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中文摘要 

 

在無線通訊中，由於每個細胞基地台所配置的通道數目有限，因此如何使通

道達到最有效的利用成為一個重要的問題。在此篇論文中，我們研究在蜂巢式網

路結合道路拓樸的架構下，將環繞於基礎細胞(base cell)周圍鄰接細胞(adjacent 

cell)的通話資訊與通話位置列入考慮，利用這些資訊完成允入控制機制。對於每

個細胞，我們使用二維狀態的馬可夫鏈(Markov chain)來模擬此系統，第一維代

表基礎細胞使用通道的狀態，第二維是代表鄰接細胞使用通道的狀態。對於以最

小化新連線的阻斷率(new call blocking probability)和連線交遞的失敗率(handoff 

dropping probability)為目標函數的問題，可以使用馬可夫決策過程 (Markov 

Decision Process)來描述。在模型中，我們利用了一些變數來描述整個系統，這

些變數是非線性、難以預測的，然而模型所能展現效能的優劣與這些變數估測的

精準度息息相關。為了避免所取得的模型與真實系統相差甚遠，變數的估測是我

們成為我們關注的主題。我們提出利用 Cost Match Update(CMU)來調整參數，使

參數估測能較接近實際狀態。經由實驗結果，我們證實了使用 CMU 確實可以使

模型的效能更加提升。 
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Abstract 

 

 In wireless communication, the number of channels allocate to each cell is 

limited, so how to use channel efficiently is an important topic. In our thesis, we study 

the call admission control in road topology based cellular networks, and we take the 

mobile communication information and position in adjacent cells into consideration. 

For each cell, we formulate the system by Markov Chain with two-dimensional states 

where the first dimension represents the base cell’s state and the second dimension 

stands for the adjacent cells’ state. The problem of minimizing a linear objective 

function of new call blocking rate and handoff call dropping rate can be formulated as 

a Markov Decision Process. In our model, we use several parameters to model our 

system, and these parameters are non-linear and difficult to measure and predict. How 

the model performs depending on whether these parameters are estimated precisely. In 

order to avoid our model very different from the reality, we use Cost Match Update 

(CMU) rule to help us to estimate parameter. In simulation result, it shows our 

proposed scheme has lower average cost than others. 
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Chapter 1 

Introduction 

 

In the wireless cellular networks, the entire spectrum is divided into a number of 

channels. Channels are then assigned to a cell in either a static or dynamic way 

according to a specific channel assignment scheme [1]. When a mobile with a call in 

progress moves from the original cell into an adjacent cell, the base station must 

perform the handoff operation, i.e., the currently-used channel in the original cell 

should be returned to the base cell and the adjacent cell attempts to find a new channel 

for this mobile. The base station may drop a handoff call or block a new call because 

there is no available channel in the corresponding cell. 

The handoff dropping rate and new call blocking rate therefore play the most 

important role in evaluating the system performance. As a result, many ways to 

tradeoff and reduce both rates are proposed. Early work such as the Guard Channel 

strategy [2] determines the number of channels reserved for handoff calls by only 

considering the status of the local cell. They formulate the call admission control into 

a the problem of minimizing a linear objective function of blocking rate and dropping 

rate and solve it in the context of Markov Decision Process. It is noteworthy to stress 

that the Guard Channel strategy is without considering neighboring cells’ information. 

In [3], the author found that it is worthwhile to explore the neighboring cells 

information. To this end, they proposed a predictive and adaptive scheme for 

bandwidth reservation for handoff calls. By using the ongoing calls’ mobility history 

of neighboring cells to formulate the handoff estimation function, the handoff 

dropping rate can be kept below a target value.  



 2 

 

There has been previous works in our lab. In Chen’s work [23], he utilized the 

neighboring information and applied aggregation method to decrease the computation 

complexity when applying MDP. However, he didn’t concern about parameters 

estimation, just assigned different arrival rate and handoff rate to show model 

efficiency. This condition is not realistic. Tsao’s work [24] is based on road topology 

cellular networks, he did concern about parameters estimation, but not very precisely. 

So, the performance is even worse than Guard Channel strategy. In our model, we 

lead the position information to adjust the cell state that compensates the deviation 

from the imprecise estimation to the reality. According to the distance of mobile and 

base station, each call is given different weight. 

We use several parameters to formulate our model. Besides, the model is an 

abstraction of faithful system description due to the aggregation on states and the 

intuitive way to use position information. Therefore, accurately estimating the 

parameters may lead to the bad system performance due to the modeling error. To 

overcome such challenging issue, we consider the application of the cost match to 

boost our model. Essentially, the cost match update can match the model averaged 

cost with the averaged cost produced by the system. It has been proved that the cost 

match update controls the system with the stochastic minimax value as the 

upperbound. Therefore, with the cost match update in place, our remaining task is to 

show that our model captures the main system behavior. In this thesis, we do so by 

simulation.  

Finally, as the simulation results shown, our proposed method performs better 

than previous work and Guard Channel strategy.  

