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摘要 

 

有鑒於低傳送功率對無線感測網路(wireless sensor network)中之感測

器而言為主要需求，如何在有限的總傳送能量下使效能最佳化的設計就愈顯

重要。吾人考慮在一個異質性無線感測網路中利用最佳能量分配策略來對一

個非隨機信號(deterministic signal)做分散式估計。感測器先將其觀測到

之信號取樣成離散訊息後經過瑞利衰減通道(rayleigh fading channel)傳送

至融合中心(fusion center)。接著此融合中心利用最佳不偏估計(best 

linear unbiased estimator)融合規則產生最終估計參數。本論文中提出數

種只需得知長期雜訊變異量的統計特性即可求出最佳解之能量分配策略。於

前半部，吾人提出的最佳能量分配策略建議對通道環境不佳或觀測品質不佳

的感測器降低其所傳送訊息之量化解析度或進而將其關掉來節省能量。每個

動態感測器的傳送位元數則由各自的通道衰減、路徑衰減(path loss)、局部

觀測雜訊變異量(local observation noise variance)及能量限制來共同決

定。於後半部，吾人提出兩個疊代式感測器殘餘能量配置演算法，來進一步

提升估計準確度。根據模擬結果，於異質性感測環境中，相較於均衡式能量

分配，吾人所提出的最佳能量分配策略可有顯著的效能改善。 
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Abstract 

As low transmitting power of sensors is a major requirement in wireless sensor 

networks (WSNs), optimizing their design under energy constraints is of primary 

importance. We consider an optimal power scheduling problem for the decentralized 

estimation of a deterministic signal in an inhomogeneous WSN. Sensors quantize 

their observations into discrete messages, which are transmitted to the fusion center 

(FC) over rayleigh fading channels. The FC which adopts the 

best-linear-unbiased-estimator (BLUE) fusion rule generates a final estimate. In this 

thesis, the optimal power allocation strategies which simply rely on long-term noise 

variance statistics are presented. In the first part, the proposed power scheduling 

scheme suggests that the sensors with bad channels or poor observation qualities 

should decrease their quantization resolutions or simply be shut off to save power. 

The bit load of each active sensor is determined jointly by individual channel fading 

gain, path loss, local observation noise variance, and the energy constraint. In the 

second part, two iterative allocation algorithms of residual energy at sensors are 

proposed to further enhance estimation accuracy. Numerical results show that in 

inhomogeneous sensing environments, significant performance improvement is 

possible when compared to the uniform quantization strategy. 
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Chapter 1  
 
Introduction 

 

The wireless sensor network (WSN) is an emerging technology that has many 

current and future envisioned applications such as environmental monitoring (air, water, 

and soil), military surveillance, smart factory instrumentation, space exploration, and 

so on [1]-[3]. A typical WSN architecture comprises a fusion center (FC) and a large 

number of geographically distributed sensor nodes. The FC can be either a standard 

base station or a mobile access point such as an unmanned aerial vehicle hovering over 

the sensor field. Since sensors are only equipped with small size batteries whose 

replacement can be rather costly, each sensor node can only transmit a compressed 

version of its raw measurement to the FC owing to bandwidth and power limitations. 

Recently, several decentralized estimation schemes (DESs) [4]-[6] have been 

proposed for parameter estimation in the presence of additive sensor noise, that is, the 

local measurement noise. These DESs demand that each sensor node can only transmit 

a few bits to the FC, with message length determined by each sensor node’s local 

signal-to-noise ratio (SNR). Performance of the resulting estimator is shown to be 

within a constant factor of the best linear unbiased estimator (BLUE) performance. The 
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studies in [7] and [8] present optimal coded and uncoded transmission strategies for 

WSNs which can minimize the energy consumption per transmitted bit, though the 

effect of quantization and the accuracy of final estimate are not considered. 

Energy efficiency is a critical concern for contemporary sensor network design 

[9]-[11]. In practical systems, the probability density function (PDF) of the observation 

noise is hard to characterize, especially for enormous scale sensor networks. In 

consideration of this limitation, some signal processing algorithms that do not require 

the knowledge of sensor noise PDF are proposed in [10] and [11]. Seeing that most of 

the existing related studies require the knowledge of instantaneous noise variance for 

energy allocation, the proposed approaches instead simply depend on an associated 

statistical model. In order to enhance the estimation performance against the variation 

of sensing environments, repeatedly updating the noise profile would be necessary. 

This comes inevitably at the cost of more training overhead and extra energy 

consumption. If the sensing environment is harsh, the sensor noise will change 

expeditiously. Therefore signal processing algorithms proposed in this thesis are 

required to depend on an associated sensing noise variance model. 

In practical WSNs, the wireless channels from sensor nodes to the FC might have 

different qualities, depending on the sensor nodes’ locations relative to the FC. 

Intuitively, the local transmitted message length should not only depend on the quality 

of each sensor node’s observation, that is, local SNR, but also depend on the quality of 

its wireless channel to the FC. The study in [12] models the channel between each 

sensor node and the FC as a Rayleigh fading channel. A more inhomogeneous 

transmitting environment is considered in [13]. The channel impairments, namely path 
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loss and fading, limit the performance of sensor networks. Although a sensor node has 

a high quality of observation, it should not perform any local quantization or 

transmission as long as its channel quality to the FC is not robust enough in order to 

conserve energy. Moreover, in order to further improve the estimation performance, 

two advanced energy allocation approaches are also proposed in this thesis. The 

performance enhancement is conspicuous, though the energy consumption of these 

strategies is more significant than the proposed initial allocation strategy. 

The thesis is organized as follows. In Chapter 2, the system model of WSNs that 

experiences Rayleigh fading and path loss with BLUE adopted in the FC is introduced. 

A minimal mean square error (MSE) decentralized estimation scheme based on 

long-term noise variance knowledge is proposed in Chapter 3. Chapter 4 describes two 

procedures that iteratively allocate the remaining energy among sensor nodes. The 

main results are presented and the numerical performance of the proposed approaches 

are illustrated in this chapter. Finally, the conclusions of this thesis and some potential 

future works are given in Chapter 5.  
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Chapter 2  
 
System Model of Wireless Sensor 
Network 

 

A common wireless sensor network (WSN) architecture comprises of a fusion 

center (FC) and a enormous number of geographically distributed sensor nodes which 

collect observations. Subject to severe energy and bandwidth limitations, each sensor 

node possesses only limited computation and communication capabilities. It is difficult 

for sensor nodes to transmit their entire real-valued observations to the FC. In a more 

practical decentralized estimation scheme (DES), each sensor node preprocesses and 

extracts information from its raw observations. The information is then aggregated via 

wireless transmissions at the FC where the received sensor signals are combined to 

produce a final estimate of the observed quantity. The message lengths are influenced 

by the power constraint, bandwidth limitation and sensor noise characteristics. 

