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應用於 MIMO-OFDM 系統之前置編碼搜尋與時域通道資訊

回傳 

Precoder search and time domain CSI feedback in 

MIMO-OFDM systems 
 

研究生：徐子瀚                 指導教授：吳文榕 教授 

 

國立交通大學電信工程學系碩士班 

 

摘要 
 

前置編碼(Precoding)，為一項能夠有效提升 MIMO-OFDM 系統傳輸效能之技

術。在實際的系統中，前置編碼矩陣會先選定，並且只回傳該選定矩陣之編號。

然而，候選之矩陣數量可能很多，因此需要高度計算量來搜尋出最佳的前置編碼

矩陣。在本篇論文中，為了解決此問題，我們首先提出一個低複雜度的前置編碼

搜尋演算法。與完全搜尋(exhaustive search)比較，此方法可以降低 80%左右

的搜尋複雜度，並且其效能損失是在可以接受的範圍之內。此外，在 MIMO-OFDM

的系統中，通道資訊(Channel state information, CSI)常常能起到很大的作

用。然而，這些必須從接收端回傳的 CSI，通常需要相當多的資料量。在本篇論

文的第二部份，我們提出一個時域通道資訊回傳方法來降低回傳資料量。在某些

通道情況下，此方法只需要少量的回傳資料。最後，針對時變的通道環境，我們

提出一個機制，將誤差脈衝編碼調變(Differential Pulse Code Modulation, 

DPCM)應用於時域通道資訊回傳方法。由此，回傳的資料量可以更加地減低。 
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Precoder search and time domain CSI feedback in 

MIMO-OFDM systems 
 

Student: Tzu-Han Hsu          Advisor: Dr. Wen-Rong Wu 
 

Department of Communication Engineering 
National Chiao-Tung University 

 

Abstract 
 

Precoding is an effective technique improving the performance of 

MIMO-OFDM systems. In practical systems, the precoding matrices are 

pre-determined and only the index of the selected matrix is fed back. Since the 

number of precoding matrices may be large, the search for the optimum precoder 

requires high computational complexity. In this thesis, we first propose a 

low-complexity precoder searching algorithm to solve the problem. Compared to the 

exhaustive search, the proposed searching method can reduce about 80% searching 

complexity with acceptable performance loss. Channel state information (CSI) is 

useful in MIMO-OFDM communication systems. However, the information has to be 

fed back from the receiver and this will requires a large amount of data. In the second 

part of the thesis, we propose a time domain CSI feedback scheme to lower the 

feedback data bits. Under some channel conditions, the proposed method only 

requires a small amount of feedback data. Finally, for time-varying channels, we 

propose to use a differential pulse code modulation (DPCM) scheme in our time 

domain CSI feedback method such that the required feedback data can be further 

reduced. 
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Chapter 1  Introduction 

In recent years, the demand for high data rate wireless communication increases 

rapidly, e.g., high quality, real-time video and audio data streams. For this purpose, 

many prospective techniques have been considered to increase channel capacity and 

link reliability.  

Multiple-input multiple output (MIMO) transceivers, created by having multiple 

antennas at both the transmitter and the receiver, promises high spectral efficiency and 

high reliability wireless communication links. Different space-time modulation 

schemes can be chosen to exploit the benefits offered by MIMO channels, such as 

space-time coding (STC) and spatial multiplexing (SM). Spatial multiplexing (SM) is 

a simple and practical space-time modulation scheme that allows MIMO wireless 

systems to obtain high spectral efficiency by dividing single bit stream into multiple 

substreams sent over different antennas.  

Unfortunately, SM is sensitive to the condition of the MIMO channels. When the 

channel matrix becomes ill-conditioned, the performance of SM becomes poor. In 

narrowband channels, linear precoding, a technique that pre-multiplying the 

transmitted data streams by a precoding matrix, chosen based on channel information, 

is one way to guard against rank deficiencies in the channel and to improve error 

performance. Optimal precoder under different performance criteria has been 

proposed in [1]. As mentioned, we need full channel state information (CSI) at 

transmitter to conduct precoding. However, when the forward and reverse channels 

are not reciprocal, full CSIT may be may be difficult to obtain due to limited 

bandwidth of feedback channel. Thus, a codebook-based limited feedback precoding 
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scheme is often used. The main idea is that the receiver only sends the binary index of 

optimal precoder chosen from a finite set of precoding matrices, called codebook, 

known to both the receiver and the transmitter. The codeword selection criteria and 

codebook design criteria are also discussed in [1]. The practical codebook 

construction method used in [1] is described in [3], using the Fourier-based designs. 

The work in [4] proposes a method to recursively quantize the precoding matrix with 

Householder reflection, and the codebook is vector-wise and can be designed using 

vector quantization (VQ) algorithm. 

The precoding technique proposed for narrowband channels can be easily 

extended to frequency selective channels by using orthogonal frequency division 

multiplexing (OFDM). The combination of MIMO and OFDM, known as 

MIMO-OFDM, converts a broadband MIMO channels into a series of parallel 

narrowband MIMO channels, one for each OFDM subcarrier. The codebook-based 

limited feedback precoding scheme can be performed independently at each subcarrier. 

However, in nonreciprocal channels, this requires that the receiver computes and 

sends the index of optimal precoding matrix for every active subcarrier. Thereby, the 

feedback data generally grows in proportion to the number of active subcarriers. To 

solve this problem, some techniques such as clustering or interpolation [5] are 

developed. These methods exploit the correlation between adjacent subcarriers and 

feedback the information about precoding matrices for only a fraction of all 

subcarriers.  

There is another problem in precoding; the receiver must search for the best 

precoder from the codebook for each active subcarrier. Obviously, the searching 

complexity is proportional to the number of active subcarriers and the number of 
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codewords in a codebook. In general, exhaustive codeword searching will require 

large computational complexity. In this thesis, we propose a low complexity 

codeword searching algorithm. For any arbitrary codebook, we first partition the 

codebook with a distance comparison algorithm, and perform a tree search algorithm 

to find the desired codeword. The simulation shows that while the performance is 

only slightly affected, the searching complexity is decreased significantly. 

Apart from precoding, many schemes can be applied in transmitters to improve 

the performance of MIMO-OFDM systems provided the CSI is available. For 

example, we can conduct bit-loading, resource management, multiuser diversity, and 

dirty paper coding. Apparently, if CSI for all subcarrier are fed back, the data amount 

will be very high. Taking the advantage of the sparse nature of wireless channels, we 

then propose a time domain CSI feedback method. The simulation shows that, under 

some channel conditions, the time domain CSI feedback method only requires a small 

amount of data. Even in the application of precoding, our method is comparable to the 

conventional precoder feedback scheme such as clustering. Finally, for realistic 

time-varying channel, we propose a differential pulse code modulation (DPCM) 

scheme in our time- domain CSI feedback method such that the required feedback 

data can be further reduced. 

The rest of the thesis is organized as follows. In Chapter 2, we first review the 

linear precoding scheme, including 1) system model, 2) criteria for precoding, 3) 

codebook design and construction, and 4) limited feedback schemes. At the end of 

Chapter 2, we propose a low complexity codeword searching algorithm. In Chapter 3, 

we propose a time domain CSI feedback method. For realistic time-varying channel, a 

modified time domain CSI feedback applying DPCM is also proposed. In Chapter 4, 
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simulation results are reported and analyzed. Finally, Chapter 5 gives some 

conclusions and potential topics for future works. 

 



Chapter 2  Precoding in MIMO-OFDM 

systems 

2.1  System model 

A simplified block diagram for precoding in MIMO-OFDM transceiver is shown 

below. 

