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在高速下行封包擷取系統中 

採用乏晰 Q-Learning 技術之混合自動重傳機制 

研究生：黃巧瑩                指導教授：張仲儒 博士 

國立交通大學電信工程學系碩士班 

摘    要 
mimi 1  

第三代合作夥伴計畫（3rd generation partnership project, 3GPP）在現有的第

三代通訊系統下，提出了一種高速下行封包擷取技術（high speed downlink packet 

access, HSDPA）來提供更高速且安全的下鏈路資料封包傳送。HSDPA 採取混合

自動重傳機制（hybrid automatic retransmission request, HARQ）程序，它有一個

重要的服務品質要求：在根據通道狀況決定原始傳送的 MCS 時，必須使其封包

錯誤率小於 0.1。針對這個課題，我們在本篇論文裡利用乏晰 Q 學習演算法來實

現高速下行封包擷取技術之混合自動重傳機制（FQL based HARQ）。在同時考

慮了通道動態調節以及重傳程序的交互影響的情況下，我們將 HARQ 程序模擬

為離散時間馬可夫決策過程（Markov decision process, MDP），經由乏晰系統規

則的設計，來實現 BLER 的服務品質需求，同時利用 Q 學習法，不斷的學習每

一種 MCS 在不同的系統環境下之輸出表現，並修正乏晰系統規則。在學習收斂

後，我們期望可以達到正確的選擇不違反 QoS 需求同時又能達到最高系統輸出

的傳送方式之目的。由模擬結果可以看到，我們所提出的機制可以在有通道訊息

延遲的情況下，對不同的行動用戶通道環境來選擇適當的 MCS，既可滿足 QoS

的需求，又可比傳統只考慮通道動態調節的機制達到更高速的傳輸速率。相較於

其他的比較系統，我們的 FQL-HARQ 可以在滿足 QoS 需求下，獲得最大之系統

輸出。 
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ABSTRACT 
mimi 2 

In order to provide higher speed and more effective downlink packet data 

service in 3G, high speed downlink packet access (HSDPA) is proposed by 3rd 

generation partnership project (3GPP). An important QoS requirement defined in spec 

for the hybrid automatic retransmission request (HARQ) process is to choose a 

suitable MCS to maintain the initial block error rate (BLER) smaller than 0.1 based 

on the channel quality information. In this thesis, we proposed a fuzzy Q-learning 

based HARQ (FQL-HARQ) scheme for HSDPA to solve this problem. The HARQ 

scheme is modeled as a Markov decision process (MDP). On one hand, the fuzzy rule 

is designed to maintain the BLER requirement by separated to different parts based on 

a shot term BLER performance. On the other hand, by considering both link 

adaptation and HARQ version, the Q-learning algorithm is used to learn the 

performance of MCS under different environment. After learning, we want to choose 

the MCS with highest throughput while not going to violate the BLER requirement.  

The simulation results show that the proposed scheme can indeed choose a 

suitable MCS for the initial transmission with channel information delay 

consideration. Comparing to other traditional schemes, the FQL-HARQ scheme can 

achieve higher system throughput and maintain the BLER at the same time.  



 iii  

誌 謝 

mimi 3 

碩士生涯在不知不覺中結束了。這兩年來，生活中的點點滴滴，知識的累

積和獲得以及這篇論文的完成，要感謝許多人給我力量與幫助。 

首先要感謝我的指導教授張仲儒博士，在碩士生涯的過程中給予我研究方

向的引導與心靈上的鼓勵以及教導我做人處事的道理；然後要感謝早已自學校畢

業的芳慶學長，每個星期犧牲自己的時間來幫我們解答疑惑並給予我們建議；感

謝立峰、志明、詠翰、文祥、耀興學長和煖玉學姊的幫助和建議，在我遇到問題

時，指引我思考的方向讓我可以渡過各種難關；感謝建興、佳璇、世宏、建安、

佳泓、正昕、尚樺，親切的帶領我熟悉並融入這整個實驗室的大家庭，在我寫論

文時給我加油打氣；感謝兩年來一路一起走來的宗利、英奇、維謙、邱胤和浩翔，

總是在我低潮時給予我繼續前進的勇氣，讓我在這條路上不孤單，真的很謝謝你

們。感謝惟媜，在這一年裡，總是在我鬱悶時，給我溫暖的關懷。還要謝謝盈伃、

志遠、欣毅、和儁，是你們讓實驗室變得更熱鬧，為苦悶的生活增添了繽紛的色

彩，也祝你們在未來一年論文研究順利。謝謝玉棋，在這一年裡給予我很多行政

上的幫忙。另外，要感謝彥碩學弟，沒有你的幫助，我的論文將無法順利完成。 

最後，感謝我的父母、妹妹，你們的支持、關心和鼓勵，是我努力及支持下

去的最大動力。感謝我的朋友們，特別要感謝我的好友斯寗，總是在我最需要幫

助時，無條件的給予我幫助和關懷，謝謝大家。 

 

 

黃巧瑩 謹誌 

民國 九十七年七月



 iv

 

Contents mimi 4 
 

Mandarin Abstract ..................................................................................................... i 

English Abstract ......................................................................................................... ii 

Acknowledge .............................................................................................................. iii 

Contents ..................................................................................................................... iv 

List of Tables .............................................................................................................. v 

List of Figures ........................................................................................................... vi 

Chapter 1 Introduction .............................................................................................. 1 

Chapter 2 System Model ............................................................................................ 6 

2.1 HSDPA System c2 1...................................................................................... 6 

2.2 HARQ Scheme c2 2..................................................................................... 10 

2.3 Channel Model c2 3..................................................................................... 11 

Chapter 3 Fuzzy Q-learning based H-ARQ Scheme ............................................. 13 

3.1 Fuzzy Q-Learning Algorithm c3 1............................................................... 14 

3.2 Input and Output Linguistic Variables c3 2.................................................. 18 

3.3 Design of the FQL Rules Base c3 3............................................................. 23 

Chapter 4 Simulation Results and Discussions ...................................................... 28 

4.1 System Environment and Parameters c4 1................................................... 28 

4.2 Conventional Schemes c4 2......................................................................... 30 

4.3 Simulation Results and Discussions c4 3.............................................. 31 

Chapter 5 Conclusion ............................................................................................... 42 

Bibliography ............................................................................................................. 44 

Vita ............................................................................................................................. 46



 v

 

 

 

 

  List of Tables mimi 5 

Table 3-1: the action pool and numbers of actions ............................................ 20 

Table 4-1 : Simulation parameters ..................................................................... 29 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi

 

  List of Figures  mimi 6 
Figure 2.1 : Release’99 and Release 5 HSDPA retransmission control ....................... 6 

Figure 2.2 : HSDPA protocol architecture ................................................................... 7 

Figure 2.3 : HS-SCCH and HS-DSCH timing relationship ......................................... 8 

Figure 2.4 : The allocation of bits in adjacent TTIs ................................................... 10 

Figure 3.1 : Block diagram of a learning system ....................................................... 14 

Figure 3.2 : The overall structure of FQL .................................................................. 18 

Figure 3.3 : Definition for function ( )f ⋅  ................................................................. 21 

Figure 3.4 : Definition for function ( )g ⋅  ................................................................. 21 

Figure 3.5 : The membership function of ( )BLER n  ............................................... 22 

Figure 3.6 : The membership function of ( )CQI n  .................................................. 23 

Figure 4.1(a): The BLER comparison versus HSPR without CQI 

delay. ...................................................................................................... 32 

Figure 4.1(b): The BLER comparison versus HSPR with CQI 

delay. ...................................................................................................... 32 

Figure 4.2 : The BLER of turbo code of each MCS versus SNR under AWGN. ....... 34 

Figure 4.3(a): The system throughput versus HSPR without CQI 

delay ........................................................................................................... 36 

Figure 4.3(b): The system throughput versus HSPR with CQI 

delay............................................................................................................ 36 

 

 

 



 vii

Figure 4.4 : The dropping rate comparison versus HSPR with 6ms CQI 

delay. .......................................................................................................... 37 

Figure 4.5(a): The BLER versus different mobility of UE with CQI delay ............... 40 

Figure 4.5(b): The system throughput versus different mobility of UE with CQI 

delay ........................................................................................................... 40 

Figure 4.6 : The path loss versus the distance between BS and UE ........................... 41 

 
 

 



 1

 

 

chapter 1 

Chapter 1                  

Introduction 

 

High speed Downlink Packet Access (HSDPA) has been included in the 3GPP 

Release 5 [1] UMTS specification and is developed to enhance the downlink of 

packet data services which is already provided in release 99 for WCDMA networks. 

