CP-reduced Coding Techniques with
ICI Diversity Combining for OFDM Systems



BEPRE TS B

%,

ERAAMS L A2 b AR

CP-reduced Coding Techniques with
ICI Diversity Combining for OFDM Systems

34 e g Student: Cheng-Tien Bai
hERE I Advisor: Chung-Hsuan Wang

A'Thesis
Submitted to Department of Communication Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Communication Engineering

February, 2009

Hsinchu, Taiwan, Republic of China

PEARA AN E



BERE TR f i
T RAAHE SO k2 g B g

C'U-

2
|4
<k
(=
A=
4%‘
ﬁ
%
Yy
|
L.
\-‘-1
=)

# &

Bk i LI e 50 RAGFERRF B AL M 53 ka0 3 4
Fla TR bR TS BRI T RS 5Tk 2 sl BT g o B R
LA S BRI SO GRS B A 1 N AT T T
TR AR - BmEDE LTSRN E o b W 2R RLE
FAMERED D LDGRF F A AHPRT I FAR T - AR
HE o rh2?  FAANHERERFTF LI AAM S fusrgdnEai £
B 5 LI T R R AR B B IRh A 47 KR RS
AT 2 A BHE T R DR AR R R B R R 2 R
TRk o KA ERE SR P BT o AR B AL T LA S 1 ka2 o
2R R R IIRE A B e RS ES PR (B LT
@ﬁﬁ$o

A

Iy



CP-reduced Coding Techniques with ICI Diversity
Combining for OFDM Systems
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Abstract

Orthogonal frequency division multiplexing (OFDM) is an attractive transmission tech-
nique, which effectively deals with the delay spread of the multi-path channel by appending
a cyclic prefix (CP) in every OFDM symbol. However, the necessary insertion of CP pro-
duces a transmission overhead and reduces the throughput of the communication systems.
A direct reduction of CP can improve the spectral efficiency but also introduces the un-
desired inter-symbol interference (ISE-and inter-catrier interference (ICI), hence limiting
the overall system performance. Tg¢ enhance the. performance of the CP-shortened OFDM
system, the CP-reduced coding techniques with ICI diversity combining for OFDM systems
are studied here. Actually the ICI corrupted channel of the CP-reduced OFDM system can
be viewed as a virtual MIMO channel when we regard the subcarriers as the virtual anten-
nas. And the ICI induced by insufficient CP can be viewed as a sort of frequency diversity
by the concepts of space-frequency coding (SFC). In this thesis, we investigate the virtual
space-frequency coding techniques based on the effective MIMO channel of the CP-reduced
OFDM system and propose the corresponding design criteria to develop good virtual space-
frequency codes. The maximum achievable diversity order of the virtual space-frequency
code is determined by the theoretical analysis. Simulation results are also provided to show
that the proposed coding schemes not only achieve higher diversity order to enhance the

error performance but also have higher data rate compared with the conventional coded

OFDM systems.
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Chapter 1

Introduction

OFDM is an attractive technique for wireless communication, one of the main reasons
is because OFDM effectively deals with the delay spread of the multipath channel by intro-
ducing a cyclic prefix (CP) in every OFDM symbol. The length of CP must be longer than
the maximum delay spread to assure the inter-symbol interference (ISI) and inter-carrier
interference (ICI) are eliminated. Howewer the iise of CP result in a lowering of spectral
efficiency. Especially when the OFDM systems are entountered to the multipath channels
which has a very long delay spread: Increasing the length of the CP to reduce ISI actually
has its limitations because it introduces a tréemendous bandwidth penalty. In order to make
full use of the bandwidth in OFDM systems,.several approaches have been proposed to cope
with this problem by shortening CP or removing entire CP.

An easy way is to increase the number of subcarrriers or the OFDM symbol duration
so that the proportion of the CP can be reduced. But this method narrow the bandwidth
of each subcarrier and makes OFDM systems more sensitive to the frequency offset and
the time variant channel. The second way is to employ an iterative cancellation method
known as the residual ISI cancellation (RISIC) to eliminate interference due to insuffcient
CP [1]. The RISIC algorithm firstly removes ISI from a previous decoded OFDM block
and restores the circulant structure of the channel iteratively. Many techniques based on
RISIC have been proposed, whereas most of them offer good performance only when the

length of channel impulse response (CIR) is moderate, which means the interference power is



much smaller than the signal power in these circumstances. Additionally, the RISIC is very
sensitive to the effects of unideal ISI cancellation. The third way is to utilize time-domain
or frequency-domain equalizer to combat the ISI and ICI [2][3][4][5]. The forth way aims to
add redundancy by precoding techniques [6][7] or by the successive interference cancellation
based on decision feedback structure [8] to mitigate ISI and ICI. Some of these schemes still
require CP, and most of them don’t outperform the traditional OFDM systems with enough
CP. Actually the ICI corrupted channel of the CP-reduced OFDM system can be viewed
as a virtual MIMO channel when we regard the subcarriers as the virtual antennas. And
the ICI induced by insufficient CP can be viewed as a sort of frequency diversity by the
concepts of space-frequency coding (SFC). In other words, instead of eliminating the ICT as
the previous studies proposed, we should preserve the ICI and make it a profitable factor
for performance enhancement. For above observations, the demand for a carefully design
of CP-reduced coding schemes based on OFDM systems to increase both spectral efficiency
and error performance is required. Inthis thesis, we imvestigate the virtual space-frequency
codes based on the effective MIMO channel of .the CP-reduced OFDM system, and and
propose the corresponding design eriteria to'develop ‘good virtual space-frequency codes.
The maximum achievable diversity otder of the virttial space-frequency code is determined
by the theoretical analysis. Simulation results are also provided to show that the proposed
coding schemes not only achieve higher diversity order to enhance the error performance
but also have higher data rate compared with the conventional coded OFDM systems. Note
that timing and frequency synchronization are assumed to be perfect throughout this paper.

The remainder of this thesis is organized as follows. In Chapter 2, an overview of the
OFDM systems is given, and the mathematical formulations of equivalent ICI channel of
CP-reduced OFDM systems after the ISI cancellation are introduced here. In Chapter 3,
we give the reviews of the conventional space-time code (STC) and SFC, and we detail
the derivation procedures of PEP. The design criteria and maximum achievable diversity
order corresponding to STC and SFC are introduced as well. After the brief guild of

the background knowledge, we derive the PEP of virtual space-frequency codes based the



effective MIMO channel of the CP-reduced OFDM systems in Chapter 4, and determine
the corresponding maximum achievable diversity order by mathematical proofs. Before
we leave Chapter 4, the design criteria good virtual space-frequency codes are proposed.
Besides theoretical interpretation, we also carry out computer simulations in Chapter 5 for
performance verifications. In Chapter 6, we summarize our investigations and propose some

potential future works for performance optimization.



Chapter 2

Overview of OFDM systems

Orthogonal frequency division multiplexing (OFDM) modulation is a multi-carrier trans-
mission technique that has been recently recognized as an excellent method for high speed
bi-directional wireless data communication. OFDM modulation effectively squeezes multiple
modulated carriers tightly together, reducing the required bandwidth but keeping the mod-
ulated signals orthogonal so they do not!interfere- with each other. Furthermore, OFDM
modulation divides the entire frequency selective fading channel into many narrow band
flat fading subchannels in which high bit-rate data are transmitted in parallel and do not
undergo inter-symbol interference due to thétusage of cyclic prefix and long symbol dura-
tion. Therefore, OFDM modulation has been.chosen for many standards, including digital
audio broadcasting (DAB), High Definition TV (HDTV), and wireless local area network
(WLAN), ...etc. Moreover, it is an important technique for high data-rate transmission
over mobile wireless channels. In the following sections of this chapter , we introduce the
basic concepts of OFDM modulation, and then give a brief introduction on the usage of
cyclic prefix. As we known, OFDM systems with insufficient (length of cyclic prefix is
shorter than maximum delay spread) cyclic prefix give raise to inter-symbol interference
and inter-carrier interference, thus we introduce the mathematical models of inter-symbol
interference and inter-carrier interference induced by using insufficient cyclic prefix before

leaving this chapter.



2.1 System Model of OFDM Systems

(e [t
; LR b=n LR =
Information » Modulation o S/P [FFT | AAppend
Source CP
Multipath
Channels
( -~ }N—l r
Data | " infug L — Remove
Sink Demodulation P/S |« FFT |« Cp

Figure 2.1: System model of OFDM Systems.

