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Student : Lin-Chih Chu Advisor : Dr. Kai-Ten Feng
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ABSTRACT

In recent years, wireless location estimation has attracted a significant amount of
attention in different areas. The network-based:location estimation schemes have been
widely adopted based on the radio signals between the mobile station (MS) and the
base stations (BSs). The two-step Least Square (LS) method has been studied in
related research to provide efficient location estimation of the MS. However, the
algorithm results in inaccurate location estimation under the circumstances with poor
geometry property such as two indexes, the geometric dilution of precision (GDOP)
and the GDOP measure-of-merit (MOM). In this paper, the geometry-assisted
location estimation (GALE) schemes are proposed by considering the geometric
relationships between the MS and its associated BSs. According to the minimal
GDOP and MOM criterion, the BSs are fictitiously repositioned and are served as a
new set of BSs within the formulation of the two-step LS algorithm. The proposed
GALE schemes can both preserve the computational efficiency from the two-step LS
method and obtain precise location estimation under poor geometric environments.
Comparing with other existing schemes, numerical results demonstrate that the
proposed GALE algorithms can achieve better accuracy in wireless location
estimation.
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Chapter 1

Introduction

Wireless location technologies [1], which are designated to estimate the position of a
mobile station (MS), have drawn a lot of attention over the past few decades. Different
types of location-based services (LBSs)2]have been proposed and studied, including the
emergency 911 (E-911) subscriber'safety, 8ervices, the navigation system, and applications
for the wireless sensor networks=(WSNs) [3].-Due to-the emergent interests in the LBSs,
it is required to provide enhanced précisiontin the location estimation of a MS under
different environments.

The wireless location techniques can be classified into (i) the satellite-based and (i)
the network-based location estimation schemes. To simplify the introduction of these
techniques, in the following we use two-dimensional (2-D) cases as application examples.
A variety of wireless location techniques have been studied and investigated in [1] and the
introduction of the wireless location techniques as follows is referred to the research.

The well-adapted technology for the satellite-based location estimation method is to
utilize the global positioning systems (GPSs). It measures the time-of-arrival (TOA)
of the signals coming from different satellites. The TOA scheme determines the mobile
device position based on the intersection of the range circles, as shown in Fig. 1.1a. Since

the propagation time of the radio wave is directly proportional to its traversed range,
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Figure 1.1: Position determination methods:(a) time of arrival (TOA) (b)time difference
of arrival (TDOA) (c) angle of arrival (AOA)
multiplying the speed of light to the time can obtain the range from the mobile device to
the communicating base station (BS). It is noted that two range measurements provide
an ambiguous fix, while three measurements determine a unique position. The same
principle is used by GPS, where the circles become the spheres in space and the fourth
measurement is required to obtain the 3-D position for mobile device.

The network-based location estimation schemes have been widely proposed and em-
ployed in the wireless communication system. These schemes locate the position of the
MS based on the measured radio signals from its neighborhood BSs. The representative

algorithms for the network-based location techniques are the time difference-of-arrival



(TDOA) and the angle-of-arrival (AOA). The TDOA scheme determines the mobile de-
vice position based on the trilateration, as shown in Fig. 1.1b. The scheme uses time
difference measurements rather than absolute time measurements as TOA dose. It is
often referred to as the hyperbolic system because the time difference is converted to a
constant distance difference to two base stations (as foci) to define a hyperbolic curve.
The intersection of two hyperbolas determines the mobile device position. Therefore, it
utilizes two pairs of BSs for positioning. The accuracy of the scheme is a function of
the relative base station geometric locations. For the network-based systems, it also re-
quires either precisely synchronized clocks for all transmitters and receivers or a means
to measure these time differences.

The AOA technique determines the mobile device position based on triangulation, as
shown in Fig. 1.1c. It is also called direction of arrival in some literature. The intersection
of two directional lines of bearing defifies'a unique position, each formed by a radial from
a BS to the mobile device in the 2-ID space. This technique requires a minimum of two
BSs to determine a position. If available;‘more than one pair can be used in practice.
However, since directional antennas or antenna arrays are required, it is generally difficult
to realize the AOA technique at the mobile device.

A variety of wireless location techniques have been studied and investigated. The
network-based location estimation schemes have been widely proposed and employed in
the wireless communication system. These algorithms locate the position of the MS
based on the measured radio signals either from its neighborhood base stations (BSs) in
the cellular-based networks or the sensor nodes (SNs) in the WSNs.

The equations associated with the network-based location estimation schemes are in-
herently nonlinear. The uncertainties induced by the measurement noises make it more
difficult to acquire the MS’s estimated position with tolerable precision. Different ap-

proaches have been proposed to obtain an approximate location estimation in the previous



studies [4] - [7]. The Taylor series expansion (TSE) method was utilized in [4] to acquire
the location estimation from the time measurements. The scheme requires iterative pro-
cesses to obtain the location estimate from a linearized system. The major drawback of
the TSE method is that it may suffer from the convergence problem due to an incorrect
initial guess of the MS’s position.

The straight line of position (LOP) [7] method presents a different interpretation of the
TOA geometry to estimate the MS’s location comparing with the conventional circular
TOA methods.

The two-step least square (LS) method [5] [6] was adopted as an approximate real-
ization of the maximum likelihood estimator, which does not require iterative processes.
It is observed that feasible location estimation can be achieved by adopting these algo-
rithms while the time measurements are symmetrically located w.r.t. the MS. However,
asymmetrical measurement inputs to the MS in, general result in degraded precision for
location estimation. It is especiallyl noticed that this type of situation can frequently
occur under non-regular shapes of geometric layouts,.e.g. under the randomly distributed
sensor networks.

In order to consider the geometric efféct, to the accuracy of location estimation, the
well-known geometric dilution of precision (GDOP) [8] and GDOP MOM [9] metrics can
be adopted to facilitate the design of location estimation algorithms. Two metrics are
utilized as an index for observing the location precision of the MS under different geomet-
ric positions within the networks, e.g. the cellular, the satellite, or the sensor networks.
The work in [10] describes the effect and cost resulting from the network topology with
significant GDOP values. However, the method for mitigating the GDOP effect has not
been extensively addressed in previous studies. The ridge regression signal processing [11]
is proposed for reducing the effects of GDOP in the position-fixed navigation systems.

Nevertheless, a pre-filtered set of initial range measurements is required before the pro-



posed estimation method can be activated. A new geometric property, coverage, is also
introduced in this paper. For the purpose that mitigating estimation error, we use the
geometric information to decide the best BS layout and can improve the location system.

In this paper, three Geometric-assisted location estimation (GALE) algorithms are
proposed to enhance the estimation precision by incorporating the geometric information
within the conventional two-step LS algorithm. Based on an initial estimate of the MS’s
location, the proposed GALE schemes determine the fictitious locations of the BSs such
that the estimated MS will be relocated at a position with the best geometric property, it
can be decided by GDOP, MOM or coverage information. According to the these geomet-
ric criterion, the GALE(1BS) and GALE(2BS) algorithms are proposed to consider the
cases by fictitiously rotating (i.e. not physically relocate) one and two BS’s locations re-
spectively. Reasonable location estimation can be acquired within the GALE algorithms,
especially feasible for the cases with:poor geémetric circumstances. Simulation results
illustrate that the proposed GALE lschemes can achieve higher accuracy for the MS’s
estimated location compared tozthe other existing methods.

The remainder of this paper ‘is organized-as follows. chapter 3 describes the proper-
ties that are derived from the GDOP and"GDOP MOM metrics. The proposed GALE
algorithms are explained in chapter 4; while chapter 5 shows the performance evaluation

of the proposed schemes. chapter 6 draws the conclusions.