In a practical WSN, the wireless channels from sensor nodes to the FC may have 

different qualities. The local message length of each sensor node should depend not 

only on the quality of its local observation, that is, local SNR, but also on the quality of 

its wireless channel to the FC. The transmitted message length of each sensor node is 
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determined jointly by the local signal-to-noise ratio (SNR) and the quality of its 

wireless channel to the FC, which is influenced by the fading gain, the path loss, and 

the noise power. In Section 2.1, the received signal at the FC from each sensor node is 

discussed. The best linear unbiased estimator (BLUE) is introduced in Section 2.2. 

Section 2.3 discusses a related previous study. A summary of Chapter 2 is given in 

Section 2.4. 

 

2.1 Received Signal Model at Sensor Nodes 

Consider a wireless sensor network as depicted in Figure 2.1, in which  

distributed sensor nodes make observations on the deterministic source signal, . The 

observations of sensor nodes are corrupted by additive noise. The local observation at 

N
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Figure 2.1: System Model of Wireless Sensor Network 
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the ith node is 

  (2.1) ,   ,1i ix n i Nθ= + ≤ ≤

N

where  is independent and identically distributed (i.i.d.) measurement noise with 

zero-mean and variance . The sensor noise variance  is assumed to follow the 

subsequent relation [9], [10] 

in

2
inσ

2
inσ

  (2.2) ,   ,2 1
in iz iσ δ α= + ≤ ≤

where  models the network-wide noise variance threshold,  controls the 

underlying variation from the nominal minimum, and  are i.i.d. 

central Chi-Square distributed random variables each with degrees-of-freedom equal to 

one, i.e.,  [14]. 

0δ > 0α >

{ }, , , : 1 2iz i N= …

2
1iz χ∼

Owing to the bandwidth limitation and the power constraint, each sensor node 

ought to quantize its observation into a -bit message. Afterward each sensor node 

transmits this locally processed data to the FC to generate a final estimate of . In this 

thesis, the uniform quantization scheme with nearest rounding [15], [16] is adopted. 

The produced message at the ith sensor node can consequently be modeled as 

ib

θ

  (2.3) ,   ,1i i im x q i N= + ≤ ≤

where  is the quantization noise which is uniformly distributed with zero mean and 

variance 

iq

2 24 1i
i

b
q Rσ −= 2  [15], [16]. With the constraint that , 0R > ,2 2R R⎡ ⎤−⎢ ⎥⎣ ⎦  

denotes the available signal amplitude range common to all sensor nodes. 

Under the flat-fading channel assumption, the received signal at the FC from the 

ith sensor node is thus 

 - 6 - 



 

 

( )

,   ,

2

2

2 2 2
1

i i i ii

i i i ii

i i i i i ii i i

y d h m v

d h q n v

d h d h q d h n v i N

κ

κ

κ κ κ

θ

θ

−

−

− − −

= +

= + + +

= + + + ≤ ≤  (2.4) 

where  is the channel gain of the ith communication channel, and  is the 

zero-mean additive channel noise with variance , which is modeled as additive 

white Gaussian noise (AWGN) . The signal power received at the FC is assumed to be 

proportional to  where  is the distance between sensor  and the FC, and  

is the path loss exponent common to all sensor-to-FC links. By collecting all the 

received data in (2.3) into a vector we have 

ih iv

2
vσ

id κ−
id i κ

 

[ ] [ ]

[ ] [

, , , , , ,

 , , , , ,

11 1
: ::

1 1
: :

TT T
NN N

T
N

y y h h n n

q q v v

θ
= ==

= =

⎡ ⎤= +⎣ ⎦

+ +

y nh

q v

H

H

… … …

… … ]TN  (2.5) 

with 
2

:i iih d
κ−

= ⋅h } and { , , 1:
T

Ndiag h h⎡ ⎤= ⎣ ⎦H … . Assume that the noise terms 

 in (2.5) are mutually independent and the respective samples ’s, ’s, 

and ’s are also independent across sensors. 

{ , , n q v}

i

in iq

v

 

2.2 Best Linear Unbiased Estimator at Fusion 

Center 

The parameter  is retrieved via BLUE [17] in the FC. This estimator simply 

requires the knowledge of the first and the second moments of the PDF. Assume that 

the channel state information (CSI) and the local sensor-to-FC path loss can be 

θ
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observed. Upon receiving sensor messages ’s, the FC combines them into an 

estimator  given by 

iy

θ

 ,
1

1

T

Tθ
−

−= 1 C y
1 C 1

 (2.6) 

where  is a vector with each element equal to 1 and C  is the 

covariance matrix of the associated noise term: 

[1,.....,1]Τ=1

+ +Hn Hq v . The covariance matrix 

of the noise term can therefore be expressed as 

 

( )
( )

( )

.

2 2 2
1 1

2 2 2
2 2

2 2 2

0 0

0 0

0 0

v

v

N N v

h

h

h

σ σ

σ σ

σ σ

⎡ ⎤+⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

C  (2.7) 

where . Thus the final estimate is obtained by 
1 1

2
q

2 2
i nσ σ σ= +

 
( )

,

1

2 2 22 2 2 21 1

1
4 4i i

i i

N Ni i
b bi ii i in v n v

h y
h h h

θ
σ σ β σ σ β

−

− −= =

⎛ ⎞⎛ ⎞ ⎟⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟= ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟+ +⎜ ⎟ + +⎜ ⎟⎝ ⎠ ⎟⎜⎝ ⎠
∑ ∑  (2.8) 

where 2: Rβ = 12  for notation simplicity. The incurred mean square error (MSE) is 

thus [16] 

 

( )
( )

( )

MSE

.

2

11

1

22 21

1

4 i
i

N

bi in v

E

h

θ θ θ

σ σ β

−Τ −

−

−=

= −
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∑

1 C 1  (2.9) 
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2.3 Review of Previous Work 

Adopting the centralized BLUE at the FC was originally proposed in [9]. Thus the 

FC can perform linear combination of sensor observations to recover . Then the 

study in [9] proposes an adaptive quantization scheme of sensor observations and 

discusses its impact on energy saving. The optimal bit loading is obtained via  

θ

 
2minimize ,

subject to .0'D D≤

P

 (2.10) 

where 2
2

1

N

i
i

P
=

= ∑P  with  denoting the transmit power consumption of sensor 

,  is the achieved MSE performance, and  is the target MSE performance. 

Therefore the following optimization problem based on instantaneous noise 

characteristics is obtained 

iP

i 'D 0D

 

( )

( ) ( )

minimize  ,

subject to ,

                ,   , , ,

22

1
1

2
0 022 21

0
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i
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i

N
b

i
b i

N

bi in v

i

a

D p
h

b i N

σ σ β

∈ =
−

−=

+

−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜= + ≤⎟⎜ ⎟⎜ ⎟+ +⎜ ⎟⎟⎜⎝ ⎠
∈ =

∑

∑

…

D

i

 (2.11) 

where . To facilitate the consequent analyses, the condition  is 

relaxed to . Since the problem is still non-convex, we define  

ia dκ= 0ib
+∈

ib ∈

 
( )

,   .22 2

1 1, ,
4 i

i

i b
in v

f
hσ σ β −

=
+ +

i N= …  (2.12) 

Accordingly, the problem (2.11) can be transformed into 
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where ( )2'
0 0 01D D p= + . 

