

 國 立 交 通 大 學

電信工程學系

碩 士 論 文

基於混合式擷取技術之碼率相容穿孔迴旋碼

Rate-Compatible Punctured Convolutional

Codes Based on Hybrid Puncturing Techniques

研究生：蔡維庭

指導教授：王忠炫 博士

中 華 民 國 九十八 年 二 月

基於混合式擷取技術之碼率相容穿孔迴旋碼

Rate-Compatible Punctured Convolutional

Codes Based on Hybrid Puncturing Techniques

研究生：蔡維庭 Student: Wei-Ting Tsai
指導教授：王忠炫 Advisor: Chung-Hsuan Wang

國立交通大學

電信工程學系碩士班

碩士論文

A Thesis
Submitted to Department of Communication Engineering

College of Electrical and Computer Engineering
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Communication Engineering

February, 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年二月

基於混合式擷取技術之碼率相容穿孔迴旋碼

學生：蔡維庭 指導教授：王忠炫

國立交通大學電信工程學系碩士班

摘要

 擷取技術是一種藉由週期性的刪除編碼器所產生的輸出，來達到提供迴旋碼

更彈性的碼率選擇。傳統的擷取技術可以分成兩大類：正規擷取或非正規擷取。

當編碼器的每一個輸出都對應到同樣的擷取周期時，吾人將其稱為正規擷取技

術。相反的，非正規擷取技術允許編碼器的每一個輸出都能對應到不同的擷取週

期。這兩種擷取技術都可以達到增加碼率選擇多樣性的目的。甚至於藉由使用非

正規擷取技術，還可獲得某些在正規擷取技術下所無法產生的碼率。經由加入碼

率相容規則，這些擷取技術可以用來產生碼率相容穿孔迴旋碼。在本篇論文中，

吾人發現可以經由混合正規及非正規擷取技術來組成新一種類的碼率相容穿孔

迴旋碼，此種碼率相容穿孔迴旋碼可以更進一步提供更多碼率的選擇性。此外，

相對於傳統的碼率相容穿孔迴旋碼，此類碼率相容穿孔迴旋碼也可提升錯誤更正

能力。相關的分析討論以及模擬結果也都會呈現在本論文中。最後，經由電腦搜

尋所彙整的新種類碼率相容穿孔迴旋碼結果，也將一併呈現。

 I

Rate-Compatible Punctured Convolutional Codes

Based on Hybrid Puncturing Techniques

Student: Wei-Ting Tsai Advisor: Chung-Hsuan Wang

Department of Communication Engineering

National Chiao Tung University

Abstract

Puncturing is a useful technique to provide more flexible code rates for convolutional

codes by deleting some outputs of the encoder periodically. Conventional puncturing tech-

niques can be divided into two scenarios: the regular or the irregular puncturing. When

each output of the encoder has the same puncturing period, it is called the regular punc-

turing technique. In contrast, the irregular puncturing technique allows that each output of

the encoder can have different puncturing periods. These two puncturing techniques both

can increase the variety of code rates. Moreover, some code rates which cannot obtained

with regular puncturing technique can be achieved by applying irregular puncturing tech-

nique. Both of these puncturing techniques can be modified for the generation of a family

of codes by adding a rate-compatible rule and these codes are named as rate-compatible

punctured convolutional (RCPC) codes. In this thesis, we show that the regular and the

irregular puncturing technique can be used together to construct a new subclass of RCPC

codes which can further offer more choices of code rates and error-correcting capabilities

can also be improved compared with the conventional RCPC codes. Both of the analytical

discussion and simulation results are also provided. Finally, tables of new RCPC codes are

also presented by computer search.