There are two main design targets for the HSDPA concept. Firstly, the HSDPA scheme 

wants to support downlink best effort based packet data services with peak data rate 

up to 14.4Mb/s. Secondly, it hopes to reduce the downlink transmission delays and 

finally reach three times capacity of release 99 [2].  

Basically in order to provide such efficient, robust, and high speed packet data 

service, there are several techniques used in the HSDPA scheme. A key characteristic 

of HSDPA is the use of HS-DSCH (high speed downlink shared channel) [3]. The fast 

scheduler treats all the available resources such as channelization codes and 

transmission power within a cell as a common source and schedules users in a 

time-multiplexing fashion. At each transmission time interval (TTI), which is 2 ms in 

HSDPA, the fast scheduler will choose the most suitable user to be transmitted and to 

use the HS-DSCH which contains all allocated source for HSDPA system. Then 

instead of power control and tunable number of CDMA codes, data rate adaptation 

based on adaptive modulation order and code rate scheme (MCS) is used to control 
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the Eb/N0 (energy per bit/noise) for each transmission every TTI. 

Another important technique used in HSDPA is hybrid automatic repeat request 

(HARQ). When the receiver transmits NACK information back, node B will use this 

enhanced retransmission scheme to recover the scheduling error. Compared with the 

traditional ARQ scheme, which treats every (re)transmission of one block 

independently, the most powerful improvement in HARQ is that it softly combines 

the energy from the previously erroneous transmissions and present retransmission in 

order to increase the probability of success decoding.  

There are three kinds of scheme to implement the HARQ technique. The first is 

the chase combining (CC) scheme, in which each retransmission is identical to the 

original one. The second is incremental redundancy (IR) scheme, where each 

retransmission consists of new redundancy bits generated from turbo encoder. Then 

the third is H-ARQ-type-III scheme, and it belongs to the class of incremental 

redundancy HARQ schemes, however, with each self-decodable retransmission which 

consists of both mother code and redundancy bits.  

The performance comparison of HARQ with CC and HARQ with IR for HSDPA 

was shown in [4] and [5]. The benefit of the HARQ chase combining scheme is that 

the final received SINR is the summation of each (re)transmission when 

maximal-ratio combining (MRC) [6] is used. And it can be expected that IR 

outperforms CC schemes because of the coding gain from turbo code. However IR 

implies larger memory requirements for the mobile receivers and a larger amount of 

control signaling compared to CC. From simulation results, it can be found that when 

the SINR of first transmission is worse than that of retransmission, IR scheme may 

not get any gain and even worse than CC scheme. This is due to the fact that 

systematic bits are included in every (re)transmission for CC. While the channel state 

is bad, CC scheme can guarantee that the receiver always has opportunity to get 
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correct systematic bits. It is shown in [7] that the performance of the three schemes 

will be very close if under smart antenna. In this thesis, we will concentrate on the IR 

scheme for HARQ.  

To accommodate different channel conditions, several adaptive HARQ 

techniques have been researched. A2IR HARQ (asynchronous and adaptive hybrid 

ARQ) schemes were proposed to provide more diversity [8], [9]. “Asynchronous”, 

here, means that each retransmission can be operated at any time, while 

“synchronous” means that retransmission occurs only at some specific time slots. This 

function introduces multi-user diversity. On the other hand, the “adaptive” operation 

stands for the rate compatible (different modulation order and coding rate schemes, 

MCSs, selection) for each (re)transmission based on the channel state information and 

an estimate of the residual energy required for the packet to succeed. Two different 

adaptive schemes were proposed with MCS adaptation: variant TTI scheme [8] and 

variant CDMA code scheme [9]. Using variant TTI [8], different sub-packet formation 

will be generated with different code rate by the turbo encoder. Selecting resultant 

higher rate would shorten the TTI for retransmission and free up times slots for 

scheduling other users. With fixed TTI [9], the resultant higher rate selection would 

free up codes for assignment to other users. As simulation results show, HARQ with 

adaptive scheme can provide higher gain when the channel state is even worse such as 

lower SINR and higher Doppler frequency.  

In the HARQ procedure, an important object is to find a suitable MCS decision 

dependent on the feedback information of channel quality indicator (CQI) when first 

transmission occurs. The MCS selection for the initial transmission of each packet 

will influence the retransmission times to success and then effect the performance of 

the system throughput, packet drop rate, etc. Usually, the relation between the feedback 

channel quality information and the decision of modulation order and coding rate 
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scheme has already decided in a predetermined table to achieve the block error rate 

(BLER) requirement for initial transmission which is set to 0.10 according to [10].  

Many method has been researched to adaptively choose the MCS while maintain 

the BLER requirement 0.1. In [11], Nakamura, Awad and Vadgama proposed an 

adaptive method to tune the SINR threshold for each MCS based on the last 

transmission result. And in [12], Muller and Chen proposed a modified MCS SINR 

threshold adaptation method considering not only the transmission result but also the 

rating of CQI for different CQI delay schemes.  

To achieve more system efficiency and resource utilization, a new H-ARQ 

procedure based on Q-learning algorithm (Q-HARQ) has been proposed in [13]. The 

Q-HARQ procedure is modeled as a discrete-time Markov decision process (MDP) 

since the decision making is based on the current channel state. The Q-learning is one 

kind of powerful reinforcement learning [14]. The Q-HARQ uses Q-learning method 

and a so-called Q-value function to evaluate the expected summation of some error 

feedback which is called the reinforcement signal in the reinforcement learning step by 

step. The base station will choose the MCS with minimum Q-value, meaning that the 

accumulation of the difference between the BLER requirement and the instantaneous 

BLER of each initial transmission is minimal. Simulation results have shown that the 

Q-HARQ scheme can improve the system throughput over conventional scheme and 

can have better QoS performance when the channel condition is bad [13].  

However the reinforcement information used in Q-HARQ [13] needed a large 

amount of additional information signal feedback to the base station since the 

algorithm was implemented in a HSDPA scheme. This induced waste of bandwidth 

resource. And the effect of mobility is not considered in [13], which might result in 

CQI delay and inaccuracy problem.  

 A powerful technique named fuzzy Q-learning has been researched for a long 
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time and conventionally used to model the motion and thinking way of human in the 

robot design [15], [16], [17], [18]. The fuzzy Q-learning (FQL) algorithm can be seen 

an extension of Q-learning into fuzzy environments. Primarily, the Q-learning is a 

very strong off-policy TD control method for reinforcement learning which learns the 

action-value function Q to decide the most suitable action by a feedback 

reinforcement signal, which may be a reward or punishment. On the other hand, the 

fuzzy logic could be considered as a mathematical approach to emulate the human 

way thinking by using if-then rules to deal with the control of the imprecision. 

Therefore, the fuzzy Q-learning algorithm, the combination of these two methods can 

help the system efficiently to adapt to the environment to choose suitable actions 

properly.  

Since it is hard to find an explicit mathematics equation to describe the relation 

between BLER requirement fulfillment and throughput maximization, it will be very 

attractive to adopt the advantage of the fuzzy inference system with on-line learning 

operation of Q-learning algorithm to treat the above imprecise problem to get the best 

action-value function gradually.  

In this thesis, we propose a fuzzy Q-learning (FQL) based HARQ process for 

HSDPA in UMTS to find the most suitable MCS for each transmission time interval. 

The proposed FQL based HARQ process will be used not only to provide an efficient 

method to make the MCS decision and to achieve better system capacity but also to 

improve above problems. 