Consider the base-band OFDM systems with N subcarriers as shown in Figure 2.1.
The serial information data stream is mapped into constellation symbols by employing a
general phase shift keying (PSK) modulatienter quadrature amplitude modulation (QAM)

scheme. The resulting symbol stream is demultiplexed into a vector of N data symbols

N—-1
n=0"

to become the frequency-domain OFDM symbel {X; .} where X, is the modulated
symbol on nth subcarrier of ith frequency-domain-OFDM block. Next an inverse fast Fourier
transform (IFFT)/fast Fourier transtorm (FFT) isused as a modulator/demodulator. For

the 7th transmission OFDM block, the N-point IFFT output sequence is

N-1

1 j2mnk
Tik = —F/— Xmex ,k:0,17...,N—1, 2.1
o= 2 Ko { 2} 21

where {z; x }1, is the time-domain OFDM symbol and z; ;, stands for the modulated symbol

on kth subcarrier of ith OFDM block. After the appending of cyclic prefix, the OFDM

symbols are transmitted into the dispersive communication channels. The received OFDM
symbols are weighted by the multipath fading gains and perturbed by the complex additive
white Gaussian noise (AWGN) induced by the thermal noise. Next the receiver remove
the cyclic prefix and employ an N-point FFT to get the frequency-domain received OFDM
symbols. The recovered data symbols are demultiplexed in serial order and the demodulator

maps received complex signals to the constellation points which has the most likely. The
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demodulation is performed over all subcarriers of OFDM symbols, then we have the decoded

data stream stream of one transmission.

2.2 Cyclic Prefix, Inter-symbol Interference and Inter-
carrier Interference

Due to the delay spread nature of the multipath channels, previous OFDM blocks are
overlapped to next OFDM blocks and cause inter-symbol interference (ISI) among consec-
utive OFDM blocks. An easy design for avoiding ISI is to insert a replica of OFDM symbol
in front of itself, which is the cyclic prefix (CP) [9][10]. Assumed the subcarrier numbers
is N, the length of CP is GG, The CP is conventionally chosen as the last sample points

of each time-domain OFDM symbol just like the idea depicted in Figure 2.2.  And the

: |

Cyclic
Prefix

e—0

-

F'y

N+G

Y

Figure 2.2: Stylized plot of time-domain OFDM symbol with CP of G samples.

C'; or D“’.'_Ty'“b"' CP | OFDM symbol CP | OFDM symbol | CP | OFDM symbol
: : : : il i1 i i
o + G
I - N I . . - - -
L C]l’ OI*DM Tymbol C_P OI*DM_Syman I L (,IP OFDNiI -;ymb()l CP OI*DMisymel o
I 1- 1- 1 1 I - L
I

(a) CP-OFDM with sufficient CP

(b) CP-OFDM with insufficient CP

Figure 2.3: (a) CP-OFDM with sufficient CP, (b) CP-OFDM with insufficient CP

CP must be longer or at least equals to the order of the maximum delay spread of the
multipath channels to guarantee the OFDM system is ISI-free. Later, we assuming the
maximum delay spread is no longer than one OFDM duration, and detail the concepts of
IST and ICI induced by insufficient CP. As shown in Figure 2.3(a), since the CP length G

is not smaller than maximum delay spread L, the ¢th received time-domain OFDM block



overlaps with two signal components at the receiver, one is the CP part of itself and the
other is (i — 1)th received OFDM block. Due to the orthogonality of the subcarriers, the
time-domain OFDM symbols overlap with CP of themself is not harmful. And the receiver
discards the CP of th OFDM block before signal detection, therefore the ISI induced by
previous OFDM block is completely deleted. Therefore by appending sufficient length of
CP, the ISI problem is simply solved, and the time-domain OFDM symbols are superposed
to each other at the CP part with their frequency-domain symbols being perpendicular to
each other, just like the stylized plots of CP-sufficient OFDM symbols in time-domain and

frequency-domain shown in Figure 2.4. For the case of L > G as shown in Figure 2.3(b),

Figure 2.4: Stylized plot of the time-domain and frequency-domain OFDM symbols with
sufficient CP.
the ith received OFDM block overlaps with last L — G sample points of (i — 1)th OFDM
block, and the received data on each subcarrier of ith OFDM block is perturbed by received
data of (i — 1)th’s, end up causing the degradation of error performance.

After the conceptual guide of CP and ISI, next we introduce the channel matrices of ISI
and ICI induced by insufficient CP from analytical point of view. The received signals of CP-
reduced OFDM symbols can be always divided into three parts: the received OFDM symbol

without ISI and ICI (which is the interference-free components), the ISI contribution from

7



the previous symbol due to insufficient CP, and the ICI contribution caused by insufficient
CP. To be more clear, when G < L, the OFDM systems undergo ISI and ICI, and the
received OFDM symbols can be viewed as an interference-free received OFDM symbol (just
like the received OFDM symbol of CP-sufficient case) minus the ICI contributed by the
insufficient CP parts of the OFDM symbols and add the ISI contribution from the previous
OFDM block [11]. If G > L, the ISI and ICI contributions are both zero. Now, assuming the
channel is static for at least one OFDM duration, and the ith time-domain transmit/receive
OFDM block are denoted by r® and X, the mathematical representation of ith received
OFDM block is given by

o) — HOX® + HEQX(FU _ ngzx(l) . (2.2)
N—— —_—— ——
Interference-free ISI 1CI

If we denote the multipath channel gains during :th OFDM block as hl(i), [=0,1,..., L, the
ith received inference-free OFDM blocktean be fotmulated into a matrix form of H®X®

with H® is given by

O e .~ 33 1
RO p MWL oy 0 p0
o | W % -
DR
0 A :
L h 0
IR (R Y Y L

Since H® has a circulant structure in (2.3), H®) can be diagonalized by N-point FFT matrix
and [FFT matrix, which dramatically simplify the complexity of the channel equalizer. Thus
if the length of CP is sufficient, the receiver can use a single weighted frequency-domain

equalizer (1-tap FEQ) to compensate the multipath channel response. For the ISI signal



component induced by insufficient CP, the time-domain ISI channel matrices are

0 ... 0 a . aP
. 0 Ay
Hj,) = - (24)
0
(0 ... 0 ... ... 0 |

The time-domain ICI component is induced by subtracting the contribution of the unused
CP parts of the OFDM symbols. Therefore the time-domain ICI channel matrix is the
column-wise left shift version of the non-zero parts of the time-domain ISI channel matrix

by G times. And the time-domain ICI channel matrix is given by

T o I
HY) = | | O e (2.5)

WLleyxee) Ov-g)xa
where the 0 and I in (2.5) are the all zero matrix and the identity matrix with matrix size
specified by their subscripts. We can get the frequency-domain of CP-sufficient, IST and ICI
channel matrix by simply left multiply the IFFTmatrix and right multiply the FFT matrix

to each of the aforementioned channel matrices (2.3), (2.4), and (2.5).



Chapter 3

Reviews of Space-Time Coding and
Space-Frequency Coding

Two of the major impairments of wireless communications systems are fading caused by
destructive addition of multipaths in the propagation medium and interference from other
users. Severe anttenuation makes it impossible for the receiver to determine the trans-
mitted signal unless some less-attenuated replica of the transmitted signal is provided to
the receiver. This resource is called diversity.-In 1998; a communication technique called
space-time coding (STC) scheme which utilizes diversity to combat fading and interference
is firstly proposed by Tarokh, Seshadri,and Calderbank [12][13]. The space-time coding
introduces temporal and spatial correlation:into the transmitted signals, so as to achieve
transmit diversity as well as a coding gain without sacrificing the bandwidth. Moreover, it is
an effective way to approach the capacity of multiple-input multiple-output (MIMO) wire-
less channels. Inspired by STC, space frequency coding (SFC) scheme which extends the
diversity technique to multi-carrier systems operating over broadband channels is developed
by Boleskei and Paulraj in 2000 [14]. Boleskei and Paulraj found out that the STC systems
designed to achieve full spatial diversity in the narrowband case is in general not yielding
full space-frequency diversity, therefore the space-frequency coding scheme across frequency
and spatial domain to achieve not only spatial diversity but frequency diversity was inves-
tigated. There are variety of STC systems with respect to distinct coding schemes, such

as, space-time block coding [15][16], space-time trellis coding [17][18], space-time frequency

10



coding [19][20], unitary space-time modulation [21][22], space-time turbo trellis coding [23],
differential space-time coding [24][25], and layered space-time coding [26][27], .. .etc. In the
following sections of this chapter, we will focus on the encoding and decoding schemes of

STC and SFC along with their design criteria over quasi-static fading channels.

