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摘       要 

 

近幾年來，無線定位估測吸引了許多領域的研究目光，而以網路架構為基礎，利

用發送訊號來作為移動者和基地台間彼此的溝通方式，這種定位方式更被廣泛的

應用。在以往的研究方式，二階最小平方定位法 (two-step Least Square Estimation) 

廣為大家所應用的一種，並提供了移動者有效的定位計算。但是此種演算法在不

好的幾何環境下會使精準度產生偏差，利用兩種幾何的指標：幾何衰減效應

(GDOP)和幾何量測優勢分析(GDOP MOM)，作為本篇論文的分析標準。在文章

中，我們建立了幾何輔助演算法(GALE)，藉由基地台和移動者間的幾何相關位

置，來達到使 GDOP 和 MOM 這兩個幾何指標最小值的方式，藉由 two-step LS 重

新找出虛構的基地台群集。幾何輔助演算法(GALE)演算法尤其用在較差的幾何

特性時能大大的提升了 two-step LS 的定位精準度，並且節省了量測時間，在最後

一章節的模擬分析中，可以發現 GALE 在網路定位環境中的優越點。 
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ABSTRACT 

 
 

In recent years, wireless location estimation has attracted a significant amount of 
attention in different areas. The network-based location estimation schemes have been 
widely adopted based on the radio signals between the mobile station (MS) and the 
base stations (BSs). The two-step Least Square (LS) method has been studied in 
related research to provide efficient location estimation of the MS. However, the 
algorithm results in inaccurate location estimation under the circumstances with poor 
geometry property such as two indexes, the geometric dilution of precision (GDOP) 
and the GDOP measure-of-merit (MOM). In this paper, the geometry-assisted 
location estimation (GALE) schemes are proposed by considering the geometric 
relationships between the MS and its associated BSs. According to the minimal 
GDOP and MOM criterion, the BSs are fictitiously repositioned and are served as a 
new set of BSs within the formulation of the two-step LS algorithm. The proposed 
GALE schemes can both preserve the computational efficiency from the two-step LS 
method and obtain precise location estimation under poor geometric environments. 
Comparing with other existing schemes, numerical results demonstrate that the 
proposed GALE algorithms can achieve better accuracy in wireless location 
estimation. 
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Chapter 1

Introduction

Wireless location technologies [1], which are designated to estimate the position of a

mobile station (MS), have drawn a lot of attention over the past few decades. Different

types of location-based services (LBSs) [2] have been proposed and studied, including the

emergency 911 (E-911) subscriber safety services, the navigation system, and applications

for the wireless sensor networks (WSNs) [3]. Due to the emergent interests in the LBSs,

it is required to provide enhanced precision in the location estimation of a MS under

different environments.

The wireless location techniques can be classified into (i) the satellite-based and (ii)

the network-based location estimation schemes. To simplify the introduction of these

techniques, in the following we use two-dimensional (2-D) cases as application examples.

A variety of wireless location techniques have been studied and investigated in [1] and the

introduction of the wireless location techniques as follows is referred to the research.

The well-adapted technology for the satellite-based location estimation method is to

utilize the global positioning systems (GPSs). It measures the time-of-arrival (TOA)

of the signals coming from different satellites. The TOA scheme determines the mobile

device position based on the intersection of the range circles, as shown in Fig. 1.1a. Since

the propagation time of the radio wave is directly proportional to its traversed range,
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Figure 1.1: Position determination methods: (a) time of arrival (TOA) (b)time difference
of arrival (TDOA) (c) angle of arrival (AOA)

multiplying the speed of light to the time can obtain the range from the mobile device to

the communicating base station (BS). It is noted that two range measurements provide

an ambiguous fix, while three measurements determine a unique position. The same

principle is used by GPS, where the circles become the spheres in space and the fourth

measurement is required to obtain the 3-D position for mobile device.

The network-based location estimation schemes have been widely proposed and em-

ployed in the wireless communication system. These schemes locate the position of the

MS based on the measured radio signals from its neighborhood BSs. The representative

algorithms for the network-based location techniques are the time difference-of-arrival
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(TDOA) and the angle-of-arrival (AOA). The TDOA scheme determines the mobile de-

vice position based on the trilateration, as shown in Fig. 1.1b. The scheme uses time

difference measurements rather than absolute time measurements as TOA dose. It is

often referred to as the hyperbolic system because the time difference is converted to a

constant distance difference to two base stations (as foci) to define a hyperbolic curve.

The intersection of two hyperbolas determines the mobile device position. Therefore, it

utilizes two pairs of BSs for positioning. The accuracy of the scheme is a function of

the relative base station geometric locations. For the network-based systems, it also re-

quires either precisely synchronized clocks for all transmitters and receivers or a means

to measure these time differences.

The AOA technique determines the mobile device position based on triangulation, as

shown in Fig. 1.1c. It is also called direction of arrival in some literature. The intersection

of two directional lines of bearing defines a unique position, each formed by a radial from

a BS to the mobile device in the 2-D space. This technique requires a minimum of two

BSs to determine a position. If available, more than one pair can be used in practice.

However, since directional antennas or antenna arrays are required, it is generally difficult

to realize the AOA technique at the mobile device.

A variety of wireless location techniques have been studied and investigated. The

network-based location estimation schemes have been widely proposed and employed in

the wireless communication system. These algorithms locate the position of the MS

based on the measured radio signals either from its neighborhood base stations (BSs) in

the cellular-based networks or the sensor nodes (SNs) in the WSNs.

The equations associated with the network-based location estimation schemes are in-

herently nonlinear. The uncertainties induced by the measurement noises make it more

difficult to acquire the MS’s estimated position with tolerable precision. Different ap-

proaches have been proposed to obtain an approximate location estimation in the previous

3



studies [4] - [7]. The Taylor series expansion (TSE) method was utilized in [4] to acquire

the location estimation from the time measurements. The scheme requires iterative pro-

cesses to obtain the location estimate from a linearized system. The major drawback of

the TSE method is that it may suffer from the convergence problem due to an incorrect

initial guess of the MS’s position.

The straight line of position (LOP) [7] method presents a different interpretation of the

TOA geometry to estimate the MS’s location comparing with the conventional circular

TOA methods.

The two-step least square (LS) method [5] [6] was adopted as an approximate real-

ization of the maximum likelihood estimator, which does not require iterative processes.

It is observed that feasible location estimation can be achieved by adopting these algo-

rithms while the time measurements are symmetrically located w.r.t. the MS. However,

asymmetrical measurement inputs to the MS in general result in degraded precision for

location estimation. It is especially noticed that this type of situation can frequently

occur under non-regular shapes of geometric layouts, e.g. under the randomly distributed

sensor networks.

In order to consider the geometric effect to the accuracy of location estimation, the

well-known geometric dilution of precision (GDOP) [8] and GDOP MOM [9] metrics can

be adopted to facilitate the design of location estimation algorithms. Two metrics are

utilized as an index for observing the location precision of the MS under different geomet-

ric positions within the networks, e.g. the cellular, the satellite, or the sensor networks.

The work in [10] describes the effect and cost resulting from the network topology with

significant GDOP values. However, the method for mitigating the GDOP effect has not

been extensively addressed in previous studies. The ridge regression signal processing [11]

is proposed for reducing the effects of GDOP in the position-fixed navigation systems.

Nevertheless, a pre-filtered set of initial range measurements is required before the pro-

4



posed estimation method can be activated. A new geometric property, coverage, is also

introduced in this paper. For the purpose that mitigating estimation error, we use the

geometric information to decide the best BS layout and can improve the location system.

In this paper, three Geometric-assisted location estimation (GALE) algorithms are

proposed to enhance the estimation precision by incorporating the geometric information

within the conventional two-step LS algorithm. Based on an initial estimate of the MS’s

location, the proposed GALE schemes determine the fictitious locations of the BSs such

that the estimated MS will be relocated at a position with the best geometric property, it

can be decided by GDOP, MOM or coverage information. According to the these geomet-

ric criterion, the GALE(1BS) and GALE(2BS) algorithms are proposed to consider the

cases by fictitiously rotating (i.e. not physically relocate) one and two BS’s locations re-

spectively. Reasonable location estimation can be acquired within the GALE algorithms,

especially feasible for the cases with poor geometric circumstances. Simulation results

illustrate that the proposed GALE schemes can achieve higher accuracy for the MS’s

estimated location compared to the other existing methods.

