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以基因演算法研究三點式非再生性 

MIMO 中繼站系統之最佳 Precoder Pair 

 

研究生:劉丞瑋        指導教授:沈文和 博士 
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摘要 
為了增加現有系統的覆蓋範圍及 link level 之通道容量以達到更高的系統需求，中

繼站系統是一個在新一代通訊系統下可能被採用的架構。而 MIMO Precoding 這門

技術目前也被廣泛的應用在中繼站系統來進一步改善系統效能。然而，目前的研

究大多著眼於兩躍式中繼站系統之中繼站端 precoder 設計。在本論文中作者將透

過基因演算法來研究由來源端 precoder 及中繼站端 precoder 所構成之 precoder 
pair。對一個可應用多種兩段式傳送規約之三點式非再生性 MIMO 中繼站系統而

言，數值分析結果顯示，相對於沒有 precoder pair 的中繼站系統，precoder pair 可
在相同的總傳送功率限制之下提升 ergodic/outage capacity。 
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Abstract 
Relay system is a possible candidate to be adopted in the next generation 
communication systems. It aims to enhance the coverage and link level capacity of 
current systems. Also, the technique of MIMO precoding has been widely applied onto 
relay systems to further improve system performance. However, most previous 
researches focus on designing the relay precoder matrix for two-hop MIMO relay 
systems. In this thesis, precoder pair, which consists of relay precoder matrix and an 
additional source precoder matrix, has been studied based on the classical Generic 
algorithm. For MIMO relay systems with various two-phase transmission protocols, 
numerical results show that ergodic/outage capacity improvement with respect to 
traditional techniques can be achieved with guaranteed individual transmit power 
constraint for source and relay terminals. 
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Chapter 1   Introduction 

 

The origin of relay systems can be traced back to the seventies [1] [2]. 

Recently, relay functionalities and relaying strategies have become a major topic 

in the wireless research community again due to its essential to provide reliable 

transmission, high link level capacity and broad coverage for wireless networks in 

a variety of applications. Moreover, these networks are typically employed in 

fading environments, rendering the transmitted signals vulnerable to severe 

attenuations in their received strength. In a cellular environment, a relay can be 

deployed in areas where there are strong shadowing effects, such as inside 

buildings and tunnels. For mobile ad hoc networks, relaying is essential not only to 

overcome shadowing due to obstacles but also to reduce unnecessary transmission 

power from source and hence radio frequency interference to neighboring 

terminals. In such settings, it becomes necessary for the terminals in the network 

to cooperate at the physical layer in order to increase the link level capacity 

between any pair of terminals and to ensure robustness of the communications to 

changes in channel conditions. As a result, precoding, a MIMO (multiple-input 

multiple-output) signal processing technique that based on the channel state 

information (CSI), is applied onto relay systems to further improve system 

performance. The unit executes precoding is called precoders. 

 

Relay precoder design criterion varies in many ways, including:  

 Ergodic capacity, achievable rate, and mutual information [3] ~ [9]. 

 MSE or SNR at receiver side [10] ~ [12]. 
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 Diversity gain [13]. 

 Outage probability and achievable outage rate [14].  

 

For example, in [4], the author proved that the optimal relay precoder matrix 

has a unique form and proposed an optimal relay power loading matrix to 

maximize the two-hop MIMO non-regenerative channel ergodic capacity; In [9], 

the author proposed a power allocation algorithm for both source and relay 

terminals while the MIMO channel has been parallelized by the precoder pair; In 

[10], with statistical CSIT and perfect CSIR, the author derived the optimal power 

allocation that minimizes high- SNR approximations of the outage probability; In 

[11], the author developed a generalized notion of SNR (GSNR) for a two-hop 

SISO relay channel and proposed the so-called estimate and forward relaying and 

its corresponding relay precoder which maximizes GSNR. 

 

Most previous researches focus on relay precoder design and hence problems 

arise: What if we have an additional precoder at source terminal? What is the joint 

optimal precoder pair of such three-terminal MIMO relay channel its impact to the 

system performance? To answer these problems, we are going to find the optimal 

precoder pairs for various network configurations and their corresponding 

performance limits of a three-terminal MIMO non-regenerative relay channel. 

 

The following chapters are composed as below: Chapter 2 contains 

background knowledge of MIMO wireless precoding, and we will introduce basic 

elements of Generic algorithm in Chapter 3; the system model, two-phase 

transmission protocols, precoder design criterion, problem formulation, and 
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implementation together organize the main body of this thesis, is placed in Chapter 

4; Chapter 5 shows simulation results and corresponding observations, and 

Chapter 6 will be a conclusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 



 

Chapter 2   MIMO Wireless Precoding 

 

2.1 Introduction 

Precoding is a generalized beamforming scheme to support 

multi-layer(multiple data streams) transmission in MIMO radio systems. 

Conventional beamforming considers linear single-layer precoding so that the 

same signal is emitted from each of the transmit antennas with appropriate 

weighting such that the received signal power is maximized at the receiver. When 

the receiver has multiple antennas, the single-layer beamforming can not 

simultaneously maximize the received signal power at all of the receive antennas 

and so precoding is used for multi-layer beamforming in order to optimize the 

performance index such as maximize the achievable rate of a multiple receive 

antenna system. In other words, the signals of the multiple data streams are 

emitted from the transmit antennas with independent and appropriate weighting on 

each antenna such that the performance index is optimized. 

 

So it is clear that precoding design is to find the appropriate weightings, 

which depending on the available CSIT (channel state information at transmitter 

side) and the performance index we interest in. CSIT usually comes from the 

feedback of receiver. However, when the feedback delay is greater than the 

channel coherence time, no estimate is valid and we can only rely on statistical 

information, such as channel mean and covariance. These statistics can be reliably 

obtained by averaging channel measurements over multiple channel coherence 

times. Different performance indexes will also lead to different precoding design. 
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Precoders can also be designed to minimize the error probability, minimize the 

outage probability, minimize the detection mean squared-error (MSE), maximize 

the ergodic capacity, or maximize the received signal-to-noise ratio (SNR). These 

different precoder designs can be analyzed using the common linear precoding 

structure. 

 

In the remaining of this chapter we will focus on linear precoding with 

perfect CSIT. First, a basic system linear precoding block diagram will be 

presented; and then we will give an intuitive explanation for the power constraints 

and some common design criteria. 

 

2.2 Linear precoding system 

All communication systems can be seen as the composition of three parts: the 

transmitter, the channel, and the receiver. Since the precoder is part of the 

transmitter side, we will pay attention to the transmitter. 

