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Data detection using Particle filtering in
MIMO-OFDM system

Student: U Wai Lok Advisor : Dr. Chia-Chi Huang

Department of Communication Engineering
National Chiao Tung University

ABSTRACT

In multiple-input multiple output orthogonal frequency division
multiplexing (MIMO-OFDM) system, data detection become more complicated
than single input single aqutput, (SISO) system especially for Maximum
likelihood (ML) detection scheme. The complexity for ML detection scheme
will increase exponentially“as either-the number of transmitting antennas or
modulation order increases. In this thesis, we introduce the use of particle
filtering to approximate a posteriori distribution so that we can use Maximum a
posteriori (MAP) detection scheme to detect signals. We also present some new
methods combined with particle filtering for data detection to mitigate the error
propagation problem in either spatial multiplexing system or MIMO-OFDM
system with space frequency block code system. These proposed methods have
an improvement as compared with V-BLAST MMSE OSIC receiver in both
systems. Simulations show that the BER performance for our proposed methods
will approach to the ML decision algorithm as compared with VBLAST MMSE

OSIC and the complexity is lower than ML decision algorithm.
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Chapter 1

Introduction

Multiple-input-multiple-output (MIMO) system gets a great interest in communication
system because of its ability to increase the throughput under the same total amount of
transmitting power compare with single-input-single-output (SISO) system. The main idea is
to transmit signals using multiple transmitting antennas and receiving signals using multiple

receiving antennas. The bandwidth efficient can be increased by using this technique.

1.1 MIMO system

MIMO technique is mainly divided into three categories. First category is called spatial
multiplexing. Spatial multiplexing is a transmission technique in MIMO system to transmit
data signals independent and separately from each of the multiple transmit antennas.
Therefore, the space dimension is reused more than once. The capacity can be increased by
this technique if the channel matrix is full rank. In [1], ‘BLAST (Bell Laboratories -Layered

-Space-Time )’, is a typical technique for spatial multiplexing.

Second, known as beamforming system, is to form a beam pattern by designing the
arrangement of antenna array. It has an improvement as compared with omni-directional
transmission because it can select directional transmission so it has directivity gain. Power
can be focused on a particular direction and can be diminished the inference of other signals
or other users.

Final system is pre-coding system. This system utilizes coding technique that called
space time block code to increase diversity. Space time block code are normally presents as

orthogonal. This means that each column in the equivalent channel matrix is orthogonal to
1



other columns in the equivalent channel matrix. The decoding scheme for orthogonal space
time block code is very simple, and easy to decode at the receiver side. Its disadvantage is that
this system decreases the data rate as compared with spatial multiplexing in order to get
diversity gain. Another scheme is proposed in space time block code is that such code is not
orthogonal but it can achieve a higher data rate. Chapter three is focus on this scheme in order

to get higher data rate.

1.2 MIMO-OFDM system

MIMO system can be used to increase the throughput in flat fading channel. Flat fading
channel is a good condition for MIMO system. However, in MIMO system, channel may not
be flat fading. Orthogonal frequency:division multiplexing (OFDM) system can provide a flat
fading condition for MIMO system and against:ISI effect. Hence, MIMO system combining
with OFDM system is frequently-propesed for-high data rate transmission scheme recently.
On the other hand, especially in spatial multiplexing system, interference in MIMO-OFDM is
more severe than in single input single output (SISO) OFDM system and the complexity of
data detection in MIMO-OFDM system is higher than the complexity in SISO OFDM system.
In BLAST system (spatial multiplexing), as proposed in [3], the system called VBLAST
(Vertical-Bell Laboratories -Layered -Space-Time) system, is widely used in spatial
multiplexing system for rich scattering communication environment because it has better
performance and spectral efficiency as compared with spatial multiplexing system using

conventional nulling method.

1.3 About the thesis

This thesis is organized as following. Chapter 2 describes the use of particle filtering

2



method in data detection in spatial multiplexing system. Then we describe two modified
methods to mitigate the error propagation problem in particle filtering. Chapter 3 presents the
use of particle filtering for data detection in MIMO-OFDM with space frequency block code
system. Then also presents a method to mitigate the error propagation. Chapter 4 shows all the
simulations for each detection scheme in both spatial multiplexing in MIMO-OFDM and
MIMO-OFDM with space frequency block code system. Finally, conclusions are introduced

in the last chapter.



Chapter 2

Data detection in MIMO-OFDM system with particle

filtering method

2.1 Spatial multiplexing system description:
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Figure 2.1— Spatial multiplexing system

In MIMO-OFDM spatial multiplexing.system, we consider the system shown in figure 1.
We assume that there are M transmitting antennas and N receiving antennas. At the
transmitter side, bit stream is divided into M data layers and mapped each data layer to be M
modulated signal streams. M modulated signal streams in M layer pass through IFFT, add
cyclic prefix and then transmit parallel through M transmitting antennas. At the receiver side,
there are N receiving antennas, after cyclic prefix removal and pass through FFT, the received

signal vector X can be expressed as
X=HS, +N (2.1)
Where X is an N by 1 received signal vector, H is a N by M channel matrix, S,, isaMby 1

transmitted signal vector and N is a N by 1 noise vector. The channel matrix H is assumed to
be full rank. The received signal vector is passed through the data detection scheme as shown

in figure 1. There are several schemes for data detection in MIMO-OFDM BLAST system.



One of them is VBLAST- OSIC.

V-BLAST Zero-forcing OSIC [3] scheme is widely used in spatial multiplexing system.
The procedure of the V-BLAST can be mainly divided into following steps: first, ordering the
received signal according to signal to noise (SNR) ratio in descending order, then detects the
first signal that belongs to the highest order of SNR. After detecting the first signal, then treats
this signal as interference and cancelled out from the received signal vector, then starts to
detect the second highest SNR signal. This process keeps moving until all the data are
detected. In spatial multiplexing system, the optimum solution is to use Maximum likelihood
(ML) detection. However, ML detection is an exhaustive search, the complexity increases
either the number of transmitting antennas or order of modulation increases.

On the other hand, Maximum a posteriori (MAP) detection also give an optimum
solution, therefore, if we can obtain.the posteriori pdf (probability density function) or
pmf(probability mass function), then MAP detection can be used for data detection. MAP
approach is as same as ML approach. As describes above, the received signals can be

expressed as
X=HS,, +N, (2.2)

All the elements in vector X, H, S, and N are complex number. In this thesis, we only
consider the case that the number of transmitting antennas is equal to or less than the number
of receiving antennas.
Assuming that the channel matrix H is full rank such that it can be decomposed using
QR decomposition as shown below
H = QR, (2.3)
where R is an upper triangular matrix and Q is an orthogonal matrix.

