications can be found in [8]. In [1], the
author derives the codebook design criteria under different precoder selection criteria.

The codebook design criteria are given below:
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e Criterion 1: If ML-SC, MSV-SC, or MSE-SC with trace is used, the
codebook should be designed such that the minimum projection two-norm distance

between codewords is maximized. It can be expressed as follows:

Maximize min
Fi:tFj

(2-23)

RF -FF|,

e Criterion 2: If Capacity-SC or MSE-SC with determinant is used, the
codebook should be designed such that the minimum Fubini-Study distance between
codewords is maximized. It can be expressed as follows:

Maximize min
F,#F;

]

det(EF, ) (2-24)

However, finding good packings sin, the Grassmann manifold for arbitrary N;
(number transmit antennas); M-—(number;, of #data streams), and L (number of
codewords in the codebook), 1s difficult. In Section 2.3.2, we describe one simple

codebook construction method [37]'yielding codebook with large minimum distances.

2.3.2 Codebook construction method

In [3], it is shown that, maximizing the minimum distance between two

subspaces F; and Fj , i# j, is equivalent to minimizing the maximum correlation
between them. A Fourier-based construction method based on this result is described

below.

We begin with M = 1 (number of data stream = 1). For this case, a precoding

matrix with size Ny x M becomes a precoding matrix with size N; x 1 (also called

a beamforming vector).

With Fourier-based construction, the L vector codewords can be expressed as:
16



_ | .
(1)
1 2, .
Fi = — eJTZ(Iil) 9 = 1,2,..., L (2_25)
\/ NI
jZT”(N1—1)(i—l)

where 1 indicates the index of codeword, and L denotes the total number of

codewords within the codebook. For this choice, we obtain the correlation R;

between iy, codeword and ji, codeword as:

N,

27 -
- _ZeJT(t—l)(l—l)

N, |5

_|sin(z(i- HN, /L) (2-26)
AN sin(z(i - /L)) (% )

We observe that:

1. The correlation between F; and*F; depend only on (i — j) mod L; the correlation

structure of the codebook is therefore circulant and it suffices to consider ‘FI*Fj

for j = 2,3,...,.L. That is, to find the maximum correlation, we don’t need to

calculate C; correlations between all codewords.

2. The correlation structure behaves roughly like a sinc function. With the fact
described at the beginning of Section 2.3.2, we want to find a good set of
codewords to minimize the maximum correlation between codewords. Figure 2-3
shows the correlation structure of codewords chosen in (2-25) for Ny = 6, L = 64.

The maximum correlation is 0.986.
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Figure 2-3 Correlation structure of codewords in (2-25) as a function of (i-j)

Since the maximum correlation approaches unity, it is obviously a poor choice
for codewords in (2-25), especidlly when L is-large. However, we are not necessarily
constrained to choose first Ny rows of'the I.' x L:DFT matrix as is done in (2-25). To
lower the correlation between neighbors, we may consider choosing another set of N;

components. We thus let

1
jo”ul(i—l)
1 2 .
Fi - JTUZ('*I) , I= 1,2,'. (2_27)
\/ NI
2z .
ejTuNt(l—l)

where 0<u,,U,,...,uy <L-1

By (2-26) and (2-27) , we wish to find u,,U,,...,uy achieving

18



(2-28)

The minimization problem in (2-28) can be seen as an aperiodic array design
problem [10]. Despite much effort, there has never been a completely satisfactory way
to design aperiodic arrays: for small arrays one can use exhaustive search, whereas,

for large arrays, random search strategies seem to be the only resort. With random

search, a good choice for U, Uy,..., Uy can be found. Figure 2-4 shows the correlation

structure of codewords chosen in (2-27) for N; = 6, L = 64. Here UpUy,es Uy, = [118

23 39 46 57]. The maximum correlation is decreased to 0.5604.
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=
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Codeword index difference
Figure 2-4 Correlation structure of codewords in (2-27) as a function of (i-j)

Now, we can extend this single data stream case (M = 1) to multiple data streams
case (M > 1). In the single data stream case discussed above, each vector codeword

can be written as

F=0"F , i=12,..,L ' (2-29)



where ® is a N;x N; diagonal matrix whose diagonal elements are

1
N

is an unitary matrix and @" = I, . Therefore, (2-29) can be rewritten as

pi2mu/L gi2m, /L j2muy, /L
b

yeurs € and F, is times a vector of all ones. Note that ®

P 0 0 I- 1
0 ejZIIUZ/L . 0 1 1 )
F=| . S , —| |, i=12,.,L  (2-30)
: : .. : /Nt-
0 0 ejZ”“Nt/L 1

Geometrically, the construction can be interpreted as rotating an initial vector

through N; dimensional complex space using a matrix which is the Ly, root of unity.

For multiple data streams case (M,> 1), let the initial matrix F; be a Nyx M
matrix with F/F, =1,, , and eonstruct the Licodewords by applying (2-29) again. For

the M > 1 case, this construction can.be interpreted as rotating an initial M-dimension
subspace using an Ly, root of unity to form L different M-dimensional subspaces. A

simple method to build a starting matrix F;is to choose M distinct columns of a N;x

N, DFT matrix, and this ensures that FF, =1,, .

Now extending (2-28) to multiple data streams case (M > 1). We wish to find

U, U,,...,Uy achieving

min  max HFI*Fj HF (2-31)

Osuy,...uy, SL-1j=2,..L

For finding a good choice of uj,u,,..,uy , random search can be applied.