II

誌謝

 時光飛逝，轉眼間已經在交大度過了兩年半的研究所時光。在這兩年半的時

間裡，最要感謝的就是我的指導教授王忠炫博士。除了在研究領域上給予我諸多

建議以及方向指引，並訓練我在口語表達及文字運用上的精確嚴謹度，也教導了

我許多做人處事上應注意的態度，而且用最大的耐心來包容我這位資質駑鈍、時

常犯錯的學生。老師不僅是位經師也是位人師，沒有老師的心力投注，我也無法

在研究所期間得到如此多的成長。

 再來要感謝的是我的媽媽，她長期以來母代父職，一肩扛起支撐家庭的重

擔，感謝她的堅強跟無私的付出，成為支持我求學路上最有力的後盾。

 同時也要感謝我的弟弟，在我就學期間分擔家中的責任，幫媽媽分憂解勞，

因為他的成熟體恤，讓我能全心投入在課業當中。

 感謝本實驗室的大支柱子，大師兄。感謝他在自身研究繁忙之餘，還是樂於

回答我在研究觀念上或是程式上遇到的各種疑難雜症。在他身上，我看到一個充

滿著豐富涵養的靈魂，也看到了對學術追求的熱忱、對生活態度的堅持，以及人

類追求完美的無限潛能。

 感謝實驗室的學長們：小民、阿保、力仁、宏益、蓬麟、俊池、慶和。感謝

他們在我初到交大這個環境時，以最開放的心胸及最熱情的態度，幫助我融入這

個學校。他們對研究付出時的背影，也為我樹立了最好的典範。

 感謝實驗室的同伴：小白、一哥、阿尼、偉帆。一路走來，我們不僅在課業

上互相討論，也在研究的道路上互相勉勵扶持。不管是開心、難過、生氣、沮喪，

或是我們曾經合作過、奮鬥經歷過的人、事、物，這些我們共同分享過的一切，

是我永遠的美好回憶。

 感謝其他實驗室的夥伴：施施、Duck、小 P、晉豪、振偉。大家同是從外校

來到這個環境，從最初的彼此分享適應心得，到後來在研究過程中的彼此激勵。

我們的友誼在一次次的打屁吐嘈中更加深厚，沒有你們的參與，研究所時光將會

枯燥乏味。

 感謝我兩年來的室友: 文賢、大頭、明山。在茫茫人海中，我們竟然能同時

進入交大並且成為室友，真是一段難得的緣分。跟你們住在一起時的開伙時光、

宵夜時光、娛樂時光、聊天打屁時光，都讓我有如同住在家裡的溫馨感受。

 感謝實驗室的學弟妹們：郭胖、標、白兔。從你們身上，我認識到交大人何

以能成為交大人。看到了如何在生活與研究間取得平衡的最佳示範，也體認到成

熟的稻穗總是低垂的而真正的強者總是示弱的。

 最後要感謝的是我的女友：玉玲。身為一位電資科系研究生的女友，感謝她

願意犧牲美好的假日，陪伴我在實驗室度過研究的時光。更感謝她用愛及貼心陪

我度過這段研究所的歲月，謝謝妳!