The rest of this thesis is organized as follows. In chapter 2, we introduce the 

related works. A detail description of the system model and the proposed method are 

provided in chapter 3. Simulation results and performance analysis are stated in 
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chapter 4. Finally, the conclusion is given in chapter 5. 
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Chapter 2 

Related Work 

 

In this chapter, we will introduce the architecture of wireless cellular system, and 

the basic idea of MINOBJ. Then, the Markov Decision Process with rewards, the 

policy-iteration method [5] and the state aggregation [6] will be discussed. In MDP, 

we will give formal definition to state, transition probability, expected immediate 

rewards, alternatives, policy and gain. Finally, we review some channel allocation 

strategy, such as guard channel (GC) strategy [4] and borrowing with directional 

channel-locking (BDCL) strategy [21]. 

 

2.1 Wireless Cellular Networks 

    Wireless mobile networks consist of a fixed network and a large number of 

mobile terminals including telephone, portable computers, and other devices that can 

exchange information with remote terminals. In order to effectively utilize the very 

limited wireless bandwidth to support increasing users day by day, current wireless 

mobile networks are designed based on a cellular network.  

The network coverage area is divided into a large number of smaller areas call 

cells. Each cell has a base station (BS) inside the cell. This BS serves as the network 

access point for all the terminals in the cell. When a terminal enters into another cell, 

if the new base station has enough bandwidth to accept, the terminal switches to this 

new base station. A number of adjacent cells grouped together form an area and the 

corresponding BSs communicate through a mobile switch center (MSC). The MSC 

may be connected to other MSCs on the same networks or to other wired networks. A 
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typical architecture of a cellular network is shown in Fig. 2.1 

 

MSC

to/from

wired

networks

or other

MSCs
BS

MS

 

Fig 2.1 A typical architecture of a cellular network 

 

 

2.2 Minimizing a Linear Objective Function (MINOBJ) 

    Consider a linear object function, which π denotes the acceptance or rejection of 

new calls or handoff calls and constant 1A  and 2A  are penalties of rejecting new 

call and handoff call respectively. Because we want to give higher priority over 

handoff call than new call, we only interest in values of 1A  and 2A  such that 

1 20 A A  . 1n  ( 2n ) can be 0 or 1 depending on whether the nth new call (the nth 

handoff call) is accepted or rejected. Then, we can define the objective function as 

below 

1 1

1 1 2 2

0 0

1
lim (2.1)

N N

n n
N

n n

E A A
N

  
 


 

 
  

 
    

 

    We are interested in determining the optimal policy *  over the set of all call 

admission control policies, i.e., find a policy *  such that * min  
  . We take Eq. 

(2.1) as a formulation for the average cost problem [9].  
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2.3 Markov Decision Process 

    The systems we concern about usually contain both probabilistic and 

decision-making features, so it is too complex to analysis. The Markov Decision 

Process provides an analytic model for this kind of systems that is easy to describe 

and computationally feasible. 

  

2.3.1 State & Transition 

The basic concepts of Markov Decision Process are those of “state” of a system 

and state “transition”. A system occupies a state when it can be exactly described by 

the values of variable that define the state. A system makes state transition when its 

variable change values specified for one state to those specified for another. 

 

2.3.2 Transition Probability 

    Suppose that there are N states in the System numbered from 1 to N, then the 

probability of a transition from state i to state j during a time interval, is a function 

only about state i and state j and not of any history of the system before its arrival in i. 

We can specify a set of conditional probabilities pij that a system which now occupies 

state i will occupy state j after its next transition.  

 

2.3.3 Rewards 

    Suppose that an N-state Markov Process earns rij dollars when a transition occurs 

from state i to state j. Then, we call rij the “reward” associated with a transition from 

state i to state j. We can define ( )iv n  as the expected total earnings in the next n 

transitions if the system is now in state i. In order to find ( )iv n , we can write the 

recurrence relation as below 
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1

( ) [ ( 1)] 1,2,..., 1, 2,3... (2.2)
N

i ij ij j

j

v n p r v n i N n


       

 

Note that Eq. (2.2) can be written in the form 

 

1 1

( ) ( 1) 1,2,..., 1, 2,3... (2.3)
N N

i ij ij ij j

j j

v n p r p v n i N n
 

       

 

If a quantity is defined by 

 

1

1,2,...,
N

i ij ij

j

q p r i N


   

 

Eq. (2.2) takes the form 

 

1

( ) ( 1) 1,2,..., 1,2,3... (2.4)
N

i i ij j

j

v n q p v n i N n


      

 

 

2.3.4 Expected Immediate Reward 

    The quantity iq  will be called the “expected immediate reward” for state i 

which can be interpreted as the reward to be expect in the next transition out of state i. 

 

2.3.5 Alternatives 

    Fig. 2.2 shows the concept of “alternative”. In the diagram, two alternatives have 

been allowed, if we choose alternative 1(k=1), then the state transition from state 1 to 

state 1 will be governed by the probability p11
1
 , the transition from state 1 to state 2 

will be governed by p12
1
, and so on. The rewards associated with these transitions are 

r11
1
, r12

1
, and so on. If the second alternative is chosen (k=2), then p11

2
, p12

2
,…, p1N

2
 

and r11
2
, r12

2
,…, r1N

2
 would be the transition probabilities and rewards, respectively. In 

Fig. 2.2, we see if alternative 1 is selected, we make transitions according to the solid 
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lines; if alternative 2 is selected, transitions made according to the dashed lines. The 

number of alternatives in any state must be finite, but the number of alternatives in 

each state may be different from the numbers in other states. 

