






Abstract

On the Capacity of Free-Space

Optical Communication Channel

Student: Lin Ding-Jie Advisor: Prof. Stefan M. Moser

Institute of Communication Engineering

National Chiao Tung University

In this thesis we study the free-space optical communication channeld. This channel is

characterized by inputs that are nonnegative representing transmitted optical intensity, and

by outputs that are corrupted by additive white Gaussian noise, because in free space the

disturbances arise from many independent sources. Due to battery and safety reasons the

inputs are simultaneously constrained on both their average and peak power.

Our task is trying to find upper and lower bounds on the capacity of this channel. We

use a numerical approach to compute the channel capacity and compare it with previous

bounds. Based on the result of this comparison, we try to derive improved analytical lower

bounds on capacity.

Our numerical lower bounds are very close to previous upper bounds in lower SNR region

(below 5 dB) with improving performance if we loosen the average-power constraint. Our

analytical lower bounds are good in medium SNR region (between 5 dB and 15 dB).
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Chapter 1

Introduction

In this thesis we focus on a channel model that describes a short optical communication link

in free space like, e.g., the link between a remote control and a TV. We assume that the

line-of-sight component is dominant and ignore any effects due to multiple-path propagation

like fading or inter-symbol interference. Since in ambient light conditions the received signal

is disturbed by a high number of independent sources, we model the noise to be Gaussian

distributed.

In optical communication not only battery-power is limited, but we have to restrict the

maximum allowed peak power for eye safety reasons. We therefore assume simultaneously

two constraints: an average-power constraint E and a limitation on the maximum allowed

peak power A. Besides, the ratio of E to A will play an important role in our investigations.

In this work we study the channel capacity of such an optical communication channel.

The information channel capacity of a continuous memoryless channel [1] with input

X ∈ R and output Y ∈ R is defined as follows:

C , sup
f

I(X, Y ) (1.1)

where the supremum is over all possible input distributions f . There is also an opera-

tional definition of channel capacity as the highest rate in nats1 per channel use at which

information can be sent with arbitrarily low probability of error. Shannon’s second theo-

rem establishes that the information channel capacity is equal to the operational channel

capacity. Thus we drop the word information in most discussions of channel capacity.

In this work we study the channel capacity and try to find numerical lower bounds. After

comparing numerical lower bounds with previous bounds in [2], we will find that the upper

bounds in [2] are quite tight. Hence, we will concentrate our efforts on the lower bound.

Now we will introduce briefly the technics which are used in [2]. The upper bounds in

[2] were derived as follows: using a dual expression of channel capacity based on relative

1The base of the logarithm is e, the entropy is measured in nats.

1



Chapter 1

entropy, the maximum in (1.1) is changed into a minimization over output distributions. So

the problem is reduced to find an output distribution that will lead to a good upper bound.

The lower bounds in [2] are derived as follows: the supremum in (1.1) is lower-bounded by

choosing a particular input distribution. Then the expression is further simplified by the

application of the Entropy Power Inequality. Unfortunately, the Entropy Power Inequality

seems to loosen the bound, so in this work we have to find new approaches to improve on

the lower bound.

The remainder of this thesis is structured as follows. After some brief remarks about

our notation, we will define the considered channel model more in detail in the subsequent

chapter. Chapter 3 contains some mathematical preliminaries. In Chapter 4 we review those

bounds of [2] that we need for comparison. In Chapter 5 we will then show some numerical

simulations which will give us a general picture about which way we should improve our

bounds, i.e, make the upper bound lower or try to pull up the lower bound. Next, we will

present our new lower bounds and their detailed derivations in Chapter 6 and 7, respectively.

For random quantities we use uppercase letters and for their realizations lowercase let-

ters. Scalars are typically denoted using Greek letters or lowercase Roman letters. A few

exceptions are the following symbols: C stands for capacity, h denotes the differential en-

tropy, E stands for average power, A denotes peak power, and δ(·) stands for the Kronecker

delta. Moreover R, f , denote probability density functions (PDF):

• R(·) denotes a distribution on the channel output,

• fbin(·), ftri(·) denotes a distribution on the input signal.

We shall denote the mean-η, variance-σ2 real Gaussian random variable by NR(η, σ2). All

rates specified in this paper are in nats per channel use, and all logarithms are natural

logarithms.
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Chapter 2

Channel Model

In this chapter, we will first introduce physical properties of this channel, then try to use

mathematical equation to describe this channel. This chapter is based on [2].

2.1 Physical Description

In free-space optical communication the input signal usually is transmitted by means of

some light emitting diodes (LED) or laser diodes (LD). Conventional and most inexpensive

diodes emit light of wavelength between 850 and 950 nanometers, i.e., the light lies in the

infrared spectrum. For such high frequencies, amplitude or even frequency modulation (as

usually used in radio communication) is technically very demanding. Therefore practical

systems often apply the much simpler intensity modulation where the signal is modulated

onto the optical intensity of the emitted light. Since the optical intensity is proportional to

the optical power, in such a system the instantaneous optical power is proportional to the

electrical input current (and not to its square as is usually the case for radio communication).

The receiver then directly measures the incident optical intensity of the incoming signal,

i.e., it produces an electrical current at the output which is proportional to the detected

intensity.

For our model we will neglect the impact of fading or inter-symbol interference due

to multiple-path propagation and assume that the direct line-of-sight path is dominant.

However, we do take into account that the signal is corrupted by additive noise. The

dominant noise source is assumed to be strong ambient light since there is no protective

medium like, e.g., a fiber cable. Even if optical filters are applied to reduce the impact of

this noise, it typically has much larger power than the actual signal and causes high-intensity

shot noise in the electrical output signal. In a first approximation this shot noise can be

assumed to be independent of the signal itself.

The maximum allowed optical peak power of the transmitted signal has to be constrained

due to eye safety reasons and due to the danger of potential thermal skin damage. Moreover,

3



2.2 Mathematical Channel Model Chapter 2

as battery power always is limited, we also constrain the maximum allowed optical average

power.