 

Figure 2-1 MIMO-OFDM Transmitter with Precoding 

 

Figure 2-2 MIMO-OFDM Receiver with Precoding 
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The bit stream to be transmitted is first divided into M different bit streams and 

sent into QAM mapper. Each of the M bit streams is then modulated independently 

using the same constellation, e.g. QPSK or 16-QAM. This yields a symbol vector at 

time k as:  

 6

],1 ,2 ,[ T
k k k k Ms s s=s                         (2-1) 

For convenience, we assume that the M data streams are equally-powered and 

independent to each other. That is, 

*[ ]k k ME =s s I                             (2-2) 

The notation  denotes complex-conjugate of matrix A.  *A

The symbol vector sk is then multiplied by an Nt × M precoding matrix F 

(which is chosen as a function of the channel using criteria to be described) producing 

a length Mt vector xk

s
k

E
M k= ⋅ ⋅x F s                          (2-3) 

where Nt is the number of transmit antennas, and we assume that Nt > M. sE  is the 

total transmit energy at time k. Then the symbol xk is sent into the MIMO channel, 

and the received signal, of dimension Nr × 1, can be written as: 

k k k

s
k k

E
M

= ⋅ +

= ⋅ ⋅ ⋅ +

r H x n

H F s n
                    (2-4) 

where H is the Nr × Nt channel matrix and nk is the Nr × 1 noise vector. Nr is the 

number of receive antennas. We assume that the entries of H are independent and 



identically distributed (i.i.d.) and the distribution is CN (0,1). Similarly, the entries of 

nk are also i.i.d. and the distribution is CN (0,N0). 

Here, assume that the channel matrix H can be estimated perfectly, we consider 

two kinds of MIMO receivers: 

1. Maximum likelihood (ML) receiver: 

The ML receiver is the optimal MIMO receiver and is a nonlinear receiver. That 

is, we cannot perform ML decoding with simple matrix operations. The ML receiver 

solves the optimization problem shown below:  

                arg min
M

s

w

E
M∈

= −
s

s r HFs                         (2-5) 

where  is the decoded symbol vector, s Mw is the multidimensional constellation of 

QAM mapping. Therefore, ML receiver needs exhaustive search and that results in 

high computational complexity. 

2. Linear receiver (ZF and MMSE):  

A Linear receiver applies an M × Nr matrix G, chosen according to some 

criterion, to produce the decoded symbol vector , s

k= ⋅s G r                              (2-6) 

We consider two different criteria: zero-forcing (ZF) and minimum mean square 

error (MMSE). It can be shown that the optimum ZF receiver is 

( )+=G HF                              (2-7) 
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where “+” denotes matrix pseudo-inverse. The ZF receiver is a simple linear receiver, 

but it has the noise enhancement problem when signal to noise power ratio (SNR) is 

low. It can also be shown that the optimum MMSE receiver is 

               * * 1 * *0[ M
s

MN
E

−= +G F H HF I F H]                     (2-8) 

The MMSE receiver considers both the noise and the channel effect, and has 

better performance. However, its computational complexity is higher. Note that, if we 

set σ2 = 0, then the MMSE receiver will become a ZF receiver. 

Once the receiver has estimated the channel matrix H, it needs to feed back the 

information to the transmitter such that a precoding matrix can be determined. Two 

different feedback schemes can be chosen: 

1. Directly feedback the quantized channel state information (CSI)  

We can feedback the quantized coefficients of channel response either on 

frequency domain or time domain. The transmitter can then calculate the precoder F 

with some performance criteria. However, when the number of active subcarriers in 

the OFDM system is large, it may not be practical to feed back the frequency domain 

channel response of each active subcarrier. Nevertheless, under the condition that the 

time domain channel only consists of few taps (i.e., sparse channels), the time domain 

CSI feedback may be an efficient and feasible way. The time domain feedback CSI 

method will be described in chapter 3. 

2. Feedback the quantized optimal precoder F

Since only the information about optimal precoder is necessary for the 

transmitter to perform precoding, a reasonable solution is to quantize the optimal 
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precoder Fopt rather than the full channel matrix H. Thus, a codebook-based limited 

feedback scheme is often used. The idea is that the receiver only sends the index of 

optimal precoder chosen from a finite set of precoding matrices, called codebook, 

known to both the receiver and the transmitter. Although the data amount for feedback 

is also proportional to the number of active subcarriers, some techniques such as 

clustering or interpolation can be applied to reduce the total feedback data. 

We have briefly described the system model of MIMO-OFDM precoding system 

at Section 2.1, but we haven’t answered the question that what is the selection 

criterion for optimal precoder. We will do that at Section 2.2. 

2.2  Criteria for precoding 

In this section, we discuss the criteria used for choosing the optimal precoding 

matrix from a given codebook. We will outline the criteria based on the ML receiver, 

or linear receivers such as ZF and MMSE. The criterion for mutual information 

maximization is also included. Using these precoder selection criteria, we will show 

that the optimal un-quantized precoding matrix Fopt for linear receiver is just the first 

M columns of right singular matrix of H. 

1.  ML receiver 

Equation (2-5) indicates the criterion for the ML receiver to optimize. Note that 

for a given channel matrix, the ML receiver will give the minimum-error-rate. Thus, 

we have to find an optimal precoder yielding the minimum the error rate. However, a 

closed-form expression of the probability of symbol vector error is difficult to derive. 

One approach is to use the property that the probability of the symbol vector error can 



be upper bounded when the SNR is high. The bound, called the vector union bound, is 

solely a function of the receive minimum distance dmin,R of the multidimensional 

constellation Mw , which is given by  

1 2 1 2

1 2 1 2

min, 1 2, :

1 2, :

min

min ( )

M

M

R w

s

w

d

E
M

∈ ≠

∈ ≠

= −

= −

s s s s

s s s s

r r

HF s s
                  (2-9) 

Thus, the precoder selection criterion for ML receiver can be approximated by 

picking F from the codebook C using (2-9), 

ML Selection Criterion (ML-SC): Pick F such that 

min,arg max
i

Rd
∈

=
F C

F                           (2-10) 

 

2.  Linear receiver 

․ Zero forcing (ZF)  

Equation (2-7) indicates the ZF linear receiver, and we want to find an optimal 

precoder to minimize the error rate. It was shown in [6] that the SNR of the kth 

substream for ZF receiver is given by  

* * 1
0 ,[ ]

s
k

k k

ESNR
MN −=

⋅ F H HF
                    (2-11) 

where  is entry (k,k) of 1
,k k

−A 1−A . In [6], it is shown that in order to minimize a 

bound on the average probability of symbol vector error, the minimum substream 

SNR must be maximized. However, the substream SNR is often difficult to estimate. 
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For this reason, [6] shows that the minimum SNR for ZF receiver is bounded as 

min 1

2
min

0

min

{ }

kk M

s

SNR SNR

E
MN

λ

≤ ≤
=

≥ ⋅HF
                     (2-12) 

where min{ }λ HF  is the minimum singular value of HF. Therefore, from (2-12), the 

precoder selection criterion for ZF receiver can be approximated by picking F from 

the codebook C maximizing the minimum singular value of HF.  

Minimum Singular Value Selection Criterion (MSV-SC): Pick F such that 

minarg max { }
i

iλ
∈

=
F C

F HF                        (2-13) 

 

․ Minimum mean square error (MMSE)   

Equation (2-8) indicates the MMSE linear receiver, and we want to find an 

optimal precoder to minimize the mean square error (MSE). The MSE matrix can be 

expressed as follows:  

* * 1

0

( ) ( )s
M

E
MN

−= +MSE F I F H HF                 (2-14)         

Therefore, the precoder selection criterion for MMSE receiver can be described 

as picking F from the codebook C to maximize the trace or determinant of MSE 

matrix.  

Mean Squared Error Selection Criterion (MSE-SC):  Pick F such that 

arg min ( ( ))
i

trace i
∈

=
F C

F MSE F                     (2-15) 
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3.  Capacity criterion 

The mutual information for an uncorrelated complex Gaussian source, with a 

channel matrix H, and a precoder matrix F, can be expressed as 

* *
2

0

( ) log det( )s
M

ECapacity
MN

= +F I F H HF             (2-16) 

With this capacity expression, we can state the capacity inspired precoder 

selection criterion as picking F from the codebook C to maximize the mutual 

information.  