Chapter 2

Related work

2.1 Studies on Propagation Noise

The precision of time measurement significantly leads the performance of the location
algorithms which utilize the timé-base.infotmation. The transmitted radio signal can
reach the receiver in the shortest time in the case that there are no barriers in the direct
connection between the transmitter and-the receiver. This is called the Line-of-Sight
(LOS) situation, which often occurs‘in-a.openspace. Yet, this ideal situation usually can
not meet in a obstacle-concentrated environment such as a dense urban or an office inside
a building. The emitted radio signal is either reflected or diffracted by obstructions as
Fig. 2.2, and it must take extra time to arrive at the receiver. The additional propagation
time is so-called the Non-Line-of-Sight (NLOS) error, and is always positive as presented
in Fig. 2.1. The NLOS error is viewed as a killer issue for location estimation [12]. The
excess part of the time measurements will result in range errors on the order of 513 meters
and 436 meters in the mean and the standard deviation respectively [13], which inevitably

makes a time-based location algorithm to fail.
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2.2 Studies on Existing Location Estimation Algo-
rithms

Different location estimation schemes have been proposed to acquire the MS’s position.
Various types of information (e.g. the signal propagation time, the received angle of the
signal, or the Receiving Signal Strength (RSS)) are involved to facilitated the algorithms
design for location estimation. The primary objectives in most of the location estimation
algorithms are to obtain higher estimation accuracy with promoted computational effi-
ciency. Some famous algorithm such as range scaling algorithm (RSA), proposed in [14]
to alleviates the NLOS errors by considering the geometric layout between the MS and
its associated BSs. Virtual base stations (VBS) [15], mitigate the influence from the
NLOS errors by imposing the geometric constraints and reduce the GDOP effect by in-
corporating the assisted virtual basesstations. multiple signal classication (MUSIC) [16]
- [18] scheme, is experimentally iHustratéd to beia robust solution for location estimation,
especially for a near-far environment.

There are also different approaches:adopting linearized methods to acquire the com-
puting efficiency while obtaining an ‘approximate estimation of the MS’s position. The
Taylor-series estimation (TSE) method was utilized in [4] to acquire the location estima-
tion from the TDOA measurements. The method requires iterative processes to obtain
the location estimate from a linearized system. The major drawback of this method is
that it may suffer from the convergence problem due to an incorrect initial guess of the
MS’s position. The two-step LS method was adopted to solve the location estimation
problem from the TOA [20], the TDOA [5], and the TDOA/AOA measurements [21].
It is an approximate realization of the Maximum Likelihood (ML) estimator and does
not require iterative processes. The two-step LS scheme is advantageous in its computa-

tional efficiency with adequate accuracy for location estimation. However, the scheme is



demonstrated to be feasible for acquiring the MS’s position under the LOS situations.
Some well-known schemes are improved continuously in order to achieve higher accu-

racy or promote the computational efficiency. The famous linear time-based algorithms,

the Taylor-series estimation (TSE) [4] and the two-step LS method are briefly described

in the following subsection.

2.2.1 Taylor-Series Estimation

The content of this section will show the Taylor-Series Estimation (TSE), which is avail-
able in [4].

Assuming that (z, y) is the position of the MS, (z,, y,) is the position of the ¢
base station and r, is the TOA measurement from the base station ¢. Since in practice,
especially in urban or in mountainous areas, the signals from the mobile device are usually
unable to arrive at the base stations'directly (orfin the oppositive direction), they always
take a longer path than the direct one.=| So by incorporating the influences of NLOS

propagation on the location estimation, there exists

fe(x,y, 2o, ye) =G =g — ny (2.1)

where (, represents the noiseless distance between the MS and the ¢** BS. n, is the
measurement noise and is statistically distributed. We take the noises to have zero-mean

values < ny, >=0 and n;; =< n;n; > is the 1 — 4% term in the covariance matrix

Q = [ny]

If the x,, y, are guesses of the true variable position, write

T =T, + 0, y=1y,+9, (2.2)



and expand f, in Taylor’s series keeping only terms below second order

where

Qg1 = afé/ax‘zv,yv

foo + apdy + apdy, >~ re —ny

foo = fo(@o, Yo, Te, yo)

Apo = afé/ay’xv:yv

and the approximate relations of 2.3 can be written as

where

11

a1

an1

a12

a2

an2

The choice of § that

Thus, to estimate the position of the MS, compute d,, §, with (2.5), replace

Ad~z—n
Tl_flv
s 0z il 7‘2—f2v
51/
_TN_va_

§=(ATQ A T'ATQz

Ty = Ty + 0 Yy < Yo + 0y

ni

no

ny

(2.3)

(2.4)

(2.5)

(2.6)

in (2.5), and repeat the computations. The iterations will have converged when §, and

10



d, are essentially zero.

2.2.2 Two-Step Least Square Method

The content of this section will show the Two-step Least Square (two-step LS) location
algorithm for TOA measurements and it can be obtained in [20]. For simplification, the
two-step LS method will be described for TOA measurements in a two-dimensional (2-D)
plane. The two-step LS method for TDOA measurements can be derived from the similar
concept.

Assuming that (x, y) is the position of the mobile device, (z, y,) is the position of
the (** base station and r, is the TOA measurement from the base station ¢. Since in
practice, especially in urban or in mountainous areas, the signals from the mobile device
are usually unable to arrive at the base stations directly (or in the oppositive direction),
they always take a longer path thanthe direct'one. So by incorporating the influences of
NLOS propagation, killer issue for location:estimation, on the location estimation, there

exists

17 > (2 — )2+ (Yo — y)? = ke =20 = ypy + 2 + 3 ¢=1,2,..N (2.7)

where ky = x? + yf, ry = ctp 1s the measured distance between the MS and the ¢th base
station, and c is the speed of light. And by defining a new variable 3 = 22+ y2, we rewrite

(2.7) through a set of linear expressions

2z —2yy +B<1ri—Kke £=1,2,..N (2.8)

Let z, = [z y p]7 and express (2.8) in matrix form

Hz, <J (2.9)

11



where

—2x7 — 2 1 ’I“% — K1
—2x9  — 2y 1 r3 — K2
| —2en —2yn 1 | X — AN

With measurement noise, the error vector is

=T - Ha, (2.10)

When r, can be expressed as & + cny, the error vector 1 is found to be

= 2¢(Bn+cnon

B = diag{€17£27‘..,€]\[} (211)

The symbol ® represents the Schur product (element-by-element product). In addition,
the second term on the right of (2.11) ean be ignored since the condition cny < & is usually

satisfied. As a result, ¢» becomes a Gaussianrandom vector with covariance matrix given

by

U = B[y’ = 4c*BQB (2.12)

Q is the covariance matrix of measured noise, and &;,...,&y are denoted as the true values
of distances between the sources and the receiver. The element x, are related by the
equation, 3 = x? 4+ y?, which means that (2.9) is still a set of nonlinear equations in two
variables z and y. The approach to solve the nonlinear problem is to first assume that
there is no relationship among x, y and 3. That can then be solved by Least Square (LS).
The final solution is obtained by imposing the known relationship to the computed result

via another LS computation. This two step procedure is an approximation of a true ML

12



estimator. By considering the elements of x, independent, the ML estimator of x, is

z, = argmin{(J—Hz)" v 1(J - Hz)}

= H"UV'H)'H'v 1] (2.13)

The covariance matrix of x, is obtained by evaluating the expectations of x, and a:aa:aT

from (2.13). The covariance matrix of x, can be calculated as [?]

cov(x,) = (H' O 'H)™ (2.14)

Since we have used the independent supposition of variables x, ¢, and (3 in the estima-
tion of x, though the variable (8 is dependent on the variable z and y, we should revise
the results as follows. Let the estimation errors of x, y, and (3 be ey, e, and e3. Here and

below, denote the i entry of a matrix M as [M];z.then the entries in vector x, become

