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Abstract

In wireless communication,‘the number. ofchannels allocate to each cell is
limited, so how to use channel efficiently 1s:an impartant topic. In our thesis, we study
the call admission control in road topology based cellular networks, and we take the
mobile communication information and position in adjacent cells into consideration.
For each cell, we formulate the system by Markov Chain with two-dimensional states
where the first dimension represents the base cell’s state and the second dimension
stands for the adjacent cells’ state. The problem of minimizing a linear objective
function of new call blocking rate and handoff call dropping rate can be formulated as
a Markov Decision Process. In our model, we use several parameters to model our
system, and these parameters are non-linear and difficult to measure and predict. How
the model performs depending on whether these parameters are estimated precisely. In
order to avoid our model very different from the reality, we use Cost Match Update
(CMU) rule to help us to estimate parameter. In simulation result, it shows our
proposed scheme has lower average cost than others.
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Chapter 1

Introduction

In the wireless cellular networks, the entire spectrum is divided into a number of
channels. Channels are then assigned to a cell in either a static or dynamic way
according to a specific channel assignment scheme [1]. When a mobile with a call in
progress moves from the original cell into an adjacent cell, the base station must
perform the handoff operation, i.e., the currently-used channel in the original cell
should be returned to the base cell and the adjacent cell attempts to find a new channel
for this mobile. The base station may.drop a handoff call or block a new call because
there is no available channel in the corresponding cell.

The handoff dropping rate and new: call blocking rate therefore play the most
important role in evaluating the’-system performance. As a result, many ways to
tradeoff and reduce both rates are proposed. Early work such as the Guard Channel
strategy [2] determines the number of channels reserved for handoff calls by only
considering the status of the local cell. They formulate the call admission control into
a the problem of minimizing a linear objective function of blocking rate and dropping
rate and solve it in the context of Markov Decision Process. It is noteworthy to stress
that the Guard Channel strategy is without considering neighboring cells’ information.

In [3], the author found that it is worthwhile to explore the neighboring cells
information. To this end, they proposed a predictive and adaptive scheme for
bandwidth reservation for handoff calls. By using the ongoing calls’ mobility history
of neighboring cells to formulate the handoff estimation function, the handoff

dropping rate can be kept below a target value.



There has been previous works in our lab. In Chen’s work [23], he utilized the
neighboring information and applied aggregation method to decrease the computation
complexity when applying MDP. However, he didn’t concern about parameters
estimation, just assigned different arrival rate and handoff rate to show model
efficiency. This condition is not realistic. Tsao’s work [24] is based on road topology
cellular networks, he did concern about parameters estimation, but not very precisely.
So, the performance is even worse than Guard Channel strategy. In our model, we
lead the position information to adjust the cell state that compensates the deviation
from the imprecise estimation to the reality. According to the distance of mobile and
base station, each call is given different weight.

We use several parameters to formulate our model. Besides, the model is an
abstraction of faithful system description due to.the aggregation on states and the
intuitive way to use position- information.- Therefore, accurately estimating the
parameters may lead to the bad system-performance due to the modeling error. To
overcome such challenging issue, ‘we-consider.the application of the cost match to
boost our model. Essentially, the cost match update can match the model averaged
cost with the averaged cost produced by the system. It has been proved that the cost
match update controls the system with the stochastic minimax value as the
upperbound. Therefore, with the cost match update in place, our remaining task is to
show that our model captures the main system behavior. In this thesis, we do so by
simulation.

Finally, as the simulation results shown, our proposed method performs better
than previous work and Guard Channel strategy.

The rest of this thesis is organized as follows. In chapter 2, we introduce the
related works. A detail description of the system model and the proposed method are

provided in chapter 3. Simulation results and performance analysis are stated in
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chapter 4. Finally, the conclusion is given in chapter 5.




Chapter 2

Related Work

In this chapter, we will introduce the architecture of wireless cellular system, and
the basic idea of MINOBJ. Then, the Markov Decision Process with rewards, the
policy-iteration method [5] and the state aggregation [6] will be discussed. In MDP,
we will give formal definition to state, transition probability, expected immediate
rewards, alternatives, policy and gain. Finally, we review some channel allocation
strategy, such as guard channel (GC) strategy [4] and borrowing with directional

channel-locking (BDCL) strategy [21]:

2.1 Wireless Cellular Networks

Wireless mobile networks consist of a fixed network and a large number of
mobile terminals including telephone, portable computers, and other devices that can
exchange information with remote terminals. In order to effectively utilize the very
limited wireless bandwidth to support increasing users day by day, current wireless
mobile networks are designed based on a cellular network.