Example codebooks using this Fourier-based construction with different N; (number

transmit antennas), M (number of data streams), and L (number of codewords in the
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codebook) can be downloaded at [11].

2.4 Limited feedback schemes

In MIMO-OFDM systems, the broadband channel is converted into multiple
narrowband channels such that a subcarrier can be used in a channel. Each subcarrier
can then perform precoding, independently. However, feeding back the information
about precoding matrix for each active subcarrier requires a large amount of data.
While codebook-based precoding techniques can be used, the feedback data still grow
in proportion to the number of active subcarriers. To solve this problem, some

techniques such as clustering and interpolation [5] can be applied.

2.4.1 Clustering

In general, adjacent subchannels in"an OFDM system are correlated. As a result,
optimal precoders corresponding to neighboring subchannels are also correlated.

Using the precoder correlation, the amount of feedback information can be reduced.

A simple approach is to combine the neighboring subcarriers into a cluster and
use the quantized optimal precoder corresponding to the center subcarrier for all the

subcarriers in that cluster. This method is referred to as clustering.

center subcarrier center subcarrier center subcarrier
iy i -
~ = ~— = —~ = subcarrier index
cluster cluster cluster

Figure 2-5 Clustering
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Suppose that total Ng active subcarriers are divided into clusters as shown in
Figure 2-5. Each cluster has K subcarriers, and the receiver only feedbacks the indices
of precoders corresponding to center subcarriers. Thus, the feedback information can
be reduced to 1/K by clustering. However, because the precoder used for all K
subcarriers within a cluster is the quantized optimal precoder corresponding to the
center subcarrier, the subcarriers near the cluster boundary will experience larger

performance degradation.

2.4.2 Interpolation

To improve the performance of precoding near the cluster boundary, [5] proposes
an interpolation scheme. First, the .receiver obtains quantized optimal precoders
{F(1),F(K+1),..F(N — K + 1)}, wheresK(k) means the quantized optimal precoder
for the ky, subcarrier. Then we send the indices: of them to the transmitter and the
transmitter determines the preécoders for-all subcarriers through interpolation of the
transmitted precoders. Unfortunately, there are two difficulties for the interpolation

scheme.

1. It is not trivial to interpolate the precoders, because the optimal precoder must have

orthonormal columns. After interpolation, the orthonormality may not always hold.

2. As we mentioned at Section 2.3.1, the optimal precoder is not unique. That is, if F’
= Fopt Uy ,where U, is a M x M unitary matrix, F’ is also an optimal precoding
matrix. Because the precoder is calculated independently for each subcarrier, the
unitary matrix U, for each subcarrier is also arbitrarily determined. However, the
choice of unitary matrix U, has a substantial influence on the performance of an

interpolator.
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Based on these observation, [5] proposes the following interpolation algorithm.

Z(iK +m) = (1-c, )F(iK + 1)+ ¢, F((i + DK + Q, (2-32)

F(iK +m;Q,) = Z(iK + m){Z'(iK + m)Z(iK + m)}_% (2-33)

where F(N+1) = F(1) , and Q, is a M x M unitary matrix. ¢, =(m-1)/K,
1<m< K. We can see that (2-32) is simply a linear interpolator with an additional
matrix Q,. After interpolation, a projection is then required. In equation (2-33), F is

the projection of Z into U(N,,M) with respect to the Frobenius norm, and thus it

ensures that the orthonormality will hold for the precoder after interpolation. The role

of the unitary matrix Q, is to solve the non-uniqueness problem. Q, can be found

in number of ways, such as maximizing the capacity

Q, = argmax iCapacity(f?(iK +m;Q)) (2-34)

QECQ M=l

where Cq 1s a codebook forunitary matrix Q,. Note that, a large size of Cq will
cause a higher computational complexity for the search of the best Q, and more
feedback data (for sending the information about Q,). In [5], a suggested codebook

for Q; which contains 4 codewords is shown below:

ol Lo 3 510 -

Clustering and interpolation both exploit the correlation between neighboring
subcarriers. If the channel has a large coherent bandwidth, the data amount for

feedback can be significantly reduced by clustering scheme. The interpolation scheme
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proposed in [5] can further improve the performance of clustering. However, due to
the difficulties we mentioned above, the interpolation scheme requires additional
feedback information, and also higher computational complexity. When the coherent
bandwidth becomes small, these techniques will apparently suffer performance

degradation.

2.5 Proposed codeword search method

For conventional codebook-based precoding, an exhaustive search is required to
find the optimal codeword in the codebook. That is, if we have a codebook with L
codewords (size = L), we then need to conduct the same operation for L times to find
the optimal codeword. At thisisection, we.propose a codeword search method which

can reduce about 80% searching:complexity with acceptable performance loss.

We use a sub-optimal codeword selection.criterion which minimizes the chordal
distance (Equation 2-20) between the chosen codeword and the ideal (un-quantized)

optimal precoder.

F= arg min dchordal {F| > Fopt } (2'36)

FeC

The simulation shows that this criterion has performance comparable to MSV-SC.
With this distance-based codeword selection criterion, a low complexity codeword

search method becomes possible.
The proposed codeword search method is composed of the following two steps:

1. Codebook partition: Given any appropriately designed codebook with L

codewords, we first partition this codebook with a simple distance comparison
24



algorithm. After this partition step, the codebook will have a tree structure. Note
that, this is an off-line step.

2. Codeword searching: With the partitioned codebook known by both the

transmitter and the receiver, a tree searching algorithm can be performed to find an

optimal codeword within this partitioned codebook.