The rest of the thesis is organized as follows. The system model is described in 

Chapter 2. Chapter 3 describes the concept of fuzzy Q-learning and the design of 

fuzzy Q-learning based H-ARQ scheme. Simulation results are given in Chapter 4, 

which compares the performance among the proposed schemes and the conventional 

schemes. Finally Chapter 5 draws the conclusion.
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chapter 2 

 Chapter 2                    

 System Model 

  

2.1 HSDPA System c2 1 

HSDPA is designed to increase downlink packet data throughput by means of 

fast physical layer (L1) retransmission and transmission combining, as well as fast 

link adaptation controlled by the Node B. Notice that the retransmission for HSDPA 

is processed in the Node B instead of in the radio network control (RNC). The 

advantage is the faster retransmission and shorter delay when a retransmission is 

needed. Fig 2.1 shows the difference of retransmission handling in HSDPA between 

Release 5 and Release’99. 

 

Figure 2.1 : Release’99 and Release 5 HSDPA retransmission control 
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The medium access control (MAC) layer protocol architecture of HSDPA is 

shown in Fig 2.2. A new MAC functionality called MAC-hs is added in the Node B. 

The MAC-hs is to handle the automatic repeat request (ARQ) functionality, 

scheduling, as well as priority handling. 

 

Figure 2.2 : HSDPA protocol architecture 

In HSDPA, there are three new channels introduced in the physical layer 

specification. They are high-speed downlink shared channel (HS-DSCH), high-speed 

shared control channel (HS-SCCH), and uplink high-speed dedicated physical control 

channel (HS-DPCCH).  

HS-DSCH carries the data to the user in the downlink direction with the peak 

rate reaching up to 14Mbps with 16QAM. The TTI or interleaving period has been 

defined to be 2ms (three slots) to achieve a short round rip delay between the Node B 

and the terminal for retransmission. The spread factor (SF) is always fixed at 16, and 

multi-code transmission as well as code multiplexing of different users can take place 

in HS-DSCH. This means that the maximum number of codes which can be allocated 

is 15 since there is a need to have code space available for common channels. The 

only coding scheme of HS-DSCH is turbo code. To achieve the multiplexing coding 

gain, HARQ functionality is added to vary the transport block size, modulation 

scheme and the number of multicodes. 

HS-SCCH carries the necessary physical layer control information to decode the 
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data of HS-DSCH and perform the possible physical layer combining of the data sent 

on HS-DSCH when a retransmission is needed. If there is no data on the HS-DSCH, 

there is no need to transmit the HS-SCCH. Each HS-SCCH block has three slots and 

is divided into two functional parts. The first slot carries the time-critical information 

needed to start the demodulation process in due time to avoid over-buffer in chip level. 

The remaining two slots contain less time-critical parameters, like cyclic redundancy 

check (CRC), to check the validity of HS-DSCH information and HARQ process 

information. Fig 2.3 shows the timing relationship between HS-SCCH and HS-DSCH. 

From this figure, we can see that the terminal has time duration of one slot to 

determine which codes to de-spread from the HS-DSCH. 

 

Figure 2.3 : HS-SCCH and HS-DSCH timing relationship 

HS-DPCCH carries the necessary control information in the uplink direction and 

is divided into two parts, which carries ACK/NACK messages and downlink quality 

feedback information, respectively. The second part is also called channel quality 

indicator (CQI) feedback. The information on HS-DPCCH can be used by the Node B 

scheduler to decide which terminal to transmit and at what data rate. 

The HSDPA physical layer operation goes through the following steps: 

(i) The scheduler in the Node B evaluates several channel quality information 

for different users. The information includes the channel conditions, how 
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much data is pending in the buffer for each user, for which users 

retransmissions are pending and how much time has elapsed since a 

particular user was last served and so forth. 

(ii) Once a terminal has been determined to be served in a particular TTI, the 

Node B identifies the necessary HS-DSCH parameters. These parameters 

are, for example, the number of available codes, the kind of modulation 

order that can be used and the terminal capability limitations. The terminal 

soft memory capability also defines which kink of HARQ can be used. 

(iii) The Node B starts to transmit the HS-SCCH two slots before the 

corresponding HS-DSCH TTI to inform the terminal of the necessary 

parameters. The HS-SCCH selection is free if there was no data for the 

terminal in the previous HS-DSCH frame. 

(iv) The terminal monitors the HS-SCCHs given by the network. While the 

terminal has decoded part 1 (as shown in 2.3) from an HS-SCCH intended 

for that terminal, it will start to decode the rest of that HS-SCCH and will 

buffer the necessary codes from the HS-DSCH. 

(v) Until the HS-SCCH parameters has been decoded from part 2, the terminal 

can determine which H-ARQ process the data belongs to and whether it 

needs to be combined with data received previously in the soft buffer. 

(vi) After decoding the combined data, the terminal sends an ACK/NACK 

indicator in the uplink HS-DPCCH, depending on the outcome of the CRC 

check conducted on the HS-DSCH data. 

(vii) If the network continues to transmit data for the same terminal in 

consecutive TTIs, the terminal will stay on the same HS-SCCH which was 

used during the previous TTI. 
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2.2 HARQ Scheme c2 2 

HARQ plays an important role in HSDPA. It can combine the previous packet 

and redundancy from present packet to help decoding if received a NACK signal.  

Fig 2.4 shows an example of bit allocation in adjacent TTIs. By increasing the 

redundancy for previous failure packet, it can improve the probability of successful 

decoding of previous packet. With this appending redundancy bits, the coding rate 

will decrease to the next stage considerable stage after retransmission. By an 

appropriate HARQ functionality, the delay time of retransmission can be reduced. 

HARQ can determine the transport block size, modulation scheme, and the code rate 

according to the channel quality information received from the CQI on HS-DPCCH. 

The CQI feeds the corresponding modulation scheme and coding rate back to the 

Node B scheduler according to the CQI table. The CQI table stores the information 

that which modulation order (QPSK or 16QAM) and coding rate are suitable for the 

channel condition. CQI sends the information to the Node B based on the instant 

channel condition. The Node B receives the information from CQI and determines the 

exact (re)transmission modulation order and coding rate since the information is just a 

suggestion for the Node B. By changing the modulation order according to the instant 

channel condition, HARQ can lessen the number of retransmission effectively and 

improve the throughput. 

 
Figure 2.4 : The allocation of bits in adjacent TTIs 
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2.3 Channel Model c2 3 

 We will consider a terrestrial radio channel for urban areas just as what Chang 

did in [13] in this thesis. There are three types of propagation factor included in the 

channel model. These are path loss, slow variation resulting from shadowing and 

scattering, and the rapid variation in the signal due to the multi-path effects. Here we 

demote ( )F t  the objective fading channel condition function at time t  for 

WCDMA cellular system. The ( )F t  is mainly modeled by long-term and short-term 

fading and can be represented by 

 /10( ) ( ) 10 ( )F t r tηξ ζ= × ×  (2-1) 

where /10( ) 10r ηξ × is the long-term fading including path loss and shadowing, r is the 

distance from the base station to the mobile user, and η  is a normal-distributed 

random variable with zero mean and variance 2
Lσ . The short-term fading factor, ( )tζ , 

caused by multi-path effect is assumed to be the Jakes model [19], which is given by  

 
1

2( ) 2 cos(2 cos(2 / ) ) ,m

M
j

D m
m

t f t m L e
L

βζ σ π π θ
=

= +∑  (2-2) 

where σ  is the radical of the average power signal, Df is the Doppler frequency, 

4 2L M= +  is the number of the signal path, /( 1)m m Mβ π= + , and  

 2 /( 1)  ,   0,1,2,..., 1.m m ms M s Mθ β π= + + = −  (2-3) 

Because the summation components of ( )tζ are mutually independent to each other, 

this technique can produce up to M independent short-term fadings. Therefore we will 

choose M equal to the number of the total links in all cells of the system. And since it 

is reasonable to suppose that the scattering geometry is time invariant within some 

small local area, we will assume that parameters of the Jakes model are fixed in 
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simulations. 

 As we know, the shadowing effect of a moving user would be different when the 

position of the user changes. For a practical system, however, the degradation degree 

between two sampling time is small due to fact that the sampling frequency in HARQ 

is very short compared to the motion of the user. In other words, the shadowing 

effects of these sampling points are expected to be highly correlated and the 

correlation function will be function of the distance between two adjacent sampling 

points. In this thesis, we will use the normalized autocorrelation function ( )xρ Δ  [20] 

in to model the correlated shading fading, where xΔ  is the position difference 

between two adjacent TTI. The ( )xρ Δ can be obtained by  

 
| | ln 2

( ) ,cor

x
dx eρ
Δ

−

Δ =  (2-4) 

where cord is the decorrelation length.  