The remainder of this paper is organized as follows. chapter 3 describes the proper-

ties that are derived from the GDOP and GDOP MOM metrics. The proposed GALE

algorithms are explained in chapter 4; while chapter 5 shows the performance evaluation

of the proposed schemes. chapter 6 draws the conclusions.
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Chapter 2

Related work

2.1 Studies on Propagation Noise

The precision of time measurement significantly leads the performance of the location

algorithms which utilize the time-base information. The transmitted radio signal can

reach the receiver in the shortest time in the case that there are no barriers in the direct

connection between the transmitter and the receiver. This is called the Line-of-Sight

(LOS) situation, which often occurs in a open space. Yet, this ideal situation usually can

not meet in a obstacle-concentrated environment such as a dense urban or an office inside

a building. The emitted radio signal is either reflected or diffracted by obstructions as

Fig. 2.2, and it must take extra time to arrive at the receiver. The additional propagation

time is so-called the Non-Line-of-Sight (NLOS) error, and is always positive as presented

in Fig. 2.1. The NLOS error is viewed as a killer issue for location estimation [12]. The

excess part of the time measurements will result in range errors on the order of 513 meters

and 436 meters in the mean and the standard deviation respectively [13], which inevitably

makes a time-based location algorithm to fail.
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Figure 2.2: Geometry of the NLOS error
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2.2 Studies on Existing Location Estimation Algo-

rithms

Different location estimation schemes have been proposed to acquire the MS’s position.

Various types of information (e.g. the signal propagation time, the received angle of the

signal, or the Receiving Signal Strength (RSS)) are involved to facilitated the algorithms

design for location estimation. The primary objectives in most of the location estimation

algorithms are to obtain higher estimation accuracy with promoted computational effi-

ciency. Some famous algorithm such as range scaling algorithm (RSA), proposed in [14]

to alleviates the NLOS errors by considering the geometric layout between the MS and

its associated BSs. Virtual base stations (VBS) [15], mitigate the influence from the

NLOS errors by imposing the geometric constraints and reduce the GDOP effect by in-

corporating the assisted virtual base stations. multiple signal classication (MUSIC) [16]

- [18] scheme, is experimentally illustrated to be a robust solution for location estimation,

especially for a near-far environment.

There are also different approaches adopting linearized methods to acquire the com-

puting efficiency while obtaining an approximate estimation of the MS’s position. The

Taylor-series estimation (TSE) method was utilized in [4] to acquire the location estima-

tion from the TDOA measurements. The method requires iterative processes to obtain

the location estimate from a linearized system. The major drawback of this method is

that it may suffer from the convergence problem due to an incorrect initial guess of the

MS’s position. The two-step LS method was adopted to solve the location estimation

problem from the TOA [20], the TDOA [5], and the TDOA/AOA measurements [21].

It is an approximate realization of the Maximum Likelihood (ML) estimator and does

not require iterative processes. The two-step LS scheme is advantageous in its computa-

tional efficiency with adequate accuracy for location estimation. However, the scheme is

8



demonstrated to be feasible for acquiring the MS’s position under the LOS situations.

Some well-known schemes are improved continuously in order to achieve higher accu-

racy or promote the computational efficiency. The famous linear time-based algorithms,

the Taylor-series estimation (TSE) [4] and the two-step LS method are briefly described

in the following subsection.

2.2.1 Taylor-Series Estimation

The content of this section will show the Taylor-Series Estimation (TSE), which is avail-

able in [4].

Assuming that (x, y) is the position of the MS, (x`, y`) is the position of the `th

base station and r` is the TOA measurement from the base station `. Since in practice,

especially in urban or in mountainous areas, the signals from the mobile device are usually

unable to arrive at the base stations directly (or in the oppositive direction), they always

take a longer path than the direct one. So by incorporating the influences of NLOS

propagation on the location estimation, there exists

f`(x, y, x`, y`) = ζ` = r` − n` (2.1)

where ζ` represents the noiseless distance between the MS and the `th BS. n` is the

measurement noise and is statistically distributed. We take the noises to have zero-mean

values < n` >=0 and nij =< ninj > is the i− jth term in the covariance matrix

Q = [nij]

If the xv, yv are guesses of the true variable position, write

x = xv + δx y = yv + δy (2.2)

9



and expand f` in Taylor’s series keeping only terms below second order

f`v + a`1δx + a`2δy ' r` − n` (2.3)

where

f`v = f`(xv, yv, x`, y`)

a`1 = ∂f`/∂x|xv ,yv a`2 = ∂f`/∂y|xv ,yv

and the approximate relations of 2.3 can be written as

Aδ ' z− n (2.4)

where

A =




a11 a12

a21 a22

. .

aN1 aN2




δ =




δx

δy


 z =




r1 − f1v

r2 − f2v

.

rN − fNv




n =




n1

n2

.

nN




The choice of δ that

δ = (ATQ−1A)−1ATQz (2.5)

Thus, to estimate the position of the MS, compute δx, δy with (2.5), replace

xv ← xv + δx yv ← yv + δy (2.6)

in (2.5), and repeat the computations. The iterations will have converged when δx and

10



δy are essentially zero.

2.2.2 Two-Step Least Square Method

The content of this section will show the Two-step Least Square (two-step LS) location

algorithm for TOA measurements and it can be obtained in [20]. For simplification, the

two-step LS method will be described for TOA measurements in a two-dimensional (2-D)

plane. The two-step LS method for TDOA measurements can be derived from the similar

concept.

Assuming that (x, y) is the position of the mobile device, (x`, y`) is the position of

the `th base station and r` is the TOA measurement from the base station `. Since in

practice, especially in urban or in mountainous areas, the signals from the mobile device

are usually unable to arrive at the base stations directly (or in the oppositive direction),

they always take a longer path than the direct one. So by incorporating the influences of

NLOS propagation, killer issue for location estimation, on the location estimation, there

exists

r2
` ≥ (x` − x)2 + (y` − y)2 = κ` − 2x`x− y`y + x2 + y2 ` = 1, 2, ...N (2.7)

where κ` = x2
` + y2

` , r` = ct` is the measured distance between the MS and the `th base

station, and c is the speed of light. And by defining a new variable β = x2 +y2, we rewrite

(2.7) through a set of linear expressions

−2x`x− 2y`y + β ≤ r2
` − κ` ` = 1, 2, ...N (2.8)

Let x a = [x y β]T and express (2.8) in matrix form

Hx a ≤ J (2.9)

11



where

H =




−2x1 − 2y1 1

−2x2 − 2y2 1

. . .

−2xN − 2yN 1




J =




r2
1 − κ1

r2
2 − κ2

.

r2
N − κN




With measurement noise, the error vector is

ψ = J−Hx a (2.10)

When r` can be expressed as ξ` + cn`, the error vector ψ is found to be

ψ = 2cBn + c2n¯ n

B = diag{ξ1, ξ2, ..., ξN} (2.11)

The symbol ¯ represents the Schur product (element-by-element product). In addition,

the second term on the right of (2.11) can be ignored since the condition cn` ≤ ξ` is usually

satisfied. As a result, ψ becomes a Gaussian random vector with covariance matrix given

by

Ψ = E[ψψT ] = 4c2BQB (2.12)

Q is the covariance matrix of measured noise, and ξ1,...,ξN are denoted as the true values

of distances between the sources and the receiver. The element x a are related by the

equation, β = x2 + y2, which means that (2.9) is still a set of nonlinear equations in two

variables x and y. The approach to solve the nonlinear problem is to first assume that

there is no relationship among x, y and β. That can then be solved by Least Square (LS).