 III

Contents

Chinese Abstract I

English Abstract II

Acknowledgement III

List of Figures VI

List of Tables VII

1 Introduction 1

1.1 Motivation . 1

1.2 Organization . 3

2 A Brief Review of Punctured Convolutional Codes 4

2.1 Conventional Punctured Convolutional Codes 4

2.2 Rational Rate Punctured Convolutional Codes 7

2.3 Rate-Compatible Punctured Convolutional (RCPC) Codes 8

3 Irregular Punctured Convolutional Codes and Hybird Puncturing Tech-

niques 13

3.1 Introduction of the Irregular Punctured Convolutional Codes 13

3.2 Analysis of the Irregular Punctured Convolutional Codes 15

3.3 Hybrid Puncturing Techniques . 18

3.4 General Form of Hybrid Puncturing Techniques 22

IV

4 Simulation Results 28

4.1 Better Performance Using Irregular Puncturing Method 28

4.2 New RCPC Families Based on Irregular Puncturing Method 31

4.3 RCPC Families Based on Hybrid Puncturing Techniques 33

4.4 UEP Simulations Based on Hybrid Puncturing Techniques 37

5 Conclusions 41

A Proof of General Form of Hybrid Puncturing Techniques 42

Bibliography 47

V

List of Figures

2.1 Encoder trellis for rate 2/3,memory=2 convolutional code. 5

2.2 Encoder trellis for rate 1/2,memory=2 punctured convolutional code. 6

2.3 Example of a punctured convolutional code with two rate compatible punc-

turing tables . 9

2.4 Example of UEP with RCPC codes according to the error protection require-

ments . 11

3.1 Illustrated example of the regular punctured convolutional codes 14

3.2 Example of the regular and the irregular puncturing table 18

3.3 General form of two puncturing tables with hybrid puncturing techniques . . 22

3.4 Construction 1 which might cause unreasonable code rates 24

3.5 Construction 2 which might cause unreasonable code rates 26

4.1 BER performance with regular and irregular puncturing methods for G =

[11 13 15] . 29

4.2 BER performance with regular and irregular puncturing methods for G =

[11 13 15 17] . 30

4.3 Average BER of source bits in different positions at signal-to-noise ratio 3.0

dB for UEP simulation 1. 38

4.4 Average BER of source bits in different positions at signal-to-noise ratio 3.5

dB for UEP simulation 2. 40

VI

List of Tables

4.1 New RCPC family based on irregular puncturing method with encoder of

memory 3 and 4 . 31

4.2 New RCPC family based on irregular puncturing method with encoder of

memory 5 and 6 . 32

4.3 RCPC families based on hybrid puncturing techniques of G = [23 35] with

period (4, 6) and (4, 4) . 33

4.4 RCPC families based on hybrid puncturing techniques of G = [23 35] with

period (6, 4) and (4, 4) . 34

4.5 RCPC families based on hybrid puncturing techniques of G = [23 35] with

period (6, 4) and (6, 6) . 35

4.6 RCPC families based on hybrid puncturing techniques of G = [23 35] with

period (4, 6) and (4, 4) . 36

VII

Chapter 1

Introduction

1.1 Motivation

As we know, convolutional code is a very popular coding technique which we have

already used in many communication systems. The most common decoding algorithm for

convolutional code is Viterbi decoder which uses trellis structure and add-compare-select

procedure to improve the performance of decoding. However, the decoding complexity of

Viterbi decoder increase with the number of input bits exponentially which often comes with

a high code rate and this makes the implementation of Viterbi decoder becomes impractical.

One way to solve this problem is to produce a high rate code by puncturing. The concept of

puncturing was first proposed by Cain et al. [1] and the basic idea is to delete certain coded

bits during transmission periodically. Through puncturing, we can generate an equivalent

high rate code from the original encoder and Viterbi decoding process can still be executed

in the original decoder as long as we ignore the deleted coded bits. It is a very important

observation which means we can use a simpler construction to decode a high rate coded

streams and the problem of high decoding complexity can be solved. Thus,it is clear that

puncturing technique is a useful tool for transmission and the later research show many

good high rate codes can be obtained by puncturing low rate codes [2] -[4].

For conventional communication system with channel coding, we often use a fix code

with certain rate and error correction capability to fulfill the required error probability and

achieve the goal of the transmission. Since high rate code can be obtained by puncturing,

1

we can choose the proper punctured codes to satisfy the need of the communication sys-

tems. However, there are more and more applications where it is required to protect data

with different error sensitivity during transmission. The most common examples include

broadcast channels, multiuser channels, and integrated voice and data transmission over

band-limited channels. Therefore, a channel coding scheme with unequal error protection

(UEP) is needed. One way to achieve an UEP scheme is to group the source output bits

according to their error sensitivity. In this way, we need to prepare different pairs of en-

coder and decoder to satisfy the demand of different protection levels. The complexity of

this scheme becomes impractical when the number of UEP levels increases. To avoid this

problem, a single encoder and decoder structure using puncturing technique can be used.