Capacity Selection Criterion (Capacity-SC):  Pick F such that 

arg max ( )
i

iCapacity
∈

=
F C

F F                    (2-17)         

Several important results have been proved in [1] and [2],  

(a)  The optimal un-quantized precoding matrix Fopt has unit-norm column 

vectors that are orthogonal to each other. That is, , where  

denotes the set of N

( , )opt tU N M⊂F ( , )tU N M

t × M matrices with orthonormal columns. Therefore, when 

designing the codebook, each codeword  in the codebook must also be contained 

within . In other words, codebook design is just the quantization to the set 

. We will discuss codebook design issues in Section 2.3 

iF

( , )tU N M

( , )tU N M

Let the singular value decomposition (SVD) of channel matrix H be given by 

                                                 (2-18) *= L RH V ΣV
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1

where  is called left singular matrix,  is called 

right singular matrix,  and are both unitary matrices (i.e., 

), and  is an N

( , )t tU N N⊂LV ( , )r rU N N⊂RV

LV RV

* -1 * -,L L R RV = V V = V Σ r × Nt diagonal matrix with { }kλ H  denoting 

the kth largest singular value of H. 

 (b)  The optimal precoder over  for MSV-SC, MSE-SC, and 

Capacity-SC is 

( , )tU N M

                         opt = RF V                            (2-19) 

where RV  is the first M columns of the right singular matrix .  RV

Equation (2-19) is a mathematical result, and we can look at this result from a 

more intuitive way. With SVD, we can easily see that the MIMO channel matrix can 

be decomposed to R equivalent parallel SISO channel, where R is the rank of the 

channel matrix and also the number of nonzero singular values. The diagonal matrix 

 indicates the gain of each parallel SISO channel, e.g. Σ { }kλ H  denotes the power 

gain of kth parallel SISO channel. If we want to send M data streams over MIMO 

channel H, where M≦R. Undoubtedly, the best strategy is to choose M strongest 

equivalent parallel SISO channels for transmission. From (2-19), we see that the 

optimal precoder is the first M columns of the right singular matrix , and it just 

corresponds to the M largest singular values and also the M strongest equivalent 

parallel SISO channels.  

RV

Equation (2-18) and (2-19) are important results, and they can be used to 

calculate the optimal precoding matrix (with known channel matrix H). They also 

give some hints to design a good codebook (or we can say, how to well quantize the 



optimal precoder Fopt with finite codewords). In the next section, we will describe the 

codebook design criteria and practical codebook construction method. 

2.3  Codebook design and construction 

2.3.1  Codebook design criteria 

Before stating the codebook design criteria, we present some relevant 

background about finite sets in . The set  defines the complex 

Stiefel manifold [7] of real dimension . Each matrix in  

represents an M-dimensional subspace of N

( , )tU N M ( , )tU N M

22 tN M M− ( , )tU N M

t-dimensional complex vector space. The 

set of all M-dimensional subspaces spanned by matrices in  is the complex 

Grassmann manifold, denoted as .  

( , )tU N M

( , )tg N M
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}

What is the difference between  and ? We answer this 

question with non-uniqueness of the optimal precoding matrix F

( , )tU N M ( , )tg N M

opt. From (2-19), we 

know that optimal precoder consists of first M columns of the right singular matrix 

. However, if FRV opt is multiplied by any M × M unitary matrix Un, that is, F’ = Fopt 

Un, F’ will also be an optimal precoding matrix. For example, if Fopt  maximizes 

min{λ HF , then so does Fopt Un for any M × M unitary matrix Un. Same result can be 

obtained for the MSE-SC and Capacity-SC. Therefore, the optimal precoding matrix 

Fopt is not unique. If we refer a matrix X in the set  as optimal precoding 

matrix, then XU

( , )tU N M

n for any M ×  M unitary matrix Un can be referred as a 

M-dimensional subspace spanned by the matrix X. All the M-dimensional subspaces 

spanned by matrices in  is denoted as . Therefore, is 

the set of matrices, and is the set of subspaces. 

( , )tU N M ( , )tg N M ( , )tU N M

( , )tg N M



Our codebook C, which consists of a finite number of matrices chosen from 

, thus represents a set, or packing, of subspaces in the Grassmann manifold 

. Determination of the set of L matrices that maximize the minimum 

subspace distance (where distance can be chosen as a number of different ways) is 

known as Grassmannian subspace packing [8], [9]. First, we give three defined 

distances between two subspaces F

( , )tU N M

( , )tg N M

1 and F2. 

1.  Chordal distance: 

* *
1 2 1 1 2 2

2 *
1 2

1

1( , )
2

{ }

chord F

M

i
i

d

M λ
=

= −

= −∑

F F F F F F

F F
                    (2-20) 

where 
F

 denotes the matrix Frobenius norm 

2.  Projection two-norm distance: 

* *
1 2 1 1 2 2 2

2 *
min 1 2

( , )

1 {

projd

λ

= −

= −

F F F F F F

F F }
                       (2-21) 

where 
2
denotes the matrix two-norm 

3.  Fubini-Study distance: 

*
1 2 1 2( , ) arccos det( )FSd =F F F F                      (2-22) 

Details about these definitions and implications can be found in [8]. In [1], the 

author derives the codebook design criteria under different precoder selection criteria. 

The codebook design criteria are given below: 
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․ Criterion 1:  If ML-SC, MSV-SC, or MSE-SC with trace is used, the 

codebook should be designed such that the minimum projection two-norm distance 

between codewords is maximized. It can be expressed as follows: 

* *

2
min

i j
i i j jMaximize

≠
−

F F
FF F F                      (2-23) 

․ Criterion 2: If Capacity-SC or MSE-SC with determinant is used, the 

codebook should be designed such that the minimum Fubini-Study distance between 

codewords is maximized. It can be expressed as follows: 

*min det( )
i j

i jMaximize
≠F F

F F                         (2-24) 

However, finding good packings in the Grassmann manifold for arbitrary Nt 

(number transmit antennas), M (number of data streams), and L (number of 

codewords in the codebook), is difficult. In Section 2.3.2, we describe one simple 

codebook construction method [3] yielding codebook with large minimum distances.  

2.3.2  Codebook construction method 

In [3], it is shown that, maximizing the minimum distance between two 

subspaces Fi and Fj , , is equivalent to minimizing the maximum correlation 

between them. A Fourier-based construction method based on this result is described 

below. 

i ≠ j

We begin with M = 1 (number of data stream = 1). For this case, a precoding 

matrix with size Nt × M  becomes a precoding matrix with size Nt × 1 (also called 

a beamforming vector).  

With Fourier-based construction, the L vector codewords can be expressed as: 
 16



2 ( 1)

2 2( 1)

2 ( 1)( 1)

1

1 , 1,2,...,

t

j i
L

j i
Li

t

j N i
L

e

F eN

e

π

π

π

−

−

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

i L=               (2-25) 

where i indicates the index of codeword, and L denotes the total number of 

codewords within the codebook. For this choice, we obtain the correlation ijR  

between ith codeword and jth codeword as:  

* 2 ( 1)( )

1

1

1 sin( ( ) / )
Lsin( ( ) / )

tN j t i jij j i tL

tt t

R i j N Le
N N i j

π π
π

− −

=

⎧
⎪= = −⎨ =⎪ −⎩

∑
F F

( )

( )

i j

i j

=

≠
         (2-26) 

We observe that: 

1. The correlation between Fi and Fj depend only on (i – j) mod L; the correlation 

structure of the codebook is therefore circulant and it suffices to consider *
1 jF F , 

for j = 2,3,…,L. That is, to find the maximum correlation, we don’t need to 

calculate  correlations between all codewords.  2
LC

2. The correlation structure behaves roughly like a sinc function. With the fact 

described at the beginning of Section 2.3.2, we want to find a good set of 

codewords to minimize the maximum correlation between codewords. Figure 2-3 

shows the correlation structure of codewords chosen in (2-25) for Nt = 6, L = 64. 

