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粒子濾波算法應用在多輸入多輸出天線正交分

頻多工的訊號檢測之研究 

 

學生：陸裕威               指導教授：黃家齊 

 

國立交通大學電信工程學系 碩士班 

摘 要       

 

在多輸入輸出正交分頻多工的系統上，由於訊號之間的干擾，因此在接

收端要做訊號的檢測的複雜度比單接收天線時的正交分頻多工系統來得複

雜。特別是利用最大概似法(ML)作訊號檢測時，接收機的複雜度將會隨着

天線的數量的增加或調變的不同呈現指數的增加。這篇論文主要是利用粒

子濾波算法應用在多輸入多輸出正交分頻多工的訊號。粒子濾波算法利用

統計的原理，造出相對應的事後機率用以作訊號檢測，來達到接近最大概

似法的效能的同時減低複雜度。我們再使用一些方法合併粒子濾波算法去

得到接近最大概似法的效果，在模擬顯示出粒子濾波演算法的結效能和我

們提出的一些改良方法的效能比一般的 VBLAST MMSE OSIC 更接近最大概似

法的效能，而且其複雜度遠少於最大概似法。
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Data detection using Particle filtering in 
MIMO-OFDM system  

 

Student: U Wai Lok         Advisor：Dr. Chia-Chi Huang 

Department of Communication Engineering 
National Chiao Tung University 

 

ABSTRACT 

In multiple-input multiple output orthogonal frequency division 

multiplexing (MIMO-OFDM) system, data detection become more complicated 

than single input single output (SISO) system especially for Maximum 

likelihood (ML) detection scheme. The complexity for ML detection scheme 

will increase exponentially as either the number of transmitting antennas or 

modulation order increases. In this thesis, we introduce the use of particle 

filtering to approximate a posteriori distribution so that we can use Maximum a 

posteriori (MAP) detection scheme to detect signals. We also present some new 

methods combined with particle filtering for data detection to mitigate the error 

propagation problem in either spatial multiplexing system or MIMO-OFDM 

system with space frequency block code system. These proposed methods have 

an improvement as compared with V-BLAST MMSE OSIC receiver in both 

systems. Simulations show that the BER performance for our proposed methods 

will approach to the ML decision algorithm as compared with VBLAST MMSE 

OSIC and the complexity is lower than ML decision algorithm. 
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Chapter 1  

Introduction 

    Multiple-input-multiple-output (MIMO) system gets a great interest in communication 

system because of its ability to increase the throughput under the same total amount of 

transmitting power compare with single-input-single-output (SISO) system. The main idea is 

to transmit signals using multiple transmitting antennas and receiving signals using multiple 

receiving antennas. The bandwidth efficient can be increased by using this technique.  

 

1.1  MIMO system 

 MIMO technique is mainly divided into three categories. First category is called spatial 

multiplexing. Spatial multiplexing is a transmission technique in MIMO system to transmit 

data signals independent and separately from each of the multiple transmit antennas. 

Therefore, the space dimension is reused more than once. The capacity can be increased by 

this technique if the channel matrix is full rank. In [1], ‘BLAST (Bell Laboratories -Layered 

-Space-Time )’, is a typical technique for spatial multiplexing.  

 Second, known as beamforming system, is to form a beam pattern by designing the 

arrangement of antenna array. It has an improvement as compared with omni-directional 

transmission because it can select directional transmission so it has directivity gain. Power 

can be focused on a particular direction and can be diminished the inference of other signals 

or other users.  

 Final system is pre-coding system. This system utilizes coding technique that called 

space time block code to increase diversity. Space time block code are normally presents as 

orthogonal. This means that each column in the equivalent channel matrix is orthogonal to 
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other columns in the equivalent channel matrix. The decoding scheme for orthogonal space 

time block code is very simple, and easy to decode at the receiver side. Its disadvantage is that 

this system decreases the data rate as compared with spatial multiplexing in order to get 

diversity gain. Another scheme is proposed in space time block code is that such code is not 

orthogonal but it can achieve a higher data rate. Chapter three is focus on this scheme in order 

to get higher data rate. 

 

1.2    MIMO‐OFDM system 

 MIMO system can be used to increase the throughput in flat fading channel. Flat fading 

channel is a good condition for MIMO system. However, in MIMO system, channel may not 

be flat fading. Orthogonal frequency division multiplexing (OFDM) system can provide a flat 

fading condition for MIMO system and against ISI effect. Hence, MIMO system combining 

with OFDM system is frequently proposed for high data rate transmission scheme recently. 

On the other hand, especially in spatial multiplexing system, interference in MIMO-OFDM is 

more severe than in single input single output (SISO) OFDM system and the complexity of 

data detection in MIMO-OFDM system is higher than the complexity in SISO OFDM system. 

In BLAST system (spatial multiplexing), as proposed in [3], the system called VBLAST 

(Vertical-Bell Laboratories -Layered -Space-Time) system, is widely used in spatial 

multiplexing system for rich scattering communication environment because it has better 

performance and spectral efficiency as compared with spatial multiplexing system using 

conventional nulling method. 

 

1.3  About the thesis 

 This thesis is organized as following. Chapter 2 describes the use of particle filtering 
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method in data detection in spatial multiplexing system. Then we describe two modified 

methods to mitigate the error propagation problem in particle filtering. Chapter 3 presents the 

use of particle filtering for data detection in MIMO-OFDM with space frequency block code 

system. Then also presents a method to mitigate the error propagation. Chapter 4 shows all the 

simulations for each detection scheme in both spatial multiplexing in MIMO-OFDM and 

MIMO-OFDM with space frequency block code system. Finally, conclusions are introduced 

in the last chapter. 
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Chapter 2  

Data detection in MIMO-OFDM system with particle 

filtering method 

2.1 Spatial multiplexing system description: 

 
Figure 2.1   Spatial multiplexing system 

 

In MIMO-OFDM spatial multiplexing system, we consider the system shown in figure 1. 

We assume that there are M transmitting antennas and N receiving antennas. At the 

transmitter side, bit stream is divided into M data layers and mapped each data layer to be M 

modulated signal streams. M modulated signal streams in M layer pass through IFFT, add 

cyclic prefix and then transmit parallel through M transmitting antennas. At the receiver side, 

there are N receiving antennas, after cyclic prefix removal and pass through FFT, the received 

signal vector X can be expressed as 

TxX = HS + N                              (2.1) 

Where X is an N by 1 received signal vector, H is a N by M channel matrix, TxS  is a M by 1 

transmitted signal vector and N is a N by 1 noise vector. The channel matrix H is assumed to 

be full rank. The received signal vector is passed through the data detection scheme as shown 

in figure 1. There are several schemes for data detection in MIMO-OFDM BLAST system. 
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One of them is VBLAST- OSIC. 

V-BLAST Zero-forcing OSIC [3] scheme is widely used in spatial multiplexing system. 

The procedure of the V-BLAST can be mainly divided into following steps: first, ordering the 

received signal according to signal to noise (SNR) ratio in descending order, then detects the 

first signal that belongs to the highest order of SNR. After detecting the first signal, then treats 

this signal as interference and cancelled out from the received signal vector, then starts to 

detect the second highest SNR signal. This process keeps moving until all the data are 

detected. In spatial multiplexing system, the optimum solution is to use Maximum likelihood 

(ML) detection. However, ML detection is an exhaustive search, the complexity increases 

either the number of transmitting antennas or order of modulation increases.  

 On the other hand, Maximum a posteriori (MAP) detection also give an optimum 

solution, therefore, if we can obtain the posteriori pdf (probability density function) or 

pmf(probability mass function), then MAP detection can be used for data detection. MAP 

approach is as same as ML approach. As describes above, the received signals can be 

expressed as  

TxX = HS + N ,                               (2.2) 

All the elements in vector X, H, TxS and N are complex number. In this thesis, we only 

consider the case that the number of transmitting antennas is equal to or less than the number 

of receiving antennas.  

Assuming that the channel matrix H is full rank such that it can be decomposed using 

QR decomposition as shown below 

H  = QR,                                 (2.3) 

where R is an upper triangular matrix and Q is an orthogonal matrix.  