The final solution is obtained by imposing the known relationship to the computed result

via another LS computation. This two step procedure is an approximation of a true ML

12



estimator. By considering the elements of x a independent, the ML estimator of x a is

x a = arg min{(J−Hx )T Ψ−1(J−Hx )}

= (HT Ψ−1H)−1HT Ψ−1J (2.13)

The covariance matrix of x a is obtained by evaluating the expectations of x a and x ax
T
a

from (2.13). The covariance matrix of x a can be calculated as [?]

cov(x a) = (HT Ψ−1H)−1 (2.14)

Since we have used the independent supposition of variables x, y, and β in the estima-

tion of x a though the variable β is dependent on the variable x and y, we should revise

the results as follows. Let the estimation errors of x, y, and β be e1, e2, and e3. Here and

below, denote the ith entry of a matrix M as [M ]i; then the entries in vector x a become

[x a]1 = xo + e1 (2.15a)

[x a]2 = yo + e2 (2.15b)

[x a]3 = βo + e3 (2.15c)

where xo, yo, and βo are denoted as the true values of x, y, and β. Let another error

vector

ψb = Jb −Hbx b (2.16)

where

Hb =




1 0

0 1

1 1




Jb =




[x a]21

[x a]22

[x a]3



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and x b=




x2

y2


. Substituting 2.15a- 2.15c into 2.16, we have

[ψ]1 = 2xoe1 + e2
1 ≈ 2xoe1

[ψ]2 = 2yoe2 + e2
2 ≈ 2yoe2

[ψ]3 = e3

Obviously, the above approximations are valid only when the errors e1, e2, and e3 are

fairly small. Subsequently, the covariance matrix of ψb is

Ψb = E[ψbψ
T
b ] = 4Bbcov(x )Bb

Bb = diag{xo, yo, 0.5} (2.18)

As an approximation, elements xo and yo in matrix x can be replaced by the first two

elements x and y in x a. Similarly, the ML estimate of x b is given by

x b = (HT
b Ψ−1

b Hb)
−1HT

b Ψ−1
b Jb (2.19)

≈ (HT
b B−1

b (cov(x )a)
−1B−1

b Hb)
−1 (2.20)

• (HT
b B−1

b (cov(x )a)
−1B−1

b )Jb (2.21)

So the final position estimation x = [x y]T is

x =
√

x b, or x = −√x b (2.22)

Here the sign of x should coincide with the sign of [x a]1 calculated by solving 2.13, and

the sign of y coincides with the sign of [x a]2.

The complete derivation of the two-step LS for TOA measurements is shown above. In

14



addition, the two-step LS method can be adopted to estimate MS location from the TDOA

[5], and the TDOA/AOA measurements [21]. The following two subsections describe the

3-D TOA location estimation for the satellite-based system, and the 3-D TDOA/AOA

location estimation algorithm for the cellular network.

2.2.3 Geometry-Constrained Location Estimation (GLE) Algo-

rithm

Serval location algorithms [22]- [26] have been proposed to mitigate the NLOS error.

Here we introduce a method by using the geometric property. As illustrated in Fig. 2.3

, the MS’s location estimation using the two-step LS method may fall inside or outside

of the boundaries of the three arcs, AB, BC, and CA. With the larger overlap region

caused by the increasing NLOS error, the inaccuracy of the location estimation of the MS

consequentially raises. The characteristics of the geometric layout and the noise variances

are applied to a method named the Geometry-Constrained Location Estimation (GLE)

algorithm [27] to modify the formulations within the Two-Step Least Square method.

The primary objective of the proposed GLE algorithm is to confirm the location estimate

within the overlap region by joining the geometric constraints into the Two-Step LS

method.

A specific information derived from the constraints of the geometric layout is added

into the Two-Step Least Square method. The constrained cost function γ is given by

γ =

[ ∑

µ=a,b,c

1

3
‖x − µ‖2

]1/2

(2.23)

where x is the MS’s location as mentioned before; a = (xa, ya), b = (xb, yb), and c = (xc,

yc) represent the corresponding coordinates of the points A, B, and C. The parameter γ

defined as the square root of the average squared-sum of the distance from the MS to the
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r3

r1
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xe
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Figure 2.3: Geometric constraints for TOA-Based location estimation confine the true
MS’s position in the overlap region of the range measurements.

three points A,B and C is called the virtual distance and obviously varies as the three

coordinates a ,b and c changes. The corresponding expected virtual distance γe is defined

as

γe =

[ ∑

µ=a,b,c

1

3
‖x e − µ‖2

]1/2

= γ + nγ (2.24)

where nγ is the error induced by the computed deviation between γe and γ. The xe

called the expected MS’s position is chosen to minimize the deviation between the virtual

distance γ and the corresponding expected virtual distance γe. The coordinates of the

expected MS position xe is a linear combination of those of the three points A, B, and C

16



with the parameters acting as weights which is related to the signal variations.

xe = w1xa + w2xb + w3xc (2.25a)

ye = w1ya + w2yb + w3yc (2.25b)

where

w` =
σ2

`

σ2
1 + σ2

2 + σ2
3

for ` = 1, 2, 3 (2.26)

σ1, σ2, and σ3 are the corresponding standard deviations obtained from the three TOA

measurements r1, r2, and r3.

The selection of the weights is directly proportional to the corresponding signal vari-

ances. For example, the excessive range measurement r1 due to the comparatively large

signal variance σ1 may probably cause the true position of the MS to move incorrectly

toward to the boundary of the arc BC. Therefore,the weighting of the coordinates of a

should be relatively large to make the true position of the MS to move toward the point

A of the analogous triangle.

The GLE algorithm integrates the geometric constraints into the first step of the

Two-Step Least Square method is defined as:

Hx = J + ψ (2.27)

where

x =

[
x y β

]T
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H =




−2x1 −2y1 1

−2x2 −2y2 1

−2x3 −2y3 1

−2γx −2γy 1




J =




r2
1 − κ1

r2
2 − κ2

r2
3 − κ3

γ2
e − γκ




The corresponding coefficients are given by

β = x2 + y2

κ` = x2
` + y2

` for ` = 1, 2, 3

γx =
1

3
(xa + xb + xc)

γy =
1

3
(ya + yb + yc)

γκ =
1

3
(x2

a + x2
b + x2

c + y2
a + y2

b + y2
c )

The noise matrix ψ in (2.27) can be obtained as

ψ = 2 c Bn + c2n2 (2.28)

where

B = diag

{
ζ1, ζ2, ζ3, γ

}

n =

[
n1 n2 n3 nγ/c

]T

Based on the two-step LS scheme, an intermediate location estimate after the first step

18



can be obtained as

x̂ = (HTΨ−1H)−1HTΨ−1J (2.29)

where

Ψ = E[ψψT ] = 4 c2 BQB

It is noted that Ψ is obtained by neglecting the second term of (2.28). The matrix Q can

be acquired as

Q = diag

{
σ2

1, σ2
2, σ2

3, σ2
γe

/c2

}

Q represents the covariance matrix for both the TOA measurements and the expected

virtual distance, where σ2
γe/c corresponds to the standard deviation of γe/c. The final

location estimation can be obtained by continuously carrying on the second step of the

Two-Step Least Square method [20].
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Chapter 3

Derivation from GDOP and GDOP

MOM Metric

The time-based algorithms, i.e. TSE and two-step LS as described in chapter 2, are

primarily feasible for location estimation under line-of-sight (LOS) environments. As

described in chapter2, NLOS error is an important issue for Wireless Location System.

In order to preserve the computation efficiency and to obtain higher accuracy under

NLOS environments, geometric constraints are added to enhance the existing algorithm.

Two geometry metric, geometric dilution of precision (GDOP) and GDOP measure-of-

merit(MOM), are proposed in this chapter and some properties will be derived for com-

pany. We’ll introduce these two mathematical metrics at section 3.1 and 3.2 and derive

some properties at section 3.1.1 and 3.1.2.

3.1 Mathematical Modeling

The signal model for the TOA measurements is utilized in this paper. The set rk

contains all the available measured relative distance at the kth time step, i.e. rk =

{r1,k, . . . , ri,k, . . . , rNk,k}, where Nk denotes the number of available BSs at the time step
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k. The measured relative distance (ri,k) between the MS and the ith BS (obtained at the

kth time step) can be represented as

ri,k = c · ti,k = ζi,k + ni,k + ei,k i = 1, 2, ..., Nk (3.1)

where ti,k denotes the TOA measurement obtained from the ith BS at the kth time step,

and c is the speed of light. ri,k is contaminated with the TOA measurement noise ni,k and

the NLOS error ei,k. It is noted that the measurement noise ni,k is in general considered as

zero mean with Gaussian distribution. On the other hand, the NLOS error ei,k is modeled

as exponentially-distributed for representing the positive bias due to the non-line-of-sight

effect [22]. The noiseless relative distance ζi,k (in (3.1)) between the MS’s true position

and the ith BS can be obtained as

ζi,k = [(xk − xi,k)
2 + (yk − yi,k)

2]
1
2 (3.2)

where xk = [xk yk] represents the MS’s true position and xi,k = [xi,k yi,k] is the location

of the ith BS for i = 1 to Nk. Therefore, the set of all the available BSs at the kth time

step can be obtained as PBS,k = {x1,k, . . . , xi,k, . . . , xNk,k}.
The architecture can be described as Fig. 3.1 .After getting the information as describe

above, the next step is solving the MS position. The object’s position can be represent

by a n-dimensional vector ~. ~= [xk yk]
T in 2-D space. However, before we continue and

introduce the geometry for specific bearing measurements, we will state some results from

estimation theory.