The network coverage area is divided into a large number of smaller areas call
cells. Each cell has a base station (BS) inside the cell. This BS serves as the network
access point for all the terminals in the cell. When a terminal enters into another cell,
if the new base station has enough bandwidth to accept, the terminal switches to this
new base station. A number of adjacent cells grouped together form an area and the
corresponding BSs communicate through a mobile switch center (MSC). The MSC

may be connected to other MSCs on the same networks or to other wired networks. A



typical architecture of a cellular network is shown in Fig. 2.1

to/from
wired

networks

or other
MSCs

Fig 2.1 A typical architecture of a cellular network

2.2 Minimizing a Linear Objective Funection (MINOBJ)
Consider a linear object function, which z denotes the acceptance or rejection of

new calls or handoff calls and constant A and A, are penalties of rejecting new

call and handoff call respectively. Because we want to give higher priority over
handoff call than new call, we only interest in values of A and A, such that

O0<A <A, m, (m,,)canbe 0 or1 depending on whether the nth new call (the nth
handoff call) is accepted or rejected. Then, we can define the objective function as

below

g = lim < E[Z Az, +N24Az7r2nj @1

We are interested in determining the optimal policy z~ over the set of all call

admission control policies, i.e., find a policy 7~ such that ¢ . =ming_. \We take Eq.

(2.1) as a formulation for the average cost problem [9].



2.3 Markov Decision Process

The systems we concern about usually contain both probabilistic and
decision-making features, so it is too complex to analysis. The Markov Decision
Process provides an analytic model for this kind of systems that is easy to describe

and computationally feasible.

2.3.1 State & Transition

The basic concepts of Markov Decision Process are those of “state” of a system
and state “transition”. A system occupies a state when it can be exactly described by
the values of variable that define the state. A system makes state transition when its

variable change values specified for one state to those specified for another.

2.3.2 Transition Probability

Suppose that there are N states:in-the-System numbered from 1 to N, then the
probability of a transition from state i-to_state j during a time interval, is a function
only about state i and state j and not of any history of the system before its arrival in i.
We can specify a set of conditional probabilities p; that a system which now occupies

state i will occupy state j after its next transition.

2.3.3 Rewards

Suppose that an N-state Markov Process earns rjj dollars when a transition occurs
from state i to state j. Then, we call r;; the “reward” associated with a transition from
state i to state j. We can define v,(n) as the expected total earnings in the next n

transitions if the system is now in state i. In order to findv,(n), we can write the

recurrence relation as below



N
vi(n)=>pylr, +v,(n-]  i=12.,N n=123.. (2.2)
j=L
Note that Eq. (2.2) can be written in the form
N N
vi(m)=> pyh+>. pv(n-1)  i=12..,N n=123.. (2.3
j=1 j=1
If a quantity is defined by
N
q :Z Pyt i=12,..N
j=1
Eqg. (2.2) takes the form

N
vi(n)=q+> pyv;(n-1)  i=12.,N n=123.. (2.4)
=i

2.3.4 Expected Immediate Reward

The quantity g, will be called the “expected immediate reward” for state i

which can be interpreted as the reward to be expect in the next transition out of state i.

2.3.5 Alternatives

Fig. 2.2 shows the concept of “alternative”. In the diagram, two alternatives have
been allowed, if we choose alternative 1(k=1), then the state transition from state 1 to
state 1 will be governed by the probability p.:* , the transition from state 1 to state 2
will be governed by pi2', and so on. The rewards associated with these transitions are
rut, ri%, and so on. If the second alternative is chosen (k=2), then pu?, pi22..., Pin>
and ry.?, riz%,..., rin® would be the transition probabilities and rewards, respectively. In

Fig. 2.2, we see if alternative 1 is selected, we make transitions according to the solid



lines; if alternative 2 is selected, transitions made according to the dashed lines. The
number of alternatives in any state must be finite, but the number of alternatives in

each state may be different from the numbers in other states.

Present state Succeeding state
of system

of system

Fig 2.2 Diagram of states and alternatives

2.3.6 Policy

Let d.(n) be the number of the alternatives in the ith state at stage n. When
d,(n) has been specified for all state i at all stage n, a policy has been determined.
The optimal policy is the one that maximized the total expected earning (or minimizes

the total expected earning) for each i and n.

2.3.7 Gain

Consider a completely ergodic N-state Markov process, suppose the process is
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allowed to make transitions for a very long time. Then, the total expected earnings
depend upon the total number of transitions which system undergoes. A more useful
quantity is the average earnings per unit time, called “gain” of the process. We define
a state probability 7, (n) , the probability which the system will occupy state i after n
transitions if its state at n=0 is known. Since the system is completely ergodic, the
limiting state probabilities 7z, are independent of the starting state, and the gain g of

the system is

g= Z”iqi (2.9)

2.4 The Policy-Iteration Method

An optimal policy is defined as a policy that maximizes (or minimizes) the total
cost. The policy-iteration method:that willtbe described finds the optimal policy in a
small number of iterations. It is composed two-parts, the value-determination

operation and the policy-improvement routine.~The iteration cycle is shown in Fig 2.3.

Value-Determination Operation
Use pj; and g; for a give policy to solve

N
g+vi=g+>.pv; i=12 - N (2.6)
j=1

for all relative values v;and g by setting v, to zero.