2.2 Mathematical Channel Model

We will now try to translate the physical channel description into a simplified time-discrete

channel model. The channel output Ỹk at time k, modeling a sample of the electrical output

signal, is given by

Ỹk = xk + Z̃k, (2.1)

where Ỹk ∈ R is the time-k channel output; xk ∈ R
+ is the time-k channel input and

represents a sample of the electrical input current that is proportional to the optical intensity.

The random process {Z̃k} models the additive noise. From our description in Section 2.1

we know that this noise is mainly caused by strong ambient light and we neglect multiple-

path propagation effect. We assume that the noise is a constant intensity term η and some

intensity-fluctuations around η. Because these fluctuations are caused by many independent

sources, e.g., shot noise or thermal noise, it is reasonable to assume that they are independent

and identically distributed (IID) zero-mean Gaussian with a given variance σ2. I.e.,

{Z̃k} ∼ IID NR(η, σ2). (2.2)

Since η is constant, we can shift the whole expression in (2.1) by −η without loss of gen-

erality and define a new channel output random variable Yk which represents the disturbance

of the electrical output signal. Moreover we note that our channel model is memoryless and

therefore we drop the time-index k.

The channel output Y becomes

Y = x + Z, (2.3)

where x is the channel input that is proportional to the optical intensity and cannot be

negative,

x ∈ R
+
0 , (2.4)

and where the additive noise is

Z ∼ NR(0, σ2). (2.5)

It is important to note that in contrast to the input x, the output Y may very well be

negative since the noise introduced at the receiver is not necessarily positive.

The restrictions on the optical peak and average intensity are translated into a peak-

power and an average-power constraint on the input, respectively:

Pr[X > A] = 0, (2.6)

E[X] ≤ E . (2.7)

4



2.2 Mathematical Channel Model Chapter 2

Be aware that the average-power constraint is in this case a constraint on the mean of the

channel input and not—as is usually the case for channels modeling electro-magnetic radio

communication—on the second moment. We shall denote the ratio between average power

and peak power by α

α ,
E
A

. (2.8)

where 0 < α ≤ 1. If α = 1, this means that the average-power constraint is inactive in the

sense that we can use the maximum power all the time. On the other hand, if α ≪ 1, it

means that the total power is limited in the sense that we have to limit our input power.

5
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Chapter 3

Mathematical Preliminaries

3.1 Q-Function

In the following we will extensively use the so-called Q-function. This is a well-behaved

function R → (0, 1) which maps every ξ ∈ R to the probability that a standard Gaussian

random variable NR(0, 1) takes on a value that exceeds ξ.

Definition 3.1. The Q-function is defined by

Q(ξ) ,

∫
∞

ξ

1√
2π

. e−
t2

2 dt, ∀ξ ∈ R. (3.1)

The following properties of Q(·) are well-known.

Lemma 3.1. The Q-function satisfies

Q(−ξ) + Q(ξ) = 1, ∀ξ ∈ R, (3.2)

and

Q(0) =
1

2
. (3.3)

Moreover the first and second derivative of Q(·) are given by

Q′

(ξ) = − 1√
2π

e−
ξ2

2 , ∀ξ ∈ R, (3.4)

and

Q′′

(ξ) =
ξ√
2π

e−
ξ2

2 , ∀ξ ∈ R. (3.5)

Thus Q is monotonically decreasing for all ξ ∈ R, concave over (−∞, 0], and convex over

[0,∞) Also the Q-function can be bounded by

1√
2πξ

e−
ξ2

2

(

1 − 1

ξ2

)

< Q(ξ) <
1√
2πξ

e−
ξ2

2 , ξ > 0, (3.6)

and

Q(ξ) ≤ 1

2
e−

ξ2

2 , ξ ≥ 0. (3.7)

Proof. See e.g., [2, Section 3].
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3.2 Properties of the Channel Model

First, we note that it has been shown in [3] that the capacity-achieving input distribution

is unique.

Lemma 3.2. Fix a peak power A and an average power E. Let C(A, E) denote the capacity-

cost function of the free-space optical intensity channel (2.3) given as

C(A, E) = sup
f

I(f, W ). (3.8)

where W denotes the channel law, and where the supremum is over all input distributions

f ∈ P
(
R

+
0

)
that satisfy the peak- and average-power constraints (2.6) and (2.7). Then there

exists a unique input distribution f∗

A,E
that achieves the supremum.

Proof. See [3].

Using Lemma 3.2 together with the symmetry of the channel law and the concavity of

channel capacity in the input distribution, we can make the following observation.

Lemma 3.3. Consider a peak-power constraint A and an average-power constraint E such

that α = E

A
≥ 1

2 . Then the optimal input distribution in will have average power equal to

half of the peak power
Ef∗ [X]

A
=

1

2
, (3.9)

irrespective of α. I.e., the average-power constraint is inactive for all α ∈
(

1
2 , 1
]
, and in

particular

C(A, αA) = C
(

A,
A

2

)

,
1

2
≤ α ≤ 1. (3.10)

Proof. See [2, Appendix D].

3.3 Jensen’s Inequality

Lemma 3.4. (Jensen’s inequality) Consider a convex function g(·) and a random variable

X. Then

E[g(X)] ≥ g(E[X]). (3.11)

Moreover, if g(·) is strictly convex, then equality in (3.11) implies that X = E [X] with

probability 1 ( i.e., X is a constant).

Proof. See e.g., [1, Theorem 2.6.2].
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Chapter 4

Previous Results

In this chapter, we review some previous results based on [2]. In Section 4.1 we review the

bounds on channel capacity with both an average- and a peak-power constraint. In Section

4.2 we review the bounds on channel with a strong peak-power and inactive average-power

constraint. In Section 4.3 we review the bounds on channel capacity just with average-power

constraint.