 

The transmitter in a system with linear precoding consists of a channel 

encoder and a precoder is presented in Figure 2.1. The channel encoder takes data 

streams s in and performs necessary coding for error correction by adding 

redundancy, then maps the coded bits into symbol vectors c. The precoder 

processes these symbols before transmission from the antennas and produces the 

transmitted signal x. At the other side, the receiver decodes the noise-corrupted 

received signal y to recover the data bits s’. If the input-output relation of a system 

with a precoder at transmitter side can be expressed as 
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y = HFc + w                     (2—1) 

than this system can be referred to a linear precoding system. In the next chapter, 

the structure of common linear precoder will be further investigated. 

 

 

Fig. 2.1: Linear precoding system block diagram 

 

2.2.1 Basic linear precoder structure 

Basic linear precoder functions as a combination of an input signal shaper 

and a multi-mode (multi-subchannel) beamformer with per-beam power allocation. 

Consider the singular value decomposition (SVD) of the precoder matrix F: 

F =UFDFVF
H       (2—2) 

The orthogonal beam directions are the left singular vectors UF, of which each 

column represents a beam direction, so UF is often called a multi-mode 

beamformer. Note that UF is also the eigenvectors of the product FFH, thus UF is 

also referred to as eigen-beamformer. The beam power loadings are the squared 

singular values DF. The right singular vectors VF mix the precoder input symbols c 

to feed into each beam direction and hence is referred to as the input shaping 

matrix. This structure is illustrated in Figure 2.2. 
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Fig. 2.2: Linear precoder structure using SVD 

 

Essentially, a precoder has two effects: decoupling the input signal into 

orthogonal spatial modes (subchannels) in the form of eigen-beams, and allocating 

power over these beams based on the CSIT. If the precoded orthogonal spatial 

beams perfectly match the channel eigen-directions (the eigenvectors of HHH), 

there will be no interference among signals sent on different modes, thus creating 

parallel channels and allowing transmission of independent signal streams. This 

effect, however, requires the full channel knowledge at the transmitter. With 

partial CSIT, the precoder performs its best to approximately match its 

eigen-beams to the channel eigen-directions and therefore reduces the interference 

among signals sent on these beams. This is the decoupling effect. Moreover, the 

precoder allocates power on the beams. By allocating power, the precoder 

effectively matches the channel based on the CSIT, so that more power is sent in 

the directions where the channel is strong and less or no power in the weak.  

 

 2.2.2 Power constraint 

In precoder design, power constraints are necessary to avoid trivial solutions 

such as increasing the norm of the precoder matrix to infinity, which is impossible 

practically. In this section, we are going to introduce some common power 

constraints in the following pages. 
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A reasonable power constraint is obtained by bounding the expected norm of 

the transmit vector 

{ } ( )2 HE tr=x FF ,      (2—3) 

which limits the total transmit power, and thus, we will refer this power constraint 

as: 

{ } ( )2 HE tr P= ≤x FF .     (2—4) 

 

 An alternative is to constrain the maximum eigenvalue of the transmit vector 

covariance matrix FFH, which also limits the power because 

( ) ( )H
maxtr Nλ≤FF FFH

,    (2—5) 

where N is the number of nonzero eigenvalues of FFH. This corresponds to 

( )H
maxNλ P=FF .      (2—6) 

Besides limiting the transmit power, the maximum eigenvalue constraint imposes 

a limit on the peak power of the output signal. The advantage of this constraint is 

that it limits the signal peak, independent of the specific constellation used. The 

disadvantage is that the bound may not be tight. 

 

In relay system, one issue about power constraint is that besides the 

individual power constraint for source terminal and relay terminal, the total power 

dissipated by source and relay terminals should be constrained or not. We do not 

impose this constraint because in a practical system the source terminal and the 

relay terminal have independent power supplies.  

 

8 



 

 2.2.3 Precoder design criteria 

There are alternate precoding design criteria based on both fundamental and 

practical performance indexes. The fundamental performance indexes include the 

ergodic capacity and the error probability, while the practical performance indexes 

contain, for example, the outage probability, mean square-error (MSE), and the 

received SNR. The choice of the design criterion depends on the system setup, 

operating parameters, and the channel (fast or slow fading). For example, 

fundamental performance indexes usually assume ideal channel coding; the 

ergodic capacity implies that the channel evolves through all possible realizations 

over arbitrarily long codewords, while the error probability applies for finite 

codeword lengths; on the other hand, analyses using practical performance indexes 

usually apply to uncoded systems and assume a block fading channel.  
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Chapter 3   Generic Algorithm 

 

3.1 Introduction 

John Holland, from the University of Michigan began his work on genetic 

algorithms at the early 60s. A first achievement was the publication of Adaptation 

in Natural and Artificial System in 1975. 

 

Holland had a double aim: to improve the understanding of natural adaptation 

process, and to design artificial systems having properties similar to natural 

systems. Since then, generic algorithms have been used widely as a tool in 

computer programming and artificial intelligence, optimization, neural network 

training, and many other areas. 

 

The basic idea is as follow: the genetic pool of a given population potentially 

contains the optimal solution, or a better solution, to a given adaptive problem. 

This solution is not "active" because the genetic combination on which it relies is 

split between several subjects. Only the association of different genomes can lead 

to the solution. 

 

Holland’s method is especially effective because he not only considered the 

role of mutation, but he also utilized genetic recombination: the crossover of 

partial solutions greatly improves the capability of the algorithm to approach, and 

eventually find, the optimum solution. 
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3.2 Basic Concepts 

The principle of genetic algorithms is presented below: 

A. Random generation of a population. This one includes a genetic pool 

containing a group of possible solutions. 

B. Encoding of the population members in corresponding binary strings. 

Each binary string is called a chromosome which contains multiple 

genes (bits). 

C. Reckoning of the fitness value, the objective function value we want to 

optimize, for each subject. The fitness value will directly depend on the 

distance to the optimum solution.  

D. Selection of the subjects that will mate according to their share in the 

population global fitness.  

E. Genomes crossover and mutations.  

F. Start again from point C. 

 

In the next couple of sections, we introduce some generic operators and their 

corresponding implement methods in detail. 

 

3.2.1 Selection 

Selection is a genetic operator that chooses a chromosome from the current 

generation’s population for inclusion in the next generation’s population. Before 

making it into the next generation’s population, selected chromosomes may 

undergo crossover and/or mutation (depending upon the probability of crossover 

and mutation, Pc and Pm) in which case the offspring chromosome(s) are actually 

the ones that make it into the next generation’s population. Common selection 
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methods are: 

 

Roulette  

A selection operator which the chance of a chromosome getting selected is 

proportional to its fitness value. This is where the concept of survival of the 

fittest comes into play. 

 

Tournament 

A selection operator which uses roulette selection N times to produce a 

tournament subset of chromosomes. The best chromosome in this subset is then 

chosen as the selected chromosome. This method of selection applies addition 

selective pressure over plain roulette selection. 

 

Top Percent 

Top percent is a selection operator which randomly selects one 

chromosome from top N percent of the current population, where N is 

previously specified by user. 

Best  

It’s a selection operator which selects the best chromosome (as determined 

by fitness value). If there are two or more chromosomes with the same best 

fitness, one of them is chosen randomly. 