Zi = fi(~) + Ni i = 1, 2, ... (3.3)

where Ni ∼ N(0, σ2
i ) for zero mean Gaussian noise.

A major problem is to solve the nonlinear system of equations. So a first step is

21



x y

x y

x y

k k

k k

k k

1 1

2 2

, ,

, ,

,

,

,

( )

( )

( )

BS1

BS2

BS

BS

x yk k3 3, ,
,( )BS3

ζ
3,k

ζ
2,k

θ
1,k

θ2,k

θ3,k
α

1,k

α ζ
1,k

x yN k N kk k, ,
,( )

MS

x

y

θ

α α

ζ

ζ

N k

N k N k

k

k

N k

N k

k

k k

k

k

N -1

N

,

, ,

,

,

−

−

1

1

N k N kk k
x y

, ,
,

− −( )1 1

α

=α
    12,k

=α
    23,k

Figure 3.1: Schematic diagram of the network layout for computation.
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linearization. It can be achieved by using Taylor series expansion.

f(~) =
n∑

i=0

f i(v)

i!
(~− v)i (3.4)

If we take first order approximation and let x̃ be the accurate position, equation can be

written as f(~) ≈ f(x̃) + H · (~− x̃). As described above, it can be functionally related

as df = H ·dx+ e Where e means the high order term error. The LS solution is given by:

dx = (HT H)−1HTdf (3.5)

The covariance of the vector dx can be obtained as

cov(dx) =E[dxdxT ]

=(HT H)−1HT cov(df)((HT H)−1HT )T (3.6)

In ideal case, cov(df) = I2σ
2
i where I2is an 2× 2 identity matrix, we have

cov(dx) =(HT H)−1HT H(HT H)−1I2σ
2
i

=(HT H)−1σ2
i (3.7)

For a i.i.d. range error of covariance cov(df) = Ck · σk, where Ck is a symmetric

positive definite matrix and σkis the user equivalent range error variance. cov(dx) can be

expressed as

cov(dx) =




σxx .

. σyy


 (3.8)
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and the off-diagonal entries are not critical to the following discussion. The most com-

monly used measure of the positioning accuracy is the root mean square error metric. We

want to show the influence of the geometric property on the positioning accuracy. To do

so, we need a metric, which describes a quality of the measurement units geometric con-

figuration. The matrix, GDOP and GDOP MOM, can be used to evaluate the geometric

layout.

3.2 Geometric Dilution of Precision (GDOP)

GDOP metric is utilized to describe the geometric effect on the relationship between

the measurement error and the position determination error [8] [10]. Fig.3.1 illustrates

the schematic diagram of the network layout for the GDOP computation. In general,

a larger GDOP value corresponds to a comparably worse geometric layout (established

by the MS and its associated BSs), which consequently results in augmented errors for

location estimation. On the other hand, as the GDOP value becomes smaller, the effect

from the geometric relationship to the location estimation accuracy will turn out to be

insignificant. Considering the MS’s location under the two-dimensional coordinate, the

GDOP value (G) obtained at the MS’s true position xk can be represented as

Gxk
=

{
trace

[
(HT

xk
Hxk

)−1
]} 1

2 (3.9)

For measurement model in GDOP, the signal f(x) can be described as f(x) = ζi,k. Thus

the matrix Hxk
can be modeled as
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Hxk
=




xk−x1,k

ζ1,k

yk−y1,k

ζ1,k

. . . . . .

xk−xi,k

ζi,k

yk−yi,k

ζi,k

. . . . . .

xk−xNk,k

ζNk,k

yk−yNk,k

ζNk,k




(3.10)

It is noted that the elements within the matrix Hxk
can be acquired from (3.2).

3.2.1 Derived GDOP property

It is noted that (3.9) associated with (3.10) are utilized for representing the GDOP metric

in most of the research studies. In order to facilitate the design of the proposed GALE

schemes, several properties obtained from the GDOP metrics are observed and derived

in this paper. As shown in Fig. 3.1, the following relationship can be obtained with

coordinate transformation as x k − xi,k = [ζi,k cos θi,k, ζi,k sin θi,k] for i = 1 to Nk, where

θi,k represents the angle formed by the vector of x k − xi,k w.r.t. the positive x-axis. By

substituting this equation into (3.10), the GDOP value in (3.9) can be rewritten as

Gxk
=

[
Nk∑Nk

i=2 sin2(θi,k − θi−1,k) + sin2(θ1,k − θNk,k)

] 1
2

(3.11)

Furthermore, in order to facilitate the proofs of the following lemmas, the relative

angles αi,k between the BSs are defined as

αi,k =





θi+1,k − θi,k 1 ≤ i ≤ Nk − 1

2π + θ1,k − θNk,k i = 0, Nk

(3.12)

It is noted that i = 0 is utilized for circular counting in order to facilitate the notations
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Figure 3.2: GDOP value in a regular pentagon

that will be utilized in the paper. Furthermore, the relative angles αpq,k between each

arbitrary pth and qth BSs are further defined as

αpq,k =





∑q−1
∀p αp,k ∀p < q

2π −∑p−1
∀q αq,k ∀p > q

(3.13)

where 1 ≤ p < Nk, 1 ≤ q ≤ Nk and αp,k is defined as in (3.12). Consequently, the GDOP

value in (3.11) can be reformulated as a function of αi,k as

Gxk
=

[
Nk∑Nk−1

i=1

∑Nk

j=i+1 sin2(αij,k)

] 1
2

(3.14)

The GDOP is utilized as an index for judging the the effect of the geometric layout.

Several K-side regular polygon layouts are examined to verify the phenomenons of the

GDOP. The 3-D graph and the contour of the GDOP value are shown in Fig. (3.2)-(3.3).

The Figs. shows that when all the BSs form a regular polygon, the minimum GDOP

value will occur at the center of these BSs. And we can get another observation that

when MS is situated inside the polygon will have lower GDOP that outside.

In the following, the minimal GDOP values are obtained by considering two different

cases. The minimal GDOP values are determined by adjusting one BS’s location in
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Figure 3.3: GDOP value in a regular triangle

Lemma 1 (i.e. with one degree-of-freedom) and regulating all the locations of the BSs in

Lemma 2 (i.e. with Nk degree-of-freedom) . The claims and derivations for both lemmas

are stated as follows.

Lemma 1. The MS located at xk is surrounded by Nk BSs at xi,k (for i = 1 to Nk) as

shown in Fig. 3.1. The angles between every two adjacent BSs to the MS are defined as

αi,k. It is assumed that only the `th BS’s location is adjustable; i.e. the angle α`,k between

the `th and the (` + 1)th BSs; while the positions for the other BSs are considered fixed.

The minimal attainable GDOP occurs as the angle α`,k is adjusted to be

αm
`,k =

1

2
tan−1

(
− sin(2

∑Nk

i=1,i6=`−1,` α`i,k)

cos(2
∑Nk

i=1,i 6=`−1,` α`i,k) + 1

)
(3.15)

Therefore, the minimal attainable GDOP value w.r.t. xk becomes

Gm
xk

=

[
Nk

sin2(αm
`,k) + sin2(2π − αm

`,k −
∑Nk

i=1,i6=`−1,` αi,k) +
∑Nk

i=1,i 6=`−1,` sin2(αi,k)

] 1
2

(3.16)

Proof. According to (3.14), it is observed that the GDOP value Gxk
w.r.t. xk is regarded

as a function of the angles αi,k for all i = 1 to Nk. Since only the `th BS (for 1 ≤ ` ≤ Nk)

is considered adjustable, there is merely one degree-of-freedom that is considered tunable

(i.e. α`,k) among all the angles αi,k for i = 1 to Nk. It is noted that the other angle
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α`−1,k, which is also modified due to the movement of the `th BS, can be represented as a

function of α`,k, i.e. α`−1,k = 2π−α`,k−
∑Nk

i=1,i 6=`−1,` αi,k. Consequently, the GDOP value

as denoted in (3.14) will only be dependent to the angle α`,k as Gxk
(α`,k). The angle αm

`,k

which results in the minimal GDOP value can therefore be acquired as

αm
`,k = arg

{
min
∀α`,k

Gxk
(α`,k)

}
(3.17)

It can be observed that (3.32) can be achieved if the following conditions on the first and

second derivatives of Gxk
are satisfied, i.e.