Multiply Q" (where ()" denoted as Hermitian of a matrix) to X and the system model can

be expressed as



X=Q"X =RS, +N (2.4)

We consider the case that the number of transmitted antennas are equal to the received

antennas(M=N), so that

X1 _SX l ﬁl
~ Rll Rlz RiM o Q
X2 0 R R || % 2
= | VR S (2.5)
0 0. . ..
A 0 0 0 Ry
_XM ] _StXM a _QM |

We re-define some parameters, first of all, we define three vectors Y, S and n as the

reverse order of &,STXand N where
Y =[Yu: YuarYas yl]T =[X1, X2, ....XM-1, Xm ]T )
S:[SM’SM—l""'Sl]T =[Stx1"""stxM—1’StxM ]Tand

n=[n, N, ..n]= [N, Mo, M, M T

The new expression can be shown‘as

y s n
) R. Ry Ry || " )
yM—l SMfl anl
0 R22 ' RZM
“Flo o U (2.6)
0 0. 0 R
Ly R I O

Where Y, ,s,and n, represent k" element of vector Y, S and n.
The relationship between Yy, and vector Sisy, =h, (s, )+n, where s, =[s;s,

Our goal is to find a scheme to detect the data sequence S, =[S, S,...... Sy ] -

2.2 MAP decision:

Assume that there are M transmitting signal layers from M transmitting antennas, if we



obtain the posteriori distribution and assume that each entry in the noise vector is independent

Gaussian distribution, zero mean and variance o .

The posteriori distribution will be expressed as:

1 exp(— !
(272')M/2(O_2)M/2 20_2

Where S= s, andY = vy, , Histhe M by M channel matrix.

p(sl:M | Yim )= (Y_HS)H(Y_HS)) (2.7)

The MAP decision becomes

1

1
p(sl:M | y:L'M ) = (272')M/2(O'2)M/2 eXp(— 20_2 (Y_ HS)H(Y _HS)) (28)
= arg rguAn (Y-HS)" (Y -HS) (2.9)
. 2
= arg min Y —HS]| (2.10)

From equation (2.10), MAP decision needs-to-test all the possible combinations and choose
the minimum distances. The complexity is related to two factors: first, the modulation scheme,
for example, QPSK, 16QAM, and second, the-number of transmitting antennas. The
complexity increases exponentially as one of the factors increases. So that the complexity is
O(A"™), where M is the number of transmitting antennas and A is the modulation scheme. For
example, QPSK with 4 transmitting antennas, number of trials will become 4* =256 .
Furthermore, if modulation change to 16QAM, number of trials will become 16* = 65536.

MAP decision is not practical in this case.

2.3 Monte Carlo method

Before we mention the detail of particle filtering or called sequential Monte Carlo
method algorithm, first we take a look on how a posteriori distribution can be approximated

by a set of random samples.



p(sle = glﬁM | Yim ) :_[ p(Sl:M | Yim )5(81:M _EEM )dsle (2-11)

If Npis large and then the desired posteriori distribution can be approximated as:

- 1 M _ ,
P(Spy =Stm | Vi) = N_p;é‘(er ~Sin) (2.12)

(2.13)

3 i 1 whens? =s;
where 5(swm —s')) ={ 1y = SIM }

0 whens® #suy
As the equation mentioned above, {slk 1 denoted a set of samples drawn from a desired

posteriori distribution function, the posteriori distribution function can be approximated by

p(Sle | yl_'M ) ~ N_p25(51:M - Sl(:l\)ll ) (2-14)
i=1

Monte Carlo approach is one of the;methods to construct the approximation of high
dimensional posteriori distribution. If we can draw:samples directly from the desired

posteriori distribution p(s,,, | Y. ) , SO-that the posteriori distribution can be constructed by
all the samples {s)}'% (where Np represents the number of samples) drawn from the desired

posteriori distribution and this approximation will converge to the true posteriori distribution

as there are infinite number of samples.

2.4 Importance sampling

Importance sampling is a method to approximate the desired posteriori distribution by
drawing samples {s"’}"* from a trial function called importance distribution q(s,,, | yy) if

the desired posteriori distribution cannot be drawn directly. This importance distribution is
tractable for sampling. The different between Monte Carlo method and importance sampling

Is that importance sampling needs to compute the weights of the corresponding i th sample

8
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The approximation of the posteriori distribution can be derived as :

usingw® =

p(31:M = glﬁM | Yim ) :_[ p(sl:M | Yim )5(51:1\4 _gIM )dsle (2-15)

p(st |y1:M) N ; p(slM |y1|v|)
= | —=2 (S | Yam )9 (Spy — Sem )ds,,, (define w(s,,, ) = —4—M°) (2.16)
ACuy [Ya) ”” A | Yaw)

_ JW(SJ_'M )q(SJ;M | Yim )5(SJ;M _gliM )dsl:M
IW(SI:M )q(SJ;M | yl:M )dsl:M

(Since [ W(syy )d(Suy | Yaw)dsiy =1)  (217)

If Npis large and then the posteriori distribution can be approximated as:

N _
ALNDYS WS(s8, ~ 5uw)

- T, S W)Y WS ~5ue) (where W = ZW> (2.18)

w i=1
(1UNp) Zl: M

- 1 whens® =sg (i)
where §(s) — s ) = M TS WO = M (2.19)
0 whens® # Sum asew | Yim)

w
ZW(I)
distribution can be approximated as

" 0)
P(Sem | Vim) = z% O(Sym —Sem ) - (2.20)
i-1

0 { : . . .
Defined W = = as normalized weight corresponding to i th sample, then the posteriori

The importance distribution can be chosen freely, however, the variance will be

increased if the importance function is not highly related to the true posteriori distribution.

2.5 Particle filtering Methods [4]

If we need to draw samples directly from the posteriori distribution, we need to know the
joint posteriori distribution first. The complexity is same as or higher than MAP decision.
Now, if we do not have any information about the desired posteriori distribution, however, we

have the conditional probability distribution p(y, |s,,.), particle filtering or called sequential

9



monte carlo method described in [5] and [6] provides a new method to obtain the posteriori
distribution with low complexity by using the idea of importance sampling. The main idea is
to estimate the desired posteriori distribution by drawing a set of random samples from
importance distribution and to update the corresponding weights recursively.

