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摘要 

    

文獻指出分散式渦輪碼(Distributed Turbo coding)可以接近無線中繼網路(Wireless 

Relay Network)的通道容量上限(Capacity)。實際的分散式渦輪碼，如果在中繼端發生故

障(Outage)將轉換至非合作的模式，因為如果繼續中繼錯誤的資訊將會誤導目的地終

端，並造成錯誤的傳遞繁殖；而此非合作模式將使系統效能下降。最近，一種轉送模式

稱之為解碼放大轉送模式(Decode-Amplify-Forward)被提出來解決這個問題。不像分散式

渦輪碼，解碼放大轉送模式既不在中繼端重新編碼，也不在目的地終端做遞迴解碼，因

此擁有較有效率之運算複雜度。然而，解碼放大轉送模式的中繼端需要知道

Log-Likelihood Ratio 的分佈，一般被模擬成高斯混合(Gaussian Mixture)。在本論文裡，

我們提出使用 EM algorithm 做為識別高斯混合的方法，模擬結果顯示 EM algorithm 可以

更準確地識別此分佈，因而解碼放大轉送模式的效能也得到提升。而分散式渦輪碼可與

解碼放大轉送模式合併為一種混合轉送模式，此一模式比其他我們所比較的分散式渦輪

碼的變形都擁有較好的效能。 
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Abstract 
 

 

It has been shown that distributed turbo coding (DTC) can approach the capacity of a 

wireless relay network. Practical DTC has to switch to non-cooperative transit mode should 

inter-user outage occur, since erroneous bits, if (re-encode and) forwarded to the destination, 

will mislead the destination and cause severe error propagation. This non-cooperative transit 

mode degrades the performance. Recently, a forwarding strategy termed 

decode-amplify-forward (DAF) is developed to solve the problem. Unlike DTC, DAF neither 

conducts encoding at the relay nor iterative decoding at the destination. It is superior and 

computationally more efficient. However, DAF requires the relay to have the likelihood-ratio 

(LLR) distribution, typically modeled as a Gaussian mixture. In this thesis, we propose to use 

the EM algorithm for the identification of the Gaussian mixture. Simulations show that the 

EM algorithm can identify the LLR distribution accurately and the performance of DAF can 

be enhanced. Further, DAF can be combined with DTC resulting in a DTC-DAF scheme. We 

have also studies various DTC related schemes and found that DTC-DAF can have the best 

performance. 
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Chapter 1 Introduction 

 

Next generation wireless communications (third generation and beyond) will bear little 

resemblance to first- and second-generation, mostly voice cellular systems. In order to meet 

the demands of multi-rate multimedia communications, next-generation cellular systems must 

employ advanced algorithms and techniques that not only increase the data rate, but also 

enable the system to guarantee the quality of service (QoS) for various applications.  

Techniques currently being investigated for meeting the requirements include advanced signal 

processing, tailoring system components (such as coding, modulation, and detection) 

specifically for wireless environments, and various forms of diversity. Among these 

techniques, diversity is of primary importance due to the nature of wireless environments. 

 

The mobile radio channel suffers from fading, implying that, within the range of any 

given cell, mobile users may experience severe variations in signal attenuation. By 

transmitting or processing independently fading copies of the signal, diversity is an effective 

method combating the fading effect. Some well-known forms of diversity include spatial 

diversity, temporal diversity, and frequency diversity. Spatial diversity relies on the principle 

that signals transmitted from geographically separated transmitters, and/or to geographically 

separated receivers, experience independent fading. To have spatial diversity, multiple 

transmit antennas are required. Unfortunately, this may not be always feasible in the uplink of 

a cellular system, due to the size limitation in the mobile unit. In order to overcome this 

limitation, yet still emulate transmit antenna diversity, a new form of spatial diversity was 

developed via the cooperation of in-cell users. In each cell, each user may find a “partner.” 

Each of the two partners is responsible for transmitting not only their own signal, but also the 

signal of their partner, which they receive and detect. This is, in effect, attempting to achieve 
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spatial diversity through the use of the partner’s antenna; however, this is complicated by the 

fact that the inter-user channel is noisy. 

 

  A particularly powerful variation of user cooperation is coded cooperation. Instead of a 

simple repetition relay, coded cooperation integrates cooperation into channel coding. Under 

the scope of coded cooperation, a novel coding technique, termed distributed turbo coding 

(DTC), was proposed for quasi-static relay channel [1]. It has been shown that DTC can 

approach the capacity of a wireless relay network [2]. The operation of the DTC can be 

explained as follows. The source broadcasts a recursive systematic convolutional code (RSC) 

code to both the relay and the destination. After detecting the data broadcasted by the source, 

the relay interleaves and re-encodes the message prior to forwarding it to the destination. 

Since the destination receives two codes, turbo decoding can be conducted. While this 

construction maintains the diversity benefit of relaying, the coding gain can also be improved. 

This extra coding gain is due to the interleaving gain of the turbo code construction and the 

turbo processing gain of the iterative decoder. 

 

In the original DTC schemes, it is usually assumed that the relay can perform error-free 

decoding. We refer to such DTC schemes as perfect DTC. This scenario can be realized by 

automatic repeat request (ARQ) in the link between the source and the relay. However, the 

use of ARQ will reduce the system transmission throughput. Practical DTC has to switch to 

non-cooperative transit mode should inter-user outage occurs, since erroneous bits, if 

(re-encode and) forwarded to the destination, will mislead the destination and cause severe 

error propagation. Here by outage, we mean that transmit signals are corrupted by the channel 

fading and other impairments to a level that prohibits the relay from correctly deducing all the 

data. What can we possibly do to enhance the performance of DTC in inter-user outage? 

Several recent works [4]-[7] have reported a new forwarding strategy, called soft (information) 
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relaying, to deal with the above outage problem. With this strategy, the delay does not have to 

make decisions; it may calculate and forward the soft information of the transmit data. 

 

In this thesis, we propose to use the EM algorithm for the identification of the Gaussian 

mixture at a DAF relay. Simulations show that the EM algorithm can help DAF to retrieve the 

information more correctly, without adding too much processing complexity at the relay. 

Further, DAF can be combined with DTC resulting in a DTC-DAF scheme. It is shown that 

DTC-DAF can have the best performance among DTC related schemes we studied. 

 

The rest of this thesis is organized as follows: In Chapter 2, we review the cooperative 

communication systems and its two basic forwarding strategies, amplify-and-forward (AF) 

and decode-and-forward (DF). Also, we review the distributed turbo code. In Chapter 3, we 

describe the soft relaying methods to combat inter-user outage, including Soft-DF (a DTC 

variant), decode-amplify-forward (DAF) in detail. Also included is a DTC error-resilient 

scheme (a DTC variant). In Chapter 4, we describe the proposed scheme. We use the 

expectation-maximization (EM) algorithm to identify the distribution, modeled as a Gaussian 

mixture, of log-likelihodd ratios (LLRs) at the relay.  This distribution is required for the soft 

relaying method like DAF and Soft-DF. Chapter 5 reports some simulation results of the 

mentioned schemes. Finally, we draw some conclusions and outline some possible future 

works in Chapter 6. 
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Chapter 2 Cooperative communication systems 

 

2.1 Cooperative communication 
   Diversity is an effective technique to combat fading. No matter it is operated in the time, 

frequency or spatial domains. However, spatial diversity may be desirable in practice since it 

can effectively enhance the spectrum efficiency. To have spatial diversity, multiple antennas 

are required. While this is feasible in base stations, it may be difficult in mobile stations due 

to size, costs, hardware complexity, or other constraints. To address this limitation, the 

concept of cooperation diversity was introduced, where mobiles can achieve uplink transmit 

diversity by relaying. Figure 2.1 shows a simplest three-terminal network consisting of a 

source, a relay and a destination, showing the basic idea behind this concept. Since each of the 

users sees an independent fading path to the destination, diversity is obtained by transmitting 

each user’s data through the relay. By using this approach, multiple virtual-antennas can be 

constructed in the transmitter. Many research works also show that considerable benefits 

result from signal relaying in fading environments especially over slow fading channels, 

including the reduction in outage probability, higher capacity, less power consumption and 

wider dynamic range. 

 

Fig. 2.1 The scenario of relay channel 
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   Despite the theoretic advances in wireless user cooperation, practical signal relaying 

strategies have not evolved much out of the three basic forms proposed by Cover and El 

Gamal in 1979 [8], namely, amplify-and-forward (AF), decode-and-forward (DF) and 

compress-and-forward (CF). In Section 2.3 and 2.4, we will review two basic strategies AF 

and DF separately, after the system model is first given in Section 2.2. 