[ma]l =X, +e1 (215&)
[To]o = Yot €9 (2.15b)
[ma]g = ﬁo + e3 (215(3)

where x,, y,, and 3, are denoted as the true values of z, y, and 3. Let another error

vector
¢b = Jb — HbiBb (216)
where
1 0 [:Ba]%
Hy=]0 1 Jo = |[z4)3
1 1 [:I)a]g

13



2

x
and x,= . Substituting 2.15a- 2.15¢ into 2.16, we have

y2

[¢]1 = 2xoel + 6% ~ 21‘061
[V]2 = 2yoe2 + €3 ~ 2y,e0

[V]s = e3

Obviously, the above approximations are valid only when the errors ey, es, and ez are

fairly small. Subsequently, the covariance matrix of v, is

U, = E[bl] = 4Bycov(z)B,

B, = diag{x,,y,,0.5} (2.18)

As an approximation, elements @, and ¥, i matrix x can be replaced by the first two

elements z and y in x,. Similarly, the ML-estimate of x;, is given by

zy, = (HjWgiHy)H 0T, (2.19)
~ (H]B,'(cov(z),) "B, 'H)™" (2.20)
e (H{B,'(cov(z),) 'B,")J, (2.21)

So the final position estimation ¢ = [z y]? is

=z, or x=—\/xy (2.22)

Here the sign of z should coincide with the sign of [x,]; calculated by solving 2.13, and
the sign of y coincides with the sign of [x,].

The complete derivation of the two-step LS for TOA measurements is shown above. In

14



addition, the two-step LS method can be adopted to estimate MS location from the TDOA
[5], and the TDOA/AOA measurements [21]. The following two subsections describe the
3-D TOA location estimation for the satellite-based system, and the 3-D TDOA/AOA

location estimation algorithm for the cellular network.

2.2.3 Geometry-Constrained Location Estimation (GLE) Algo-

rithm

Serval location algorithms [22]- [26] have been proposed to mitigate the NLOS error.
Here we introduce a method by using the geometric property. As illustrated in Fig. 2.3
, the MS’s location estimation using the two-step LS method may fall inside or outside
of the boundaries of the three arcs, AB, BC, and CA. With the larger overlap region
caused by the increasing NLOS error, the inaccuracy of the location estimation of the MS
consequentially raises. The characteristics. of the geometric layout and the noise variances
are applied to a method named-the 'Geometry-Constrained Location Estimation (GLE)
algorithm [27] to modify the formulations within the Two-Step Least Square method.
The primary objective of the propésed GLE algorithm is to confirm the location estimate
within the overlap region by joining the geometric constraints into the Two-Step LS
method.

A specific information derived from the constraints of the geometric layout is added

into the Two-Step Least Square method. The constrained cost function ~ is given by
. 1/2
1= [ ) §||w—ull2] (223)
u=a,b,c

where @ is the MS’s location as mentioned before; a = (x4, ¥4), b = (x4, yp), and ¢ = (z.,
y.) represent the corresponding coordinates of the points A, B, and C. The parameter ~y

defined as the square root of the average squared-sum of the distance from the MS to the

15



Figure 2.3: Geometric constraints for TOA-Based location estimation confine the true
MS’s position in the overlap region of the range measurements.

three points A,B and C is called the wirtual distance and obviously varies as the three
coordinates a ,b and ¢ changes. The corresponding-expected virtual distance e is defined

as

1/2
1
e = [ > gl u\!2] =7+n, (2:24)

n=a,b,c

where n., is the error induced by the computed deviation between <. and . The .
called the expected MS’s position is chosen to minimize the deviation between the virtual
distance v and the corresponding expected virtual distance .. The coordinates of the

expected MS position «, is a linear combination of those of the three points A, B, and C'

16



with the parameters acting as weights which is related to the signal variations.

Te = W1Tq + Wally + W3Te (2.25a)
Ye = W1lYa + Walp + W3Ye (225b)
where
0.2
wy = ¢ for 0 =1,2,3 (2.26)

o2+ 03+ 03

o1, 09, and o3 are the corresponding standard deviations obtained from the three TOA
measurements r, 79, and rs.

The selection of the weights is directly proportional to the corresponding signal vari-
ances. For example, the excessive range measurement r; due to the comparatively large
signal variance o; may probably ecause the true position of the MS to move incorrectly
toward to the boundary of the arc. BC. Therefore,the weighting of the coordinates of a
should be relatively large to make the'true position of the MS to move toward the point
A of the analogous triangle.

The GLE algorithm integrates the geometric constraints into the first step of the

Two-Step Least Square method is defined as:
Hz =J + (2.27)

where

S
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The corresponding coefficients are given by

Bo= 2ty

Kg = x?—i—y? for (=1, 2,3

1
Vo = g(xa+$b+xc)
1
Yy = g(ya+yb+y0)
1
Vo = §(x3+x§+$§+y§+y§+y3)

The noise matrix 1 in (2.27) can be obtained as
Y =2cBn+c*n? (2.28)
where
B = dlag{ Clu CQ: C37 Y }
T
n = [nl Ny N3 nv/c]

Based on the two-step LS scheme, an intermediate location estimate after the first step

18



can be obtained as
z=H VY 'H) 'H v 1] (2.29)

where

¥ = Elyy’] =4 BQB

It is noted that W is obtained by neglecting the second term of (2.28). The matrix Q can

be acquired as
— di 2 2 2 2 /.2
Q - dlag { o1 02, 03, O',Ye/C }

Q represents the covariance matrix for both the TOA measurements and the ezpected

2

virtual distance, where O3 /e

corresponds to the standard deviation of ~./c. The final
location estimation can be obtained by continuously carrying on the second step of the

Two-Step Least Square method [20]:
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Chapter 3

Derivation from GDOP and GDOP
MOM Metric

The time-based algorithms, i.e. TSEsand two-step LS as described in chapter 2, are
primarily feasible for location estimation|under line-of-sight (LOS) environments. As
described in chapter2, NLOS error is an important issue for Wireless Location System.
In order to preserve the computation efficiency and to obtain higher accuracy under
NLOS environments, geometric constraints-are added to enhance the existing algorithm.
Two geometry metric, geometric dilution of precision (GDOP) and GDOP measure-of-
merit(MOM), are proposed in this chapter and some properties will be derived for com-
pany. We'll introduce these two mathematical metrics at section 3.1 and 3.2 and derive

some properties at section 3.1.1 and 3.1.2.

3.1 Mathematical Modeling

The signal model for the TOA measurements is utilized in this paper. The set 7y
contains all the available measured relative distance at the kth time step, i.e. 1, =

{rig, -« s ik, -- -, 'N.k}, Where Nj denotes the number of available BSs at the time step

20



k. The measured relative distance (7; ) between the MS and the ith BS (obtained at the

kth time step) can be represented as

Tik=C-tig==Cr+nip+er 1=12,..,Ng (3.1)

where ¢; , denotes the TOA measurement obtained from the ith BS at the kth time step,
and c is the speed of light. 7; ; is contaminated with the TOA measurement noise n,;; and
the NLOS error e; ;. It is noted that the measurement noise n; , is in general considered as
zero mean with Gaussian distribution. On the other hand, the NLOS error e; ;, is modeled
as exponentially-distributed for representing the positive bias due to the non-line-of-sight
effect [22]. The noiseless relative distance (;; (in (3.1)) between the MS’s true position

and the ¢th BS can be obtained as

ol

i = (@ — igo) (U= vin)’] (3.2)

where @, = [z}, yi| representsthe MS’s‘true position and x; , = [z, y;x] is the location
of the ith BS for i = 1 to N,. Therefore, the setof all the available BSs at the kth time
step can be obtained as Ppsy = {®1 s, -- -5 Tik, - -+ TNk }-

The architecture can be described as Fig. 3.1 .After getting the information as describe
above, the next step is solving the MS position. The object’s position can be represent
by a n-dimensional vector h. h= [z yx]? in 2-D space. However, before we continue and

introduce the geometry for specific bearing measurements, we will state some results from

estimation theory.

where N; ~ N(0,0?) for zero mean Gaussian noise.