Let’s take a look on how all the samples can be drawn recursively. After finishingk —1"

tracking, we have samples {s}f@_l}:j drawn from q(s,, , | y,,_,) and weights

w® = p8, | Yue)/a(s% | y.,) ~where I =1 : Np. Furthermore, the importance
distribution q(s,, | y,) can be factorized as two components such that
QS [ Vaa) = Ay [400 Vi) A(Spses [ Yiua) (2.21)
Which means that we can obtain Np sampled sequences(from 1 to k) {sfg}ij from

importance distribution q(s,, |y, ).+by sampling Np sampled sequences with length k-1(from

1tok-1) {S:(Lllz—l}:\z from q(s, ;1 ¥iy) @andhby sampling a new set of samples {SE)}E

from q(s, | sy 1, Y. ) - The weight update equation is

| NONIY

Wl :w (2.22)
q(sic | Yu)

_ PO IS Vs s) PO | Y1) P(Yuscr) (2.23)

P(Y A 1581, Ve )5 | Vi)
DY IS8 P(S) PSS | Vi) PORET)

- ) (M (2.24)
P(Yy | Vi) ) A(Se S as Yo )A(S s | Yas)

oc P8 1 Yuucs) o POV L 81D P(s,”) (2.25)
(st [ Yues) a6 18804, Vi)

= W(i) p(yk | S1(:Ik)) p(sél)) (226)

() STk Tk
A(s” 15010 V)

The posteriori distribution can be approximated using {ka)}iN_z recursively as equation

(2.21) and updated weights{w™® . }** recursively using equation (2.26), then normalize all the

weights, the posteriori distribution can be approximated as

10



P(51:) ~ 2 605, L) @a1)
Since it is an approximation method, increasing the number of samples will increase the
accuracy of the approximation. In the jargon of particle filtering, these samples in each
tracking are called particles.
The problem is how to choose the importance distributionq(s, |s,, ;. ¥ ) In [7], itis
mentioned, in order to minimize the variance of the approximation, the importance function is

chosen as:
A0S, 1S5, Ya) = P(Si 1850, Vi) (2.28)

If we choose the importance function as equation (2.28), p(s"” |s” ,y,.) can be factorize as

k-1

P(Yy 50,52 ) p(s® [s ) p(siy
P(Yy 8" ) p(s™)

_ PO I S Pl SIE) PGS Ypest) 2.30)
p(y, |593) Py ST p(si))

_ POy I8 p(s”)
P(Yi ISis

(2.29)

p(s’ [5), 0 Y =

(2.31)

p(yi I51) p(s")
P(Yi I881)

Substitute q(s, |5, Vi) = P(S 1551, Vi) = into equation (2.26), the
weight updated equation is

b o POISE) P(s)
W o W
Q(Sk | Stic-s Yix)

o 2t sy p(ye ) 0.3)

= lsl,)l p(yk | S1(:ik)71 (2-34)

(2.32)

=W Py IS i) p(s,) (2.35)

Sk

The term p(y, | Y,.,) can be ignored because it is not affected the approximation of k

th tracking after normalization. From the deviation of equation (2.35), we can observe that the

11



weight in i th particle at k th tracking depends on two factors: The previous weights of i th

particle at k-1 th tracking and a new term Z p(Y, Is.,s%,)p(s,). Suppose that we have Np

Sk

particles from 1 : k-1 which denoted as {s} .} and Np weights from k-1 which denoted as

{w" 3" Then the new particles can be drawn from the importance distribution

acs, 188 1, yu) = p(s, |8 1, y,) and then update the corresponding weight using equation

i (i)
(2.35). After that normalize all the weights at M th tracking by l(\/l) = M . In the jargon of

Np

>

i=1

particle filtering, this procedure is called Sequential importance sampling (S1S) scheme.

The procedure of k th tracking is summarized as following:

—Fori=1toNp
& Draw a particle from:the importance distribution (2.28)
& Calculate the weight by using equation(2:35)

@ Store the new particle. s torsi5

—End For
€ Normalized all the weights

2.6 Degeneracy

After several tracking, the variance of the estimator will increases as shown in [7], since
some of the particles have negligible weights and do not have any contribution to the process.
This problem is called degeneracy. In [10], resampling algorithm is used to overcome this
problem. The main idea is to replace some small weighted samples by some large weighted

samples. In [8] and [9]. Both papers mention that one of the methods to measure degeneracy

is to calculate the effective sample size N, . N, can be obtained by

12



1
Neff :W. (236)
> (Wi )’
i=1
So that we can set a threshold sample size called Ns. Ns is set as 60% of Np in our simulation.

If N <Ns, resampling algorithm is needed.

Algorithm for resampling
B Fori=1toNp

Generate a random variable U with uniform distribution from [0 1]

Forj=1to Np

w_new" =w_ new® +w? (2.37)

_ NG
If w_new">U , then s_new" = Sk (2.38)

Break;
End For
YORSEL, (2.39)
Np
End For

After resampling, new set of particles are'obtained, the connection with previous samples is
broken and their weights at k th tracking are all equal. In the jargon of particle filtering, this
procedure is called Sequential importance sampling (S1S) with resampling scheme.

The procedure of k th tracking is summarized as following:

—Fori=1toNp

& Draw a particle from the importance distribution from equation (2.28)

& Calculate the weight by using equation (2.35)

@ Store the new particle s!” to s{)

—End For

W
Np )

w
1

€ Normalized all the weights by using Wki) =

13



@ Calculate the effective sample size N, using (2.36)

& If N, <Ns, then do the resampling scheme.

2.7 Data detection scheme in MIMO-OFDM BLAST

system with particle filtering:

In MIMO-OFDM spatial multiplexing system, we assume that the channel matrix H is

full rank such that it can be decomposed using QR decomposition as shown H = QR and
X=Q"X =RS, +N (2.40)

Since R is an upper triangular matrix, one of the methods for data detection is to use decision

feedback method that detects signals from the bottom to the top.

First, compute the probability of p(S,y | Yu ) - For example, the distribution of noise in each
entry is complex Gaussian distribution then‘detection -s,,, using minimum distance. The
next step is to compute  P(Syw_y | SumsYus) and.detects,,, ,. The process keeps moving until
all the signals are detected. However, this method has error propagation problem and the SNR

of each signal mainly depends on the diagonal. On the other hand, since Q" isan

orthogonal matrix, so that after multiplying Q" to the initial noise vector, the new noise

vector is also independent white noise vector. As mentioned in section 2.1, we define three

new vectors Y, S and n, and the relationship between y, is also dependenton s, and n,

whichis y, =R, s +R .S +...R S +n,. We assume that the noise before multiplying

Q" to the received signal vector is white noise. Hence, after multiplying Q" to the received

signal vector, the noise vector is still a white noise vector. We treat each noise entry n, asan

independent white noise. A particle s, =a, isdrawn from the importance function

14



p(s, =a |s%.,,y,) which can be factorized as

P(Va S = &, Sf&) p(s, =2, | Sf&) p(Sl(:ik)—l

p(s, =a |s(.i)’y:): i i
R PV 152 ) p(s? )

k-1 k-1

(2.41)