 

i=1

i=2

i=3

j=1

j=2

j=3

j=Ni=N

p
11

2, r
11

2

p
12 2, r

12 2

p
13 2, r

13 2

p
11

1, r
11

1

Present state

of system

Succeeding state

of system

p
12 1, r

12 1

p
13 1, r

13 1

 

Fig 2.2 Diagram of states and alternatives 

 

2.3.6 Policy 

    Let ( )id n  be the number of the alternatives in the ith state at stage n. When 

( )id n  has been specified for all state i at all stage n, a policy has been determined. 

The optimal policy is the one that maximized the total expected earning (or minimizes 

the total expected earning) for each i and n. 

 

2.3.7 Gain 

    Consider a completely ergodic N-state Markov process, suppose the process is 
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allowed to make transitions for a very long time. Then, the total expected earnings 

depend upon the total number of transitions which system undergoes. A more useful 

quantity is the average earnings per unit time, called “gain” of the process. We define 

a state probability ( )i n , the probability which the system will occupy state i after n 

transitions if its state at n=0 is known. Since the system is completely ergodic, the 

limiting state probabilities i  are independent of the starting state, and the gain g of 

the system is 

1

(2.5)
N

i i

i

g q


  

 

2.4 The Policy-Iteration Method 

    An optimal policy is defined as a policy that maximizes (or minimizes) the total 

cost. The policy-iteration method that will be described finds the optimal policy in a 

small number of iterations. It is composed two parts, the value-determination 

operation and the policy-improvement routine. The iteration cycle is shown in Fig 2.3. 

 

Value-Determination Operation

Use pij and qi for a give policy to solve

for all relative values vi and g by setting v0 to zero.

Policy-Improvement Routine

For each stat i, find the alternative k’ that maximizes 

using the relative values vi of the previous policy. Then k’

becomes the new decision in the ith state, qi
k’ becomes qi, 

and pij
k’ becomes pij.

Value-Determination Operation

Use pij and qi for a give policy to solve

for all relative values vi and g by setting v0 to zero.

Policy-Improvement Routine

For each stat i, find the alternative k’ that maximizes 

using the relative values vi of the previous policy. Then k’

becomes the new decision in the ith state, qi
k’ becomes qi, 

and pij
k’ becomes pij.

1

         1,  2,  ,            (2.7)
N

i i ij j

j

g v q p v i N


    

1

                                                        (2.8)
N

k k

i ij j

j

q p v




(2.6

)
(2.6)

(2.7)

 

Fig 2.3 The iteration cycle 
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The upper box, the value-determination operation, yields the g and vi 

corresponding to a given choice of qi and pij. The lower box yields the pij and qi that 

increase the gain for a given set of vi. In other words, the value-determination 

operation yields values as a function of policy, whereas the policy-improvement 

routine yields the policy as a function of the values. 

We may enter the iteration cycle in either box. If the value-determination 

operation is chosen as the entrance point, an initial policy must be selected. If the 

cycle is to start in the policy-improvement routine, then a starting set of values is 

necessary. If there is no a priori reason for selecting a particular initial policy or for 

choosing a certain starting set of values, then it is often convenient to start the process 

in the policy-improvement routine with all vi = 0. In this case, the policy-improvement 

routine will select a policy as follows: For each i, it will find the alternative k’ that 

maximizes qi
k
 and then set di = k’. 

This starting procedure will consequently cause the policy-improvement routine 

to select as an initial policy the one that maximizes the expected immediate reward in 

each state. The iteration will then proceed to the value-determination operation with 

this policy, and the iteration cycle will begin. The selection of an initial policy that 

maximizes expected immediate reward is quite satisfactory in the majority of cases. 

At this point it would be wise to say a few words about how to stop the iteration 

cycle once it has done its job. The rule is quite simple: The optimal policy has been 

reached (g is maximized) when the policies on two successive iterations are identical. 

In order to prevent the policy-improvement routine from quibbling over equally good 

alternatives in a particular state, it is only necessary to require that the old di be left 

unchanged if the test quantity for that di is as large as that of any other alternative in 

the new policy determination. 

In summary, the policy-iteration method just described has the following 
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properties: 

1. The solution of the sequential decision process is reduced to solving sets of linear 

simultaneous equations and subsequent comparisons. 

2. Each succeeding policy found in the iteration cycle has a higher gain than the 

previous one. 

3. The iteration cycle will terminate on the policy that has largest gain attainable 

within the realm of the problem; it will usually find this policy in a small number 

of iterations. 

 

2.5 The State Aggregation Method  

One of the principal methods for solving the MINOBJ problem is the 

policy-iteration method which iterates between the policy-improvement routine like 

Eq. (2.7) that yielding a new policy, and the value-determination operation that finds 

the total-value vector v(n) corresponding to policy by solving Eq. (2.6). 

 But Eq. (2.7) is a linear n ×  n system which can be solved by a direct method 

such as Gaussian elimination. In the absence of specific structure, the solution 

requires O(n
3
) operations, and is impractical for large n. An alternative, suggested in 

[10], [11] and widely regarded as the most computationally efficient approach for 

large problem, is to use an iterative technique for the solution for Eq. (2.6), such as 

the successive approximation method in [12]; this requires only O(n
2
) per iteration for 

dense matrix P. It appears that the most effective way to operate this type of method 

is not to insist on a very accurate iterative solution of Eq. (2.6). 