3.1 Space-Time coding

3.1.1 System Model of STC

Consider a MIMO system with My transmit antennas and My receive antennas as shown
in Figure 3.1. After encoding, the My antennas simultaneously transmit the encoded data
into the communication channel. At the receiver, the transmission signals of different trans-
mit antennas undergo channel fading and then superpose to each other along with the
thermal noise at the receive antennas. Assume wireless channels are quasi-static fading and

memoryless, the received signal of antenna g at fime t is given by
My
rf = hypV/ Bl g =120 5 (Mg, t=1,2,.. L, (3.1)
p=1

where ¢/ with energy /E, is the ¢odéd symbol transmitted by pth antenna at time ¢.
Channel fading gains for the path from transmit antenna i to receive antenna j are denoted
as hg,, and they are assumed to be independent complex Gaussian random variables with
mean my” and variance 0.5 per dimension. z{ stands for the thermal noise of gth antenna
at time t, and z/ are also independent Gaussian distribution with zero mean and one-side

power spectral density of V.

3.1.2 Design Criteria of STC

The pairwise error probability (PEP), P(c, €) is the probability that decoder selects an
erroneous sequence ¢ = cAf, (Vg,t), when the transmitted sequence was in fact ¢ = ¢, (Vq, t).
Assume the receiver has perfect channel state information (CSI), and the decoder performs

maximum likelihood (ML) decoding to recover signals. The PEP with respect to (3.1) is

11



Information . : Space-Time Space-Time
Source j Encoder Decoder
Figure 3.1: System model of STC.
given by
PI‘ (C - é\:|hq,p7v D, q, t)
[ L Mg M 2 L Mg Mr 2
=Pr| Y D | = VB 2D ) =) hapV B
t:l q=1 p=1 t=1 g=1 p=1
[ L Mg Mg | My 2
S R AT S o) WA
t=1 ¢=1 t=1 g=1 |p=1
E 1 E
_ a2 s | < = —d*(c. ¢ 2 3.2
Q( e >2N0> < s (Plee ) (32)

where () is the complementary error funétion defined by

Q () = \/LQ_W/Q; exp (—2?/2)dx (3.3)

and the modified Euclidean distance is denoted as

L Mg | Mrp

=3 S )| 5

t=1 g=1 | p=1

Define h, = (hy 1, hg2, - -, hgny), We can rewrite (3.4) in matrix form, we have
Mg
& (c,&) = > hB(c,&)B(c,&)"h)

Mg

= ) hyA(c,&)h/ (3.5)
q=1

12



where B(c, €) is the codeword difference matrix defined as

d-d o d-d o -
Bleo—| 974 97& oa-d (3.6)
| M gMr Mr_ oM M oM |
and the codeword distance matrix is defined as A (c,&) = B(c,&)B(c,&)”. Note that
A (c, €) is nonnegative definite matrix, thus we can decompose A (c, ¢) as
UA (c,e) U =D (3.7)

where U is an unitary matrix with its column vectors being eigenvectors of A (c, &) and
D is a diagonal matrix with its diagonal elements A\,, p = 0,1, ..., My, being nonnegative

eigenvalues of A (c,¢&). Now, (3.5) can be rewritten as

Mg, My
d* (c,&) 2NN X8, (3.8)
g=1 p=1
where
Byp =y -1, (3.9)

and u, is the pth row of U. Substituting (3.8) into (3.2), we get

1 B, <& &
Pr(c — @lhyy, ¥ p.q) < 5 exp <_4NS‘0 YN |5q,p|2> . (3.10)

g=1 p=1

We average the conditional PEP over all channel realization to get pairwise error prob-
ability. First of all, 3,, are obviously independent complex Gaussian random variables
with mean /i, and variance 0.5 per dimension, therefore |3, ,| are Rician distribution. The

probability density function of Rician random variable is

[ (1Bgpl) = 2Bgpl exp (_ |ﬁq7p|2 - ’iq,p) Iy (2 |84l v“q,p) (3.11)

where kqp = |1gpal’s tiq = E[hy, - uy) and Io(-) represents the zero-order modified Bessel

function of the first kind. With respect to averaging the Rician random variables |3, ,|, the

13



pairwise error probability can be expressed as

Pr(c—e) = / / Py (¢ — &8y Y0, ) f (1Ba]) £ (1Bual) -  (1Batmnse)
4160l d1Bral - - d|Brsase]

Mg Mrp

/ / —exp< PP |ﬁqp|) (1B1l) £ (1Bral) -~ f (Brtmorie)

g=1 p=1

d|Biald|Bral - d|Brig,aey|

MR T e
1 1 _ Rapang Ap
2 ( 1+ 50 14 1 Ap

g=1 \p=1

IN

where r(-) stands for rank of A (c,¢&). Consider the wireless channel to be Rayleigh fading,

that is, pgqp = 0, the PEP can be upper bounded as

1 (L 1 e
Pr(c— &) < = ( —) . (3.13)
2 g 1+ 0

At high SNR’s, (3.13) can be represented as

W mmd s, \ M
Pr(c—@) <3 (g Ap> (4]\;0) : (3.14)

As a consequence, we have the design criteria of space time coding as follows.

e Rank (diversity) criterion: The minimum rank of A (c,¢&) over all pairs of distinct

codewords ¢ and ¢ should be as large as possible.

T
e Determinant criterion: The minimum product of nonzero eigenvalues [ A, over all
p=1
pairs of distinct codewords ¢ and ¢ should also be maximized.

The rank and determinant criteria give us a guild line to develop good space time codes,
and the maximum achievable diversity of space time codes is the multiplication of encoding

durations and received antenna numbers, i.e. LMpg.

3.2 Space-Frequency coding

The STC systems introduced in previous section is restricted to single-carrier systems

operating narrow-band flat fading channels. A strategy which employing STC across OFDM
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tones over MIMO broad-band channels to provide not only spatial diversity but frequency
diversity was investigated, that is, the space-frequency coding. The design criteria of SFC

are introduced in the following.

3.2.1 System Model of SFC

0
¢ i
OFDM b\ OFDM
L N

Mod. Demod.
Information Space ' . SPace‘
S —» Frequency . J , Frequency |
source Encoder ! IiMR_I . Decoder
't
OFDM OFDM

Mod. Demod.

Figure 3.2: System model of SFC.

The MIMO-OFDM system equipped M7 transmit antennas and My receive antennas
is showned in Figure 3.2. The information bits are‘encoded by the SFC encoder into
blocks of size Mr x N, and the caded symbeol is fed to: the OFDM modulator to perform
IFFT transform and append the cytlic prefix.=Aad then the time-domain OFDM symbols
are transmitted into the MIMO channels; At receiver, the transmitted signals of all the
transmit antennas are weighted superposition and currupted by AWGN at each receive
antenna. Organizing the transmitted data symbols of kth subcarrier into frequency vectors
ck = (cf, cyenns ckMTfl)T with ¢} denoting the data symbol transmitted from the ith
antenna on the kth tone and ¢ are taken from a finite complex alphabet such that the

average energy of the constellation element is Ey, then the received data vector of the kth

tone is given by
ry = \/E.H <ef%) chtny, k=0,1,... N1, (3.15)

where H (ej %) is the frequency domain channel matrix. And n; is independent complex

AWGN with mean zero, variance 0.5 per dimension and one sided power spectral density

No.
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3.2.2 Design Criteria of SFC

Assuming the channel is constant over at least one OFDM symbol, and the perfect CSI
is available at the receiver. The ML decoder decides the most likely transmitted sequence

Cr, k=0,1,...,N — 1, over all possible codewords according to

. 2
Cr = argcmlnz Hr;C v EH (eJQNk> H (3.16)

where C = [cpcy ..., cy_1]. Let E = [ege; ..., ey_1] be the erroneous decode space-
frequency codeword, for a given channel realization, the pairwise error probability is given

by

P (o mm (o)) <oy (com (o)) .17

where the squared Euclidean distance between the two codewords C and E is dented by

d? (C EH (632“)) = Z_ HH <e]2§k) (ck —eg)

2

=E (3.18)

Here we define a new matrix Y = [¥g, Yu s yN_l]T in equation (3.18) for computational
convenience, and the definition of y;, 7k =0,1,..., N*— 1, is given by

Y = H (6J217\r7k) (Ck - ek) . (319)

Using the Chernoff bound Q(z) < e=**/? into equation (3.17), we get

4?Vsod2<c,E|H<ef%>>' (3.20)

p (C ~ EH (eJTk)> <e

Since the multipath channel were assumed to be i.i.d. complex Gaussian it follows that
H (ej %) are Gaussian as well and hence the vector Y is Gaussian. The average over all
channel realizations of the right handside in (3.20) is equivalent to solving the characteristic
function of Y and it is fully characterized by the eigenvalues of the covariance matrix of Y