_ (YIS =359 p(s) - PO IS, =a,,s8).,) ps))
p(y, 155).) > p(Y, |5 88 sty

We can observe that the first term in numerator p(y, |s,,s..,) isa Gaussian distribution

(2.42)

which mean is equal to y, —R a8, =R .:S, =R S (Wherea, is one of the signal points

in signal constellation) and variance is equal too®  and the second term in numerator is

assumed to be equally likely. Finally, we can draw samples from p(s, | s ,, y,, ) which is

equal to equation (2.36). For example, in QPSK modulation, the set of aw is {%(H .-
1 1 1

-1+j), -1-J), 1-7) } also there 1s:.16 combinations for 16-QAM modulation.
ﬁ( ) ﬁ( j) ﬁ( D} Q
For example, for the QPSK modulation, the_particle filtering (SIS) is shown below:
In k-th tracking:

—Fori=1toNp
@ Draw samples from importance distribution p(s, | S5,, Vi)

P(Yy |8 = ak’sl(:ik)—_l
z P(Y, IS =2,y 1)
Sk

Where p(s, | 51(:ik)71' Vi) =

since p(Y IS =&, 5t4) = N(¥ — R — ReeaSia = RewS1.07)
1

P(Yi [Sk =7
1

PYi | S =7

SUNORN _ 1N ey
A+0)sua) =8+ P(Yls \E( 1+0)sud) =5

R ORE _ 1l Sy
(-1-0)sw) =8 p(Yls ﬁ(l 1):8u4) =1,
And

B S I VS
o, =p(s, = \/5(14‘ D1Sti1 Vi) B+, + Bt B,
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_ L e _ B,
a, = p(s, _\/E( 1+ ) 1Sy Yu) Bt B+ Bt f,

Confe — L iy e® _ B
a; = p(s, —\/5( 1= )1 Suar Yax) BB+ Bt p,
a, = p(s, =%(1— YT p—

o Y
BB+ BBy

Generate a uniform distribution U between [0 ,1]

If a,>U>0,then s :i(1+ i),

V2
o1 .
If a,+a,>U>qa,,then s§’=ﬁ(—1+1)
.1 .
If a,+a,+a,>U>a, +a,, then Sﬁ)=ﬁ(—1—1) ,
If 1>U>q, +a,+a, then sé"=i(l—j)

V2
# Update the weight using w’ =w’, > p(y, |s{",s{) ) p(s,)

Sk

Since p(y |5, =a, s = 41 hengg s i, ALt Pt B),

@ Store the new particles®  to s\

—End For
Ifk=M
, (i)
&€ Normalized all the weights by using Wy = N;NM ~.
wl)
i=1

Example : For MIMO-OFDM 4X4 system with BPSK modulation.
After QR decomposition, the signal model become

y4 Rll R12 R13 R14 S4 n4
y3 — 0 R22 R23 R24 S3 + n3 (2 43)
y2 0 0 R33 R34 SZ r]2
Y, 0 0 0 RL|lS n,

In order to draw particles for s, first of all, calculate the probability for

P(Yils =1) and p(y,|s, =-1)
POy I8, =1)+p(y:ls =-1) p(y,|s, =1)+p(y,|s, =-1)

draw particles from this

16



p(y1|51 :1)
p(y1|51 :1)+ p(y1|51 :_1)

two probabilities. For example, assume that =0.6,

p(y1|51 :_l)
p(yllsl :1)+ p(y1|51 :_1)

= 0.4 and draw 5 particles, we generate 5 random variables

with uniform distribution(U1 to U5) between [0 1 ]. For particle i, if Ui <0.6, s{"is

1,otherwise, s"is -1. The normalized weight for all particles i = 1 to 5 are w” = 1/5 for the

first tracking. Assuming that the five particles are {1 11 -1 -1}. In order to draw particles for

p(Y,|s,=1s")

. — and
p(yz | S, =1 Sl(l))+ p(yz | S, =-1 Sl(l))

the second tracking s.”, first calculate the

p(Y, Is, =-1s")

i — . i.e., for 2" particle in 2" tracking, since s\ =1,
p(yz |Sz 21151())"' p(yz |32 :_1151()) '

p(Y, Is, =15 =1)

calculate
p(y, s, =1.5” =1)+p(¥; |5, =157 =1)

(assume it is 0.3) and

P(Y, |5, =-18” =1)
P(Y, I8, =1 =1)+ p(y, | s, =-1 5" =1)

(assume it is 0.7) and generate a uniform

random variable U, if U<0.3, then s =1 otherwise s\ =-1 and the corresponding weight

for 2" particle for 2" tracking is

_ @ (PO 1S, =1 5P =D+ p(y,ls, =-15?=1))
= w |

(2)
W.
2 2

From the equation shown above, we observe that the i th particle at 2 th tracking is
related to the previous i th particle and weight. After getting five new particles and update five
corresponding weights for i th particle at 2" tracking. Assume that they are {-1 -1 -1 -1 1},

attach these five particles to the first five particles, we can get
{1 1 1 -1 -1

1 1 1 1 1 } ,the first row represents the first tracking particles( sl(i)) and second

row represents the second tracking particles(séi) ). Assume that the corresponding weights at

17



2" tracking is W™ ={0.3 0.3 0.3 0.05 0.05}. Keep moving until 4™ tracking is done. We can

get

1 1 1 -1 1

4 -1 -1 -1 1 .

L1111 and  w{™ ={0.25, 0.25,0.250.050.2 }
111 -1 41

First, consider the first three columns, we discover that the first three columns are identical to

each other which is s = {1 -1 1 1}, the 4™ and 5" column are different to the first 3 columns,

theyare s\ ={-11-11}and s ={-111-1}. The posteriori distribution can be

approximated as:
p(51:4 | y1:4) ~ 0-75*5(sx4 _{1 -11 1}) + 0-05*5(51:4 _{'1 1-1 1}) + O-2*5(51:4 _{'1 11 '1})

The data is the reverse order of Sw:4 = IS, S S, ] and the histogram can be plotted as

075

AN
I &
2.8 Detection Scheme
Approach I : Sequence detection
St = arg Max P(Suy | Yun) (2.44)

This process needs to find all the same sequences and adds all the weights which belong to
the same sequence This process will increase the complexity if the sequence is too long,
which means that if the number of tracking increases, the complexity will increases.