 

A particularly powerful variation of user cooperation is coded cooperation. Coded 

cooperation integrates cooperation into channel coding. Instead of a simple repetition relay, 

coded cooperation partitions a codeword into two parts, and transmits one part through the 

direct link, and the other through relay link. That is to say, the codeword will experiences two 

independent channels before it is received by the destination. In section 2.5, one extension of 

coded cooperation, termed distributed turbo coding (DTC), is also presented. 

   

  2.2 System model 
   For simplicity, consider the basic relay system in Figure 2.1 that comprises a source, a 

relay and a destination. We consider half-duplex transit modes, where user cooperation is 

operated in two stages: the broadcasting stage, where the source broadcast a package of data 

to both the destination and the relay, and the relaying stage, where the relay processes and 

forwards part or all of the observations to the destination. The destination then combines the 

signals received from both stages to make a best estimation of the original data. Throughout 

this thesis, we will use subscripts , , S R D  and , ,  to denote the quantities 

pertaining to the source, relay, and destination nodes, and those pertaining to the source-relay, 

source-destination and relay-destination channels, respectively. 

SR SD RD

 

   We take block Rayleigh fading as the channel model, which is described as 
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( ) ( ) ( )SR SR SR S SRy i P h x i n i= +                        (2.1) 

( ) ( ) ( )SD SD SD S SDy i P h x i n i= +                        (2.2) 

( ) ( ) ( )RD RD RD R RDy i P h x i n i= +                       (2.3) 

where x  is the transmitted signal,  is the received signal and  is the fading channel 

coefficients. For simplicity, we consider a binary phase-shift keying (BPSK) modulation, 

y h

{ }1, 1Rx ∈ −  (0 1&1 -1), whereas → → Rx  may depend on the specific forwarding strategy. In 

the case of AWGN,  is a constant of 1. In the case of block fading,  is modeled as 

zero-mean, circular symmetric complex Gaussian random variable with a variance of 1, which 

remains fixed over a block of data, and changes independently from one block to another. The 

additive white Gaussian noises, , and , are zero-mean complex Gaussian random 

variables with a variance of . Here, we assume that all noise processes have the same 

variances, without loss of generality. We can be taken into account the cases of different 

variances by appropriately adjusting the power term, , and  of each link. The 

SNR of a channel, 

h h

SRn SDn RDn

0N

SRP SDP RDP

γ , is defined as  

0

P
N

γ =                                 (2.4) 

   We consider spatially independent channels among the source, the relay, and the 

destination. We further assume that the instantaneous channel state information is known to 

the receivers (but not to the transmitter), so that the decoder can exploit efficient soft 

decoding algorithm. And the cooperative ratio κ  = 1/3, defined as the percentage of time 

allocated to the relaying stage in a round of user cooperation, is fixed in transmissions. 

 

2.3 Amplify-and-forward 
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   In this scenario, the relay scale and retransmit the analog signal waveform from the source. 

This is amplify-and-forward, as implied by the name. The operation of AF is straightforward, 

requiring a lower implementation complexity in digital signal processing. More importantly, 

one attractive advantage of AF is its ability to operate at all times, even when the source-relay 

channel experiences outage. 

    

   Mathematically, the transmit signal at the relay is formulated in AF as  

( )( ) SR
R

y

y ix i
P

=  i = 1,2,3,…,N,                       (2.5) 

where N is the length of the codeword (block), xR(i) is the retransmitted signal at the relay, 

and yP  is the average power of the received signals: 

2

( )
1

N

SR j
j

y

y
P

N
==
∑

                            (2.6) 

The destination observes from source-relay-destination (S-R-D) channel a noisy signal of the 

form: 

( ) ( )
( ) ( ) ( )SR SR S SR

RD RD RD RD
y

P h x i n i
y i P h n

P

+
= + i  

( )
( ) ( ) ( ) ( )RD SR RD SR RD RD SR

RD S RD
y y

P P h h P h n i
y i x i

P P
= = + + n i          (2.7) 

which makes the cascade channel behave like a single (block) fading channel with 

power-fading coefficient ( RD SR RD SR

y

P P h h

P
) , and a complex Gaussian noise of variance 

2

0 (1 )RD RD

y

P h
N

P
+ . 

   The destination then gathers the signals received from both the cascade channel and the 
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direct source-destination channel using the maximum ratio combining (MRC) principle, 

which in effect is to extract and combine the log-likelihood ratios (LLRs) from the channels 

as: 

* *

*

2
0

0

4 {
4 { }

( ) ( ) ( )
(1 )

RD SR
RD SR RD

ySD SD SDCH CH
AF SD RD

RD RD

y

P P
}Re h h y

PP Re h y
l i l i l i

N P h
N

P

−
−

= + = +

+

,    (2.8) 

where the minus sign is due to BPSK mapping (0→1&1 -1). Here, we give a brief proof of 

(2.8). For ease of description, here we consider the simplest case. Let 

→

*
1

1 1 1 1 1 1
1

Re{ }s s
h

1y h x n r y h x z
h

= + ⇒ = = +  

*
2

2 2 2 2 2 2
2

Re{ }s s
h

2y h x n r y h x z
h

= + ⇒ = = +  

0
1 2 1 2 0 1 2, (0,1); , (0, ); , (0, )

2
Nwhere h h CN n n CN N z z N∈ ∈ ∈  

1 2

2 2
1 1 2 2 1 1 1 2 2 2

0 0 0

4 4 4( s s
r r

h r h r h x h z h x h z
llr llr

N N N
− − − + + +

+ = + =
)

 

2 21 1 2 2
1 22 2 2 2

1 2 1 2

0 0

4( )( )
4( )( )

MRC

s
MRC

x

h z h z
x h h

h h x h h
llr

N N

+
− + +

+ − +
= = =  

1 1 2 2 1 1 2 2 1 1 2 2 0
2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2

, [ ]
2( )

MRC s

h r h r h z h z h z h z Nwhere x x Var
h h h h h h h h

+ + +
= = + =

+ + + +
 

 

Thus, the LLR obtained by the summation of LLRs calculated from the direct and the relay 

link is equivalent to that calculated from the received signal after MRC. 

 

2.4 Decode-and-forward 
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In DF, when the relay has successfully decoded all the bits in the source-block, it will 

re-encode them and transmit a (new and) clean set of bits to the destination. However, in order 

to prevent error propagation and improve performance, DF typically includes an option to 

switch to the non-cooperation mode when the relay fails to decode the data correctly. In 

repetition-DF, the destination will perform similarly to the case of AF by combining the LLRs 

from the SD and RD channels: 

* *

0 0

4 { } 4 {
( ) ( ) ( ) SD SD SD RD RD RDCH CH

AF SD RD

P Re h y P Re h y
l i l i l i

N N
− −

= + = +
}

.       (2.9) 

In a more sophisticated scheme such as distributed turbo code (DTC) of coded cooperation, 

the destination will treat the two packages it received as a single codeword and perform 

decoding jointly. 

 

2.5 Distributed turbo coding 
   To improve the performance in a relay network, some cooperative and distributed coding 

schemes have been developed recently. A distributed turbo code (DTC) system is developed 

for a two-hop relay network in [2]. The source broadcasts the coded signals to both the 

destination and relay. The relay then decodes the received signals, and interleaves them prior 

to the encoding. The signals received at the destination contain coded information symbols 

transmitted from the source and coded interleaved information symbols transmitted from the 

relay. These two symbol sequences form a distributed turbo code. It has been shown that such 

a coding strategy can achieve the theoretic outage probability bound of a relay channel. Figure 

2.2 is the block diagram of a distributed turbo code. 

 

In the following, we will briefly describe how to decode the distributed turbo code at 

destination. First, we will review the BCJR algorithm for maximum-a-posteriori (MAP) 
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detection problem. Then, we give the iterative decoding scheme for the distributed turbo code 

using the BCJR algorithm. 