Since the problem becomes convex, the Lagrangian function can be obtained 
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Equation (2.14) gives the following Karush-Kuhn-Tucker (KKT) conditions  
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Assume that  and define ,1 2 Na a a≤ ≤ ≤…

 

( )
( ) ( )

,

.

1

'2 22 2 2 21 1 0

1 1

1
i i

M M
i

M
i ii in v n v

aG M a
Dh h

M N

σ σ σ σ

−

= =

⎛ ⎞ ⎛⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜= −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟+ +⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝
≤ ≤

∑ ∑
⎞

⎠
 (2.20) 

Let  be the unique sensor number such that  and . 1K ( )1 1f K < ( )1 1 1f K + ≥
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Applying simple manipulations of the KKT system leads to 
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where  for  and ( )  for . Equation (2.22) implies that 

the optimal value of  is 
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∑ ∑   

Motivated by this, bit allocation according to long term noise characteristics is 

proposed in the following chapters. 
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2.4 Summary 

 The decentralized estimation of a noise-corrupted deterministic parameter is 

discussed in this chapter. Each sensor node in the WSN collects an observation, 

computes a local message, and sends it to the FC. Sensor nodes do not communicate 

with each other. Local quantization at each sensor node is required to reduce the 

communication cost. An optimal design of the discrete local message functions and the 

final fusion function depend on the underlying sensor noise distributions. The sensor 

noises are assumed to be additive, zero-mean, spatially uncorrelated, but otherwise 

unknown and possibly different among sensor nodes due to varying sensor quality and 

inhomogeneous sensing environment. The classical BLUE linearly combines the 

real-valued sensor observations to minimize the MSE. Unfortunately, transmitting 

real-valued messages is impractical to implement. Finally, a previous study is discussed. 

In the next chapter, we construct a DES where each sensor node compresses its 

observation into a small number of bits with length proportional to the local SNR and 

the channel quality. The resulting compressed bits from different sensor nodes are then 

collected and combined by the FC to estimate the unknown parameter. 
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Chapter 3  
 
Minimal Mean Square Error 
Decentralized Estimation over 
Rayleigh Fading Channel Based on 
Sensor Noise Variance Statistics 

 
In this chapter, a problem similar to the problem recently considered [18]: how to 

find the optimal bit load which minimizes the average distortion under a fixed total 

energy budget is studied. A key feature common to the existing related studies [4], [9], 

[10], [19] is that error free transmission is assumed, that is, perfect wireless channels 

are considered in these studies. The study in [9] formulates the convex optimization 

problem to derive an optimal bit loading scheme under the mean square error (MSE) 

constraint with perfect channel. The study in [20] models the noisy channel between 

each sensor node and the fusion center (FC) as a binary symmetric channel (BSC) with 

crossover probability controlled by the transmitted bit energy. However, it requires the 

instantaneous local sensor noise characteristics to formulate the optimization problem. 
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This chapter contributes a solution to the minimal MSE decentralized estimation 

with rayleigh fading channel between each sensor node and the FC by exploiting long 

term noise variance information. The analytic results reveal that under limited energy 

budget, sensor nodes with unfavorable channel quality or low local SNR should be shut 

off. The energy distributed to those active sensor nodes should be proportional to the 

individual channel gain of each active sensor node. In Section 3.1, the average mean 

square error (MSE) is analyzed. The optimal closed-form solution is provided in 

Section 3.2. Section 3.3 and Section 3.4 contain discussions and numerical results of 

the proposed optimal solution. Section 3.5 summarizes this chapter. 

 

3.1 Average Mean Square Error of Decentralized 

Estimation 

Assume that the ith sensor node transmits its locally processed -bit message, 

, via applying quadrature amplitude modulation (QAM) with a constellation size 

. According to [21], the consumed energy for reliable bit decoding is thus 

ib

im

2 ib

 ( ) ,    ,2 1 1ib
i iE w i N= − ≤ ≤  (3.1) 

where 22 2 2: ii v i v iw h d hκσ σ= = ⋅  and i iw

i

E  is the local signal-to-noise ratio (SNR) 

received by the FC from the ith sensor node. For a fixed set of the measurement noise 

variances, that is, ’s, the problem of decentralized best linear unbiased estimator 2
nσ
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(BLUE), under an permissible total energy budget , can be formulated as TE
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or equivalently, 
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where  denotes the set of all nonnegative integers. 0
+

Toward a solution independent of instantaneous noise conditions, as in [18] and 

[19], we evaluate the following optimization problem, in which the equivalent 

distortion cost function in (3.3) is averaged over the noise variance statistic 

characterized in (2.2):  
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where  with [ ], , , 1 2
T

Nz z z=z … ( )p z  denoting the associated distribution. Since 

 is a central i.i.d. Chi-Square distributed random variable with 2
1iz χ∼
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degrees-of-freedom equal to one [14] 
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The averaged MSE performance can be calculated as 
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A similar closed-form expression of the cost function  in (3.4) can be found in [18] 

and [19]. The following lemma, with proof presented in Appendix A, provides a 

closed-form expression of the integral involved in the summation in (3.6). 

0J

Lemma 3.1: The following result holds: 
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2 2
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2
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x
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π
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∞= ∫  is the Gaussian tail function. 

From (3.5) and Lemma 3.1, the optimization problem in (3.4) can be equivalently 

expressed as 
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Equation (3.8) shows that  is unfortunately a highly non-linear (and non-convex) 

function of the sensor’s bit load . The problem therefore becomes intractable if we 

stick on direct maximization of . An alternative formulation which is more tractable 

is proposed and an analytic solution can be obtained. By the following approximation 

to the Gaussian tail function [22] 

0J
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and some straightforward manipulations, the cost function can thus be approximated by 
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 (3.10) 

where . The main advantage of (3.10) is that it leads to an associated 

lower bound on the reciprocal MSE, , in a more tractable form.  

:ig δ= +

0J

Through further modification of variable, the problem can be formulated in the 

form of convex optimization problem which then yields a closed-form solution. By the 

inequality equation: 

 ( ) ( ) ( ) ,
2

4 2 4 4i ib b
i i ig g gβ πα β β− − −+ + + ≤ + +ib πα  (3.11) 

the approximated cost function in (3.10) is lower bounded by 
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where . According to (3.12), the optimization problem is 

thus 

:i igγ α α δ= + = + +
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To facilitate analysis we first observe that, since , it follows that 

. This statement implies that the total energy 

constraint in (3.13) can be substituted by the following one without violating the 

overall energy budget requirement: 
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With the aid of (3.14) and by performing a modification of variable with , 

the optimization problem finally becomes 

: 4 1ib
iB = −
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In (3.15), the intermediate variable  is relaxed to be a non-negative real number so 

as to render the optimization problem tractable. AS long as the optimal real-valued  

(and hence ) is evaluated, the associated bit loads can therefore be obtained through 

nearest-integer rounding. The major contribution of the alternative problem 

formulation (3.15) is that it admits the form of convex optimization and can moreover 

lead to a closed-form solution, as shown below. 

iB

iB

ib

 

3.2 Optimal Closed-form Solution for Sensor 

Node Resource Allocation 

 In order to solve the problem in (3.15), let us form the associated Lagrangian as 
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The associated set of Karush-Kuhn-Tucker (KKT) conditions [23] are listed as follows: 
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  (3.20) ,   ,   ,   .0 0 0 1i i i iB B iμ μ≥ = ≥ ≤ ≤ N

Condition (3.17) leads to  
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According to (3.21), λ  and ’s should be determined to fulfill the desired 

constraints. If , (3.17) implies  for all  and hence 

 Since all sensor nodes are turned off under this circumstance, it 

should be precluded. 

iμ

0λ = 0iμ > 1 i N≤ ≤

,   .0 1iB i N= ≤ ≤

The assumption  is made without loss of generality. 