The maximum correlation is 0.986. 
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  Figure 2-3 Correlation structure of codewords in (2-25) as a function of (i-j) 

Since the maximum correlation approaches unity, it is obviously a poor choice 

for codewords in (2-25), especially when L is large. However, we are not necessarily 

constrained to choose first Nt rows of the L × L DFT matrix as is done in (2-25). To 

lower the correlation between neighbors, we may consider choosing another set of Nt 

components. We thus let  

1

2

2 ( 1)

2 ( 1)

2 ( 1)

1

1 , 1,2,...

Nt

j u i
L

j u i
Li

t

j u i
L

e

F eN

e

π

π

π

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

i L=

t

               (2-27) 

where 1 20 , ,..., 1Nu u u L≤ ≤ −  

By (2-26) and (2-27) , we wish to find achieving  1 2, ,..., Nu u u
t
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1

2 ( 1)

0 ,... 1 2,... 1

1min max
t

t

Nt

N j u j
L

u u L j L tt

e
N

π
−

≤ ≤ − =
=
∑                     (2-28) 

The minimization problem in (2-28) can be seen as an aperiodic array design 

problem [10]. Despite much effort, there has never been a completely satisfactory way 

to design aperiodic arrays: for small arrays one can use exhaustive search, whereas, 

for large arrays, random search strategies seem to be the only resort. With random 

search, a good choice for  can be found. Figure 2-4 shows the correlation 

structure of codewords chosen in (2-27) for N

1 2, ,...,
tNu u u

t = 6, L = 64. Here  = [1 18 

23 39 46 57]. The maximum correlation is decreased to 0.5604. 

1 2, ,..., Nu u u
t

 

Figure 2-4 Correlation structure of codewords in (2-27) as a function of (i-j) 

Now, we can extend this single data stream case (M = 1) to multiple data streams 

case (M > 1). In the single data stream case discussed above, each vector codeword 

can be written as  

1
1 , 1,2,...,i

i i−= Θ =F F L           `         (2-29) 
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where  is a NΘ t × Nt diagonal matrix whose diagonal elements are 

1 2 2 /2 / 2 /, ,...,e Ntj u Lj u L j u Le e ππ π and F1 is 1

tN
 times a vector of all ones. Note that Θ  

is an unitary matrix and . Therefore, (2-29) can be rewritten as t

t

N
NΘ = I  

1

2

-12 /

2 /

2 /

0 0 1
0 0 11 , 1,2,...,

10 0 Nt

ij u L

j u L

i
t

j u L

e
e

i L
N

e

π

π

π

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦

F =    (2-30) 

Geometrically, the construction can be interpreted as rotating an initial vector 

through Nt th

For multiple data streams case (M > 1), let the initial matrix F1 be a Nt × M 

matrix with 

 dimensional complex space using a matrix which is the L  root of unity.  

*
1 1 M=F F I , and construct the L codewords by applying (2-29) again. For 

the M > 1 case, this construction can be interpreted as rotating an initial M-dimension 

th

1 t 

Nt DFT matrix, and this ensures that 

subspace using an L  root of unity to form L different M-dimensional subspaces. A 

simple method to build a starting matrix F is to choose M distinct columns of a N × 

*
1 1 M=F F I .  

Now extending (2-28) to multiple data streams case (M > 1). We wish to find 

t
achieving 

                 

1 2, ,..., Nu u u

1

*
10 ,... 1 2,...

min max
Nt

j Fu u L j L≤ ≤ − =
F F                        (2-31) 

For finding a good choice of 
t
, random search can be applied. 

Example codebooks using this Fourier-based construction with different Nt (number 

1 2, ,..., Nu u u

transmit antennas), M (number of data streams), and L (number of codewords in the 
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codebook) can be downloaded at [11]. 
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2.4  Limited feedback schemes 

In MIMO-OFDM systems, the broadband channel is converted into multiple 

narro

2.4.1  Clustering 

In general, adjacent subchannels in an OFDM system are correlated. As a result, 

optim  

A simple approach is to combine the neighboring subcarriers into a cluster and 

use t

wband channels such that a subcarrier can be used in a channel. Each subcarrier 

can then perform precoding, independently. However, feeding back the information 

about precoding matrix for each active subcarrier requires a large amount of data. 

While codebook-based precoding techniques can be used, the feedback data still grow 

in proportion to the number of active subcarriers. To solve this problem, some 

techniques such as clustering and interpolation [5] can be applied. 

al precoders corresponding to neighboring subchannels are also correlated. 

Using the precoder correlation, the amount of feedback information can be reduced. 

he quantized optimal precoder corresponding to the center subcarrier for all the 

subcarriers in that cluster. This method is referred to as clustering.  

 

Figure 2-5 Clustering 
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Suppose that total Ns active subcarriers are divided into clusters as shown in 

Figure 2-5. Each cluster has K subcarriers, and the receiver only feedbacks the indices 

of precoders corresponding to center subcarriers. Thus, the feedback information can 

be reduced to 1/K by clustering. However, because the precoder used for all K 

subcarriers within a cluster is the quantized optimal precoder corresponding to the 

center subcarrier, the subcarriers near the cluster boundary will experience larger 

performance degradation. 

lation 

To i  precoding near the cluster boundary, [5] proposes 

an interpolation scheme. First, the receiver obtains quantized optimal precoders 

, where F(k) means the quantized optimal precoder 

for the kth subcarrier. Then we send the indices of them to the transmitter and the 

transmitter determines the precoders for all subcarriers through interpolation of the 

transmitted precoders. Unfortunately, there are two difficulties for the interpolation 

scheme.  

trivial to interpolate the precoders, because the optimal precoder must have 

orthonormal columns. After interpolation, the orthonormality may not always hold. 

2. 

= F  U ,where U  is a M × M unitary matrix, F’ is also an optimal precoding 

matrix. Because the precoder is calculated independently for each subcarrier, the 

unitary matrix U  for each subcarrier is also arbitrarily determined. However, the 

choice of unitary matrix U  has a substantial influence on the performance of an 

interpolator.  

2.4.2  Interpo

mprove the performance of

{ (1), ( 1),... ( 1)}K N K+ − +F F F

1. It is not 

As we mentioned at Section 2.3.1, the optimal precoder is not unique. That is, if F’ 

opt n n

n

n
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se observation, [5] proposes the following interpolation algorithm. 

 

Based on the

( ) (1 ) ( 1) (( 1) 1)m m iiK m c iK c i K+ = − + + + +Z F F Q             (2-32)

1
2*ˆ ( ; ) ( ){ ( ) ( )}iiK m iK m iK m iK m

−
+ = + + +F Q Z Z Z

where F(N+1) = F(1) , and  is a M × M unitary matr

. We can see that (2-32) is simply a linear interpolator w

matrix 

ensures that the orthono the precoder after interpolation. The role 

of the unitary matrix is to solve the non-uniqueness problem.  can be found 

in number of ways, such as maximizing the capacity 

           (2-33) 

iQ ix. ( 1) /mc m K= − , 

1 m K≤ ≤ ith an additional 

i . After interpolation, a projection is then required. In equation (2-33), F  is 

the projection of Z into ( , )tU N M  with respect to the Frobenius norm, and thus it 

i i

Q ˆ

rmality will hold for 

Q  Q

1

ˆarg max ( (
K

i Capacity iK= ∑Q F ; ))
Q m

m
∈ =

+
Q C

Q              (2-34) 

where CQ is a codebook for unitary matrix . Note that,

cause a higher computational complexity for the search of the best  and more 

feedback data (for sending the information about ). In [5], a suggested codebook 

for which contains 4 codewords is shown below:  

iQ  a large size of CQ will 

i

i

i

1 0 1 0 0j j

Q

Q

Q  

0
0 1 0 1 0 0j j

⎤
⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

             (2-35) 

 

Clustering and interpolation both exploit the correlation between neighboring 

subcarriers. If the channel has a large coherent bandwidth, the data amount for 

feedb

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢

ack can be significantly reduced by clustering scheme. The interpolation scheme 
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oposed codeword search method 

rch is required to 

find the optimal codeword in the codebook. That is, if we have a codebook with L 

code

We use a sub-optimal codeword selection criterion which minimizes the chordal 

distance (Equation 2-20) between the chosen codeword and the ideal (un-quantized) 

optim

proposed in [5] can further improve the performance of clustering. However, due to 

the difficulties we mentioned above, the interpolation scheme requires additional 

feedback information, and also higher computational complexity. When the coherent 

bandwidth becomes small, these techniques will apparently suffer performance 

degradation. 