4.1 Bounds on Channel Capacity with both an Average- and

a Peak-Power Constraint

We use the channel model (2.3) defined in Section 2.2 and assume that the input distribution

is constrained by (2.6) and (2.7). Then the channel capacity C(A, E) is bounded as follows:

C(A, αA) ≥ 1

2
log

(

1 + A
2 e2αµ∗

2πeσ2

(
1 − e−µ∗

µ∗

)2
)

, (4.1)

C(A, αA) ≤ 1

2
log

(

1 + α(1 − α)
A

2

σ2

)

, (4.2)

C(A, αA) ≤
(

1 −Q
(

δ + αA

σ

)

−Q
(

δ + (1 − α)A

σ

))

·

· log

(

A

σ

e
µδ
A − e−µ(1+ δ

A)
√

2πµ(1 − 2Q
(

δ
σ

)
)

)

− 1

2
+ Q

(
δ

σ

)

+
δ√
2πσ

e
−

δ2

2σ2 +
σ

A

µ√
2π

(

e
−

δ2

2σ2 − e
−

(A+δ)2

2σ2

)

+ µα

(

1 − 2Q
(

δ + A
2

σ

))

. (4.3)

Here µ∗ is the positive solution to

α =
1

µ∗
− e−u∗

1 − e−µ∗ (4.4)

8
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the function Q(·) is defined in (3.1); and µ ≥ 0 and δ ≥ 0 are free parameters.

In [2] the authors suggest the following (suboptimal) choice for these parameters:

δ = δ(A) , σ log

(

1 +
A

σ

)

, (4.5)

µ = µ(A) , µ∗

(

1 − e
−α δ2

2σ2

)

, (4.6)

where µ∗ is the positive solution to (4.4).

For this choice of parameters the bounds (4.1), (4.2), and (4.3) are depicted in Figures 5.1,

5.2, and 5.3.

4.2 Bounds on Channel Capacity with a Strong Peak-Power

and Inactive Average-Power Constraint

From [2] we know that for 1
2 < α ≤ 1 the average-power constraint is inactive and C(A, αA) =

C(A, 1
2A). Thus we can obtain the results in this section by simply deriving bounds for the

case α = 1
2 . Indeed the lower bound is valid for α ∈

[
1
2 , 1
]

and the upper bounds are even

valid for any α ∈ (0, 1].

C(A, αA) ≥ 1

2
log

(

1 +
A

2

2πeσ2

)

, (4.7)

C(A, αA) ≤ 1

2
log

(

1 +
A

2

4σ2

)

, (4.8)

C(A, αA) ≤
(

1 − 2Q
(

δ + A
2

σ

))

log
A + 2δ

σ
√

2π
(
1 − 2Q( δ

σ
)
) − 1

2

+ Q
(

δ

σ

)

+
δ√
2πσ

e
−

δ2

2σ2 . (4.9)

Here the function Q(·) is defined in (3.1), and δ > 0 is a free parameter. In [2] the authors

suggest the following (suboptimal) choice for δ:

δ = δ(A) , σ log

(

1 +
A

σ

)

. (4.10)

For this choice (4.7), (4.8), and (4.9) are depicted in Figure 5.4.
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4.3 Bounds on Channel Capacity with an Average-Power

Constraint

Finally, we consider the case with an average-power constraint only. Here we change our

notation C(A, αA) to C(E). The channel capacity C(E) is bounded as follows:

C(E) ≥ 1

2
log

(

1 +
E2e

2πσ2

)

, (4.11)

C(E) ≤ log

(

βe
−

δ2

2σ2 +
√

2πσQ
(

δ

σ

))

− log(
√

2πσ)

− δE
2σ2

+
δ2

2σ2

(

1 −Q
(

δ

σ

)

− E
δ
Q
(

δ

σ

))

+
1

β

(

E +
σ√
2π

)

, δ ≤ − σ√
e
, (4.12)

C(E) ≤ log

(

βe
−

δ2

2σ2 +
√

2πσQ
(

δ

σ

))

+
1

2
Q
(

δ

σ

)

+
δ

2
√

2πσ
e
−

δ2

2σ2 +
δ2

2σ2

(

1 −Q
(

δ + E
σ

))

+
1

β

(

δ + E +
σ√
2π

e
−

δ2

2σ2

)

− 1

2
log 2πeσ2, δ ≥ 0. (4.13)

where β > 0 and δ are free parameters. Note that bound (4.12) only holds for δ ≤ −σe−
1
2 ,

while bound (4.13) only holds for δ ≥ 0. A suboptimal choice for the free parameters in

bound (4.12) is

δ = δ(E) , −2σ

√

log
σ

E , for
E
σ
≤ e−

1
4e ≈ −0.4 dB, (4.14)

β = β(E) ,
1

2

(

E +
σ√
2π

)

+
1

2

√
(

E +
σ√
2π

)2

+ 4

(

E +
σ√
2π

)√
2πσe

δ2

2σ2 Q
(

δ

σ

)

, (4.15)

and for the free parameters in bound (4.13) is

δ = δ(E) , σ log

(

1 +
E
σ

)

, (4.16)

β = β(E) ,
1

2

(

δ + E +
σ√
2π

e
−

δ2

2σ2

)

+
1

2

((

δ + E +
σ√
2π

e
−

δ2

2σ2

)2

+ 4

(

δ + E +
σ√
2π

e
−

δ2

2σ2

)√
2πσe

δ2

2σ2 Q
(

δ

σ

))
1
2

. (4.17)

For this choice of parameters the bounds (4.11), (4.12), and (4.13) are depicted in Figure 5.5.
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Chapter 5

Numerical Lower Bounds

In this chapter, we will use a numerical approach to compute the channel capacity and

compare it with previous results, in particular, with the bounds shown in Chapter 4. In

Section 5.1 we will give readers a rough picture about how we programed the simulation.

In Section 5.2 we will introduce some input distributions and show that these distributions

satisfy the peak- and average-power constraint. In Section 5.3.4 we present the numerical

results and make some comments.