In codebook partition step, we first find two codewords which have maximum
chordal distance. This can be done with an exhaustive search manner. With the two
farthest codewords, the other codewords then can be partitioned into two groups with

a simple distance comparison algorithm. Assume X is a codeword,

If dchordal (A: X) < dchordal

(B,X), then X will be referred to group a.

If dporga (A, X) > d g (B, X)) , then X will be referred to group b.

X
o o °i
of 9 o©
o O b0 o
oito ©
A ® O . C o @B
O O O',:o o O
o
OO : O
» O O
O o}
Group a \ Group b

Figure 2-6 Partition the codebook into two groups

Then, we can further find two farthest codeword C and D in group a, and two
farthest codeword E and F in group b. Following the distance comparison algorithm,

group a can be further partitioned into group ¢ and group d, and group b can be
partitioned into group € and group f.
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Figure 2-7 Partition the codebook into 4 groups

Finally, the codebook will be partitioned into 2, 4, 8, ... ,2k groups , where the
integer k can be defined as theiSearching depth. The farthest codewords within each
group must be recorded duting the partition process. Note that groups at depth k are

all contained in groups at depth k-1;-in other words, the partitioned codebook has a

nested structure.

Figure 2-8 shows an example of codebook partition with codebook size = 64.

The maximum searching depth k is 3. Note that this codebook is partitioned unequally

(number of codewords in each group at same depth is not equal).

30 34

Figure 2-8 Example of codebook partition

After codebook partition step, the tree structure is determined and stored. In
online codeword search, we can then perform a tree search algorithm to locate the
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optimal codeword within this partitioned codebook. First, we calculate the ideal
optimal precoder F,p by SVD of channel matrix H. Then, we find a codeword F;

which has minimum chordal distance to Fop. The first step is to compare

deporaar (A, Fop) and  dy0 (B, E,, ), where A and B are two farthest codewords

within the codebook (the largest group). If Fp is nearer to the codeword A, the

optimal codeword is assumed to be within group a. Then, further compare

enoraar (C: Fy) and dyi0 (D, F,, ) , where C and D are two farthest codewords

within the group a. If F,y is nearer to the codeword C, the optimal codeword is
assumed to be within group C. Repeat this process, and finally we can find the optimal

codeword. Using the algorithm, we can significantly reduce the searching complexity.

Assume a codebook can, be partitioned equally at each level, then we can easily

express the complexity of the proposed codeword-searching algorithm as follows:
, . L
Searching complexity =2k + o (2-37)

Table 2-1 shows the searching complexity for L = 64 and L = 128.

Searching complexity
L=64 | L=128
k=0 64 | 128
k=1 34 | 66
k=2 20 | 3
k=3 14 24
k=4 12 | 16
k=5 12 | 14
k=6 12 14
k=7 14

Table 2-1 Searching complexity for equally partitioned codebook

Note that k = 0 corresponds to exhaustive search. Note that this complexity indicates
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the number of chordal distance calculations. Although it’s difficult to partition the
codebook equally, simulation shows that the average searching complexity with

unequally partitioned codebook will approach to this result listed in table 2-1.

One problem with the proposed algorithm is that codeword searching error will

occur under some situations.

Fi ‘I:FOpt
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Figure 2-9/Codeword searching error

As we show in Figure 2-9, the codeword F; has minimum chordal distance to
ideal optimal precoder F,,. However, the optimal codeword is determined in the
wrong group. This is because F; and F,p are too close to the partition edge. In this
case, if we assume searching depth is two, the codeword chosen by tree search

algorithm will be F;, which is a sub-optimal codeword. The codeword searching error

causes performance loss compared to exhaustive search.

Table 2-2 shows the average complexity ratio and average distance error. The
complexity ratio is defined as the complexity of proposed tree search algorithm

divided by complexity of exhaustive search. The complexity of exhaustive search is
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equal to the size of codebook, L. The distance error can be defined as:

d chordal (FJ > Fopt) —d chordal (Fl > Fopt) (2'3 8)

where F; is the exhaustively searched codeword , and Fj is the codeword chosen by
tree search algorithm. If there is no codeword searching error, the distance error will

be zero.

Average complexity ratio ' Average distance error
| L=64 ‘ L=128 | | L=64 ‘ L=128
k=3 0.2177 ‘ 0.1725 k=3 0.0927 ‘ 0.0803
k=4 0.1866 ‘ 0.1257 k=4 0.1333 ‘ 0.1150
k=5 ‘ =5 ‘ 0.1450

0.1099 k
Table 2-2 Searchingicomplexity ratio and distance error

From table 2-2, we can realize® that increasing the size of codebook, L, will
decrease the complexity ratio and distance-error.’ For instance, if L = 64, k = 3, the
complexity for tree search algorithm only requires 21.77% of that for exhaustive
search. If we increase L to 128, the complexity ratio can be further reduced to 17.25%.
Besides, increasing the searching depth k will decrease the complexity ratio but cause
higher distance error. For L = 64, k = 3 or k = 4 will be good choices. Further increase
the searching depth will not reduce complexity but will incur serious performance loss

(high probability of codeword searching error).

In order to lower the probability of codeword searching errors, we can modify
the original slightly. As the codebook partition method described above, we first find
two codewords which have maximum chordal distance. The other codewords then can

be partitioned into two groups with a modified distance comparison algorithm.
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Figure 2-10 Modified codebook partition

Define a new factor called the overlap-thréshold, denoted as ¢ . Assume that X is

a codeword,

If |0 gporgar (A X) = dgporae (B, X5, then Xwill be referred to both groups, a and b.