The idea here is to solve this system with smaller dimension, which is obtained 

by lumping together the states of the original system into subsets S1, S2, …, Sm that 

can be viewed as aggregate states. These subsets are disjoint and cover the entire state 

space S. 
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Consider the n ×  m matrix W whose ith column has unit entries at coordinates 

corresponding to states in Si and all other entries equal to zero. Consider also an m ×  n 

matrix Q such that the ith row of Q is a probability distribution with qis = 0 if s not 

belongs to Si. The structure of Q implies two useful properties: 

1. QW = I. 

2. The matrix T = QPW is an m ×  m transition probability matrix. In particular, the 

ijth component of T is equal to tij and gives the probability that the next state will 

belong to aggregate state Sj given that the current state is drawn from the 

aggregate state Si according to the probability distribution qis. The transition 

probability matrix T defines a Markov chain, called the aggregate Markov chain, 

whose states are the m aggregate states. Fig. 2.4 illustrates an example of 

aggregate Markov chain. 

 

5

2 3

1

4

6
S3

S2

S1

 

Fig. 2.4 An example of the aggregated Markov chain 

 

In this example, the aggregate states are      1 2 3
1, 2, 3 , 4, 5 , and 6 .S S S      

The matrix W has columns (1, 1, 1, 0, 0, 0)', (0, 0, 0, 1, 1, 0)', and (0, 0, 0, 0, 0, 1)'. 

The matrix Q is chosen so that each of its rows defines a uniform probability 
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distribution over the states of the corresponding aggregate state. Thus the rows of Q 

are (1/3, 1/3, 1/3, 0, 0, 0), (0, 0, 0, 1/2, 1/2, 0), and (0, 0, 0, 0, 0, 1). The aggregate 

   

 

11 21 23 12 14 34 13

21 42 53 22 45 23 46 31 32 56 33

1 1
= + , = + , = 0, 

3 3

1 1 1
= + , = , = , = 0, = ,  = 0.

2 2 2

Markov chain has transition probabilities

and

t p p t p p t

t p p t p t p t t p t

 

 

 Aggregate Markov chains are most useful when their transition behavior captures 

the broad attributes of the behavior of the original chain. This is generally true if the 

states of each aggregation state are “similar” in some sense. 

 

2.6 Guard Channel Strategy 

    The concept of guard channels was introduced in the mid-80s, as a call 

admission control to give priority to handoff calls over new calls [7]. In this strategy, a 

fixed portion of channels called guard channels is permanently reserved for handoff 

calls, and the remaining channels can be used for both handoff calls and new calls. In 

[8], Miller obtains a result, which can be used to show that the Guard Channel policy 

is optimal for the MINOBJ problem. 

    Denote C as the number of channels in each cell. The Guard Channel Strategy 

will reserve a subset of channels (C-T) for handoff calls. When the number of channel 

assigned to calls exceeds a certain threshold T, the guard channel strategy only accept 

handoff call and rejects new calls until the channel occupancy goes below the 

threshold. Note that this strategy accepts handoff calls only if the cell has available 

channel. This algorithm is illustrated with Fig. 2.5. 
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Fig 2.5 Guard Channel Strategy 

 

 

2.7 Borrowing with Directional Channel Locking (BDCL) 

In the fixed assignment (FA) assignment, a set of nominal channels is assigned to 

each cell. If all nominal channels are assigned, new calls are blocked. Under this 

scheme, some cells may have large blocking rate but some may have a lot of 

unassigned channels. This will waste the bandwidth and decrease the quality of 

service (QoS). Therefore, the dynamic channel assignment strategies are proposed, 

and BDCL is one of them. 

Elnoubi and Singh [21] proposed a strategy, “borrowing with channel-ordering” 

(BCO). In the BCO strategy, if a channel is borrowed, it is locked in the co-channel 

cells within the channel reuse distance of borrowing cell. Being locked means that the 

channel can’t either be used or be borrowed to the neighboring cell. This kind of 

borrowing therefore carries a penalty. 

    Zhang and Yum proposed a new strategy, borrowing with directional 
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channel-locking (BDCL) [21]. When a channel is borrowed, the locking of this 

channel in the co-channel cells is restricted only to those affected by this borrowing. 

Therefore, the number of channel available for borrowing is greater than those of 

BCO strategy. 
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Fig 2.6 An example of BDCL 

 

In BDCL strategy, a set of nominal channels is assigned to each cell, and the 

co-channel cells use the same set of nominal channels. The major difference between 

BDCL strategy and FA strategy is that the base cell can borrow channels from the 

adjacent cells in the BDCL strategy. In order to minimize the blocking of later calls, 

the general rule is to borrow channel from the richest adjacent cell. The richest cell 

means it has the most unused channels. We will introduce it in the following example 

and illustrated as the above Fig 2.6: 
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When a call arrives, Cell 0 (base cell) doesn’t have any available channel. It 

attempts to borrow a channel from the neighboring cells. Before borrowing a channel, 

Cell 0 has to check which adjacent cell is the richest cell that owns the most number 

of nominal channels not used and not locked. If the richest adjacent cell of Cell 0 is 

Cell 3, it has to borrow the channel that is not used from Cell 3. After making the 

decision of the borrowing channel, the co-channel cells of Cell 3 in the interference 

region of Cell 0, Cell 3 and Cell 3’s as Fig 2.6, have to be locked and to lock the 

channel in the proper directions to the neighboring cells of them. The locking of the 

channel means the cell that owns the channel as the nominal channel can not use it 

and the cell that does not own the channel can not borrow it. 