2.5  Pr

For conventional codebook-based precoding, an exhaustive sea

words (size = L), we then need to conduct the same operation for L times to find 

the optimal codeword. At this section, we propose a codeword search method which 

can reduce about 80% searching complexity with acceptable performance loss. 

al precoder.  

arg min { , }
i

Chordal i optd
∈

=
F C

F F F                    (2-36) 

The simulation shows that this criterion has perfor

With this distance-based codeword selection criterion, a low complexity codeword 

searc

The proposed codeword search method is composed of the following two steps: 

1. Codebook partition: Given any appropriately designed codebook with L 

codewords, we first partition this codebook with a simple distance comparison 

mance comparable to MSV-SC. 

h method becomes possible. 



algorithm. After this partition step, the codebook will have a tree structure. Note 

that, this is an off-line step. 
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2. Codeword searching: With the partitioned codebook known by both the 

transmitter and the receiver, a tree searching algorithm can be performed to find an 

In codebook partition step, we first find two codewords which have maximum 

chordal distance. This can be done with an exhaustive search manner. With the two 

farth

, then X will be referred to group a.  

, then X will be referred to group b.  

optimal codeword within this partitioned codebook. 

est codewords, the other codewords then can be partitioned into two groups with 

a simple distance comparison algorithm. Assume X is a codeword,  

If ( , ) ( , )chordal chordald d<A X B X

If ( , ) ( , )chordal chordald d>A X B X

 

Figure 2-6 Partition the codebook into two groups 

Then, we can further find two farthest codeword C and D in group a, and two 

farthest codeword E and F in group b. Following the distance comparison algorithm, 

group a can be further partitioned into group c and group d, and group b can be 

partitioned into group e and group f.  



 

Figure 2-7 Partition the codebook into 4 groups 

Finally, the codebook will be partitioned into 2, 4, 8, … ,2k groups , where the 

integer k can be define odewords within each 

group must be recorded during the partition process. Note that groups at depth k are 

all contained in groups at depth k-1, in other words, the partitioned codebook has a 

nested structure. 

arching depth k is 3. Note that this codebook is partitioned unequally 

(number of codewords in each group at same depth is not equal). 

d as the searching depth. The farthest c

Figure 2-8 shows an example of codebook partition with codebook size = 64. 

The maximum se

 

Figure 2-8 Example of codebook partition 

After codebook partition step, the tree structure is determined and stored. In 

online codeword search,  algorithm to locate the  we can then perform a tree search

 26
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optim

opt

al codeword is assum

opt

assumed to be within group c. Repe

Assume a codebook can be partitioned equally at each level, then we can easily 

express the complexity of the proposed codeword searching algorithm as follows: 

al codeword within this partitioned codebook. First, we calculate the ideal 

optimal precoder Fopt by SVD of channel matrix H. Then, we find a codeword Fi 

which has minimum chordal distance to Fopt. The first step is to compare 

( , )chordal optd A F  and ( , )chordal optd B F , where A and B are two farthest codewords 

within the codebook (the largest group). If F  is nearer to the codeword A, the 

 be within group a. Then, further compare 

( , )chordal optd C F  and ( , )chordal optd D F , where C and D are two farthest codewords 

within the group a. If F  is nearer to the codeword C, the optimal codeword is 

at this process, and finally we can find the optimal 

codeword. Using the algorithm, we can significantly reduce the searching complexity. 

optim ed to

2
2k

LSearching complexity k= +                   (2-37) 

Table 2-1 shows the searching complexity for L = 64 and L = 128. 

 

Table 2-1 Searching complexity for equally partitioned codebook 

Note that k = 0 corresponds to exhaustive search. Note that this complexity indicates 



the number of chordal distance calculations. Although it’s difficult to partition the 

codebook equally, simulation shows that the average searching complexity with 

unequally partitioned codebook will approach to this result listed in table 2-1. 
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One problem with the proposed algorithm is that codeword searching error will 

occur under some situations.  

 

Figure 2-9 Codeword searching error 

As we show in Figure 2-9, the codeword Fi has minimum chordal distance to 

ideal

Table 2-2 shows the average complexity ratio and average distance error. The 

comp

 optimal precoder Fopt. However, the optimal codeword is determined in the 

wrong group. This is because Fi and Fopt are too close to the partition edge. In this 

case, if we assume searching depth is two, the codeword chosen by tree search 

algorithm will be Fj, which is a sub-optimal codeword. The codeword searching error 

causes performance loss compared to exhaustive search.  

lexity ratio is defined as the complexity of proposed tree search algorithm 

divided by complexity of exhaustive search. The complexity of exhaustive search is 



equal to the size of codebook, L. The distance error can be defined as: 

( , ) ( , )chordal j opt chordal i optd d−F F F F                   (2-38) 

where Fi is the exhaustively searched codeword , and Fj is the codeword chosen by 

tree search algorithm. If there is no codeword searching error, the distance error will 

be zero. 

     

Table 2-2 Searching com  ratio and distance error 

From table 2-2, we can realize that increasing the size of codebook, L, will 

decre

In order to lower the probability of codeword searching errors, we can modify 

the o

plexity

ase the complexity ratio and distance error. For instance, if L = 64, k = 3, the 

complexity for tree search algorithm only requires 21.77% of that for exhaustive 

search. If we increase L to 128, the complexity ratio can be further reduced to 17.25%. 

Besides, increasing the searching depth k will decrease the complexity ratio but cause 

higher distance error. For L = 64, k = 3 or k = 4 will be good choices. Further increase 

the searching depth will not reduce complexity but will incur serious performance loss 

(high probability of codeword searching error). 

riginal slightly. As the codebook partition method described above, we first find 

two codewords which have maximum chordal distance. The other codewords then can 

be partitioned into two groups with a modified distance comparison algorithm. 
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Figure 2-10 Modified codebook partition 

Define a new factor called the overlap threshold, denoted as ε. Assume that X is 

a codeword,   

If ( , ) ( , )chordal chordald d ε−A X B X < , then X will be referred to both groups, a and b.  

If ( , ) ( , )chordal chordald d ε−A X B X > , then the algorithm is unchanged: 

( , ) ( , )chordal chordald d<A X B X , then X will be referred to group a.  

( , ) ( , )chordal chordald d>A X B X , then X will be referred to group b.  

As shown in Figure 2-10, X is the nearest codeword to the ideal optimal precoder 

Fopt. However, with the original partition method, they will be partitioned into 

different groups. It will cause codeword searching error when performing tree search 

algorithm. For the modified partitioned method, we refer X to both groups and thus 

avoiding the error. Obviously, a higher overlap threshold will result in a higher 

searching complexity since each group size is enlarged. Table 2-3 shows the average 
 30



complexity ratio and average distance error with this modified codebook partition 

algorithm for ε = 0.05 

    

Table 2-3 Searching complexity ratio and distance error with modified codebook partition algorithm 

Compared to table 2-2, we can find that the average distance error is smaller for 

different codebook size and different searching depth. However, the complexity ratio 

increases significantly, also. Thereby, how to choose an appropriate overlap threshold 

becomes a critical problem. 
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Chapter 3  Time domain CSI feedback 

In this chapter, we propose time domain CSI feedback methods. Under some 

channel conditions, the proposed time domain CSI feedback method only requires a 

small amount of data. Even in the application of procoding, our method is comparable 

to the conventional precoder feedback scheme such as clustering. For time varying 

channels, we incorporate a differential pulse code modulation (DPCM) scheme in our 

time domain CSI feedback method such that the required feedback data can be further 

reduced. 