[28]. Therefore the pairwise error probability is given by

-1 -1
E
P(C—E)< H (1+)\ )4]\;) (3.21)
0
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where r (Cy) denotes the rank of Cy , \;(Cy), i = 0,1,...,7(Cy), are the nonzero

eigenvalues of Cy, the definition of Cy is given by

Cy =

=

(YY"

™~

= [Dl (C-E)" (C-E) (DZ)H} @Ry (3.22)
1=

o

where D = diag{e™? %k}zkv;&’ R; denote the correlation matrix of MIMO channel between
transmit and receive antennas at time delay [, A ® B denotes the Kronecker product of the
matrices A and B, and the superscript * stands for complex conjugate operation. Assume

the SFC systems are operated at high SNR, the PEP can be upper bounded by

Es —7(Cvy)
> . (3.23)

(Cy)-1
P E) < 4
(C—E) < 11 Xi (Cy) (4N0

The design criteria for space-frequency codes follow from equation (3.23) as the well-known

rank and determinant criteria.

e Rank (diversity) criterion: Theminimum rank of Cy over all pairs of distinct codewords

C and E should be as large as possible:

r(Cy)
e Determinant criterion: The minimum product of nonzero eigenvalues [[ A; (Cy) over
i=0
all pairs of distinct codewords C and E should also be maximized.

Next, we shortly introduce the maximum achievable diversity of the space-frequency
codes by the discussion of Cy. Assume N > MyL, using the factorizations of R; =

Rl% Rl%, [=0,1,...,L —1, and the property of Kronecker products
(A®B)® (C®D)=(AC)® (BD) (3.24)
the NMpg x MyMgL matrix Cy can be decomposed as
Cy =G (C,E)G" (C,E) (3.25)
where G (C,E) is defined as G (C,E) = [go g1 ... g1—1] and g = [(Dl (C— E)T) ® Rz%]
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If the MIMO channels satisfy the condition of r (R;) = Mg and by carefully design of
space-frequency codeword to have r (Dl (C— E)T) = My for all [ over all distinct codeword
pairs, the stacked matrix G (C, E) would be full rank. As above conditions are fulfilled, we

thus have a full rank Cy and the space-frequency codes can achieve the maximum diversity

order of MrMpgL.
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Chapter 4

CP-reduced Coding Techniques with
ICI Diversity Combining for OFDM
Systems

Actually the ICI corrupted channel of the CP-reduced OFDM system can be viewed as a
virtual MIMO channel when we regard the,subgcarriers as the virtual antennas. And the ICI
induced by insufficient CP can be viewed as;a sort. of frequency diversity by the concepts of
space-frequency coding (SFC). In this chapter, we'study the space-frequency codes under the
virtual MIMO channel of CP-reduced OEDM systems,-and we term such codes as “virtual
space-frequency codes”. The maximum: achievable diversity order and the corresponding

design criteria are also given by theoretical analysis of the derived PEP bound.

4.1 System Model of OFDM Systems

If we view the subcarriers as the virtual antennas, and combine the system blocks circled
by dash lines in Figure 4.1(a) into a equivalent frequency-domain MIMO channels as shown
in Figure 4.1(b) emphasized by dash lines, then conventional CP-reduced SISO-OFDM
systems with perfect ISI canceller can be regarded as virtual MIMO-OFDM systems with
their virtual MIMO channels of ith OFDM block index are specified by the frequency-domain
ICI channels of

H () — Fy (BO - HO) P, )
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where Fy is the N-point FFT matrix, H? and Hz(g are the time-domain channel matrices
in (2.3), and (2.5) which are the channel matrices corresponding to interference-free and ICI
signal components. Under the aspects of subcarriers as virtual antennas and following the
concepts of SFC, the ICI induced from reduced CP can equivalently be considered as the
virtual MIMO channel gains from virtual transmit antennas to virtual received antennas.
That is, ICI can be regarded as frequency diversity. After a clear understanding of the virtual

spatial-domain, next we derive the PEP based on the virtual MIMO-OFDM systems shown
in Figure 4.1(b).

Inf?rmatlon Ll Mod. sl s/p _’ IFFT _'Appcnd \L Remove o FET s P/S sl Demod. |- Dr_ata
Source : cp cp : Sink

Frequency-

. Fr ney- . w1 -
Information equency . domain FI’L,{]IIL,I!C}' Data
. —»  domain | S/P |- .y * | P/S domain —
Source - |\ Virtual MIMO | | - Sink

Encoder : Decoder
Channel

(b) Virtual MIMO-OFDM systems with subcarriers as virtual antennas

Figure 4.1: (a) Conventional SISO-OFDM Systems, (b) Virtual MIMO-OFDM with sub-
carriers as virtual antennas

4.2 Pairwise Error Probability Analysis

From the viewpoints of regarding subcarriers as virtual antennas, we investigate a coding
technique across B OFDM blocks based on the concepts of SFC for the virtual MIMO-
OFDM systems with perfect ISI canceller. Assume the channel responses are static at
least for one OFDM duration (symbol-wise fading), and the channel gains for different
delay are independent. The input bit stream is divided into b bit-long segments, forming

2b_ary constellation symbols. These symbols are then mapped onto a frequency-domain
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codeword to be transmitted over the N virtual antennas (subcarriers). Each frequency-

domain codeword can be express as an N B X 1 matrix
X = X7, xF,..., x5]" (4.2)

where X; = [0, %i1, ,- -+, Tin—1] is an N x 1 column vector, representing the ith coded
OFDM block. At the receiver, the received signal of ith block can be written in matrix form
as

R, = EHY () X; + ZT, (4.3)
where the complex additive white Gaussian noise (AWGN) vector of ith block index is
defined as Z; = (20, 2i1,-..,2in-1], and z;; ~ CN (0, Ny) is the complex AWGN of
1th OFDM block at j subcarrier. Thus the average coded symbol to noise ratio at each
subcarrier is given by FEs/Ny. Collect B blocks of received OFDM signals and denote
R = [RIT, RI,..., R%}T, then R is an N B, x 1 column vector, and is given by

R =V EH, (¢") X4 Z, (4.4)
where the noise vector Z is formatted as Z = [Z?, z ... Zg]T, and H,, (e/*) is the

virtual MIMO channel matrix in frequerncy-domain' of consecutive B OFDM blocks, and
can be formulated as
L ()]

H,, (ejw) - [Hg]) (ejw)] ) (4.5)

| o)

Assume perfect channel state information (CSI) is available at the receiver, and the
receiver applies a maximum likelihood decoder to detect signals. The PEP of coding across
consecutive B OFDM blocks conditioned on the virtual MIMO channels of H,, (¢/*) is given
by




where X stands for the erroneous decoded codeword, Q (x) is the complementary error

function, and d% (X, X) is the modified Euclidean distance with the definition of

& (X.X) = HBHq (e”) (X_X>Hi (4.7)
- 3 HY () (X—X) i |

By using the Chernoff bound, the conditional PEP can be upper bounded by

N w0 1 Eq N
P (XX [HL,, (¢ )) < S exp ( 4N0d2 (XX)) . (4.8)
Next we rewrite d% (X, X) into a more compact form for computational simplicity of channel
averaging. By the equalities of tr (AA™) = |A|% and tr (AB) = vec (AH)H vec (B) [29],

we can reformulated (4.7) as

d%(X, X) Zvec( ( X ) H(’) (ej“’)H)Hvec (Hg}) (ej“’)H), (4.9)

where A;(X,X) = (X; — X;)(X; — X)) is_the ith eodeword distance matrix, and vec(-)
is an operator that stacks all the columns of a matrix into a super column matrix orderly
according to their column indexes.=Apply the equality-of vec (ABC) = (CT @ A) vec (B)
[29], (4.9) becomes

( > Zvec < e]w)H)H (IN ® A; (X, X)) vec (Hg]) (ej“’)H>. (4.10)

Define h; = vec (ngq) (ej“’)H) and K;(X,X) = Iy ® A;(X,X), the modified Euclidean

distance is then given by

B
&, (XX) =Y nK, (XX) h,. (4.11)
=1

Now we are about to average the conditional PEP over all channel realization, but we
can’t assure if the random vector h; has a full rank covariance matrix for each i (actually h;
has a rank-deficient covariance matrix for each ¢, and its proof is shown in the appendix).
Therefore, to ease the calculation of integral during the step of channel averaging, we con-

sider a linear transformation to transform h; into a random vector with a full rank covariance
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to simplify the computation of integral. Assume h; is a complex Gaussian random vector
with its mean denoted by uy and covariance denoted by Ry with rank(Ry) = r < N2