5.1 Introduction

The process of calculating the lower bound is based on the following ideas: considering the

definition of capacity from Lemma 3.2

C(A, E) = sup
f

I(f, W ) (5.1)

where the supremum is over all distributions f on the channel input that satisfy the power

constraints, we drop the optimization and choose one particular f . This leads to a natural

lower bound on capacity.

C(A, E) = sup
f

I(f, W ) (5.2)

≥ I(f, W )|for a specific f (5.3)

= (h(Y ) − h(Y |X))|for a specific f (5.4)

= h(X + Z)|for a specific f − h(Z). (5.5)

Now we need to choose a distribution f that is reasonably close to the capacity-achieving

input distribution in order to get a tight lower bound. However, we might still have the

problem that the evaluation of h(Y ) is hard and complicated. The reason for this is that

even for relatively “easy” distributions f , the corresponding distribution on the channel

output may be difficult to compute, let alone h(Y ).

11
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So we use a numerical approach to get an impression of the channel capacity. The idea

is as follows: remember the definition of entropy

h(Y ) = −
∫

∞

−∞

R(y) · log R(y) dy (5.6)

where R(y) is the output distribution. We can choose a simple input distribution which we

describe our choices in Section 5.2 and then calculate the corresponding output distribution.

We then use MATLAB to numerically evaluate the integration in (5.6). Because the output

distribution is a continuous function, we can use the command “quad” in MATLAB to

compute the entropy.

Note that we often experience numerical problems: When we calculate some parts of

the entropy, e.g., the probability of the tail and the probability of a “valley” between two

“mountains”, it might happen that the calculations result is a Not-a-Number value. We

know that they are very small values, so we can ignore them and set them to zero.

5.2 Input Distributions

5.2.1 Input Distributions in the Situation of an Average- and a Peak-

Power Constraint

In this section we will introduce two input distributions with peak-power constraint. First,

we use the binary distribution which is the most basic distribution and easy to handle. The

distribution is defined as follows:

6

-

0

1

AsA

r1 − p
s

r p
s

x

fbin(x)

fbin(X) =
(

1 − p

s

)

· δ(x) +
p

s
· δ(x − sA), α ≤ s ≤ 1 ; (5.7)

E[X] =
(

1 − p

s

)

· 0 +
p

s
· sA = pA. (5.8)

From (5.7) we can see that we fix one symbol at 0 and change another symbol from αA

to A. The parameter s is limited by the peak-power constraint and by the basic property

of probability that the summation of all events must be one. From (5.8) we check that the

distribution satisfies the average-power constraint.

12
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Next, we introduce a more elaborate distribution, the ternary input distribution. Note

that our purpose here is not to find the maximum input distribution which achieves the

channel capacity. Thus our choice is not necessarily optimal. We fix two of the three sym-

bols at 0 and A, so we can only modify the position of the third symbol. The distribution

is defined as follows:

6

-

0

1

AsA

r p1

r1 − p1 − p2

r p2

x

ftri(x)

ftri(x) = (1 − p1 − p2) · δ(x) + p1 · δ(x − sA) + p2 · δ(x − A) ; (5.9)

p1 =
α − p2

s
, (α − p2) ≤ s ≤ 1 ; (5.10)

p2 ≤ α ; (5.11)

E[X] = (1 − p1 − p2) · 0 + p1 · sA + p2 · A

=
α − p2

s
· sA + p2 · A = αA. (5.12)

The basic structure is the same as for the binary distribution, but now we have one

more symbol. We use p2 to control how much power we want to give the symbol which

costs most power, then we use s to control how much of the remaining power we want to

give the symbol which costs fewer power. Note that we need to satisfy (5.11) and (5.10) in

order to guarantee that our distribution satisfies the average-power constraint and the basic

property of probability that the summation of all events must be one. From (5.12) we check

that the distribution satisfies the average-power constraint.

5.2.2 Input Distribution in the Situation of an Average-Power Constraint

Only

In this section we will introduce a distribution just with average-power constraint. This

is slightly different from Section 5.2.1. Without peak-power constraint, we can use higher

transmit power to combat the noise in order to get more capacity. Note that the capacity

here is higher than in the situation with both an average- and a peak-power constraint. We

define the distribution as follows

13
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6

-

0

1

E

pE

r1 − E

p

r p

x

fno(x)

fno(X) =

(

1 − E
p

)

· δ(x) +
E
p
· δ(x − E

p
), 0 < p < 1 ; (5.13)

E[X] =

(

1 − E
p

)

· 0 + p · E
p

= E . (5.14)

The basic structure is the same as for the binary distribution, but now we have no peak-

power constraint. So we remove the notation A, then change to E and use p to satisfy the

average-power constraint. From (5.14) we check that the distribution satisfies the average-

power constraint.

5.3 Simulation Results

We will now use the input distributions in Sections 5.2.1 and 5.2.2 to compute numerical

lower bounds. In the first case we have an average- and a peak-power constraint. We will use

three different α values to show how much capacity we lose. Before we start to introduce

our simulation results, we first explain how the α value effects our capacity. Recall the

expectation of binary distribution in (5.8) and set s equal 1 as follows:

E[X] =
∑

x · f(x)

= (1 − p) · 0 + p · A = pA, (5.15)

and recall the definition of α as follows:

α =
E
A

=⇒ E = αA. (5.16)

By (5.15) and (5.16) we can see that p = α in this distribution. If α is very small, we have

fewer chance to transmit signal. Although in high-SNR region we can not use peak-power to

transmit, that means we set s small than 1 in order to get higher chance to transmit. But in

the low-SNR region, if we do the same way as the high-SNR region. The noise will destroy

the signal, because the signal power is small than noise too much. Now we use α = 0.02

to represent strong average-power constraint, α = 0.1 to represent normal average-power

constraint, and α = 0.4 to represent loose average-power constraint.

In the second case we have a strong peak-power and an inactive average-power constraint.

According to Lemma 3.3, we just use α = 1
2 to compute the channel capacity, because it

can achieve the maximum lower bound when α equals 1
2 .
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Finally we ignore the peak-power constraint and just focus on the average-power con-

straint.