3.1  Least squares method 

We begin with an example of a 4 by 2 MIMO channel model shown in Figure 

3-1. As we can see, the MIMO channel contains 8 single input single output (SISO) 

channels. We refer each SISO channel from one transmit antenna to one receive 

antenna as a Tx-Rx channel pair. 

 

Figure 3-1 4 by 2 MIMO channel model 
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Figure 3-2 shows a typical time domain channel response for one Tx-Rx channel 

pair. 

 

Figure 3-2 A time domain channel response 

A simple way to quantize the time domain channel response is to directly 

quantize the complex value and delay for each channel tap, individually. That is, 

quantize a1, b1, a2, b2, …, a6, b6, P1,P2,…, P6 , if there are 6 channel taps. However, it 

may require large amount of quantization bits. Therefore, we propose to quantize the 

overall time domain channel response, jointly. For this purpose, we first shorten the 

channel taps by removing insignificant taps for each Tx-Rx channel pair. Then, we 

sort the shortened channel based on magnitude, as shown in Figure 3-3. 

 

Figure 3-3 Shortening and sorting the time domain channel response 

After shortening and sorting, the magnitude of time domain channel response 

will have high correlation between each channel tap. Thus, we can apply least squares 
 33



(LS) to fit these sorted taps with a straight line or a higher-order polynomial curve and 

thus avoid the quantization of each channel tap. Notice that, the delay information is 

quantized before shortening. The delay information fed from receiver back to 

transmitter can be used to recover the original taps before shortening and sorting. 

Besides, the sorting operation is based on magnitude, thus the phase information must 

be quantized with other scheme. Because the phase for each tap is i.i.d. and has 

uniform distribution, we simply apply an uniform quantizer for the phase information. 

Least squares (LS) method is a well-known curve fitting method. Given N 

observed data, we can find a straight line or a higher-order polynomial curve to fit 

these data with a minimum squared errors. Figure 3-4 shows an example of linear 

fitting: 

 

Figure 3-4 First-order polynomial least squares fitting 

We express the N observed real-valued data as: 

[ ]1 2
T

Nx x x=X                       (3-1) 

The LS method finds a parameter vector θ  to minimize the squared error vector 

( )J θ , which can be written as: 

( ) ( ) (TJ =θ X - Kθ X - Kθ)                     (3-2) 
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where Kθ  is the fitting vector, and K is a known observation matrix. For the 

first-order polynomial fitting, K can be written as: 

1 0
1 1

1 1N

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

K                            (3-3) 

For the second-order polynomial fitting, K can be written as: 

2

2

2

1 0 0
1 1 1

1 1( 1)N N

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥− −⎣ ⎦

K                       (3-4) 

If the gram matrix  is non-singular, then the least squares solution will be: TK K

1ˆ ( )T
LS

−= ⋅θ K K K XT                        (3-5) 

Figure 3-5 shows an example of the first-order polynomial fitting for 6 sorted 

channel taps. 

 

Figure 3-5 First-order polynomial fitting for sorted channel taps 
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A second-order polynomial fitting for 6 sorted channel taps is shown in Figure 

3-6. 

 

Figure 3-6 Second-order polynomial fitting for sorted channel taps 

Obviously, the second-order polynomial fitting has higher accuracy (lower 

squared-errors) compared to the first-order polynomial fitting. 

Now we can briefly describe the time domain feedback scheme with LS fitting 

method as follows: 

1. Quantize the delay and phase information first. Then, shorten and sort the channel 

taps using their magnitude for each Tx-Rx channel pair.  

2. Apply LS method to fit the sorted magnitude response for each Tx-Rx channel pair. 

3. Feedback the quantized LS parameters together with the quantized phase and delay 

information to the transmitter side. 

At transmitter, we can reconstruct the time domain channel response using the 

LS parameters, quantized phases, and delay information. If precoding is conducted at 
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transmitter, the precoding matrix for each active subcarrier can be obtained by 

performing singular value decomposition (SVD) on the reconstructed frequency 

domain channel response. 

3.2  Discrete cosine transform method 

In this section, we propose another time domain CSI feedback scheme using 

discrete cosine transform (DCT). Assume that x(n) is a real-valued sequence. A 

one-dimensional DCT can be expressed as follows.  

1

0

(2 1)( ) ( ) ( )cos , 0 1
2

1/ 0
( )

2 / 1 1

N

n

n ky k w k x n k N
N

N k
where w k

N k N

π−

=

+
= ≤

⎧ =⎪= ⎨
≤ ≤ −⎪⎩

∑ ≤ −

          (3-6) 

It has been shown that many physical signals can be accurately reconstructed 

using only a few of their DCT coefficients. Therefore, it is useful in data compression. 

We can easily extend the one dimensional DCT in (3-6) to two-dimensional DCT as: 
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(3-7) 

Comparing (3-6) and (3-7), we can see that the two-dimensional DCT is 

equivalent to two one-dimensional DCTs, performed along one dimension followed 

by another DCT in the other dimension. Two-dimensional DCT is a very common 
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method for image compression. 

As discussed in Section 2.1, shortening and sorting for each Tx-Rx channel pair 

will generate correlations between the channel taps. Therefore, a joint quantization 

strategy such as LS method proposed in the previous section can be applied to 

quantize the channel taps with only a few parameters. Note that, each Tx-Rx channel 

pair is quantized independently in the LS fitting method. However, correlations also 

exist between different Tx-Rx channel pairs. For small separation distance between 

the receive antennas, the channel pairs from one transmit antenna to different receive 

antennas are often very similar. Therefore, this inspires us to apply a two-dimensional 

quantization scheme such as DCT to quantize multiple Tx-Rx channel pairs.  

After shortening and sorting to each Tx-Rx channel pair, we can collect the 

sorted taps for all channel pairs and regard them as a two-dimensional response. An 

example is shown in Figure 3-7.  

 

Figure 3-7 Sorted taps for the entire MIMO channel 
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Now we can perform two-dimensional DCT to the sorted magnitude response in 

Figure 3-7. The transformation result is shown in Figure 3-8. 

 

Figure 3-8 Two-dimensional DCT 

Apparently, there are two significant parameters at positions (1,1) and (1,2). We 

can extract these two parameters to reconstruct the sorted magnitude response by 

inverse two-dimensional DCT, as shown in Figure 3-9. 
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Figure 3-9 Reconstructed magnitude response with two DCT parameters 

    Since the response in Figure 3-9 is reconstructed with two most significant 

parameters, distortion is unavoidable. Figure 3-10 shows the reconstructed sorted 

magnitude response with six most significant parameters. Distortion is obviously 

lowered compared to that in Figure 3-9. 

 

Figure 3-10 Reconstructed magnitude response with six DCT parameters 

We briefly describe the proposed time domain feedback scheme with DCT as 

follows: 

1. Quantize the delay information and phase information first. Then, shorten and sort 

the channel taps based on magnitude for each Tx-Rx channel pair.  

2. Apply DCT to the entire sorted magnitude response, and extract the most 

significant parameters. 

3. Feedback the quantized DCT parameters together with the quantized phase and 
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delay information to the transmitter side. 

3.3  Differential pulse code modulation 

Differential pulse code modulation (DPCM) is a technique which is often used in 

speech coding or audio coding. It exploits the correlations between input signals and 

the quantization bits can be reduced significantly compared to conventional pulse 

code modulation (PCM). Conventional PCM is an instantaneous quantization scheme. 

That is, to quantize the signal at different time independently. When the signal to be 

quantized varies slowly, conventional PCM is not efficient. 