Approach I1 : Detect directly from the marginal posteriori probability
NI (i
P(Sy | i) = Z%k o(s —sy”) (2.45)
i=1

18



the detection scheme needs to find one dimension only. The searching process is to sort all the
signals which belong to the same constellation and to add all the weights which belong to the

same signal. The detection scheme after sorting and adding all the weights is shown as

S =argmax p(s, | Yy) (2.46)

Approach III : Find the expectation value s« from the marginal posteriori distribution
~ Ne oGy
sk = E[5, | Y 0 D Wic s, 0 (2.47)
i=1

As the equation shown above, no sorting is needed. However, Multiplications are needed
for this approach. The performance will have same degradation for using approach Il and 111

for data detection.

2.9 Error mitigation method

For approach Il and 111, one-of the problems using particle filtering for data detection in
spatial multiplexing is the error propagation problem. If the particles in previous tracings did
not draw well, the estimated posterior distribution will be affected by error sampling. We can
see that the top signal will be affected by all the other signals. Data detection using approach
I1 and I11 for the top signal will has the worst performance as compared with other signals. We
proposed a modified method for data detection in spatial multiplexing system with particle
filtering. First, we consider the channel matrix and review the complex value problem of
Gram-Schmidt algorithm for QR decomposition. Assume that all the entries in channel H are
complex and consider the case that the number of transmitting antennas M is equal to the
number of received antennas N (Assume that M=N), the channel matrix is shown as

H=[h, h, ... ... h,] (2.48)

Gram Schmidt process is
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Step 1 : q,=+—- (2.49)
b
Step2:Forn=2:M
n-1 n-1
i=1 i=1
End For
qlh q'h, ... .. q'hy |
0 qh, .. .. qh,
Step 3: H=[q, q, ... .. qyl O 0 q'h, .. . |, (2.51)
0 0 0 :
| 0 0 0 0 q'h,

On the other hand, we implement the Gram-Schmidt QR decomposition in reverse order as:

h
Step 1: q,=—"L (2.52)
[
Step2:Forn=2:M
~ n-1 ~H £
q, = (hM.n+1 'Z( q; *hM-n+1) q.)/H(h Min#1 Z( q, *hM n+1) ql) (2.53)
i=1
End For
A new orthogonal matrix is obtained whichis Q, = [(i1 (Alz (AlM].AIIthe column
vectors in channel matrix can be expressed as following:
The new QR expression is
[ ~H ~H ~H T
(q,h,) (q;h,) .. .. (q,hy)
~H ~H
o | (@;h)  (a;h,) 0
[, .. .. h,, h,0=[q, q - . qul - e .. 0 0 [(259)
~H
(Quh;) 0 0 0
@h) 0 00 0 |

20



~H ~H
(q,h;) (q,h,)

R, = w 0
~H

(quqh;) 0 O

~H
_(thl) 0 0 0

another form of QR decomposition.

[ ~AH ~H ~H ]
(q.h) (q.h) .. .. (q;hy)

o O o

, S0 that channel matrix can be expressed as

From the discussion above, we get two forms of QR decomposition which are

H=QR, =[q, q,

and

H=Q,R,=[q, q,

qx]

0

qy]| O
0
0

[~ ~AH
(q,h,)

~H
(q,h,)

~H
| (qy, h,)

q;{hl qfhz

q?hz
0
0

0

~H
(q, h,)

~H
(q;h,)

~H
(qy:h;) O O

0

The received vector passes through Q' and Q} matrix are

0
Y, =QIX=RS, +Ni=|
0
0

and

[ ~AH A~ ~H A
(ql hl) (q1 h2)

~H A~

(qz h2)

21

~H A~

(qs h3)
0

0

q;'h,, |
q?hM
q§h3 '
0
0 0 qyhy|
~H T
(q, hy)
0
0 0
0
00 o0 |
~AHA~ ]
(ql hN) I Spa 1
~H A~
(qz hN) Si2
~H ~ Six
0 (thN)__ o

+N1

(2.55)

(2.56)

(2.57)



[ ~AH A~ ~H ~ ~HA~ | _
(q, hy) (q; hya) o o (g 1) Sy
((i;{ﬁN) ((i:[ﬁN—l) 0 St
Y, =Q)X=R;S;, +No=| e w00 || [+N2 (258)
0 O 0
@hy) 0 0 0 0 [Cewd

We observe from two equations shown above. In equation (2.57), we can use particle
filtering, draw particles from the bottom signal to the top and use approach Il to find the
expectation value for each entry in the signal vector. On the other hand, in equation (2.58), we
can use particle filtering method, draw particles from top to bottom and use approach Il to
find the expectation value for each entry in signal vector. Finally, we average two results,

error propagation can be mitigated.
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Block diagram for error propagation mitigation method

Channel QR
matrix = decomp
H osition
. Detected
ML;LUply Particle Signal
‘(’; filtering vector
] S1
Received
signal
vector
: '{ Detected
Mlﬁflply Particle Signal
- filtering vector
7 S2
Channel QR
matrix |— decomp
H osition

Figure 2.2 Block diagram for error propagation mitigation method
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2.10 Sorted QR decomposition method

In [11], it is mentioned a method for sorted QR decomposition, which is similar to Gram-
Schmidt algorithm. The idea of this method is to re-order the columns of channel matrix H for
each orthogonal base searching. For Gram- Schmidt QR decomposition, we decompose the
channel matrix H as shown in equation (2.55). Data detection by QR decomposition using
particle filtering with approach Il or 111, as described before, the top signal will be affected by
all the other signals. If particles in the previous stages did not draw well, the next stage signal
samples will be affected by the previous stage samples. So that we need a large number of
samples in order to obtain a much reliable posteriori probability. Sorted QR decomposition
can improve such situation. The sorted QR decomposition combine with particle filtering use
fewer particles to obtain a better performance compare with ordinary Gram Schmidt
decomposition as shown in simulations. Thesidea of sorted QR decomposition is to maximize
the diagonal entry of channel matrix H from M to 1 by:using a permutation vector p (where
M is the number of transmitting antennas), such-that minimizing the diagonal elements in
each decomposition step in order to maximize:the diagonal element in the subsequent steps.
The algorithm is shown as:

Stepl:LetR=0;Q=H;p=1,2,.M

Step2:Fori=1toM
. 2
k = column of (arg min |q,|") (2.59)

Exchange columnsito k for Q, R and p

b =|ai] (2.60)

q =q;/r; (2.61)
Forj=i+lto M

;= qu *qj (2-62)
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q; =9q; — I ;4 (2.63)

End
End

Where (M is the number of transmitting antenna, q, is the Ith column of orthogonal matrix

Q, r; isthe (i,j) entry of the upper triangular matrix R )

The procedure of MIMO-OFDM system with particle

filtering and SQR decomposition

Step 1 : Using sorted QR algorithm to obtain matrix Q, R and p.
Step 2 : Multiply Q" to the received signal vector.