5.3.1 Simulation Results in the Situation of an Average- and a Peak-

Power Constraint

Now we start from first case: the input distribution satisfies both average- and peak-power

constraint. From Figure 5.1 with α = 0.02, we see that the numerical lower bound is almost

the same as (4.2) in the region below 5 dB. When the peak power is larger than 5 dB, we

can observe that the gap between numerical lower bound and upper bound becomes larger

and larger.

From Figure 5.2 with α = 0.1, we can see that when the peak power is lower than 5

dB, the upper bound (4.2) is still very close to numerical lower bound. Besides, the ternary

input distribution starts to exceed the binary input distribution about 6 dB, in the sense

that we can get a tighter bound due to the more complex input distribution.

From Figure 5.3 with α = 0.4, the upper bound (4.2) is still a nice approximation of

channel capacity below 5 dB and we observe that the ternary input distribution is not only

close to the upper bound (4.2), but also to the upper bound (4.3) above 5 dB. This shows

that when α is large, the upper bound (4.3) is also tight for medium SNR.

5.3.2 Simulation Results in the Situation of a Peak-Power Constraint

Only

The second case is the input distribution with strong peak-power and inactive average-power

constraints. From Figure 5.4 with α = 0.5, we see that the numerical lower bound is almost

the same as the upper bound (4.8) in the region which is below 5 dB. The upper bound (4.9)

is also close to the ternary input distribution after 6 dB. The whole situation is similar to

the previous case with α = 0.4.

5.3.3 Simulation Results in the Situation of an Average Peak-Power Con-

straint Only

The last case is the input distribution just with a average-power constraint. From Figure 5.5,

we can see that the numerical lower bound is not as tight as in the previous cases in the

Sections 5.3.1 and 5.3.2, but the upper bound (4.12) becomes close only for values below

−20 dB.

5.3.4 Summary

After we compare these numerical lower bounds with the previous results in [2], we learn

that the lower bounds in [2] are too loose, while the upper bounds seem tight. Hence, we
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need to find an analytic way to improve on the lower bounds.
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Figure 5.1: Bounds on the capacity of the free-space optical intensity channel with average-

and peak-power constraints for α = 0.02.
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Figure 5.2: Bounds on the capacity of the free-space optical intensity channel with average-

and peak-power constraints for α = 0.1.
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Figure 5.3: Bounds on the capacity of the free-space optical intensity channel with average-

and peak-power constraints for α = 0.4.
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Figure 5.4: Bounds on the capacity of the free-space optical intensity channel with strong

peak-power and inactive average-power constraint.
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Figure 5.5: Bounds on the capacity of the free-space optical intensity channel just with

average-power constraint.
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Chapter 6

Analytical Lower Bounds

According to Chapter 5, we know that the upper bounds in [2] are pretty tight in the low-

SNR region. It is hard to improve the upper bounds, but the gap between the lower bounds

and the numerical results is still large. We will now state new lower bounds on the capacity

of the channel defined in Section 2.2.

6.1 Lower Bounds with both an Average- and a Peak-Power

Constraint

Theorem 6.1. Assume the channel model (2.3) defined in Section 2.2 and assume that the

input is constrained by (2.6) and (2.7) where the average-to-peak-power ration α = E

A
lies

in (0, 1]. Then the channel capacity C(A, E) is bounded as follows:

C(A, αA) ≥ − log

((
1 − α

s

)2

2σ
√

π
+

(
α
s

)2

2σ
√

π
+

α
s

(
1 − α

s

)

σ
√

π
e
−

s2A
2

4σ2

)

− 1

2
log (2πeσ2), (6.1)

C(A, αA) ≥ − log

(
(1 − p1 − p2)

2

2σ
√

π
+

p1
2

2σ
√

π
+

p2
2

2σ
√

π

+
p1(1 − p1 − p2)

σ
√

π
e
−

(sA)2

4σ2 +
p2(1 − p1 − p2)

σ
√

π
e
−

A
2

4σ2

+
p1p2

σ
√

π
e
−

(sA+A)2

4σ2

)

− 1

2
log (2πeσ2). (6.2)

where s ∈ (α, 1) in (6.1) and p2 ∈ (0, α), s ∈ (α − p2, 1) in (6.2) are free parameter.

The new lower bounds (6.1) and (6.2) are depicted in Figure 6.1, 6.2, 6.3, and 6.4. In

these plots we have chosen the free parameters by numerical optimization.

Now we compare our new lower bounds with the previous results in [2] and see how

much we have improved.

22



6.1 Lower Bounds with Average- and Peak-Power Constraint Chapter 6

We start from the first case: input distribution satisfying average- and peak-power con-

straint. From Figure 6.1 with α = 0.02, we can see that we can get a little gain between

12 dB and 20 dB, but the bound is useless for SNR value below 12 dB.

From Figure 6.2 with α = 0.1, we can get more gain starting from 5 dB and the negative

value region is reduced. Besides, the ternary input distribution start to exceed the binary

input distribution about 12 dB.

From Figure 6.3 with α = 0.4, we can get even more gain starting from 2 dB and the

analytic lower bounds are getting close to the numerical lower bounds. Unfortunately, there

are still negative values below 2 dB, but in the region between 2 dB and 8 dB, we almost

reduce half of the distance between upper bound (4.2) and lower bound (4.1).

As the next case we describe input distributions which satisfy a strong peak-power and

an inactive average-power constraint. From Figure 6.4 with α = 0.5, we know that we can

reduce half of the distance between upper bound (4.8) and lower bound (4.7) in the region

between 2 dB and 9 dB, but we still have negative values below 1 dB.
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Figure 6.1: Bounds on the capacity of the free-space optical intensity channel with average-

and peak-power constraints for α = 0.02.
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Figure 6.2: Bounds on the capacity of the free-space optical intensity channel with average-

and peak-power constraints for α = 0.1.
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Figure 6.3: Bounds on the capacity of the free-space optical intensity channel with average-

and peak-power constraints for α = 0.4.
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Figure 6.4: Bounds on the capacity of the free-space optical intensity channel with strong

peak-power and inactive average-power constraint.
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6.2 Lower Bounds with an Average-Power Constraint Only

Theorem 6.2. Assume the channel model (2.3) defined in Section 2.2 and assume that

the input is constrained by an average-power constraint (2.7) (but no constraint on the peak

power). Then the channel capacity C(E) is bounded as follows:

C(E) ≥ − log

(
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2
log (2πeσ2), (6.3)
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e
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E
2

8p2σ2 . (6.4)

where p ∈ [0, 1] in the (6.3) and (6.4) are free parameters.