A major problem is to solve the nonlinear system of equations. So a first step is
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Figure 3.1: Schematic diagram of the network layout for computation.
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linearization. It can be achieved by using Taylor series expansion.

iy =3 T oy 3.

o!

If we take first order approximation and let Z be the accurate position, equation can be
written as f(h) =~ f(z) + H - (h — Z). As described above, it can be functionally related

as df = H - dr+e Where e means the high order term error. The LS solution is given by:

dv = (H"H) ' H df (3.5)
The covariance of the vector dz can be obtained as

cov(dr) =E[drde®]

=(H" )" H cov(df ) ((H  H)*H")" (3.6)
In ideal case, cov(df) = I,0? where*lisan 2 X 2 identity matrix, we have

cov(dr) =(H'H) 'H"H(H"H) ' Lo}

=(H"H) "o} (3.7)
For a i.i.d. range error of covariance cov(df) = Cj - oy, where Cj is a symmetric

positive definite matrix and oyis the user equivalent range error variance. cov(dz) can be

expressed as

cov(dz) = ' (3.8)
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and the off-diagonal entries are not critical to the following discussion. The most com-
monly used measure of the positioning accuracy is the root mean square error metric. We
want to show the influence of the geometric property on the positioning accuracy. To do
so, we need a metric, which describes a quality of the measurement units geometric con-
figuration. The matrix, GDOP and GDOP MOM, can be used to evaluate the geometric

layout.

3.2 Geometric Dilution of Precision (GDOP)

GDOP metric is utilized to describe the geometric effect on the relationship between
the measurement error and the position determination error [8] [10]. Fig.3.1 illustrates
the schematic diagram of the network layout for the GDOP computation. In general,
a larger GDOP value corresponds to .a comparably worse geometric layout (established
by the MS and its associated BSS), whi¢h @ensequently results in augmented errors for
location estimation. On the other hand, as the GDOP value becomes smaller, the effect
from the geometric relationship-to theé-location estimation accuracy will turn out to be
insignificant. Considering the MS’s‘location-tinder the two-dimensional coordinate, the

GDOP value (G) obtained at the MS’s true position a; can be represented as
Gg, = {trace [(H] H,)™']}® (3.9)

For measurement model in GDOP, the signal f(z) can be described as f(z) = ;. Thus

the matrix H;, can be modeled as
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Tp—T1,k Ye—Y1,k

C1,k €1,k
Hmk — xk(:?k ykgf:k (3.10)

TE—TN, kY —YUNk
CNy K CNy &

It is noted that the elements within the matrix H,, can be acquired from (3.2).

3.2.1 Derived GDOP property

It is noted that (3.9) associated with (3.10) are utilized for representing the GDOP metric
in most of the research studies. In order to facilitate the design of the proposed GALE
schemes, several properties obtained from the GBDOP metrics are observed and derived
in this paper. As shown in Fig. 3.1, the following relationship can be obtained with
coordinate transformation as xj — @ jp="1C €08 ik, G sinb; ] for i = 1 to N, where
0; . represents the angle formed by the vector of @) — x;;, w.r.t. the positive z-axis. By

substituting this equation into (3.10), the GDOP value in (3.9) can be rewritten as

N, :

ZN:IQQ Sin2(9i7k — 0,'_17k) + sin2(017k — eNk,k)

Gg, = (3.11)

Furthermore, in order to facilitate the proofs of the following lemmas, the relative

angles «; , between the BSs are defined as

Oivri — b; 1<i<N,—1
Qg = T ’ (3.12)

2+ 01k — Ong e @ =0, Ny

It is noted that ¢ = 0 is utilized for circular counting in order to facilitate the notations
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GDOP value (min =0.894)
15

Figure 3.2: GDOP value in a regular pentagon

that will be utilized in the paper. Furthermore, the relative angles «,,, between each

arbitrary pth and ¢th BSs are further defined as

q—1
p s Vp <q
pg s = 2t O (3.13)

2 "—”‘Z’\;q_‘"l agr Vp>q

where 1 <p < Ni,1 < ¢ < N;, and d ‘i$‘idgﬁiléd éx's in (3.12). Consequently, the GDOP

value in (3.11) can be reformulated as a fimction of (jwzk as

“ N, 1

- Ne—1 =N, .
> it ijkwrlsmz(aij,k)

Ga, (3.14)

The GDOP is utilized as an index for judging the the effect of the geometric layout.
Several K-side regular polygon layouts are examined to verify the phenomenons of the
GDOP. The 3-D graph and the contour of the GDOP value are shown in Fig. (3.2)-(3.3).
The Figs. shows that when all the BSs form a regular polygon, the minimum GDOP
value will occur at the center of these BSs. And we can get another observation that
when MS is situated inside the polygon will have lower GDOP that outside.

In the following, the minimal GDOP values are obtained by considering two different

cases. The minimal GDOP values are determined by adjusting one BS’s location in

26



GDOP value (min = 1.154)

12

Figure 3.3: GDOP value in a regular triangle

Lemma 1 (i.e. with one degree-of-freedom) and regulating all the locations of the BSs in
Lemma 2 (i.e. with Ny degree-of-freedom) . The claims and derivations for both lemmas

are stated as follows.

Lemma 1. The MS located at xy is surrounded by Ny BSs at x;y (for i =1 to Ni) as
shown in Fig. 3.1. The angles betweg'ri' év‘er.y““iwol adjacent BSs to the MS are defined as
o, . It is assumed that only the ¢th BS’s gl‘d{;cthn z'@’"ddjustable; i.e. the angle oy, between

the (th and the (¢ + 1)th BSs; while the pbéit.z'ons fo%‘:“ the other BSs are considered fized.
o | ]

The minimal attainable GDOP 5(_;cu7*s.-a‘rsﬁ"thé";angléﬂag,k is adjusted to be

L j | | B : N
m a4 — sin (2 Zi:ﬁ,z'ﬂq,e i k)
2 cos(2D 532 o0 Qi) + 1
Therefore, the minimal attainable GDOP value w.r.t. x; becomes
N 2
GZZ = 2 m 2 m Ny, : Ny, 2 <316>
Sin (ae,k) + sin®(27 — Ay — Zizu;ﬁeq,z Qik) + Eizuﬂq,e sin®(cv k)

Proof. According to (3.14), it is observed that the GDOP value G,, w.r.t. @ is regarded
as a function of the angles a; j, for all i = 1 to Nj. Since only the ¢th BS (for 1 < ¢ < Ny)
is considered adjustable, there is merely one degree-of-freedom that is considered tunable

(i.e. ayr) among all the angles a; ) for i = 1 to Nj. It is noted that the other angle
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ay_1 , which is also modified due to the movement of the ¢th BS, can be represented as a
function of ay g, i.e. 1k =27 — i — ZZJAV:’“M#_M a; . Consequently, the GDOP value
as denoted in (3.14) will only be dependent to the angle ay as Gy, (ap). The angle oy

which results in the minimal GDOP value can therefore be acquired as
Yoy, g

oy = arg {min ka(a&k)} (3.17)

It can be observed that (3.32) can be achieved if the following conditions on the first and

second derivatives of G, are satisfied, i.e.

8ka (Oég k:):|
ALY =0 3.18
|: aaﬂvk ag’k:aznk ( )
82(}% (ag k)]
— >0 3.19
{ 0?ary A (3:19)

By solving (3.33) and (3.34), the angle-@f} can be ¢omputed as in (3.15). The minimal

GDOP value w.r.t. @, can consequently be obtained as in (3.16). O

Lemma 2. The MS located at xy is surrounded by Ny BSs at x;y (for i =1 to Ni) as
shown in Fig. 3.1. The angles between every two adjacent BSs to the MS are defined as
a; . Considering the case that the locations of all the BSs are adjustable. The minimal
GDOP value w.r.t. x is obtained as G;r; = 2/\/m, which occurs as the angles «;y are

requlated to be equivalent with each other as oYy, = 2w /Ny, for all i =1 to Ny.