[
∂Gxk

(α`,k)

∂α`,k

]

α`,k=αm
`,k

= 0 (3.18)

[
∂2Gxk

(α`,k)

∂2α`,k

]

α`,k=αm
`,k

> 0 (3.19)

By solving (3.33) and (3.34), the angle αm
`,k can be computed as in (3.15). The minimal

GDOP value w.r.t. xk can consequently be obtained as in (3.16).

Lemma 2. The MS located at xk is surrounded by Nk BSs at xi,k (for i = 1 to Nk) as

shown in Fig. 3.1. The angles between every two adjacent BSs to the MS are defined as

αi,k. Considering the case that the locations of all the BSs are adjustable. The minimal

GDOP value w.r.t. xk is obtained as Gm
xk

= 2/
√

Nk, which occurs as the angles αi,k are

regulated to be equivalent with each other as αm
i,k = 2π/Nk for all i = 1 to Nk.

Proof. It can be observed from (3.14) that the GDOP value is regarded as a function

of the angles αi,k for all i = 1 to Nk, i.e. Gxk
(α1,k, . . . , αi,k, . . . , αNk,k). By defining

αk = [α1,k . . . αi,k . . . αNk,k], the angles αm
i,k which result in the minimal GDOP value can
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therefore be acquired as

αm
i,k = arg

{
min
∀αi,k

Gxk
(αk)

}
(3.20)

for i = 1 to Nk. Similar to the proof as in Lemma 1, αm
i,k in (3.35) can be acquired if

[
∂Gxk

(αk)

∂αi,k

]

αk=αm
k

= 0 (3.21)

[
∂2Gxk

(αk)

∂2αi,k

]

αk=αm
k

> 0 (3.22)

for i = 1 to Nk. It is noted that αm
k , [αm

1,k . . . αm
i,k . . . αm

Nk,k]. By solving the set of 2Nk

equations obtained from (3.21) and (3.22), the angles αm
i,k can be computed as

αm
i,k =

2π

Nk

(3.23)

which are considered equivalent for all i = 1 to Nk. By substituting (3.23) into (3.14),

the minimal GDOP value can therefore be obtained as

Gm
xk

(αm
k ) =

2√
Nk

(3.24)

which occurs as the angles αi,k are regulated to be equivalent with each other as

αm
i,k = 2π/Nk

Corollary 1. Considering the MS is confined by an Nk-side regular polygon by placing

the Nk BSs as the vertices of the polygon, the minimal GDOP value w.r.t. xk will occur

at the center of the regular polygon.
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Figure 3.4: MOM value in a regular pentagon

Proof. This corollary is considered as a special case of Lemma 2 with all the relative

distances ζi,k are equal for i = 1 to Nk. It is observed from (3.14) that the GDOP value

Gxk
is unrelated to the relative distances ζi,k. Therefore, the proof as presented in Lemma

2, can be carried directly to this case as obtained by (3.23) and (3.24). Therefore, it is

intuitive to observe that the minimal GDOP will happen at the center point of the Nk-side

regular polygon based on the result that αm
i,k = 2π/Nk for i = 1 to Nk.

3.3 GDOP Measure-of-Merit (MOM)

Another relative geometry measure-of-merit (MOM) [9], based on the GDOP measure,

is developed. The GDOP MOM relates the BS measurement errors to the MS position

errors as a function of BS-to-MS geometry. The minimum GDOP and associated specific

BS-to-MS geometries are computed and illustrated for both two and three bearing-only

measuring sensors. Two different polygon fig.3.4 and fig.3.5 plots of MOM value contours

provide a geometric insight to BSs arrangement as a function of geometry induced error

dilution. The results can be used to select preferred target-to-sensor(s) geometries for M

BSs in this application.

In order to establish the necessary mathematical framework for the computation of the

MOM, it is structured as follows. A linearized measurement model-based error sensitivity
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Figure 3.5: MOM value in a regular triangle

analysis is used to derive an express for the MOM. The MOM relates the measurement

errors to the MS position errors as a function of BS-MS geometry. In order to illustrate

the efficacy of MOM for fusion architectures, GDOP functional relationships are next

computed for measuring geometry. The minimum MOM and associated specific BS-MS

geometries are computed and illustrated and provide a geometric insight to BS placement

as a function of geometry induced error dilution. The MOM is general and is readily

extendable to other measurement based system.

The same procedure as the derivation above, MOM defines the measurement signal

f(x) = θi,k where θi,k is the angel between the line connected MS with BS and the

horizontal and can be presented as:

θi,k = tan−1(
yi,k − yk

xi,k − xk

) (3.25)

Proceeding in an analogous manner to the development of GDOP, the matrix MHxk

can be modeled as

31



MHxk
=




−yk−y1,k

ζ2
1,k

xk−x1,k

ζ2
1,k

. . . . . .

−yk−yi,k

ζ2
i,k

xk−xi,k

ζ2
i,k

. . . . . .

−yk−yNk,k

ζ2
Nk,k

xk−xNk,k

ζ2
Nk,k




(3.26)

and MOM value MGxk
can be obtained as

MGxk
=

{
trace

[
(MHT

xk
MHxk

)−1
]} 1

2 (3.27)

3.3.1 Derived MOM property

The MOM criterion is used in the location system to check if the layout of the BS is

good for the goal of positioning,and it can be applied to the wireless location system as

well. The interpretation of the meaning of the MOM is that it represents the standard

deviation ratio of the signal and the noise. In a fixed layout, the signal variations differ

with where the MS locates. The radio signals range over larger variations not only raise

the inaccuracy of the location estimation but also the value of the MOM. In other words,

the lower value of the MOM stands for the smaller signal variations in a fixed layout

and expectedly accompanies the better performance of location estimation. Similar to

section 3.2.1, this section also define some properties inferred from MOM metric in order

to promote the GALE algorithm.

Associate (3.27) with (3.26) it can be utilized for representing the MOM metrics

in most of the research studies. As Fig. 3.1, the same representation x k − xi,k =

[ζi,k cos θi,k, ζi,k sin θi,k] for i = 1 to Nk are used for the coming derivation. Substitut-
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ing this equation into (3.10), the MOM value can also be represented as

MGxk
=

[ ∑Nk

i=1(
∏Nk

j=1,j 6=i r
2
j,k)∑Nk−1

i=1

∑Nk

j=i+1(
∏Nk

m=1,m6=i,j r2
m,k) sin2(θj,k − θi,k)

] 1
2

(3.28)

And then (3.12) is utilized again to simplify equation (3.28) Consequently, the MOM

value in (3.28) can be reformulated as a function of αi,k as fig. 3.1

MGxk
=

[ ∑Nk

i=1(
∏Nk

j=1,j 6=i r
2
j,k)∑Nk−1

i=1

∑Nk

j=i+1(
∏Nk

m=1,m6=i,j r2
m,k) sin2(αij,k)

] 1
2

(3.29)

We can observe an important corollary from the above two equations. MOM value

related to both its reference angle and relative distance, however ,GDOP is just related

to angle. It means that if one of the signal from BS is converted into NLOS, GDOP

metric keeps the same value as before. This contradicts the phenomenon, while MOM

metric can reflect this effect. Analogous to lemma 2 and lemma 1, minimal MOM values

are obtained by considering two different cases (with one degree-of-freedom and with Nk

degree-of-freedom).