Multiply HQ  (where ()H denoted as Hermitian of a matrix) to X  and the system model can 

be expressed as  
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� �H
TxX = Q X  = RS + N                             (2.4)

 
We consider the case that the number of transmitted antennas are equal to the received 

antennas(M=N), so that  

$
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 We re-define some parameters, first of all, we define three vectors Y, S and n as the 

reverse order of �X , TxS and �N  where    
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Where ky , ks and kn represent thk  element of vector Y, S and n. 

The relationship between ky  and vector S is 1 21: 1:  where [  ...... ]( ) kk k k k kn s s sy h s s == + . 

Our goal is to find a scheme to detect the data sequence 1 21: [  ...... ]MM s s ss = . 

2.2  MAP decision:  

    Assume that there are M transmitting signal layers from M transmitting antennas, if we 
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obtain the posteriori distribution and assume that each entry in the noise vector is independent 

Gaussian distribution, zero mean and variance 2σ .  

 

The posteriori distribution will be expressed as: 

1: 1: / 2 2 / 2 2

1 1( | ) exp( ( ) ( ))
(2 ) ( ) 2M M M Mp s y
π σ σ

= − − −HY HS Y HS         (2.7) 

Where S = 1:Ms  and Y = 1:My , H is the M by M channel matrix. 

The MAP decision becomes   

1: 1: / 2 2 / 2 2

1 1( | ) exp( ( ) ( ))
(2 ) ( ) 2M M M Mp s y
π σ σ

= − − −HY HS Y HS         (2.8) 

S A
arg min ( ) ( )

∈
⇒ − −HY HS Y HS                        (2.9) 

2

S A
arg min

∈
⇒ −Y HS                               (2.10) 

From equation (2.10), MAP decision needs to test all the possible combinations and choose 

the minimum distances. The complexity is related to two factors: first, the modulation scheme, 

for example, QPSK, 16QAM, and second, the number of transmitting antennas. The 

complexity increases exponentially as one of the factors increases. So that the complexity is 

O( MA ), where M is the number of transmitting antennas and A is the modulation scheme. For 

example, QPSK with 4 transmitting antennas, number of trials will become 44 256= . 

Furthermore, if modulation change to 16QAM, number of trials will become 416 65536= . 

MAP decision is not practical in this case.  

 

2.3  Monte Carlo method 

Before we mention the detail of particle filtering or called sequential Monte Carlo 

method algorithm, first we take a look on how a posteriori distribution can be approximated 

by a set of random samples.  
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          1: 1:1: 1: 1: 1: 1: 1:( | ) ( | ) ( )  M MM M M M M Mp s s y p s y s s dsδ= = −∫             (2.11) 

If  Np is large and then the desired posteriori distribution can be approximated as :  

( )
1: 1:1: 1: 1:

1

1( | ) ( )
Np

i
M MM M M

i
p s s y s s

Np
δ

=

= ≈ −∑
                   

 (2.12) 

 
( )

1:1:( )
1: 1: ( )

1:1:

1     when 
  ( )

0     when 

i
MMi

M M i
MM

s s
where s s

s s
δ

⎧ ⎫=⎪ ⎪− = ⎨ ⎬
≠⎪ ⎪⎩ ⎭

                  (2.13) 

As the equation mentioned above, 
1: 1{ }

k

i Np
is =  denoted a set of samples drawn from a desired 

posteriori distribution function, the posteriori distribution function can be approximated by   

( )
1: 1: 1: 1:

1

1( | ) ( )                             
Np

i
M M M M

i

p s y s s
Np

δ
=

≈ −∑      (2.14)

       
 

Monte Carlo approach is one of the methods to construct the approximation of high 

dimensional posteriori distribution. If we can draw samples directly from the desired 

posteriori distribution 1: 1:( | )M Mp s y , so that the posteriori distribution can be constructed by 

all the samples 1:
( )

1{ }M
i Np

is = (where Np represents the number of samples) drawn from the desired 

posteriori distribution and this approximation will converge to the true posteriori distribution 

as there are infinite number of samples.  

 

2.4  Importance sampling 

Importance sampling is a method to approximate the desired posteriori distribution by 

drawing samples ( )
1{ }i Np

is =  from a trial function called importance distribution 1: 1:( | )M Mq s y  if 

the desired posteriori distribution cannot be drawn directly. This importance distribution is 

tractable for sampling. The different between Monte Carlo method and importance sampling 

is that importance sampling needs to compute the weights of the corresponding i th sample 



 

9 
 

using
( )

( ) 1:
( )
1:

( | )
( | )

i
i k

i
k

pw
q

=
s y
s y

.  

The approximation of the posteriori distribution can be derived as : 

1: 1:1: 1: 1: 1: 1: 1:( | ) ( | ) ( )  M MM M M M M Mp s s y p s y s s dsδ= = −∫                           (2.15) 

1: 1: 1: 1:
1:1: 1: 1: 1: 1:

1: 1: 1: 1:

( | ) ( | )( | ) ( )    (  w( ) = )
( | ) ( | )

M M M M
MM M M M M

M M M M

p s y p s yq s y s s ds define s
q s y q s y

δ= −∫     (2.16) 

   
1:1: 1: 1: 1: 1:

1: 1: 1: 1:
1: 1: 1: 1:

w( ) ( | ) ( )
 (Since w( ) ( | ) = 1)

w( ) ( | )

MM M M M M
M M M M

M M M M

s q s y s s ds
s q s y ds

s q s y ds

δ −
= ∫ ∫∫

    (2.17) 

If  Np is large and then the posteriori distribution can be approximated as :

(1/ )Np
≈

( ) ( )
1:1:

1
( )

(1/ )

Np
i i

MM M
i

w s s

Np

δ
=

−∑
( ) ( )

1:1:
( ) 1 1

1

(1/ ) ( )    (where W = )                (2.18)
Np N

i i i
MM M MNp

i i i
M

i

W w s s w
w

δ
= =

=

= −∑ ∑
∑

( ) ( )
1:1:( ) ( ) 1: 1:

1:1: ( )( )
1: 1: 1:1:

1     when ( | )  ( )  and 
( | )0     when 

i i
MMi i M M
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s s p s ywhere s s w
q s ys s

δ
⎧ ⎫=⎪ ⎪− = =⎨ ⎬
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               (2.19) 

Defined �
( )( )

( )

1

ii

Np
i

i

ww
w

=

=

∑
 as normalized weight corresponding to i th sample, then the posteriori 

distribution can be approximated as  

      � ( ) ( )
1: 1: 1: 1:

1

( | ) ( )
Np i i

M M M M
i

p s y w s sδ
=

≈ −∑ .                      (2.20) 

 The importance distribution can be chosen freely, however, the variance will be 

increased if the importance function is not highly related to the true posteriori distribution.  

 

2.5  Particle filtering Methods [4] 

If we need to draw samples directly from the posteriori distribution, we need to know the 

joint posteriori distribution first. The complexity is same as or higher than MAP decision. 

Now, if we do not have any information about the desired posteriori distribution, however, we 

have the conditional probability distribution k 1:kp(y | s ) , particle filtering or called sequential 
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monte carlo method described in [5] and [6] provides a new method to obtain the posteriori 

distribution with low complexity by using the idea of importance sampling. The main idea is 

to estimate the desired posteriori distribution by drawing a set of random samples from 

importance distribution and to update the corresponding weights recursively.  