The advantage of puncturing is which it can flexibly adjust the error correction capability

of a channel code without changing the basic structure of the encoder and decoder and

increase the data rate of the system. We can see clearly that puncturing technique is a good

choice for the application of UEP. This is the basic concept of rate-compatible convolutional

(RCPC) codes which is proposed by Hagenauer [7]. A RCPC code is composed of a set

of encoder and decoder and a family of puncturing tables which fulfill the rate-compatible

rule. The rate-compatible rule implies that all coded bits of a high rate punctured code are

used by the lower rate codes; or in other words, the high rate codes are embedded into the

lower rate codes of the family. In this way, not only the different levels of error protection

of UEP scheme can be satisfied but also the error performance can be guaranteed during

the transition of code rates.

For the conventional punctured convolutional codes which we mentioned above, the

puncturing periods of each output streams are limited to be the same and we call these

regular punctured convolutional codes [1]-[4]. However, a different viewpoint is proposed in

[10] and the idea allows that each output streams has different puncturing period. In this

way, the designing flexibility of puncturing tables and the choices of possible code rates after

puncturing increase significantly. Irregular puncturing technique provides us opportunities

to find some undiscovered punctured codes which may have better performance than regular

2

punctured ones and shows another way to form a RCPC family. In fact, we will present

many new RCPC families which are found by computer search under the construction of

irregular puncturing in this thesis.

We already know that RCPC codes play an important role in the application of UEP and

a RCPC family can be established by regular or irregular puncturing. However, the previous

research about RCPC family were only focus on single puncturing technique, regular or

irregular [7]-[10]. It means that the puncturing technique and the puncturing period of each

output streams are restricted when we want to form a RCPC family. Here, we propose a new

concept, hybrid puncturing technique, to build a RCPC family with different puncturing

methods. By using hybrid puncturing technique, we can ignore the restrictions of single

puncturing technique and the same period of each output streams. We can choose regular

and irregular puncturing tables together to compose a RCPC family and the puncturing

periods of each output streams do not need to be the same. Obviously, the number of

candidates which can be used to form a RCPC family will be increased and more variety of

combinations will also be presented.

1.2 Organization

The organization of this thesis is as follows. In chapter 2, a review of conventional punc-

tured convolutional codes and RCPC codes is presented. Analysis of irregular puncturing

method and the detail discussion of hybrid puncturing technique is given in chapter 3. Sim-

ulation results are presented in chapter 4. Remarks are given in chapter 5 to conclude this

work.

3

Chapter 2

A Brief Review of Punctured
Convolutional Codes

2.1 Conventional Punctured Convolutional Codes

As we know,the most common decoding method for convolutional codes is the Viterbi

algorithm. For Viterbi algorithm, the decoding complexity depends on the number of the

states and the number of the branches entering to each state. However, for the standard

convolutional code with the code rates R = k/n, where k is the number of input bits and n

is the number of output coded bits, the branch complexity of the decoding trellis increases

exponentially with k. This makes the resulting comparison and selection of the path with the

best metric much more difficult. To solve the problem of the decoding complexity increasing

for high rate code, a modified form of high rate code, called a punctured convolutional code

was introduced by Cain,Clark, and Geist [1]. A rate R = (n−1)/n punctured convolutional

code is obtained by periodically deleting or puncturing certain bits from the codewords of

rate R = 1/2 mother code. In this way, a punctured convolutional code is based on the trellis

structure of the low rate mother code and remove some coded output bits on the branches

during the state transitions. Hence, the trellis structure of a punctured convolutional code

has only two branches leaving each state and these corresponding output coded bits can then

be decoded using the Viterbi algorithm with roughly the same decoding complexity as the

rate R = 1/2 mother code. It is an exciting observation because, in the rate R = (n− 1)/n

punctured code, only two branches enter each state, and thus only one binary comparison

4

Figure 2.1: Encoder trellis for rate 2/3,memory=2 convolutional code.

is performed at each state, rather than 2(n−1) − 1 binary comparisons required to decode a

standard rate R = (n−1)/n code. Therefore, we can make a high rate code avoid increasing

decoding complexity through the puncturing technique.