 

 
Fig. 2.2 Block diagram of a distributed turbo code 

 

2.5.1 BCJR algorithm for convolutional decoder 

   In order to minimize the probability of error for each symbol (bit) decision and calculate 

the soft bits information, we use the MAP-based decoder instead of the Viterbi decoder for the 

decoding of a convolutional code. One efficient algorithm for the MAP decoder is termed the 

BCJR algorithm in the literature [12]. In the MAP decoder, to make a decision about the 

information bit of the kth stage , the decoder calculates the a posteriori probability 

 for each possible , and choose  that maximizes , where  

is the received packet. In the convolutional code trellis diagram, these probabilities are easily 

computed once the a posteriori state transition probabilities 

kb

Pr[ | ]kb r {0,1}kb ∈ kb Pr[ | ]kb r r

1Pr[ '; | ]k kS l S l− = = r  are known 

for each state transition in the trellis. The BCJR (Bahl, Cocke, Jelinek and Raviv) algorithm 

provides a computationally efficient method for finding these state transition probabilities. 
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   The key to the BCJR algorithm is to decompose the a posteriori state transition probability 

for a transition at stage  into three separate portions: the first only depends on the “pre-” 

observations , the second only depends on the “k

k

{ : }j k jr j k< = <r th (present)” observations 

, and the third only depends on the “post-” observations kr { : }j k jr j k> = >r . We can obtain 

this decomposition through the following derivations: 

1 1

1

1 1

Pr[ '; | ] ( '; ; ) / ( )

( '; ; ; ; ) / ( )

( | '; ; ; ) ( '; ; ; ) / ( ).

k k k k

k k j k k j k

j k k k j k k k k j k k

S l S l p S l S l p

p S l S l p

p S l S l p S l S l p

− −

− < >

> − < − <

= = = = =

= = =

= = = = =

r r r

r r r r

r r r r r r

 

(2.10) 

Because of the Markov property of the finite-state machine model for the trellis, knowledge of 

the state at stage  supersedes knowledge of the state at stage k 1k − , and it also supersedes 

knowledge of  and kr j k<r , so that (2.10) reduce to: 

1 1

1 1

Pr[ '; | ] ( | ) ( '; ; ; ) / ( )

( | ) ( ; | '; ) ( '; ) / ( ).
k k j k k k k j k k

j k k k k k j k k j k

S l S l p S l p S l S l p

p S l p S l S l p S l p
− > − <

> − < −

= = = = = =

= = = = =

r r r r r

r r r r < r

p

r

 

(2.11) 

Again, exploiting the Markov property, we can simplify (2.11) to: 

1 1 1

1
{0,1}

Pr[ '; | ] ( '; ) ( ; | ') ( | ) / ( )

( ') ( ', ) ( ) / ( )

k k k j k k k k j k k

i
k k k

i

S l S l p S l p S l S l p S l p

l l l lα γ β

− − < − >

−
∈

= = = = = = =

= × ×∑
r r r r

r  

(2.12) 

1( ', ) ( ; ; | '), {0,1}.i
k k k k kwhere l l p b i S l S l iγ −= = = = ∈r           (2.13) 

Observe that 1( ')k lα −  is a probability measure for state  at stage  that depends only 

on the pre-observations . On the other hand, 

'l 1k −

j k<r ( )k lβ  is a probability measure for state  l
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at stage  that depends only on the post-observations . And finally,  is a 

probability measure connecting state  at stage 

k j k>r
{0,1}

( ', )i
k

i
l lγ

∈
∑

'l 1k −  to state l  at stage k , and it depends 

only on the present (kth) observation . kr

 

The ultimate goal is to calculate the a posteriori probabilities for the symbols , and not 

for the transitions. Fortunately, there is a simple easy to do that. Let 

kb

i
kB  denote the set of 

transitions  that are caused by the input bit 1 'kS l S− = → =k l ikb = . Then the a posteriori 

probability for the kth symbol is related to the a posteriori transition probabilities of (2.12) as: 

1
( ', )

1
( ', )

Pr[ | ] Pr[ ', | ]

1 ( ') ( ', ) ( ).
( )

i
k

i
k

k k k
l l B

i
k k k

l l B

b i S l S l

l l l l
p

α γ β

−
∈

−
∈

= = = =

=

∑

∑

r r

r

                (2.14) 

Following (2.12), we first derive the recursive formulae for calculating kα  

1

1
1' 0

1
1 1' 0

1
1 1' 0

1
1' 0

{0,1}

( ) ( ; )

( ; ; )

( ; '; ; )

( ; | '; ) ( '; )k

( ; | ') ( '; )

( ', ) ( ')

s

s

s

s

k k j k

k k j k

M
k k k j kl

M
k k k j k k jl

M
k k k k j kl

M i
k kl

i

l p S l

p S l

p S l S l

p S l S l P S l

p S l S l P S l

l l lγ α

< +

<

−
− <=

−
− < − <=

−
− − <=

−
−=

∈

= =

= =

= = =

= = = =

= = = =

=

∑
∑
∑
∑ ∑

r

r r

r r

r r

r r

r       (2.15) 

α

We next derive a similar recursion for kβ  as 

1 1 1

1

1
10

1
1 10

1
10

1

0
{0,1}

( ') ( | ')

( ; | ')

( ; ; | ')

( | ; ; ') ( ; |

( | ) ( ; | ')

( ) ( ', )

s

s

s

s

k j k k

j k k k

M
j k k k kl

M
j k k k k k k kl

M
j k k k k kl

M i
k kl

i

l p S l

p S l

p S l S l

')p S l S l p S l S l

p S l p S l S l

l l l

β

β γ

− > − −

> −

−
> −=

−
> −=

−
> −=

−

=
∈

= =

= =

= = =

= = = =

= = = =

=

∑
∑
∑
∑ ∑

r

r r

r r

r r r

r r

− =    (2.16) 
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According to (2.13) and Figure 2.2,  can be calculated as ( ', )i
k l lγ

1

1 1

( ', ) ( ; ; | '), {0,1}
( | ) ( | ; ') ( | ').

i
k k k k k

k k k k k k k

l l p b i S l S l i
p p S l S l p S l S l

γ −

− −

= = = = ∈
= = = =

r
r x x =

         (2.17) 

We can further express  as ( ', )i
k l lγ

2

0

( ', )
( ) exp( ) ( ', )( ', )

0

k k i
i k k
k

h P l l
p i fl l N

otherwise

γ

⎧ − −⎪⎪ ∈= ⎨
⎪
⎪⎩

r x
or l l B          (2.18) 

where ( )kp i  is a priori probability of kb i=  and  is the encoder-BPSK modulated 

output associated with the transition 

( ', )k l lx

1 'kS l S− k l= → =  and input . Note that (2.18) has 

been normalized due to the constant term of , and 

kb = i

( | )k kp r x z  is the Frobenius norm of z . 

 

2.5.2 Iterative decoding of DTC using MAP algorithm 

   Figure 2.3 depicts the block diagram of the distributed turbo decoder. The iterative 

decoding of distributed turbo code consists of two component decoders serially concatenated 

via an interleaver. The first MAP decoder takes as input the received information sequence 

 and the received parity sequence generated by the first encoder  from SD channel. 

The decoder then produces a soft output, which is interleaved and used to produce an 

improved estimate of the a priori probabilities of the information sequence for the second 

decoder. The other two inputs to the second MAP decoder are the interleaved received 

information sequence  from SD channel and the received parity sequence produced by 

the second encoder  from RD channel. The second MAP decoder also produces a soft 

output which is deinterleaved and used to improve the estimate of the a priori probabilities of 

the information sequence for the first decoder. 

s
SDy p

SDy

s
SDy

RDy
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Fig. 2.3 Block diagram of a distributed turbo decoder. 

   Except for (2.14) and (2.18), below are the extra operations conducted by the iterative 

decoding of DTC: 
2

,1 1
1', 0

0
1 2

,1 1
1', 0

0

*1
,

1
0

inf .

( ', )
( ') (1) exp( ) ( )

( ) log  (2.19)
( ', )

( ') (0)exp( ) ( )

4 Re{ }(1)log
(0)

s

s

k SD SD kM
k k kl l

k

k SD SD kM
k k kl l

s
SD SD k SDk

k

priori systematic par

h P l l
l p l

Nb
h P l l

l p l
N

P y hp
p N

α β

α β

−
−=

−
−=

− −

Λ =
− −

= −

∑

∑

SD

SD

y x

y x

2
1 ,

1', 0
0

2
1 ,

1', 0
0

( inf .)

( ( ', ))
( ') exp( ) ( )

log
( ( ', ))

( ') exp( ) ( )

s

s

p p
M SD k SD SD k

k kl l

p p
M SD k SD SD k

k kt l l

parity part extrinsic

y h P x l l
l l

N

y h P x l l
l l

N

α β

α β

−
−=

−
−=

− −

+
− −

∑

∑

  

 

22
1 , ,2

1', 0
0

2 22
1 , ,2

1', 0
0

2

( ( ', )) ( ( ', ))
( ') (1)exp( ) ( )

( ) log
( ( ', )) ( ( ', ))

( ') (0)exp( ) ( )

log

s

s

s s p
M SD k SD SD m RD m RD RD m

m m ml l

m s s p
M SD k SD SD m RD m RD RD m

m m ml l

m

y h P x l l y h P x l l
l p l

Nb
y h P x l l y h P x l l

l p l
N

p

α β

α β

−
−=

−
−=

− − − −

Λ =
− − − −

=

∑

∑
2

1 ,
* 1', 0

, 0
2 2

10 ,
1', 0inf .