   One more characteristic is that the set of the nominal channels for each cell have 

different priorities, from the highest to the lowest. Each cell uses the self channel with 

the highest priority of them and borrows the channel with the lowest priority of them 

from the richest neighboring cell. 
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Chapter 3 

Problem Formulation by MDP and Proposed Method 

 

In this chapter, we introduce how to formulate our system into a 

two-dimensional Markov Decision Process and how to find the optimal policy. The 

optimal policy means which action should be taken with the least cost for BS. We 

then use the policy-iteration method and state aggregation method to solve the 

problem of MINOBJ. 

In the case of single-service networks, Krishnan and Ott [15], and Lazarev and 

Starobinets [16] have proposed state dependent routing schemes with roots in Markov 

decision theory. We use the separable routing concept defined by Krishnan and Ott 

which is appropriately modified for the case of cellular networks. We also study the 

problem of call admission control where we follow Zachary’s procedure [17] to 

determine the cost of rejecting new calls and dropping handoff calls. 

 

3.1 System Specification 

    We consider our mobile communication network as a cellular network. In our 

cellular structure, each cell is surrounded by six cells. A mobile staying in a cell can 

communicate with another terminal, which may be a node of the wired network or 

other mobile, through the base station in the cell. When it moves to an adjacent cell, a 

handoff will enable the mobile to maintain connectivity, i.e., the mobile will connect 

through another base station without noticing any difference. 

    We preclude 1) delay-insensitive application, which might tolerate long handoff 

delays in case of insufficient bandwidth available in the new cell at the handoff time 
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and 2) soft handoff of the Code Division Multiple Access (CDMA) systems [13],[14], 

in which a mobile can communicate via two adjacent base stations simultaneously for 

a while before actual handoff takes place. 

 

3.2 MDP-based Cellular System Model 

3.2.1 Model Assumptions 

    In our model, we assume that each cell is allocated with a fixed set of channels 

and each connection uses equal bandwidth (one channel). A two-dimensional Markov 

Chain is used to model the system. The first dimension is made of base cell’s channel 

state and represents how many channels are used presently. The second dimension is 

made of all adjacent cells and represents how many channels are used by all adjacent 

cells. 

    New call arrival in the base cell and adjacent cells are according to a stationary 

Poisson process with mean rate λ1 and λ2, respectively. The call holding time in the 

base cell and adjacent cells are independent and exponential distributed with mean μ1 

and μ2, respectively. Call handoff from the base cell to adjacent cells and from 

adjacent cells to base cell are also exponential distributed with rate h1 and h2, 

respectively. 

    We consider a homogeneous system where each cell can support up to C calls, 

the cell state vector n(t) which provides the complete state description of the cell at 

any time instant is defined as  

( ) ( , ), (3.1)n t x y n N    

Where x is the number of calls in the base cell at time t, and y is the number of calls in 

all adjacent cells at time t. The cell state space is denoted by N, which contains a finite 

but large number of states. The state transition diagram is shown in Fig 3.1.  
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Fig 3.1 State transition diagram 

 

The parameters which accompany transition lines divide by τ are transition 

probabilities. τ is given as 

1 2 1 1 2 2( ) ( ) (3.2)x h y h           

 

3.2.2 Alternatives and Costs 

   The MDP with costs has been the means to an end. It is the analysis of decisions 

in sequential process that are Markovian in nature [5]. We will introduce alternatives 

and costs of sequential decision process and define them in this section. 

    In our model, we have two alternatives when a new call or a handoff call comes: 

 Alternative 1: accept 

 Alternative 2: reject 

 

We define that a cost ω1 is incurred when a new call is reject by base station and 

a cost ω2 is incurred when a handoff call is reject by base station. By these definitions, 

there are different behaviors with corresponding alternatives. So, we can make a 

different state transition diagram in Fig 3.2 that base station admits a new (or handoff) 

call incur nothing but rejects it with cost ω1 (or ω2). These analyses will help us to 
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find the solution of the sequential decision process. 

 

Alternative 1:
Accept

Alternative 2:
Reject

λ1

yμ
2

yh
2

xh
1

λ2

xμ
1 x , y x+1 , y

x , y+1x-1 , y+1

x , y-1 x+1 , y-1

x-1 , y

λ1,ω1

yh
2
,ω

2

 

Fig 3.2 State transition diagram with alternatives 

 

All alternatives that could be taken by base cell’s state are listed in Table 3.1 below. 

 

Table 3.1 alternatives of base cell’s state 

Alternatives New Call Handoff Call 

0 block drop 

1 accept drop 

2 block accept 

3 accept accept 

 

 

3.3 Our Policy-Iteration Method 

    An optimal policy is defined as a policy that minimizes the cost. It is conceivable 

that we find the cost for each of these alternatives in order to find the policy with the 

least cost. 

    We are interested in finite horizon systems and we know the appropriate 

objective is the average cost optimization. It means that our goal is to minimize the 
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expected rate of cost due to lost calls. We can denote Vπ (t) the lost revenue in the cell 

during the time interval [0,t] under the policy   , where   is the set of all 

policies. Then, using the result from [5], we have the expected value 

 

0[ ( | )] ( ) (1), ( ) (3.3)E V t n n g t v n o t        

 

where n N  is the cell state at time t=0. In Markov decision theory, vπ (n) is 

the well-known relative value or cost of starting in state n0=n. In Eq. (3.3), gπ  

represents the expected cost per unit time under the policy π on the original 

continuous-time scale. Since the system is ergodic, we may call gπ  as the gain of the 

process. The objective is to minimize the equilibrium expected cost per unit time, gπ . 