Here, we propose a example to illustrate the procedure of making a high rate code by

puncturing the low rate mother code. The trellis structure for a standard rate R = 2/3 code

is shown in Figure 2.1. In decoding this code using the Viterbi algorithm in the conventional

manner,a total of three binary comparisons must be made at each state for decoding every

two information bits. Another trellis structure with the same rate which is obtained by

deleting one transmitted symbol every two branches and the deleted symbol is denoted by

an x is shown in Figure 2.2. A Viterbi decoder for this rate R = 2/3 punctured code would

operate exactly like the decoder for the rate R = 1/2 mother code, except that no metrics

would be computed for the deleted symbols. Thus, the metric computation would involve

two symbols on half the branches, and only one symbol on the other half. In each two branch

section of the decoding trellis for the punctured code, a total of two binary comparisons

per state are required to decode two information bits. Hence, decoding the rate R = 2/3

punctured code, based on the simpler structure of the rate R = 1/2, is less complex than

5

Figure 2.2: Encoder trellis for rate 1/2,memory=2 punctured convolutional code.

decoding a standard rate R = 2/3 code.

From above, we know that the puncturing process is to achieve high rate code by deleting

some coded bits of the low rate code periodically and we often use the puncturing tables

to describe the behavior of periodic deletion or reservation. In most cases, the puncturing

tables is indicated using a 2×T binary matrix A,where T is the puncturing period, the first

row of A indicates the bits deleted from the first encoded sequence, and the second row of

A indicates the bits to be deleted from the second encoded sequence. In the matrix A, a

0 indicates a bit to be deleted and a 1 indicates a bit to be transmitted. For example, in

Figure 2.2 , we can see that there are one coded bit to be deleted on every two branches in

the first encoded sequence and all coded bits are reserved in the second encoded sequence.

Thus, the puncturing table are given by

A =

⎛
⎝ 1 0

1 1

⎞
⎠

In this way, we can describe the periodic and repeated process of deleting coded bits in a

clear and easy understanding manner.

6

2.2 Rational Rate Punctured Convolutional Codes

As we mentioned above, a punctured convolutional code with rate (n−1)/n is introduced

to simplify maximum-likelihood (Viterbi) decoding and punctured codes are obtained by

periodically deleting bits from the low rate mother code. In the beginning, the research

about punctured convolutional codes [1] - [4] was only focused on codes with rate (n−1)/n,

n = 3, 4, ..., and the other rates such as k/n, k = 2, 3, ..., n > k are not mentioned. It

causes that we may lost some opportunities to find the good punctured convolutional codes

whose performance are as good as the known convolutional codes at the certain rate except

for rate (n − 1)/n. In [5], a punctured convolutional code with rate k/n is proposed as

rational rate punctured convolutional code and it implements by treating the punctured

convolutional code as a convolutional code with the time-varying encoder. In this way,

we can see that there are different output coded bits from the different encoders on the

separate branches and we have different combinations of the number of the coded bits on

each branch according to the puncturing tables. For this kind of coded bits combinations,

we call it branch partitions.

To provide punctured convolutional code of rate k/n, k = 2, 3, ..., n > k , we consider all

possible partitions of n by numbers l1, ..., lk, 0 < lk < n and
∑k

i=1 li = n. For example, to

obtain k/n = 3/5, we introduce two sets of branch partitions 5 = 2+2+1 and 5 = 3+1+1.

We can see that there are total 5 output coded bits needed and the numbers on the right

side of the equal mark show us how many coded bits are transmitted together on one

branch. From above, if the partition 5 = 2 + 2 + 1 is used, coded bits corresponding to the

first and the second output are transmitted on the same branch of the trellis; coded bits

corresponding to the third and the fourth output are transmitted on the other branch; and

the fifth output is transmitted on the separate branch. Hence, we produce total 5 output

bits in 3 time units where one information bit incomes the encoder in one time unit and

the needed code rate 3/5 is created successfully. In this way, we can treat this rational rate

punctured convolutional code as a time-varying convolutional code with 3 different encoders

7

periodically and each encoder may has different number of output bits. The feature of the

rational rate punctured convolutional code is to provide a different view about conventional

punctured convolutional codes. From this viewpoint, what we do to delete or reserve the

output coded bits according to the puncturing tables is similar to transmit output coded

bits from the different encoders on each branch cyclically. Therefore, we can achieve any

rational rate k/n other than (n−1)/n by arranging our branch partitions properly according

to the desired value of k and n.