   Let’s take a look on how all the samples can be drawn recursively. After finishing 1thk −  

tracking, we have samples { }( )
1: 1 1

Npi
k i− =

s  drawn from 1: 1 1: 1( | )k kq − −s y and weights

(i) ( ) ( )
k-1 1: 1 1: 1 1: 1 1: 1w ( | ) / ( | ) i i

k k k kp s y q s y− − − −= ,where I = 1 : Np. Furthermore, the importance 

distribution 1: 1:( | )k kq s y  can be factorized as two components such that 

1: 1: 1: 1 1: 1: 1 1: 1( | ) ( | , ) ( | )k k k k k k kq q q− − −=s y s s y s y                 (2.21) 

  Which means that we can obtain Np sampled sequences(from 1 to k) { }( )
1: 1

Npi
k i=

s  from 

importance distribution 1: 1:( | )k kq s y  by sampling Np sampled sequences with length k-1(from 

1 to k-1 ) { }( )
1: 1 1

Npi
k i− =

s  from 1: 1 1: 1( | )k kq − −s y  and by sampling a new set of samples { }( )

1

Npi
k i=

s  

from 1: 1 1:( | , )k k kq −s s y . The weight update equation is  
( )

( ) 1: 1:
( )
1: 1:

( | )
( | )

i
i k k

k i
k k

p s yw
q s y

=                                                         (2.22) 

( ) ( )
1: 1: 1 1: 1: 1 1: 1

( ) ( ) ( )
1: 1: 1 1: 1: 1 1: 1

( | , ) ( | ) ( )
( ) ( | , ) ( | )

i i
k k k k k k

i i i
k k k k k k

p y s y p s y p y
p y q s s y q s y

− − −

− − −

=                                     (2.23) 

( ) ( ) ( )
1: 1: 1 1: 1 1: 1( | ) ( ) ( | ) ( )i i i

k k k k k kp y s p s p s y p y− − −=
1: 1 1: 1( | ) ( )k k kp y y p y− −

( ) ( )
1: 1 1: 1: 1 1: 1( | , ) ( | )i i

k k k k kq s s y q s y− − −

                          (2.24) 

( ) ( ) ( )
1: 1 1: 1 1:
( ) ( ) ( )
1: 1 1: 1 1: 1 1:

( | ) ( | ) ( )*
( | ) ( | , )

   
i i i
k k k k k
i i i
k k k k k

p s y p y s p s
q s y q s s y

− −

− − −

∝                                        (2.25) 

( ) ( )
( ) 1:

1 ( ) ( )
1: 1 1:

( | ) ( )=      
( | , )

i i
i k k k

k i i
k k k

p y s p sw
q s s y−

−

                                              (2.26) 

The posteriori distribution can be approximated using { }( )
1: 1

Npi
k i=

s  recursively as equation 

(2.21) and updated weights ( )
1 1{ }i Np

k iw − =  recursively using equation (2.26), then normalize all the 

weights, the posteriori distribution can be approximated as  
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� ( ) ( )
1: 1: 1: 1:

1

( | ) ( )     
Np i i

kk k k k
i

p s y w s sδ
=

≈ −∑                   (2.27) 

  Since it is an approximation method, increasing the number of samples will increase the 

accuracy of the approximation. In the jargon of particle filtering, these samples in each 

tracking are called particles.  

 The problem is how to choose the importance distribution 1: 1 1:( | , )k k kq −s s y . In [7], it is 

mentioned, in order to minimize the variance of the approximation, the importance function is 

chosen as: 

( ) ( )
1: 1 1: 1: 1 1:( | , ) ( | , )i i

k k k k k kq s s y p s s y− −=                     (2.28) 

If we choose the importance function as equation (2.28), 
1: 1

( ) ( )
1:( | , )

k

i i
k kp s s y

−
 can be factorize as 

1: 1 1: 1

1: 1

1: 1 1: 1

( ) ( ) ( ) ( ) ( )
1: 1: 1( ) ( )

1: ( ) ( )
1:

( | , ) ( | ) ( )
 ( | , )

( | ) ( )
k k

k

k k

i i i i i
k k k ki i

k k i i
k

p y s s p s s p s
p s s y

p y s p s
− −

−

− −

−=                               (2.29) 

( ) ( ) ( )
1: 1 1: 1 1: 1( | , ) ( | )i i i

k k k k kp y s s p y s− − −=
( ) ( )

1: 1( ) ( )i i
k kp s p s −

( ) ( )
1: 1 1: 1 1: 1( | ) ( | )i i

k k k kp y s p y s− − −
( )
1: 1( )i

kp s −

                    (2.30) 

( ) ( )
1:

( )
1: 1

( | ) ( )=
( | )

i i
k k k

i
k k

p y s p s
p y s −

                                          (2.31) 

Substitute 
( ) ( )

( ) ( ) 1:
1: 1 1: 1: 1 1: ( )

1: 1

( | ) ( )( | , ) ( | , ) =
( | )

i i
i i k k k

k k k k k k i
k k

p y s p sq s s y p s s y
p y s− −

−

=  into equation (2.26), the 

weight updated equation is 

( ) ( )
( ) ( ) 1:

1 ( ) ( )
1: 1 1:

( | ) ( )   
( | , )

k

i i
i i k k k

k k i i
k k

p y s p sw w
q s s y−

−

∝                                       (2.32) 

( )
1:( )

1

( | )i
k ki

k

p y s
w −∝

( )( )i
kp s ( )

1: 1

( )
1:

( | )

( | )

i
k k

i
k k

p y s

p y s
−

( )( )i
kp s

                             (2.33) 

( ) ( )
1 1: 1       ( | )i i

k k kw p y s− −=                                              (2.34) 

( ) ( )
1 1: 1( | , ) ( )  =

k

i i
k k k k k

s
w p y s s p s− −∑                                    (2.35) 

The term 1: 1( | )k kp y y −  can be ignored because it is not affected the approximation of k 

th tracking after normalization. From the deviation of equation (2.35), we can observe that the 
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weight in i th particle at k th tracking depends on two factors: The previous weights of i th 

particle at k-1 th tracking and a new term ( )
1: 1( | , ) ( )

k

i
k k k k

s
p y s s p s−∑ . Suppose that we have Np 

particles from 1 : k-1 which denoted as ( )
1: 1 1{ }i Np

k is − =  and Np weights from k-1 which denoted as 

( )
1 1{ }i Np

k iw − = .Then the new particles can be drawn from the importance distribution 

( ) ( )
1: 1 1: 1: 1 1:( | , ) ( | , )i i

k k k k k kq s s y p s s y− −=  and then update the corresponding weight using equation 

(2.35). After that normalize all the weights at M th tracking by �
( )( )

( )

1

ii
M

M Np
i

M
i

ww
w

=

=

∑
. In the jargon of 

particle filtering, this procedure is called Sequential importance sampling (SIS) scheme. 

The procedure of k th tracking is summarized as following: 

 
－For i = 1 to Np 

◆ Draw a particle from the importance distribution (2.28)  
◆ Calculate the weight by using equation(2.35) 

◆ Store the new particle ( )i
ks  to ( )

1: 1
i
ks −   

－End For 
◆ Normalized all the weights 

 
 

2.6    Degeneracy 

After several tracking, the variance of the estimator will increases as shown in [7], since 

some of the particles have negligible weights and do not have any contribution to the process. 

This problem is called degeneracy. In [10], resampling algorithm is used to overcome this 

problem. The main idea is to replace some small weighted samples by some large weighted 

samples. In [8] and [9]. Both papers mention that one of the methods to measure degeneracy 

is to calculate the effective sample size effN . effN can be obtained by  



 

13 
 

� ( ) 2

1

1

( )
eff Np i

k
i

N
w

=

=

∑
.                                (2.36) 

So that we can set a threshold sample size called Ns. Ns is set as 60% of Np in our simulation. 

If effN <Ns, resampling algorithm is needed. 

Algorithm for resampling 

 For i = 1 to Np 

Generate a random variable U with uniform distribution from [0 1] 

For j = 1 to Np 

( ) ( ) ( )_ _i i j
k k kw new w new w= +                          (2.37) 

If ( )_ i
kw new >U , then 

( )( )_
ji

kks new s= $                  (2.38) 

Break; 
End For 

 ( ) 1i
kw

Np
=                                  (2.39) 

End For 
 

After resampling, new set of particles are obtained, the connection with previous samples is 

broken and their weights at k th tracking are all equal. In the jargon of particle filtering, this 

procedure is called Sequential importance sampling (SIS) with resampling scheme. 

The procedure of k th tracking is summarized as following: 

－For i = 1 to Np 

◆ Draw a particle from the importance distribution from equation (2.28)  

◆ Calculate the weight by using equation (2.35) 

◆ Store the new particle ( )i
ks  to ( )

1: 1
i
ks −   

－End For 

◆ Normalized all the weights by using �
( )( )

( )

1

ii
k

k Np
i

k
i

ww
w

=

=

∑
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◆ Calculate the effective sample size effN  using (2.36) 

◆ If effN < Ns , then do the resampling scheme. 