After the UE measure the channel quality by common pilot channel (CPICH) at 

time t, this estimation will be transformed to a discrete level from 0 to 30 as 

( )CQI n ,the channel quality indicator at TTI n, and be reported to the base station. 
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chapter 3 

 Chapter 3                       

Fuzzy Q-learning based HARQ Scheme 

 

 The fuzzy Q-learning based HARQ (FQL-HARQ) scheme is designed to 

determine a proper MCS at each initial transmission in the HARQ process such that 

the QoS requirement BLER* can be maintained and the system throughput can be 

enlarged.  

The decision at every TTI, which is a function of channel quality indication 

(CQI) and the block error rate (BLER) performance, is dependent on current and past 

system state only, so this process is modeled as a Discrete-time Markov decision 

process (MDP) in this thesis. And the MCS selection at current TTI will influence not 

only current but also future system performance; here, we imply the concept of 

reinforcement learning to solve this problem.  

Furthermore, we combine the learning technique with fuzzy logic, which can be 

considered as a mathematical approach to emulate the human way thinking by using 

if-then rules, to deal with the control of the imprecision. In this thesis, the so called 

fuzzy Q-learning algorithm is used to implement the HARQ process.  
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Figure 3.1 : Block diagram of a learning system 

 

3.1 Fuzzy Q-Learning Algorithm c3 1 

First we give a brief introduction of the fuzzy Q-learning (FQL) algorithm [15], 

[16], [17], [18].  

As shown in Fig 3.1, a general learning system consists of five elements. The 

learner will interact with the environment and make a decision according to the state. 

After the decided action is applied, some reward resulting from the acting will be 

feedback to the learner and be used to justify the decision policy.  

The basic idea of the reinforcement learning is to learn an optimal policy which 

can choose the best action in order to maximize (minimize) the accumulation of 

rewards (costs) induced by the selected action each time. The expectation of the 

accumulation, called Q-function, is related to the action, denoted by a , as well as the 

state of system, denoted by x , which is defined as 

 ( ) ( )0 0 0 0
0

, ( ), ( ) (0) , (0) ,n

n
Q x a E r x n a n x x a aγ

∞

=

⎧ ⎫= = =⎨ ⎬
⎩ ⎭
∑  (3-1) 

where r  is the reward, also called reinforcement signal, γ  is the discount factor , 

n  in ( )x n  or ( )a n  is the index of the episode of the system state or action and 

{}E ⋅  is the expectation operation. The output of Q-function, called Q-value, is the 

expectation value of the weighted accumulation of the rewards (costs) in the future 
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from now on and this expectation value will be effected by the selected action 0a  

under state 0x  at current decision episode 0n = . The optimal action, denoted by *a , 

can be obtained by: 

 *
0arg max ( , ).

a
a Q x a=  (3-2) 

However, the system state in the future, ( ) for 0x n n > , and the expectation value of 

r  are usually unavailable in the real world. It is hard to build the relation among 

action a , system state x  and expected value of feedback r . Watkins and Dayan 

[14] proposed a recursive method, called Q-learning algorithm, to solve above 

problems and obtain an the optimal Q function, denoted by *Q . The rule of each step 

of the learning method, resulting from mathematical inferring of Eq. (3-1), can be 

given by [14] 

[

1

 ( , ) ( ( ), ( ))

( , )       max[ ( ( 1), )] ( ( ), ( )) ,   for ( , ) ( ( ), ( )) ,

( , ),                                                               for ( , ) ( ( ), ( )).

n n

n n na

n

Q x a r x n a n

Q x a Q x n a Q x n a n x a x n a n

Q x a x a x n a n

η

γ+

⎧ +
⎪⎪ ⎤= + + − =⎨ ⎦⎪

≠⎪⎩

 (3-3) 

where ( , )nQ x a is the transient function for *Q at episode n , and nη  is the learning 

rate at the n-th episode, [0,1]nη ∈ . It is assumed that the next system state ( 1)x n + is 

available. At episode 1n + , feedback reward ( ( ), ( ))r x n a n caused by the last action is 

used to update ( , )nQ x a to get a new function 1( , )nQ x a+ . It should be noticed that 

only the state-action pair ( , )x a  which occurrs in the just past episode will have 

information to correct its Q-value in this episode. After updating, we can use a more 

accurate Q-function approximation and the policy in Eq. (3-2) to select the action.  

The fuzzy Q-learning (FQL) algorithm can be regarded as the Q-learning 

algorithm with fuzzy inference control interface. The characteristic of this 
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combination scheme can be observed from the general form of fuzzy inference system 

(FIS) rules:  

 Rule  : if  ( ) is  , then   with ( , ),  1 .j k n j kj X n S a q S a k K≤ ≤  (3-4) 

where [ ]1( ) ( ),..., ( )HX n x n x n=  is the vector of input linguistic variables, H  is the 

number of input variables, and ( , )n j kq S a is the Q-value for the state-action pair 

( , )j kS a at the episode n . Denote { }S , 1,...,jS j J= = as the set of state vectors. The 

uncertain input vector ( )X n  will belong to each jS  with different intensity 

depending on the membership function of input variables. { }A , 1,...,ka k K= = is the 

set of action candidate. For simplification, we assume each jS  containing a rule. 

Then we will get J different Q-values ( ), ( ) , 1,...,n jq S a n j J= for each pair 

( ( ), ), 1,...,kX n a k K=  and can infer J consequences from these J  rules separately.  

 In this thesis, the so called select-max strategy is adopted for each rule to choose 

the most suitable action: 

 *

A
( ) arg max ( , ) .

k
j n j ka

a n q S a
∈

=  (3-5) 

Then these consequences * ( ), 1,...,ja n j J=  will be gathered to infer the global 

optimal action, denoted by *( )a n  

 

*
,

1*

,
1

( )
( ) ,

J

j n j
j

J

j n
j

a n
a n

μ

μ

=

=

×
=
∑

∑
 (3-6) 

where ,j nμ  is the truth value (intensity) of the rule j  which can be obtained from 
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the membership function of each input variable.  

 As in traditional Q-learning algorithm, ( , )n j kq S a  is a transient value at time n  

and will be updated after reward is replied. The Q-function updating operation to get 

new *
1( , ( )), 1,...,n jq S a n j J+ =  is given by 

 * * *
1( , ( )) ( , ( )) ( , ( )),   for  1 ,n j n j n n jq S a n q S a n q S a n j Jη+ = + ×Δ ≤ ≤  (3-7) 

and  

( ) ( ) ( ){ }

*

, * * *

,
1

     ( , ( ))

               , ( ) ( 1), ( 1) ( ), ( ) .

n j

j n
j n nJ

i n
i

q S a n

r S a n Q X n a n Q X n a n
μ

γ
μ

=

Δ =

× + × + + −

∑
 (3-8) 

Here ( )*( ), ( )nQ X n a n , the Q-value for state-action pair *( ( ), ( ))X n a n , is the 

weighted summation of the J  Q-values *( , ( )), 1,...,n j jq S a n j J= by using the rule 

intensity ,j nμ of ( )X n : 

 ( )
( )*

,
1*

,
1

, ( )
( ), ( ) .

J

j n n j j
j

n J

j n
j

q S a n
Q X n a n

μ

μ

=

=

⎡ ⎤×⎣ ⎦
=
∑

∑
 (3-9) 

*( ( 1), ( 1))nQ X n a n+ +  is the next-stage optimal global Q-value. Since the next stage 

Q-values 1( , ), 1,..., , 1,...,n j kq S a j J k K+ = = are not available, *( ( 1), ( 1))nQ X n a n+ +  

will be calculated by ( , ), 1,..., , 1,...,n j kq S a j J k K= = which is defined as 

 ( )
( )*

, 1
1*

, 1
1

, ( )
( 1), ( 1) .