0
(

( ( ', )
( ') exp( ) ( )

4 Re{ }(1) log
(0) ( ( ', )

( ') exp( ) ( )

s

s

p
M RD m RD RD m

s m ml l
SD SD k SD

p
Mm RD m RD RD m

m ml lpriori systematic part

parity part ex

y h P x l l
l l

P y h N
p N y h P x l l

l l
N

α β

α β

−
−=

−
−=

− −

− +
− −

∑

∑
inf .)trinsic

)

)

         

(2.20) 
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As that in Figure 2.3, the extrinsic LLRs of the first decoder pass through the interleaver, 

turning into priori LLRs of the second decoder. Similarly, the extrinsic LLRs of the second 

decoder pass through the de-interleaver, turning into priori LLRs of the first decoder. 

Iterations are then conducted with (2.19) and (2.20). Finally, DTC will make a hard decision 

on  based on . kb 1( )kbΛ

 

 15



Chapter 3 Soft information relaying 

   

3.1 Background of soft information relaying 
   User cooperation allows the nodes in a common network to leverage the resource, such as 

power, memory, and antennas, of their neighboring nodes to improve communication 

efficiency. This framework is particularly helpful for slow fading channel where time 

diversity is hard to achieve. A variety of DF schemes have been proposed, exploiting powerful 

channel codes, space-time codes and network codes. In demonstrating their substantial 

cooperative benefits, the prevailing assumption therein is that the source-relay channel is 

outage-free such that the relay can always retrieve the source packet correctly. However, 

practical wireless channels often experience fading, and DF schemes are therefore not 

operational all the time due to outage, causing the drastic performance degradation. 

Fortunately, AF can resolve this problem to some extent. However, an AF-relayed packet may 

have been badly corrupted in the source-relay transmission and further distorted in the 

relay-destination transmission, and therefore becomes too noisy to be of any use. 

 

In order to improve the degrading performance due to outage, several recent works 

developed a new forwarding strategy, called soft (information) relaying, to deal with the 

problem. With this strategy, the relay does not have to make decisions, it can calculate and 

forward the soft estimates of the transmitted symbols. In the following sections, we will 

specify how these soft relaying methods manage to combat inter-user outage, including 

Soft-DF (a DTC variant) in Section 3.2, decode-amplify-forward (DAF) in Section 3.3. Also 

included in Section 3.4 is a DF error-resilient algorithm (a DTC variant also). 
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3.2 Soft-DF (a DTC variant) 
   As mentioned in Chapter 2, the main advantage of AF over DF is that no hard decisions 

are made at the relay, and error propagation can be avoided. However, AF does not regenerate 

the signal, its performance will be inferior to that of DF if decisions are correct. This new 

Soft-DF technique keeps the advantages of both previous techniques, i.e. it regenerates 

soft-information signal. A relay using this technique first decodes its received signal, 

calculates soft information, interleaves and re-encodes it with a soft-input-soft-output (SISO) 

encoder. According to [9], it is reasonable to assume that this soft output value can be 

approximated as a BPSK signal plus AWGN noise. We will characterize this in detail later. 

 

Information
{bk}

RSC
encoder

BCJR
MAP Interleaver SISO

encoder

Turbo decoder

Source

Relay

Destination

Soft values

Soft value

Time phase 1

Time phase 2

Information
{bk}

RSC
encoder

BCJR
MAP Interleaver SISO

encoder

Turbo decoder

Source

Relay

Destination

Soft values

Soft value

Time phase 1

Time phase 2

 

Fig. 3.1 Block diagram of Soft-DF 

 

Figure 3.1 depicts the block diagram of the Soft-DF method. After encoding and BPSK 

modulation, the source broadcasts the signal to the relay and the destination. The BCJR MAP 

decoder at relay then calculates the a posteriori log-likelihood ratios { (  of the 

information sequence  using (2.19), and finally conducts soft encoding. Let  be the 

| )}k SRbΛ y

{ }kb { }kb
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interleaved version of  and calculate  { }kb

( 1|( | ) log
( 0 |

k S
k SR

k S

p rr
p r

)
)

R

R

=
Λ =

=
yy
y

                       (3.1) 

where  is the parity check bit of . The probability kr kb ( | ), {0,k SRp r i i 1}= ∈y  can be 

obtained by a two-direction recursive algorithm [4]. This gives slightly modified versions of 

the standard forward recursion ( )α •  and backward recursion ( )β •  of the MAP decoding 

algorithm (2.14) ~ (2.17). For an encoder with state  at time , we can write the 

following recursions where each term in the summations has to correspond to a combination 

of  satisfying the code constraints: 

( )s k k

{ ( 1), , , ( )}k ks k b r s k−

~ ( )
( ( )) ( ( 1)) ( | )k SR

s k
s k s k p bα α= −∑ y ,                     (3.2) 

~ ( 1)
( ( 1)) ( ( )) ( | )k SR

s k
s k s k p bβ β

−

− = ∑ y .                    (3.3) 

Then we compute 

~

( | ) ( ( 1)) ( ( )) ( | )
k

k SR k SR
r

P r s k s k p bα β= −∑y y .               (3.4) 

Note denotes the summation on all variables but 
~ z∑ z . 

 

According to [9], it is stated that, for an infinite-length or very long code with a soft 

message-passing decoder, if the LLRs at the input to the decoder are independent and 

identically Gaussian distributed, then the output LLRs from the decoder will follow an 

Gaussian distribution, approximately. The Gaussian assumption can be extended to the 

structure of Soft-DF. It is observed that the input to the soft MAP encoder is i.i.d. Gaussian 

distributed, and the output also follows a Gaussian distribution, approximately. Therefore, 

after power normalization, we can assume that this soft output LLRs can be modeled as BPSK 

signal plus AWGN noise with mean eqμ  and variance 2
eqσ , as depicted in Figure 3.2.  
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Fig. 3.2 Normalized LLRs’ distribution 

    

Now, all operations are the same as distributed turbo code except that original Rx  is 

replaced by 
2

( | )'
( | ) /

k SR
R

k SRk

r ( 1)eq eqx n
r N

μ−Λ
= =

Λ∑
y
y

± + . Note the minus is due to BPSK 

mapping (0 1&1→ -1).  At the destination, the second constituent decoder will see an 

equivalent fading channel with amplitude of 

→

RD eqh μ  , and an equivalent noise variance of 

2 2
02 RD RD eqh P Nσ +  for . Therefore, the calculation of LLRs in the second constituent 

decoder (2.20) will become: 

RDy

2
2

1 ,
1 2', 0 2*2

0,
2

0 ,
1inf .

( )

( ( ',
( ') exp( ) ( )

24 Re{ }(1)log log
(0) ( ( ',

( ') exp(

s

m

p
M RD k RD eq RD m

m ml ls
RD RD eqSD SD k SDm

p
m RD k RD eq RD m

mpriori systematic part

b

y h P x l l
l l

h P NP y hp
p N y h P x l l

l

μ
α β

σ

μ
α

−
−=

−

Λ =

− −

+
− +

− −

∑
))

))
2

1
2', 0 2

0

( inf .)

) ( )
2

sM
ml l

RD RD eq

parity part extrinsic

l
h P N

β
σ

−

= +
∑

(3.5) 

 

Note that the relay should estimate the mean eqμ  and variance 2
eqσ  correctly, sending to 

the destination as parts of the channel state information. This is essential a Gaussian Mixture 
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Estimation problem. We defer this to Chapter 4, where we propose to apply the 

maximum-likelihood parameter estimation method. 

 

3.3 Decode-amplify-forward (DAF) 
   It is well known that even without channel coding, a soft reliability value in the form of 

the log-likelihood ratio, referred to as channel-LLR, can be computed directly from the 

channel observation, i.e.: 

*

0

4 { (
( ) SR SR SRCH

SR

P Re h y i
l i

N
−

=
)}

.                      (3.6) 

Comparing (2.5) and (3.6), it becomes clear that scaling of channel observations is equivalent 

to scaling of their channel-LLRs. Hence, in the AF mode, the relay essentially amplifies 

(scales) and forwarded soft reliability information. Since the reliability information here is 

extracted directly from the channel and it is coarse in nature. Exploiting the channel code in 

the source-packet (assume there is one), we can enhance the reliability. This is the rational 

behind decode-amplify-forward, in which the relay soft decodes the received packet (instead 

of making binary hard decisions), i.e., calculate the LLRs of information bits referred to as 

decoder-LLR, amplifies (scales) and forwards the LLRs to the destination. This simple 

extension, i.e., forwarding decoder-LLRs in lieu of hard decisions or channel-LLRs, enables 

DAF to be operational, and at the same time exploiting the coding gain, in the entire 

source-relay SNR region. 