 

Random 

It’s a selection operator which randomly selects a chromosome from the 

population. 
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3.2.2 Crossover 

Crossover is a genetic operator that combines (mates) two chromosomes 

(parents) to produce new chromosome(s) (offspring). The idea behind crossover is 

that the new chromosome(s) may be better than both of the parents if it takes the 

best characteristics from each of the parents. Crossover occurs during evolution 

according to a user-definable crossover probability. Followings are some common 

methods to implement crossover: 

 

One Point 

A crossover operator that randomly selects a crossover point within a 

chromosome then interchanges the two parent chromosomes at this point to 

produce two new offspring. 

 

Consider the following two parents which have been selected for 

crossover. The “|” symbol indicates the randomly chosen crossover point. 

 

Parent 1: 11001|010 

Parent 2: 00100|111 

 

After interchanging the parent chromosomes at the crossover point, the 

following offspring are produced: 

 

Offspring1: 11001|111 

Offspring2: 00100|010 
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Two Point 

A crossover operator that randomly selects two crossover points within a 

chromosome then interchanges the two parent chromosomes between these 

points to produce two new offspring. 

 

Consider the following two parents which have been selected for 

crossover. The “|” symbols indicate the randomly chosen crossover points. 

 

Parent 1: 110|010|10 

Parent 2: 001|001|11 

 

After interchanging the parent chromosomes between the crossover points, 

the following offspring are produced: 

 

Offspring1: 110|001|10 

Offspring2: 001|010|11 

 

Uniform 

A crossover operator that decides (with some probability – known as the 

mixing ratio) which parent will contribute each of the gene values in the 

offspring chromosomes. This allows the parent chromosomes to be mixed at 

the gene level rather than the segment level (as with one and two point 

crossover). For some problems, this additional flexibility outweighs the 

disadvantage of destroying building blocks. 

 

14 



 

Consider the following two parents which have been selected for 

crossover: 

 

Parent 1: 11001010 

Parent 2: 00100111 

 

If the mixing ratio is 0.5, approximately half of the genes in the offspring 

will come from parent 1 and the other half will come from parent 2. Below is a 

possible set of offspring after uniform crossover: 

 

Offspring1: 1111010202121201 

Offspring2: 0202120111011112 

 

Note: The subscripts indicate which parent the gene came from. 

 

Arithmetic 

A crossover operator that linearly combines two parent chromosome 

vectors to produce two new offspring according to the following equations: 

Offspring1 = a * Parent1 + (1- a) * Parent2      (3—1) 

Offspring2 = (1 - a) * Parent1 + a * Parent2      (3—2) 

where a is a random weighting factor (chosen before each crossover operation). 

 

Consider the following two parents (each consisting of 4 float genes) 

which have been selected for crossover: 
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Parent 1: (0.3)(1.4)(0.2)(7.4) 

Parent 2: (0.5)(4.5)(0.1)(5.6) 

 

If a = 0.7, the following two offspring would be produced: 

 

Offspring1: (0.36)(2.33)(0.17)(6.86) 

Offspring2: (0.402)(2.981)(0.149)(6.842) 

 

Heuristic 

A crossover operator that uses the fitness values of the two parent 

chromosomes to determine the direction of the search. The offspring are 

created according to the following equations:  

Offspring1 = BestParent + r * (BestParent – WorstParent)   (3—3) 

 Offspring2 = BestParent       (3—4) 

where r is a random number between 0 and 1. 

 

It is possible that Offspring1 will not be feasible. This can happen if r is 

chosen such that one or more of its genes fall outside of the allowable upper or 

lower bounds. For this reason, heuristic crossover has a user settable parameter 

n for the number of times to try and find an r which results in a feasible 

chromosome. If a feasible chromosome is not produced after n tries, the 

WorstParent is returned as Offspring1. 

 

Crossover is the most important part of genetic algorithms, there is 

nevertheless other operators like mutation and inversion. In fact, the desired 

16 



 

solution may happen not to be present inside a given genetic pool, even a large 

one. Mutations allow the emergence of new genetic configurations which, by 

widening the pool improve the chances to find the optimal solution. In next 

section we are going to introduce mutation operator. 

 

3.2.3 Mutation 

Mutation is a genetic operator that alters one ore more gene values in a 

chromosome from its original state. This can result in entirely new gene values 

being added to the gene pool. With these new gene values, the genetic algorithm 

may be able to arrive at better solution than was previously possible. Mutation 

operator is an important part of the genetic algorithms as it helps to prevent the 

population from stagnating at any local optimum. Mutation occurs during 

evolution according to a user-definable mutation probability. This probability 

should usually be set fairly low (0.01 is a good first choice). If it is set to high, the 

search will turn into a primitive random search. Followings are some common 

methods to implement mutation: 

 

Flip Bit 

Flip bit is a mutation operator that simply inverts the value of the chosen 

gene (0 goes to 1 and 1 goes to 0). This mutation operator can only be used for 

binary genes. 

 

Boundary 

This is a mutation operator that replaces the value of the chosen gene with 

either the upper or lower bound for that gene (chosen randomly). This mutation 
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operator can only be used for integer and float genes. 

 

Non-Uniform 

A mutation operator that increases the probability that the amount of the 

mutation will be close to 0 as the generation number increases. This mutation 

operator keeps the population from stagnating in the early stages of the 

evolution then allows the genetic algorithm to fine tune the solution in the later 

stages of evolution. This mutation operator can only be used for integer and 

float genes. 

 

Uniform 

A mutation operator that replaces the value of the chosen gene with a 

uniform random value selected between the user-specified upper and lower 

bounds for that gene. This mutation operator can only be used for integer and 

float genes. 

 

Gaussian 

A mutation operator that adds a unit Gaussian distributed random value to 

the chosen gene. The new gene value is clipped if it falls outside of the 

user-specified lower or upper bounds for that gene. This mutation operator can 

only be used for integer and float genes. 

 

3.2.4 Termination 

Termination is the criterion by which the genetic algorithm decides whether 

to continue searching or stop the search. Each of the enabled termination criterion 
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is checked after each generation to see if it is time to stop. Followings are some 

common methods to implement termination: 

 

Generation Number 

This is a termination method that stops the evolution when the 

user-specified maximum number of evolution has been run out. This 

termination method is always active. 

 

Evolution Time 

It’s a termination method that stops the evolution when the elapsed 

evolution time exceeds the user-specified maximum evolution time. By default, 

the evolution is not stopped until the evolution of the current generation has 

completed, but this behavior can be changed so that the evolution can be 

stopped within a generation. 

 

Fitness Threshold 

A termination method that stops the evolution when the best fitness value 

in the current population becomes less than the user-specified fitness threshold 

and the optimization objective is set to minimize the fitness. This termination 

method also stops the evolution when the best fitness value in the current 

population becomes greater than the user-specified fitness threshold when the 

optimization objective is to maximize the fitness. 