If |dChordal (A, X) = dora (B,X)| > ¢, then the algorithm is unchanged:

drorgar (A5 X) < d 0 (B, X) , then X will be referred to group a.

A cnorgar (A5 X) > d 040 (B, X)), then X will be referred to group b.

As shown in Figure 2-10, X is the nearest codeword to the ideal optimal precoder
F,,.. However, with the original partition method, they will be partitioned into
different groups. It will cause codeword searching error when performing tree search
algorithm. For the modified partitioned method, we refer X to both groups and thus
avoiding the error. Obviously, a higher overlap threshold will result in a higher

searching complexity since each group size is enlarged. Table 2-3 shows the average
30



complexity ratio and average distance error with this modified codebook partition

algorithm for € = 0.05

Average complexity ratio Average distance error
L =64 L=128 L=64 L=128
k=3 0.3199 0.2528 k=3 0.0520 0.0462

4 0.0723 0.0642

k=4 0.2663 0.1878 k

Table 2-3 Searching complexity ratio and distance error with modified codebook partition algorithm

Compared to table 2-2, we can find that the average distance error is smaller for
different codebook size and different searching depth. However, the complexity ratio
increases significantly, also. Thereby, how to choose an appropriate overlap threshold

becomes a critical problem.
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Chapter 3 Time domain CSI feedback

In this chapter, we propose time domain CSI feedback methods. Under some
channel conditions, the proposed time domain CSI feedback method only requires a
small amount of data. Even in the application of procoding, our method is comparable
to the conventional precoder feedback scheme such as clustering. For time varying
channels, we incorporate a differential pulse code modulation (DPCM) scheme in our
time domain CSI feedback method such that the required feedback data can be further

reduced.

3.1 Least squares:method

We begin with an example of a4 by 2 MIMO channel model shown in Figure
3-1. As we can see, the MIMO ¢hannel contains 8 single input single output (SISO)
channels. We refer each SISO channel from one transmit antenna to one receive

antenna as a Tx-Rx channel pair.

Figure 3-1 4 by 2 MIMO channel model

32



Figure 3-2 shows a typical time domain channel response for one Tx-Rx channel

pair.

a,+b,j
ay+b,j 33tPbJ
a,+b,j
ag+bgj
? ag+bgj
Q
P, P, P, P, P, P, Delay

Figure 3-2 A time domain channel response

A simple way to quantize the time domain channel response is to directly
quantize the complex value and delay for each channel tap, individually. That is,
quantize a;, by, az, by, ..., as, be, P1,Passs Po , if there are 6 channel taps. However, it
may require large amount of.quantization-bits. Therefore, we propose to quantize the
overall time domain channél response, jointly. For this purpose, we first shorten the
channel taps by removing insignificant-taps for each Tx-Rx channel pair. Then, we

sort the shortened channel based on magnitude, as shown in Figure 3-3.
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Figure 3-3 Shortening and sorting the time domain channel response

After shortening and sorting, the magnitude of time domain channel response

will have high correlation between each channel tap. Thus, we can apply least squares
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(LS) to fit these sorted taps with a straight line or a higher-order polynomial curve and
thus avoid the quantization of each channel tap. Notice that, the delay information is
quantized before shortening. The delay information fed from receiver back to
transmitter can be used to recover the original taps before shortening and sorting.
Besides, the sorting operation is based on magnitude, thus the phase information must
be quantized with other scheme. Because the phase for each tap is i.i.d. and has

uniform distribution, we simply apply an uniform quantizer for the phase information.

Least squares (LS) method is a well-known curve fitting method. Given N
observed data, we can find a straight line or a higher-order polynomial curve to fit
these data with a minimum squared errors. Figure 3-4 shows an example of linear

fitting:

Figure 3-4 First-order polynomial least squares fitting

We express the N observed real-valued data as:

-1

The LS method finds a parameter vector 0 to minimize the squared error vector

J(8), which can be written as:

J(0)=(X-K0) (X-KB0) (3-2)
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where KO is the fitting vector, and K is a known observation matrix. For the

first-order polynomial fitting, K can be written as:

1 N-1I

For the second-order polynomial fitting, K can be written as:

1 0 0*

1 1 1?
K= ,

1 N-1(N-1)7?

(3-3)

(3-4)

If the gram matrix K"K _is'non-singular, then the least squares solution will be:

0. =(K'K)"K'X

(3-5)

Figure 3-5 shows an example.of the first-order polynomial fitting for 6 sorted

channel taps.
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Figure 3-5 First-order polynomial fitting for sorted channel taps
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A second-order polynomial fitting for 6 sorted channel taps is shown in Figure

3-6.
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Figure 3-6 Second-order polynomial fitting for sorted channel taps

Obviously, the second-order polynomial fitting has higher accuracy (lower

squared-errors) compared tothe first-order-polynomial fitting.

Now we can briefly describe the time domain feedback scheme with LS fitting

method as follows:

1. Quantize the delay and phase information first. Then, shorten and sort the channel

taps using their magnitude for each Tx-Rx channel pair.

2. Apply LS method to fit the sorted magnitude response for each Tx-Rx channel pair.

3. Feedback the quantized LS parameters together with the quantized phase and delay

information to the transmitter side.

At transmitter, we can reconstruct the time domain channel response using the

LS parameters, quantized phases, and delay information. If precoding is conducted at
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transmitter, the precoding matrix for each active subcarrier can be obtained by
performing singular value decomposition (SVD) on the reconstructed frequency

domain channel response.

3.2 Discrete cosine transform method

In this section, we propose another time domain CSI feedback scheme using
discrete cosine transform (DCT). Assume that x(n) is a real-valued sequence. A

one-dimensional DCT can be expressed as follows.