 

2.7    Data detection scheme in MIMO-OFDM BLAST 

system with particle filtering: 
In MIMO-OFDM spatial multiplexing system, we assume that the channel matrix H is 

full rank such that it can be decomposed using QR decomposition as shown H  = QR and 

� �                H
TxX = Q X  = RS + N             (2.40) 

Since R is an upper triangular matrix, one of the methods for data detection is to use decision 

feedback method that detects signals from the bottom to the top.  

First, compute the probability of ( | )txM Mp s y . For example, the distribution of noise in each 

entry is complex Gaussian distribution then detection txMs  using minimum distance. The 

next step is to compute 1 1( | , )txM txM Mp s s y− −  and detect 1txMs − . The process keeps moving until 

all the signals are detected. However, this method has error propagation problem and the SNR 

of each signal mainly depends on the diagonal. On the other hand, since HQ  is an 

orthogonal matrix, so that after multiplying HQ  to the initial noise vector, the new noise 

vector is also independent white noise vector. As mentioned in section 2.1, we define three 

new vectors Y, S and n, and the relationship between ky  is also dependent on 1:ks  and kn  

which is , , 1 1 , 1...k k k k k k k k M ky R s R s R s n+ −= + + + . We assume that the noise before multiplying 

HQ  to the received signal vector is white noise. Hence, after multiplying HQ to the received 

signal vector, the noise vector is still a white noise vector. We treat each noise entry kn  as an 

independent white noise. A particle ks = ka  is drawn from the importance function 
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( )
1: 1 1:( | , )i

k k k kp s a s y−=  which can be factorized as  

1: 1 1: 1

1: 1

1: 1 1: 1

( ) ( ) ( )
1: 1: 1( )

1: ( ) ( )
1:

( | , ) ( | ) ( )
( | , )

( | ) ( )
k k

k

k k

i i i
k k k k k ki

k k k i i
k

p y s a s p s a s p s
p s a s y

p y s p s
− −

−

− −

−= =
= =          (2.41) 

( )( )
1: 11: 1

( )
1: 1

( | , ) ( )( | , ) ( ) = =
( | )

ii
k k k k kk k k k k

i
k k

p y s a s p sp y s a s p s
p y s

−−

−

==
( )
1: 1( | , ) ( )i

k k k kp y s s p s−∑
(2.42) 

We can observe that the first term in numerator ( )
1: 1( | , )i

k k kp y s s −  is a Gaussian distribution 

which mean is equal to , , 1 1 , 1...k k k k k k k k My R a R s R s+ −− − − (where ka  is one of the signal points 

in signal constellation) and variance is equal to 2σ   and the second term in numerator is 

assumed to be equally likely. Finally, we can draw samples from ( )
1: 1 1:( | , )i

k k kp s s y− which is 

equal to equation (2.36). For example, in QPSK modulation, the set of $Ma is { 1 (1 )
2

j+ ,-

1 ( 1 )
2

j− + , 1 ( 1 )
2

j− − , 1 (1 )
2

j− } also there is 16 combinations for 16-QAM modulation. 

For example, for the QPSK modulation, the particle filtering (SIS) is shown below: 

In k-th tracking: 

－For i = 1 to Np 

    ◆ Draw samples from importance distribution ( )
1: 1 1:( | , )i

k k kp s s y−  

( )
( ) 1: 1
1: 1 1: ( )

1: 1

( ) 2
1: 1 , , 1 1 , 1

( | , )Where ( | , )  
( | , )

since ( | , ) = ( ... , )
k

i
i k k k k

k k k i
k k k k

s

i
k k k k k k k k k k k k M

p y s a sp s s y
p y s a s

p y s a s N y R a R s R s σ

−
−

−

− + −

=
=

=

= − − −

∑  

( )
1: 1 1

1( | (1 ), )
2

i
k k kp y s j s β−= + =   , ( )

1: 1 2
1( | ( 1 ), )
2

i
k k kp y s j s β−= − + =  ,  

( )
1: 1 3

1| ( 1 ), )
2

i
k k kpy s j s β−= − − =  , ( )

1: 1 4
1( | (1 ), )
2

i
k k kp y s j s β−= − =   

And  
( ) 1

1 1: 1 1:
1 2 3 4

1( (1 ) | , )
2

i
k k kp s j s y βα

β β β β−= = + =
+ + +

  , 
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( ) 2
2 1: 1 1:

1 2 3 4

1( ( 1 ) | , )
2

i
k k kp s j s y βα

β β β β−= = − + =
+ + +

   

( ) 3
3 1: 1 1:

1 2 3 4

1( ( 1 ) | , )
2

i
k k kp s j s y βα

β β β β−= = − − =
+ + +

  ,  

( ) 4
4 1: 1 1:

1 2 3 4

1( (1 ) | , )
2

i
k k kp s j s y βα

β β β β−= = − =
+ + +

 

Generate a uniform distribution U between [0 ,1] 

If 1α >U > 0, then ( ) 1 (1 )
2

i
ks j= +  ,  

If 1α + 2α >U > 1α , then ( ) 1 ( 1 )
2

i
ks j= − +   

If 1α + 2α + 3α >U> 1α + 2α , then ( ) 1 ( 1 )
2

i
ks j= − −  ,  

If  1>U> 1α + 2α + 3α  then ( ) 1 (1 )
2

i
ks j= −   

◆ Update the weight using ( ) ( ) ( ) ( )
1 1: 1( | , ) ( )

k

i i i i
k k k k k k

s
w w p y s s p s− −= ∑  

Since ( )
1: 1( | , )i

k k M k Mp y s a s β−= = , hence ( ) ( ) 1 2 3 4
1

( )
4

i i
k kw w β β β β

−

+ + +
= . 

◆ Store the new particle ( )i
ks  to ( )

1: 1
i
ks −  

－End For 
If k = M 

◆  Normalized all the weights by using �
( )( )

( )

1

ii
M

M Np
i

M
i

ww
w

=

=

∑
. 

 

Example : For MIMO-OFDM 4X4 system with BPSK modulation. 
After QR decomposition, the signal model become 

4 11 12 13 14 4 4

3 22 23 24 3 3

2 33 34 2 2

1 44 1 1

0
0 0
0 0 0

y R R R R s n
y R R R s n
y R R s n
y R s n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                  (2.43) 

In order to draw particles for 1s , first of all, calculate the probability for 

1 1

1 1 1 1

( | 1 )
( | 1 ) ( | 1 )

p y s
p y s p y s

=
= + = −

 and 1 1

1 1 1 1

( | 1 )
( | 1 ) ( | 1 )

p y s
p y s p y s

= −
= + = − , draw particles from this 
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two probabilities. For example, assume that 1 1

1 1 1 1

( | 1 )
( | 1 ) ( | 1 )

p y s
p y s p y s

=
= + = −

= 0.6 ,

1 1

1 1 1 1

( | 1 )
( | 1 ) ( | 1 )

p y s
p y s p y s

= −
= + = −

 = 0.4 and draw 5 particles, we generate 5 random variables 

with uniform distribution(U1 to U5) between [0 1 ]. For particle i, if Ui <0.6, ( )
1

is is 

1,otherwise, ( )
1

is is -1. The normalized weight for all particles i = 1 to 5 are ( )
1

iw = 1/5 for the 

first tracking. Assuming that the five particles are {1 1 1 -1 -1}. In order to draw particles for 

the second tracking ( )
2
is , first calculate the 

( )
2 2 1
( ) ( )

2 2 1 2 2 1

( | 1, )
( | 1, ) ( | 1, )

i

i i

p y s s
p y s s p y s s

=
= + = −

 and  

( )
2 2 1
( ) ( )

2 2 1 2 2 1

( | 1, )
( | 1, ) ( | 1, )

i

i i

p y s s
p y s s p y s s

= −
= + = −

, i.e., for 2nd  particle in 2nd  tracking, since (2)
1s = 1, 

calculate 
(2)