 

Figure 3-11 Quantization to the prediction error 

The main idea of DPCM is to quantize the prediction error of signal, rather than 

the instantaneous signal itself. For example, assume we have exact value for S(n-2) 

and S(n-1), then S(n) can be predicted with a linear predictor. Let the predicted signal 

be . If the signal varies slowly with time, the prediction error  is 

often very small and can be quantized efficiently. Figure 3-12 shows the block 

diagram of a simple DPCM scheme: 

( )S n ( ) ( )S n S n−
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Figure 3-12 Open-loop DPCM 

It is an open-loop DPCM scheme, where P denotes predictor, Q denotes the 

quantizer, and k is the discrete time index. However, this open-loop scheme will cause 

an accumulation of reconstruction errors. At transmitter, the prediction error e(k) can 

be expressed as: 

( ) ( ) ( )Te k S k S k= −                        (3-8) 

where S(k) is the input signal, and is the prediction signal at transmitter. ( )TS k  

( ) ( 1)TS k h S k= ⋅ −                       (3-9) 

From (3-8) and (3-9), we can write the input signal S(k) as: 

)( ) ( 1) (S k h S k e k= ⋅ − +                    (3-10) 

Iterating (3-10) for k =1,2,…K, we have 

(2) (1) (2) (0) (1) (2)

( ) (0) ( )
K

K i

i

S h S e h S h e e

S K h S h e K i
−

=

= ⋅ + = ⋅ + ⋅ +

= ⋅ + ⋅ −∑

          (3-11) 

Equation (3-11) expresses the input signal S(K) in terms of the initial value S(0) 

and 

(1) (0) (1)S h S e= ⋅ +
2

1

0

prediction error e(k)’s. Now we turn to the receiver side. At receiver, the 

 42



reconstructed signal ˆ( )S k  can be written as: 
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                       (3-12) 

where (  is the prediction signal at receiver and  is the quantized 

ˆ( ) ( ) ( )R qS k S k e k= +

)RS k ( )qe k

prediction error. That is, 

ˆ( ) ( 1)RS k h S k= ⋅ −                         (3-13) 

( ) ( ) ( )qe k e k q k= −                         (3-14) 

where q(k) denotes the quantization error. Using (3-13) and (3-14), we can rewrite 

)
                (3-15) 

Iterating (3-15), for k =1,2,…K, we have 
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         (3-16) 

Equation (3-16) express the reconstructed signal in terms of the initial 

value , prediction error e(k)’s, and quantization error q(k)’s. Assume that 

. Comparing (3-11) and (3-16), we can write the reconstruction error 

(3-12) as: 
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Therefore, for an open-loop DPCM scheme, the reconstruction erro

roblem, a closed-loop DPCM shown in Figure 3-13 is 

often applied: 

r will accumulated, 

as shown in equation (3-17). 

In order to solve this p

 

Figure 3-13 Closed-loop DPCM 

For closed-loop DPCM, nsmitter and that at receiver 

are m

 the prediction signal at tra

ade identical. That is, ( ) ( ) ( )R TS k S k S k= =

S k e k

S k S k e k q k
S k S k e k e k q k
q k

+

= − + −
= − − + −
=

         (3-18) 

. For this purpose, we need to 

reconstruct the signal ˆ( )S k  at  predict the signal ( )S k  based 

on the previous reconstructed signal. We can express the reconstruction error 

( ) ( )S k S k− for closed-loop DPCM as: 

ˆ( ) ( ) ( )S k S k S k− = −

 transmitter first, and

[ ( ) ( )]

( ) [ ( ) ( ) ( )]
( ) [ ( ) ( ) ( ) ( )]
( )

q
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From (3-18), we can find that the reconstruction error at time = k is identical to that at 

time = k. Therefore, for a closed-loop DPCM, the reconstruction 

will not happen. 

ple to 

demonstrate the effectiveness of the method. We use the spatial channel model (SCM) 

[12],

to the transmitter. Besides, the delay for each tap is assumed to be time-invariant. That 

is, on

 slowly with time. Figure 3-14 and 3-15 show a 

variation of the two LS parameters A and B for linear fitting (Y=A+BX).  

error accumulation 

So far, we have described how to apply DPCM to quantize a slowly-varying 

signal. In many scenarios, the variation of channel taps is slow. We can then apply the 

DPCM method to further reduce the feedback data. Here, we use an exam

 provided by 3GPP, as our time-varying channel model. The SCM channel model 

gives 6 non-zero taps for each Tx-Rx channel pair and their values change with time. 

For our application, we let the speed for mobile station be 20 km/hr.  

We assume that the channel is quasi-stationary, which means that the channel is 

time-invariant in one OFDM-symbol. For our system, one frame consists of 10 

OFDM symbols. For each frame, only the CSI for the first OFDM symbol is fed back 

ly the magnitude and phase information of the first OFDM symbol are fed back 

to the transmitter for each frame. 

Now we can combine the DPCM scheme with the time domain CSI feedback 

schemes described in Section 3.1 and 3.2. The parameter for LS or DCT method now 

can be considered as a signals varied



 

Figure 3-14 Variation of parameter A 

 

Figure 3-15 Variation of parameter B 

Figure 3-16 shows the phase variation for one tap. 
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Figure 3-16 Variation of phase for one tap 

Then, we quantize the parameters and phases by DPCM scheme with a linear 

predictor. We give two bits for each frame to quantize one parameter. Figure 3-17 and 

3-18 shows the reconstructed parameters A and B at transmitter.  

 

Figure 3-17 Reconstructed parameter A at Tx. 
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Figure 3-18 Reconstructed parameter B at Tx. 

In Figure 3-19, we show the reconstructed phase with the one-bit DPCM. Figure 

3-20 shows the reconstructed phase with the two-bit DPCM. 

 

Figure 3-19 Reconstructed phase at Tx. (1 bit)  
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  Figure 3-20 Reconstructed phase at Tx. (2 bits)  

We now summarize the time-domain feedback scheme with time-varying 

channel as follows: 

1. Shorten and sort the channel taps based on magnitude for each Tx-Rx channel pair.  

2. Apply LS method to fit the sorted magnitude response for each Tx-Rx channel pair. 

3. For the first two frames, the LS parameters for each channel pair and phases for 

each tap are quantized with conventional PCM and sent back to the transmitter. 

After that, with a linear predictor, we can apply DPCM to quantize the prediction 

error of the time-varying parameters and phases.  

4. Feedback the quantized prediction error of LS parameters for and phases to the 

transmitter side. 
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Chapter 4  Simulations 

4.1  Precoding 

In this section, we report some simulation results to evaluate the performance of 

the proposed codeword search method. A simplified MIMO-OFDM system with 

precoding is constructed. Two independent data streams (M = 2) are sent over a 4 × 2 

system (Nt = 4, Nr = 2). The QAM size is 16, the FFT size is 512, and the cyclic prefix 

(CP) size is 64. For simplicity, an uncoded system and a basic zero forcing (ZF) 

receiver are conducted. Besides, we assume that perfect channel estimation can be 

obtained at receiver. Also, the feedback channel is error-free and has zero delay. 

 

Figure 4-1 BER comparison for 2×2 open-loop SM and 4×2 precoding with perfect CSIT 
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We assume that the channel experiences a block Rayleigh fading, and each 

Tx-Rx channel pair (one SISO channel) has 6 taps and fixed delay [1, 22, 23, 26, 51, 

56]. Figure 4-1 shows BER comparison for 2 × 2 open-loop spatial multiplexing (SM) 

system and 4×2 precoding system with perfect CSI at transmitter (CSIT). 

As we can see, precoding can significantly improve the system performance. 

 

Figure 4-2 BER comparison for precoding with perfect CSIT and precoding with MSV-SC (L=64) 

Figure 4-2 shows the performance comparison between codebook-based 

precoding and ideal precoding. For codebook-based precoding, the codebook size L is 

64 and the codeword selection criterion is MSV-SC. Exhaustive search is conducted 

to find the optimal codeword for each subcarrier.  

For the proposed codeword search method, we use a sub-optimal codeword 

selection criterion which minimizes the chordal distance (See (2-20)) between the 

chosen codeword and the ideal (un-quantized) optimal precoder (See (2-36)). Figure 

4-3 shows the BER performance comparison between MSV-SC and the minimum 
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chordal distance selection criterion. We can see that the two selection criteria have 

comparable performance. 