N-1
y() =w(k)) X(n)cos%&_l)k, 0<k<N-1
n=0

JI/N k=0 (3-6)

where w(k)=
Y {\/2/N I€k<N-1

It has been shown that-many.physical signals can be accurately reconstructed
using only a few of their DCT coefficients: Therefore, it is useful in data compression.

We can easily extend the one dimensional DCT in (3-6) to two-dimensional DCT as:

M N z@2m+1)p  z@2n+l)g 0<p<M-I
B =a« cos cos ,
P P qu::,)nZ:;,Ann 2M 2N 0<g<N-1

q

here JI/M, p=0 JI/N, q=0
o, = ao. =
P V2/N, 1<q<N-1

(3-7)

Comparing (3-6) and (3-7), we can see that the two-dimensional DCT is
equivalent to two one-dimensional DCTs, performed along one dimension followed
by another DCT in the other dimension. Two-dimensional DCT is a very common
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method for image compression.

As discussed in Section 2.1, shortening and sorting for each Tx-Rx channel pair
will generate correlations between the channel taps. Therefore, a joint quantization
strategy such as LS method proposed in the previous section can be applied to
quantize the channel taps with only a few parameters. Note that, each Tx-Rx channel
pair is quantized independently in the LS fitting method. However, correlations also
exist between different Tx-Rx channel pairs. For small separation distance between
the receive antennas, the channel pairs from one transmit antenna to different receive
antennas are often very similar. Therefore, this inspires us to apply a two-dimensional

quantization scheme such as DCT to quantize multiple Tx-Rx channel pairs.

After shortening and sortihg to each Tx-Rx channel pair, we can collect the
sorted taps for all channel pairs and regard them as a two-dimensional response. An

example is shown in Figure3-7.

Magnitude

1] Tap index

Tw-Rx channel pair index

Figure 3-7 Sorted taps for the entire MIMO channel
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Now we can perform two-dimensional DCT to the sorted magnitude response in

Figure 3-7. The transformation result is shown in Figure 3-8.

TR channel pair index Tap index

HARTE % .
- Aol R R
~Figure 3-8 Two-dimensional DCT
5 [ ."-’. - | V:II

para}.meters at positions (1,1) and (1,2). We

Apparently, there are two sigﬁiﬁcant

can extract these two parameters to reconstruct the sorted magnitude response by

inverse two-dimensional DCT, as shown in Figure 3-9.

Magnitude

Tx-Rx channel pair index

Tap index
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Figure 3-9 Reconstructed magnitude response with two DCT parameters

Since the response in Figure 3-9 is reconstructed with two most significant
parameters, distortion is unavoidable. Figure 3-10 shows the reconstructed sorted

magnitude response with six most significant parameters. Distortion is obviously

lowered compared to that in Figure 3-9.

o 0 Tap index
Tw-Rx channel pair index

Figure 3-10 Reconstructed magnitude response with six DCT parameters

We briefly describe the proposed time domain feedback scheme with DCT as

follows:

1. Quantize the delay information and phase information first. Then, shorten and sort

the channel taps based on magnitude for each Tx-Rx channel pair.

2. Apply DCT to the entire sorted magnitude response, and extract the most

significant parameters.

3. Feedback the quantized DCT parameters together with the quantized phase and
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delay information to the transmitter side.

3.3 Differential pulse code modulation

Differential pulse code modulation (DPCM) is a technique which is often used in
speech coding or audio coding. It exploits the correlations between input signals and
the quantization bits can be reduced significantly compared to conventional pulse
code modulation (PCM). Conventional PCM is an instantaneous quantization scheme.
That is, to quantize the signal at different time independently. When the signal to be

quantized varies slowly, conventional PCM is not efficient.

error {

n-2 n-1 n Time

Figure 3-11 Quantization to the prediction error

The main idea of DPCM is to quantize the prediction error of signal, rather than
the instantaneous signal itself. For example, assume we have exact value for S(n-2)
and S(n-1), then S(n) can be predicted with a linear predictor. Let the predicted signal
be S(n). If the signal varies slowly with time, the prediction error S(n)—S(n) is
often very small and can be quantized efficiently. Figure 3-12 shows the block

diagram of a simple DPCM scheme:
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S(k) + e(k) _ e, (k) +_ S(k).
: Q) -

»

P S,(ky=h-Stk=1) S, (k)=h-S(k-1) P

Figure 3-12 Open-loop DPCM

It is an open-loop DPCM scheme, where P denotes predictor, Q denotes the
quantizer, and k is the discrete time index. However, this open-loop scheme will cause
an accumulation of reconstruction errors. At transmitter, the prediction error e(k) can

be expressed as:

e(k) = S(k)—S; (k) (3-8)
where S(k) is the input signal, and §T (k) " isithe prediction signal at transmitter.