The “small o” symbol o(1) means that for both the right hand side (RHS) and the left 

hand side (LHS) of the equation go to infinity, and the difference goes to zero. Before 

to find the relative cost values vπ (n) , we define two vectors 

2

2

1 0
, (3.4)

0 1

1 1
, (3.5)

1 1

k k

k k

e e

f f

 
   

 

 
   

 

 

Then, in the case of the departure of a call when the cell state is n, the 

immediately subsequent state ( )kd n N  is found as 

( ) (3.6)k kd n n e 

 

 

A new call admission decision needs to be made at call attempt epochs: either 

accept or block. Denoting an alternative taken on the arrival of a call by πk(n) where 

n N  is the current cell state. In the case of call rejection 
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( ) (3.7)k n n   

If the new call is accept, the subsequence state of the cell will be found as 

  ( ) (3.8)k kn n e    

 

    A handoff cal admission decision needs to be made at call across the cell 

boundary epochs: either accept or drop. Use the same definition above, in the case of 

dropping a handoff call 

  ( ) (3.9)k kn n e    

If the handoff call is accepted, the subsequent state of the cell will be found as 

  ( ) (3.10)k kn n f    

 

    Now we start to introduce how to find the relative cost values vπ (n) for all 

n N . The same equation also governs the asymptotic behavior of the process if we 

assume that it has started immediately after the first event that has occurred after t=0. 

This is because of the ergodic nature of the system, where the initial state has no 

effect on the asymptotic behavior of the process far enough in the nature. The first 

event is either a cell termination or a new (handoff) call arrival. The expected time τ 

for the first event after t=0 is given as 

  
2

1

1
, [ ( )] (3.11)k k k k

k

n h   
 

     

where we used the memoryless property of the system. Writing Eq. (3.3) for a starting 

time t=0 and a first event time t=τ(the latter one is conditional on the type of the first 

event), we obtain after some arrangements 

 

 

2 2

1

1 1

2

2

1

( ) ( ( )) [ ( , ( )) ( ( ))]

[ ( , ( )) ( ( ))] , (3.12)
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where ( )k   is the Kronecker symbol as follows 

 

  
1, ( )

( , ( )) (3.13)
0, .

k

k k

if n n
n n

otherwise


 


 


 

 

    In the system of linear Eq. (3.12), the unknown variables are vπ (n) for all n N , 

and the gain of the process gπ . Obviously, the system has one more variable than the 

number of equations so that ( )v  s can be determined up to an additive constant. To 

solve the system Eq. (3.12), we follow the standard procedure by setting vπ (0)=0. 

Thus, we get the system 

 

 

2

1

1

2

2

1

[ (0, (0)) ( (0))]

[ (0, (0)) ( (0))] (3.14)

k k k k

k
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3.4 Our State Aggregation Method 

    In Fig 3.3, the first dimension is made of base cell’s channel state, where C1 is 

the fixed link capacity C. The second dimension is made of all adjacent cells’ channel 

state, where C2 is six times of the fixed link capacity C. The total states of this 

two-dimensional Markov chain are 1 2C C . 
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Fig 3.3 Total state diagram of the two-dimensional Markov chain 

 

    When using Guassian elimination method to solve Eq. (3.12), we will face the 

same problem already described in section 2.6. The inverse matrix of transition 

probability matrix P is of complexity O(n
3
), which is impractical for large n.  

    We can take the Guard Channel policy mentioned in section 2.2 for an example. 

The threshold T will divide the states of the cell into three groups. From state 0 to T is 

first group which can accept all kinds of calls. From state (T+1) to (C-1) is second 

group which can accept only handoff calls. The third group is state C. When in third 

group, no call can be accept due to unavailable of all the channels. Thus, we can learn 

from this example grouping states which are few steps reachable in the neighborhood. 

    We use the method like quantization to divide the first dimension of Markov 

chain into even size, excluding the last state is an independent group. The second 

dimension is divided with the same way. The two-dimensional Markov chain can be 

grouped as shown in Fig 3.4 below. 
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Fig 3.4 Make two-dimensional Markov chain into smaller groups 

 

3.5 Parameters Estimation 

This section addresses parameters estimation of our strategy. In our model, we 

use call arrival rate, handoff rate and departure rate in MDP to find the optimal policy. 

Nevertheless, these parameters will vary with time. In order to make our model closer 

to the actual, we adjust these parameters and update policy periodically. Since these 

parameters vary from time to time, how to estimate efficiently is now we concerned 

about. 

 

3.5.1 Cost Match Update Rule 

We use cost match update (CMU) rule to help us to estimate. This method just 

can estimate a parameter. It adjusts the parameter by using the difference between 

system cost and model cost. The system cost is induced by reality and the model cost 

is defined by our model. If system cost is different from model cost, it means our 

model did not match the reality, and we should change parameter to make model more 

close to the reality.  