J

j n n j j
j

n J

j n
j

q S a n
Q X n a n

μ

μ

+
=

+
=

⎡ ⎤×⎣ ⎦
+ + =

∑

∑
 (3-10) 
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Step 1:  Initialize , ( , )j n j kq S a for all pair ( , ), 1,..., , 1,...,j kS a k K j J= = . 

Step 2:  Observe the input linguistic vector ( )X n . 

Step 3:  Using Eq. (3-5) to find *( ), 1,...,ja n j J=  

Step 4:  Use Eq. (3-6) to infer the global optimal action *( )a n  and then 

imply it to the system. 

Step 5:  Compute the reinforcement signal *( , ( ))jr S a n and measure ( 1)X n +  

Step 6:  Update *
, ( , ( ))j n jq S a n  for all j using Eq. (3-7), (3-8), (3-9), (3-10). 

Step 7:  Return to step 2 and repeat.  

In summary, the procedure of the FQL algorithm step is list as following:  

 

   

 

 

 

 

 

 

 

The overall FQL structure is shown in Fig 3.2. 

Fuzzy 
Rule Base

1( , )n kq S a

( , )n J kq S a

Inference 
( )X n 2( , )n kq S a

EEP
(select-max)

*
1 ( )a n

*
2 ( )a n

* ( )Ja n

*( )a n

System

Q-function 
Update 

*( , ( )), 1,..,n jq S a n j JΔ =

( )r n

( 1,..., )k K=

 

Figure 3.2 : The overall structure of FQL 

 

3.2 Input and Output Linguistic Variables c3 2 

 The structure of the FQL algorithm was described in section 3.1. In this section, 

we will apply this scheme into the HARQ process. We call it fuzzy Q-learning based 
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HARQ scheme (FQL-HARQ). 

 At decision episode n , the FQL-HARQ scheme chooses two system measures 

as input linguistic variables. First is a short-term block error rate (BLER) performance 

indicator, which is denoted as ( )BLER n and defined as the failure times in the last N 

packets from the (n-N)-th to the (n-1)th transmission over N. The other one is 

( )CQI n , the channel quality indicator received at episode n . The values of ( )CQI n  

will be a discrete number and at the range of [0, 30] since the reporting information is 

composed of 5 bits in the HSDPA scheme. These two variables will be the fuzzy input 

to help infer the most suitable modulation order and coding rate scheme (MCS) 

decision. That is, we have { }( ) ( ), ( )X n BLER n CQI n= in the FQL-HARQ system.  

In this thesis, we assume two kinds of modulation order, QPSK and 16 QAM, 

and five kinds of coding rate, 1 1 2 3 4, , ,  and 
3 2 3 4 5

, resulting in totally 10 kinds of 

modulation and coding pairs, to be chosen. The MCS pair pool, which is shown in 

Table 3-1, is the set for the output linguistic variable *
na  mentioned in section 3.1. 

And we number these MCSs from 1 to 10 depending on the degree of BLER 

performance. Under the same channel condition, MCS with lower BLER will have 

smaller number.  

The fuzzy term sets for the two fuzzy input linguist variables, ( )BLER n  and 

( )CQI n  are defined as ( )( )T BLER n = {Green, Yellow, Red} = {G, Y, R} where 

( )( )T CQI n ={Level 1, Level 2, Level 3, Level 4, Level 5, Level 6, Level 7, Level 8, 

Level 9, Level 10} ={L1, L2, L3, L4, L5, L6, L7, L8, L9, L10}, respectively. Terms 

in ( )( )T BLER n  are used to describe the degree of the BLER performance. Based on 

the QoS requirement of BLER, denoted by *BLER , “Green”, here, means the BLER 
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2/316QAM8

2/3QPSK4

Coding rateModulation order MCS number

4/516QAM10

3/416QAM9

4/5QPSK7

3/4QPSK6

1/216QAM5

1/316QAM3

1/2QPSK2

1/3QPSK1

2/316QAM8

2/3QPSK4

Coding rateModulation order MCS number

4/516QAM10

3/416QAM9

4/5QPSK7

3/4QPSK6

1/216QAM5

1/316QAM3

1/2QPSK2

1/3QPSK1

 

Table 3-1: the action pool and numbers of actions 

performance is “safe” while “Yellow” is “general” and “Red” is “violation”. On the 

other hand, terms in ( )( )T CQI n  stand for the judgment of channel quality indication 

and are designed with the ten levels, which is related to the 10 kinds of MCS adopted 

in the system. Each level will be at the SINR regions supporting *BLER  when using 

its corresponding MCS. The membership functions for these fuzzy terms, which can 

indicate the intensity the input variables belong to itself fuzzy labels are shown in the 

following. 

The membership is defined by the designer with pre-knowledge of the system. 

To illustrate the membership function, first we define a triangle function ( )f ⋅  which 

is expressed as 

 ( )

1
0 1

1 0

0 1 2 1
1 2

1 0

 1     for 

; , ,  1     for 

 0                     otherwise

y y y y y
y y

f y y y y y y y y y
y y

−⎧ + ≤ ≤⎪ −⎪⎪= −⎨ + ≤ ≤⎪ −
⎪
⎪⎩

 (3-11) 

where y0 , y1, y2 in ( )f ⋅  is the left edge, center, right edge of the triangular 

function respectively. The figure of this function is shown as Fig 3.3. 
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Figure 3.3 : Definition for function ( )f ⋅  

Then we define a trapezoid shape function ( )g ⋅  which is expressed as 

 ( )

1
1 2

2 1

2 3
1 2 3 4

3
3 4

4 3

  ,   for 

       1      ,   for 
; , , , ,

  ,   for 

      0      ,       otherwise

x x x x x
x x

x x x
g x x x x x

x x x x x
x x

−⎧ ≤ ≤⎪ −⎪
≤ ≤⎪

= ⎨ −⎪ ≤ ≤
⎪ −
⎪
⎩

 (3-12) 

where x1 ,x2, x3, x4 in ( )g ⋅  are the left edge, center-right, center-left and right 

edge of the trapezoid respectively. The basis shape of this function is shown in 

Fig 3.4.  

1

1x 2x 3x 4x

( )g x

x  

Figure 3.4 : Definition for function ( )g ⋅  

The membership function of ( )BLER n , denoted by ( )( )BLER nμ , is 

constituted by the membership functions for the terms, G, Y, and R of ( )( )T BLER n , 
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denoted by ( )( )G BLER nμ , ( )( )Y BLER nμ , ( )( )R BLER nμ , respectively which can 

be given by 

 ( ) ( )( ) ( );  - , 0,  ,  ,              G BLER n g BLER n b aμ = ∞  (3-13) 

 ( ) ( )*( ) ( );  ,  , ,  ,         Y BLER n g BLER n b a BLER cμ =  (3-14) 

 ( ) ( )*( ) ( );  ,  ,  1,  .         R BLER n g BLER n BLER cμ = ∞  (3-15) 

The figure of ( )( )BLER nμ is shown in Fig 3.5.  

 

( )BLER n
*BLER *1.2 BLER×

G Y R
1

( ( ))BLER nμ

*0.7 BLER×*0.2 BLER×  

Figure 3.5 : The membership function of ( )BLER n  

The membership function ( )( )CQI nμ is defined and shown in Fig 3.6. As 

mentioned, Ai is set to be the required SINR to maintain *BLER while using the i-th 

modulation and coding scheme ( , 1,...,10iMCS i = ). Again we express ( ( ))CQI nμ , 

which is constituted by the membership functions for the terms, L1,…,L10, of 

( )CQI n , denoted by ( )1 ( )L CQI nμ ,…, ( )10 ( )L CQI nμ , as 

 ( ) ( )1 ( ) ( );  - , 0,  A1,  A2 .L CQI n g CQI nμ = ∞  (3-16) 

 ( ) ( )2 ( ) ( );  A1,  A2,  A3 .L CQI n f CQI nμ =  (3-17) 



 23

 ( ) ( )3 ( ) ( );  A2,  A3,  A4 .L CQI n f CQI nμ =  (3-18) 

 ( ) ( )4 ( ) ( );  A3,  A4,  A5 .L CQI n f CQI nμ =  (3-19) 

 ( ) ( )5 ( ) ( );  A4,  A5,  A6 .L CQI n f CQI nμ =  (3-20) 

 ( ) ( )6 ( ) ( );  A5,  A6,  A7 .L CQI n f CQI nμ =  (3-21) 

 ( ) ( )7 ( ) ( );  A6,  A7,  A8 .L CQI n f CQI nμ =  (3-22) 

 ( ) ( )8 ( ) ( );  A7,  A8,  A9 .L CQI n f CQI nμ =  (3-23) 

 ( ) ( )9 ( ) ( );  A8,  A9,  A10L CQI n f CQI nμ =  (3-24) 

 ( ) ( )10 ( ) ( );  A9,  A10,  30, L CQI n g CQI nμ = ∞  (3-25) 

( ( ))CQI nμ

( )CQI n

1L 2L 3L 4L 5L 6L 7L 8L 9L 10L

  

Figure 3.6 : The membership function of ( )CQI n  

 

3.3 Design of the FQL Rules Base c3 3 

In section 3.2, we have selected the input and output linguistic variables as well 

as defined the membership function of input variables for the fuzzy interface. In this 

section, we will design the fuzzy rule base, which is consisted of the if-then rules and 

the Q-learning algorithm as well as the corresponding reinforcement signal for each 
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rule.  