 

Fitness Convergence 

A termination method that stops the evolution when the fitness is deemed 
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as converged. Two filters of different lengths are used to smooth the best 

fitness across the generations. When the smoothed best fitness from the long 

filter is less than a user-specified percentage away from the smoothed best 

fitness from the short filter, the fitness is deemed as converged and the 

evolution terminates. 

 

Population Convergence 

A termination method that stops the evolution when the population is 

deemed as converged. The population is deemed as converged when the 

average fitness value across the current population is less than a user-specified 

percentage away from the best fitness value of the current population. 

 

Gene Convergence 

A termination method that stops the evolution when a user-specified 

percentage of the genes that make up a chromosome are deemed as converged. 

A gene is deemed as converged when the average value of that gene across all 

of the chromosomes in the current population is less than a user-specified 

percentage away from the best gene value across the chromosomes. 

 

3.3 Comparison 

Genetic algorithms are original systems based on the supposed functioning of 

the living. The method is very different from classical optimization algorithms: 

 

A. Use of the encoding of the parameters, not the parameters themselves. 

Other methods usually deal with functions and their control variable 
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directly. Because generic algorithms operate at the coding level, they are 

difficult to fool even when the function may be difficult for traditional 

optimization schemes. 

 

B. Work on a population of points, not a unique one. Many other methods 

work from a single point. By maintaining a population of well-adapted 

sample points, the probability of reaching a false peak is reduced. This 

concept is depicted as figure 3.1 below. While determining the starting 

point of gradient technique is critical, generic algorithm is much more 

robust to this uncertainty. 

 

 

Fig. 3.1: Comparison of the searching points for GA(right) and gradient technique(left). 

 

C. Use the only values of the function to optimize, not their derived 

function or other auxiliary knowledge. Other methods rely heavily on 

such information, and in problems where the necessary information is 

not available of difficult to obtain, these other techniques break down.  

D. Use probabilistic transition function not determinist ones. The crossover 

operation and mutation operation offer a “dynamic balance” model 
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which reduces the dependence of the system initial state and makes the 

optimum more achievable. 

 

 

It's important to understand that the functioning of such an algorithm does not 

guarantee success. We are in a stochastic system and a genetic pool may be too far 

from the solution, or for example, a too fast convergence may halt the process of 

evolution. 

 

3.4 Summary 

The concept of a computer algorithms being based on the evolutionary of 

organism is surprising, the extensiveness with which this algorithm is applied in so 

many areas is no less than astonishing. GAs’ usefulness and gracefulness of 

solving problems has made it a more effective choice among the traditional 

methods, namely gradient search, random search and others. GAs are very helpful 

when the developer does not have precise domain expertise, because GAs possess 

the ability to explore and learn from their domain.  

 

In this report, we have placed more emphasis in explaining the operators of 

GAs. We believe that, through working out some interesting examples, one could 

grasp the idea of GAs with greater ease. In future, we would witness some 

developments of variants of GAs to tailor for some very specific tasks. This might 

defy the very principle of GAs that it is ignorant of the problem domain when used 

to solve problem. But we would realize that this practice could make GAs even 

more powerful.  
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In summary, the flow chart of generic algorithm is depicted as in figure 3.2. 

 

 

Fig 3.2: Flow chart of Generic algorithm 
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Chapter 4   Optimal Precoder Pair 

 

4.1 Introduction 

In chapter four, we are going to study the system model, two-phase 

transmission protocols, precoder pair design criterion, and the implementation 

issues. By clarifying the relation between them, together with the next chapter, we 

aim to answer the question addressed in chapter one. 

 

This chapter is composed as following: In section 4.2, we introduce the 

system model—three-terminal MIMO relay systems and some major assumptions 

imposed on this system model; In section 4.3, the two-phase transmission 

protocols will be described in detail, the relationship between these protocols and 

the system model are also revealed; In section 4.4, the designing 

criterion—ergodic capacity and outage capacity will be studied. The link between 

ergodic capacity and various two-phase transmission protocols will be clarified, 

the performance gain on the outage capacity will be observed as well; In the last 

section, we are going to use GA to solve this problem. 

 

4.2 Three-Terminal MIMO Relay System 

In this section, we introduce a wireless network composed of three 

terminals—a three-terminal MIMO relay system. This model is perhaps the most 

simplified scenario of wireless relay network. Despite this simplicity, this model 

encompasses many of the special cases that have been extensively studied in the 

literature. These special channels are induced by the transceiving relations among 
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terminals and the system design requirements imposed on the network. More 

importantly, this model exposes the common features shared by these special cases, 

enables us to clarify the basic essence of cooperative strategies, and gives us 

insight to the design of optimal precoder pairs. 

 

4.2.1 System Model 

The system block diagram of a three-terminal MIMO relay system is depicted 

as in Figure 4.1 below. MS, MR, and MD represents the total antenna number of the 

corresponding terminal; the channel matrix between source and destination, source 

and relay, and relay and destination, are denoted as HSD, HSR, and HRD with 

dimension MD by MS, MR by MS, and MD by MR; FS and FR are the precoder 

matrix for source terminal and relay terminal with dimension MS by L and MR by 

MR, where L is the number of layers (data streams).  

 

  

Fig. 4.1: Three-Terminal MIMO Non-regenerative Relay System Block 
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4.2.2 Assumptions 

Main assumptions are described as following: 

1. In general, we don’t have any assumptions on the distribution of the 

channel matrices. But in numerical analysis, our channel matrices are 

modeled as block Rayleigh fading matrices with i.i.d. fading entries. 

2. All channel matrices remain constant during one two-phase transmission. 

The definition and details of two-phase transmission is the next section. 

3. Channel matrices, noise vectors, and c, signal before source precoding, 

are all mutually independent. 

4. We assume that all channel matrices have full rank.  

5. We assume that every terminal has perfect knowledge of all channels. 

6. The relay operates in the half-duplex mode, which means that relay 

cannot transmit and receive data simultaneously using same degree of 

freedom.  

7. The relay neither decodes nor re-encodes the received signal. It only 

scales the received signal amplitude to fit its power constraint and 

retransmits the modified signal to destination, i.e., it’s a non-regenerative 

(or amplify-and-forward, AF) relay.  

8. We assume that the precoder input symbol vector c is a Gaussian input, 

which means that  

( )DCN 0,c I∼
                  (4—1) 
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4.3 Two-phase Transmission Protocol 

There are several variations that can be considered for two-phase 

transmission protocols. The recently proposed cooperative diversity approaches 

demonstrate the potential to achieve higher diversity order or enhance the capacity 

of wireless systems without deploying multiple antennas at the transmitter. Using 

nearby collaborators as virtual antennas, significant diversity gains can be 

achieved. These schemes basically require that the source terminal shares the 

information bits with the relay terminal(s), and this data sharing process is 

generally achieved at the cost of additional orthogonal channels 

 

In the following slides the comparison of four common protocols, transmit 

diversity protocol, receive diversity protocol, simple transmit diversity protocol, 

and multihop protocol, will be presented. The discussions including: 

 Transceiving relations among terminals. 