For example, if we use CMU rule to adjust adjacent cells’ new call arrival rate. 
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Then, if the system cost is larger than model cost, it means adjacent arrival rate may 

be underestimated and we should increase adjacent arrival rate. Actually, we use 

CMU rule to adjust adjacent cells’ arrival rate, because how precise the estimation of 

adjacent arrival rate is not only effect adjacent arrival rate, but also effect handoff-in 

rate. So, we choose it to use CMU rule and other parameters use sample mean to 

estimate. In our simulation, it indeed does work. 

The model cost is defined as Eq. (3.14), and the system cost is the sum of 

blocking new calls’ costs and dropping handoff calls’ costs in every time unit. 

 

3.5.2 State Adjustment 

    For base cell, the factor effects the handoff rate is not only the number of 

mobiles in the adjacent cells, but also the positions of mobiles in the adjacent cells. In 

our model, we give mobile different weight according to the mobiles’ real-time 

position when we calculate cell state. We can use Eq. (3.15) to show the state the 

number of adjacent cells’ mobiles after adjustment. 

 

3 ( , )
# ' (3.15)i

i

r distance mobile BS
of adjacent cells mobiles

r


  

 

Briefly, if the distance between the mobile and base station in base cell is r, the 

weight of the mobile is 2. If the distance between the mobile and base station in base 

cell is 2r, the weight of the mobile is 1. If the distance between the mobile and base 

station in base cell is 3r or more, the weight of the mobile is 0. Others are also stand 

on this way depending on distance giving different weight. 
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Fig 3.5 Illustration of using mobile’s position to calculate cell state 

 

 

3.6 MDP-based Call Admission Control in BDCL 

    In this section, we will introduce how we modified the previous MDP model of 

FCA strategy to BDCL strategy. In order to get optimal policy, we use one-step policy 

which will use the previous computational result of FCA. 

  The main difference between FCA strategy and BDCL strategy is “borrowing” 

action. We modify our state transition diagram with alternatives to fit BDCL strategy. 

In BDCL, we have three alternatives when a new call (or handoff call) comes:  

 Alternative 1: accept 

 Alternative 2: reject 

 Alternative 3: borrow 
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Fig 3.6 State transition diagram with alternatives for BDCL 

 

The cost ω3 is incurred with alternative 3 when a call (either new cell or handoff 

call) arrives, base station borrows channel from adjacent cell. The cost ω3 is not fixed, 

and it will vary with all the cells in interference region effecting by borrowing action 

including which channel are borrowed and the state of all these cell after borrowing. 

There will be an example illustrated in Fig 3.7 below 
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Fig 3.7 An example of borrowing operation 
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In the red line bounded region, if cell 0 borrows channel-x from cell 3, the state 

transitions of the cells in this region is illustrated in Fig 3.8. State transitions in these 

cells can be separate into two groups, co-channel cells and non-co-channel cells. 
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Fig 3.8 transition diagram of all the cells in interference region 

 

Then, the borrowing costω3 can be derived as below 

1

3 ( 1) - ( ) (3.16)
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When a call (either new call of handoff call) arrives, we have to check all unused 

channels of adjacent cells and get the channel which causes the least cost ω3. The 

channel that causes the least cost of ω3 is selected to be borrowed if alternative 3 is the 

best alternative to borrow. All alternatives for BDCL that could be taken by base 

cell’s state are listed in Table 3.1 below. 
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Table 3.2 alternatives of base cell’s state for BDCL 

 

Alternatives New Call Handoff Call 

0 block drop 

1 accept drop 

2 borrow drop 

3 block accept 

4 accept accept 

5 Borrow accept 

6 block borrow 

7 Accept borrow 

8 borrow borrow 

 

 

There are 9 alternatives for base station listed above, we use the state value of 

previous result and derive the policy to fit our model. This policy is not the optimal 

policy but is the improved one. We use one-step policy, which is only taken Policy 

Improvement Routine in Policy-Iteration method introduced in section 2.5. It is 

proved that one-step policy although is not the optimal policy, but it is closed to the 

optimal one [5]. 
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Chapter 4 

Simulation Results and Performance Analysis 

 

4.1 Simulator Settings 

The simulated cellular system contains 98 hexagonal cells (i.e. a 14 7  mesh) 

as shown in Fig 4.1 with white background. This is a simple case can be extended to 

implement in large area. The boundary cells will have fewer mobiles because there 

are no mobiles entering from outside of cellular system, and then cells near the center 

will be more crowed by mobiles than those near the borders. Therefore, we connected 

all boundary cells of cellular structure as the gray background cells in Fig 4.1. 
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Fig 4.1 Cellular structure of simulation 

 

All cells are assigned with 50 channels, and each connection use 1 channel. The 

channel reuse distance is assumed to be three cell units. We assume new call are 
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generated according to a Poisson process with rate λ=500 – 1500 calls/per hour, but 

each cell is under different traffic load. The lifetime of each call is exponential 

distributed with the mean 3 min. We incorporate road layouts that place constraints on 

mobiles’ paths, thus establishing a more realistic platform to evaluate the performance. 

The radius of each cell is 2 km and mobile velocity is from 30km/hr to 90km/hr with 

5% variance. Fig 4.2 is part of load layout in our simulation. 

 

 

Fig 4.2 Part of road layout in our simulation 

 

There are total 51 301  states, and it will take too much time to compute, so we 

use the aggregation method mentioned in section 3.4 to aggregate states into groups. 