Corresponding to the previous assumption: ,  is 

demonstrated. Let us define the function  
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Let  be the unique integer such that  and . If 11 K N≤ ≤ 1( 1)f K − < 1( ) 1f K ≥

( ) 1f K ≥  for all 1 , we simply set . The existence and uniqueness 

of such  is shown in Lemma 3.2 with proof given in Appendix B 

K N≤ ≤ 1 1K =

1K

Lemma 3.2: For the function  defined in (3.22), if there exist  such that 

, then . Furthermore, 
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 The optimal  and  can be obtained by optλ ,i optB
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Since , the optimal bit load is thus 4 ib
iB = −
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The practical bit load transmitted from the ith sensor node, that is, , can be evaluated 

via applying nearest-integer rounding to the optimal bit load, . The bit allocation 

strategy described in this chapter can be illustrated by Figure 3.1. Sensor nodes are 

initially sorted according tow . Then applying the bit distribution strategy described in 

Section 3.2 we obtain the bit loading topology. 

ib

,i optb
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End 
 

Figure 3.1: Flow chart of initial allocation method 

 

3.3 Further Discussions on Optimal Solution  

1. Since the path loss is normally much larger than the rayleigh fading gain, sensor 

 which is deployed remote to the FC usually corresponds to the poor 

background channel gain and therefore large value of . If there are sensor 

nodes suffer from path losses which vary negligibly, the channel quality  is 

mainly influenced by the rayleigh fading gain. If the sensor nodes are sorted 

according to , The first  sensor nodes are shut off to conserve energy. 

Similar energy conservation strategies via turning off sensor nodes with poor 

channel links can be identified in [9], [10], [18], and [19]. From (3.25), the 

i

iw

iw

iw 1 1K −
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assigned message length for each active sensor node is inversely proportional to 

. This is intuitively reasonable while sensor nodes with better channel 

conditions should be distributed with more bits (and thus more energy) to enhance 

the estimation accuracy. 

iw

2. The optimization problem described in this chapter merely takes the effect of 

limited total energy into consideration. In order to prevent sensor nodes from 

exhausting energy quickly, one intuitive solution is to impose an additional peak 

energy constraint 

  (3.26) ( ) ,   ,2 1 1ib
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where  is the energy budget per sensor node. By defining a node index set: PE
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This concept can also be applied to the strategies which are described in the next 

chapter. 

3. The practical bit load is evaluated via rounding the optimal real bit load to the 

nearest integer. Compared to upper-integer rounding and lower-integer rounding, 

nearest-integer rounding is more closed to the optimal bit load. Thus energy is 

used more efficiently. 
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3.4 Computer Simulations 

In Section 3.2, an optimal bit allocation scheme is proposed to minimize the 

reconstruction MSE. The simulated performance of the proposed solution in (3.25) is 

compared with the scheme of uniform energy allocation with bit load determined via 

the following equation: 

 ( ) ,   .2 1 1ib T
i

Ew
N

− = ≤ ≤i N  (3.28) 

In (3.28),  is evaluated via applying lower integer rounding so that the resultant 

total energy can be kept beneath . Therefore it leads to 
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 (3.29) 

where ⎣ ⎦x  returns the highest integer that is less than or equal to x . In each 

independent simulation we simply choose  and  which is a 

uniform distributed random variable with possible values . The total 

number of trials is 100000 and the number of sensor nodes is set to be 150 in the 

consequent experiments. The available total energy, that is, energy constraint, is thus 

2κ = [ ], 1 10id ∈

iw

, , , 1 2 10…

  (3.30) ,
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T
i

E ρ
=

= ∑

where  is defined as the level of  total energy.  ρ

With fixed  and , Figure 3.2 displays the computed average MSE 

as  varies from 0.1 to 3. As  increases, that is,  increases, the estimation 

performance increases. The proposed solution (3.25) outperforms the uniform energy 

allocation strategy described in (3.29), especially when  is small. Moreover, the 

2δ = 4α =

ρ ρ TE

TE
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average total energy consumption of the proposed method is less than the uniform 

energy allocation strategy. The MSE of each scheme saturates as  ( ) is larger 

than a certain value. Under this circumstance, the estimation performance is limited 

due to the limited number of sensors. This phenomenon will be discussed in Section 

4.3. Even though the estimation performance can not be enhanced further, the proposed 

method still outperforms the uniform energy allocation strategy described in (3.29). 

ρ TE
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Figure 3.2: Average MSE vs. varying level of total energy 

 

With , Figure 3.3 displays the computed average MSE as  varies from 

0.5 to 8. Three different levels of total available energy are considered in Figure 3.3. 

The performance enhancement of the proposed method becomes more significant as 

2δ = α
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the noise variance variation (α ) gets larger, which means a more inhomogeneous 

sensing environment. The estimation performance of each strategy degrades while the 

noise variance variation becomes larger. Moreover, as observed in Figure 3.2, the 

estimation performance improves as the total available energy  increases. The 

proposed strategy outperforms the uniform energy allocation strategy more 

significantly under low energy constraint since the proposed strategy allocates energy 

more efficiently.  

TE
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Figure 3.3: Average MSE vs. varying noise variance variation factor 

 

The percentage of energy consumption is defined as  

 
( )

percentage of energy consumption ,1
2 1i

N
b

i
i

T

w

E
=

−
=

∑
 (3.31) 
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Where  is the bit load allocated to sensor . With , Figure 3.4 and Figure 3.5 

display the average percentage of energy consumption for  varying from 0.5 to 8. 

When the energy level is low, the energy consumed by the proposed method is lower 

than the uniform energy allocation strategy. A similar phenomenon can be observed for 

high energy level as depicted in Figure 3.5. Although the energy consumption of the 

proposed method is lower than the uniform energy allocation strategy, the estimation 

performance of the former is better. 

ib i 2δ =

α
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Figure 3.4: Percentage of energy consumption vs. varying noise variance variation 

factor with low energy budget 
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Figure 3.5: Percentage of energy consumption vs. varying noise variance variation 

factor with high energy budget 

With , Figure 3.6 displays the computed average MSE as  varies from 

0.5 to 8. Three different levels of total available energy are considered in Figure 3.6. 

The performance enhancement of the proposed method becomes more significant as 

the minimal noise variance ( ) gets larger, which means that the local SNR degrades. 