    

   Mathematically, the signal retransmitted at the relay with DAF can be formulated as  

( )( )
DEC
SR

R
y

l ix i
P

=  i = 1,2,3,…,N,                      (3.7) 

where N is the length of the codeword (source-packet),  is the decoder-LLR at the ( )DEC
SRl i
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relay, and yP  is the average power of  given by ( )DEC
SRl i

2

1
( ( ))

N
DEC
SR

j
y

l i
P

N
==
∑

                           (3.8) 

 

According to the Gaussian assumption in the previous section, this soft output values can 

be approximated as BPSK signal plus AWGN noise. With power normalization, the signals 

retransmitted at the relay, ( )Rx i , may be considered as signals having a mean value l Sxμ  

and being distorted by the Gaussian noise  with variance ln 2
lσ : 

( )( ) ( ) ( )
DEC
SR

R l S
y

l i
lx i x i

P
μ= = + n i .                      (3.9) 

 

For simplicity, let’s combine the source-relay channel and the soft-decoder at the relay as 

a virtual block fading channel, whose effective SNR (measured by normalized decoder-LLRs) 

is  
2

22
l

l
l

μγ
σ

= .                              (3.10) 

Since decoder-LLRs provide more information than channel-LLRs, the effective SNR of the 

virtual channel is larger than the real SNR of the source-relay channel. Hence, viewed from 

the destination, DAF is like an AF strategy operating on an enhanced source-relay channel. 

The destination can then combine the signals originated from the source and forwarded by the 

relay similar to conventional AF. 

 

The relay signals arriving at the destination are: 

( ) ( ( ) ( )) ( )RD RD RD l S l RDy i P h x i n i n iμ= + + ,                 (3.11) 

whose channel-LLRs, corresponding to the cascade of the virtual source-relay channel and the 
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relay-destination channel, can be computed from below 

*

2 2
0

4 {
( )

2
SD l RD RDCH

RD
RD RD l

P Re h y i
l i

h P N

μ

σ

−
=

+

( )}
.                   (3.12) 

The optimal signal combining at the destination is therefore: 

* *

2 2
0 0

4 { ( )} 4 { (
( ) ( ) ( )

2
SD SD SD SD l RD RDCH CH

DAF SD RD
RD RD l

P Re h y i P Re h y i
l i l i l i

N h P N

μ

σ

− −
= + = +

+

)}
.   (3.13) 

 

Now, we investigate the rationale behind DAF scheme. To see how much gain DAF 

obtained over AF by processing codes at the relay, we first examine the mutual information 

between the signal transmitted by the source and the signal forwarded by the relay. According 

to [5], Figure 3.3 below illustrates the mutual information of the AF and DAF assuming that 

SR link is protected using recursive systematic convolutional (RSC) code. 

 

-5 0 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR of SR channel (dB)

M
ut

ua
l i

nf
or

m
at

io
n 

(b
it)

AF
DAF

 

Fig. 3.3 Mutual information between the signal transmitted by the source and the signal forwarded by the relay 
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   Then, according to the analysis of achievable rate in [6] and Figure 3.4 below, several 

findings can be observed from here. (1) AF outperforms DF (either repetition or DTC) at low 

source-relay SNRs, but DF quickly catches up and surpasses AF at high source-relay SNRs. 

(2) Both repetition-DF and DTC start out with a flat capacity curve that is irrelevant to the 

source-relay SNR. This corresponds to non-cooperation transit mode due to inter-user-outage. 

The coding gain of DTC becomes obvious at rather high source-relay SNRs. (3) DAF is most 

advantageous at the low source-relay SNR regime. (4) DTC-DAF extracting and combining 

the best features, offers a capacity that is the maximum of all others. 

 

 

Fig. 3.4 Achievable rate of a symmetric AWGN relay channel 
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Fig. 3.5 Hybrid DTC-DAF 

    

Figure 3.5 depictes a hybrid DTC-DAF scheme. In this scheme, the relay switches to DAF 

when the CRC check fails, and to distributed turbo code (DTC) otherwise. It helps to resolve 

the degrading performance of practical DTC due to non-cooperative transit mode in case of 

inter-user outage.  

 

3.4 DTC resilient to relay errors (a DTC variant) 
   In the conventional DF-based strategy, a relay cooperates only when it can decode 

correctly the signal transmitted from the source. However, this method [10] here presents an 

alternative DF-based strategy by which the receiver at destination manages to take advantage 

of forwarded signal even when relay decoding has errors. The method modifies the decoding 

algorithm at the destination so as to take into account decoding errors at the relay. This 

prevents the occurrence of non-cooperative transit mode due to inter-user outage and 

increases the level of cooperation. 
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Fig. 3.6 DTC resilient to relay errors 

 

   Figure 3.6 shows the block diagram of the DTC resilient to relay errors. Similar to the 

original DTC, the relay decodes the signal , obtains hard decisions  and checks if errors 

occur by means of CRC. Unlike in original DTC, the signal is forwarded whether it contains 

errors or not. But the relay also transmits to the destination some side information related to 

the source-relay channel: if errors occur, it transmits the instantaneous SNR of the 

source-relay channel, so that the destination can determine the corresponding average error 

rate 

y u'

ep ; otherwise, it transmit a signal declaring a error-free decoding at the relay. 

 

   At the destination, we will find the optimal estimates of the information bits with the 

maximum-a-posteriori (MAP) criterion. For each bit , the estimate  is defined as 

follows: 

ku ˆku

0,1
ˆ arg max ( | , ).

k
k ku

u p u
=

r r'                         (3.14) 

If no decoding errors occur at the relay, the decoding algorithm is surely the standard 

distributed turbo decoding (DTC) algorithm as that in Section 2.5.2; otherwise it needs to be 

modified. The differences between the modified and the standard DTC decoding algorithms 

can be easily observed with a factor graph framework. We first factorize the a posteriori 

probability function in (3.14), then draw the corresponding graph, and finally apply the 
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message-passing algorithm to it. 

 

   The a posteriori probability  is the marginal function of the a posteriori 

probability of the whole sequence , and the maximum-a-posteriori (MAP) is 

equivalent to the maximum-likelihood (ML) due to the equal prior of the sequences: 

( | , )kp u r r'

( | , )p u r r'

0,1 ~{ }

0,1 ~{ }

ˆ arg max ( | , )

arg max ( , | ),

k
k

k
k

k u u

u u

u p

p

=

=

=

=

∑

∑

u r r'

r r' u
                     (3.15) 

where here is the sum over all bits of  except . We can express the dependence 

between  and  explicitly, and then factorize the likelihood function due to 

independence of  and : 

~{ }ku∑ u ku

u u'

( | )p r u ( | )p r' u'

0,1 ~{ }

0,1 ~{ }

ˆ arg max ( , | , ) ( | )

arg max ( | ) ( | ) ( | ),

k
k

k
k

k u u

u u

u p p

p p p

=

=

=

=

∑

∑

r r' u u' u' u

r u r' u' u' u
                (3.16) 

where  here is the sum over all bits of  and  except . The factor  

reflects the uncertainty of  and is responsible for the differences with the modified and 

standard DTC decoding algorithm. In (3.16), the first two factors relate to the decoding results 

of two convolutional decoders, and the third relates to the information exchange between 

them. The exact description of the factor  would require an error model in the 

sequence , resulting from its coded transmission through the source-relay channel. A 

simple yet clearly suboptimal assumption is to consider the errors as independent, neglecting 

the correlation between the errors at the output of the convolutional decoder. This assumption 

is given as follows: 

~{ }ku∑ u u' ku ( | )p u' u

u'

( | )p u' u

u'

'( | ) ( | ),k k
k

p p u= u∏u' u                         (3.17) 

where  is considered as constant for all . It takes values described as follows: '( | )k kp u u k
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'
'

'

1
( | ) ,e k k

k k
e k k

p if u u
p u u

p if u u
⎧ − =

= ⎨
≠⎩

                   (3.18) 

where ep  is the average decoding error rate at the relay, depending on the instantaneous 

SNR of the source-relay channel. 