Policy-Improvement Routine
For each stat i, find the alternative k’ that maximizes

N
Qik + Z;, pi?Vj (2.7
j=

using the relative values v; of the previous policy. Then k’
becomes the new decision in the ith state, g; X" becomes ;,
and p;; ¥ becomes p;;.

Fig 2.3 The iteration cycle



The upper box, the value-determination operation, yields the g and v;
corresponding to a given choice of g; and p;j. The lower box yields the p; and g; that
increase the gain for a given set of v;. In other words, the value-determination
operation yields values as a function of policy, whereas the policy-improvement
routine yields the policy as a function of the values.

We may enter the iteration cycle in either box. If the value-determination
operation is chosen as the entrance point, an initial policy must be selected. If the
cycle is to start in the policy-improvement routine, then a starting set of values is
necessary. If there is no a priori reason for selecting a particular initial policy or for
choosing a certain starting set of values, then it is often convenient to start the process
in the policy-improvement routine with all v; = 0. In this case, the policy-improvement
routine will select a policy as follows: For each, it will find the alternative k’ that
maximizes gi and then set d; = k’,

This starting procedure will consequently-cause the policy-improvement routine
to select as an initial policy the one-that.maximizes the expected immediate reward in
each state. The iteration will then proceed to the value-determination operation with
this policy, and the iteration cycle will begin. The selection of an initial policy that
maximizes expected immediate reward is quite satisfactory in the majority of cases.

At this point it would be wise to say a few words about how to stop the iteration
cycle once it has done its job. The rule is quite simple: The optimal policy has been
reached (g is maximized) when the policies on two successive iterations are identical.
In order to prevent the policy-improvement routine from quibbling over equally good
alternatives in a particular state, it is only necessary to require that the old d; be left
unchanged if the test quantity for that d; is as large as that of any other alternative in
the new policy determination.

In summary, the policy-iteration method just described has the following

10



properties:

1. The solution of the sequential decision process is reduced to solving sets of linear
simultaneous equations and subsequent comparisons.

2. Each succeeding policy found in the iteration cycle has a higher gain than the
previous one.

3. The iteration cycle will terminate on the policy that has largest gain attainable
within the realm of the problem; it will usually find this policy in a small number

of iterations.

2.5 The State Aggregation Method

One of the principal methods for solving the MINOBJ problem is the
policy-iteration method which iterates between the policy-improvement routine like
Eq. (2.7) that yielding a new policy, and the value-determination operation that finds
the total-value vector v(n) corresponding-to-policy by solving Eg. (2.6).

But Eq. (2.7) is a linear n x 1 system which can be solved by a direct method
such as Gaussian elimination. In the absence of specific structure, the solution
requires O(n®) operations, and is impractical for large n. An alternative, suggested in
[10], [11] and widely regarded as the most computationally efficient approach for
large problem, is to use an iterative technique for the solution for Eq. (2.6), such as
the successive approximation method in [12]; this requires only O(n?) per iteration for
dense matrix P. It appears that the most effective way to operate this type of method
IS not to insist on a very accurate iterative solution of Eq. (2.6).

The idea here is to solve this system with smaller dimension, which is obtained
by lumping together the states of the original system into subsets S;, Sy, ..., Spthat
can be viewed as aggregate states. These subsets are disjoint and cover the entire state

space S.

11



Consider the n x m matrix W whose ith column has unit entries at coordinates
corresponding to states in S; and all other entries equal to zero. Consider also anm x n
matrix Q such that the ith row of Q is a probability distribution with q;s = 0 if s not
belongs to S;. The structure of Q implies two useful properties:

1. QW=1.

2. The matrix T = QPW is an m x m transition probability matrix. In particular, the
ijth component of T is equal to t;; and gives the probability that the next state will
belong to aggregate state S; given that the current state is drawn from the
aggregate state S; according to the probability distribution . The transition
probability matrix T defines a Markov chain, called the aggregate Markov chain,
whose states are the m aggregate states. Fig. 2.4 illustrates an example of

aggregate Markov chain.

Fig. 2.4 An example of the aggregated Markov chain

In this example, the aggregate states are S, ={1,2,3}, S, ={4,5}, and S, ={6}.
The matrix W has columns (1, 1, 1, 0, 0, 0)', (0, 0,0, 1, 1, 0)', and (0, O, 0, O, 0, 1)".

The matrix Q is chosen so that each of its rows defines a uniform probability

12



distribution over the states of the corresponding aggregate state. Thus the rows of Q

are (1/3, 1/3, 1/3, 0, 0, 0), (0, 0, 0, 1/2, 1/2, 0), and (O, 0, O, O, O, 1). The aggregate

t,=0,

' 13

Markov chain has transition probabilities t,, = %( Pyt Py)ty, = é( P+ Pay)

1 1 1
tzl = E(p42 + psa)itzz = E p451t23 = E p4s!t31 - O’t32 - pss’andt33 =0.

Aggregate Markov chains are most useful when their transition behavior captures
the broad attributes of the behavior of the original chain. This is generally true if the

states of each aggregation state are “similar” in some sense.