 Input-output relations between y and c. 

 Matrices A and B. 

 

4.3.1 Transmit Diversity Protocol 

In the TD protocol, during the first phase, source terminal broadcasts its 

information. This process is depicted as in Figure 4.2(a). During the second phase, 

source terminal retransmits the same signal as in the first phase to destination 

terminal, and relay terminal transmits the precoded signal to destination terminal. 

This process is depicted as in Figure 4.2(b). 

27 



 

 

Fig. 4.2(a): The first phase of TD protocol 

 

 

 

 

 

Fig. 4.2(b): The second phase of TD protocol 
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4.3.2 Receive Diversity Protocol 

In this case, during the first phase, source terminal broadcasts its information 

in the same way as the TD protocol. This process is depicted in Figure 4.3(a). 

During the second phase, the relay retransmits the data to the destination terminal, 

and the source remains silent. This process is depicted in Figure 4.3(b).  

 

Fig. 4.3(a): The first phase of RD protocol 
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Fig. 4.3(b): The second phase of RD protocol 
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4.3.3 Simple Transmit Diversity Protocol 

This is a simplified alternative approach to the TD protocol. In this case, the 

destination terminal is switched off during the first phase and thus ignores the 

signal from source terminal. The first phase communication link serves only the 

relay terminal. This process is depicted in Figure 4.4(a). The second phase is 

identical to that of the TD protocol. This process is depicted in Figure 4.4(b). The 
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STD protocol may result in a simple receiver structure but in some cases, a 

performance loss is expected compared to TD protocol. 

 

Fig. 4.4(a): The first phase of STD protocol 

 

 

 

 

 

Fig. 4.4(b): The second phase of STD protocol 
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4.3.4 Multihop Protocol 

The effectiveness of MH protocols has been widely studied. This approach 

does not offer any diversity gain, and thus generally results in performance loss 

rather than gain. However, if the signal decay due to path loss is severe, the MH 

protocol does offer an SNR gain compared to direct transmission, when the relay 

is between the two communicating nodes. The process of MH protocol is depicted 

in Figure 4.5(a) and Figure 4.5(b). 

  

Fig. 4.5(a): The first phase of MH protocol 
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Fig. 4.5(b): The second phase of MH protocol 
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 4.3.5 Summary 

  A brief summary is depicted in Table 4.1: 

 TD RD STD MH 

T1
S→R 

S→D 
T1

S→R 

S→D 
T1 S→R T1 S→R 

Transceiving 

relation 
T2

S→R 

R→D 
T2 R→D T2

S→R 

R→D 
T2 R→D 

A SD

SD RD R SR

⎡ ⎤
⎢ ⎥
⎣ ⎦

0 H
H H F H

[ ]SD RD R SRH H F H
⎡ ⎤SD

RD R SR
⎢ ⎥
⎣ ⎦

H
H F H  

RD R SRH F H  

B 
RD R

⎡ ⎤
⎢ ⎥
⎣ ⎦

0 I 0
H F 0 I  

[ ]RD RH F I  RD R

⎡ ⎤
⎢ ⎥
⎣ ⎦

0 I 0
H F 0 I

[ ]RD RH F I  

   Table 4.1: Summary of two-phase transmission protocols 
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4.4 Design Criterion: Ergodic capacity 

In the previous chapter, we have formulated the input-output relation of 

various two-phase transmission protocols as a general form: a MIMO single link 

channel. For a MIMO single link channel with input-output relation 

S= + = +y AF c Bw Ax Bw
               (4—14) 

the corresponding achievable rate of one two-phase transmission is given by [8] 

[19]: 

( ) 1H H Hs
S S W

S

P1R log det
2 M

−⎛ ⎞
= +⎜ ⎟

⎝ ⎠
I AF F A BR B

   (4—15) 

where the factor 0.5 comes from the fact that the signal vector is actually 

transmitted in two time instances, so the spectral efficiency drops by one half. PS is 

the source total transmit power, BRWBH is the equivalent noise covariance matrix, 

A and B are functions of channel matrices, their form will depend on different 

transmission protocol. 

 

Based on equation (4-15), the ergodic capacity can be expressed as: 

( ) 1H H Hs
e S S

S

P1C E log det
2 M

−⎧ ⎫⎛ ⎞⎪ ⎪= +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

I AF F A BR BW

 (4—16) 

where expectation operates on matrices A and B. 
 

To maximize the average achievable rate, one can find optimal precoders that 

maximize the achievable rate per two-phase transmission, so the average of these 

maximum achievable rates will result in a maximum average achievable rate. 
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Without any constraint, maximization of ergodic capacity in (4—16) will lead 

to the trivial solution of increasing to the norm of precoder matrices to infinity. A 

reasonable constraint is obtained by bounding the expected norm of the transmit 

vector, which limit the transmit power. The individual power constraint for both 

precoder matrices are given by: 

( ){ } ( ){ } ( )H H H
S S S SE tr = E tr tr PH

S= ≤xx F cc F F F
    (4—17) 
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F y y F

F H F c w H F c w F
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In summary, maximizing average achievable rate resulted in solving the 

following optimization problem: 

( ) ( )

( )
( )

( )

{ }
( ){ }

S R

R

1H H Hs
S R S S W

S

S,opt R,opt S R,

H
S S S

2 H H H
R w SR S S SR R R

P, log det
M

, arg max ,

. . tr P

        tr P

Q

Q

s t

σ

−⎛ ⎞
= +⎜ ⎟

⎝ ⎠

=

≤

+ ≤

F F

F F I AF F A BR B

F F F F

F F

F I H F F H F
 (4—19) 

where PS and PR are the total transmit power transmitting a symbol vector by 
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source and relay terminal. 

 

4.5 Generic Algorithm Implementation 

We can see from section 4.3.5 that matrices A and B share a common 

property: they not only are function of channel realization, but also function of 

relay precoder matrix. During each two-phase transmission, we have assumed that 

the channel realizations stay unchanged, which implies that under this condition, 

matrices A and B will be function of relay precoder matrix only. 

 

Base on this observation, we can apply GA at relay terminal. First, generate a 

population of relay precoder matrix, say, 1000 relay precoder matrices, therefore, 

we can get 1000 matrices A and B. Base on [16] and [19], given a fix channel 

realization (matrices A and B) and full CSIT, the optimal source precoder matrix is 

to use water-filling strategy over all available subchannels. As a result, we can 

have 1000 precoder pairs for one channel realization. 