S; (k)=h-S(k—1) (3-9)

From (3-8) and (3-9), we can write the input signal S(k) as:
S(k)=h-S(k-1)+e(k) (3-10)

Iterating (3-10) for k =1,2,...K, we have

S(1)=h-S(0) +e(1)
S(2)=h-S(1)+e(2) =h>-S(0) +h-e(l) +e(2)
: (3-11)

S(K)=h"-S(0)+ > _h'-e(K -i)

i=0
Equation (3-11) expresses the input signal S(K) in terms of the initial value S(0)
and prediction error e(k)’s. Now we turn to the receiver side. At receiver, the
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reconstructed signal §(k) can be written as:
S(k) =Sz (k) +e,(k) (3-12)

where §R(k) is the prediction signal at receiver and e (k) is the quantized

prediction error. That is,

S.(k)=h-S(k-1) (3-13)

e (k) =e(k)—q(k) (3-14)

where q(k) denotes the quantization error. Using (3-13) and (3-14), we can rewrite

(3-12) as:

S(k)=h-S(k—1)+e, (k)

E (3-15)
= RESK=1) +e(k) — q(k)
Iterating (3-15), for k =1,2,...K, we have
S(1)=h-S(0)+e()—q(1)
$(2)=h*-$(0)+h-[e() —q(D)]+[e(2) - q(2)]
: (3-16)

S(K)=h" -§(0)+§h‘ Je(K=i)—q(K =i)]

i=0

Equation (3-16) express the reconstructed signal §(k) in terms of the initial
value §(0) , prediction error e(k)’s, and quantization error q(k)’s. Assume that

S(0) = §(O). Comparing (3-11) and (3-16), we can write the reconstruction error
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S(k)—S(k) as:

S(k)—§(k):k§:hi ek —i) (3-17)

Therefore, for an open-loop DPCM scheme, the reconstruction error will accumulated,

as shown in equation (3-17).

In order to solve this problem, a closed-loop DPCM shown in Figure 3-13 is

often applied:
SW) * o eh) a4 S(k)_
B3 L= | +\/
e, (k) S(k) P
Stk) + 4F
P
i~ P ~
S(k) S(k)

Figure 3-13 Closed-loop DPCM

For closed-loop DPCM, the prediction signal at transmitter and that at receiver

are made identical. That is, S~R(k)=S~T (k)=S(k). For this purpose, we need to

reconstruct the signal §(k) at transmitter first, and predict the signal S(k) based

on the previous reconstructed signal. We can express the reconstruction error

S(k) — S(k) for closed-loop DPCM as:

S(k) = S(k) = S(k) —[S(k) +&,(K)]

= S(k) ~[S(k) +e(k) —q(k)] (3-18)
= S(k) ~[S(k) —e(k) +e(k) ~q(k)]

=q(k)
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From (3-18), we can find that the reconstruction error at time = k is identical to that at
time = k. Therefore, for a closed-loop DPCM, the reconstruction error accumulation

will not happen.

So far, we have described how to apply DPCM to quantize a slowly-varying
signal. In many scenarios, the variation of channel taps is slow. We can then apply the
DPCM method to further reduce the feedback data. Here, we use an example to
demonstrate the effectiveness of the method. We use the spatial channel model (SCM)
[12], provided by 3GPP, as our time-varying channel model. The SCM channel model
gives 6 non-zero taps for each Tx-Rx channel pair and their values change with time.

For our application, we let the speed for mobile station be 20 km/hr.

We assume that the channgl is quasi-stationary, which means that the channel is
time-invariant in one OFDM-symbol.“For our-system, one frame consists of 10
OFDM symbols. For each frameonly the €SI for the first OFDM symbol is fed back
to the transmitter. Besides, the delay for each tap is assumed to be time-invariant. That
is, only the magnitude and phase information of the first OFDM symbol are fed back

to the transmitter for each frame.

Now we can combine the DPCM scheme with the time domain CSI feedback
schemes described in Section 3.1 and 3.2. The parameter for LS or DCT method now
can be considered as a signals varied slowly with time. Figure 3-14 and 3-15 show a

variation of the two LS parameters A and B for linear fitting (Y=A+BX).

45



Farameter A

Parameter B

-0.05

-0.1

-0.15

Al

r
|I.l.- ____________ 4

-0.2
0

200
DFD symboal inex

Figure 3-14 Variation of parameter A
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Figure 3-15 Variation of parameter B

Figure 3-16 shows the phase variation for one tap.
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radians

Figure 3-16 Variation of phase for one tap

OFDI symbol indsx

Then, we quantize the parameters and phases by DPCM scheme with a linear
predictor. We give two bits for each frame to quantize one parameter. Figure 3-17 and
3-18 shows the reconstructed parameters-Asand B at transmitter.

02 j j ;

—a  Unguantized paramster
01551 —* Reconstructed parameter at Tw. |- e ememanes 4

0 . 1 |n|l

: . | . |

\ | '”“
] I oenenneansae |‘ w
g 5 | |

0,05 f----- Sy - i --------------------- fu -------------------- .
“ H H

Parameter A

i i
0] e «. |.- e e .

-0.15 foeeneanenee 1] S S S -
I : :

Yy i i i
0 50 100 150 200
OFDM symbol indesx

Figure 3-17 Reconstructed parameter A at Tx.
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Parameter B
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—=a  Unquantized parameter ‘ H
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i ‘ E

i il

—# Reconstructed parameter at Tx.
OFDM symbol index

Figure 3-18 Reconstructed parameter B at Tx.

In Figure 3-19, we show i:ile-re_corglstruéted- phase with the one-bit DPCM. Figure
" =G %

3-20 shows the reconstructe_d.'bhase wij;hitﬁe tWo-ﬁit DPCM.

| ] i

radians

OFDM symbol index

Figure 3-19 Reconstructed phase at Tx. (1 bit)
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radians

—a  Unguantized phase
—* Reconstructed phase at Tx.

OFDM symbol indesx
Figure 3-20 Reconstructed phase at Tx. (2 bits)

We now summarize thé time-domain “feedback scheme with time-varying

channel as follows: = . .

1. Shorten and sort the channél taprs‘rbasedr on Iﬁagnitude for each Tx-Rx channel pair.
2. Apply LS method to fit the sorted magnitude response for each Tx-Rx channel pair.