The new lower bounds (6.3) and (6.4) are depicted in Figure 6.5, where the free parameter

have been chosen by numerical optimization.

Next we discuss the input distribution which satisfies average-power constraint only. We

try two ways to find a new lower bound. In order to derive (6.3), we use Jensen’s inequality

in Lemma 3.4 to simplify the computation of entropy. From Figure 6.5 we improve the lower

bound between −5 dB and 3 dB, but we have negative values below −5 dB.

In order to derive (6.4), we try to use bounds to simplify the computation of h(Y ). We

divide the integration into several parts and find a close mathematical expressions for all

parts separately, then integrate them in order to get a approximate entropy. Although we

just get a little gain between −15 dB and −1 dB, we indeed improve our lower bound in

the region where we used to have negative values.

28



6.2 Lower Bounds with an Average-Power Constraint Only Chapter 6

−30 −20 −10 0 10 20 30
−0.2

0.3

0.8

1.3

1.8

2.3

2.8

3.3

3.8

4.3

4.8

5.3

5.8

 

 

A [dB]

C[
n
a
ts

p
er

ch
a
n
n
el

u
se

]

upper bound (4.13), numerically optimized
upper bound (4.12), numerically optimized
lower bound (4.11)
lower bound (6.4)
lower bound (6.3)

−40 −35 −30 −25 −20 −15 −10 −5 0 5 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

A [dB]

C[
n
at

s
p
er

ch
an

n
el

u
se

]

upper bound (4.13), numerically optimized
upper bound (4.12), numerically optimized
lower bound (4.11)
lower bound (6.4)
lower bound (6.3)

Figure 6.5: Bounds on the capacity of the free-space optical intensity channel just with

peak-power constraint.
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Chapter 7

Derivation of the Lower Bounds

The derivation of the lower bounds presented in Section 6 rely strongly on the Jensen’s

inequality in Lemma 3.4.

More specifically, the derivation of the lower bounds is based on the following ideas:

recall the definition of entropy

h(X) = −
∫

f(x) · log f(x) dx. (7.1)

It is hard to integrate the log(·) term, especially when f(x) is a summation of several

distributions. However, we observe that − log(·) is a convex function. So we can use

Jensen’s inequality to simplify the problem.

7.1 Lower Bound of Theorem 6.1

7.1.1 Lower Bound (6.1)

First we use the same input distribution as in (5.7) to calculate the output distribution. Us-

ing that the input distribution is independent of the noise, we can get the output distribution

from (2.3) as follows:

Rbin(y) =

∫
∞

−∞

fx(y − z) · fz(z) dz (7.2)

=
1 − α

s√
2πσ

e
−

y2

2σ2 +
α
s√
2πσ

e
−

(y−sA)2

2σ2 . (7.3)

We calculate the differential output entropy using Jensen’s inequality:

h(y) = −
∫

∞

−∞

Rbin(y) · log Rbin(y) dy

≥ − log

(∫
∞

−∞

Rbin(y) · Rbin(y) dy

)

︸ ︷︷ ︸

l1

. (7.4)
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We next expand l1 as follows:

l1 =

∫
∞

−∞

Rbin(y) · Rbin(y) dy

=

∫
∞

−∞

((
1 − α

s

)2

2πσ2
e
−

y2

σ2 +

(
α
s

)2

2πσ2
e
−

(y−sA)2

σ2

+
α
s

(
1 − α

s

)

πσ2
e
−

y2+(y−sA)2

2σ2

)

dy

=

(
1 − α

s

)2

2σ
√

π
+

(
α
s

)2

2σ
√

π
+

α
s

(
1 − α

s

)

σ
√

π
e−

s2A
2

4σ . (7.5)

Finally we get

C(A, αA) = h(Y ) − h(Y |X)

= h(Y ) − h(Z)

≥ −
(
1 − α

s

)2

2σ
√

π
+

(
α
s

)2

2σ
√

π
+

α
s

(
1 − α

s

)

σ
√

π
e−

s2A
2

4σ

− 1

2
log (2πeσ2) (7.6)

where s is chosen by computer simulation.

7.1.2 Lower Bound (6.2)

Next, we will calculate the ternary input distribution. We use the same way as (7.2) to get

the output distribution.

Rtri(y) =
(1 − p1 − p2)√

2πσ
e
−

y2

2σ2 +
p1√
2πσ

e
−

(y−sA)2

2σ2 +
p2√
2πσ

e
−

(y−A)2

2σ2 . (7.7)

We calculate the output entropy using Jensen’s inequality:

h(y) = −
∫

∞

−∞

Rtri(y) · log Rtri(y) dy

≥ − log

(∫
∞

−∞

Rtri(y) · Rtri(y) dy

)

︸ ︷︷ ︸

l2

. (7.8)

We next expand l2 as follows:

l2 =

∫
∞

−∞

Rtri(y) · Rtri(y) dy

=

∫
∞

−∞

(
(1 − p1 − p2)

2

2πσ2
e
−

y2

σ2 +
p1

2

2πσ2
e
−

(y−sA)2

σ2 +
p2

2

2πσ2
e
−

(y−A)2

σ2

+
(1 − p1 − p2)p1

πσ2
e
−

y2+(y−sA)

2σ2 +
(1 − p1 − p2)p2

πσ2
e
−

y2+(y−A)

2σ2
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+
p1p2

πσ2
e
−

(y−sA)2+(y−A)