 

Next step is to use these pairs to evaluate the block achievable rate. If we set 

crossover rate = 0.7, 300 best precoder pairs will be preserved, the remaining 700 

precoders will be replaced by the offspring come from crossover. Here we use 

arithmetic crossover, where 

  

Offspring = a*Parent1 + (1-a)*Parent2 + w          (4—20) 

 

with a = 0.5, and a small random zero-mean Gaussian matrix will be added on to 

tune it slightly. This random matrix can be considered as a secondary mutation 
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operation. When processing crossover, parents can be picked randomly from the 

“elites” or the “peasants”, where the probability being picked is proportional to its 

fitness value. Note that the factor a decides which side offspring is going to be like: 

if offspring is close to father, it will act like its father and share some common 

properties with its father; on the contrary, if offspring is close to mother, it will act 

like its mother and share some common properties with its mother; 

 

After crossover operation, mutation operation steps in. The main mutation 

operation is a modified version of uniform mutation with a modified constraint 

such that every precoder matrix must follows the power constraint after any 

mutation operation. It is done simply by random generating another relay precoder 

matrix, force it to meet relay power constraint, and use this new precoder matrix to 

replace an old “peasant” matrix. The mutation rate is usually very small, say, 0.01. 

Only when the outcome of flipping a uniform dice is smaller than 0.01 will this 

mutation occurs. 

 

Perform the whole process iteratively, say, 150 times for one channel 

realization, the final result will close to the optimal precoder pair. However, the 

GA parameters, including population size, crossover rate, mutation rate, and the 

iteration number needed for one channel realization, are highly related to the 

effectiveness of GA. Below we are going to use some simulations to find 

appropriate values of these parameters. 
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Convergence speed on GA parameters 

Different GA parameters will affect GA’s convergence speed. The faster GA 

converges, the higher probability GA can find a better solution than the current 

solution. Through numerical analysis, the convergence speed of object function for 

different parameters will be showed. Nevertheless, by numerical analysis we will 

show that GA can find the optimal solution. 

 

In numerical result 1, we are going to show the relationship between the 

convergence speed of the objective function and the GA population size. 

Parameter settings are listed below. 

 Transmit protocol: RD 

 All terminal antenna numbers: 2 

 Number of layers: 2 

 Crossover rate: 0.75 

 Mutation rate: 0.05 

 SNR0 = 10dB, SNR2 = 15dB, where SNR0 and SNR2 are defined as: 

2
0 S S D

2
2 R R

SNR P M σ

SNR P M σ

=

= D          (4—21) (4—22) 
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Fig. 4.6: The convergence speed of objective function versus GA population size 

 

In Figure 4.6, we can see that as the population size grows, the faster the 

convergence speed of the objective function. This is a reasonable result because 

that for one iteration the objective function value of the best candidate from a set 

with greater population size is higher than that from a set with smaller population 

size of high probability. However, increasing the population size does not always 

reduce the processing time, which implies that the resulting gain from increasing 

population vanishes as the population size grows to infinity. 

 

Numerical result 2 shows the relationship between the crossover rate and the 

convergence speed of the objective function. Parameter settings are listed below. 

 Transmit protocol: RD 

 All terminal antenna numbers: 2 
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 Number of layers: 2 

 Population size: 500 

 Mutation rate: 0.05 

 SNR0 = 10dB, SNR2 = 15dB 

 

Fig. 4.7: The convergence speed of objective function versus crossover rate 

 

In Figure 4.7, we can see that when the crossover rate is too low, the 

convergence speed is comparatively slow because most candidates are kept as 

“elites” and offspring generated by crossover operation only contribute a very 

small part of this new population. Hence, crossover becomes ineffective and slows 

down the convergence speed. On the other hand, however, when the crossover rate 

is too high, the algorithm will easily falls into local optimum because the elite 

candidates lack gene variety. This problem will be even more severe if we only 

allow crossover between elite parents. 
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Numerical result 3 shows the relationship between the mutation rate and the 

convergence speed of the objective function. Parameter settings are listed below. 

 Transmit protocol: RD 

 All terminal antenna numbers: 2 

 Number of layers: 2 

 Population size: 500 

 Crossover rate: 0.75 

 SNR0 = 10dB, SNR2 = 15dB 

 

Fig. 4.8: The convergence speed of objective function versus mutation rate 

 

In Figure 4.8, we can see that the relation between mutation rate and the 

objective function is not so obvious. However, if the mutation rate is too high, the 

algorithm will become a random search; if too low, the algorithm will lose the 

ability to climb out of the local optimum. 
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Numerical result 4 shows that GA actually approaches the optimal solution. 

This simulation considers no source precoder. Parameter settings are listed below. 

 Transmit protocol: MH 

 All terminal antenna numbers: 2 

 Number of layers: 2 

 Population size: 1000 

 Crossover rate: 0.7 

 Mutation rate: 0.01 

 SNR2 = 15dB 

 Each SNR point averages over 1000 channel realizations. 

 
Fig. 4.9: Comparison of ergodic capacity using different implementations 

 

In Figure 4.9, we compare the ergodic capacity of four different 

implementation schemes: blue line stands for the ergodic capacity that no relay 

precoder exists; green line comes from that we let relay precoder matrix of the 

42 



 

form:  

H
RD SRR =F V DU

                              (4—23) 

and we apply GA to find an optimal power loading matrix D; purple line 

represents that we use GA to find a optimal relay precoder matrix; red line is the 

referenced algorithm in [4], where the relay precoder matrix is of the same form in 

(4—23) but with power loading matrix D = diag(f1,f2,…fMR) and 

( )
2

2 2 *
2

1 4 2
2 1

D
k R k R k k

R k R k

f σ ρ α ρ α β μ ρ α
σ β ρ α

+

R k
⎡ ⎤= + − −⎣ ⎦+

(4—24) 

where αks are the eigenvalues of HSRHSR
H

 arranged in descending order, βks are 

the eigenvalues of HRD
HHRD arranged in descending order, ρR is equal to 

PS/(MS*σR
2), and μ* is the unique Lagrange multiplier which satisfies the relay 

transmit power constraint. 

 

 From Figure 4.9, we can have two observations: 

1. GA indeed reaches the optimal solution. The optimal relay precoder 

matrix proposed in [4] has already been proved to be optimal, and GA 

has the ability to find a solution that results a performance very close to 

the referenced algorithm in [4]. 

2. In the two-hop transmission protocol, relay precoder form as equation 

(4—23) has been proved an optimal form in [4]. This phenomenon can 

be confirmed by this numerical result because the green line and the 

purple line have almost same performance, which implies that the 

performance of directly selecting a optimal relay precoder matrix by GA 

is very close to that of selecting a optimal power loading matrix by GA 
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and then use equation (4—23) to form the relay precoder. Note that this 

observation can not be extended to other transmit protocols. 