Lemma 3. For finding minimal attainable MOM, we define the MS located at xk is

surrounded by Nk BSs at xi,k (for i = 1 to Nk) as shown in Fig. 3.1. And if we let

movable BS is `th BS, i.e. the adjustable angle is α`,k; while the positions for the other

BSs are considered fixed. The minimal MOM occurs as the angle α`,k is adjusted to be

αm
`,k =

1

2
tan−1

(
−∏Nk

k=1,k 6=`,`+1 ζ2
k sin(2

∑Nk

i=1,i6=`−1,` α`i,k)∏Nk

k=1,k 6=`,`+1 ζ2
k cos(2

∑Nk

i=1,i 6=`−1,` α`i,k) + R

)
(3.30)

R is equal to
∏Nk

k=1,k 6=`,`+1 ζ2
k and ζ0 = ζNk

. Therefore, the minimal attainable MOM value
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w.r.t. xk becomes

MGm
xk

=

[
Nk

2 sin2(αm
`,k) +

∑Nk

i=1,i 6=`−1,` sin2(αi,k)

] 1
2

(3.31)

Proof. MOM value Gxk
w.r.t. xk is a function of the angles αi,k for all i = 1 to Nk.

Analogous to lemma 1 a minimum MOM value will occur under the condition that if only

the `th BS (for 1 ≤ ` ≤ Nk) is considered adjustable. It also means the angle α`,k is

tunable and α`−1,k = 2π − α`,k −
∑Nk

i=1,i6=`−1,` αi,k. Other relative angle are defined to be

fixed. The angle αm
`,k which results in the minimal MOM value can therefore be acquired

as

αm
`,k = arg

{
min
∀α`,k

MGxk
(α`,k)

}
(3.32)

It can be observed that (3.32) can be achieved if the following conditions on the first

and second derivatives of Gxk
are satisfied, i.e.

[
∂MGxk

(α`,k)

∂α`,k

]

α`,k=αm
`,k

= 0 (3.33)

[
∂2MGxk

(α`,k)

∂2α`,k

]

α`,k=αm
`,k

> 0 (3.34)

By solving (3.33) and (3.34), the angle αm
`,k can be computed as in (3.30). The minimal

MOM value w.r.t. xk can consequently be obtained as in (3.31).

Lemma 4. Based on the MOM criterion, if the MS located at xk is surrounded by Nk

BSs at xi,k (for i = 1 to Nk) as shown in Fig. 3.1 and defining all the BSs are adjustable,

all the relative angle αi,k can be derived as Lemma 3.
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If all the BSs forms a regular polygon, the minimal GDOP value w.r.t. xk is obtained

as MGm
xk

= ( 2√
Nk

)ζ2
i,k, which occurs as the angles αi,k are regulated to be equivalent with

each other as αm
i,k = 2π/Nk for all i = 1 to Nk.

Proof. The same deriving procedure can be utilized to derive the MOM. It is shown that

it is possible to predict an ”optimum” anticipated BS-to-MS geometrical configuration

which results in minimum measurement error dilution and minimum least squares position

error. Under the definition of MOM, we can acquire angles αm
k , [αm

1,k . . . αm
i,k . . . αm

Nk,k]

to meet the minimum MOM value. where

αm
i,k = arg

{
min
∀αi,k

MGxk
(αk)

}
(3.35)

If all the relative distances ζi,k are equal for i = 1 to Nk, GDOP MOM will holds

the same conclusion as GDOP. In other words, The minimal GDOP value w.r.t. xk is

obtained as

MGm
xk

= (
2√
Nk

)ζ2
i,k (3.36)

which occurs as the angles αi,k are regulated to be equivalent with each other as

αm
i,k = 2π/Nk

Corollary 2. Considering the MS is confined by an Nk-side regular polygon by placing

the Nk BSs as the vertices of the polygon, the minimal MOM value w.r.t. xk will occur at

the center of the regular polygon.

Proof. If we apply the lemma 2 to MOM, it always holds when all the relative distances

ζi,k are equal for i = 1 to Nk. In (3.29) , if all the ζi,k are equal, the minimum value will
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occur at the center of the polygon formed by BSs. As the same conclusion as 1, the MS

have minimum value at the center of the polygon if all BS form a regular one.

In the next section, the results obtained from both lemmas will be utilized for the

design of the proposed GALE algorithms.
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Chapter 4

Proposed Geometric-Assisted

Location Estimation (GALE)

Algorithms

The main objective of the proposed GALE schemes is to enhance the conventional two-step

LS algorithm [5] by considering the geometric effect to the location estimation accuracy.

Fig. 4.1 illustrates the schematic diagram of the proposed GALE algorithms. In order to

facilitate the location estimation for the MS, three TOA measurements and the location

information of the corresponding BSs are considered available to the MS at the time

instant k, i.e. r k = {r1,k, r2,k, r3,k} and PBS,k = {x1,k,x2,k,x3,k}. With the available

information, the two-step LS method can acquire the MS’s initial location estimate x̂ o
k =

[x̂o
k ŷo

k] within two computing iterations.

The GALE algorithms are proposed to further enhance the precision of the initial

location estimation of the MS. Based on the available measurement information from

the BSs, the concept of the proposed GALE schemes is to acquire the locations of the

fictitious BSs such as to attain the minimal GDOP value w.r.t the MS’s initial location

estimate. At the second phase of the GALE schemes, the position information of these
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Figure 4.1: Schematic diagram of the proposed GALE algorithms.

fictitious BSs will be utilized to replace that of the original BSs in order to achieve better

geometric layout for location estimation. Two GALE algorithms, i.e. the GALE(1BS)

and GALE(2BS) schemes, are stated as follows.

4.1 GALE with One Movable Fictitious BS Scheme

The GALE(1BS) scheme is designed to fictitiously relocate the position of one BS accord-

ing to the minimal GDOP criterion. Under this condition only one BS is defined to be

fictitious movable and others are fixed.

4.1.1 GDOP-Assisted (GOLE) Location Estimation Scheme

Without lose of generality, it is considered that BS1 (i.e. x1,k) is the adjustable BS within

the GALE(1BS) scheme. The position of the fictitious BS1 is designed such that the
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initial estimated MS (x̂ o
k) will be located at a minimal GDOP position based on the

existing geometric layout PBS,k = {x1,k,x2,k,x3,k}. In other words, based on the initial

location estimate x̂ o
k associated with the information coming from the BSs (i.e. r k and

PBS,k), the three relative angles α1,k, α2,k, and α3,k between the BSs w.r.t. the MS can

be obtained. By adopting the results from Lemma 1, the minimal attainable GDOP Gx̂o
k

w.r.t. the MS’s initial estimate x̂ o
k occurs as the angle α1,k is adjusted as

αm
1,k =

1

2
tan−1

( − sin(2α2,k)

cos(2α2,k) + 1

)
(4.1)

It is noted that the angle α2,k between BS2 and BS3 is considered a fixed value; while

α3,k is dependent to the variable angle α1,k, i.e. α3,k = (2π − α2,k) − α1,k. The following

lemma generalizes the solution for the angle αm
1,k that achieves minimal GDOP value.

Lemma 5. Considering the case that the MS is surrounded by three available BSs, i.e.

BS1, BS2, and BS3. It is assumed that only the location of BS1 is adjustable; while the

positions of the other two BSs are considered fixed. The minimal GDOP occurs as BS1 is

situated at the angle that equally bisects the angle formed by BS2 and BS3.

Proof. According to (4.1), αm
1,k represents the angle that achieves the minimal GDOP value

w.r.t. the MS’s initial estimate. It is clear to conclude that (4.1) holds if α2,k = 2π−2αm
1,k.

Consequently, the minimal GDOP occurs as BS1 is positioned at the angle that equally

bisects the angle formed by the other two BSs, i.e.

αm
1,k =

2π − α2,k

2
(4.2)

It is observed from Lemma 5 that the fictitiously movable BS1 should be adjusted

such that the angles α1,k and α3,k are equal. As a result, the new set of BSs for location
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estimation is obtained as P
(1)
BSf ,k = {xf1,k,x2,k,x3,k}, where xf1,k denotes the location of

the fictitious BS as

xf1,k = r1,k cos(θ2,k − αm
1,k)

yf1,k = r1,k sin(θ2,k − αm
1,k) (4.3)

where αm
1,k is obtained from (4.2). The set of updated locations for the BSs P

(1)
BSf ,k

associated with the original TOA measurements r k = {r1,k, r2,k, r3,k} are exploited to

conduct the second-phase two-step LS method as shown in Fig. 4.1. Consequently, the

MS’s final location estimation x̂ f
k = [x̂f

k ŷf
k ] by adopting the proposed GALE(1BS) scheme

can be obtained.