The rule form of the FQL is shown in Eq. (3-4). We need to design the 

reinforcement signal for each rule to update the q-value of each action and accomplish 

the Q-learning operation. Design of the fuzzy rules will be based on the concept that 

the choice of MCS will be more aggressive if better ( )BLER n performance, and on 

the other hand, is more conservative if worse ( )BLER n . The decision is mainly 

counted on ( )BLER n , while ( )CQI n will be used to determine the selection base so 

as to accelerate the learning procedure. Therefore we divide the rules into three parts 

based on the 3 fuzzy terms, Green, Yellow and Red. Rules in the same parts will have 

the same reinforcement signal. The details of each part are described in the following.  

Part 1:  if ( )BLER n  is Green, and ( )CQI n is Level m , then  

kMCS  with ( )( ( ) is Green , ( ) is m), ,n kq BLER n CQI n MCS k m>   

 There are 10 rules (1 10)m≤ ≤ in part 1. In this part, ( )BLER n is considered to 

be in a safe region where ( )BLER n is much smaller than *BLER . The main goal is to 

maximize the throughput. To be more aggressive, only  with kMCS k m>  will be 

considered. The amount of carrying information and whether the signal could be 

successfully decoded before dropping will be focused. Thus the reinforcement signal 

is designed as 

 
,  if succesful transmission,

10,                 if failure transmission,

k

k k

MCS

MCS rd

R
R Rr

⎧
⎪ += ⎨
⎪ −⎩

 (3-26) 

where 
kMCSR represents the number of information bits in the packet with kMCS  and 
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krdR is the required redundancy bits ,contained in the initial transmission and the 

retransmission, for the successful transmission We will update the q-value after the 

transmission of the packet is completed. It can be expected that higher achievable data 

rate after transmission will get larger reward feedback. If the transmission fails to be 

decoded after 3 retransmissions, the block will be dropped and we will give a severe 

punishment, r= -10 at such condition. 

Part 2:  if ( )BLER n  is Yellow, and ( )CQI n is Level m , then 

 kMCS  with ( )( ( ) is Yellow , ( ) is m), , 1 1n kq BLER n CQI n MCS m k m− ≤ ≤ +   

 There are 10 rules (1 10)m≤ ≤ in part 2. Yellow ( )BLER n  means that the 

BLER performance is around the requirement. It will be better to keep BLER still in a 

safe range. Hence we will choose the MCS which has the BLER nearest to *BLER  

under ( )CQI n  while containing the most information. kMCS , 1,  ,  1k m m m= − + , 

will be the considered action candidates. The reinforcement signal in this part is set as  

 * ,kMCS

MCS

R
r

R
σ= ×  (3-27) 

where *
MCSR  is the number of information bits if 16 QAM modulation order and 

coding rate 4
5

, and σ  is a scalar, which is 1
8

 if successful decoding after initial 

transmission and 1−  if failed. Here the degree of reward is normalized by *
MCSR  to 

be proportional to the amount of information data.  

σ  is a weighting factor according to the BLER requirement 0.1. Since it means 

the occurrence possibility of success and failure transmission has the ratio equal to 9, 

the weighting factors for success and failure initial transmission are set to have the 
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ratio 1
9

. For the reason to be more aggressive, we increase the ration up to 1
8

. And if 

the transmission is dropped, we will give a severe punishment r=-10.        

Part 3:  if ( )BLER n  is Red, and ( )CQI n is Level m , then  

kMCS  with ( )( ( ) is Red , ( ) is m), ,n kq BLER n CQI n MCS k m<   

 There are 10 rules (1 10)m≤ ≤ in this part. Red ( )BLER n represents BLER 

requirement violation. It will be better to take action to recover from this situation. 

The action decision should be more conservative, thus ,kMCS k m< will be chosen. 

The reinforcement signal is set as 

 
* , if successful decoding after initial transmission.

1, if failed decoding after initial transmission.
-10,   if transmission is dropped.       

MCS

MCS

R
R

r

⎧
⎪⎪= ⎨−⎪
⎪⎩

 (3-28) 

Only when the packet is successfully decoded in the initial transmission, the system 

will be rewarded. The degree of reward is proportional to the amount of information 

bits. If the initial transmission failed, the system will be given a severe punished 

r=-10.  

There are ten rules contained in each part separately. The intensity of the 30 

rules j , 1,...,30j =  will be inferred from the membership functions of ( )BLER n and 

( )CQI n by a max-product operation, which can be expressed as 

 ( ) ( ), ( ( )) ( ( )),  where ( )  and ( ) .j n BLER n CQI n T BLER n T CQI nα βμ μ μ α β= × ∈ ∈

 (3-29) 

Here j  is the number of rule respect to the case that ( )BLER n is α and ( )CQI n  is 

β .  The rule intensities , , 1,...,30j n jμ = , will be calculated case by case for each 
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pair of the input variable fuzzy terms ( ) ( )( ), ,   and  CQI nBLER nT Tα β α β∀ ∈ ∀ ∈  while 

j  represent the index number of the fuzzy term pair.  

Every TTI, the system state pair ( ( ), ( ))BLER n CQI n will be inputted and then the 

local optimal actions *(n), 1,...,ja j J= will be inferred by select-max EEP, Eq (3-5), as 

well as the Q-learning algorithm based on above fuzzy rules separately. Here *( )ja n  

represented the number of selected action. Then these local optimal actions 

*(n), 1,...,ja j J=  will be used as well as ,j nμ to get the global optimal action *( )a n  

by Eq. (3-6). However *( )a n  would be continuous while the output should be 

discrete in our application. Then we will use some method to map the continuous 

result *
na  to discrete output action *

,n da . The continuous result *( )a n  will be 

quantized by following principle: 

 
* * *

*

* * *

( )  , with probability ( ) ( )
( ) ,

( )  , with probability ( ) ( )
d

a n a n a n
a n

a n a n a n

⎧⎡ ⎤ ⎢ ⎥−⎪⎢ ⎥ ⎣ ⎦= ⎨
⎢ ⎥ ⎡ ⎤−⎪⎣ ⎦ ⎢ ⎥⎩

 (3-30) 

where  

 

* *

* * *

* * *

( ) , ( )  are the integer at [1,10] such that

( ) 1 ( ) ( )
                  .

( ) ( ) ( ) 1

a n a n

a n a n a n

a n a n a n

⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎧ ⎢ ⎥− < ≤⎪ ⎣ ⎦
⎨

⎡ ⎤< ≤ +⎪ ⎢ ⎥⎩

 (3-31) 

* ( )da n  is the final action.  

After the base station use the decision MCS to transmit and the transmission is 

finished such that the reinforcement signal of each part is available, operations in Eq. 

(3-7), (3-8), (3-9), (3-10) will be used to update the Q-values. 
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chapter 4 

 Chapter 4                

Simulation Results and Discussions  

 

4.1 System Environment and Parameters c4 1 

In our simulation, we consider a hexagonal grid cell structure. There are 19 base 

stations (BS) in the multi-cell system to consider 2-tier neighboring cell interference. 