Step 3:

Fork=1to M (Where M is the.number of transmitting antenna)
For i =1 to Np (Where Np issnumber of particles)

@ Draw a particle from the importance distribution p(s, | %), V..
& Calculate the weight by using equation(2.35)
@ Store the new particle s’ to st

End For

€ Normalized all the weights Wki) =

>

i=1

& Calculate the effective sample size N, using (2.36)

@ If N, <Ns, then do the re-sampling scheme.

Np gl(i) 0
p(sl:k | yl:k) i Z k 5(Sk — Sk )
i=1
End For

Step 4 : Detect signal using Stm =arg max p(Suy | Yem)
Stk

Step 5 : Reordering all the signals using permutation vector p

25



Chapter 3

Data detection in MIMO-OFDM with space frequency

block code with particle filtering

3.1 System model:

We consider the system which has M transmitting antennas and N receiving antennas.

The transmitter architecture for MIMO-OFDM with space frequency block code system is

shown in figure 3.1.

Signal
mapping

Signal

— S/P
Data

mapping |

Signal
mapping

— IFFT | cp <]
K
IFFT | cp |<
MIMO | |
Encoder | R -
1
L
;,"ji
i | IFFT |—| cCP —<]

Figure 3.1 Transmitter structure for MIMO-OFDM with space frequency block code

The data stream is mapped first, then these mapped signals are encoded by M/2 pairs of

Alamouti code as shown in equation (3.1). For 4 transmitting antennas, 2 pairs of Alamouti

code is called Double space time transmitting diversity (DSTTD) code as described in [12].

-8, =
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SM SM—lJ

(3.1)



The encoding process is shown as below :

SprSgreees Sw(FET _tenrz)

S
L SM

S
S

M (FFT _len/2)-M +1

SM(FFT_Ien/Z)—l

SM(FFT_Ien/Z)

(where FFT_len is the length of a OFDM symbol),

M (FFT _len/2)-M +2

-S
S

*

M (FFT _len/2)-M +1

*

_SM (FFT _len/2)

*

SM (FFT _len/2)-1

M (FFT _len/2)-M +2
*

=S (3.2)

The modulated signal S, to S, 4 .2 are encoded as equation (3.2). Each column vector

in matrix S represents an encoded signal vector allocated in a particular sub-carrier and each

row vector in matrix S represents an encoded signal vector allocated in a particular antenna.

As the graph shown

1% Tx antenna —
2" Tx antenna —

M ™ Tx antenna —

below:
Subl Sub?2
Sl _S;
s, S
SM—1 _S;/I
SM SM 1

S
S

M{(FET _len/2)-M +1 _SM (FFT _len/2)-M+2
*

M (FFT _len/2)-M+2

SM (FFT _len/2)-1

S

M (FFT _len/2)

Sub FFT _len

*

SM(FFT_Ien/Z)—M +1

_SM(FFT_IenIZ)

S

*

M (FFT _len/2)-1

Then converts each row of matrix S by using Inverse Fast Fourier transform to time domain

signal expressed in the next page.
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s S, S s 1
1 VY2 e M (FFT _len/2)-M+1  ~ YM(FFT _len/2)-M+2
S S/ S N
2 1 M (FFT _len/2)-M+2 M (FFT _len/2)-M +1
* *
SM—l _SM SM(FFT_Ien/Z)—l _SM(FFT_IenIZ)
* *
L SM SM—l SM(FFT_Ien/Z) SM(FFT_Ien/Z)—l i (3 3)
S1a S1,2 gl 51, FFT_len-1 Sy T _len
Sp1 Sy.2 SZ,FFT_Ien—l SZ,FFT_Ien
IFFT
—_—>
Smo1r Smenz e SM—l,FFT_Ien—l SM—l,FFT_Ien
L Sm Sma e SM,FFT_Ien—l SM,FFT_Ien |

Adding Guard interval for each row vector, then signals in each row are transmitted from
different antenna. Since the encode process is implemented in frequency domain (subcarrier).

We treat this type of code as space frequency block code.

3.2 MIMO-decoder

In receiver side, After guard interval removal and Fast Fourier transform, the received signals

at n" received antenna over subcarrier 1 and 2 are expressed as

V(1) = Hy (S, + Hy S, .ot Hiy 1y o @Sy 1+ Hyy , 0S,, +1,0)

. . . . . R (3.4)
Yn (2) = H2,n (2)81 - Hl,n (2)82 +ot H(M),n (Z)SM—l - H(M—l),n (Z)SM +N, (2)

Y, (k) : Received signal of n th received antenna at k th sub-carrier

H.., (k) :Channel response in frequency domain for m th transmitting antenna and n th
receiving antenna

S,,: m th mapped data

n, (k) : Noise at n th receiving antenna for k th subcarrier
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The matrix form representation for MIMO-OFDM 4X2 with space frequency block code
system (for subcarrier 1 and 2) can be expressed as

Y = HS+N (3.5)

Yl (1) H 11 (l) H 21 (1) H 31 (1) H 41 (1) S1 nl (1)

V| |HLQ -HLQ) HLQ) -HL@|s,| [n@ 6
LO |7, Ho@ H,@ HL@ ||s, || @ (38)
S

Y| |[Ho@ -HL(Q2) HL@) -HL@]S.| [m@)

Where H is the equivalent channel matrix, S is the original symbol vector which is one of the

columns in equation (3.2) and N is the additive complex white Gaussian noise with variance

o’ .Assuming that H_ (1) ~H,,(2) and define

Hll (1) H 21 (1) H 31 (1) H 41 (1)
H;l(l) _Hl*l(l) HZl(l) _H?jl(l)
“TIHo@ Ho@ Hy @ H,
H; Q)5 ~Ho @ HLO | =H:,Q)

(3.7)

Multiplying H::l (where ()" represents-Hermitian of a matrix) to the received vector we

obtain
_ H _ H H
Y = HIY=HIHS+H!N (3.8),
Since we assume H . (1) = H,,(2) , for 4 transmitting antennas, the equivalent channel matrix

H will almost equal to H,, as shown

H 1 (1) H 21 (1) H 31 (1) H 41 (1) H 11 (1) H 21 (1) H 31 (1) H 41 (1)
Hzl(l) _Hl*l(l) HZl(l) _Hgl(l) - Hzl(z) _Hl*l(z) HZl(Z) _Hgl(z)

o= ~ —H (3.9)
H 12 (1) H 22 (1) H 32 (1) H 42 (1) H 12 (1) H 22 (1) H 32 (1) H 42 (1)
sz (1) _Hl*z (1) H:Z (1) _H;2 (1) sz (2) _Hl*z (2) H:Z (2) _ng (2)
p 0 a p
0 e *
Sothat H "H~H "H = ~ 7 * ¢ (3.10)
a - p 0

b a 0 p
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where

2 N 2
P, = ZZ‘Hmn(k)‘ N : Number of RX antenna (3.11)
m=1 n=1
4 N 2
P, =22 |Hum(K)| (3.12)
m=3 n=1
N
a = (Hi(K)Hg (k) +Hy (k)H, (k) (3.13)
i=1
B =2 (Hi(K)H, (k) = Hy (k) Hg (k) (3.14)
i=1
First, observing the matrix form shown above, we discover that Hngeq is complex
symmetric as shown below
I D
H'H, = P L (3.15)
q q D sz
10
where D = a* ﬂ = (3.16)
—f o 0 1

Second, noise vector H; N is not white noise any more.