2 2 1
(2) (2)

2 2 1 2 2 1

( | 1, 1)
( | 1, 1) ( | 1, 1)

p y s s
p y s s p y s s

= =
= = + = − =

(assume it is 0.3) and 

(2)
2 2 1

(2) (2)
2 2 1 2 2 1

( | 1, 1)
( | 1, 1) ( | 1, 1)

p y s s
p y s s p y s s

= − =
= = + = − =

 (assume it is 0.7) and generate a uniform 

random variable U, if U<0.3, then (2)
2s =1 ,otherwise (2)

2s =-1 ,and the corresponding weight 

for 2nd particle for 2nd tracking is       
(2) (2)

(2) (2) 2 2 1 2 2 1
2 1

( ( | 1, 1) ( | 1, 1))
2

p y s s p y s sw w = = + = − =
= ,                 

From the equation shown above, we observe that the i th particle at 2 th tracking is 

related to the previous i th particle and weight. After getting five new particles and update five 

corresponding weights for i th particle at 2nd  tracking. Assume that they are {-1 -1 -1 -1 1}, 

attach these five particles to the first five particles, we can get  

1 1 1 1 1
    

-1 -1 -1 -1 1
− −⎧ ⎫

⎨ ⎬
⎩ ⎭

 ,the first row represents the first tracking particles( ( )
1

is ) and second 

row represents the second tracking particles( ( )
2
is ). Assume that the corresponding weights at 
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2nd tracking is (1:5)
2w = {0.3 0.3 0.3 0.05 0.05}. Keep moving until 4th tracking is done. We can 

get  

1 1 1 1 1
-1 -1 -1 -1 1

   
1 1 1 1 1

 
1 1 1 1 1

− −⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪− −⎩ ⎭

 and  (1:5)
4w ={0.25, 0.25, 0.25 0.05 0.2 } 

First, consider the first three columns, we discover that the first three columns are identical to 

each other which is ( )
1:4

is = {1 -1 1 1}, the 4th and 5th column are different to the first 3 columns, 

they are (4)
1:4s = {-1 1 -1 1} and (5)

1:4s = {-1 1 1 -1}. The posteriori distribution can be 

approximated as: 

 1:4 1:4 1:4 1:4 1:4( | ) 0.75* ( {1 -1 1 1}) 0.05* ( {-1 1 -1 1}) 0.2* ( {-1 1 1 -1})p s y s s sδ δ δ≈ − + − + −

The data is the reverse order of 1:4 4 3 2 1[    ]txs s s s s=  and the histogram can be plotted as  

 

2.8  Detection Scheme  

Approach I : Sequence detection  

                   
1:

1: 1: 1:arg max ( | )
M

M M Ms
s p s y=$                         (2.44) 

This process needs to find all the same sequences and adds all the weights which belong to 
the same sequence This process will increase the complexity if the sequence is too long, 
which means that if the number of tracking increases, the complexity will increases. 

 

Approach II : Detect directly from the marginal posteriori probability  

 � ( ) ( )
1:

1

                                           ( | ) ( ) 
Np i i

kk k k k
i

p s y w s sδ
=

≈ −∑                      (2.45) 
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the detection scheme needs to find one dimension only. The searching process is to sort all the 

signals which belong to the same constellation and to add all the weights which belong to the 

same signal. The detection scheme after sorting and adding all the weights is shown as  

  1:arg max ( | )   
k

k k ks
s p s y=$                       (2.46) 

 

Approach III : Find the expectation value  from the marginal posteriori distribution  ks$  

� ( ) ( )
1:

1

[ | ]  
Np i i

k kk k k
i

s E s y w s
=

= ∑$ �                      (2.47) 

As the equation shown above, no sorting is needed. However, Multiplications are needed 

for this approach. The performance will have same degradation for using approach II and III 

for data detection. 

2.9 Error mitigation method 

For approach II and III, one of the problems using particle filtering for data detection in 

spatial multiplexing is the error propagation problem. If the particles in previous tracings did 

not draw well, the estimated posterior distribution will be affected by error sampling. We can 

see that the top signal will be affected by all the other signals. Data detection using approach 

II and III for the top signal will has the worst performance as compared with other signals. We 

proposed a modified method for data detection in spatial multiplexing system with particle 

filtering. First, we consider the channel matrix and review the complex value problem of 

Gram-Schmidt algorithm for QR decomposition. Assume that all the entries in channel H are 

complex and consider the case that the number of transmitting antennas M is equal to the 

number of received antennas N (Assume that M=N), the channel matrix is shown as  

[ .... .... ]= 1 2 MH h h h                        (2.48) 

Gram Schmidt process is  
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Step 1 : 1
1

1

hq =
h

                                                  (2.49) 

Step 2 : For n = 2 : M 

  
1 1

1 1
( ( ) ) / ( ( ) )

n n

i i

− −

= =

= ∑ ∑H H
n n i n i n i n iq h - q h q h - q h q                 (2.50) 

       End For    

Step 3 : 

2

2 2 2

2 3 3

.... ...
0 ... ...

[ .... ... ] 0 0 .... .
0 0 0 .... .
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H H H
1 1 1 1 M

H H
M

H
1 M

H
n M

q h q h q h
q h q h

H = q q q q h

q h

,        (2.51) 

 

On the other hand, we implement the Gram-Schmidt QR decomposition in reverse order as: 

Step 1 : M
1

M

hq =
h

                                                  (2.52)
 

Step 2 : For n = 2 : M 

   $ $ $ $ $
1 1

1 1
( ( * ) ) / ( ( * ) )

n n

i i

− −

= =

= ∑ ∑
H H

M-n+1 M-n+1 M-n+1 M-n+1n i i i iq h - q h q h - q h q         (2.53) 

End For 

A new orthogonal matrix is obtained which is 2Q  = $ $ $
2[ .... ... ]1 Mq q q . All the column 

vectors in channel matrix can be expressed as following: 

 
The new QR expression is  

$ $ $

$ $ $

$ $

$

$

1 21 1 1

1 22 2

1 1 2

21

1

) ) )

) ) 0
[ ... .... ] [  .. ..  ] 0 0

) 0 0 0

) 0 0 0 0

M

M

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H H H

M
H H

M M 1 M
H

H

(q h (q h ... ... (q h

(q h (q h ... ...
h h h q q q ... .... ...

... (q h

(q h

(2.54) 
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$ $ $

$ $

$

$

1 21 1 1

1 22 2

21

1

) ) )

) ) 0
0 0

) 0 0 0

) 0 0 0 0

M

M

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H H H

M
H H

2
H

H

(q h (q h ... ... (q h

(q h (q h ... ...
R = ... .... ...

... (q h

(q h

, so that channel matrix can be expressed as 

another form of QR decomposition. 

From the discussion above, we get two forms of QR decomposition which are 

1 1 1 2 1

2 2 2

2 3 3

.... ...
0 ... ...

[ .... ... ] 0 0 .... .
0 0 0 .... .
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H H H
M

H H
M

H
1 1 1 N

H
N M

q h q h q h
q h q h

H = Q R q q q q h

q h

,        (2.55) 

and  
 

$ $ $
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1 21 1 1

1 22 2

2 2 2
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1

) ) )

) ) 0
[ .... ... ] 0 0

) 0 0 0

) 0 0 0 0

M

M

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H H H

M
H H

1 N
H

H

(q h (q h ... ... (q h

(q h (q h ... ...
H = Q R q q q ... .... ...