For a HSDPA user, we assume that the HS-DSCH is allocated at maximum up to 80% 

of the total power of a BS. In this thesis, we define HSDPA service power ratio 

(HSPR) to represent the ratio of transmission power on the HS-DSCH for the HSDPA 

user to the total transmission power at BS side. The residual power except for HSDPA 

service will be used for other service and control channels within same cell. The 

interference from other cell is fixed. Here we use HSPR, which controls not only the 

amount of HSDPA transmission power but also the interference from self cell, as 

condition variable to observe the system performance.  

In the simulation, we will observe and compare the system performance of both 

circumstances with and without CQI delay consideration. The CQI delay is set to be 

6ms if considered. To evaluate the maximal achievable throughput, we assume that 

the users always have data to be transmitted to. The channel model is described in 

section 2.3. The channel condition within a TTI is assumed to be constant. The 
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detailed simulation environment parameters are shown in Table 4-1. 

Table 4-1 : Simulation parameters 

Parameter Assumption 
Cellular layout Hexagonal grid, 19 sites, 1000m cell radius 

Path loss model ( )( )rξ  128.1 + 37.6log10(r) 
r is the base station separation in kilometers 

Decorrelation length ( dcor ) 30m 

Lσ  8.0 
Mobility assignment 0 km/hr to 120 km/hr, random distribution 

Carrier frequency 2.0 GHz 
Channel bandwidth 5.0 MHz 

Chip-rate 3.84 Mcps 
Spreading factor 16 

Thermal noise density -174 dBm/Hz 
TTI length 2 ms 

Forgetting factor (γ)  0.1 
Learning rate (η)  0.9 

N 50 
BS total Tx power Up to 44 dBm 

Power for HSDPA data 
transmission 

Maximum of 80% of total maximum 
available transmission power 

ACK/NACK delay 6ms 
HARQ IR 
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4.2 Conventional Schemes c4 2 

In the simulation, we will compare the proposed FQL-HARQ scheme with some 

other conventional schemes. According to [10], we need to choose a suitable MCS at 

initial transmission in the HARQ process to maintain the BLER requirement 0.1. 

Three conventional schemes are described in the following: 

 

 Fixed threshold selection [10] : 

Based on the pre-known BLER performance, the fixed threshold selection 

(FTS) scheme sets fixed SINR threshold for each MCS. The threshold is the 

required SINR that the MCS has BLER equal to the requirement 0.1. At each 

TTI, FTS will choose the MCS whose corresponding threshold is just under and 

closest to the measured SINR. 

 Adaptive threshold selection (Adaptive control of link adaptation [11] ) : 

Compared with FTS, the adaptive threshold selection (ATS) scheme 

improves the performance of users with high mobility. ATS sets threshold for 

every MCS, too. Moreover, after a transmission is completed, the thresholds 

which are close to the SINR of last transmission will be updated based on the 

block decoding result. The thresholds will be increased if failed initial 

transmission and be deceased if succeeded. The ratio of increasing and 

decreasing step is set to be 
*

*1
BLER

BLER−
. 

 Q-learning based HARQ (QL-HARQ) [13] : 

Without any pre-knowledge of BLER performance of each MCS, 

QL-HAQR uses the Q-learning algorithm to learn an optimal policy in both link 

adaptation and HARQ retransmission version. The reinforcement signal is 
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designed to be the normalized difference square of received SINR and required 

SINR for maintaining BLER=0.1. After learning, QL-HARQ will choose a MCS 

whose required SINR to maintain BLER=0.1 is closest to the received SINR.  

In next section, we will show the performance of the FQL-HARQ scheme and the 

traditional schemes versus HSPR  with and without CQI delay. Besides, we will also 

display the simulation results of these schemes versus different UE mobility with 

fixed power allocation, and discuss about it. 

 

4.3 Simulation Results and Discussions c4 3 

Fig 4.1(a) and Fig 4.1(b) show the transmission block error rate versus HSPR 

without and with 6ms CQI delay considering for the proposed FQL-HARQ scheme 

and three comparative schemes. It can be seen in Fig 4.1(a) that when more than 70% 

BS transmission power is allocated for HSDPA service, all schemes can perform MCS 

adaptation under satisfying the BLER requirement without CQI delay. However, 

when the CQI delay is considered, FTS and QL-HARQ will violate the BLER 

requirement even with HSPR up to 80% as shown in Fig 4.1(b). The mobility of UEs 

in the simulation is uniformly distributed at the range from 0 to 120 km/hr. Motion of 

UEs will incur not only the Doppler Effect but the higher channel variance, and then 

affect the accuracy of channel condition information for MCS determination. After 6 

ms, the actual transmission channel condition may be much different from the 

information used for determination. Compare the results of Fig 4.1(a) and Fig 4.1(b), 

we can find that FTS and QL-HARQ are not flexible enough to accommodate to 

imperfect CQI report. The MCS determination may not suitable to the transmission 

channel anymore and violate the BLER requirement. 
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Figure 4.1(a): The BLER comparison versus HSPR without CQI delay. 
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Figure 4.1(b): The BLER comparison versus HSPR with CQI delay. 

Figure 4. 1 
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On the other hand, ATS, the modified scheme for FTS, and our proposed scheme, 

FQL-HARQ are more sensitive to the channel variance and able to modify the MCS 

detection policy based on the past transmission result adaptively, so they can make the 

BLER requirement as shown in Fig 4.1(a) and Fig 4.1(b). If failure initial 

transmission occurs too frequently, ATS and FQL-HARQ will decrease the rating of 

CQI and justify the decision rule to be conservative. So they can maintain the BLER 

requirement. 

It can be observed that BLER of FQL-HARQ will violate the requirement a little 

when HSPR is smaller than 35% at both circumstances with and without CQI delay 

consideration. This is because that at low SNR, there are fewer MCSs for selection as 

shown in Fig 4.2. Since the SNR gap between the considerable MCSs at low SNR is 

larger, the idea of FQL-HARQ to choosing more aggressive MCS if better short term 

BLER (SBLER) than requirement will result in too aggressive MCS decision. When 

at low HSPR, UE may face bad channel condition (low SNR) more frequently, and 

hence too much forward MCS selection will accumulate. So FQL-HARQ is going to 

violate the requirement at HSPR smaller than 35%. This can be resolved by increasing 

N, the window size of SBLER. If we increase N to 500, FQL-HARQ can maintain the 

requirement even with HSPR below 40% yet will decrease the throughput of the 

system. 

For the same reason, it can be seen in Fig 4.1(a) and Fig 4.1 (b) that BLER of 

QL-HARQ will be affected by low HSPR more intensely. When the power allocated 

for HSDPA user is less than 65% BS transmission power, the BLER performance of 

QL-HARQ will get worse and violate the requirement severely. As mentioned in 

section 4.2, the decision of QL-HARQ will be the MCS with required SINR 

maintaining 0.1 BLER closest to the reporting CQI but neglecting whether the former 

is less than the latter. It will be too aggressive due to the larger SNR gap between 
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Figure 4.2 : The BLER of turbo code of each MCS versus SNR under AWGN. 

considerable MCSs at low SNR as shown in Fig 4.2 and then result in too high BLER. 

Compare FQL-HARQ and QL-HARQ: on account of considering the performance 

and following HARQ process in reinforcement signal after using more aggressive 

MCS, FQL-HARQ can avoid the BLER violation at low HSPR more effectively than 

QL-HARQ does. 

It can also be found in Fig 4.1 (a) that FTS and ATS have almost the same 

performance when CQI delay is not considerable, unless at low HSPR. ATS gets a 

little higher BLER than that of FTS at low HSPR. This is also due to the bigger SINR 

gap within MCS at low SNR and the thresholds updating range of ATS. 

Fig 4.3(a) and Fig 4.3(b) show the system throughput for the four schemes in 

case of without and with 6ms CQI delay. Definitely it can be seen that as HSPR 

increases, the throughput of all schemes increases in both cases, too, and all schemes 

has better system throughput with perfect CQI than that of itself with CQI delay, 

especially ATS. It is shown that for ATS, with more accurate channel condition 
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information can result in higher system throughput since it is helpful to decrease the 

probability of executing wrong threshold adaptation. We can also find that FTS, the 

only non-adaptive scheme, keep the maximal throughput among the four schemes. By 

using perfect CQI, the adaptive operation of the other schemes will inference the 

instant MCS decision and make it be too conservative when channel condition is 

good.  