3. For the first two frames, the LS parameters for each channel pair and phases for
each tap are quantized with conventional PCM and sent back to the transmitter.
After that, with a linear predictor, we can apply DPCM to quantize the prediction

error of the time-varying parameters and phases.

4. Feedback the quantized prediction error of LS parameters for and phases to the

transmitter side.
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Chapter 4 Simulations

4.1 Precoding

In this section, we report some simulation results to evaluate the performance of
the proposed codeword search method. A simplified MIMO-OFDM system with
precoding is constructed. Two independent data streams (M = 2) are sent over a4 x 2
system (N; =4, N, = 2). The QAM size is 16, the FFT size is 512, and the cyclic prefix
(CP) size is 64. For simplicity, an uncoded system and a basic zero forcing (ZF)
receiver are conducted. Besides, we assume that perfect channel estimation can be

obtained at receiver. Also, the feedback chanel is error-free and has zero delay.

1]
10
47 S e
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m
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2] —— 2%2 open-loop spatial multiplexing 222
1 —=— &2 Precoding with perfect CSIT :
10'5 I |
10 15 20 25
SHR{dB)

Figure 4-1 BER comparison for 2x2 open-loop SM and 4x2 precoding with perfect CSIT
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We assume that the channel experiences a block Rayleigh fading, and each
Tx-Rx channel pair (one SISO channel) has 6 taps and fixed delay [1, 22, 23, 26, 51,
56]. Figure 4-1 shows BER comparison for 2 x 2 open-loop spatial multiplexing (SM)

system and 4x2 precoding system with perfect CSI at transmitter (CSIT).

As we can see, precoding can significantly improve the system performance.

W 10
m
107
642 Precoding with perfect CSIT :
" —&— 42 Precoding with MSV-SC Tt
10° i i
10 15 20 25
SNR(dB)

Figure 4-2 BER comparison for precoding with perfect CSIT and precoding with MSV-SC (L=64)

Figure 4-2 shows the performance comparison between codebook-based
precoding and ideal precoding. For codebook-based precoding, the codebook size L is
64 and the codeword selection criterion is MSV-SC. Exhaustive search is conducted

to find the optimal codeword for each subcarrier.

For the proposed codeword search method, we use a sub-optimal codeword
selection criterion which minimizes the chordal distance (See (2-20)) between the
chosen codeword and the ideal (un-quantized) optimal precoder (See (2-36)). Figure

4-3 shows the BER performance comparison between MSV-SC and the minimum
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chordal distance selection criterion. We can see that the two selection criteria have

comparable performance.

T —A&— MSV-SC
"I —&— Minimum Chordal Distance-SC

10 15 20 25
SHR{dB)

Figure 4-3 BER comparison forMSV-S€ and. minimum chordal distance-SC

Figure 4-4 shows thes BER performance for the proposed codeword search
method. The minimum chordal distance selection criterion is used, and the codebook
size L is 64. As discussed in Section 2.5, increasing the search depth k will decrease
the searching complexity, but the probability of codeword searching error will also
increase. From Figure 4-4, we can see that the proposed codeword searching method
with k = 3 has only about 1dB performance loss compared to exhaustive search. If we

increase searching depth k to 4, the performance will further degrade about 1 dB.
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Figure 4-4 BER comparison between exhaustive search and tree search (L=64)
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Figure 4-5 BER comparison between exhaustive search and tree search (L=128)

Figure 4-5 shows the BER performance for the proposed codeword search
method with codebook size L = 128. Comparing Figure 4-4 and Figure 4-5, we can

find that increasing the codebook size will decrease the probability of codeword
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searching error, and thus improve the performance.

As discussed in Section 2.5, using a modified codebook partition algorithm with
the new factor &, called overlap threshold, can lower the probability of codeword
search error. Figure 4-6 shows the BER performance for the modified codebook
partition algorithm with L=64, ¢ =0.05. Notice that & =0 corresponds to original
codebook partition algorithm. With the factor ¢ =0.05 , the performance of the
proposed tree search algorithm will be comparable to the exhaustive searching

scheme.

BER

--| —8— Exhaustive search

| —&—Tree searchwithdepth k=3 £=0 |-l X1 L

—#*— Treg searchwith depthk =3 £¢=005| : x

10 i i p

10 15 20 25
SNR(dB)

Figure 4-6 BER performance for modified codebook partition algorithm with ¢ =0.05 (L=64)

Figure 4-7 shows the BER performance for the modified codebook partition

algorithm with L=128. The result is similar to the case for L = 64.
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Figure 4-7 BER performance for modified codebook partition algorithm with ¢ =0.05 (L=128)

4.2 Time domain CSl feedback

In this section, we report some simulation results to evaluate the performance of
the proposed time domain feedback methods described in Chapter 3. Although the
channel information can be used in many transmitter processing schemes, we only
consider the application of precoding. We use two different delay profiles for

comparison:

1. Large delay spread -2 [ 1, 22, 23, 26, 51, 56 ]

2. Median delay spread 2 [ 1, 7, 13, 19, 22,29 ]

To evaluate the efficiency of the proposed time-domain feedback algorithm, we
calculate the total amount of feedback data at each frame. We give each LS or DCT
parameters 5 bits for quantization. As the phase of each tap, it is given 3 bits for
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quantization, and the delay is 6 bits. Then, for feedback scheme with the first-order
polynomial LS fitting, the magnitude information needs 5x2x(4x2) = 80 bits, the
phase information needs 3x6x(4x2) = 144 bits, and the delay information requires 6x6
X(4x2) = 288 bits. Thus, total feedback data for the first-order polynomial LS scheme
requires 512 bits. For DCT scheme with two parameters, the quantization bits
required for magnitude can be reduced to 5x2 = 10 bits, and the total feedback data

bits can be reduce to 442 bits.