... (q h

(q h

       (2.56) 

 

The received vector passes through 1
HQ  and 2

HQ matrix are 

�

$ $ $ $ $ $

$ $ $ $

$ $
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�

1 21 1 1
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1 1
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⎢ ⎥ +⎢ ⎥
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H
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   (2.57) 

and 
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    (2.58) 

We observe from two equations shown above. In equation (2.57), we can use particle 

filtering, draw particles from the bottom signal to the top and use approach III to find the 

expectation value for each entry in the signal vector. On the other hand, in equation (2.58), we 

can use particle filtering method, draw particles from top to bottom and use approach III to 

find the expectation value for each entry in signal vector. Finally, we average two results, 

error propagation can be mitigated.  
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Block diagram for error propagation mitigation method 
 

 
Figure 2.2 Block diagram for error propagation mitigation method 
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2.10  Sorted QR decomposition method 
 In [11], it is mentioned a method for sorted QR decomposition, which is similar to Gram- 

Schmidt algorithm. The idea of this method is to re-order the columns of channel matrix H for 

each orthogonal base searching. For Gram- Schmidt QR decomposition, we decompose the 

channel matrix H as shown in equation (2.55). Data detection by QR decomposition using 

particle filtering with approach II or III, as described before, the top signal will be affected by 

all the other signals. If particles in the previous stages did not draw well, the next stage signal 

samples will be affected by the previous stage samples. So that we need a large number of 

samples in order to obtain a much reliable posteriori probability. Sorted QR decomposition 

can improve such situation. The sorted QR decomposition combine with particle filtering use 

fewer particles to obtain a better performance compare with ordinary Gram Schmidt 

decomposition as shown in simulations. The idea of sorted QR decomposition is to maximize 

the diagonal entry of channel matrix H from M to 1 by using a permutation vector p (where 

M is the number of transmitting antennas), such that minimizing the diagonal elements in 

each decomposition step in order to maximize the diagonal element in the subsequent steps. 

The algorithm is shown as: 

Step 1 : Let R = 0; Q = H ; p = 1 ,2,..M 

Step 2 : For i = 1 to M 

   k = column of (
2

kk = 1,..M
arg min  q )                                    (2.59) 

   Exchange columns i to k for Q , R and p 

   ,i i ir = q                                                           (2.60) 

   ,/i i i ir=q q                                                         (2.61) 

   For j = i+1 to M 

        , *H
i j i jr q q=                                                     (2.62) 
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     ,j j i j ir= −q q q                                                    (2.63) 

End 
End 
Where (M is the number of transmitting antenna , lq  is the lth column of orthogonal matrix 

Q, ,i jr  is the (i,j) entry of the upper triangular matrix R ) 

The procedure of MIMO-OFDM system with particle 

filtering and SQR decomposition  

Step 1 : Using sorted QR algorithm to obtain matrix Q, R and p. 

Step 2 : Multiply HQ  to the received signal vector. 

Step 3:  

  For k = 1 to M  (Where M is the number of transmitting antenna) 
    For i = 1 to Np (Where Np is number of particles) 

◆ Draw a particle from the importance distribution ( )
1: 1 1:( | , )i

k k kp s s y−  

◆ Calculate the weight by using equation (2.35) 

◆ Store the new particle ( )i
ks  to ( )

1: 1
i
ks −   

End For 

◆ Normalized all the weights �
( )( )

( )

1

ii
k

k Np
i

k
i

ww
w

=

=

∑
 

◆ Calculate the effective sample size effN  using (2.36) 

◆ If effN < Ns , then do the re-sampling scheme. 

     � ( ) ( )
1: 1:

1

( | ) ( )
Np i i

kk k k k
i

p s y w s sδ
=

−∑�  

End For 

Step 4 : Detect signal using 
1:

1: 1: 1:arg max ( | )
k

M M Ms
s p s y=$  

Step 5 : Reordering all the signals using permutation vector p 



 

26 
 

Chapter 3  

Data detection in MIMO-OFDM with space frequency 

block code with particle filtering 

3.1 System model: 
We consider the system which has M transmitting antennas and N receiving antennas. 

The transmitter architecture for MIMO-OFDM with space frequency block code system is 

shown in figure 3.1. 

 

 

 

 

 

 

 

        

 

 

 

The data stream is mapped first, then these mapped signals are encoded by M/2 pairs of 

Alamouti code as shown in equation (3.1). For 4 transmitting antennas, 2 pairs of Alamouti 

code is called Double space time transmitting diversity (DSTTD) code as described in [12]. 

                        

*
1 1 2

*
2 2 1

*
1 1

*
1

. . .

. . .i

M M M

M M M

S S S
S S S

S S S
S S S

− −

−

⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

= → = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

S S                      (3.1) 

Figure 3.1  Transmitter structure for MIMO-OFDM with space frequency block code 
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The encoding process is shown as below :  

* *
1 2 ( _ / 2) 1 ( _ / 2) 2

* *
2 1 ( _ / 2) 2 ( _ / 2) 1

1 2 ( _ / 2)

* *
1 ( _ / 2) 1 ( _ / 2)

* *
1 ( _ / 2) ( _ / 2) 1

...

...
. . .

, ,.....,
. . .

...

...

M FFT len M M FFT len M

M FFT len M M FFT len M

M FFT len

M M M FFT len M FFT len

M M M FFT len M FFT len

S S S S
S S S S

S S S

S S S S
S S S S

− + − +

− + − +

− −

− −

− −

→

− −

=    (3.2)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

S  

(where FFT_len is the length of a OFDM symbol), 

The modulated signal 1S  to ( _ / 2)M fft lenS  are encoded as equation (3.2). Each column vector 

in matrix S represents an encoded signal vector allocated in a particular sub-carrier and each 

row vector in matrix S represents an encoded signal vector allocated in a particular antenna. 

As the graph shown below: 

* *
1 2 ( _ / 2) 1 ( _ / 2) 2

*
2 1

                                Sub 1    Sub 2     ..............                     Sub FFT_len

...1  Tx antenna

.2  Tx antenna
..
..
..

 Tx antenna
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M FFT len M M FFT len M

nd

th

S S S S
S S

M

− + − +− −→
→

→

*
( _ / 2) 2 ( _ / 2) 1

* *
1 ( _ / 2) 1 ( _ / 2)

* *
1 ( _ / 2) ( _ / 2) 1

..
. . .
. . .
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M FFT len M M FFT len M

M M M FFT len M FFT len

M M M FFT len M FFT len

S S
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Then converts each row of matrix S by using Inverse Fast Fourier transform to time domain 

signal expressed in the next page. 
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⎯⎯ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                (3.3)

 

Adding Guard interval for each row vector, then signals in each row are transmitted from 

different antenna. Since the encode process is implemented in frequency domain (subcarrier). 

We treat this type of code as space frequency block code. 

 

3.2  MIMO-decoder 

            

In receiver side, After guard interval removal and Fast Fourier transform, the received signals  

 at thn received antenna over subcarrier 1 and 2 are expressed as  

  
1, 1 2, 2 ( 1), 1 ,

* * * * * *
2, 1 1, 2 ( ), 1 ( 1),

(1) (1) (1) ..... (1) (1) (1)

(2) (2) (2) .... (2) (2) (2)
n n n M n M M n M n

n n n M n M M n M n

Y H S H S H S H S n

Y H S H S H S H S n
− −

− −

= + + + + +

= − + + − +
  (3.4) 

 ( )nY k : Received signal of n th received antenna at k th sub-carrier 

mnH ( )k  : Channel response in frequency domain for m th transmitting antenna and n th 

receiving antenna 

mS : m th mapped data 

nn ( )k : Noise at n th receiving antenna for k th subcarrier  
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   The matrix form representation for MIMO-OFDM 4X2 with space frequency block code 

system (for subcarrier 1 and 2) can be expressed as 

       Y   =    HS + N                                 (3.5) 

   

2

1 11 21 31 41 1 1
* * * * * *

1 21 11 41 31 2 1

2 12 22 32 42 3 2
* * * * * *

22 12 42 32 4 2

(1) (1) (1) (1) (1) (1)
(2) (2) (2) (2) (2) (2)
(1) (1) (1) (1) (1) (1)
(2) (2) (2) (2) (2) (2)

Y H H H H S n
Y H H H H S n
Y H H H H S n
Y H H H H S n
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

         (3.6) 

Where H is the equivalent channel matrix, S is the original symbol vector which is one of the 

columns in equation (3.2) and N is the additive complex white Gaussian noise with variance

2σ .Assuming that (1) (2)mn mnH H≈  and define  

11 21 31 41
* * * *
21 11 41 31

12 22 32 42
* * * *
22 12 42 32

(1) (1) (1) (1)
(1) (1) (1) (1)
(1) (1) (1) (1)
(1) (1) (1) (1)