4.1.2 MOM-Assisted (MOLE) Location Estimation Scheme

By using the property of MOM we can design some scheme to implement the system as

well. For the mathematical model derived from the chapter 3 . The fictitious position

of the adjustable BS can be obtained in order to fit the lowest MOM. Assume that BS1

is adjustable, the fictitious BS1 will be relocated at x1,k in order to make the MS (x̂ o
k)

locate at the lowest MOM.

In other words, whenever we get the MS’s initial coordinate x̂ o
k and the angel α2,k is

considered a fixed value,we can get new fictitious BS set PBS,kf
. By adopting the results

from Lemma 3, the minimal attainable MOM Gx̂o
k

w.r.t. the MS’s initial estimate x̂ o
k

occurs as the angle α1,k is adjusted as

αm
1,k =

1

2
tan−1

( − sin(2α2,k)

cos(2α2,k) + N

)
(4.4)

the notation N is equal to (
r3,k

r2,k
)2, and α3,k is dependent to the variable angle α1,k, i.e.
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α3,k = (2π − α2,k)− α1,k. The following lemma generalizes the solution for the angle αm
1,k

that achieves minimal MOM value.P
(1)
BSf ,k = {xf1,k,x2,k,x3,k}, where xf1,k denotes the

location of the fictitious BS as

xf1,k = r1,k cos(θ2,k − αm
1,k)

yf1,k = r1,k sin(θ2,k − αm
1,k) (4.5)

where αm
1,k is obtained from (4.4). The set of updated locations for the BSs P

(1)
BSf ,k

associated with the original TOA measurements r k = {r1,k, r2,k, r3,k} are exploited to

conduct the second-phase two-step LS method as shown in Fig. 4.1. Consequently, the

MS’s final location estimation x̂ f
k = [x̂f

k ŷf
k ] by adopting the proposed GALE(1BS) scheme

can be obtained.

Lemma 6. We can implement the result derived from MOM to the GALE as well. As-

sumed that only the location of BS1 is adjustable. If r2,k = r3,k, the minimal MOM occurs

as BS1 is situated at the angle that equally bisects the angle formed by BS2 and BS3 .

Therefore, BS1 ,BS2 and BS3 forms a isosceles triangle. From this Lemma ,it indicates

that minimum MOM value occurs when all BSs composing a symmetric layout.

Proof. According to (4.4), αm
1,k represents the angle that achieves the minimal MOM value

w.r.t. the MS’s initial estimation. If r2,k = r3,k, αm
1,k will have the same value as (4.1). It

also holds the solution α2,k = 2π − 2αm
1,k.

It indicates that BS1 will forms a isosceles triangle with BS2 and BS3 if the distance

from MS to BS2 is equal to distance from MS to BS3 at this time.

4.1.3 Coverage-Maximize (CMLE) Location Estimation Scheme

The objective of the proposed GALE algorithms is to utilize the initial location informa-

tion acquired from the BS to serve as the assisted measurement inputs. Besides, We design
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Figure 4.2: The location information for TOA signal

another algorithm to implement the location algorithm. For TOA system as fig.4.2, the

error depend on the undetermine region (the area surrounded by dotted line). Because

GDOP and MOM are designed in a noise-free environment, we can decrease the region

to colored section. The object is to minimize the region and make the total coverage

area maximize at the same time.This paper we call it the Coverage Maximum Location

Estimation(CMLE).

Analogous to the GALE algorithm by adding geometric constraints within the con-

ventional two-step LS method, the CMLE algorithm extends the concept of ”virtual”

assistances in the GALE algorithm to add the geometric constraints from the assisted

information. The same scheme as GALE, Area model also have 1BS and 2BS scheme.

We set PBSf ,k in order to make the area of colored region have a minimum value. The

value is with respect to both related distance and angle. For example, the cross-section
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dorm by BS1 and BS2 can be expressed as

Area =
1

2
ζ2
1,k(θa1 − sin θa1) (4.6)

and θi,1 is w.r.t αi,k. Therefore the total area will be related to αi,k.

Corollary 3. Following by the GALE 1BS algorithm, each scheme can design its own

relocated BS set P
(2)
BSf ,k = {xf1,k,xf2,k,xf3,k} as above scheme shows. For the circumstance

that ζ2,k = ζ3,k, the proposed BS set P
(2)
BSf ,k will have the same position.

Proof. Assume all the relative distance are equal, we can take this data into each scheme.

When ζ2,k = ζ3,k, the proposed answer αm
i,k will have same solution of α1,k =

2π−αm
2,k

2
. As

we have defined before,

xf1,k = r1,k cos(θ2,k − αm
1,k)

yf1,k = r1,k sin(θ2,k − αm
1,k) (4.7)

This equation shows that the BS1 position will be the same.

4.2 GALE with Two Movable Fictitious BSs Scheme

According to Lemma 2 and 4, more degree of freedom can be set. For the purpose of

location, 3 BSs is sufficient to locate a 2-D MS. For this reason we just set 3 BSs and let

all BS be adjustable (i.e. two BSs can be relative adjusting). The below schemes are the

designed method by combing geometric property.
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4.2.1 GDOP-Assisted (GOLE) Location Estimation Scheme

In order to achieve the minimal GDOP for the existing geometric layout, the GALE(2BS)

scheme is designed by considering the case while all the BSs are fictitiously movable. By

adopting the results from Lemma 2, it can be obtained that the angles αi,k that achieve

the minimal GDOP value are determined to be αm
i,k = 2π/Nk = 2π/3 for i = 1 to 3. In

other words, the three BSs are fictitiously adjusted such that equally partitioned angles

are observed.

Therefore, the set of fictitious BSs by exploiting the GALE(2BS) scheme is represented

as P
(2)
BSf ,k = {xf1,k,xf2,k,xf3,k}, where xfi,k (for i = 1 to 3) indicates the locations of the

fictitious BSs. It is noted that xf1,k is selected to be x1,k as the rotation reference.

Consequently, the locations of the other two fictitious BSs can be acquired as

xfi,k = ri,k cos(θ1,k +
i−1∑
s=1

αm
s,k)

yfi,k = ri,k sin(θ1,k +
i−1∑
s=1

αm
s,k) (4.8)

for i = 2 and 3. Similar to the GOLE(1BS) scheme, the fictitious locations of the BSs

P
(2)
BSf ,k associated with the TOA measurements r k are utilized to serve as the new set

of measurement inputs for the two-step LS method at the second stage. As a result, the

final location estimate of the MS (i.e. x̂ f
k) can be acquired.

4.2.2 MOM-Assisted (MOLE) Location Estimation Scheme

For GDOP MOM metric, by adapting lemma1 we get the result for αm
i,k. Because GDOP

MOM metric is depends on both distance and related angle, its solution is more complex.
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We first define the determine function Df ,

Df = B2 − 4AC (4.9)

A = a2

b2c2
− a2

b2
, B = 2a2

bc2
, C = a2

c2
+ a2

b2
− 1 and a = r2

3,k,b = r2
1,kandc = r2

2,k

if Df ≥ 0, the solution will be derived as

αm
1,k = 0.5× arccos(

−B +
√

Df

2A
) (4.10)

and

αm
2,k = 0.5× arcsin(

a

b
sin(2αm

1,k)) (4.11)

if Df ≤ 0, the minimum value will occur under the condition: the angle αm
i,k corre-

sponded to the largest ζi+2,k will be π/2, and the angle corresponded to smallest ζi+2,k

will be π.

Similar to the GALE (1BS) scheme, the fictitious locations of the BSs P
(2)
BSf ,k associ-

ated with the TOA measurements r k are utilized to serve as the new set of measurement

inputs for the two-step LS method at the second stage. As a result, the final location esti-

mate of the MS (i.e. x̂ f
k) can be acquired. It is noted that the noiseless relative distances

ζi,k in (3.9) are approximately replaced by ri,k since ζi,k are considered unattainable.

4.2.3 Coverage-Maximize (CMLE) Location Estimation Scheme

When all the BSs are assigned to be movable, the CMLE 2BS scheme is continuous

computing the relative angle αi,k in order to make the total overlapping area Axk
to be

minimum. It can be expressed as
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αm
i,k = arg

{
min
∀αi,k

Axk
(αk)

}
(4.12)

for i=1 to 3.