2σ2

)

dy

=
(1 − p1 − p2)

2

2σ
√

π
+

p1
2

2σ
√

π
+

p2
2

2σ
√

π
+

p1(1 − p1 − p2)

σ
√

π
e
−

(sA)2

4σ2

+
p2(1 − p1 − p2)

σ
√

π
e
−

A
2

4σ2 +
p1p2

σ
√

π
e
−

(sA−A)2

4σ2 , (7.9)

then we get

C(A, αA) = h(Y ) − h(Y |X)

= h(Y ) − h(Z)

≥ − log

(
(1 − p1 − p2)

2

2σ
√

π
+

p1
2

2σ
√

π
+

p2
2

2σ
√

π

+
p1(1 − p1 − p2)

σ
√

π
e
−

(sA)2

4σ2 +
p2(1 − p1 − p2)

σ
√

π
e
−

A
2

4σ2

+
p1p2

σ
√

π
e
−

(sA+A)2

4σ2

)

− 1

2
log (2πeσ2). (7.10)

where s and p2 are chosen by computer simulation.

7.2 Lower Bound of Theorem 6.2

7.2.1 Lower Bound (6.3)

First we use the input distribution (5.13) to calculate the output distribution. By (2.3)

and we know that the input distribution is independent of noise, we can get the output

distribution:

Rno(y) =
1 − p√

2πσ
e
−

y2

2σ2 +
p√
2πσ

e
−

(y−E
p )2

2σ2 (7.11)

We calculate the output entropy using Jensen’s inequality:

h(y) = −
∫

∞

−∞

Rno(y) · log Rno(y) dy

≥ − log

(∫
∞

−∞

Rno(y) · Rno(y) dy

)

︸ ︷︷ ︸

l3

. (7.12)

We expand l3

l3 =

∫
∞

−∞

Rno(y) · Rno(y) dy

=

∫
∞

−∞

(

(1 − p)2

2πσ2
e
−

y2

σ2 +
p2

2πσ2
e
−

(y−E
p )2

σ2
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+
p(1 − p)

πσ2
e
−

y2+(y−E
p )2

2σ2

)

dy

=
(1 − p)2

2σ
√

π
+

p2

2σ
√

π
+

p(1 − p)

σ
√

π
e
−

E
2

4σp2 . (7.13)

Then we get

C(E) = h(Y ) − h(Y |X)

= h(Y ) − h(Z) (7.14)

≥ − log

(
(1 − p)2

2σ
√

π
+

p2

2σ
√

π
+

p(1 − p)

σ
√

π
e
−

E
2

4σp2

)

− 1

2
log (2πeσ2). (7.15)

where p is chosen by computer simulation.

7.2.2 Lower Bound (6.4)

We use the output distribution (7.11) and calculate the differential entropy.

h(Y ) = −
∫

∞

−∞

(

1 − p√
2πσ

e
−

y2

2σ2 +
p√
2πσ

e
−

(y−E
p )2

2σ2

)

·

· log

(

1 − p√
2πσ

e
−

y2

2σ2 +
p√
2πσ

e
−

(y−E
p )2

2σ2

)

dy

=
1

2
log 2πσ2 +

1

2σ2
E
[
Y 2
]

−
∫

∞

−∞

Rno(y) · log

(

1 − p + pe
Ey

pσ2 −
E
2

2σ2p2

)

dy

and the second moment of y is as follows

E
[
Y 2
]

= (1 − p)σ2 + p

(

σ2 +

(E
p

))

= σ2 +
E
p

and hence

h(Y ) =
1

2
log 2πσ2 +

1

2
+

E
2pσ2

−
∫

∞

−∞

Rno(y) · log

(

1 − p

(

1 − e
Ey

pσ2 −
E
2

2σ2p2

))

︸ ︷︷ ︸

g(y)

dy, (7.16)

We expand g(y) and try to find some bounds in different region of y.

g(y) , log

(

1 − p + pe
Ey

pσ2 −
E
2

2σ2p2

)

= log








p + (1 − p) · exp

(

− Ey

pσ2
+

E2

2σ2p2

)

︸ ︷︷ ︸

k1








︸ ︷︷ ︸

k2

+
Ey

pσ2
− E2

2σ2p2
. (7.17)
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In the first region we focus on k1: when k1 > 0, it will make the exponential term larger than

one and then k2 will be positive. When k1 < 0, it will make the exponential term smaller

than one and then k2 will be negative. So we now derive which y will make k1 smaller than

zero.

if − Ey

pσ2
+

E2

2σ2p2
≤ 0 =⇒ y ≥ pσ2

E · E2

2σ2p2
=

E
2p

, (7.18)

We approximate g(y) by linear functions as follows:
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Figure 7.1: Approximation of g(y) with p = 0.1 and E = 0.1 dB

g(y) ≤







log

(

1 − p + pe
−

E
2

2σ2p2

)

, y < 0,

− log

(

1 − p + pe
−

E
2

2σ2p2

)(
2py
E

− 1
)

, 0 ≤ y ≤ E

2p
,

Ey
pσ2 − E2

2σ2p2 , y ≥ E

2p
,

We define the shorthand κ , log

(

1 − p + pe
−

E
2

2σ2p2

)

. Then we get for the region
[

E

2p
,∞
)

∫
∞

E

2p

Rno(y) ·
( Ey

pσ2
− E2

2σ2p2

)

dy
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=

∫
∞

E

2p

(

1 − p√
2πσ2

e
−

y2

2σ2 +
p√

2πσ2
e
−

(y−E
p )

2

2σ2

)

·
( Ey

pσ2
− E2

2σ2p2

)

dy

=
(1 − p)E√
2πσ2pσ2

(

−σ2e
−

y2

2σ2

∣
∣
∣
∣

∞

E

2p

)

− E2(1 − p)

2σ2p2
Q
( E

2pσ

)