H H H H
H H H H
H H H H
H H H H

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥− −⎣ ⎦

eqH                      (3.7) 

Multiplying H
eqH  (where ()H  represents Hermitian of a matrix) to the received vector we 

obtain 

� H H H
eq eq eqY   =    H Y = H HS + H N                           (3.8), 

Since we assume (1) (2)mn mnH H≈ , for 4 transmitting antennas, the equivalent channel matrix 

H will almost equal to eqH  as shown  

11 21 31 41 11 21 31 41
* * * * * * * *
21 11 41 31 21 11 41 31

12 22 32 42 12 22 32 42
* * * *
22 12 42 32

(1) (1) (1) (1) (1) (1) (1) (1)
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⎡ ⎤
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⎢ ⎥
⎢ ⎥− −⎣ ⎦

eqH

* * * *
22 12 42 32

(3.9)
(1)

(2) (2) (2) (2)H H H H

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥− −⎣ ⎦

H

So that 

1
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1

2
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0
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ρ α β
ρ β α

α β ρ
β α ρ

⎡ ⎤
⎢ ⎥−⎢ ⎥≈ =
⎢ ⎥−
⎢ ⎥
⎣ ⎦

H H
eq eq eqH H H H                              (3.10) 
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22

1
1 1

24

2
3 1

where 

( )       N : Number of  RX antenna                                                               (3.11)

( )                                                         

N

mn
m n

N

mn
m n

H k

H k

ρ

ρ

= =

= =

=

=

∑∑

∑∑
* *
1 3 2 4

1

*
1 4

                                                       (3.12)

( ( ) ( ) ( ) ( ))                                                                                   (3.13)

( ( ) (

N

i i i i
i

i i

H k H k H k H k

H k H
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β

=

= +

=

∑
*

2 3
1

) ( ) ( ))                                                                                   (3.14)
nr

i i
i

k H k H k
=

−∑

First, observing the matrix form shown above, we discover that H
eq eqH H  is complex 

symmetric as shown below  

1

2

  
ρ

ρ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

H
eq eq H

I D
H H

D I
                               (3.15) 

* *

1 0
  = ,

0 1
where

α β
β α

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

D I                           (3.16)

 Second, noise vector H
eqH N  is not white noise any more. 

On the other hand, if the channel delay spread is large, eqH  which is the average of the 

 thk  and  thk+1  channel is used for data detection. 
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⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎜ ⎟
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⎡ ⎤⎜ ⎟
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      (3.17) 

After multiplying H
eqH  to received vector Y, the new expression can be shown as 
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� H H H H H
eq eq eq eq eq eqY = H Y = H HS + H N = H (H + E)S + H N              (3.18) 

H H H
eq eq eq eq= H H S + H N + H ES                                  (3.19) 

From the equation shown above, there are three terms in equation (3.19). The third term is the 

error term, since we averaging the equivalent channel matrix, the error term is assumed to be 

small, so that we can ignore this term. This term will affect the performance if the error term 

is large. 

The matrix H
eq eqH H  is positive definite, so that we can use Cholesky decomposition to 

decompose such matrix. Cholesky decomposition is a method to separate a matrix to a upper 

triangular matrix and its hermitian such that H
eq eqH H = HU U ,where U is a upper triangular 

matrix. We multiply H -1(U )  to �Y , then 

� �= ≈H -1 H -1 H H -1 H
eq eq eqY (U ) Y (U ) H H S + (U ) H N                      (3.20) 

H -1 H H -1 H
eq               = (U ) U US + (U ) H N                        (3.21) 

The signal after pass through multiplied 1( )−HU   will become: 

� H -1 H
eqY = US +(U ) H N                             (3.22) 

Where S is the symbol vector and H -1 H
eq(U ) H N  is a new noise vector. There are two 

properties from the equation(3.22) written above. First of all, the upper triangular matrix is 

obtained which accompanies with signal vector. Second, we consider the noise vector 

H -1 H
eq(U ) H N , the covariance matrix of the new noise vector is 

)H -1 H H -1 H H H -1 H H -1
eq eq eq eqE[((U ) H N ((U ) H N) ] = E[(U ) H NN H U ]              (3.23) 

H -1 H H -1
eq eq= (U ) H E[NN ]H U              (3.24) 

 H -1 H 2 -1
eq eq= (U ) H σ I H U                  (3.25) 
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 H -1 H 2 -1
eq eq= (U ) H σ I H U                  (3.26) 

2 H -1 H -1
eq eq= σ (U ) H H U                   (3.27) 

2 H -1 H -1 2= σ (U ) (U U)U = σ I              (3.28) 

After multiplying 1( )−HU  to the received signal vector, the new noise vector will become an 

independent white noise vector again. This method is also called whitening filter. 

The matrix form is shown as 

$

$

$

1 1 1
11 12 1

2 22
2

...
0 0  .. ...

... .... 0 0  .. ... ...

... .... 0 0  .. 0

M

M

MM
M MM

y S n
U U U

S ny U

U
S ny

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 ,              (3.29) 

So that we can use particle filtering method, drawing particles from the bottom signal to the 

top signal to detect the signal vector S.  
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Block diagram of receiver structure 

 

 

Figure 3.2  Receiver structure for MIMO-OFDM system with space frequency block code 

 

3. 3  Error propagation mitigation method 

In the previous section, we use Gram Schmidt decomposition to obtain two upper 

triangular matrixes. BER performance will be improved using particle filtering using such 

method in spatial multiplexing system. On the other hand, in MIMO-OFDM with space 

frequency block code system, this method can be implemented similar to spatial multiplexing 

system. In the previous section, we decompose channel matrix H into 1 1Q R  and 2 2Q R . 

Now, after Cholesky decomposition, we obtain an upper triangular matrix U and the received 

vector is  

� H -1 H
eqY  = US + (U ) H N                         (3.30) 

The upper triangular matrix can be written as [ .... .... ]= 1 2 MU U U U ,where KU  is 

the thk column vector in U. The upper triangular matrix U can be decomposed by 
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Gram-Schmidt QR decomposition and written as  

$ $ $

$ $ $

$ $

$

11 1 1

12 2

2 2

1

) ) )

) ) 0
[ .... ... ]         0 0

0 0 0

) 0 0 0 0

⎡ ⎤
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(3.31) 

 

Where the form of 2R  is another form of upper triangular matrix as same as in the previous 

section. Multiplying HQ  to R and obtain  

� =H
2Y = Q Y R S + n                       (3.32) 

Since Q is an orthogonal matrix, the noise vector is still a white noise. 
 

From the discussion above, we get two matrix forms 
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Now we define the upper triangular matrix  
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             (3.34) 

We observe from two equations shown above. In (3.33), we can use particle filtering, 

drawing particles from the bottom signal to the top one and using approach III to obtain the 

expectation value for each entry in signal vector. Interference will be severe in 1S .  

On the other hand, in equation (3.34), draw particles from the top signal to the bottom 
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one and use approach III to obtain the expectation value, interference will be severe in MS . 

Finally, we average these two sets of soft information and make the decision of each 

symbol by searching the shortest distance for each entry in signal vector. 
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Block diagram for error mitigation method in 

MIMO-OFDM with space frequency block code system 

MIMO-Decoder

Whitening
Filter QR decomposition

Particle filtering
using approach III

Particle filtering
using approach III

Adder

Divided by 2

FFT FFT FFT

Remove CP Remove CP Remove CP

 

Figure 3.3 Block diagram for error propagation mitigation method in MIMO-OFDM with space frequency block 

code system 
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Chapter 4  

Simulation results 

4.1 Parameters for MIMO-OFDM spatial multiplexing 

system 
 

Perfect channel information 

Number of subcarriers  256 

Length of CP   64 

Channel  Two paths model with (0,0)dB 

Particles 100 (if not mentioned in the figure) 

Approach  I (if not mentioned in the figure) 
Table 4.1  Parameters for MIMO-OFDM system 

 

Figure 4.1 shows the BER performance for different approach for perfect CSI in 4X4 

spatial multiplexing system for QPSK modulation. As can be observed from figure 4.1, 

Approach II and III have almost the same performance. For sorted QR decomposition using 

approach II, performance has 2 dB improvements as compared with unsorted QR using 

approach II. Approach I has the best performance as compared with approach II and approach 

III. However, the complexity for approach I is higher than the complexity for approach II and 

III. 