2.6 Guard Channel Strategy

The concept of guard channels was introduced in the mid-80s, as a call
admission control to give priority to,handoff calls over new calls [7]. In this strategy, a
fixed portion of channels called-guard channels.is:permanently reserved for handoff
calls, and the remaining channels can be.used for both handoff calls and new calls. In
[8], Miller obtains a result, which.can be used to show that the Guard Channel policy
is optimal for the MINOBJ problem.

Denote C as the number of channels in each cell. The Guard Channel Strategy
will reserve a subset of channels (C-T) for handoff calls. When the number of channel
assigned to calls exceeds a certain threshold T, the guard channel strategy only accept
handoff call and rejects new calls until the channel occupancy goes below the
threshold. Note that this strategy accepts handoff calls only if the cell has available

channel. This algorithm is illustrated with Fig. 2.5.

13



Call Arrival

Handoff Calll«—YES NO—» New Call

YES— Accept Call

NO
y

Drop Call Reject Call

Fig 2.5 Guard Channel Strategy

2.7 Borrowing with Directional Channel Locking (BDCL)

In the fixed assignment (FA) assignment;-a set of nominal channels is assigned to
each cell. If all nominal channels are ‘assigned, new calls are blocked. Under this
scheme, some cells may have large blocking rate but some may have a lot of
unassigned channels. This will waste the bandwidth and decrease the quality of
service (QoS). Therefore, the dynamic channel assignment strategies are proposed,
and BDCL is one of them.

Elnoubi and Singh [21] proposed a strategy, “borrowing with channel-ordering”
(BCO). In the BCO strategy, if a channel is borrowed, it is locked in the co-channel
cells within the channel reuse distance of borrowing cell. Being locked means that the
channel can’t either be used or be borrowed to the neighboring cell. This kind of
borrowing therefore carries a penalty.

Zhang and Yum proposed a new strategy, borrowing with directional

14



channel-locking (BDCL) [21]. When a channel is borrowed, the locking of this
channel in the co-channel cells is restricted only to those affected by this borrowing.
Therefore, the number of channel available for borrowing is greater than those of

BCO strategy.

Fig 2.6 An example of BDCL

In BDCL strategy, a set of nominal channels is assigned to each cell, and the
co-channel cells use the same set of nominal channels. The major difference between
BDCL strategy and FA strategy is that the base cell can borrow channels from the
adjacent cells in the BDCL strategy. In order to minimize the blocking of later calls,
the general rule is to borrow channel from the richest adjacent cell. The richest cell
means it has the most unused channels. We will introduce it in the following example

and illustrated as the above Fig 2.6:
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When a call arrives, Cell 0 (base cell) doesn’t have any available channel. It
attempts to borrow a channel from the neighboring cells. Before borrowing a channel,
Cell 0 has to check which adjacent cell is the richest cell that owns the most number
of nominal channels not used and not locked. If the richest adjacent cell of Cell O is
Cell 3, it has to borrow the channel that is not used from Cell 3. After making the
decision of the borrowing channel, the co-channel cells of Cell 3 in the interference
region of Cell 0, Cell 3 and Cell 3’s as Fig 2.6, have to be locked and to lock the
channel in the proper directions to the neighboring cells of them. The locking of the
channel means the cell that owns the channel as the nominal channel can not use it
and the cell that does not own the channel can not borrow it.

One more characteristic is that the set of the nominal channels for each cell have
different priorities, from the highest to the lowest:*Each cell uses the self channel with
the highest priority of them and-borrows the echannel-with the lowest priority of them

from the richest neighboring cell.

16



Chapter 3

Problem Formulation by MDP and Proposed Method

In this chapter, we introduce how to formulate our system into a
two-dimensional Markov Decision Process and how to find the optimal policy. The
optimal policy means which action should be taken with the least cost for BS. We
then use the policy-iteration method and state aggregation method to solve the
problem of MINOBJ.

In the case of single-service networks, Krishnan and Ott [15], and Lazarev and
Starobinets [16] have proposed state dependent routing schemes with roots in Markov
decision theory. We use the separable routing concept defined by Krishnan and Ott
which is appropriately modified for the case of cellular networks. We also study the
problem of call admission control.where we follow Zachary’s procedure [17] to

determine the cost of rejecting new calls and dropping handoff calls.

3.1 System Specification

We consider our mobile communication network as a cellular network. In our
cellular structure, each cell is surrounded by six cells. A mobile staying in a cell can
communicate with another terminal, which may be a node of the wired network or
other mobile, through the base station in the cell. When it moves to an adjacent cell, a
handoff will enable the mobile to maintain connectivity, i.e., the mobile will connect
through another base station without noticing any difference.

We preclude 1) delay-insensitive application, which might tolerate long handoff

delays in case of insufficient bandwidth available in the new cell at the handoff time
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and 2) soft handoff of the Code Division Multiple Access (CDMA) systems [13],[14],
in which a mobile can communicate via two adjacent base stations simultaneously for

a while before actual handoff takes place.