Consider the linear transformation of the ith channel vector
1
h; = pn + Ri g, (4.12)

where g; ~ CN (0,I,) and R}%1 stands for the Cholesky decomposition of the covariance
matrix Ry, [30]. By this transformation, we can transform each h; to another random
vector g; which has zero mean and an identity covariance matrix. Substitute (4.12) into
(4.11), then the modified Euclidean distance can be finally formulated as

B

6 (x%) = 5 (o mds) K (X))

=1

B (4.13)
= > 2, <X, X)

Now we average the conditional PEP oversall channel realizations

Joo () e (~ () il (K)o (s s
(o (1 () (BRI ) ) o (- () e (x5 )
oo () o [P bl x (x ) i) o)

(4.14)

1\ H A
where ® = <Rﬁ) K;(X, X)pn. Consider the multipath channels to be Rayleigh fading

P <XX> <

<

i
ﬁ

channels (i.e. puy = 0), and after some computations, the PEP can be upper bounded by

1

Es ) ) )
P(x.X) < H (det <I + (4N0>Keff (x. X))) , (4.15)
where Ki?f(X, X) is the effective codeword matrix of ith OFDM block, and is defined as
1\ H o 1
K (X.X) = (R}) Ki(X.X)R;. (4.16)

Here we use the phase “effective” to emphasize Ki?f(X, f{) is a codeword distance matrix

that not only depends on the codeword distance matrix A;(X, X), but also depends on the
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covariance matrix of the multipath channels. Note that KS} (X, X) is nonnegative definite
Hermitian, thus there exists a unitary matrix U; and a real diagonal matrix D, such that
1\ H 5 1 H
U, {(Rﬁ) K, (X X) Rﬁl} U’ =D, (4.17)
where the rows of U; are the eigenvectors of KS} f(X, X), forming a complete orthonormal

basis of an N2-dimensional vector space. The diagonal matrix D; can be represented as

D, = (4.18)

¥
where RZ@ stands for the rank of Kg?f(X,X), and )\gi), j=0,..., R, i=1,..., B are
the nonzero eigenvalues of Kgf)f(X,X) At high SNR’s, the upper bound of PEP can be

simplified as

i=10=1

P(X.X) < <1§[ I Ag?)) ) (fTOyiR (4.19)

or

P(x%) = (o Bonelll) f)

4N,
here we further define a total effectivecodeword distance matrix with its definition is given

by

k)] |
3, (%)

| kG (xX)]

Based on the upper bounds shown in (4.19) and (4.20), we have the insights on the factors

Kerr (X,X) = (4.21)

that determine the diversity order and coding gain of system performance, and we can
tell that both diversity and coding gains are closely related to the total effective codeword
distance matrix. Thus we give a proof of the achievable diversity order along with detail

discussions in next section.
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4.3 Maximum Achievable Diversity and Design Crite-
ria

We analyze the factors that affect the diversity order of a SF-coded virtual MIMO-OFDM
system in this section. First, we derive an upper bound for the maximum achievable diversity
for such a system. Second, we propose the design criteria according to the derivation results
of the upper bound of maximum achievable diversity. From the PEP in (4.19) and (4.20),
we can see that the diversity order is determined by the rank of the total effective distance
matrix K.;p(X, X), and K. /r(X, X) depends on Ki?f(X, X), for i = 1,...,B. Therefore,
in order to determine the upper bound of rank(K.;;(X, X)), we should firstly determine
the upper bound of rank (Kff}f(X, X)), and then applying the upper bound to determine
the rank of K.;r(X,X). The upper bound of rank <K£l]2f(X, X)) and rank(K,;;(X, X))

can be calculated in the following theorem.

Theorem 1. Consider a coding schemé based on CP-reduced OFDM systems under symbol-
wise Rayleigh fading channels for aZgiven subearrier mumber N and channel order (L + 1),

the maximum achievable diversity order is given by:

(1.a) TEN > (L+1) and K, (X, X) # 0 forX X in ith OFDM block, then rank (Kgng<x, X)) <
(L + 1) and therefore the rank of the coded B OFDM blocks are upper bounded by
rank(Kq;p(X,X)) < N x (L+1).

(1.b) Tt N < (I+1) and KU (X, X) # 0 for ¥X # X in ith OFDM block, then rank (Kg’}f(x, X)) <
N x rank(A;(X, X)) and therefore the the rank of the coded B OFDM blocks are upper
A B A
bounded by rank(K.r/(X, X)) < N x > rank(A;(X, X)).
i=1

Proof. By equation (4.16) and the inequality of rank(AB) < min {rank(A), rank(B)},
then the upper bound of rank (Kg?f(X, X)) is given by

rank (Ki?f(X, X)) < min (mnk (Ré) , rank (KZ(X, X))) . (4.22)
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Therefore we analyze the rank of Ré and K;(X, X) individually to determine which matrix
has the minimum rank that upper bounds the diversity order. We deal with K;(X, X) first.
Using the fact that each eigenvalue of the N x N matrix A;(X,X) is an eigenvalue of the
N? x N2 matrix Iy ® A;(X, X) with multiplicity N, thus the rank of K;(X,X) is given by

N x rank(A;(X,X)) , if A(

) 0.

o (4.23)

. . X, X
rank <K(’) (X, X)) = .

X, X
From (4.23) we can conclude that only if the ith codeword distance matrix A;(X,X) is
nonzero for all pairs of ith distinct OFDM symbols, then rank(K;(X, X)) will be the mul-
tiplication of rank(A;(X,X)) and subcarrier number N.

1
The rank of R is equivalent to the rank of rank (Ry), therefore we calculate rank (Ry)

in the following. By the equality of vec (ABC) = (C* ® A) vec(B), Ry can be rewritten

as
Ry, = (F@FY) & (B o FE)" (4.24)
where
S =Fnn] (4.25)
and

, O\ Y
n = vec <<H(Z) _ Hl;> ) (4.26)
in which E[-] stands for taking expectation and “x” stands for the complex conjugate op-
erator. Using the inequality rank(AB) < min {rank(A), rank(B)} again, then rank (Ry)

can be upper bounded by
rank (Ry) < min (rank (Fy ® FY), rank (®)) . (4.27)

Note that the FFT matrix Fy is a full rank matrix so we have rank (Fy ® F) = N2 by

the rank property of kronecker product. Thus rank (Ry,) is always upper bounded by

rank (Ry) < rank (®). (4.28)
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Now we shall determine rank (®) to determine the exact value of the upper bound of

rank (Ry). Because the channel taps are assumed to be independent, the equality
rank (®) =L+ 1 (4.29)

always holds'. Therefore rank (Ry,) is always upper bounded by the channel order of (L + 1),
that is,
rank (Rp) < (L+1). (4.30)

The rank of Ki?f(X, X) is upper bounded by the minor value of rank(K;(X,X)) and
rank (Ry) which means the upper bound of rank (Kg?f(X, X)) for any one-to-one map-
ping coding scheme is either N x rank(A;(X,X)) or the channel order (L + 1). There-
fore we can conclude that rank (Ki?f(X, X)) < (L+1) holds for N > (L + 1), and
rank (Ki%(X,X)) < N x rank(A;(X,X)) holds for N < (L +1). Note that the total
effective codeword distance matrix K. ;r(X, X) is formed by placing 1th to Bth effective
distance codeword matrix orderly at.its diagonaltand by the aforementioned maximum
achievable diversity order of any ohe-to-one mapping coding schemes within one OFDM
block, thus the maximum achievable diyversity order of any one-to-one mapping coding
schemes for consecutive B OFDM blocks.is the“cumulation of maximum achievable diver-
sity order of each block index, i.e. rank(Kgg;X)) < N x (L +1) for N > (L +1) and
rank(Kqsp(X, X)) < N x f:lrcmk(Ai(X,X)) for N < (L+1). O

As shown in Theorem (1.a), when N > (L + 1), a one-to-one mapping coding scheme
within one OFDM block can always achieves (L + 1)-fold diversity, which means the vir-
tual space-frequency code design based on CP-reduced OFDM systems under symbol-wise
Rayleigh fading channels is no longer focusing on maximizing the diversity order since the
full diversity can be always achieved only if the codes is designed to be one-to-one mapping.
And the maximum achievable diversity order in this setup is consistent with the maximum
achievable diversity of conventional SFCs under the case of single transmit and receive an-

tenna. On the other hand, if N < (L + 1), the diversity order of a one-to-one mapping

T The proof of rank (®) = (L + 1) in (4.29) is detailed in Appendix A.
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coding scheme within one OFDM block can achieve N x rank(A;(X, X))-fold diversity as
shown in Theorem (1.b). From Theorem 1, we propose the design criteria of any one-to-one

mapping coding schemes within one OFDM block (B = 1, so Keff(X,X) = Kgc)f(X, X))

based on CP-reduced OFDM systems under symbol-wise Rayleigh fading channels.