While the minimal noise variance, that is, , increases, the estimation accuracy 

degrades obviously. The performance degradation is corresponding to lower SNR since 

the noise variance increases. However, the estimation performance enhancement is 

more significant as the minimal noise variance increases. As observed in Figure 3.2, the 

estimation accuracy improves as the total available energy  increases. The 

proposed strategy outperforms the uniform energy allocation strategy more 

significantly when the energy constraint  is extremely small. This phenomenon is 

4α = δ

δ

δ

TE

TE
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reasonable since the proposed method focus on effectively distributing energy to sensor 

nodes under stern environments. 
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Figure 3.6: Average MSE vs. varying noise variance threshold 

 

3.5 Summary 

In this chapter, a closed-form solution to the minimal-MSE decentralized 

estimation problem is provided by exploiting a statistical noise variance model. Based 

on the closed-form expression of the performance measure averaged over the noise 

variance distribution, MSE minimization becomes a convex optimization problem. The 

analytic closed-form solution presents the energy saving policy. The proposed solution 

simply allocates energies to sensor nodes with large channel gains and shut off those 
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suffering from poor link quality. Numerical simulations reveal that the estimation 

accuracy is upgraded as total energy increases. The proposed solution outperforms the 

uniform energy allocation strategy especially when the total available energy is 

extremely low. Thus the proposed strategy is more effective in an energy-limited 

environment, which approaches practical wireless sensor network environments. 
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Chapter 4  
 
Iterative Allocation of Remaining 
Energy at Sensor Nodes 

 
In the previous chapter, a tighter energy constraint (3.14) is adopted in order to 

facilitate the derivation of the closed-form solution (3.25). However, applying the 

tighter energy constraint might lead to inefficient usage of the available energy 

resource since the genuine energy consumed by the bit allocation (3.25) could be 

substantially beneath the energy budget . To remedy this drawback, one approach 

is to contrive a mechanism for distributing the remaining energy over a certain sensor 

nodes, thereby the estimation performance can be enhanced further. 

TE

Two procedures for recursively distributing remaining energy are presented in this 

chapter. The core idea of the first approach proposed is to maximize a certain measure 

of the incremental increase in the average reciprocal MSE lower bound (3.12) as long 

as more bits are distributed to sensor nodes. Instead of distributing remaining energy to 

whole sensor nodes, the second approach proposed mainly focuses on activating sensor 

nodes which are turned off at present. The first method, namely method of allocation to 
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all sensor nodes, is introduced in Section 4.1. Then the second method, that is, method 

of allocation to unused sensor nodes only, is presented in Section 4.2. Section 4.3 

makes comparison between these two methods proposed in this thesis. Numerical 

simulations are exhibited in Section 4.4. Finally, Section 4.5 summarizes this chapter 

 

4.1 Method I: Allocation to All Sensor Nodes 

By setting ( )0
ib =i b , the ith summand in the summation (3.12), namely, 

 ( )
( )

( ) ,
0

0
0 4:

4

i

i

b

i b
i

I
γ β

=
+

 (4.1) 

can be regarded as the amount of average MSE reduction contributed by the ith sensor 

node with ( )0
ib  quantization bits. If extra ( )1

ib  bits are allocated to the ith sensor node 

after the first iteration (hence there are totally ( ) ( )10
i ib b+  bits assigned to this sensor 

node), ( )0
iI  in (4.1) is increased to  

 ( )
( ) ( )

( ) ( )

( )

( ) ( )

10 0

10 0
1 4 4: .

4 4

i i i

i i i i

b b b

i b b b b
i i

I
γ β γ β

+

+ −
= =

+ +
1

4
 (4.2) 

( ) ( )1 0
i iI I≥  can be verified since 

( )1
4 ib ≥ 1 . A conceivable criterion for distributing the 

remaining energy resource would be directly maximizing the summation, .  ( )1

1

N

i
i

I
=
∑

Motivated by this observation, the problem of allocating the remaining energy 

after  times iterations can be formulated as: 1l −
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

maximize ,

subject to , 
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≤ ≤

∑

∑

 (4.3) 

where ( ) ( ) ( )1 0l
i i it b b− = + + 1l−  denotes the total bits assigned to the ith sensor node 

before the lth iteration begins. The optimization problem in (4.3) is similar to (3.13), 

with  replaced by ib
( ) ( )1l
it b− + l

i . Since ( )
0

l
ib

+∈ , it follows 

  (4.4) 

( ) ( ) ( ) ( )

( ) ( )
.

1 1

1

1 1

1
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l

TE

Therefore the total energy constraint in (4.3) can be substituted by the subsequent 

equation without violating the overall energy budget requirement: 

  (4.5) 
( ) ( )

.
1

1
2 4

l l
i i

N
t b

i
i

w
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=
≤∑

With the aid of (4.5), the optimization problem becomes 

 

maximize ,

subject to , 

                ,   

                ,

2

2
1

1

1

1

N ii

ii i i
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ii i T
i

i

T B
T B

w T B E
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i N
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≤
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 (4.6) 

where 
( )1

2
l

it
iT

−
=  and 

( )
4

l
ibiB =  for notation simplicity. The iteration index, , is 

omitted in the formulations below. In order to render the problem tractable,  is 

relaxed to be a non-negative real number.  

l

iB
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In order to solve problem (4.6), we can form the Lagrangian 

 

( )

(

, , , , , ,

.

1 1

2

2
1 1 1

1

N N

N N Nii
i i i T i i

ii i ii i

L B B

T B w T B E B
T B

λ μ μ

λ
γ β= = =

⎛ ⎞⎟⎜ ⎟= − − + −⎜ ⎟⎜ ⎟⎜+ ⎝ ⎠
∑ ∑ ∑

… …

)μ  (4.7) 

The set of KKT conditions [23] then yields: 

 
( )

,   , , ,
2

22
0 1i

i i i
ii i

T w T i N
T B

β λ μ
γ β

− + = =
+

…  (4.8) 

  (4.9) 
1

0,
N

ii i T
i

w T B Eλ
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⎛ ⎞⎟⎜ ⎟− =⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑

  (4.10) ,0λ ≥

 ( ),   ,   ,   .0 1 0 1 1i ii i B B iμ μ≥ − = ≥ ≤ ≤ N  (4.11) 

Solving for (4.8) leads to 

 .
2

2
i

i
i i i i i i i

T
B

T w T T
β β

γ λ μ γ
= −

− 2

i N

 (4.12) 

According to (4.12), λ  and ’s should be determined to satisfy the desired 

constraints. If λ , (4.8) implies  for all and thus 

 This circumstance should be precluded since all sensor 

nodes are turned off. By sorting sensor nodes according to the term: 

iμ

0= 0iμ > 1 i N≤ ≤

,   .1 0 1iB − = ≤ ≤

( )2
i i iT w Tβ γ⎡ +⎢⎣ i

⎤
⎥⎦  and by arranging new indexes to the sensor nodes, the 

following relationship is obtained: 

 ( ) ( ) .2 2
1 1 1 1 N N N NT w T T w Tβ γ β γ⎡ ⎤ ⎡ ⎤+ ≥ ≥ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (4.13) 

Then we define the function 
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 (4.14) 

Let  be the unique integer that satisfies  and 

. If 

21 K N≤ ≤ 1 2( 1)f K − < 1

( ) 1f K ≥ (1 2 )1 1f K ≥ 1 K N≤ ≤ 1=

1

 for all , then we simply set K . The 

existence and uniqueness of such  is shown in Lemma 4.1 with proof given in 

Appendix C. 