 

Figure 4-3 BER comparison for MSV-SC and minimum chordal distance-SC  

Figure 4-4 shows the BER performance for the proposed codeword search 

method. The minimum chordal distance selection criterion is used, and the codebook 

size L is 64. As discussed in Section 2.5, increasing the search depth k will decrease 

the searching complexity, but the probability of codeword searching error will also 

increase. From Figure 4-4, we can see that the proposed codeword searching method 

with k = 3 has only about 1dB performance loss compared to exhaustive search. If we 

increase searching depth k to 4, the performance will further degrade about 1 dB. 
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Figure 4-4 BER comparison between exhaustive search and tree search (L=64) 

 

Figure 4-5 BER comparison between exhaustive search and tree search (L=128) 

Figure 4-5 shows the BER performance for the proposed codeword search 

method with codebook size L = 128. Comparing Figure 4-4 and Figure 4-5, we can 

find that increasing the codebook size will decrease the probability of codeword 
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searching error, and thus improve the performance. 

As discussed in Section 2.5, using a modified codebook partition algorithm with 

the new factor ε, called overlap threshold, can lower the probability of codeword 

search error. Figure 4-6 shows the BER performance for the modified codebook 

partition algorithm with L=64,ε=0.05. Notice thatε=0 corresponds to original 

codebook partition algorithm. With the factor ε=0.05 , the performance of the 

proposed tree search algorithm will be comparable to the exhaustive searching 

scheme. 

 

Figure 4-6 BER performance for modified codebook partition algorithm withε=0.05 (L=64) 

Figure 4-7 shows the BER performance for the modified codebook partition 

algorithm with L=128. The result is similar to the case for L = 64. 
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Figure 4-7 BER performance for modified codebook partition algorithm withε=0.05 (L=128) 

4.2  Time domain CSI feedback 

In this section, we report some simulation results to evaluate the performance of 

the proposed time domain feedback methods described in Chapter 3. Although the 

channel information can be used in many transmitter processing schemes, we only 

consider the application of precoding. We use two different delay profiles for 

comparison: 

1. Large delay spread   [ 1, 22, 23, 26, 51, 56 ]  

2. Median delay spread  [ 1, 7, 13, 19, 22, 29 ] 

To evaluate the efficiency of the proposed time-domain feedback algorithm, we 

calculate the total amount of feedback data at each frame. We give each LS or DCT 

parameters 5 bits for quantization. As the phase of each tap, it is given 3 bits for 
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quantization, and the delay is 6 bits. Then, for feedback scheme with the first-order 

polynomial LS fitting, the magnitude information needs 5×2×(4×2) = 80 bits, the 

phase information needs 3×6×(4×2) = 144 bits, and the delay information requires 6×6

×(4×2) = 288 bits. Thus, total feedback data for the first-order polynomial LS scheme 

requires 512 bits. For DCT scheme with two parameters, the quantization bits 

required for magnitude can be reduced to 5×2 = 10 bits, and the total feedback data 

bits can be reduce to 442 bits. 

We use the clustering technique for comparison. The cluster size is set as 8 and 

the codebook size is 64. So, each precoder index requires 6 bits. Assume that the 

number of active subcarriers is equal to the FFT size, then the total feedback data bits 

will be (512/8)×6 = 384 bits. We summarize the required total feedback data bits for 

different schemes in table 4-1. 

 

Table 4-1 Total feedback data bits for different schemes 

Figure 4-8 shows the BER performance for time domain CSI feedback scheme 

with the LS method. A large delay spread model is chosen for simulations. We can see 

that the LS fitting scheme has about 2dB performance loss compared to precoding 

with perfect CSIT. Besides, increasing the order of the fitting curve will not give a 

substantial performance gain. This is because we quantize each phase with only 3 bits; 

although we have accurate magnitude, the quantization error for phase information 

still results in performance degradation. 
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Figure 4-8 BER performance for the CSI feedback scheme with the LS method 

Figure 4-9 shows the BER performance for time domain CSI feedback scheme 

with the DCT method. A large delay spread model is also chosen. 

 

Figure 4-9 BER performance for the CSI feedback scheme with the DCT method 
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As we can see the DCT scheme has about 2.5 dB performance loss compared to 

precoding with perfect CSIT. As discussed above, increasing the number of extracted 

parameters of DCT will not give substantial performance gain. 

Now we compare the time domain CSI feedback methods with the conventional 

precoder index feedback scheme, clustering. Figure 4-10 shows the BER comparison 

between different feedback schemes under large delay spread model. From Figure 

4-10, we can see that clustering technique suffers significant performance degradation. 

This is because a large delay spread indicates a small coherent bandwidth, and the 

rapid variation of the frequency response. This will let the subcarriers near the cluster 

boundary suffer higher error probability. 

 

Figure 4-10 BER comparison under large delay spread for different feedback schemes 

Figure 4-11 shows BER comparison between different feedback schemes under 

median delay spread model. The clustering technique has significant performance 

improvement. Besides, it is worthwhile to notice that different delay spread model 
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will not affect the performance for time domain CSI feedback schemes. 

 

Figure 4-11 BER comparison under median delay spread for different feedback schemes 

For time varying channel, a DPCM scheme can be included to further reduce the 

amount of feedback data for the proposed time domain CSI feedback methods. As 

mentioned, we use the spatial channel model (SCM) for the time-varying channel 

model. The relevant assumptions and settings have been described in Section 3.3. 

Since we assume that the delay for each tap will not change with time, only the 

magnitude and phase information will be fed back to the transmitter.  

Figure 4-12 shows the BER performance of a 4 × 2 MIMO-OFDM precoding 

system with the proposed time varying CSI feedback scheme. Here, the LS method is 

combined with the DPCM scheme. In the simulation, a first-order polynomial LS 

fitting (Y = A+BX) is applied. For each frame, if we quantize the prediction error of 

one parameter with 2 bits and quantize the prediction error of one phase with 1 bit, the 

total amount of feedback data will be 2×2×(4×2) + 1×6×(4×2) = 80 bits. If we increase 
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the quantization bits for one phase to 2 bits, the total amount of feedback data will 

become 128 bits. 

 

Figure 4-12 BER performance for time domain CSI feedback with LS and DPCM  

Under the assumption of a slowly-varying channel (MS speed is 20km/hr), 

Figure 4-12 shows that the performance of the LS and DPCM combined scheme can 

approach to that of the un-quantized LS method. For the conventional PCM, if each 

parameter is quantized with 5 bits and each phase is quantized with 3 bits, the total 

amount will be 224 bits. From Figure 4-12, we can find that only 80~120 quantization 

bits are required with the DPCM scheme. 
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Chapter 5  Conclusions 

In this thesis, we consider the precoder search and time domain CSI feedback 

problems. For the precoder search, we propose a low-complexity precoder searching 

algorithm, which consists of a codebook partition step and a codeword searching step. 

Compared to the exhaustive search, the proposed searching method can reduce about 

80% searching complexity with acceptable performance loss. The performance of the 

proposed searching method can be further improved by modifying the codebook 

partition algorithm, but the complexity will also increase. 

For time domain CSI feedback, we propose two methods for efficient feedback 

data compression. Under some channel conditions, the proposed method only requires 

a small amount of feedback data. Even in the application of precoding, our method is 

comparable to the conventional precoder feedback scheme such as clustering. For 

realistic time-varying channel, we also propose to use a differential pulse code 

modulation (DPCM) scheme in our method such that the required feedback data can 

be further reduced. 

For precoding, we only consider how to find an optimal codeword within a 

constructed codebook. Directly designing and constructing an appropriate codebook 

in which the optimal codeword can be found fast and easily may serve as a potential 

research topic. For the CSI feedback, the proposed time domain method can work 

well in typical wireless channels. For channels with a lot of nonzero taps or large 

delay spread, our method may still result in a large amount of total feedback data. 

Thereby, how to exploit the spatial and time domain correlation and to well quantize 

the time domain MIMO channel response remains to be another potential topic for 
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future research. 
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