We use the clustering technique for comparison. The cluster size is set as 8 and
the codebook size is 64. So, each precoder index requires 6 bits. Assume that the
number of active subcarriers is equal to the FFT size, then the total feedback data bits
will be (512/8)x6 = 384 bits. We summarize the required total feedback data bits for

different schemes in table 4- I

Scheme LS DCT Clustering
bits 512 442 384

Table 4-1 Total feedback data bits for different schemes

Figure 4-8 shows the BER performance for time domain CSI feedback scheme
with the LS method. A large delay spread model is chosen for simulations. We can see
that the LS fitting scheme has about 2dB performance loss compared to precoding
with perfect CSIT. Besides, increasing the order of the fitting curve will not give a
substantial performance gain. This is because we quantize each phase with only 3 bits;
although we have accurate magnitude, the quantization error for phase information

still results in performance degradation.
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Figure 4-8 BER performance for the CSI feedback scheme with the LS method

Figure 4-9 shows the BER performance for time domain CSI feedback scheme

with the DCT method. A large delay spread model is also chosen.

o] —=— 42 Precoding with perfect C3IT |- =
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Figure 4-9 BER performance for the CSI feedback scheme with the DCT method
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As we can see the DCT scheme has about 2.5 dB performance loss compared to
precoding with perfect CSIT. As discussed above, increasing the number of extracted

parameters of DCT will not give substantial performance gain.

Now we compare the time domain CSI feedback methods with the conventional
precoder index feedback scheme, clustering. Figure 4-10 shows the BER comparison
between different feedback schemes under large delay spread model. From Figure
4-10, we can see that clustering technique suffers significant performance degradation.
This is because a large delay spread indicates a small coherent bandwidth, and the
rapid variation of the frequency response. This will let the subcarriers near the cluster

boundary suffer higher error probability.
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SNR{dE)

Figure 4-10 BER comparison under large delay spread for different feedback schemes

Figure 4-11 shows BER comparison between different feedback schemes under
median delay spread model. The clustering technique has significant performance

improvement. Besides, it is worthwhile to notice that different delay spread model

58



will not affect the performance for time domain CSI feedback schemes.
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Figure 4-11 BER comparison under median-delaysspread for different feedback schemes

For time varying channel, a DPEM scheme can be included to further reduce the
amount of feedback data for"the proposed time domain CSI feedback methods. As
mentioned, we use the spatial channel model (SCM) for the time-varying channel
model. The relevant assumptions and settings have been described in Section 3.3.
Since we assume that the delay for each tap will not change with time, only the

magnitude and phase information will be fed back to the transmitter.

Figure 4-12 shows the BER performance of a 4 x 2 MIMO-OFDM precoding
system with the proposed time varying CSI feedback scheme. Here, the LS method is
combined with the DPCM scheme. In the simulation, a first-order polynomial LS
fitting (Y = A+BX) is applied. For each frame, if we quantize the prediction error of
one parameter with 2 bits and quantize the prediction error of one phase with 1 bit, the

total amount of feedback data will be 2x2x(4x2) + 1x6x(4x2) = 80 bits. If we increase
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the quantization bits for one phase to 2 bits, the total amount of feedback data will

become 128 bits.

BER

-{ —&— Unquantized parameters and phases at each frame f---------------->
| ——DPCM{128bitsy L]
—&— DPCM ( 80 bits

10_4 1 1
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Figure 4-12 BER performance for time domain €SI feedback with LS and DPCM

Under the assumption of a slowly-varying channel (MS speed is 20km/hr),
Figure 4-12 shows that the performance of the LS and DPCM combined scheme can
approach to that of the un-quantized LS method. For the conventional PCM, if each
parameter is quantized with 5 bits and each phase is quantized with 3 bits, the total
amount will be 224 bits. From Figure 4-12, we can find that only 80~120 quantization

bits are required with the DPCM scheme.
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Chapter 5 Conclusions

In this thesis, we consider the precoder search and time domain CSI feedback
problems. For the precoder search, we propose a low-complexity precoder searching
algorithm, which consists of a codebook partition step and a codeword searching step.
Compared to the exhaustive search, the proposed searching method can reduce about
80% searching complexity with acceptable performance loss. The performance of the
proposed searching method can be further improved by modifying the codebook

partition algorithm, but the complexity will also increase.

For time domain CSI feedback, we propose two methods for efficient feedback
data compression. Under someichannel conditions, the proposed method only requires
a small amount of feedback®data. Even in‘the application of precoding, our method is
comparable to the conventional ‘precoder-feedback scheme such as clustering. For
realistic time-varying channel,” weralso propose to use a differential pulse code
modulation (DPCM) scheme in our method such that the required feedback data can

be further reduced.

For precoding, we only consider how to find an optimal codeword within a
constructed codebook. Directly designing and constructing an appropriate codebook
in which the optimal codeword can be found fast and easily may serve as a potential
research topic. For the CSI feedback, the proposed time domain method can work
well in typical wireless channels. For channels with a lot of nonzero taps or large
delay spread, our method may still result in a large amount of total feedback data.
Thereby, how to exploit the spatial and time domain correlation and to well quantize

the time domain MIMO channel response remains to be another potential topic for
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future research.
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