In our model, we aggregate to total 6 11  states as shown in Table 4.1 below. This is 

a compromise between computing complexity and the difference of the result derived. 

Note that the last column (with gray background) of Table 4.1 is mode of only one 

previous state, because no matter a new call or handoff call arrives in that state, it will 

not be accepted due to unavailable of all the channels in the base cell. 
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Table 4.1 Aggregation of total states 

 

Cell’s States 

(after aggregation) 

Base Cell’s Group 

 0~9 10~19 20~29 30~39 40~49 50 

1 2 3 4 5 6 
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el
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0~29 1 0 1 2 3 4 5 

 30~59 2 6 7 8 9 10 11 

60~89 3 12 13 14 15 16 17 

90~119 4 18 19 20 21 22 23 

120~149 5 24 25 26 27 28 29 

159~179 6 30 31 32 33 34 35 

180~209 7 36 37 38 39 40 41 

210~239 8 42 43 44 45 46 47 

240~269 9 48 49 50 51 52 53 

270~299 10 54 55 56 57 58 59 

300 11 60 61 62 63 64 65 

 

 

4.2 Simulation Results 

    In the guard channel strategy, threshold T represents number of channels 

reserved for handoff calls. If T is large, the handoff force terminating rate will 

decrease but the new call blocking rate will increase. We use Guard Channel strategy 

with different threshold T to decide how many channels reserved for handoff calls is 

better. The result is shown in Fig 4.3 below. 

   

In Fig 4.3, we can see that when threshold T is 45, the dropping rate is almost 

equal to T=44 and is not too high, but the blocking rate is lower then T=44. So, we 

choose T=45 as the threshold of our Guard Channel Strategy. 
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Fig 4.3 Guard Channel Strategy with different threshold 

 

 The performance of MDP-based call admission control with CMU rule is 

compared with the fixed channel allocation (FCA), Guard Channel strategy with 

threshold 45 (GC), and MDP-based call admission control without CMU rule. It is 

shown in Fig 4.4 to Fig 4.6.  

 

 

Fig 4.4 Dropping rate versus traffic load in FCA 
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Fig 4.5 Blocking rate versus traffic load in FCA 

 

 

 

Fig 4.6 Ave. Cost (per mobile) versus traffic load in FCA 
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Fig 4.4 compares dropping rate versus traffic load. Dropping rate is defined as 

the percentage of handoff calls can not be allocated to a channel in all served calls. 

Fig 4.4 shows that dropping rate of FCA is highest, because FCA does reserve any 

channel for handoff call. Dropping rate of MDP-based call admission control with 

CMU rule is lower than GC.  

Fig 4.5 compares blocking rate versus traffic load. Blocking rate is defined as the 

percentage of new call which can not be allocated to a channel in all arriving calls. 

Fig 4.5 shows that blocking rate of FCA is lowest. Blocking rate of MDP-based call 

admission control with CMU rule is higher than GC. In Fig 4.6, we can see our 

proposed method has the lowest average cost. Besides, our proposed method performs 

better than MDP-based call admission control without CMU rule. It shows CMU rule 

is effective. 

In Fig 4.7 to Fig 4.9, we will show the performance of MDP-based call 

admission control with CMU rule in BDCL compares to BDCL and the GC with 

BDCL. The strategy of GC with BDCL is if new call arrives and the number of using 

channel is equal or larger than threshold, we block this call. If handoff call arrives and 

all the channels in base cell are unavailable, we still do not drop this call unless there 

is no available channel in adjacent cells. 

Fig 4.7 compares dropping rate versus traffic load. Fig 4.7 shows that dropping 

rate of BDCL is highest, because BDC does reserve any channel for handoff call. 

Dropping rate of MDP-based call admission control with CMU rule is similar to GC 

with BDCL.  

Fig 4.8 compares blocking rate versus traffic load. Fig 4.8 shows that blocking 

rate of BDCL is lowest. Blocking rate of MDP-based call admission control with 

CMU rule is lower than GC with BDCL under load less than 110, but higher than GC 

with BDCL when the traffic load is larger than 110. In Fig 4.9, we can see our 



 37 

 

proposed method has similar average cost to GC with BDCL. 

 

 

Fig 4.7 Dropping rate versus traffic load in BDCL 

 

 

Fig 4.8 Blocking rate versus traffic load in BDCL 
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Fig 4.9 Ave. Cost per mobile versus traffic load in BDCL 
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Chapter 5 

Conclusion 

 

    In our thesis, we formulate the call admission control problem into a minimizing 

linear cost function of blocking rate and dropping rate. In our model, the adjacent 

cells’ mobile information is taken into consideration including number of mobiles, 

new calls arrival rate, handoff rate, departure rate and mobile position information. 

We formulate our model based on MDP and use Policy-Iteration method to solve. In 

order to reduce the computation complexity, we use state aggregation method to 

decrease the number of states. We use several parameters like arrival rate, handoff rate, 

departure rate, to formulate our model, but these parameters vary with time. How to 

estimate these parameters precisely to make our model more close to the reality is 

what we care about. We use Cost Match Update (CMU) rule to adjust adjacent cells’ 

new call arrival rate and use sample mean to adjust other parameters, then the base 

station can update policy periodically. In our simulation results, we can see that the 

average costs of our proposed method are lower than Guard Channel strategy. It 

reveals our estimation method can indeed help our model to perform better. 
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