 

Given the factorizations (3.16) and (3.17), a factor graph is drawn in Figure 3.7. From this 

factor graph, we can derive the modified algorithm straightforwardly. The information 

messages sent by a constituent decoder are modified before they reach the other decoder, 

according to the following update equations: 

'

' ' '

0,1

' ' '

0,1

( ) ( | ) ( )

( ) ( | ) ( )
k

k

k k k k k k
u

k k k k k k
u

u p u u

u p u u

μ μ u

uν ν
=

=

=

=

∑

∑
                     (3.19) 

for all . This achieves the translation of information available on  to information on  

and conversely. The other difference of the modified turbo-decoding algorithm is that the 

second constituent decoder operates on  instead of u. 

k ku '
ku

u'

 

 

Fig. 3.7 The factor graph of iterative decoding of DTC resilient to relay errors 
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Some insight on the behavior of the algorithm can be gained by analyzing the exchanges of 

messages between the two constituent decoders. These exchanges are limited by the 

transformation (3.19) because their outputs always satisfy 

                 
' '( ) 1
( ) 1 ,

k k e

k k e

u
u p

μ p
ν

≤ −

≤ −
                          (3.20) 

which is a straightforward consequence of (3.19) since (0) (1) 1k kμ μ+ =  and 

' '(0) (1) 1k kν ν+ = . This reflects that even the certitude on the value of the bit  only enables 

us to determine the value of the bit  with a probability 1

'
ku

ku ep− , since there is still a 

probability ep  that these two bits differ. No more improvements are possible when the 

bounds (3.20) are reached. However, further performance improvements are possible if we do 

not use the assumption (3.17) and thus its consequence (3.19) and (3.20). The analysis of the 

exchange of information during the decoding process explains how the probability of error on 

the source-relay channel may limit the performance at the destination. 
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Chapter 4 Expectation maximization algorithm 

 

   In this chapter, we specify the maximum-likelihood parameter estimation problem and 

how Expectation-Maximization (EM) can be used for its solution. We first describe the 

maximum-likelihood parameter estimation problem, then give the introduction of the EM 

algorithm, and finally develop the EM parameter estimation procedure for finding the 

parameters of a Gaussian mixture. 

 

4.1 Maximum-likelihood estimation 
   Recall the definition of the maximum-likelihood estimation problem. We have a density 

function  that is governed by the set of parameters . We also have a data set of 

size , supposedly drawn from this distribution, i.e., 

( | )p x Θ Θ

N { }1,..., Nx x=X . That is, we assume 

that these data are independent and identically distributed (i.i.d.) with distribution p . 

Therefore, the resulting density for the samples is  

1

( | ) ( | )
N

i
i

p p
=

=∏X Θ x Θ .                          (4.1) 

This function is called the likelihood of the parameters given the data. The likelihood is 

thought of as a function of the parameters  where the data  is fixed. In the maximum 

likelihood problem, our goal is to find the  that maximizes (4.1). That is, we wish to find 

 where  

Θ X

Θ

optΘ

arg max ( | )opt p=
Θ

Θ X Θ .                        (4.2) 

Often we maximize  instead of  because it is analytically easier. log( ( | ))p X Θ ( | )p x Θ

 

   Depending on the form of , this problem can be easy or difficult. For example, if ( | )p x Θ
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( | )p x Θ  is simply a single Gaussian distribution where 2( , )μ σ=Θ , then we can set the 

derivative of l  to zero, and solve directly for og( ( | ))p X Θ μ  and 2σ  (this, in effect, 

results in the standard formulas for the mean and variance of a data set). For many problems, 

however, it is not possible to find such analytical expressions, and we must resort to more 

elaborate techniques. 

 

4.2 Basic expectation-maximization estimation 
   The EM algorithm is one such elaborate technique. The EM algorithm is a general method 

for finding the maximum-likelihood estimate of the parameters of an underlying distribution 

from a given data set when the data is incomplete or has missing values. There are two main 

applications of the EM algorithm. The first occurs when the data indeed has missing values, 

due to problems with or limitations of the observed process. The second occurs when 

optimizing the likelihood function is analytically intractable but when the likelihood function 

can be simplified by assuming the existence of additional but missing (or hidden) parameters. 

The latter application is the solution to what we have encountered in the previous chapter. 

 

   As before, we assume that data  is observed and is generated by some distribution. We 

call  the incomplete data. We assume that a complete data set exists  and also 

specify a jointly density function: 

X

X ( , )=Z X Y

( | ) ( , | ) ( | , ) ( |p z p x y p y x p x )= =Θ Θ Θ Θ .                 (4.3) 

Where does this jointly density come from? Often it arises from the marginal density function 

 and the assumption of hidden variable and parameter value guesses. ( | )p x Θ

 

   With this new density function, we can define a new likelihood function , ( , | )p X Y Θ
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called the complete-data likelihood. Note that this function is in fact a random variable since 

the missing information  is unknown, random, and presumably governed by an underlying 

distribution. That is, we can think of 

Y

,( , | ) ( )p h= X ΘX Y Θ Y  for some function , ( )h ⋅X Θ  

where  and  are constant and  is a random variable. The original likelihood 

 is referred to as the incomplete-data likelihood function. 

X Θ Y

( | )p X Θ

 

   The EM algorithm first finds the expected value of the complete-data log-likelihood 

 with respect to the unknown data  given the observed data  and the 

current parameter estimates. That is, we define: 

log ( , | )p X Y Θ Y X

( 1) ( 1)( , ) [log ( , | ) | , ]iQ E p− =Θ Θ X Y Θ X Θ i− ,                 (4.4) 

where  are the current parameters estimates that we used to evaluate the expectation 

and  are the new parameters that we optimize to increase . The expression (4.4) 

probably requires some explanation. The key thing to understand is that  and 

( 1)i−Θ

Θ Q

X ( 1)i−Θ  are 

constants,  is a normal variable that we wish to adjust, and  is a random variable 

governed by the distribution . The righthand side of (4.4) can therefore be 

re-written as: 

Θ Y

( 1)( | , )if −y X Θ

( 1) ( 1)[log ( , | ) | , ] log ( , | ) ( | , )i iE p p f− −

∈ϒ
= ∫yX Y Θ X Θ X y Θ y X Θ yd .        (4.5) 

Note that  is the marginal distribution of the unobserved data and is dependent 

on both the observed data  and on the current parameters 

( 1)( | , )if −y X Θ

X ( 1)i−Θ , and  is the space of 

values  can take on. In the best of the cases, this marginal distribution is a simple 

analytical expression of the assumed parameters 

ϒ

Y

( 1)i−Θ  and perhaps the data. In the worst of 

the cases, this density might be very hard to obtain. The evaluation of this expectation is 

called the E-step of the algorithm. 
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The second step (the M-step) of the EM algorithm is to maximize the expectation we 

computed in the first step. That is, we find: 

( ) ( 1)arg max ( , )i Q −=
Θ

Θ Θ iΘ .                       (4.6) 

These two steps are then iterated. Each iteration is guaranteed to increase the log-likelihood 

and the algorithm is guaranteed to converge to a local maximum of the likelihood function. 

There are many works regarding the convergence problem, but we will not discuss them here. 

As presented above, it is not clear how exactly to code up the algorithm. The details of the 

steps required to compute the given quantities are strongly dependent on the particular 

application. 

 

4.3 Gaussian mixture identification via EM algorithm 
   The mixture-density parameter estimation problem is probably one of the most widely 

used applications of the EM algorithm in the computational pattern recognition community. In 

this case, we assume the following probabilistic model: 

1
( | ) ( | )

M

i i i
i

p x p xα θ
=

=∑Θ ,                          (4.7) 

where the parameters are 1 1{ ,..., , ,..., }M Mα α θ θ=Θ  such that 
1

1M
ii

α
=

=∑  and ip  is a 

density function parameterized by iθ . In other words, we assume that we have M  

component densities mixed together with M  mixing coefficients iα . 

 

   The incomplete-data log-likelihood expression for this density from the data  is given 

by: 

X

1 11

log( ( | )) log ( | ) log( ( | ))
N N M

i j j
i ji

p p x p i jxα θ
= ==

= =∑ ∑∏X Θ Θ ,          (4.8) 

which is difficult to maximize because it is highly nonlinear. If we consider  as incomplete, X
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however, and posit the existence of unobserved data item  whose values 

indicating which component density generated each data item, the likelihood expression can 

be significantly simplified. Assume that 

1{ }N
i iy ==Y

1,...,iy M∈  for each , and  if the  

sample was generated by the  mixture component. If we know the values of , the 

likelihood becomes: 

i iy k= thi

thk Y

1 1
log( ( , | )) log( ( | ) ( )) log( ( | ))

i i i

N N

i i i y y i y
i i

p p x y p y pα θ
= =

= =∑ ∑X Y Θ x          (4.9) 

which is a particular form of the component densities, and can be easily optimized using a 

variety of techniques. The problem, of course, is that we do not know the values of . If we 

assume  is a random vector, however, we can proceed. 