 

4.6 Summary 

In this chapter, we have introduced the system model—three-terminal MIMO 

non-regenerative channel. Based on this model and the assumptions inposed on it, 

two-phase transmission protocols have been discussed; and then, we bring up a 

general input-output form for the equivalent channel resulted from these 

two-phase transmission protocols. From this general form, we can therefore let the 

precoder pair design criteria—channel ergodic capacity, come into play. We also 

showed how we use GA to select the optimal precoder pair. In the end of this 

chapter, the relation between GA convergence speed and its parameters has been 

investigated, and the effectiveness of GA has been shown as well. 

 

By using GA, we pick one optimal precoder pair for one transmission block; 

hence, the ergodic capacity can be maximized. In the next chapter, we will show 

some numerical results and observations.  
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Chapter 5   Numerical Result 

 

 In this chapter, we are going to show the numerical results. Four different 

transmission protocols will be examinated. Before we start, note that SNR0 is equal to 

PS/(MS*σD
2), SNR1 is equal to PS/(MS*σR

2), and SNR2 is equal to PR/(MR*σD
2). 

  

 The numerical results have two parts: one is for ergodic capacity, and another is 

for outage capacity. We are going to find some insights from these results. 

 

Part 1:  Ergodic capacity 

 Analysis 1 

Analysis 1 shows the comparison of the ergodic capacity of a three-terminal 

MIMO non-regenerative channel utilizing MH protocol. The analysis uses 

different implementation schemes while SNR2 has been set to 10dB and SNR1 

varies from -10 to 40 dB. The numerical result is depicted in Figure 5.1, and the 

parameter settings are listed below: 

 Transmit protocol: MH 

 All terminal antenna numbers: 2 

 Number of layers: 2 

 Population size: 500 

 Crossover rate: 0.7 

 Mutation rate: 0.01 

 SNR2 = 10dB. 

 Each SNR point averages over 1000 channel realizations. 
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Fig. 5.1: Numerical result 1 

 

In Figure 5.1, blue line stands for the ergodic capacity that neither source nor 

source relay precoder exists; green line represents algorithm 1 from reference [4] 

which has been explained in detail in section 4.5; purple line is the performance 

for the optimal precoder pair discovered by GA; red line is from reference [9], 

which considers both source precoder and relay precoder matrices. Reference [9] 

uses singular value decomposition (SVD) to transform the two-hop MIMO 

channel into parallel Gaussian channels, and the source precoder matrix and relay 

precoder matrix are set to match the parallel channels with the form: 

S SR S
H

R RD R S

=

=

F V D

F V D U R      (5—1)(5—2) 

 DS and DR are diagonal power loading matrices with diagonal entries: 
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R,m m m
S,m

m R,m m

S,m m m
R,m

m S,m m

P b 4a1P 1
a 2 P b ν

P a 4b1P 1
b 2 P a ν

+

+

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝⎣ ⎦

1 1

1 1

−

−
⎠  (5—3) (5—4) 

where ν is the Lagrange multiplier chosen to satisfy the individual power 

constraint for source and relay terminal. Reference [9] also considers subchannel 

pairing such that the in a two-hop MIMO channel, subchannels of both hops are 

paired together according to their actual magnitude. In our simulation we let all 

available subchannels be paired together as in [9]. Also note that [9] does not 

claim its result an optimal solution. 

 

 By comparing the green and red lines, we can see clearly that an additional source 

precoder does enhance the performance in low SNR region. The performance gain 

vanishes as the SNR grows higher. This makes sense since when SNR is low, 

source precoder will prevent the transmit power to be load onto null subchannels 

or subchannels with bad condition. However, when the SNR is high, the 

water-filling strategy suggests that load the power equally onto all available 

subchannels, which is the same as if there is no source precoder. Also note that the 

GA-optimal precoder pair results a small performance gain over referenced 

algorithm 2 in the low SNR region, the performance gain over algorithm 2 

decreases as SNR increases as well. 

 

Analysis 2 

Analysis 2 shows the comparison of ergodic capacity of a three-terminal 

47 



 

MIMO non-regenerative channel utilizing RD protocol. The analysis uses different 

implementation schemes while SNR0 and SNR2 have been set to 10dB and SNR1 

varies from -30 to 40 dB. The numerical result is depicted in Figure 5.2, and the 

parameter settings are listed below: 

 Transmit protocol: RD 

 All terminal antenna numbers: 2 

 Number of layers: 2 

 Population size: 500 

 Crossover rate: 0.7 

 Mutation rate: 0.01 

 SNR0 = SNR2 = 10dB. 

 Each SNR point averages over 1000 channel realizations. 

 

Fig. 5.2: Numerical result 2 
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Figure 5.2 contains three lines: blue line represents performance without 

precoder pair; the purple line is system ergodic capacity with GA-optimal relay 

precoder only; green line is system ergodic capacity with GA-optimal precoder 

pair.  

 

Like the MH protocol case, adding a source precoder has a performance gain 

in low SNR region, but this gain vanishes as SNR approaches infinity. 

Performance gain in high SNR region comes from the fact that in RD protocol the 

receiver use maximum-ratio combining (MRC) to detect signal, so when SNR1 

raises, the signal of relay-destination link becomes more reliable and hence boosts 

the performance. 

 

Analysis 3 

Analysis 3 shows another comparison of ergodic capacity of a three-terminal 

MIMO non-regenerative channel utilizing RD protocol. The Analysis uses 

different implementation schemes while SNR0 has been set to -10 dB, SNR2 has 

been set to 10dB and SNR1 varies from -30 to 40 dB. The numerical result is 

depicted in Figure 5.3, and the parameter settings are listed below: 

 Transmit protocol: RD 

 All terminal antenna numbers: 2 

 Number of layers: 2 

 Population size: 500 

 Crossover rate: 0.7 

 Mutation rate: 0.01 

 SNR0 = -10dB, SNR2 = 10dB. 
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 Each SNR point averages over 1000 channel realizations. 

 

 

Fig. 5.3: Numerical result 3 

 

Analysis 4 

Analysis 4 shows another comparison of ergodic capacity of a three-terminal 

MIMO non-regenerative channel utilizing RD protocol. The Analysis uses 

different implementation schemes while SNR0 and SNR2 have been set to -10dB 

and SNR1 varies from -30 to 40 dB. The numerical result is depicted in Figure 5.3, 

and the parameter settings are listed below: 

 Transmit protocol: RD 

 All terminal antenna numbers: 2 

 Number of layers: 2 

 Population size: 500 
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 Crossover rate: 0.7 

 Mutation rate: 0.01 

 SNR0 = SNR2 = -10dB. 

 Each SNR point averages over 1000 channel realizations. 