Design Criteria 1: For virtual space-frequency codes within one OFDM symbol based
on CP-reduced OFDM systems under symbol-wise Rayleigh fading channels, the design

criteria are given as following.

» Rank (diversity) Criterion:

e For N > (L +1): Design a one-to-one mapping coding scheme, and then such a

code can always achieve full diversity of (L + 1).

e For N < (L + 1): Maximize the minimum rank of codeword distance matrix

A1(X,X) over all pairs of distinet QFEDM symbols.

» Determinant Criterion: Maximize-th minimum determinant of total effective dis-

tance matrix K. ;;(X, X) over ‘all pairs of distinét OFDM symbols.

Unlike the diversity criterion of conwventional SFCs; Design Criterion 1 raises a different
diversity criterion in the case of N > (L 41)."Since the codes designed to be one-to-one
mapping are able to achieved full diversity for N > (L + 1), the coding redundancy shall be
used to enlarge the determinant of K, ;¢(X, X), rather than the rank of K. (X, X), which
means the diversity order in this setting is no longer determined by the minimum rank
of the codes over all pairs of the distinct OFDM symbols, but determined by the channel
order. On the other case of N < (L + 1), the rank of K.;¢(X, X) is upper bounded by N x
rank(A;(X, X)), thus maximize the rank of the codeword distance matrix is still be the main
concern of code design which is coincided with the diversity criterion of conventional SFCs.
The determinant criterion is consistent in both circumstances, in order to minimize the error
probability, the minimum determinant of K,;;(X, X) should be maximized. For a code set

of the same achievable diversity order, the code with largest minimum det(K,z¢(X, X))
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outperforms other codes of the code set, thus we define the effective codeword distance to
be the minimum determinant of K, ;;(X, X) as a measure to evaluate of the superiority of
different coding schemes when they have equivalent achievable diversity. Based on Design
Criterion 1, we propose the design critera of any one-to-one mapping virtual space-frequency
codes for consecutive B OFDM blocks based on CP-reduced OFDM systems under symbol-

wise Rayleigh fading channels.

Design Criteria 2: For virtual space-frequency codes for consecutive B OFDM blocks
based on CP-reduced OFDM systems under symbol-wise Rayleigh fading channels, the

design criteria are given as following.

» Rank (diversity) Criterion:

e For N > (L 4+ 1): Maximize the number of nonzero ith effective codeword
distance matrix Kg}f(X, X) for each block index over all pairs of distinct con-
secutive B OFDM blocks.

e For N < (L+1): Maximize the minimum rank of total effective distance matrix

K.(X,X) over all pairs of distinict consecutive B OFDM symbols.

» Determinant Criterion: Maximize the minmimum determinant of total effective dis-

tance matrix K77 (X, X) over all pairs‘of distinct consecutive B OFDM symbols.

Because only if the codes have its Kgi}f(X, X) # 0 for VX # X, the codes achieve full
diversity in ith block index. Therefore, we should maximize the number of nonzero effective
codeword distance matrix for individual block index in the case of N > (L+1), and then the
maximum achievable diversity order of the codes is the multiplication of channel order and
the number of nonzero ith effective codeword distance matrix out of B OFDM block indexes.
For N > (L+1), the diversity gain is maximized by enlarging the rank of K.;(X, X), to be
more exact, it is done by maximizing the rank of A;(X, X) for each block index. Moreover,
the determinant criterion claims that for the codes own larger effective codeword distance

have the larger coding gain under the same diversity order, so the minimum determinant of

K.;;(X,X) should be maximized.
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Chapter 5

Simulation Results

In addition to theoretical analysis, we also carry out simulations to investigate the perfor-
mance of virtual space-frequency codes based on CP-reduced OFDM systems by choosing
bit-error rate (BER) as our figure of merit, and the BER plots are also used to demonstrate
the derived maximum diversity order and design criteria in Chapter 4. The global setting

of the simulations and the assumptions, ate given as following.

Global setting and assumptions:

e Assume the CSI is available at jthe Teceiver side, and the ISI component can be
canceled perfectly. Timing and frequency synehronizations are assumed to be perfect

as well.

e We employ QPSK modulation for all OFDM systems, and use the ML decoder to

detect signals.

e There are two types of Rayleigh fading channels used in simulations corresponding

to different delay spread, and their power profile are specified as following.
> For L = 1, the channel power profile is [0.8, 0.2].
> For L = 2, the channel power profile is [0.642, 0.256, 0.102] (SUI-4)[31].
A. Demonstrate the maximum achievable diversity order for N > (L + 1)

From the derivation of achievable diversity bound in Chapter 4, we asserts that the

maximum achievable diversity order of virtual space-frequency coding within one OFDM
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symbol based on CP-reduced OFDM systems for N > (L + 1) is upper bounded by channel
order rather than the rank of effective codeword distance matrix, and this fact disagrees with
the common sense of the rank criterion of conventional SFCs. Therefore we apply orthogonal
designed SFBCs as the virtual space-frequency codes with their ranks are smaller or larger
than the channel order to examine whether the slope of the BER curves is consistent with
the channel order or the rank of the SFBCs. There are three orthogonal designed SFBCs

applied in the simulations [32][33], and their codeword matrices are given by

T T

Ty Ty Ty T 7 7

* * x3 —x3

—T X —T T = — =

_ 2 1 _ 2 V2 V2

SFBC4X2 - Ty Ty ’ SFBC4X4 - xd xd —x1—xi+ro—xs  —xa—axdtwi—a] ’ and
V2 V2 V2 V2 V2 V2
3 —x3 x5 -3 To+x5+T1—T] —T1—T] —T2+x
L V2 V2 L V2 V2 V2 V2 i

—x5 o7 0 ®m3 @Ewil0 w6

SFBCng = )
Xy Ts Tg 0 Ty To T3 0

* * * *
—xg 0 a3 —xs —a5000007 2] —a

0 —x5 x5 x4 0 —x3 753 =

(5.1)
where x;, 7 = 1,...,6, are the constellation points of QPSK modulation. All SFBCs listed in
(5.1) can achieve full diversity, so the rank of SFBC,2, SFBC,y4, and SFBCgg are given
accordingly as 2, 4, and 8. And the SFBCs used here have one-to-one correspondence, thus
applying the SFBCs to the CP-reduced OFDM systems when N > (L + 1) shall achieve the
full diversity of (L 4 1). Moreover, note that the subcarriers are playing the role of virtual
spatial domain, and we assume the channel is static during each SFBC transmission which
is quasi-static fading.

For N = 4 and L = 1, we intentionally apply the SFBCs with rank 2 and 4 based

on CP-free OFDM systems with perfect ISI canceler to examine if the achievable diversity
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order is channel order. As shown in Figure 5.1, the slope of BER curve corresponding to
SFBC,,> is consistent to the slope of SFBC,.4, and it is about the order of 2. As matter
of fact, we can classify the same fact by computing the minimum rank of Kgc)f(X,X)
for all distinct pair of OFDM symbols, and the minimum value of Kgc)f(X7 X) is truly 2
which coincides with the simulation results. Furthermore, the effective codeword distance
of SFBCy4 (the minimum det (Kg)f(x, X)) of SFBCy4) is 0.1584 which is larger than
the effective codeword distance of SFBC,y» (0.048), consequently, SFBC,,4 outperforms
SFBC,,» as shown in Figure 5.1. And we note that the uncoded CP-free OFDM systems
have better performance than the CP-sufficient (which means the CP length is equal to
the maximum delay spread) OFDM systems, only if the CP-free OFDM systems have the
perfect ISI canceler and the receiver considers the ICI responses of all subcarriers to decode
signals. The similar fact can be observed when the subcarrier number is enlarge to 8 in
Figure 5.2, the SFBC applied here has an extremely large rank of 8, but the diversity order
of SFBC coded CP-free OFDM systems still follows the channel order of 2.