Then compare the performance of FQL-HARQ and ATS, which are the only two 

schemes able to make the requirement when CQI delay is considered. It can be seen in 

Fig 4.1(b) that ATS keeps a lower BLER than FQL-HARQ does. This is for the reason 

that ATS tune the selection threshold based on current ACK/NACK result directly and 

immediately, while FQL-HARQ tunes the selection policy based on a long term 

measure, ( )BLER n , more sophisticatedly and then results in more slowly updating 

process than that of ATS. Nevertheless it is can be seen in Fig 4.3(b) that FQL-HARQ 

reaches a much higher throughput than ATS does. This is because that only BLER 

performance is considered and affects the threshold updating process for ATS scheme. 

On the other hand, as mentioned in Chapter 3, the MCS decision of FQL-HARQ is 

inferred from the fuzzy rules which are justified by reinforcement signals. Rule base 

is designed and separated to different parts according to the BLER requirement while 

the reinforcement signals are set so as to reward MCS with higher throughput. Since 

both BLER maintaining and throughput maximizing are considered in FQL-HARQ, 

the throughput can be enlarged by a more aggressive but safe MCS determination. 

Due to the too immediately threshold tuning, the selection policy of ATS may oscillate 

and obtain a too conservative MCS at good channel condition.  
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Figure 4.3(a): The system throughput versus HSPR without CQI delay 
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Figure 4.3(b): The system throughput versus HSPR with CQI delay. 

Figure 4. 3f 
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Figure 4.4 : The dropping rate comparison versus HSPR with 6ms CQI delay 

Fig 4.4 depicts the dropping rate versus HSPR with 6ms CQI delay. In the 

simulation, every transmission block has at most three times of retransmission. If the 

block fails to be decoded after the third retransmission, the block will be dropped. It 

can be seen obviously that a more conservative initial transmission MCS selection, 

which has smaller initial BLER, can result in lower retransmission dropping rate. Low 

dropping rate can decrease the signaling cost, however may reduce the system 

throughput by using too conservative MCS. As shown in Fig 4.3(b) and Fig 4.4, 

FQL-HARQ can keep a more balance performance in the trade off between dropping 

rate and throughput maximizing than the other three schemes. It can also be found in 

Fig 4.4 that QL-HARQ is more sensitive to HSPR than the others. As mentioned, this 

is because of the MCS BLER distribution versus SNR shown in Fig 4.2. At high SNR, 

there are more MCSs for selection and then smaller SNR gap between the 

considerable MCSs, so the QL-HARQ can execute a more accurate learning process.  

We can find that the dropping rate of ATS and FTS arise slightly as HSPR 
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increases while the BLER of both schemes decrease as shown in Fig 4.1(b). This is 

because that the SNR gap between considerable MCS at high SNR is smaller than that 

at low SNR. The considered coding rate schemes are 4 3 2 1 1, , ,  , 
5 4 3 2 3

 of the order 

with SNR performance. If the decoding of the transmission block fails, appending 

redundancy bits will be transmitted to the user so that the block will have the next 

stage coding rate after retransmission. When the SNR gap of MCS is small, which 

means the BLER performance will improve a little after retransmission, the decoding 

failure rate will still be high after three retransmissions. So the dropping rate of FTS 

and ATS will arise little at high HSPR. On the other hand, since the dropping 

condition is considered in FQL-HARQ, which the Q values of fuzzy rules will be 

updated by a severe punishment signal, the dropping rate can keep stable as HSPR 

increase.  
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Fig 4.5(a) and 4.5(b) show the BLER performance and system throughput of the 

four schemes versus different user mobility. In the simulation, BS allocate 80% of the 

total transmission power for the HSDPA user, and CQI has 6ms delay. We can see that 

all schemes has better performance when the UE is immotility than that of itself when 

the UE with mobility. Besides, FTS, the only scheme with fixed selection policy, has 

better BLER and throughput performance than the other three adaptive schemes when 

the UE is at low speed and with low cannel condition variance. However FTS has the 

worst BLER requirement violation when the UE at mobility higher than 45 km/hr 

among all schemes. This is due to the channel information inaccuracy resulting from 

CQI delay and Doppler Effect. On the other hand, when the variance of CQI 

inaccuracy is small, i.e. UE at low mobility, schemes with too rapidly channel 

adaptation, i.e. ATS, will choose too conservative MCS and result in non-effective 

system throughput. Again we can find that FQL-HARQ can reach the maximal system 

throughput among the schemes which can maintain the BLER requirement at the 

same time.  

Surprisingly, we can also find in Fig 4.5(a) and Fig 4.5(b) that when the mobility 

is beyond 30 km/hr and get higher, the BLER will decrease and the system throughput 

will increase a little for all schemes on the contrary. This is because when the mobility 

of the UE is higher than 30 km/hr, the effect of channel variance and CQI inaccuracy 

are almost the same. Instead, the effect of path loss will dominate the system 

throughput. A traveling UE may either move toward the BS and then get better 

channel condition or move apart the BS and then get worse path loss effect. Fig 4.6 is 

the path loss effect versus the distance in km between BS and UE. In reality, a mobile 

user in the cell should have moving direction with uniform probability distribution. It 

can be observed from the path loss curve in Fig 4.6 that with the same movement, the 

Figure 4. 5 
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Figure 4.5(a): The BLER versus different mobility of UE with CQI delay 
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Figure 4.5(b): The system throughput versus different mobility of UE with CQI delay 
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Figure 4.6 : The path loss versus the distance between BS and UE 

mobile user can get more channel condition improvement in path loss due to traveling 

to BS than channel deterioration due to traveling apart the BS especially when the UE 

is around the BS and the movement is larger. At the other side, if the mobile user is at 

the edge of the cell, the user may either leave the cell and the BS will choose another 

user to transmit to or get close to the BS and better channel with BS. Either condition 

will incur better service user channel condition. As a result, the higher the mobility 

and the more motion of the mobile user, the more probability the user can change to a 

better channel. As shown in the simulation result, when the speed of the user is larger 

than 30 km/hr, the user with higher mobility will achieve higher throughput and lower 

BLER after all in a long term observation and statistics characteristic. 
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chapter 5 

 Chapter 5                

Conclusion 

 
 

In this thesis, we propose a fuzzy Q-learning based hybrid automatic repeat 

request (FQL-HARQ) scheme for HSDPA to achieve efficient resource utilization 

under any channel condition. The hybrid ARQ procedure is modeled as a 

discrete-time Markov decision process. In every TTI, we combine the fuzzy system 

and Q-learning algorithm to help the hybrid ARQ mechanism adjust the code rate and 

the modulation order of the initial transmission based on the channel condition 

information and past transmission results. The fuzzy rule base is designed to take care 

of the BLER performance while the reinforcement signals, which will be used to tune 

the fuzzy rules, are set to reward the MCS carrying higher information bits. In the 

learning operation, both link adaptation and retransmission process are considered in 

the reinforcement signal. By means of self–tuning, FQL-HARQ will choose a suitable 

modulation order and coding rate scheme depending on the channel condition 

variance of the service user considering both BLER and system throughput 

performance.  

Simulation results show that the FQL-HARQ can maintain the QoS requirement 

of 0.1 initial BLER specified in 3GPP Release 5 even if the service user is with 

mobility in uniform distribution over 0 to 120 km/hr and 6ms CQI delay. Since there 
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is a tradeoff between the BLER requirement and system throughput when choosing 

the transmission MCS, FQL-HARQ can reach the maximal throughput among the 

schemes able to keep the BLER requirement. As shown in the simulation result, the 

dropping rate of FQL-HARQ is always under 8% and the number of average 

transmission time for successful packet transmission is always below 1.3 versus 

HSPR. On the other hand, it can be found that FQL-HARQ can avoid the bad link 

adaptation on the account of the channel information errors. The inaccuracy of 

prediction error of channel information for MCS determination can be count in the 

learning process.  

Since the fuzzy function can be implemented on a chip, the FQL-HARQ process 

is feasible for employing in the real system. 
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