 

      Fig. 5.4: Numerical result 4 

 

Analysis 5 

Analysis 5 shows the comparison of ergodic capacity of a three-terminal 

MIMO non-regenerative channel utilizing STD protocol. The analysis uses 

different implementation schemes while SNR2 has been set to 10dB and SNR1 

varies from -30 to 40 dB. The numerical result is depicted in Figure 5.5, and the 

parameter settings are listed below: 

 Transmit protocol: STD 

 All terminal antenna numbers: 2 
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 Number of layers: 2 

 Population size: 500 

 Crossover rate: 0.7 

 Mutation rate: 0.01 

 SNR2 = 10dB. 

 Each SNR point averages over 1000 channel realizations. 

 

 

Fig. 5.5: Numerical result 5 

 

In figure 5.5, there are three lines. The blue line represents performance 

without precoder pair; the purple line is system ergodic capacity with GA-optimal 

relay precoder only; green line is system ergodic capacity with GA-optimal 

precoder pair. As expected, system with an additional source precoder always 

performs better than system without source precoder in low SNR region.  
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For STD protocol case, if SNR1 is low, the GA-optimal relay precoders will 

silent relay terminal to prevent relay terminal forwarding useless noise to 

destination terminal and degrading the detection in the second time slot; i.e., the 

relay transmission power is nearly zero in low SNR region. As a result, the 

performance gain of GA-optimal precoders outperforms system without both 

precoders in low SNR region.  

 

In high SNR region, the performance gap between GA-optimal precoder and 

system without both precoders shrinks because in this SNR region, signals from 

relay terminal has higher reliability, hence the performance difference depends 

only on the SNR2: if SNR2 is low, the existence of relay precoder will result a big 

gap because it can help to allocate relay transmit power much more efficiently; on 

the contrary, if high, the gap will decrease. This phenomenon can be verified by 

combining results from analysis 5 and 6. 

 

Analysis 6 

Analysis 6 shows the other comparison of ergodic capacity of a 

three-terminal MIMO non-regenerative channel utilizing STD protocol. The 

analysis uses different implementation schemes while SNR2 has been set to -10dB, 

and SNR1 varies from -30 to 40 dB. The numerical result is depicted in Figure 5.6, 

and the parameter settings are listed below: 

 Transmit protocol: STD 

 All terminal antenna numbers: 2 

 Number of layers: 2 

 Population size: 500 
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 Crossover rate: 0.7 

 Mutation rate: 0.01 

 SNR2 = -10dB. 

 Each SNR point averages over 1000 channel realizations. 

 

Fig. 5.6: Numerical result 6 

 

Two differences between Figure 5.6 and Figure 5.5 can be observed. First of 

all, as we mentioned in analysis 5, performance gap between GA-optimal precoder 

and system without both precoders in the high SNR region becomes wider because 

SNR2 is much smaller in this analysis, and systems with relay precoder greatly 

improve the ergodic capacity. Second, the performance gap between two different 

GAs does not vanish in high SNR region because SNR2 is too low so that source 

precoder is necessary not only in the first hop but also the second hop to allocate 

transmit power efficiently, systems without source precoder will still suffer from 
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the inefficient power loading during the second time slot even SNR1 is high. 

 

Analysis 7 

Analysis 7 shows another comparison of ergodic capacity of a three-terminal 

MIMO non-regenerative channel utilizing TD protocol. The analysis uses different 

implementation schemes while SNR0 has been set to -10dB, SNR2 has been set to 

10dB, and SNR1 varies from -30 to 40 dB. The numerical result is depicted in 

Figure 5.7, and the parameter settings are listed below: 

 Transmit protocol: TD 

 All terminal antenna numbers: 2 

 Number of layers: 2 

 Population size: 500 

 Crossover rate: 0.7 

 Mutation rate: 0.01 

 SNR0 = -10dB, SNR2 = 10dB. 

 Each SNR point averages over 1000 channel realizations. 
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Fig. 5.7: Numerical result 7 

 

In Figure 5.7, the result is quite like the first STD case. Comparing to analysis 

5, this analysis has an additional communication link from source to relay in the 

first time slot, so the ergodic capacity is slightly higher than the first STD case. 

 

Analysis 8 

Analysis 8 shows the other comparison of ergodic capacity of a 

three-terminal MIMO non-regenerative channel utilizing TD protocol. The 

Analysis uses different implementation schemes while SNR0 and SNR2 have been 

set to -10dB and SNR1 varies from -30 to 40 dB. The numerical result is depicted 

in Figure 5.8, and the parameter settings are listed below: 

 Transmit protocol: TD 

 All terminal antenna numbers: 2 
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 Number of layers: 2 

 Population size: 500 

 Crossover rate: 0.7 

 Mutation rate: 0.01 

 SNR0 = -10dB, SNR2 = -10dB. 

 Each SNR point averages over 1000 channel realizations. 

 

 

Fig. 5.8: Numerical result 8 

 

Part 2: Outage capacity 

 In part 2, we are going to show the numerical results of outage capacity by 

analyzing the empirical cumulative distribution function (CDF) of block achievable rate. 

Four different protocols will be investigated, and various parameter settings will be 

tested. The parameter settings will be at the top of the figures. 
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Fig. 5.9: Numerical result 9 

 

 

Fig. 5.10: Numerical result 10 
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Fig. 5.11: Numerical result 11 

 

 

Fig. 5.12: Numerical result 12 
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Fig. 5.13: Numerical result 13 

 

 
Fig. 5.14: Numerical result 14 
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Fig. 5.15: Numerical result 15 

 

 
Fig. 5.16: Numerical result 16 
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Fig. 5.17: Numerical result 17 

 

 
Fig. 5.18: Numerical result 18 
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Fig. 5.19: Numerical result 19 

 

 

Fig. 5.20: Numerical result 20 
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Fig. 5.21: Numerical result 21 

 

 
Fig. 5.22: Numerical result 22 
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Fig. 5.23: Numerical result 23 

 

 
Fig. 5.24: Numerical result 24 
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Fig. 5.25: Numerical result 25 

 

 
Fig. 5.26: Numerical result 26 
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 For most cases, when we fix an outage probability, say, 10%, we can see that the 

relay precoder or precoder pair can increase the outage capacity, especially when the 

quality of source-destination link is low; when the direct link is strong and the two-hop 

link is weak, the existence of relay precoder or precoder pair cannot guarantee the 

improvement of outage capacity because in these cases, GA may suggest turn off relay. 
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Chapter 6   Conclusion and Future Perspective 

 

 Through this report, we use Generic algorithm to study the performance 

enhancement induced by the optimal precoder pairs, which aims to maximizes the 

ergodic capacity, for a three-terminal MIMO non-regenerative relay system utilizing 

various two-phase transmission protocols under individual transmit power constraint 

for source terminal and relay terminal. The performance induced by optimal precoder 

pair can be used as a benchmark to help us design systems with more constraints, such 

as a system with partial CSI only, or a system with a limited feedback channel. To 

extend this work, we can first use different precoder pair design criterion and apply 

Generic algorithm to reveal the performance limit. After that, a source-destination pair 

with multiple relays or a system with unbalanced antenna number can be investigated.  
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