Proof. 1t can be observed from (3.14) that the GDOP value is regarded as a function
of the angles o,y for all i = 1 to NV, ie. Gg(aik, ..., Qg ...,n. k). By defining

o = [k .. Q... .an, k), the angles 'y, which result in the minimal GDOP value can
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therefore be acquired as

oy, = arg {\rfnin Gmk(ak)} (3.20)

for i =1 to Nj. Similar to the proof as in Lemma 1, o7 in (3.35) can be acquired if

0Gy, (ozk)]

2Tk TR =0 3.21
|: aOéZ"k ap=ay’ ( )
0*Gy, ()

for i =1 to Ni. It is noted that o' £ [a%, ..o ... aR .]. By solving the set of 2N,

equations obtained from (3.21) and (3.22), the angles o} can be computed as

m.
Q; k.

2T
-0 K 2
N, (3.23)

which are considered equivalent for all's ="1"to.N;. By substituting (3.23) into (3.14),

the minimal GDOP value can therefore ‘be obtained as

G () = (3.24)

]

which occurs as the angles o, are regulated to be equivalent with each other as

Corollary 1. Considering the MS is confined by an Nyg-side reqular polygon by placing
the Ny BSs as the vertices of the polygon, the minimal GDOP value w.r.t. x, will occur

at the center of the reqular polygon.
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Figure 3.4: MOM value in a regular pentagon

Proof. This corollary is considered as a special case of Lemma 2 with all the relative
distances (; 5, are equal for i = 1 to Ng. It is observed from (3.14) that the GDOP value
Gy, 1s unrelated to the relative distances (; ;. Therefore, the proof as presented in Lemma
2, can be carried directly to this case as obtained by (3.23) and (3.24). Therefore, it is
intuitive to observe that the minimal, GDOP Wil happen at the center point of the Nj-side

regular polygon based on the result that @Z;’ %‘QW/Nk for i =1 to Ny. O]

1

3.3 GDOP Measure-of-Merit- (MOM)

Another relative geometry measure-of-merit (MOM) [9], based on the GDOP measure,
is developed. The GDOP MOM relates the BS measurement errors to the MS position
errors as a function of BS-to-MS geometry. The minimum GDOP and associated specific
BS-to-MS geometries are computed and illustrated for both two and three bearing-only
measuring sensors. Two different polygon fig.3.4 and fig.3.5 plots of MOM value contours
provide a geometric insight to BSs arrangement as a function of geometry induced error
dilution. The results can be used to select preferred target-to-sensor(s) geometries for M
BSs in this application.

In order to establish the necessary mathematical framework for the computation of the

MOM, it is structured as follows. A linearized measurement model-based error sensitivity
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Figure 3.5: MOM value in a regular triangle

analysis is used to derive an express for the MOM. The MOM relates the measurement

errors to the MS position errors as a function of BS-MS geometry. In order to illustrate

the efficacy of MOM for fusion architectures, GDOP functional relationships are next

computed for measuring geometry. The minimum MOM and associated specific BS-MS

geometries are computed and illustrated 'and"pﬁpyide a geometric insight to BS placement

as a function of geometry inducle(;lm é.rrqrrl__g'ii._ utlon »The MOM is general and is readily
; 12k 2

extendable to other measuremeﬁt“based syste'fn. Al =

= | ‘ =
The same procedure as the de“l"iva,tjl”c'ffl above, MOM defines the measurement signal

f(z) = 60, where 0;; is the anééll between the Jline connected MS with BS and the

horizontal and can be presented as:

Yik — Yk

Oir = tan™!(
Tik — Tk

(3.25)

Proceeding in an analogous manner to the development of GDOP, the matrix MH,,

can be modeled as
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_ Yk—Yik Tp—T1k

2 2
1,k 1,k
— Yk —Yik LTk —Ti,k
MH,, = | —u3" ;" (3.26)
KR ,KR

Ye—YNpk  TETIN, k

2 2
S S

and MOM value MG, can be obtained as

N

MG, = {trace [(MH, MH,,)']} (3.27)

3.3.1 Derived MOM property

The MOM criterion is used in the.location system-to check if the layout of the BS is
good for the goal of positioningjand it €an be applied to the wireless location system as
well. The interpretation of the meaning of the MOM is that it represents the standard
deviation ratio of the signal and the noise. In a fixed layout, the signal variations differ
with where the MS locates. The radio signals range over larger variations not only raise
the inaccuracy of the location estimation but also the value of the MOM. In other words,
the lower value of the MOM stands for the smaller signal variations in a fixed layout
and expectedly accompanies the better performance of location estimation. Similar to
section 3.2.1, this section also define some properties inferred from MOM metric in order
to promote the GALE algorithm.

Associate (3.27) with (3.26) it can be utilized for representing the MOM metrics
in most of the research studies. As Fig. 3.1, the same representation x, — x;;, =

[Gikcos b, Crsin; ] for i = 1 to Ny are used for the coming derivation. Substitut-

32



ing this equation into (3.10), the MOM value can also be represented as

Yo (T2 i) ] ’ (3.28)

MG, = :
" [ZNk IZ] z—i—l(Hm 1,m#i,j5 mk:) Sln2(6j,k - el,k)

And then (3.12) is utilized again to simplify equation (3.28) Consequently, the MOM

value in (3.28) can be reformulated as a function of o, as fig. 3.1

Yo (T2 i) ] ’ (3.29)

MG, = [ Np—1
Z Z] z—l—l(Hm 1,m#i,j mk) sin (aij,k)

We can observe an important corollary from the above two equations. MOM value
related to both its reference angle and relative distance, however ,GDOP is just related
to angle. It means that if one of the signal from BS is converted into NLOS, GDOP
metric keeps the same value as before. fFhisscontradicts the phenomenon, while MOM
metric can reflect this effect. Analogous to lemma 2-and lemma 1, minimal MOM values
are obtained by considering two-different-caseswith one degree-of-freedom and with Ny

degree-of-freedom).

Lemma 3. For finding minimal attainable MOM, we define the MS located at xy s
surrounded by Ny BSs at @iy (for i = 1 to Ni) as shown in Fig. 3.1. And if we let
movable BS is (th BS, i.e. the adjustable angle is oy y; while the positions for the other

BSs are considered fized. The minimal MOM occurs as the angle cyy, is adjusted to be

. N
1 sin(2) .5 14 i,
ozZLk = —tan~ ( Hk Lk#E 1 Ck (2> =1i#e-1, ™t k) ) (3.30)

N,
2 Hk 1,k#0,0+1 (i cos(2 Ei:’li#q,z i g) + R

R is equal to Hgil,k#é,ﬁ—i—l ¢? and (y = C,. Therefore, the minimal attainable MOM value
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w.r.t. x, becomes

N

Ny

2sin’(ag,) + ng,i#hl,z sin® (v )

MG? = (3.31)
Proof. MOM value G, w.r.t. x; is a function of the angles «;; for all ¢ = 1 to Ny.
Analogous to lemma 1 a minimum MOM value will occur under the condition that if only
the ¢th BS (for 1 < ¢ < Nj) is considered adjustable. It also means the angle ayy is
tunable and oy_1 1 = 27 — ayi — vaz’“17i7ég_l7e a; . Other relative angle are defined to be
fixed. The angle a7 which results in the minimal MOM value can therefore be acquired

as

oy = arg {min Mka(aM)} (3.32)

Verp k.

It can be observed that (3.32) can be achieved if-the following conditions on the first

and second derivatives of G, are satisfied, i.e.