As given in Figure 5.3, the achievable diversity order when N = 4 and L = 2 corre-
sponding to SFBC,y> and SFBCyy, are-both being the maximum delay spread instead
of the rank of SFBCs again. It may.be hard to accept that SFBC,., coded CP-free
OFDM systems can achieve diversity order ‘of 3. Once we analyze the upper bound of

(1)
rank <K€ff

of K;(X, X) is 2N; meanwhile, the rank of Ry, is proved to be channel order. Recall (4.22),

(X, X)), it may be believable. The rank of SFBC, is 2, therefore the rank

as a result, the rank of effective codeword matrix is upper bounded by the channel order
which matches the slope of the BER curve of SFBC,.», and this fact also can be proved
by means of computing the minimum value of rank (Kgc)f(X, X)) over all pairs of OFDM
symbols. We enlarge the subcarrier number as 8 to simulate under the same multipath
channel setting, and the BER plots in Figure 5.4 confirm that the achievable diversity is
the maximum delay spread in this setup, too. At this point, we have verified the achievable
diversity order of virtual space-frequency coding within one OFDM block based on CP-free

OFDM systems by computer simulations, and also classified that if there are several cod-
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ing schemes have equivalent achievable diversity, the codes with larger effective codeword
distance have the better error performance than the codes with minor effective codeword

distance.

B. Apply the virtual space-frequency coding to the convolutional coded CP-reduced OF DM

It is clarified by computer simulations in previous section that only if the the virtual
space-frequency codes based on CP-reduced OFDM systems are designed to be one-to-one
mapping, the maximum diversity order of the codes are irrelevant to the rank of their code-
word different matrices. Therefore once the codes have one-to-one correspondence, in oder
to enhance error performance the coding redundancy should be utilized to maximize the
effective codeword distance over all pairs of distinct OFDM symbols rather than maximize
the rank of the codeword distance matrix As (X, X) Note that SFBCs are ineffective in en-
larging the effective codeword distanee due te;diversify gain is the main concern of SFBCs.
Thus we employ the traditional error.eontrol coding as an more effective alternative. For
above reasons, we choose the convolutional-codes with kiiown dy,.. as an easy way to enlarge
the effective codeword distance. In this.section, we apply the optimal convolutional codes
[34] with the same memory order but different code rates to CP-free OFDM systems, and
compare their BER performance to convolutional coded CP-sufficient OFDM systems. The
optimal convolutional codes used in simulations with their generator sequences and prop-
erties are listed as Compare with the CP appended OFDM systems, the CP-free OFDM
systems have extra redundancy saved from the unused guard interval, and we can make the
additional rate utilized by more powerful convolutional codes to further enhance the error

performance meanwhile preserve original total throughput of the communication systems.

Abbreviation | rate | memory G(D) Afree
CCy 1/2 6 [117, 155] 10
CGC, 1/3 6 [117, 127, 155] | 15

Table 5.1: Table of optimal convolutional codes
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We also execute computer simulations to verify the aforementioned idea. In addition to
the global setting and assumptions, the computer simulation in Simulation B are executed

under the extra setting listed as below:
Simulation setting in Simulation B:
e The channel is assumed to be static within each OFDM block but varying among

blocks (symbol-wise fading).

e The Viterbi decoder of CP-free OFDM systems perform exhaustive search for each

2
OFDM block to compute HRl — ng) (e7™) ‘ as the path metric, and then execute
F

the Viterbi algorithm from block to block.

e There are three convolutional coded OFDM systems with or without CP in every
BER plots. We specify the three systems along with their abbreviations, and the

abbreviations are used in the BERplots and discussions for the sake of simplicity.

> CC;CP-sufficient OFDM: The convolutional coded CP-sufficient OFDM systems

where the convolutional code used-here 1s the CC; code of Table 5.1.

> CC,;CP-free OFDM with perfect ISEeanceler: The coded CP-free OFDM sys-
tems equipped with perfect TSI ecaneeler where the convolutional code used here

is the CC; code of Table 5.1.

> CCyCP-free OFDM with perfect ISI canceler: The coded CP-free OFDM sys-
tems equipped with perfect ISI canceler where the convolutional code used here

is the CCy code of Table 5.1.

Note that all the systems based on CP-sufficient OFDM are lined with blue dash line,
and all the systems based on CP-free OFDM are lined with red solid line throughout this
section. For N =4, L = 1, and B = 60, we compare the BER of convolutional coded CP-
sufficient and CP-free OFDM systems with perfect ISI canceler by applying the CC; code
in Table 5.1 to both systems, and it it shown in Figure 5.5 that CC;CP-free OFDM with
perfect ISI canceler outperforms CC,CP-sufficient OFDM about 4.7dB at the BER of 1072,
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yet CC;CP-free OFDM with perfect ISI canceler even has higher code rate than CC;CP-
sufficient OFDM. To compare the BER performance with CC;CP-sufficient OFDM under
the same rate, we apply the CCs, code of Table 5.1 to the CP-free OFDM system with perfect
ISI canceler (CCyCP-free OFDM with perfect ISI canceler), and we observe that CCoCP-free
OFDM with perfect ISI canceler is about 7.5dB better than CC;CP-free OFDM with perfect
ISI canceler. Note that CCyCP-free OFDM with perfect ISI canceler and CC;CP-sufficient
OFDM have the same throughput of rate 1/3, therefore it is worthwhile not to use any guard
interval and spend the redundancy saved from CP on a more powerful convolutional code.
From the BER comparison of CCyCP-free OFDM with perfect ISI canceler and CC;CP-
sufficient OFDM provides a method to enhance the BER performance significantly while
preserving original system throughput. Furthermore, since the convolutional codes have
one-to-one correspondence, the achievable diversity of CC;CP-free OFDM with perfect ISI
canceler and CCyCP-free OFDM with perfect ISI canceler are supposed to be the channel
order. As shown in Figure 5.5, the slope of CC,CP-free OFDM with perfect ISI canceler
and CCyCP-free OFDM with perfect ISI canceler are about 2, just as the theoretical value.

For the same numbers of subcarrier, and-encoding OFDM blocks, we also execute the
simulations under the multipath chanmnel 'of channel erder 3, and using the channel power
profile of SUI-4 to generate the Rayleigh fading gains as shown in Figure 5.6. We observe
that CCyCP-free OFDM with perfect ISI canceler and CC,CP-free OFDM with perfect ISI
canceler have the same diversity gain from Figure 5.6, and the slope of CCyCP-free OFDM
with perfect ISI canceler and CC;CP-free OFDM with perfect ISI canceler descend much
sharper than CC;CP-sufficient OFDM does at the high SNR regions. It is deserved to
mention that CCyCP-free OFDM with perfect ISI canceler and CC;CP-free OFDM with
perfect ISI canceler both have higher rate than CC;CP-sufficient OFDM, yet they outper-
form CC;CP-sufficient OFDM for all the SNR regions. CC;CP-free OFDM with perfect ISI
canceler has about 6.2dB gain and CCyCP-free with perfect ISI canceler has about 9.2dB
gain better than CC;CP-sufficient at the BER of 107°. Furthermore, we observe in Fig-
ure 5.5 and Figure 5.6 that the slope of CC;CP-sufficient OFDM is irrelevant to different
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maximum delay spread, and both the diversity gain of CCyCP-free OFDM with perfect
IST canceler and CC;CP-free OFDM with perfect ISI canceler follow the channel order,
which means using convolutional codes as our virtual space-frequency codes for CP-reduced
OFDM systems can truly gain the frequency diversity from the ICI.

Since we view the subcarriers as the virtual antennas, the ICI component is increasing
with the subcarrier numbers. Therefore we perform all the communication systems once
again with the number of subcarrier and encoding OFDM block setting respectively as 8
and 30 to see if the virtual space-frequency coding on CP-reduced OFDM systems equipped
with perfect ISI canceler have the better performance than the conventional convolutional
coded CP-sufficient OFDM systems. As shown in Figure 5.7 and Figure 5.8, CC,CP-free
OFDM with perfect ISI canceler still outperforms CC; CP-sufficient OFDM for all SNR re-
gions, meanwhile CC;CP-free with perfect ISI canceler OFDM has higher throughput than
CC,CP-sufficient OFDM. At this point, the redundancy saved from CP provides a flexibility
of performance tradeoff between error performance and throughput, we can either replace
the CP-sufficient OFDM systems of conventional convelutional coded OFDM by CP-free
OFDM systems to increase the speetral efficiency and BER performance simultaneously, or
we can turn the redundancy saved ftom CP to a amere power convolutional codes to im-
prove the error performance remarkably while the communication systems have compareable

throughput.
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—6— CP-free OFDM, perfect ISI canceller, rate = 1
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Figure 5.1: BER of CP-sufficient OFDM, CP-free OFDM with perfect ISI canceler, and

SFBC coded CP-free OFDM equipped, with perfect ISI canceler corresponding to SFBCyy»
and SFBC4X4 for N = 4, L=1.