2

2K

Lemma 4.1: For the function  defined in (4.14), if there exist  such that 

, then 

( )1f K 2K

1 2( )f K ≥ ( )1 2 1f K + ≥ 1 . Moreover, ( )1 1f N ≥  holds all the time. 

 The optimal solution pair ( ),, opt i optBλ  can be obtained by 
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and 
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 (4.16) 

Since 
( )

4
l

ibiB = , the optimal bit load is thus 

 ( )
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2 2

0 1

1 log
2

l
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i K
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B K i N
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,1
 (4.17) 

The extra bit load transmitted from the ith sensor node after the lth iteration, that is, 
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( )l
ib , can be evaluated via rounding the optimal bit load, ( )

,
l

i optb , to the nearest integer. 

The reason that we do not adopt the actual bit load is owing to practical system’s 

limitation. Finally, the iteration terminates in the  iteration as soon as 

 for  and  for , 

iteration terminates. By taking the -times iterations into consideration, the total bits 

allocated to the ith sensor node is  

th1l
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1
2 1

l
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N
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w E
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w E
=

⎛ ⎞⎟⎜ − >⎟⎜ ⎟⎜⎝ ⎠∑ 1l l>

1l

 ( ) ( ) ( ).1 0l
i i it b b= + + 1l  (4.18) 

The method for further bit allocation described in this section can be illustrated by 

Figure 4.1. Sensor nodes are initially sorted. Then applying the bit distribution strategy 

described in this section we obtain the bit loading topology for the lth iteration. If there 

is still remaining energy, we sort sensor nodes and adopt the same procedure repeatedly. 

When the energy allocated to sensor nodes becomes larger than available energy, we 

discard the lth bit allocation and the procedure terminates. 
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Figure 4.1: Flow chart of method of allocation to all sensor nodes 
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4.2 Method II: Allocation to Unused Sensor 

Nodes Only 

 Assume that the first ( )1N  sensor nodes are inactive after initial bit allocation 

described in Chapter 3. Owing to the practical system’s limitation, the optimal bit load 

of each sensor node is rounded to the nearest integer. Therefore there might be more 

than  sensor nodes shut off due to the rounding topology applied. The 

remaining energy is distributed to these inactive sensor nodes to further improve the 

estimation performance. The optimization problem which is similar to the one 

described in Chapter 3, can then be formulated as  

1 1K −
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 (4.19) 

where  is the same as the one defined in Chapter 3 with 4 ib
iB = −1

( ),   , , 1 1B i N N= + …i  fixed and ( ),   , , 11B i N= …i  able to be modified while 

the first iteration completes. 

Assuming that the first ( )lN  sensor nodes are turned off after  times 

iterations, the optimization problem of distributing the residual energy can be 

formulated as: 

1l −
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where  is the residual energy after  times iterations. 

Moreover, 

( )

( ) 1
:
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= +
= − ∑ i iB 1l −

( ),   , , 1l
iB i N N= + …  is fixed and ( ),   , , 1 l

iB i N= …  can be 

modified while the lth iteration terminates. By relaxing the bit loads under 

consideration, that is, ( ),   , , 1 lB i N= …i , to be a non-negative real number so as to 

render the optimization problem tractable, the associated Largrangian is as follows: 
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The associated set of KKT conditions [23] is described below: 
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The condition (4.22) leads to  
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γ λ μ γ
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According to (4.26), λ  and ’s should be determined to fulfill the desired 

constraints. If , (4.22) implies  for all 

iμ

0λ = 0iμ > ( )1 li N≤ ≤  and hence 

( ),   .0 1 lB ii = ≤ ≤ N  Since all sensor nodes are shut off under this circumstance, it 

should be precluded.  

From the assumptions in Chapter 3:  and , the 

following statements can be demonstrated naturally  

1 Nw w≥ ≥ 1 Nγ γ≥ ≥

  (4.27) ( ) ,1 2 lNw w w≥ ≥ ≥
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 (4.29) 

Let ( )
31 lK N≤ ≤  be the unique integer that satisfies  and 

. If 

2 3( 1)f K − < 1

2 3( ) 1f K ≥ ( )2 1f K ≥  for all ( )1 lK N≤ ≤ , we simply set . Since (4.29) 

is similar to (3.22) with  replaced by 

3 1K =

TE ( )l
TE  and  replaced by N ( )lN , the 

existence and uniqueness of  can be shown in Lemma 3.2. 3K

Eventually, the optimal  and optλ ( )
, ,   , , 1 l

i optB i N= …  of the lth iteration can 

be obtained by 
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and 
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Since , the optimal bit load is thus 4 ib
iB = −
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The practical bit load transmitted from the ith sensor node, that is, , for ib

( ), , 1 li = … N  can be evaluated via applying nearest-integer rounding to the optimal 

bit load, . If  for  and  

for , iteration stops. Otherwise, if there is only one sensor node left inactive, the 

residual energy is allocated to this sensor node and the iterative procedure terminates. 
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w E
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− >∑

2l l>

The method for further bit allocation described in this section can be illustrated by 

Figure 4.2. Sensor nodes are initially sorted. Then applying the bit distribution strategy 

described in this section we obtain the bit loading topology for the lth iteration. If there 

are still remaining inactive sensors, we adopt the same procedure repeatedly without 

sorting them again. When all sensor nodes become active, the procedure terminates. 
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Figure 4.2: Flow chart of method of allocation to unused sensor nodes only 
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4.3 Discussions on Proposed Methods 

In Section 4.1, the proposed iterative strategy distributes the remaining energy 

over all sensor nodes regardless of sensor nodes’ activation. Depending on both the 

channel conditions and the bit loads already allocated to sensor nodes, this strategy 

might turn on inactive sensor nodes or assign more bits to active sensor nodes. The ith 

summand after  times iterations is l

 ( )
( )

( ) .4

4

l
i

l
i

t
l

i t
i

I
γ β

=
+

 (4.33) 

Observing (4.33), by letting  denote the set of activate sensor nodes’ indexes, the 

contribution of the ith summand in the summation, that is,  
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is limited since  

 
( )

( ) .1
lim
l

i

l
i

it
I

γ→∞
=  (4.35) 

In other words, while a sensor node’s bit load exceeds a certain threshold, allocating 

more bits to this sensor node does not facilitate the performance enhancement.  

However, since the energy consumption of each sensor node is exponentially 

proportional to the bits it transmitting, assigning additional bits to active sensor nodes 

leads to significant increase on energy consumption. Thus the remaining energy is 

mainly consumed by these active sensor nodes and the improvement of estimation 

accuracy is limited. Since a upper bound of energy consumption is adopted in the 
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optimization problem, the first iterative scheme should terminate while the rounded bit 

load of each sensor node is equal to zero. 