On the other hand, if the channel 'delay;spread is large, H_ which is the average of the

k™ and k+1™ channel is used for data detection.

H, -
CHL(K) Hu(K) e Hg(K) Hy 1 (K)
Ha(k)  —HL(K) o Hga(k) —H (k)
Hl,(N)(k) H2,(N)(k) H(M—l),(N—l)(k) HM,N(k)
1| [ Hon ) =Hi () e o Hyy(k) =Hiy () ] (3.17)
2| [ Hyk+D)  Hyk+D) o o Hyp(k+1) H,, (k+1)
Ho(k+1)  —Ho(k+D) .. .. Hyk+D)  —Hg, . (k+1)
_l_
HiooK+D Hypyk+D) o oo Hyayk+D)  Hy ((k+1)
| Hou(k+D)  —H (k+D) o Hy g k+D) —HG g (k+D)

After multiplying H to received vector Y, the new expression can be shown as
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— Hy — H Hpng — H H

Y=H,"Y=H "HS+H, "N=H,"(H, +E)S+H_ "N (3.18)
— H H H
-H,"H, S+H, 'N+H, "ES (3.19)

From the equation shown above, there are three terms in equation (3.19). The third term is the
error term, since we averaging the equivalent channel matrix, the error term is assumed to be
small, so that we can ignore this term. This term will affect the performance if the error term

is large.

The matrix HZ]H is positive definite, so that we can use Cholesky decomposition to

eq
decompose such matrix. Cholesky decomposition is a method to separate a matrix to a upper

triangular matrix and its hermitian such that H:]Heq: U"U ,where U is a upper triangular
matrix. We multiply (U")" to ¥, then
Y =(U")'Y ~ @) HIH S +(U") ' HEN (3.20)
=(U")'UtUS+@U")'HLN (3.21)
The signal after pass through multiplied: (U*)*"" will become:
Y=US+(U")y'HEN (3.22)
Where S is the symbol vector and (U")"H N is a new noise vector. There are two

properties from the equation(3.22) written above. First of all, the upper triangular matrix is

obtained which accompanies with signal vector. Second, we consider the noise vector

(U")"H,N, the covariance matrix of the new noise vector is

E[(U") H N)(U") H N)" | =E[(U")"H NN"H_U"| (3.23)
=(U")Y'HLE[NN"]H, U" (3.24)
=(U")'H 6’ TH U’ (3.25)
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=(U")"'H o6’ TH U’ (3.26)
=¢’(U")'H H, U’ (3.27)
=¢’ (U (U"U)U" =6’ (3.28)
After multiplying (U")™ to the received signal vector, the new noise vector will become an

independent white noise vector again. This method is also called whitening filter.

The matrix form is shown as

v, (s, ] [n]
’y‘ Ull U12 UlM Sl nl
S (3.29)
0 0. B '
0 0. 0 U

So that we can use particle filtering method, drawing particles from the bottom signal to the

top signal to detect the signal vector S.
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Block diagram of receiver structure

Remove
CP FFT
Remove
CP FFT
MIMO- Whitening .
Decoder filterin i
& filtering
Remove
CP — FFT

Figure 3.2 Receiver structure for MIMO-OFDM system with space frequency block code

3.3 Error propagation mitigation method

In the previous section, we use Gram Schmidt decomposition to obtain two upper
triangular matrixes. BER performance will be improved using particle filtering using such
method in spatial multiplexing system. On the other hand, in MIMO-OFDM with space
frequency block code system, this method can be implemented similar to spatial multiplexing

system. In the previous section, we decompose channel matrix H into Q,R, and Q,R,.

Now, after Cholesky decomposition, we obtain an upper triangular matrix U and the received

vector is
— Hy-1 H
Y =US+(U")"HEN (3.30)
The upper triangular matrix can be writtenas U=[U, U, ... ... U,],where U, is

the k™ column vector in U. The upper triangular matrix U can be decomposed by
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Gram-Schmidt QR decomposition and written as

. . L
(q, U1) (q, Uz) v o (q UM)
~H ~H
N A ~ (qz U]_) (q2 U2) eoe eoe 0
U=QR,=[q, q, - - aqul .. v .. 00 (3.31)
0 0 0
~H
@qyU) 0 0 0 0

Where the form of R, is another form of upper triangular matrix as same as in the previous

section. Multiplying Q" to R and obtain

Y=Q"Y=R,S+n (3.32)

Since Q is an orthogonal matrix, the noise vector is still a white noise.

From the discussion above, we get two matrix forms

S1 nl
Ull U12 UlM S n
0 0. u 2 2
Y= A 3 2™ +] o |, (3.33)
0 0.0 U
MM _SM_ _nM_

Now we define the upper triangular matrix

M ~AH ~H ~H 1. i

(q1 Ul) (q1 Uz) (q1 Um) Sl N1
~H ~H S

@U) @U) e w0 ||| |M

Y= w. 0 0 + . (3.34)
0 O 0
@u) o 00 o |Owl|m

We observe from two equations shown above. In (3.33), we can use particle filtering,
drawing particles from the bottom signal to the top one and using approach 111 to obtain the

expectation value for each entry in signal vector. Interference will be severe in§, .