3.2 MDP-based Cellular System Model
3.2.1 Model Assumptions

In our model, we assume that each cell is allocated with a fixed set of channels
and each connection uses equal bandwidth (one channel). A two-dimensional Markov
Chain is used to model the system. The first dimension is made of base cell’s channel
state and represents how many channels are used presently. The second dimension is
made of all adjacent cells and represents how many channels are used by all adjacent
cells.

New call arrival in the base cell and adjacent cells are according to a stationary
Poisson process with mean rate'A; and 4q.-fespectively. The call holding time in the
base cell and adjacent cells are independent.and exponential distributed with mean w;
and o, respectively. Call handoff from the base cell to adjacent cells and from
adjacent cells to base cell are also exponential distributed with rate h; and hy,
respectively.

We consider a homogeneous system where each cell can support up to C calls,
the cell state vector n(t) which provides the complete state description of the cell at
any time instant is defined as

nit)=(x,y), vneN (3.1
Where x is the number of calls in the base cell at time t, and y is the number of calls in
all adjacent cells at time t. The cell state space is denoted by N, which contains a finite

but large number of states. The state transition diagram is shown in Fig 3.1.
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Fig 3.1 State transition diagram

The parameters which accompany transition lines divide by t are transition
probabilities. t is given as

7=+, + X(ey + ) + y (a5 +h) (3.2)

3.2.2 Alternatives and Costs
The MDP with costs has been.the means to an-end. It is the analysis of decisions
in sequential process that are Markovian in nature [5]. We will introduce alternatives
and costs of sequential decision process and define them in this section.
In our model, we have two alternatives when a new call or a handoff call comes:
+ Alternative 1: accept

+ Alternative 2: reject

We define that a cost w; is incurred when a new call is reject by base station and
a cost w> is incurred when a handoff call is reject by base station. By these definitions,
there are different behaviors with corresponding alternatives. So, we can make a
different state transition diagram in Fig 3.2 that base station admits a new (or handoff)

call incur nothing but rejects it with cost w; (or wy). These analyses will help us to
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find the solution of the sequential decision process.

Fig 3.2 State transition diagram with alternatives

All alternatives that could be taken by base cell’s state are listed in Table 3.1 below.

Table 3.1 alternatives of base cell’s state

Alternatives{ New Call | Handoff Call
0 nlock drop
1 accept drop
2 block accept
3 accept accept

3.3 Our Policy-Iteration Method

An optimal policy is defined as a policy that minimizes the cost. It is conceivable
that we find the cost for each of these alternatives in order to find the policy with the
least cost.

We are interested in finite horizon systems and we know the appropriate

objective is the average cost optimization. It means that our goal is to minimize the
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expected rate of cost due to lost calls. We can denote V= (t) the lost revenue in the cell
during the time interval [0,t] under the policy 7 eIl, where IT is the set of all

policies. Then, using the result from [5], we have the expected value

EIV (t|n,=n)]=g,t+v_(n)+0(1), (t—x) (3.3

where ne N is the cell state at time t=0. In Markov decision theory, v (n) is
the well-known relative value or cost of starting in state no=n. In Eq. (3.3), g~
represents the expected cost per unit time under the policy m on the original
continuous-time scale. Since the system is ergodic, we may call g- as the gain of the
process. The objective is to minimize the equilibrium expected cost per unit time, g .
The “small 0” symbol o(1) means.that for both the right hand side (RHS) and the left
hand side (LHS) of the equation-go.to infinity; and the difference goes to zero. Before

to find the relative cost values v=(n) we define.two vectors

10
e eR’ e = 3.4
Kk € k {O J (3.4)
-1 1
f eR?, f = 3.5
Kk € K {1 _J (3.5)

Then, in the case of the departure of a call when the cell state is n, the

immediately subsequent state d, (n) e N is found as

d.(n)=n-e, (3.6)

A new call admission decision needs to be made at call attempt epochs: either
accept or block. Denoting an alternative taken on the arrival of a call by m(n) where

ne N is the current cell state. In the case of call rejection
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. (n)=n (3.7)
If the new call is accept, the subsequence state of the cell will be found as

T, (nN)=n+e, (3.8)

A handoff cal admission decision needs to be made at call across the cell
boundary epochs: either accept or drop. Use the same definition above, in the case of
dropping a handoff call

r.(n)=n-e, (3.9
If the handoff call is accepted, the subsequent state of the cell will be found as

z.(n)=n+f, (3.10)

Now we start to introduce how to find the. relative cost values v»(n) for all
ne N. The same equation also-governs the asymptotic behavior of the process if we
assume that it has started immediately after-the-first event that has occurred after t=0.
This is because of the ergodic nature.of the system, where the initial state has no
effect on the asymptotic behavior of the process far enough in the nature. The first
event is either a cell termination or a new (handoff) call arrival. The expected time t

for the first event after t=0 is given as
2
T=—, 7/=2[/1k+nk(hk+luk)] (3.1
Y k=1
where we used the memoryless property of the system. Writing Eq. (3.3) for a starting

time t=0 and a first event time t=t(the latter one is conditional on the type of the first

event), we obtain after some arrangements

v.(nN)+g,7= TZ n 24V, (d, () +Tzﬂk[5k (n, 7 (N)e, +V, (7, (n))]

+ ri nhlo,(n—e., 7z (N)w,+Vv_ (7, (n)], VneN (3.12)

k=1
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where &, (-) isthe Kronecker symbol as follows

Lif n=x,(n)

) (3.13)
0, otherwise.