{—aMG“(O‘“‘“)} —0 (3.33)

80%,6 app=all,

[—GQMG%(%“} >0 (3.34)
8204471g agp=al,

By solving (3.33) and (3.34), the angle af}, can be computed as in (3.30). The minimal

MOM value w.r.t. @ can consequently be obtained as in (3.31). O

Lemma 4. Based on the MOM criterion, if the MS located at x, is surrounded by Ny
BSs at ;. (fori =1 to Ny) as shown in Fig. 3.1 and defining all the BSs are adjustable,

all the relative angle oy, can be derived as Lemma 3.
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If all the BSs forms a reqular polygon, the minimal GDOP value w.r.t. a is obtained

as MG} = %k, which occurs as the angles oy are requlated to be equivalent with

2
()6
each other as ajf}, = 27 /Ny, for alli =1 to N.

Proof. The same deriving procedure can be utilized to derive the MOM. It is shown that
it is possible to predict an ”optimum” anticipated BS-to-MS geometrical configuration
which results in minimum measurement error dilution and minimum least squares position
A m

s : m A m m
error. Under the definition of MOM, we can acquire angles o} = [ ...af} ... o 4]

to meet the minimum MOM value. where

o), = arg {min MG,, (ak)} (3.35)

VO&Z"]C

If all the relative distances (; . are equal for ¢ = 1 to N, GDOP MOM will holds
the same conclusion as GDOP. In other awordsy The minimal GDOP value w.r.t. xy is

obtained as

DO
)

MG

)ik (3.36)

S

Ny
[l

which occurs as the angles o, are regulated to be equivalent with each other as

oy, = 21 [Ny

Corollary 2. Considering the MS is confined by an Ny-side reqular polygon by placing
the Ny BSs as the vertices of the polygon, the minimal MOM value w.r.t. @, will occur at

the center of the reqular polygon.

Proof. 1f we apply the lemma 2 to MOM, it always holds when all the relative distances

G are equal for ¢ =1 to Ni. In (3.29) , if all the ¢, are equal, the minimum value will
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occur at the center of the polygon formed by BSs. As the same conclusion as 1, the MS

have minimum value at the center of the polygon if all BS form a regular one. O]

In the next section, the results obtained from both lemmas will be utilized for the

design of the proposed GALE algorithms.
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Chapter 4

Proposed Geometric-Assisted
Location Estimation (GALE)

Algorithms

The main objective of the proposed GALE schemes isto enhance the conventional two-step
LS algorithm [5] by considering the geometric éffect to the location estimation accuracy.
Fig. 4.1 illustrates the schematic diagram-ef the proposed GALE algorithms. In order to
facilitate the location estimation for the MS, three TOA measurements and the location
information of the corresponding BSs are considered available to the MS at the time
instant k, ie. vy = {rig, ok, raxt and Ppgy = {@1k, T2p, X3} With the available
information, the two-step LS method can acquire the MS’s initial location estimate &; =
(29 y7] within two computing iterations.

The GALE algorithms are proposed to further enhance the precision of the initial
location estimation of the MS. Based on the available measurement information from
the BSs, the concept of the proposed GALE schemes is to acquire the locations of the
fictitious BSs such as to attain the minimal GDOP value w.r.t the MS’s initial location

estimate. At the second phase of the GALE schemes, the position information of these
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Figure 4.1: Schematic diagram of the proposed GALE algorithms.

fictitious BSs will be utilized to replace that of the otiginal BSs in order to achieve better
geometric layout for location estimation two. GALE algorithms, i.e. the GALE(1BS)

and GALE(2BS) schemes, are stated as follows:

4.1 GALE with One Movable Fictitious BS Scheme

The GALE(1BS) scheme is designed to fictitiously relocate the position of one BS accord-
ing to the minimal GDOP criterion. Under this condition only one BS is defined to be

fictitious movable and others are fixed.

4.1.1 GDOP-Assisted (GOLE) Location Estimation Scheme

Without lose of generality, it is considered that BS; (i.e. @) is the adjustable BS within

the GALE(1BS) scheme. The position of the fictitious BS; is designed such that the
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initial estimated MS (&) will be located at a minimal GDOP position based on the
existing geometric layout Ppgsy = {@1 4, 2k, 31 ;- In other words, based on the initial
location estimate &} associated with the information coming from the BSs (i.e. 7y and
Ppsy), the three relative angles ay g, aay, and asy between the BSs w.r.t. the MS can
be obtained. By adopting the results from Lemma 1, the minimal attainable GDOP G3o
w.r.t. the MS’s initial estimate &} occurs as the angle oy is adjusted as

1 —sin(2
oy = §tan*1 (—Sm( Azi) ) (4.1)

cos(2as) + 1

It is noted that the angle oy between BS, and BS; is considered a fixed value; while
as, is dependent to the variable angle oy, i.e. asy = (27 — agx) — a1 . The following

lemma generalizes the solution for the angle a7 that achieves minimal GDOP value.

Lemma 5. Considering the case that the MS is surrounded by three available BSs, 1i.e.
BS,, BS;, and BSs. It is assunged that only the location of BS; is adjustable; while the
positions of the other two BSs are considered fixed. The minimal GDOP occurs as BSy is

situated at the angle that equally-bisécts the angle formed by BSs and BSs.

Proof. According to (4.1), o, represents the angle that achieves the minimal GDOP value
w.r.t. the MS’s initial estimate. It is clear to conclude that (4.1) holds if apy = 27 —2a7".
Consequently, the minimal GDOP occurs as BS; is positioned at the angle that equally

bisects the angle formed by the other two BSs, i.e.

m 2m — a9k
afy = =+ (4.2)

It is observed from Lemma 5 that the fictitiously movable BS; should be adjusted

such that the angles o and asy are equal. As a result, the new set of BSs for location
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estimation is obtained as ngf v = {Tr1 6y T2, T3 1}, Where xp1 j denotes the location of

the fictitious BS as

Tk = T1k COS(¢9271C — OéTk)

Yrie = Tk Sin(@m — O‘Tk) (43)

where af?; is obtained from (4.2). The set of updated locations for the BSs ngﬁk
associated with the original TOA measurements 7y = {714,724, 73} are exploited to
conduct the second-phase two-step LS method as shown in Fig. 4.1. Consequently, the
MS’s final location estimation &/ = [#/ §/] by adopting the proposed GALE(1BS) scheme

can be obtained.

4.1.2 MOM-Assisted (MOLE) Location Estimation Scheme

By using the property of MOM we can design some scheme to implement the system as
well. For the mathematical mddel derived from the chapter 3 . The fictitious position
of the adjustable BS can be obtained in order-to fit the lowest MOM. Assume that BS;
is adjustable, the fictitious BS; will be'relocated at z1; in order to make the MS (z})
locate at the lowest MOM.

In other words, whenever we get the MS’s initial coordinate &; and the angel asy is
considered a fixed value,we can get new fictitious BS set Ppgy,. By adopting the results
from Lemma 3, the minimal attainable MOM Gjge w.r.t. the MS’s initial estimate Zj,

occurs as the angle «ay y is adjusted as

1 —sin(2
o, = —tan™! sin(2as.) (4.4)
w2 cos(2agy) + N
the notation N is equal to (:‘;’—”;)2, and asy, is dependent to the variable angle a4, i.e.
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as = (2 — ag ) — oy . The following lemma generalizes the solution for the angle e
that achieves minimal MOM value.PsglL)quC = {@p1, T2k, T3}, Where x4 denotes the

location of the fictitious BS as

Tk =T1k COS(¢927;C — O‘Tk)

Yrike = Tk Sin(«gzk — O‘Tk) (45)

where af?; is obtained from (4.4). The set of updated locations for the BSs ngﬁk
associated with the original TOA measurements 7y = {714, 72k, 73} are exploited to
conduct the second-phase two-step LS method as shown in Fig. 4.1. Consequently, the
MS’s final location estimation ] = [# ¢/] by adopting the proposed GALE(1BS) scheme

can be obtained.