Y

Y

 

   We first must derive an expression for the distribution of the unobserved data. Let’s first 

guess that 1 1{ ,..., , ,..., }g g g g g
M Mα α θ θ=Θ . Given gΘ , we can easily compute ( | )g

j i jp x θ  for 

each  and . In addition, the mixing parameters, i j jα  can be thought of as prior 

probabilities of each mixture component, that is (j p component j)α = . Therefore, using 

Bayes’s rule, we can compute: 

1

( | ) ( | )
( | , )

( | ) ( | )
i i i i i i

g g g g
y y i y y y i yg

i i Mg g g
i k k i kk

p x p x
p y x

p x p x

α θ α θ
θ α θ

=

= =
∑

Θ              (4.10) 

and 

1

( | , ) ( | , )
N

g g
i i

i

p p y
=

=∏y X Θ x Θ                      (4.11) 

where  is the unobserved data drawn independently.  1( ,..., )Ny y=y

 

When we now look at (4.5), we see that we have obtained the desired marginal density by 

assuming the existence of the hidden variables and making a guess for the initial parameters 
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of their distribution. In this case, (4.4) takes the form: 

1 2

1 2

1 1

1 1 1 1 1

,
1 1 1 1 1

( , ) log( ( , | ) ( | , )

log( ( | )) ( | , )

... log( ( | )) ( | , )

... log( ( | )) ( |

i i i

i i i

N

i

N

g g

NN
g

y y i y j j
i j

NM M M N
g

y y i y j j
y y y i j

M M M N M

l y l l i l j j
y y y i l

Q p p

p x p y x

p x p y x

p x p y x

α θ

α θ

δ α θ

∈ϒ

∈ϒ = =

= = = = =

= = = = =

=

=

=

=

∑

∑∑ ∏

∑ ∑ ∑ ∑ ∏

∑ ∑ ∑ ∑ ∑

y

y

Θ Θ X y Θ y X Θ

Θ

Θ

1 2

1

,
1 1 1 1 1 1

, )

log( ( | )) ... ( | , ).
i

N

N
g

j

NM N M M M
g

l l i l l y j j
l i y y y j

p x p y xα θ δ

=

= = = = = =

=

∏

∑ ∑ ∑ ∑ ∑ ∏

Θ

Θ

    (4.12) 

In this form, ( , )gQ Θ Θ  looks fairly daunting, yet it can be greatly simplified. We first note 

that for  1,..., ,l M∈

1 2

1 1 1

,
1 1 1 1

1 1 1 1 1,

11,

... ( | , )

... ... ( | , ) ( | , )

( | , ) ( | , ) ( | , )

i

N

i i N

j

NM M M
g

l y j j
y y y j

NM M M M
g g

j j i
y y y y j j i

N M
g g g

j j i i
yj j i

p y x

p y x p l x

p y x p l x p l x

δ

− +

= = = =

= = = = = ≠

== ≠

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑ ∑ ∏

∑ ∑ ∑ ∑ ∏

∑∏

Θ

Θ

Θ Θ Θ

Θ           (4.13) 

since . Using (4.13), we can write (4.12) as: 
1

( | , ) 1M g
ji

p i x
=

=∑ Θ

1 1

1 1 1 1

( , ) log( ( | )) ( | , )

log( ) ( | , ) log( ( | )) ( | , ).

M N
g g

l l i l i
l i
M N M N

g g
l i l i l i

l i l i

Q p x p l x

p l x p x p l x

α θ

α θ

= =

= = = =

=

= +

∑ ∑

∑ ∑ ∑ ∑

Θ Θ Θ

Θ Θ
  (4.14) 

To maximize this expression, we can maximize the term containing lα  and the term 

containing lθ  independently since they are not related. 

 

To find the expression for lα , we introduce the Lagrange multiplier λ  with the 

constraint that , and solve the following equation: 1ll
α =∑
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1 1

[ log( ) ( | , ) ( 1)] 0
M N

g
l i ll

l il

p l xα λ α
α = =

∂
+ − =

∂ ∑ ∑ ∑Θ             (4.15) 

or 

1

1 ( | , ) 0
N

g
i

i l

p l x λ
α=

+ =∑ Θ                         (4.16) 

Summing both sides over , we get that l Nλ = − . We then have 

1

1 ( | , )
N

g
l

i
p l x

N
α

=

= ∑ Θi .                         (4.17) 

For some distributions, it is possible to get an analytical expression for lθ . For our 

application here, the distribution is a mixture of two one-dimensional Gaussian distributions 

with mean 1 2μ μ= −  and variance 2
1

2
2σ σ= , as shown below: 

2

2
( )

22

2

1( | , )
2

l

l

x

l l l

l

p x e
μ
σμ σ

πσ

−
−

=  , {1,2}l∈ .                (4.18) 

Taking the log of (4.18), ignoring constant terms, and substituting the result into the right side 

of (4.14), we get: 

1 1

2
2

2
1 1

log( ( | )) ( | , )

( )1 log( ) ( | , )
2 2

M N
g

l i l i
l i

M N
gi l

l i
l i l

p x p l x

x p l x

θ

μσ
σ

= =

= =

⎛ ⎞−
= − −⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑

Θ

Θ
              (4.19) 

Taking the derivative of (4.19) with respect to lμ  and setting it equal to zero, we get: 

2
1

( ) ( | , ) 0
N

gi l
i

i l

x p l xμ
σ=

−
=∑ Θ .                     (4.20) 

with which we can easily solve for lμ  as : 

1

1

( | , )

( | , )

N g
i ii

l N g
ii

x p l x

p l x
μ =

=

= ∑
∑

Θ

Θ
.                       (4.21) 

With the means estimated, we could also derive the variance estimate. To find 2
lσ , note that 

we can rewrite (4.19) as: 
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2
2 1

2
1 1 1

( )1 log( ) ( | , ) ( | , )
2 2

M N N
g gi l

l i i
l i i l

xp l x p l xμσ
σ

−

= = =

⎛ ⎞−
−⎜ ⎟

⎝ ⎠
∑ ∑ ∑Θ Θ          (4.22) 

Taking derivative of (4.22) with respect to 2 1( )lσ
−  and setting it equal to zero, we get: 

2
2

1 1

( )1 ( | , ) ( | , ) 0
2 2

N N
g i l

l i i
i i

xp l x p l xμσ
= =

− g− =∑ ∑Θ Θ              (4.23) 

with which we can also easily solve for 2
lσ  to obtain: 

2

2 1

1

( ) ( | ,

( | , )

N

)g
i l i

i
l N

g
i

i

x p l x

p l x

μ
σ =

=

−
=
∑

∑

Θ

Θ
                     (4.24) 

    

A complete EM process for a Gaussian mixture identification is derived. The E-step first 

finds the expected value of the complete-data log-likelihood. The M-step obtains the new 

estimates by maximizing the expectation we computed in the E-step. It has been shown that 

each iteration is guaranteed to increase the log-likelihood and the algorithm is guaranteed to 

converge to a local maximum of the likelihood function. Since the global maximum is not 

guaranteed for the EM method, we have to choose the initial values carefully.  

 

In summary, we can have the estimates of the new parameters in terms of the old 

parameters as: 

1

1 ( | , )
N

new g
l i

i
p l x

N
α

=

= ∑ Θ ; 1

1

( | , )

( | , )

N g
i inew i

l N g
ii

x p l x

p l x
μ =

=

= ∑
∑

Θ

Θ
; 

2

2 1

1

( ) ( | ,

( | , )

N
new g

i l i
new i

l N
g

i
i

x p l x

p l x

μ
σ =

=

−
=
∑

∑

Θ

Θ

)
. 

(4.25) 

Note that the above equations perform both the expectation step and the maximization step 

simultaneously. The algorithm proceeds by using the newly derived parameters as the guess 

for the next iteration. 
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Chapter 5 Simulation results 

 

   In this chapter, we report simulation results to evaluate the performance of various 

forwarding strategies, including AF, repetition-DF, DAF, DTC, DTC-DAF, DTC resilient to 

relay errors (hereafter, abbreviated as DTC-R), and Soft-DF under different channel 

conditions. The system model is what we have described in Section 2.2.  

 

For the distributed turbo code, we employ the most referred turbo code describe in [17], a 

code with rate-1/2 eight-state constituent codes and the generator polynomials G(1,17/13)oct. 