6, (n, 7z, (n)) ={

In the system of linear Eq. (3.12), the unknown variables are v (n) forall ne N,
and the gain of the process g-. Obviously, the system has one more variable than the
number of equations so that v_(-)s can be determined up to an additive constant. To
solve the system Eq. (3.12), we follow the standard procedure by setting v~ (0)=0.

Thus, we get the system

g9, = Zﬂk[ék 0,7, (0) e, +Vv, (7, (0))]

+Zzlnkhk [6,(0, 7, (0))@, + V(7 (0))] (3.14)

3.4 Our State Aggregation Method

In Fig 3.3, the first dimension is made of base cell’s channel state, where C; is
the fixed link capacity C. The second dimension is made of all adjacent cells’ channel
state, where C, is six times of the fixed link capacity C. The total states of this

two-dimensional Markov chain areC, xC, .
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Fig 3.3 Total state diagram of the two-dimensional Markov chain

When using Guassian elimination method to solve Eq. (3.12), we will face the
same problem already described.in section 2.6.. The inverse matrix of transition
probability matrix P is of complexity O(n?), which. isimpractical for large n.

We can take the Guard Channel:policy-mentioned in section 2.2 for an example.
The threshold T will divide the states of.the cell into three groups. From state 0 to T is
first group which can accept all kinds of calls. From state (T+1) to (C-1) is second
group which can accept only handoff calls. The third group is state C. When in third
group, no call can be accept due to unavailable of all the channels. Thus, we can learn
from this example grouping states which are few steps reachable in the neighborhood.

We use the method like quantization to divide the first dimension of Markov
chain into even size, excluding the last state is an independent group. The second
dimension is divided with the same way. The two-dimensional Markov chain can be

grouped as shown in Fig 3.4 below.
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Fig 3.4 Make two-dimensional Markov chain into smaller groups

3.5 Parameters Estimation

This section addresses parameters estimation. of our strategy. In our model, we
use call arrival rate, handoff rate and departure rate in MDP to find the optimal policy.
Nevertheless, these parameters will vary-with-time. /In order to make our model closer
to the actual, we adjust these parameters and-update policy periodically. Since these
parameters vary from time to time, how to estimate efficiently is now we concerned

about.

3.5.1 Cost Match Update Rule

We use cost match update (CMU) rule to help us to estimate. This method just
can estimate a parameter. It adjusts the parameter by using the difference between
system cost and model cost. The system cost is induced by reality and the model cost
is defined by our model. If system cost is different from model cost, it means our
model did not match the reality, and we should change parameter to make model more
close to the reality.

For example, if we use CMU rule to adjust adjacent cells’ new call arrival rate.
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Then, if the system cost is larger than model cost, it means adjacent arrival rate may
be underestimated and we should increase adjacent arrival rate. Actually, we use
CMU rule to adjust adjacent cells’ arrival rate, because how precise the estimation of
adjacent arrival rate is not only effect adjacent arrival rate, but also effect handoff-in
rate. So, we choose it to use CMU rule and other parameters use sample mean to
estimate. In our simulation, it indeed does work.

The model cost is defined as Eq. (3.14), and the system cost is the sum of

blocking new calls’ costs and dropping handoff calls’ costs in every time unit.

3.5.2 State Adjustment

For base cell, the factor effects the handoff rate is not only the number of
mobiles in the adjacent cells, but also the positions.of mobiles in the adjacent cells. In
our model, we give mobile different weight according to the mobiles’ real-time
position when we calculate cell state."\We-can-use Eq. (3.15) to show the state the

number of adjacent cells’ mobiles after-adjustment.

# of adjacent cells' mobiles = Z 3r —distance(mobile;, BS) (3.15)

i r

Briefly, if the distance between the mobile and base station in base cell is r, the
weight of the mobile is 2. If the distance between the mobile and base station in base
cell is 2r, the weight of the mobile is 1. If the distance between the mobile and base
station in base cell is 3r or more, the weight of the mobile is 0. Others are also stand

on this way depending on distance giving different weight.
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Fig 3.5 Hlustration of using mobile’s position to calculate cell state

3.6 MDP-based Call Admission Control in BDCL

In this section, we will introduce how we modified the previous MDP model of
FCA strategy to BDCL strategy=In.order to get optimal policy, we use one-step policy
which will use the previous computational-result of FCA.