Figure 4.2 shows the BER performance for QPSK modulation in 6X6 spatial 

multiplexing system for sorted QR decomposition for approach I, QR decomposition with 

approach II and III with and without sorting. The result shows that the performance for sorted 

QR decomposition with approach I also has the best BER performance as compared with 
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approach II and III. Moreover, sorted QR decomposition using approach II has 2dB 

improvement better than without sorting QR decomposition in BER equal to 10^-2.  

Figure 4.3 shows the performance of different detection scheme. Approach II is nearly to 

VBLAST ZF OSIC performance. Performance using sorted QR decomposition and approach 

II is nearly to the performance for VBLAST MMSE OSIC detection scheme. Moreover, the 

BER performance of iterative QR decomposition method has 3-4 dB improvement compare 

with VBLAST MMSE OSIC system and 1dB better than the BER performance of particle 

filtering using approach I.  

Figure 4.4 shows the BER performance for 16QAM modulation with perfect CSI under 

MIMO-OFDM 4X4 system. As we can see from the figure shown, the performance for the 

iterative QR decomposition using approach II has 4dB improvement as compared with 

VBLAST MMSE OSIC. Sorted QR decomposition using approach I has better performance 

in this system than error propagation mitigation method using approach III. 

Figure 4.5 shows the comparison between QR decomposition with and without sorting 

using approach I in 6X6 system, as shown in figure, the performance has 1 dB improvement 

under 50 particles as compared with unsorted QR decomposition method using approach I 

under 50 particles.    

Figure 4.6 shows the performance for sorted QR decomposition using approach I in 6X6 

system using 50 and 75 particles. There is a little improvement for 75 particles. 

Figure 4.7 shows the comparison between the sorted QR decomposition method using 

approach I in 6X6 spatial multiplexing system with 16 QAM modulation, unsorted QR 

decomposition method using approach I in 6X6 MIMO-OFDM system and VBLAST MMSE 

OSIC. Sorted QR decomposition has 3-4 improvement compare with VBLAST MMSE OSIC 

and 1-2 dB improvement better than unsorted QR decomposition.   

Figure 4.8 shows the performance for sorted QR decomposition using approach I 

in 6X6 system using 50 ,75 and 150 particles for 16 QAM modulation. There is a little 
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improvement for 150 particles and no different between 50 and 75 particles. 

 

4.2  Parameters for MIMO-OFDM with Space frequency 

block code system 

 

Perfect channel information 

Number of subcarriers 256 

Length of CP 64 

Channel Two paths model with (0,0)dB 

Particles 100 (if not mentioned in the figure) 

Approach I (if not mentioned in the figure) 

MIMO encoder 2 pairs of Alamouti code(DSTTD) 
Table 4.2  Parameters for MIMO-OFDM with space frequency block code system 

 

Figure 4.9 and figure 4.10 show the BER performance of 4X2 MIMO-OFDM for QPSK 

and 16 QAM modulation with space frequency block(2 pairs of Alamouti code) code system 

for five different detection schemes which are VBLAST MMSE OSIC, Cholesky 

decomposition with decision feedback, particle filtering using approach I and error 

propagation mitigation using approach III and ML. First of all, BER performance of particle 

filtering and error propagation mitigation method have 4dB better than the performance of 

VBLAST MMSE OSIC and 5dB better than performance of Cholesky decomposition with 

decision feedback. There are only 2dB worse than the performance of ML decision. For the 

same system using 16QAM modulation, as shown in figure 4.10, particle filtering has almost 

the same performance as error propagation mitigation method. Both of them have a 2dB 

improvement better than VBLAST performance.  
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In figure 4.11, for 4X4 MIMO-OFDM system with space frequency block code with 

QPSK modulation, the performance of particle filtering is better than the performance of 

VBLAST MMSE OSIC and almost the same as ML decision.  

In figure 4.12, for 4X4 16QAM modulation system with space frequency block code, the 

performance of particle filtering is better than the performance of VBLAST MMSE OSIC and 

Cholesky decomposition with decision feedback.  
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Figure 4.1  Figure 4.1  MIMO-OFDM 4X4 QPSK modulation for different approaches 
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Figure 4.2  MIMO-OFDM 6X6 QPSK modulation for different approaches 
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Figure 4.3  MIMO-OFDM 4X4 QPSK for different detection schemes 
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Figure 4.4  MIMO-OFDM 4X4 16 QAM for different detection schemes 
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Figure 4.5  MIMO-OFDM 6X6 QPSK modulation with and without sorted QR decomposition 
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Figure 4.6  MIMO-OFDM 6X6 QPSK with particles equal to 50 and 75 
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Figure 4.7  MIMO OFDM 6X6 16QAM modulation with and without sorted QR decomposition 
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Figure 4.8  MIMO-OFDM 6X6 16QAM modulation particles equal to 50,75 and 200 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25 30
10-3

10-2

10-1

100

Es / No

B
E

R

 

 
sorted QR with particle filtering( particle = 50)
sorted QR with particle filtering( particle = 75)
sorted QR with particle filtering( particle = 150)



 

49 
 

 

 

 

 

 

 

Figure 4.9  MIMO-OFDM 4X2 QPSK with space frequency block code for different detection scheme 
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Figure 4.10   MIMO-OFDM 4X2 16QAM with space frequency block code 
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Figure 4.11  MIMO-OFDM 4X4 QPSK with space frequency block code 
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Figure 4.12  MIMO-OFDM 4X4 16QAM with space frequency block code 

0 2 4 6 8 10 12 14 16 18 20
10-6

10-5

10-4

10-3

10-2

10-1

100

Es / No

B
E

R

 

 Cholesky decomposition with decision feedback
VBLAST MMSE-IC
Particle filtering using approach I



 

53 
 

Chapter 5  

Conclusion 

Merits and drawbacks of particle filtering algorithm 
Except for the complexity of QR decomposition and searching process mentioned in 

section 2.8, the complexity of particle filtering is directly proportional to three components, 

the scheme of modulation, the number of transmitting antennas and the number of particles. 

The complexity for particle filtering is O(A*M*Np), where A is the modulation scheme, eg 

QPSK, 16QAM. M is number of transmitting antennas and Np is number of particles. The 

complexity of ML scheme exponentially increases either the number of transmitting antenna 

or the number of order of modulation increases. The complexity for ML decision is O( MA ). 

Particle filtering is a practical approach for data detection. As the simulation shown before, 

the performance of our proposed methods using particle filtering are close to ML decision 

either in spatial multiplexing system or with space frequency block code system. The 

complexity for QPSK modulation for 6X6 MIMO-OFDM BLAST system is only 4*4*50 = 

800 trials, however, for ML decision method, number of trial is 64 4096= trials. The 

complexity with particle filtering is 5 times lower than the complexity with ML decision, the 

BER performance of sorted QR decomposition with particle filtering using approach I is only 

2 dB worse than ML decision. Moreover, for high order modulation, for example, 16 QAM 

for 4X4 MIMO-OFDM BLAST system, the complexity for ML will be 416 65536=  trials, 

however, particle filtering method only deal with 4*4*100 = 1600 trials. In conclusion, 

Particle filtering is a suitable approach for high modulation order and large amount of 

transmitting antenna system in MIMO-OFDM BLAST system.  

One of the drawbacks of particle filtering is that the noise distribution is known at the 

receiver side. For example, if the noise distribution is white Gaussian noise, receiver need to 
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be estimate the variance of noise first, after that pass this variance information to particle 

filtering.  

The second drawback is that particle filtering need the process of QR decomposition or 

Cholesky decomposition, the complexity will increase for when the number of transmitting 

antenna increases.  

The third drawback is that the searching process mentioned in section 2.8 for approach I 

and approach II. Especially for approach I, the complexity will increase either the number of 

transmitting antennas or number of particles increase. 
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