The overall code rate is 1/3. A source data block has N = 992 bits. And the cooperative ratio is 

33%. To have fair comparisons, all forwarding strategies have the same constituent codes and 

cooperative ratio except for non-cooperation (NC) scenario and outage mode for DTC-R. The 

baseline for all comparisons is a non-cooperative RSC coded system. In AF and DAF, the 

relay will forward the normalized channel-LLRs and decoder-LLRs of the systematic bits, 

respectively, forming a “distributed RSC-repetition” code. In repetition-DF, the relay will 

forward the systematic bits only when CRC passes. For DTC and DTC-R, the relay will, upon 

correct retrieval of the systematic bits, scramble and re-encode them using the same code, and 

forward the new set of parity bits to the destination, thus completing a distributed turbo code 

(two iterations at destination). Instead, Soft-DF relay forwards the parity bits’ LLRs computed 

using the non-recursive convolutional soft-encoder with generator polynomials G(3)oct [4]. 

 

   Figure 5.1 depicts the two different scenarios of Rayleigh fading channel under which we 

evaluate the performance of the various forwarding strategies. In Figure 5.1(a), we fix the 

SNR in two user channels SD & RD and evaluate the system performance for different SR 

SNRs. In Figure 5.1(b), we equate the SNR in three channels and evaluate the system 
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performance for different SNRs. We call the former as Scenario 1 and the latter as Scenario 2.  

 
Fig. 5.1 Two different scenarios for the three-terminal network 

 

   In Section 5.1, we first evaluate the performance of DAF (dichotomy method or EM 

algorithm) and the SNR enhancement at the DAF relay. In Section 5.2, we then evaluate the 

performance of various forwarding strategies under the condition of Figure 5.1(a). Similarly, 

Section 5.3 is for Figure 5.1(b). 

 

5.1 Performance of DAF 
   In this section, we show that the EM algorithm can indeed enhance the performance of 

DAF scheme especially under the low SNR regime. We compare two methods to identify the 

Gaussian mixture of a DAF relay. The first one is the dichotomy method, separating LLRs 

into two clusters by zero and regarding each cluster as a single Gaussian. It uses a rather 

simple scheme for the estimation of LLR statistics. The second one is the EM algorithm. They 

are hereafter abbreviated as DAF-D and DAF-EM. Figure 5.2 shows the simulation result in 

terms of the block error rate, comparing AF, DAF-D, and DAF-EM. As shown in this figure, 

DAF-EM has approximately 1 dB gain compared with DAF-D under low SNRs regime. 

Figure 5.3 shows the simulation result in terms of the bit error rate. We can also observe 1 dB 
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gain under the low SNR regime. This means that a better estimation of the means and 

variances of Gaussian mixtures indeed increases the possibility of correctly retrieving the 

information. As can be seen from (4.25), the computational complexity of the EM algorithm 

is low. The reason why EM algorithm does not work for high SNRs regime is because two 

Gaussian densities will be less probable to mix together as shown in Figure 3.2, making the 

distribution identification scheme in DAF-D work well. 
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Fig. 5.2 DAF block error rate comparison 

 

   As mentioned in Section 3.3, DAF is like an AF strategy operating on an enhanced 

source-relay channel. Thus, the effective SNR of the virtual channel should be larger than the 

real SNR of the source-relay channel. This is what we observe in Figure 5.4. We can see that 

the output SNR is about eight times larger than the input SNR at the DAF relay. This 

enhancement is made possible by the soft decoder at the relay, i.e. the decoding gain. 
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Fig. 5.3 DAF bit error rate comparison 
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Fig. 5.4 Input-output SNRs of DAF relay 
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5.2 Performance comparison for Scenario 1 
   In this section, we compare the block error rate and bit error rate of various forwarding 

strategies under the conditions depicted in Figure 5.1(a). Just as what we have commented on 

the achievable rate of a symmetric relay channel in Figure 3.4, Figure 5.5 confirms that DAF 

is most advantageous at the low SR SNRs regime. DAF performs close to repetition-DF at 

high SNRs. With increasing SR SNR, DTC will surpass DAF quickly, reaching a lower error 

floor. And Figure 5.6 further shows that DTC-DAF offers a superior performance from low to 

high SNRs regime. DTC-R has a better BLER than DTC at low SNRs regime.  

 

Also we can see that Soft-DF does not perform well. There are some reasons behind this. 

As mentioned before, the Soft-DF scheme instructs the relay to perform not only 

soft-decoding, but also SISO-encoding at all times. Despite the refreshing idea of 

SISO-encoding and the possibility to exploit distributed coding in all channel conditions, 

Soft-DF may not provide real advantages. First, when the hard decisions at the relay are 

correct (i.e. signs are correct), the most efficient way is to transmit the hard decisions. 

Attempting to further process and transmit LLRs, such as SISO-encoding in Soft-DF, is not 

only expensive but also inefficient. Second, when the hard decisions are not all correct, to 

further encode the unreliable soft information using a channel code is not a good idea either. 

This might cause severe error propagation. An impact related to error propagation is that 

SISO-encoding actually makes the worst case even worse, which is not desirable since 

communication is about rare events (error events are rare) and the worst case tends to 

dominate the performance.  
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Fig. 5.5 Block error rate of AF, DF (rep.), DAF and DTC under Scenario 1 
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Fig. 5.6 Block error rate of Soft-DF, DTC-R, DTC and DTC-DAF under Scenario 1 
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Figure 5.7 and Figure 5.8 instead show the bit error rate of these forwarding strategies. 
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Fig. 5.7 Bit error rate of AF, DF (rep.), DAF-EM and DTC under Scenario 1 
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Fig. 5.8 Bit error rate of Soft-DF, DTC-R, DTC and DTC-DAF under Scenario 1 
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5.3 Performance comparison for Scenario 2 
   Similarly, in this section, we compare the block error rate of various forwarding strategies 

under the condition in Figure 5.1(b). Figure 5.9 shows the performance comparison for AF, 

repetition-DF, and the non-cooperation scheme. As we can see, there are 12~13 dB gains at 

the block error rate of 10-3 due to cooperative diversity. 
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Fig. 5.9 Block error rate of AF and repetition-DF and non-cooperation under Scenario 2 

 

   Figure 5.10 shows that DAF performs close to repetition-DF in terms of the block error 

rate. And DTC has a gain at least 0.7 dB over them. Further, as can be seen in Figure 5.11, 

Soft-DF performs worse about 0.8 dB than DTC. The rationale behind this has been described 

in the previous section. Moreover, we can still observe a gain up to 0.5 dB of DTC-DAF 

scheme over DTC scheme. The performance of DTC-R is very close to that of DTC except 

for a 0.2 dB gain over low SNRs regime. 
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Fig. 5.10 Block error rate of AF, DF (rep.), DAF, DTC and two perfect schemes under Scenario 2 

 

0 2 4 6 8 10 12 14 16 18
10-4

10-3

10-2

10-1

100

SNR of SD = RD =SR

B
lo

ck
 e

rro
r r

at
e

Block error rate comparison

AF
Soft-DF
DTC-R
DTC
DTC-DAF

 

Fig. 5.11 Block error rate of AF, Soft-DF, DTC-R, DTC and DTC-DAF under Scenario 2 
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Chapter 6 Conclusions 

 

In this thesis, we study the distributed turbo coding (DTC) and related schemes. It has 

been shown that DTC can approach the capacity of a wireless relay network. Practical DTC 

has to switch to non-cooperative transit mode should inter-user outage occur, since erroneous 

bits, if (re-encode and) forwarded to the destination, will mislead the destination and cause 

severe error propagation. This non-cooperative transit mode degrades the performance. A 

forwarding strategy termed DAF is then developed to solve the problem. DAF is not only 

superior, but also more computationally efficient. However, DAF requires the relay to have 

the LLR distribution, typically modeled as a Gaussian mixture. In this thesis, we propose to 

use the EM algorithm for the identification of the Gaussian mixture. Simulations show that 

the EM algorithm can help DAF to retrieve the information more correctly, without adding 

too much processing complexity at the relay. Further, DAF can be combined with DTC 

resulting in a DTC-DAF scheme. It is shown that DTC-DAF can have the best performance 

among DTC related schemes we studied. 

 

   In concluding the work, we outline some possible topics for further research. First, our 

simulation results here are obtained with BPSK mapping. In order to increase the bandwidth 

efficiency, higher-order QAM mapping should be employed. This comes out with a problem 

of soft information relaying, i.e. how to map soft bits onto a point in the complex plane. There 

are few works [15] ~ [16] focusing on this soft mapping problem. However, their actual 

performance needs further investigation. Second, as shown in Figure 5.10, DAF with perfect 

RD can have superior performance, encouraging the attempts to transmit LLRs from the relay 

to the destination. This might be done through the compress-forward (CF) structure, but 

practical CF schemes come far lagging behind the theory [8] [11]. 
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