The main difference between FCA:strategy and BDCL strategy is “borrowing”
action. We modify our state transition diagram with alternatives to fit BDCL strategy.
In BDCL, we have three alternatives when a new call (or handoff call) comes:

+ Alternative 1: accept
+ Alternative 2: reject

+ Alternative 3: borrow
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Fig 3.6 State transition diagram with alternatives for BDCL

The cost w3 is incurred with alternative 3 when a call (either new cell or handoff
call) arrives, base station borrows channel from adjacent cell. The cost w3 is not fixed,
and it will vary with all the cells in interference region effecting by borrowing action
including which channel are borrowed and-the state of all these cell after borrowing.

There will be an example illustrated in Fig-3.7-below

4 5
o ~ \ W
3 0 2
S = K
4 5 3 Xy 0 6
N v /
2)1 4 5) 3 0
NN ~
3 0 6 2 |

Fig 3.7 An example of borrowing operation
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In the red line bounded region, if cell 0 borrows channel-x from cell 3, the state
transitions of the cells in this region is illustrated in Fig 3.8. State transitions in these

cells can be separate into two groups, co-channel cells and non-co-channel cells.

For co-channel cells (cell 3) For other cells

P ’ Pr
I1r‘ ch-x is locked o If ch-x is locked

Pr Pr| If ch-x is not locked

If ch-x is not locked @

Fig 3.8 transition diagram of all the cells in interference region

Then, the borrowing costws can be derived as below

N

@y =Y [Vi(n+1)-V(n) | (3.16)

k=1

N : number of cells in the interference region
V.“(n):Value of current state i current stage n for'adjacent Cell k
ij (n+1):Value of next state j hextstagen +1for adjacent Cell k

i = j, the selected channel to borrow is locked
i # ], the selected channel to borrow is not locked

When a call (either new call of handoff call) arrives, we have to check all unused
channels of adjacent cells and get the channel which causes the least cost ws. The
channel that causes the least cost of wsis selected to be borrowed if alternative 3 is the
best alternative to borrow. All alternatives for BDCL that could be taken by base

cell’s state are listed in Table 3.1 below.
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Table 3.2 alternatives of base cell’s state for BDCL

Alternatives | New Call Handoff Call

0 block drop

1 accept drop

2 borrow drop

3 block accept
4 accept accept
5 Borrow accept
6 block borrow
7 Accept borrow
8 borrow borrow

There are 9 alternatives for base station"listed above, we use the state value of
previous result and derive the policy to fit our model. This policy is not the optimal
policy but is the improved one. We use one-step policy, which is only taken Policy
Improvement Routine in Policy-Iteration method introduced in section 2.5. It is
proved that one-step policy although is not the optimal policy, but it is closed to the

optimal one [5].
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Chapter 4

Simulation Results and Performance Analysis

4.1 Simulator Settings

The simulated cellular system contains 98 hexagonal cells (i.e. a 14x7 mesh)
as shown in Fig 4.1 with white background. This is a simple case can be extended to
implement in large area. The boundary cells will have fewer mobiles because there
are no mobiles entering from outside of cellular system, and then cells near the center
will be more crowed by mobiles than those near the borders. Therefore, we connected

all boundary cells of cellular structure:as the gray. background cells in Fig 4.1.

Fig 4.1 Cellular structure of simulation

All cells are assigned with 50 channels, and each connection use 1 channel. The

channel reuse distance is assumed to be three cell units. We assume new call are
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generated according to a Poisson process with rate A=500 — 1500 calls/per hour, but
each cell is under different traffic load. The lifetime of each call is exponential
distributed with the mean 3 min. We incorporate road layouts that place constraints on
mobiles’ paths, thus establishing a more realistic platform to evaluate the performance.
The radius of each cell is 2 km and mobile velocity is from 30km/hr to 90km/hr with

5% variance. Fig 4.2 is part of load layout in our simulation.

A |
b= L

Miw

Fig 4.2 Part of road fayoutin 9;_1_? simulation

o e

There are total 51x301 states, and it will take too much time to compute, so we
use the aggregation method mentioned in section 3.4 to aggregate states into groups.
In our model, we aggregate to total 6x11 states as shown in Table 4.1 below. This is
a compromise between computing complexity and the difference of the result derived.
Note that the last column (with gray background) of Table 4.1 is mode of only one
previous state, because no matter a new call or handoff call arrives in that state, it will

not be accepted due to unavailable of all the channels in the base cell.
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Table 4.1 Aggregation of total states

Cell’s States Base Cell’s Group

. 0~9 |10~19|20~29|30~39|40~49 |50

(after aggregation)
1 2 3 4 5 6
0~29 |1] O 1 2 3 4 5
30~59 | 2| 6 7 8 9 10 |11
& 60~89 |3 12 13 14 15 16 |17
S|90-119 [4] 18 | 19 | 20 | 21 | 22 |28
T | 120~149 | 5| 24 25 26 27 28 |29
8 159~179 (6| 30 31 32 33 34 135
% 180~209 | 7| 36 37 38 39 40 |41
'—é 210~239 | 8| 42 43 44 45 46 |47
< |240~269 | 9| 48 49 50 51 52 |53
270~299 |10] 54 b5 56 57 58 159
300 |11f 60 61 62 63 64 |65

4.2 Simulation Results

In the guard channel strategy, threshold T represents number of channels
reserved for handoff calls. If T is large, the handoff force terminating rate will
decrease but the new call blocking rate will increase. We use Guard Channel strategy

with different threshold T to decide how many channels reserved for handoff calls is

better. The result is shown in Fig 4.3 below.