N =8, L = 1, Channel power profile =[ 0.8 0.2 ]

— © — CP-sufficient OFDM, rate = 4/5
—O6— CP-free OFDM, perfect ISI canceller, rate = 1
—*— 8x8 SFBC, rank = 8, perfect IS| canceller, rate = 3/32

BER
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Figure 5.2: BER of CP-sufficient OFDM, CP-free OFDM with perfect ISI canceler, and
SFBCg,s coded CP-free OFDM with perfect ISI canceler for N =8, L = 1.
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N =4, L = 2, Channel power profile (SUI-4) =[0.642 0.256 0.102 ]
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Figure 5.3: BER of CP-sufficient OFDM, CP-free OFDM with perfect ISI canceler, and
SFBC coded CP-free OFDM equipped, with perfect ISI canceler corresponding to SFBCyy»
and SFBC4X4 for N = 4, L=2.

N =8, L = 2, Channel power profile (SUI-4) =[ 0.642 0.256 0.102 ]
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Figure 5.4: BER of CP-sufficient OFDM, CP-free OFDM with perfect ISI canceler, and
SFBCg,s coded CP-free OFDM with perfect ISI canceler for N =8, L = 2.
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N =4, L =1, Channel power profile =[ 0.8 0.2 ]
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Figure 5.5: BER of CP-sufficient OFDM, CC,CP-sufficient OFDM, CP-free OFDM,
CC,CP-free OFDM with perfect ISI canceler, and CC,CP-free OFDM with perfect ISI
canceler for N =4, L = 1.

N =4, L = 2, Channel power profile (SUI-4) =[ 0.642 0.256 0.102 ]
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Figure 5.6: BER of CP-sufficient OFDM, CC,;CP-sufficient OFDM, CP-free OFDM,
CC,CP-free OFDM with perfect ISI canceler, and CCyCP-free OFDM with perfect ISI
canceler for N =4, L = 2.
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N =8, L = 1, Channel power profile =[0.8 0.2]
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Figure 5.7 BER of CP-sufficient OFDM, CC;CP-sufficient OFDM, CP-free OFDM,
CC,CP-free OFDM with perfect ISI cangeler,"and CC,CP-free OFDM with perfect ISI
canceler for N =8, L = 1. ‘

N =8, L = 2, Channel power profile (SUI-4) =[ 0.642 0.256 0.102 ]
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Figure 5.8: BER of CP-sufficient OFDM, CC;CP-sufficient OFDM, CP-free OFDM,
CCCP-free OFDM with perfect ISI canceler, and CCyCP-free OFDM with perfect ISI
canceler for N = 8, L = 2.
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Chapter 6

Conclusions and Future Works

In this thesis, we built up the mathematical formulations and derived the PEP by the as-
pects of viewing subcarriers as virtual antennas based on CP-reduced OFDM systems under
virtual MIMO channels of symbol-wise Rayleigh fading channels. From the PEP, the max-
imum achievable diversity order with respect to arbitrary encoded OFDM block numbers
are given along with the proofs. The main discover, of our study is that only if the virtual
space-frequency codes for coding within one OFDM: block is designed to have one-to-one
correspondence, the maximum achievable diversity order of such codes for N > (L +1) will
be upper bounded by the maximumesdelay spread-of the channel. The subcarrier number N
is chosen to be larger than the channel érder.(L+1)"in conventional use, that is, the virtual
space-frequency codes based on CP-reduced OFDM systems can always achieve full diversity
for most of the circumstances as long as the designed codes are one-to-one mapping. Based
on the maximum achievable diversity bound, we proposed the design criteria for different
encoded OFDM block numbers as well. A good virtual space-frequency codes for coding
within one OFDM block should be one-to-one mapping and its minimum determinant of
effective codeword distance matrix over all distinct OFDM pairs should be maximized. For
coding across B OFDM blocks, the virtual space-frequency codes who has the nonzero ef-
fective codeword distance matrix for longer time indexes achieve higher diversity order, and
the minimum determinant of the total effective distance matrix over all pairs of distinct

consecutive B OFDM blocks should be maximized to have better coding gain. In addition
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to theoretical analysis, the derived diversity bound and the proposed design criteria are
verified by the BER simulations along with the calculation of the minimum effective rank
and minimum effective distance in Simulation A. We applied the convolutional codes (CCy
and CCsy of Table 5.1) as the virtual space-frequency codes to CP-free OFDM in simulation
B (CCyCP-free OFDM with perfect ISI canceler and CC;CP-free OFDM with perfect ISI
canceler), and it not only outperforms the conventional convolutional coded CP-sufficient
OFDM (CC, CP-sufficient OFDM) for all SNR regions, but also has higher rate. It is worth-
while to note that the diversity gain of CCoCP-free OFDM with perfect ISI canceler and
CC,CP-free OFDM with perfect ISI canceler are both identical and higher than the diversity
gain of CC;CP-sufficient OFDM, which means that the virtual space-frequency coded CP-
free OFDM can actually gain frequency diversity from ICI even though the OFDM systems
are only equipped with single antenna. Moreover, from the BER comparisons of CCyCP-
free OFDM with perfect ISI canceler and CC;CP-sufficient OFDM motivates a simple way
to enhance the BER performance cousiderably under the comparable throughput: for a
convolutional coded OFDM system, it_is more profitable not to use any CP and turn the
redundancy saved from unused CP #o fill the rate loss from using a more powerful and lower
rate convolutional code (e.g. CCy codeiin Simulation=B) to improve the BER performance
meanwhile preserve the new throughput to be comparable with the original one.

The main disadvantage of virtual space-frequency codes for CP-reduced OFDM is the
remarkable complexity. Due to the concepts of viewing subcarriers as virtual antennas, the
ML receiver has to consider the frequency channel response of all subcarriers at once to
decode signals. Therefore the exhaustive search number of the ML receiver is increasing
exponentially by subcarrier number, and that’s why the subcarrier numbers used in com-
puter simulations are not so practical. Fortunately, there a suboptimal decoding algorithm
to decrease the search number during decoding, and the suboptimal decoding algorithm are
introduced as following. Using the power profile of SUI-4, the normalized ICI waveform of
the observed subcarrier for N = 16, 32, 64, and 128 are plotted in Figure 6.1. We can observe

from Figure 6.1 that the ICI components of observed subcarrier only interfere the nearby
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subcarriers badly, whereas the ICI components have little influence on the subcarriers who
are apart from the observed subcarrier. Motivated by the observations, we figure out that
whenever the receiver is about to decode a specific subcarrier, say ¢th subcarrier, the re-
ceiver can only consider the ICI components of the neighboring subcarriers of ith subcarrier
to be a suboptimal decoding alternative. Compare with the ML decoding algorithm, the
suboptimal decoding algorithm can reduce the search number of decoding one OFDM block
from 4" to N x 4” where P is the number of considered adjacent subcarriers of a decoded
subcarrier. Replacing the ML receiver by the suboptimal decoder and with a careful chosen
P, then we can operate the virtual space-frequency coded CP-reduced OFDM systems at
a practical subcarrier number. Besides the problems of complexity, the effects of imperfect
IST cancellation on the performance of virtual space-frequency coded CP-reduced OFDM is

an important issue to be studied in the following investigations.

Nomalized ICI waveform of 8—th subcarrier, N = 16 Nomalized ICI waveform of 16—-th subcarrier, N = 32
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Nomalized ICI waveform of 32-th subcarrier, N = 64 Nomalized ICI waveform of 64—th subcarrier, N = 128
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Figure 6.1: The normalized ICI waveform of observed subcarrier for the subcarrier numbers
chosen as 16, 32, 64 and 128.
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Appendix A: Proof rank (®) =L+ 1

» Assume the channel taps are independent to each other, proof
rank (®) =L+ 1 (A.1)
where
® = FE [nn"] (A.2)

and

n =.wéc ((H(i) — HEQ)H) (A.3)

Proof. By the definitions of H® and H{

161

the-general form of the vector n is given by

n = [(h(()i)o...0> (h@hé”o---o) ---<0---Oh(Li)h(Li)_1-~-hg)) <0...0h(Li)h(Li)_1...
N-1 N-2 N—-L N—-L+1

(A.4)
We evaluate ® by applying the independent assumption of channel taps. From the derivation
result of ®, we observe that ® is a diagonal matrix with only (L + 1) linearly independent

column vectorst. By the aforementioned observations of ®, therefore the rank of ® is

(L+1). O

¥ The observations can be seem by a direct computation of ®.
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