On the other hand, in equation (3.34), draw particles from the top signal to the bottom
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one and use approach 11 to obtain the expectation value, interference will be severe inS,, .
Finally, we average these two sets of soft information and make the decision of each

symbol by searching the shortest distance for each entry in signal vector.
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Block diagram for error mitigation method in

MIMO-OFDM with space frequency block code system
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Figure 3.3 Block diagram for error propagation mitigation method in MIMO-OFDM with space frequency block

code system
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Chapter 4
Simulation results

4.1 Parameters for MIMO-OFDM spatial multiplexing

system
Perfect channel information
Number of subcarriers 256
Length of CP 64
Channel Two paths model with (0,0)dB
Particles 100 (if not mentioned in the figure)
Approach I (if not-mentioned in the figure)

Table 41 Parameters for MIMO-OFDM system

Figure 4.1 shows the BER performance for different approach for perfect CSl in 4X4
spatial multiplexing system for QPSK modulation. As can be observed from figure 4.1,
Approach Il and 111 have almost the same performance. For sorted QR decomposition using
approach 11, performance has 2 dB improvements as compared with unsorted QR using
approach I1. Approach | has the best performance as compared with approach 11 and approach
I11. However, the complexity for approach I is higher than the complexity for approach Il and
II.

Figure 4.2 shows the BER performance for QPSK modulation in 6X6 spatial
multiplexing system for sorted QR decomposition for approach I, QR decomposition with
approach Il and I11 with and without sorting. The result shows that the performance for sorted

QR decomposition with approach | also has the best BER performance as compared with
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approach Il and I1l. Moreover, sorted QR decomposition using approach Il has 2dB
improvement better than without sorting QR decomposition in BER equal to 10”-2.

Figure 4.3 shows the performance of different detection scheme. Approach Il is nearly to
VBLAST ZF OSIC performance. Performance using sorted QR decomposition and approach
Il is nearly to the performance for VBLAST MMSE OSIC detection scheme. Moreover, the
BER performance of iterative QR decomposition method has 3-4 dB improvement compare
with VBLAST MMSE OSIC system and 1dB better than the BER performance of particle
filtering using approach I.

Figure 4.4 shows the BER performance for 16QAM modulation with perfect CSI under
MIMO-OFDM 4X4 system. As we can see from the figure shown, the performance for the
iterative QR decomposition using approach Il has 4dB improvement as compared with
VBLAST MMSE OSIC. Sorted QR:decomposition-using approach | has better performance
in this system than error propagation mitigation method using approach 1lI.

Figure 4.5 shows the comparison:between QR decomposition with and without sorting
using approach I in 6X6 system, as shown in figure, the performance has 1 dB improvement
under 50 particles as compared with unsorted QR decomposition method using approach |
under 50 particles.

Figure 4.6 shows the performance for sorted QR decomposition using approach | in 6X6
system using 50 and 75 particles. There is a little improvement for 75 particles.

Figure 4.7 shows the comparison between the sorted QR decomposition method using
approach I in 6X6 spatial multiplexing system with 16 QAM modulation, unsorted QR
decomposition method using approach | in 6X6 MIMO-OFDM system and VBLAST MMSE
OSIC. Sorted QR decomposition has 3-4 improvement compare with VBLAST MMSE OSIC
and 1-2 dB improvement better than unsorted QR decomposition.

Figure 4.8 shows the performance for sorted QR decomposition using approach |

in 6X6 system using 50,75 and 150 particles for 16 QAM modulation. There is a little
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improvement for 150 particles and no different between 50 and 75 particles.

4.2 Parameters for MIMO-OFDM with Space frequency

block code system

Perfect channel information

Number of subcarriers 256

Length of CP 64

Channel Two paths model with (0,0)dB
Particles 100 (if not mentioned in the figure)
Approach L (if not mentioned in the figure)
MIMO encoder 2 pairs of Alamouti code(DSTTD)

Table 4.2 Parameters for MIMO-OFEDM with space frequency block code system

Figure 4.9 and figure 4.10 show the BER performance of 4X2 MIMO-OFDM for QPSK
and 16 QAM modulation with space frequency block(2 pairs of Alamouti code) code system
for five different detection schemes which are VBLAST MMSE OSIC, Cholesky
decomposition with decision feedback, particle filtering using approach | and error
propagation mitigation using approach Il and ML. First of all, BER performance of particle
filtering and error propagation mitigation method have 4dB better than the performance of
VBLAST MMSE OSIC and 5dB better than performance of Cholesky decomposition with
decision feedback. There are only 2dB worse than the performance of ML decision. For the
same system using 16QAM modulation, as shown in figure 4.10, particle filtering has almost
the same performance as error propagation mitigation method. Both of them have a 2dB

improvement better than VBLAST performance.
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In figure 4.11, for 4X4 MIMO-OFDM system with space frequency block code with
QPSK modulation, the performance of particle filtering is better than the performance of
VBLAST MMSE OSIC and almost the same as ML decision.

In figure 4.12, for 4X4 16QAM modulation system with space frequency block code, the
performance of particle filtering is better than the performance of VBLAST MMSE OSIC and

Cholesky decomposition with decision feedback.
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Chapter 5
Conclusion

Merits and drawbacks of particle filtering algorithm

Except for the complexity of QR decomposition and searching process mentioned in
section 2.8, the complexity of particle filtering is directly proportional to three components,
the scheme of modulation, the number of transmitting antennas and the number of particles.
The complexity for particle filtering is O(A*M*Np), where A is the modulation scheme, eg
QPSK, 16QAM. M is number of transmitting antennas and Np is number of particles. The
complexity of ML scheme exponentially increases either the number of transmitting antenna
or the number of order of modulation increases. The. complexity for ML decision is O( AY).
Particle filtering is a practical approach for data detection. As the simulation shown before,
the performance of our proposed-methods using-particle filtering are close to ML decision
either in spatial multiplexing system or with space frequency block code system. The
complexity for QPSK modulation for 6X6 MIMO-OFDM BLAST system is only 4*4*50 =
800 trials, however, for ML decision method, number of trial is 4° = 4096 trials. The
complexity with particle filtering is 5 times lower than the complexity with ML decision, the
BER performance of sorted QR decomposition with particle filtering using approach I is only
2 dB worse than ML decision. Moreover, for high order modulation, for example, 16 QAM
for 4X4 MIMO-OFDM BLAST system, the complexity for ML will be 16* = 65536 trials,
however, particle filtering method only deal with 4*4*100 = 1600 trials. In conclusion,
Particle filtering is a suitable approach for high modulation order and large amount of
transmitting antenna system in MIMO-OFDM BLAST system.

One of the drawbacks of particle filtering is that the noise distribution is known at the

receiver side. For example, if the noise distribution is white Gaussian noise, receiver need to
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be estimate the variance of noise first, after that pass this variance information to particle
filtering.

The second drawback is that particle filtering need the process of QR decomposition or
Cholesky decomposition, the complexity will increase for when the number of transmitting
antenna increases.

The third drawback is that the searching process mentioned in section 2.8 for approach |
and approach Il. Especially for approach I, the complexity will increase either the number of

transmitting antennas or number of particles increase.
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