In Fig 4.3, we can see that when threshold T is 45, the dropping rate is almost

equal to T=44 and is not too high, but the blocking rate is lower then T=44. So, we

choose T=45 as the threshold of our Guard Channel Strategy.

33




rate

The performance of MDP-based call ‘@admission control with CMU rule is
compared with the fixed channel allocation (FCA), Guard Channel strategy with

threshold 45 (GC), and MDP-based call-admission control without CMU rule. It is

0.25

---@-- blocking rate
---#--- dropping rate
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015+ - B
01F B
005+ 1
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D 1 1 1 1 1
42 43 44 45 46 47 45

threshold T for Guard Channel, Load = 90

shown in Fig 4.4 to Fig 4.6.

Drop Rate

FCA Drop Rate

Fig 4.3 Guard Channel Strategy with different threshold

0.25
—O—FCA -
e )

g2} | % MDP with ChMU 7 i
---&--- MDP with Sample Mean B

~
7
015 f ) |
7
e
o1} ) |
/
a
005k P -
- F”*’f’”—"‘ff
~ i e .,f:,gsp:::._ B
D ﬂ-ﬂrn—p!’%‘;?r"" L 1 1 1 1 1
50 B0 70 80 90 100 110 120 130 140 150
Load

Fig 4.4 Dropping rate versus traffic load in FCA
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Fig 4.6 Ave. Cost (per mobile) versus traffic load in FCA
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Fig 4.4 compares dropping rate versus traffic load. Dropping rate is defined as
the percentage of handoff calls can not be allocated to a channel in all served calls.
Fig 4.4 shows that dropping rate of FCA is highest, because FCA does reserve any
channel for handoff call. Dropping rate of MDP-based call admission control with
CMU rule is lower than GC.

Fig 4.5 compares blocking rate versus traffic load. Blocking rate is defined as the
percentage of new call which can not be allocated to a channel in all arriving calls.
Fig 4.5 shows that blocking rate of FCA is lowest. Blocking rate of MDP-based call
admission control with CMU rule is higher than GC. In Fig 4.6, we can see our
proposed method has the lowest average cost. Besides, our proposed method performs
better than MDP-based call admission control without CMU rule. It shows CMU rule
is effective.

In Fig 4.7 to Fig 4.9, we .will show- the, performance of MDP-based call
admission control with CMU rule in-BDCL-compares to BDCL and the GC with
BDCL. The strategy of GC with BDCL.is.if new‘call arrives and the number of using
channel is equal or larger than threshold, we block this call. If handoff call arrives and
all the channels in base cell are unavailable, we still do not drop this call unless there
is no available channel in adjacent cells.

Fig 4.7 compares dropping rate versus traffic load. Fig 4.7 shows that dropping
rate of BDCL is highest, because BDC does reserve any channel for handoff call.
Dropping rate of MDP-based call admission control with CMU rule is similar to GC
with BDCL.

Fig 4.8 compares blocking rate versus traffic load. Fig 4.8 shows that blocking
rate of BDCL is lowest. Blocking rate of MDP-based call admission control with
CMU rule is lower than GC with BDCL under load less than 110, but higher than GC

with BDCL when the traffic load is larger than 110. In Fig 4.9, we can see our
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proposed method has similar average cost to GC with BDCL.
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Fig 4.7 Dropping rate versus traffic load in BDCL
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Fig 4.8 Blocking rate versus traffic load in BDCL
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Fig 4.9 Ave. Cost per mobile versus traffic load in BDCL
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Chapter 5

Conclusion

In our thesis, we formulate the call admission control problem into a minimizing
linear cost function of blocking rate and dropping rate. In our model, the adjacent
cells” mobile information is taken into consideration including number of mobiles,
new calls arrival rate, handoff rate, departure rate and mobile position information.
We formulate our model based on MDP and use Policy-Iteration method to solve. In
order to reduce the computation complexity, we use state aggregation method to
decrease the number of states. We .use several parameters like arrival rate, handoff rate,
departure rate, to formulate our-model, but these parameters vary with time. How to
estimate these parameters precisely ito make-our model more close to the reality is
what we care about. We use Cost Match.Update (CMU) rule to adjust adjacent cells’
new call arrival rate and use sample mean to adjust other parameters, then the base
station can update policy periodically. In our simulation results, we can see that the
average costs of our proposed method are lower than Guard Channel strategy. It

reveals our estimation method can indeed help our model to perform better.
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