Lemma 6. We can implement theresult derived from MOM to the GALE as well. As-
sumed that only the location of BS is-adjustable:, Ifro ), = 13, the minimal MOM occurs
as BS| is situated at the angle=that equally bisects the angle formed by BSs and BSs .
Therefore, BS, ,BSs and BSs; forms a“isosceles tryangle. From this Lemma ,it indicates

that minimum MOM value occurs when"all"BSs composing a symmetric layout.

Proof. According to (4.4), a, represents the angle that achieves the minimal MOM value
w.r.t. the MS’s initial estimation. If ryx = r3, af, will have the same value as (4.1). Tt
also holds the solution ayj = 27 — 207"

It indicates that BS; will forms a isosceles triangle with BS, and BSj if the distance

from MS to BS, is equal to distance from MS to BS3 at this time. n

4.1.3 Coverage-Maximize (CMLE) Location Estimation Scheme

The objective of the proposed GALE algorithms is to utilize the initial location informa-

tion acquired from the BS to serve as the assisted measurement inputs. Besides, We design
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Figure 4.2: The:ocation,infermation for TOA signal

another algorithm to implement the location algorithm. For TOA system as fig.4.2, the
error depend on the undetermine region (the-area surrounded by dotted line). Because
GDOP and MOM are designed in a'neisé-free environment, we can decrease the region
to colored section. The object is to minimize the region and make the total coverage
area maximize at the same time.This paper we call it the Coverage Maximum Location
Estimation(CMLE).

Analogous to the GALE algorithm by adding geometric constraints within the con-
ventional two-step LS method, the CMLE algorithm extends the concept of ”virtual”
assistances in the GALE algorithm to add the geometric constraints from the assisted
information. The same scheme as GALE, Area model also have 1BS and 2BS scheme.
We set Ppg, ) in order to make the area of colored region have a minimum value. The

value is with respect to both related distance and angle. For example, the cross-section
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dorm by BS; and BS; can be expressed as

1
Area = §C127k(¢9a1 —sinfy,) (4.6)

and 6;; is w.r.t ;. Therefore the total area will be related to «; .

Corollary 3. Following by the GALE 1BS algorithm, each scheme can design its own
relocated BS set nggf,k = {Xf1.k, Xp2.k, Xf3 4} aS above scheme shows. For the circumstance

that (o) = (3%, the proposed BS set ng)gka will have the same position.

Proof. Assume all the relative distance are equal, we can take this data into each scheme.

_am
27 a5,

When ¢y, = (34, the proposed answer ' will have same solution of oy = —5>=. As
we have defined before,

X1k =Tk 008(9271C L O‘Tk)

Yr1e =1k Sin(@lk = O./Tk) (47)
This equation shows that the BS; position will be the same. O]

4.2 GALE with Two Movable Fictitious BSs Scheme

According to Lemma 2 and 4, more degree of freedom can be set. For the purpose of
location, 3 BSs is sufficient to locate a 2-D MS. For this reason we just set 3 BSs and let
all BS be adjustable (i.e. two BSs can be relative adjusting). The below schemes are the

designed method by combing geometric property.
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4.2.1 GDOP-Assisted (GOLE) Location Estimation Scheme

In order to achieve the minimal GDOP for the existing geometric layout, the GALE(2BS)
scheme is designed by considering the case while all the BSs are fictitiously movable. By
adopting the results from Lemma 2, it can be obtained that the angles «;; that achieve
the minimal GDOP value are determined to be of}, = 27 /Ny = 27/3 for i = 1 to 3. In
other words, the three BSs are fictitiously adjusted such that equally partitioned angles
are observed.

Therefore, the set of fictitious BSs by exploiting the GALE(2BS) scheme is represented
as ng),;f’k = {1k, Trop, Tr3 i}, where &g j, (for i = 1 to 3) indicates the locations of the
fictitious BSs. It is noted that xy;; is selected to be @) as the rotation reference.

Consequently, the locations of the other two fictitious BSs can be acquired as

i—1
Tfig =05k cOS(O1 i Z ayy)
s=1
=1
Yfrik = Tik sin(@l,k 3 Z Oé:?k) (48)
s=1

for i = 2 and 3. Similar to the GOLE(1BS) scheme, the fictitious locations of the BSs
Pg;f,k associated with the TOA measurements 7, are utilized to serve as the new set

of measurement inputs for the two-step LS method at the second stage. As a result, the

final location estimate of the MS (i.e. &) can be acquired.

4.2.2 MOM-Assisted (MOLE) Location Estimation Scheme

For GDOP MOM metric, by adapting lemmal we get the result for o}. Because GDOP

MOM metric is depends on both distance and related angle, its solution is more complex.
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We first define the determine function Dy,

Dy = B®> — 4AC (4.9)

_ a? a? _2a2 _a2 a? .2 2.2 2.2
A_bQCQ—b—Q,B_F,C—C—2+b—2—1anda—'r’?),/,g,l)—rl,kamdc—1”27,€

it Dy > 0, the solution will be derived as

-B++/D
afy, = 0.5 x arccos(Tf) (4.10)

and

ayy, = 0.5 X arcsin(%sin(Qa’fk)) (4.11)

if Dy <0, the minimum value will'oceur tnder the condition: the angle o corre-
sponded to the largest ;1o will'be| /2. and the angle corresponded to smallest ;1o
will be 7.

Similar to the GALE (1BS) scheme; the fictitious locations of the BSs szqf,k associ-
ated with the TOA measurements r; areéutilized to serve as the new set of measurement
inputs for the two-step LS method at the second stage. As a result, the final location esti-
mate of the MS (i.e. &) can be acquired. It is noted that the noiseless relative distances

Gix in (3.9) are approximately replaced by r;x since (; are considered unattainable.

4.2.3 Coverage-Maximize (CMLE) Location Estimation Scheme

When all the BSs are assigned to be movable, the CMLE 2BS scheme is continuous
computing the relative angle «;; in order to make the total overlapping area A, to be

minimum. It can be expressed as
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oy, = arg {min Awk(ak)} (4.12)

Vai,k

for i=1 to 3.

Corollary 4. Following by the GALE 2BS algorithm, each scheme can design its own
relocated BS set Pg)sfyk = {Xp1 ks Xf2k, Xf3} a5 above scheme shows. For the circumstance
that all the relative distance are equal, the proposed BS set ngf,k will have the same

position.

Proof. Assume all the relative distance are equal, we can take this data into each 2BS

scheme. All the proposed answer o} will have same solution of 7/3. As we have defined

before,
i1
xfi,k = Ti,k COS(QLk 4 Z Oég}k)
s=1
i1
Yrit =Tk sin(@l,k 43 Z O‘Z?k) (413)
s=1
for i« = 2 and 3. This equation shows that all the BSs’s position will be the same. O]
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Chapter 5

Performance Evaluation

Simulations are performed to show the effectiveness of the GALE algorithms under
different network topologies and the MS’s positions. The proposed GALE(1BS) and
GALE(2BS) schemes are compared withsthe exiting two-step LS and the TSE algorithms.
As shown in Fig. 5.1, two differenti typesofigedmettic layouts are designed to validate the
effectiveness of the proposed GALE algorithins. The left plot illustrates the case while

the MS is located at a better geometric layout;

5.1 Noise Models

Different noise models [22] are considered in the simulations in order to represent the
environments with both the LOS and the NLOS signals. The model for the measurement
noise of the TOA signals is selected as the Gaussian distribution with zero mean and 10
meters of standard deviation, i.e. n;, ~ N(0,100) . On the other hand, an exponential

distribution pe, , (7) is assumed for the NLOS noise model of the TOA measurements as

1 v
Yo OXP (—/\M> v >0

0 otherwise

Pe,s (V) = (5.1)
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Figure 5.1: Network topologies for performance evaluation (left plot: better geometric
layout with G§, = 1.2253 and MGj, = 796.79; right plot: worse geometric layout with
GY =13.884 and MG, = 8389.2).

where \; = ¢ Tix = ¢ - T (Gx)° piThe parameter 7, is the RMS delay spread between
the ith BS to the MS, and 7, represents the median value of 7;5. € is the path loss
exponent which is assumed to be 0.5, and the factor for shadow fading p is set to 1 in
the simulations. It is noted that'the parameters-for the noise models as listed in this

subsection primarily fulfill the environment while the MS is located within the rural area.