Corollary 4. Following by the GALE 2BS algorithm, each scheme can design its own

relocated BS set P
(2)
BSf ,k = {xf1,k,xf2,k,xf3,k} as above scheme shows. For the circumstance

that all the relative distance are equal, the proposed BS set P
(2)
BSf ,k will have the same

position.

Proof. Assume all the relative distance are equal, we can take this data into each 2BS

scheme. All the proposed answer αm
i,k will have same solution of π/3. As we have defined

before,

xfi,k = ri,k cos(θ1,k +
i−1∑
s=1

αm
s,k)

yfi,k = ri,k sin(θ1,k +
i−1∑
s=1

αm
s,k) (4.13)

for i = 2 and 3. This equation shows that all the BSs’s position will be the same.
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Chapter 5

Performance Evaluation

Simulations are performed to show the effectiveness of the GALE algorithms under

different network topologies and the MS’s positions. The proposed GALE(1BS) and

GALE(2BS) schemes are compared with the exiting two-step LS and the TSE algorithms.

As shown in Fig. 5.1, two different types of geometric layouts are designed to validate the

effectiveness of the proposed GALE algorithms. The left plot illustrates the case while

the MS is located at a better geometric layout,

5.1 Noise Models

Different noise models [22] are considered in the simulations in order to represent the

environments with both the LOS and the NLOS signals. The model for the measurement

noise of the TOA signals is selected as the Gaussian distribution with zero mean and 10

meters of standard deviation, i.e. ni,k ∼ N (0, 100) . On the other hand, an exponential

distribution pei,k
(τ) is assumed for the NLOS noise model of the TOA measurements as

pei,k
(υ) =





1
λi,k

exp
(
− υ

λi,k

)
υ > 0

0 otherwise
(5.1)
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Figure 5.1: Network topologies for performance evaluation (left plot: better geometric
layout with Gg

xk
= 1.2253 and MGg

xk
= 796.79; right plot: worse geometric layout with

Gb
xk

= 13.884 and MGb
xk

= 8389.2).

where λi,k = c · τi,k = c · τm(ζi,k)
ερ. The parameter τi,k is the RMS delay spread between

the ith BS to the MS, and τm represents the median value of τi,k. ε is the path loss

exponent which is assumed to be 0.5, and the factor for shadow fading ρ is set to 1 in

the simulations. It is noted that the parameters for the noise models as listed in this

subsection primarily fulfill the environment while the MS is located within the rural area.

5.2 Simulation Results

Fig. 5.2 illustrates the performance comparison between these schemes under the LOS

environment with both better and worse geometric layouts, i.e. left with Gb
xk

= 1.22

and right with Gw
xk

= 13.88. It is noted that the Estimation error of the MS’s position

is represented as ∆x̂ = ‖x̂f
k − xk‖, where x̂f

k indicates the MS’s final estimate from the

location estimation algorithms. It can be observed that the proposed GALE algorithms

outperform the other two existing schemes, especially under the worse geometric environ-
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Figure 5.2: Performance comparison under the LOS environment with both better (left:
Gb

xk
= 1.22) and worse (right: Gw

xk
= 13.88) geometric layouts.

ment. Considering the layout with larger GDOP value (i.e. Gw
xk

= 13.88) as shown in

Fig. 5.3, the comparison for the Estimation errors versus the standard deviations of the

measurement noises is illustrated. It can be seen that the proposed GALE(2BS) scheme

can provide the smallest Estimation errors comparing with the other algorithms.

Figs. 5.4 and 5.5 illustrates the case for performance comparison under the NLOS

environment. It is noted that Fig. 5.5 is illustrated by observing the Estimation errors

versus the median values of the NLOS noises (i.e. τm). It can still be observed that the

proposed GALE(2BS) scheme outperforms the other algorithms even under the existence

of the NLOS errors, i.e. around 250 m less in Estimation error compared to the two-step

LS method with τm = 0.3. Moreover, the benefits by fictitiously adjusting the locations

of two BSs compared to that for one BS can also be observed in both the LOS and

the NLOS environments. With the incorporation of the geometric information into the

location estimation, the merits of the proposed GALE schemes can be observed.

Table1 shows the performance comparison between the Location Estimation Schemes
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Figure 5.3: Performance comparison under the LOS environment with worse geometric
layout (Gw

xk
= 13.88): Estimation error v.s. standard deviation of measurement noise.

under LOS environment. while the MS is located far from its BSs. It can be seen

from plots that the proposed GALE(1BS) scheme outperforms the conventional two-step

LS method with more than 100 m of estimation error under 90% of average position

errors. GALE(2BS) scheme can outperform even more to 250 m than two-step LS method

(noise standard deviation= 10). Table2 shows the performance comparisons between the

Location Estimation Schemes under NLOS environment (median value τm = 0.3). The

proposed GALE(1BS) algorithm improve more than the environment under LOS. For

example, under 90% of average position error the GALE(1BS) scheme can mitigate 170

m more than two-step LS and GALE(2BS) scheme can mitigate about 300 m.

From figs. 5.4, we can also improve that MOLE and CMLE outperform that GOLE

especially under NLOS environment. GDOP metric is derived in chapter3 and is inde-

pendent of relative distance. Under NLOS environment the distance error is increasing

rapidly with the relative distance, therefore the other two GALE can observe this factor.

However, CMLE waste more computation than MOLE, we can get the conclusion that
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TABLE I
Performance Comparisons between the Location Estimation Schemes in LOS: Estimation Error (m)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
TSE 103.12 138.61 201.12 258.56 371.87 394.25 458.19 525.51 562.69 711.56

Two-step LS 93.951 148.69 198.72 248.81 301.87 358.15 418.99 485.63 562.69 691.76
GOLE(1BS) 67.439 102.08 133.78 165.44 198.84 235.27 273.81 316.73 367.8 446.87
GOLE(2BS) 55.452 82.652 108.95 135.43 162.23 192.07 225.64 263.02 307.58 390.05
MOLE(1BS) 61.365 92.18 121.69 151.74 182.55 216.78 254.71 297.6 346.9 434
MOLE(2BS) 49.388 71.762 92.532 112.77 133.39 155.91 181.36 210.17 244.18 297.56
CMLE(1BS) 61.072 89.807 119.44 148.89 188.95 221.84 259.29 301.44 351.03 429.16
CMLE(2BS) 44.878 65.227 84.109 102.49 121.23 141.7 164.83 191 221.91 270.38

TABLE 2
Performance Comparisons between the Location Estimation Schemes in NLOS: Estimation Error (m)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
TSE 229.29 418.74 505.94 669.6 709.4 834.8 957.7 1082.4 1214.4 1633.6

Two-step LS 207.81 332.68 405.49 556.55 685.58 701.4 814.8 929.9 1051.7 1554.1
GOLE(1BS) 145.34 265.82 371.63 463.64 547.54 622.76 691.04 760.95 836.24 1296.29
GOLE(2BS) 110.35 242.58 350.7 384.88 407.33 420.24 586.77 651.89 719.73 1123.3
MOLE(1BS) 132.33 256.7 358.49 443.49 546.03 627.03 682.67 726.37 794.32 1226.9
MOLE(2BS) 115.34 230.27 331.52 378.59 390.89 403.46 527.83 592.9 661.49 960.93
CMLE(1BS) 138.57 265.9 362.46 428.97 507.83 575.12 649.01 723.77 790.3 1200.3
CMLE(2BS) 114.88 229.05 330.48 387.33 393.65 462.4 526.81 591.62 659.36 946.39

MOLE is the best choice under NLOS enviroment.
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Chapter 6

Conclusion

The NLOS errors will cause large positive biases while measuring the time information

data. The inaccuracies of the range measurements consequentially make the conventional

location algorithms, like the two-step LS method [5], fail to estimate the MS’s position.

The location estimation algorithms with the assistance from the geometric property are

presented in this paper. Since it can be indicated from chapter 2 and chapter 3 that the

location error has big concern with the geometry, the proposed GALE methods which in-

tend to make the MS be at the location where the geometry distribution is the optimum.

Six geometric-assisted location estimation (GALE) algorithms are proposed by consider-

ing the geometric layouts between the mobile station and its associated base stations. The

geometry information such as GDOP, MOM and coverage have been utilized to fictitiously

relocate the positions of the BSs in order to obtain a better geometric layout for location

estimation. It is shown in the simulation results that the proposed GALE schemes can

provide consistent accuracy for location estimation, especially under the environments

with poor geometric layout.
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