An alternative iterative method is proposed in Section 4.2 as a remedy. Instead of 

distributing residual energy to all sensor nodes in spite of these nodes’ activity, this 

method mainly focuses on the allocation to unused sensor nodes. This strategy is 

similar to the initial allocation strategy except that the energy constraint changes into 

the residual available energy and we merely need to consider the sensor nodes which 

are still turned off after previous allocations. Compared to the method proposed in 

Section 4.1, increasing the number of active sensor nodes contributes to the 

performance enhancement significantly, especially when the available energy is low. 

This phenomenon is more evident when the bits transmitted from a certain active 

sensor nodes exceed the threshold. Since the estimation accuracy improvement 

contributed by one sensor saturates when it transmits over the threshold. The concept 

of the proposed method in Section 4.2 is similar to water-filling which is mentioned in 

[25].  

There are two situations that the method of allocation to unused sensors only 

completes. The first is that, it should finish as long as the rounded bit load of each 

sensor is equal to zero. Moreover, the second situation is that, since the entire residual 

energy is allocated to one sensor if there is only one sensor node left inactive, applying 

nearest rounding might lead to energy overflow. To prevent energy consumption from 

outstripping the energy constraint, the iterative procedure should stop as soon as energy 

overflows. For example, if energy consumption outstrips the energy budget after the 

(l+1)th iteration, we simply adopt the previous  times iterations’ result.  l
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Computer simulations in the next section show that both proposed iterative 

procedures outperform the performance of initial allocation. Furthermore, the proposed 

method of allocation to unused sensor nodes only has more estimation accuracy 

enhancement than the first one while the energy budget is low. 

 

Table 4.1: Comparison of energy distributing methods 

Method 
Uniform 

energy 

Initial 

allocation 

Iterative 

method I 

Iterative 

method II 

Allocation to All sensors All sensors All sensors Unused sensors

Performance 

under low 

energy budget 

Poor Fair Good Best 

Performance 

under high 

energy budget 

Poor Fair Best Good 

 

4.4 Computer Simulations 

In Section 4.1 and 4.2, two iterative schemes of allocating remaining energy are 

proposed to further minimize the reconstruction MSE. The simulated performance of 

these two strategies are compared to the bit allocating strategy as described in Section 

3.2 and the uniform energy allocation strategy as described in Section 3.4. In each 

independent simulation we simply choose  and  which is a 

uniformly distributed random variable with possible values . The total 

number of trials is 100000 and the number of sensors is set to be 150 in the following 

2κ = [ , 1 10id ∈ ]

, , , 1 2 10…
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experiments. The available total energy is  where  can be chosen by 

us.  

1

N

T i
i

E ρ
=

= ∑w ρ

With fixed  and , Figure 4.3 displays the computed average MSE 

as  varies from 0.1 to 3. As increases, i.e.,  increases, the estimation 

accuracy increases. Both the proposed iterative methods outperform not only uniform 

energy allocation strategy in (3.29), but also the strategy described in (3.25), since 

these two iterative methods perform further bit load allocation after initial allocation. 

The performance enhancement is obvious, especially when  is small. However, 

when the available energy budget is extremely small, the performance improvement of 

the method of allocation to all sensor nodes is not significant. As discussed in Section 

4.3, since the available energy is too small, allocating additional bits to active sensors 

might easily lead to enormous extra energy consumption which leads to energy 

overflow. Thus the additional bit load allocated to each sensor node at this iteration is 

not adopted and the bit load finally distributed to each sensor is almost identical to the 

initial allocation. Moreover, the method of allocation to unused sensor nodes only 

performs the best under low energy budget as observed, which is consistent with the 

discussions in the previous section. 

2δ = 4α =

ρ ρ TE

TE

As the total available energy increases, the method of allocation to all sensor 

nodes becomes slightly better than the method of allocation to unused sensor nodes 

only. The reason for this phenomenon is that the method of allocation to unused sensor 

nodes only allocates the whole remaining energy to the only sensor which is still 

unused after previous iterations without optimal evaluation while the method of 

allocation to all sensor nodes can still apply the optimal bit allocation strategy. We also 
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observe that the MSE of each scheme saturates as  ( or ) is higher than some 

value. Under this circumstance, the performance is limited due to sensor number 

constraint. However, even though the performance of the method of allocation to 

unused sensor nodes only can not be improved further, the proposed methods still 

outperforms the uniform energy allocation strategy in (3.29). 
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Figure 4.3: Average MSE vs. varying level of total energy 

 

With , Figures 4.4-4.6 display the computed average MSE as  varies 

from 0.5 to 8. Three different levels of total available energy are considered in these 

figures. The performance enhancement of the proposed method becomes more 

significant as the noise variance variation (α ) gets larger, which corresponds to a more 

inhomogeneous sensing environment. The estimation accuracy degrades as the noise 

variance variation (α ) increases, which means that the sensing environment becomes 

2δ = α
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more inhomogeneous. Furthermore, the estimation accuracy of all methods improves 

as the total available energy  increases. When  is extremely small, both the 

proposed iterative strategies outperform the uniform energy allocation strategy and the 

strategy presented in (3.25) significantly as depicted in Figure 4.4. Furthermore, the 

method which turns on the unused sensor nodes performs the best among these bit 

allocation strategies under low energy constraint. The energy consumption is 

exponentially proportional to the bit load. Thus the method of allocation to unused 

sensor nodes can only distribute the remaining energy to silent sensors without causing 

energy overflow while the method of allocation to all sensor nodes might easily lead to 

energy overflow since it distributes energy to active sensors. When  is high, the 

proposed iterative strategies still outperform the uniform energy allocation strategy. 

However, Figure 4.6 demonstrates that the method of allocation to all sensor nodes 

becomes the most robust method among these methods for bit allocation. The method 

described in Section 4.2, which turns on the unused sensor nodes, performs slightly 

inferior to the method of allocation to all sensor nodes because the second proposed 

method allocates the whole remaining energy to the only sensor which is still unused 

after previous iterations without optimal evaluation while the first proposed method 

still can apply the optimal bit allocation strategy. 

TE TE

TE
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Figure 4.4: Average MSE vs. varying noise variance variation factor with low energy 

budget 
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Figure 4.5: Average MSE vs. varying noise variance variation factor with medium 

energy budget 
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Figure 4.6: Average MSE vs. varying noise variance variation factor with high energy 

budget 

 

With , Figures 4.7-4.9 display the average percentage of energy 

consumption for  varying from 0.5 to 8. As the percentage of energy consumption 

upgrades, the estimation accuracy is also enhanced for the proposed methods. When 

the energy level is low and medium, the energy consumed by the proposed iterative 

methods is higher than the uniform energy allocation strategy and the initial allocation 

as depicted in Figure 4.7 and Figure 4.8. It is necessary since further bit distribution is 

performed. However, as the available energy increases, Figure 4.9 shows that the 

percentage of energy consumption of the proposed method of allocation to unused 

sensor nodes only becomes even lower than the uniform energy allocation strategy. 