5.2 Simulation Results

Fig. 5.2 illustrates the performance comparison between these schemes under the LOS
environment with both better and worse geometric layouts, i.e. left with Gl;k =122
and right with G§ = 13.88. It is noted that the Estimation error of the MS’s position
is represented as Az = || — a3, where &/ indicates the MS’s final estimate from the
location estimation algorithms. It can be observed that the proposed GALE algorithms

outperform the other two existing schemes, especially under the worse geometric environ-
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Figure 5.2: Performance comparison under the LOS environment with both better (left:
GY =1.22) and worse (right: G¥ = 13.88) geometric layouts.

ment. Considering the layout With”lar;g,er GDOP. value (ie. G = 13.88) as shown in
Fig. 5.3, the comparison for the“Estimatﬁdn‘j crrors Qersus the standard deviations of the
measurement noises is illustrated. It can be‘ seen that the proposed GALE(2BS) scheme
can provide the smallest Estimaﬁon eITors cbﬂlparing with the other algorithms.

Figs. 5.4 and 5.5 illustrates the case for performance comparison under the NLOS
environment. It is noted that Fig. 5.5 is illustrated by observing the Estimation errors
versus the median values of the NLOS noises (i.e. 7,,,). It can still be observed that the
proposed GALE(2BS) scheme outperforms the other algorithms even under the existence
of the NLOS errors, i.e. around 250 m less in Estimation error compared to the two-step
LS method with 7,,, = 0.3. Moreover, the benefits by fictitiously adjusting the locations
of two BSs compared to that for one BS can also be observed in both the LOS and
the NLOS environments. With the incorporation of the geometric information into the

location estimation, the merits of the proposed GALE schemes can be observed.

Tablel shows the performance comparison between the Location Estimation Schemes
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Figure 5.3: Performance comparison under the LOS environment with worse geometric
layout (G = 13.88): Estimation error v.s. standard deviation of measurement noise.

under LOS environment. while the MS is loeated far from its BSs. It can be seen
from plots that the proposed GALE(1BS}) s¢heme outperforms the conventional two-step
LS method with more than 100.m of eStimation error under 90% of average position
errors. GALE(2BS) scheme can ottperform eveninore to 250 m than two-step LS method
(noise standard deviation= 10). Table2 shows the performance comparisons between the
Location Estimation Schemes under NLOS environment (median value 7,,, = 0.3). The
proposed GALE(1BS) algorithm improve more than the environment under LOS. For
example, under 90% of average position error the GALE(1BS) scheme can mitigate 170
m more than two-step LS and GALE(2BS) scheme can mitigate about 300 m.

From figs. 5.4, we can also improve that MOLE and CMLE outperform that GOLE
especially under NLOS environment. GDOP metric is derived in chapter3 and is inde-
pendent of relative distance. Under NLOS environment the distance error is increasing
rapidly with the relative distance, therefore the other two GALE can observe this factor.

However, CMLE waste more computation than MOLE, we can get the conclusion that
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Figure 5.4: Performance comparison under the NLOS environment with both better (left:
Gb =1.22) and worse (right: G¥ = 11.08) geometric layouts (7,, = 0.3).
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Figure 5.5: Performance comparison under the NLOS environment with worse geometric
layout (G}, = 13.88): Estimation error v.s. median value of NLOS noise.
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TABLE I
Performance Comparisons between the Location Estimation Schemes in LOS: Estimation Error (m)

| [ 10%  ]20% [30% [40% [50% |60% [70% |80% [90% [100% |
TSE 103.12 | 138.61 | 201.12 | 258.56 | 371.87 | 394.25 | 458.19 | 525.51 | 562.69 | 711.56
Two-step LS | 93.951 | 148.69 | 198.72 | 248.81 | 301.87 | 358.15 | 418.99 | 485.63 | 562.69 | 691.76
GOLE(1BS) | 67.439 | 102.08 | 133.78 | 165.44 | 198.84 | 235.27 | 273.81 | 316.73 | 367.8 | 446.87
GOLE(2BS) | 55.452 | 82.652 | 108.95 | 135.43 | 162.23 | 192.07 | 225.64 | 263.02 | 307.58 | 390.05
MOLE(1BS) | 61.365 | 92.18 | 121.69 | 151.74 | 182.55 | 216.78 | 254.71 | 297.6 | 346.9 | 434
MOLE(2BS) | 49.388 | 71.762 | 92.532 | 112.77 | 133.39 | 155.91 | 181.36 | 210.17 | 244.18 | 297.56
CMLE(1BS) | 61.072 | 89.807 | 119.44 | 148.89 | 188.95 | 221.84 | 259.29 | 301.44 | 351.03 | 429.16
CMLE(2BS) | 44.878 | 65.227 | 84.109 | 102.49 | 121.23 | 141.7 | 164.83 | 191 221.91 | 270.38
TABLE 2
Performance Comparisons between the Location Estimation Schemes in NLOS: Estimation Error (m)
| | 10%  [20% [30% [40% [50% |60% [70% |80% |90% [100% |
TSE 229.29 | 418.74 | 505.94 | 669.6 | 709.4 | 834.8 | 957.7 | 1082.4 | 1214.4 | 1633.6
Two-step LS | 207.81 | 332.68 | 405.49 | 556.55 | 685.58 | 701.4 | 814.8 | 929.9 | 1051.7 | 1554.1
GOLE(1BS) | 145.34 | 265.82 | 371.63 | 463.64 | 547.54 | 622.76 | 691.04 | 760.95 | 836.24 | 1296.29
GOLE(2BS) | 110.35 | 242.58 | 350.7 | 384.88 | 407.33 | 420.24 | 586.77 | 651.89 | 719.73 | 1123.3
MOLE(1BS) | 132.33 | 256.7 | 358.49 | 443.49 | 546.03 | 627.03 | 682.67 | 726.37 | 794.32 | 1226.9
MOLE(2BS) | 115.34 | 230.27 | 331.52, 4437869, | 390.89 | 403.46 | 527.83 | 592.9 | 661.49 | 960.93
CMLE(1BS) | 138.57 | 265.9 | 362:46 | 428.977 507.83 | 575.12 | 649.01 | 723.77 | 790.3 | 1200.3
CMLE(2BS) | 114.88 | 229.05 | 330.48 11387.33 4 393.65 | 462.4 | 526.81 | 591.62 | 659.36 | 946.39

MOLE is the best choice under NLOS ehviroment.

92



Chapter 6

Conclusion

The NLOS errors will cause large positive biases while measuring the time information
data. The inaccuracies of the range measurements consequentially make the conventional
location algorithms, like the two-step LSimethod [5], fail to estimate the MS’s position.
The location estimation algorithms withithe dssistance from the geometric property are
presented in this paper. Since it-can be indicated from chapter 2 and chapter 3 that the
location error has big concern with the geometry, the proposed GALE methods which in-
tend to make the MS be at the location. where the geometry distribution is the optimum.
Six geometric-assisted location estimation (GALE) algorithms are proposed by consider-
ing the geometric layouts between the mobile station and its associated base stations. The
geometry information such as GDOP, MOM and coverage have been utilized to fictitiously
relocate the positions of the BSs in order to obtain a better geometric layout for location
estimation. It is shown in the simulation results that the proposed GALE schemes can
provide consistent accuracy for location estimation, especially under the environments

with poor geometric layout.
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