+

∫
∞

−
E

2p

p√
2πσ2

e
−

t2

2σ2

( Et

pσ2
+

E2

p2σ2
− E2

2p2σ2

)

dt

=
(1 − p)E√

2πσp
e
−

E
2

8p2σ2 − (1 − p)E2

2σ2p2
Q
( E

2pσ

)

+
pE√

2πσpσ2

(

−σ2e
−

t2

2σ2

∣
∣
∣
∣

∞

−
E

2p

)

+
E2p

2σ2p2

(

1 −Q
( E

2pσ

))

=
E√

2πσp
e
−

E
2

8p2σ2 +
E2

2σ2p2

(

p −Q
( E

2pσ

))

. (7.19)

For y ∈
[

0, E

2p

]

, we get

∫ E

2p

0
Rno(y) ·

(

log

(

1 − p + pe
−

E
2

2σ2p2

)

− 2pκ

E y

)

dy

= κ ·
∫ E

2p

0
Rno(y) dy − 2pκ

E

∫ E

2p

0
y · Rno(y) dy

= κ(1 − p)

(
1

2
−Q

( E
2pσ

))

+ κp

(

Q
( E

2pσ

)

−Q
( E

pσ

))

−2pκ

E
1 − p√

2πσ

(

−σ2e
−

y2

2σ2

∣
∣
∣
∣

E

2p

0

)

− 2pκ

E

∫
−

E

2p

E

p

(

t +
E
p

)

e
−

t2

2σ2
p√
2πσ

dt

=
κ(1 − p)

2
− κQ(

E
2pσ

) + 2κpQ(
E

2pσ
) − κpQ

( E
pσ

)

+
2pκ(1 − p)σ

E
√

2π

(

e
−

E
2

8p2σ2 − 1

)

− 2p2κ

E
√

2πσ

(

−σ2e
−

t2

2σ2

∣
∣
∣
∣

−
E

2p

−
E

p

)

− 2p2κ

E
E
p

(

Q
( E

2pσ

)

−Q
( E

pσ

))

=
κ(1 − p)

2
− κQ

( E
2pσ

)

+ κpQ
( E

pσ

)

+
2pκσ

E
√

2π
e
−

E
2

8p2σ2

− 2pκσ(1 − p)

E
√

2π
− 2p2κσ√

2πE
e
−

E
2

2p2σ2 . (7.20)

For y ∈
(

−∞, E

2p

]

, we get

∫ 0

−∞

κ · Rno(y) dy

=

∫ 0

−∞

κ(1 − p)√
2πσ

e
−

y2

2σ2 +
κp√
2πσ

e
−

(y−E
p )

2

2σ2 dy
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=
κ(1 − p)

2
+ κpQ

( E
pσ

)

(7.21)

Finally we plug (7.19), (7.20),and (7.21) into (7.16) and combine this with (7.14) we get the

following bound:

C(E) ≥ −
[

1 − p −Q
( E

2pσ

)

+ 2pQ
( E

pσ

)

+
2pσ

E
√

2π
e
−

E
2

8p2σ2

− 2p(1 − p)σ

E
√

2π
− 2p2σ

E
√

2π
e
−

E
2

2p2σ2

]

· log

(

1 − p + pe
−

E
2

2σ2p2

)

+
E2

2σ2p2
Q
( E

2pσ

)

− E√
2πσp

e
−

E
2

8p2σ2 . (7.22)

where p is chosen by computer simulation.
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Conclusion

In this thesis, we try two ways to obtain bounds on the channel capacity of the free-space

optical intensity channel. We first numerically evaluate a lower bound to capacity for small

to medium SNR. Comparing this bound with existing analytical upper and lower bounds we

realize that these known analytical upper bounds are relatively tight, while the analytical

lower bounds seem looser. Hence, we try to improve on the analytical lower bounds.

To that goal we try various approaches to simplify the task of computing the differential

entropy of the channel output under the assumption of a binary input distribution. One

approach is based on Jensen’s inequality. This turns out to be less powerful, particularly,

because we are interested in the low to medium SNR regime. Another way is to find linear

functions that closely approximate from above some difficult logarithmic term in the entropy

expression. This approach proved successful for a certain SNR regime.

A possible extension for future work is to use an input distribution having a slightly

larger alphabet size. It also would be interesting to find new approaches that could replace

the weak Jensen’s inequality.
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Appendix A

Jensen-Shannon Divergence

In this appendix, we will introduce an idea about improving our lower bound. From Chap-

ter 6 and 7, we know that Jensen’s inequality can help us to pull up medium SNR region’s

lower bound, but it also make the lower bound becoming negative in low SNR region. Here

we provide an idea which is potential to get a new lower bound.

After we doing numerical simulation in Chapter 5, we know that the discrete input

distribution performs well in low SNR region. So we try to analytical calculate this entropy,

but combinative distribution is not easy to calculate. From [4] and [5], the authors provide

a new way to calculate entropy of mixture of probability distributions. The way is Jensen-

Shannon divergence and the definition as follows:

∑

v

αvD(Pv‖Q) − D

(
∑

v

αvPv‖Q
)

(A.1)

where D(·‖·) is Kullback-Leibler divergence. From (A.1) we can modify some term and then

get the following result:

∑

v

αvD(Pv‖P ) =
∑

v

αvD(Pv‖Q) − D

(
∑

v

αvPv‖Q
)

(A.2)

= H

(
∑

v

αvPv

)

−
∑

v

αvH(Pv) (A.3)

where P =
∑

v αvPv. In our situation, P represents the output distribution, αvPv represents

the distribution of particular input signal which was disturbed by noise and Q is a free

parameter. So we can combine the definition of channel capacity and rewrite these equation

as follows:

C ≥ I(X; Y )

= H(Y ) − H(Y |X)

= H

(
∑

v

αvPv

)

−
∑

v

αvH(Pv) (A.4)
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So we can combine (A.1) and (A.4), and we can get the capacity.

Unfortunately, the way from [4] and [5] only works for discrete system, but our noise

is continue Gaussian noise. It can not help us in this situation, but if we can modify this

method, we may get a nice lower bound.
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