2δ =

α
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This phenomenon is owing to the rounding scheme applied. Since the whole remaining 

energy is assigned to the last silent sensor, applying nearest rounding might caused 

energy overflow. To avoid energy overflow, the ultimate iteration is not adopted, and 

therefore the residual energy is considerable. Although the energy consumption of the 

method of allocation to unused sensor nodes only is lower than the uniform energy 

allocation strategy, the estimation performance of the former is better.  
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Figure 4.7: Percentage of energy consumption vs. varying noise variance variation 

factor with low energy budget 
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Figure 4.8: Percentage of energy consumption vs. varying noise variance variation 

factor with medium energy budget 
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Figure 4.9: Percentage of energy consumption vs. varying noise variance variation 

factor with high energy budget 
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With , Figure 4.10 displays the computed average MSE as  varies from 

0.5 to 8. Two different levels of total available energy are considered as in Figure 4.10. 

The performance enhancement of the proposed method becomes more significant as 

the minimal noise variance ( ) gets larger, which means that the local SNR degrades. 

While the minimal noise variance increases, the estimation accuracy degrades more 

significantly. The performance degradation is due to lower SNR since the noise 

variance increases. As in Figure 4.3, the estimation accuracy improves as the total 

available energy  increases. The iterative strategies described in this chapter 

outperform the uniform energy allocation strategy more significantly when the energy 

constraint  is extremely small. The method proposed in Section 4.2 performs the 

best among these bit allocation strategies. 
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Figure 4.10: Average MSE vs. varying noise variance threshold 
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4.5 Summary 

Two iterative allocation strategies are described in this chapter. Both strategies 

provide further performance enhancement after initial bit allocation. The first proposed 

method presented in Section 4.1 takes the entire sensor nodes under consideration. The 

method of allocation to unused sensor nodes only simply distributes the remaining 

energy to inactive sensor nodes. Computer simulations show that the estimation 

accuracy increases as the energy budget increases. The method of allocation to unused 

sensor nodes only outperforms the method of allocation to all sensor nodes as their 

energy consumptions are almost the same. Thus the method of allocation to unused 

sensor nodes only is more effective, especially in an energy-limited inhomogeneous 

environment. 
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Chapter 5  
 
Conclusions and Future Works 

 
In this thesis, the wireless sensor network (WSN) which is appropriate for 

environmental monitoring is considered. A typical WSN architecture consists of a 

fusion center (FC) and an enormous number of geographically distributed sensor nodes. 

Sensor nodes in the WSN collect local observations and occasionally transmit local 

processed messages to the FC via wireless channels. Nevertheless, each sensor node 

can only perform limited computations and transmissions owing to restrictions of 

realistic systems such as small sized battery, bandwidth, and cost. Consequently, it is 

unfeasible for sensor nodes to transmit their entire real-valued local observations to the 

FC. A more practical decentralized estimation scheme is to let each sensor node 

quantize its real-valued local measurement into an appropriate length message and then 

transmit the preprocessed discrete message to the FC. Therefore the FC can combine 

the whole received messages from sensor nodes to produce a final estimate of the 

unknown deterministic parameter. Normally, the transmitted message length of each 

sensor node is determined by power restriction, bandwidth limitation, sensor noise 

characteristic, and wireless channel condition. 
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Since energy efficiency is a critical concern for WSN design [9]-[11], the 

decentralized estimation is formulated as an optimal bit-loading problem. The 

probability density function (PDF) of the observation noise is difficult to characterize, 

especially for enormous scale sensor networks. Compared to most of the existing 

related studies which require the knowledge of instantaneous noise variances to 

perform power allocation among sensor nodes, the approaches presented instead 

simply relies on long-term noise variance knowledge. If the sensing environment is 

harsh, the sensing noise would vary rather rapidly. The proposed signal processing 

algorithm which depends on an associated sensing noise statistic is thus in demand. 

Moreover, while the instantaneous noise variance is hard to characterize in the FC, the 

signal processing algorithm described in this thesis is advantageous. 

As error free transmissions are assumed in previous work [18], [19], a more 

severe channel condition which is closer to the practical sensing environment is 

considered in this thesis. All sensor nodes transmit their messages to the FC via noisy 

channels which are modeled as Rayleigh fading channels. The system model and the 

best linear unbiased estimator (BLUE) scheme adopted in the thesis are described in 

Chapter 2. According to the system model and the estimation topology presented in 

Chapter 2, the optimal bit allocation strategies in the consequent chapters are proposed 

Chapter 3 of this thesis attempts to provide an optimal solution toward minimizing 

the average mean square error (MSE) distortion under a stationary energy constraint by 

exploiting the long-term noise variance information. A commonly used observation 

noise variance statistical model [9], [10] is adopted and the estimation performance is 

assessed through an MSE based metric averaged over the considered distribution. 
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Therefore, the MSE minimization problem can be reformulated in the form of convex 

optimization problem. A closed form solution of this optimization problem is thus 

obtained. The method presented in Chapter 3 suggests that each sensor node’s behavior 

should be determined jointly by individual channel fading gain, path loss, local 

observation noise variance, and energy constraint. 

In Chapter 4, two iterative allocation strategies are proposed for further 

enhancement of performance after initial bit distribution. The first proposed method, 

namely the method of allocation to all sensor nodes, considers the entire sensor nodes. 

Thus each sensor node’s behavior is determined via individual channel fading gain, 

path loss, local observation noise variance, energy constraint, and the bit load that is 

already assigned to the sensor node. The second method, that is, the method of 

allocation to unused sensor nodes only, simply distributes the remaining energy to 

inactive sensor nodes by applying a similar distribution energy algorithm as described 

in Chapter 3. Computer simulations demonstrate that the estimation accuracy increases 

as the energy constraint increases. The method of allocation to unused sensor nodes 

only outperforms the method of allocation to all sensor nodes without additional energy 

consumption while the available total energy is low.?? The approaches proposed in this 

thesis all outperform the scheme of uniform energy allocation. In an energy-limited 

inhomogeneous environment, the method of allocation to unused sensor nodes only is 

the most effective method among the ones proposed in this thesis. As the available total 

energy increases, the method of allocation to all sensor nodes might become the most 

effective one. 
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If the sensor measurement noise is considered as correlated noise, the results 

might be more appropriate for practical sensing environments because in common 

sensing environments, the measurement noises of adjacent sensor nodes are highly 

correlated. A fast-fading channel between each sensor node and the FC can also be 

considered for realistic applications. These results might be helpful for the applications 

of mobile sensor networks. However, this would require additional overheads to 

monitor the channel conditions and is more difficult for the system to derive an optimal 

power allocation strategy. 

 

 

 

 - 58 - 



 

 
 

Appendices 
 

Appendix A: Proof of Lemma 3.1 

Let  and , hence 4 ib
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By defining , we obtain 2csciu η= θ
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Adopting the following alternative expression [26]: 
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is verified. 

 

Appendix B: Proof of Lemma 3.2 

Assume that . It is straightforward to see that ( )1 1f K ≥
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Let us define 
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From (B.2) and (B.3), the lower bound of  can be obtained: ( 1 1f K +
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In addition, 
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Appendix C: Proof of Lemma 4.1 
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where  from assumption and  ( )1 2 1f K ≥
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Moreover, 
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