2.3 Rate-Compatible Punctured Convolutional (RCPC)

Codes

From what we mentioned above, we have known that we can reduce the decoding com-

plexity of the high rate code by puncturing the low rate code output bits to achieve the rate

we need with a simpler trellis structure. Furthermore, rational rate punctured convolutional

codes are purposed due to the need of more flexible choices while choosing the code rate.

Rational rate punctured convolutional codes provide us a different viewpoint to describe

the behavior of the punctured convolutional codes. No matter conventional punctured con-

volutional codes or rational punctured convolutional codes, they are only concern about a

system with a particular code rate error correcting code.

As we know, the design of an error correction coding system usually consists of select-

ing a fixed code with a certain rate and correction capability matched to the protection

requirement of all the data to be transmitted. However, in many cases, one would like to

be more flexible because the data to be transmitted have different error protection needs,

for example, speech or video transmission. To achieve this goal, we wish to change the

code rate and hence the correction power of the code during transmission of an information

frame according to source and channel needs. The simplest way is that we prepare several

error control codes with different code rates according to the different needs of protection.

However, it will lead us into a situation that the user must prepare many sets of encoder

and decoder at the transmitter and receiver and the system complexity raises as the number

8

Figure 2.3: Example of a punctured convolutional code with two rate compatible puncturing
tables

of sets of encoder and decoder increasing. For practical purpose, we would like to have not

just switching between a set of encoders and decoders, but one encoder and one decoder

which can be modified without changing their basic structure. This can be achieved by not

transmitting certain code bits by puncturing the code.

The conventional punctured convolutional code which we mentioned above is to obtain

a certain high rate code by deleting some transmitted code bits of a low rate code. In

applications where it is necessary to support two or more different code rates, it is sometimes

convenient to make use of rate-compatible punctured convolutional (RCPC) codes [7]. The

word rate-compatible means that the high rate coded streams are embedded in the low

rate coded streams. Therefore, a RCPC code is a set of two or more convolutional codes

punctured from the same mother code in such a way that the codewords of a lower rate

code can be obtained from the codewords of a higher rate code simply by adding additional

bits. In other words, the set of puncturing tables must be such that the puncturing table

of a lower rate code is obtained from the puncturing table of a higher rate code by simply

changing some of 0’s to 1’s.

For example, if a puncturing table which result in a rate R = 4/5 for the mother code is

A(1) =

⎡
⎣ 1 1 1 0

1 0 0 1

⎤
⎦

Suppose the code rate with 4/5 and puncturing table A(1) is not powerful enough to correct

9

the channel errors. A more redundant and therefore more powerful code with lower rate

4/6, 4/7, or 4/8 would be necessary. Instead of transmitting all the code bits of a completely

different low rate code, the lower rate code should utilize the bits already transmitted. Then

only additional incremental redundancy bits have to be transmitted. Additional “1” ’s in the

puncturing tables of the lower rate codes can therefore be placed only where zeros appeared

in the puncturing table of the previous higher rate code, for example,

A(2) =

⎡
⎣ 1 1 1 0

1 1 0 1

⎤
⎦ ,A(3) =

⎡
⎣ 1 1 1 1

1 1 0 1

⎤
⎦ ,A(4) =

⎡
⎣ 1 1 1 1

1 1 1 1

⎤
⎦

Thus, for A(1) to A(4), we get a rate-compatible family of codes derived from the mother

code 1/2 with rates 4/5, 4/6, 4/7, 4/8 which use only incremental redundancy. This prop-

erty is particularly convenient in two-way communication systems involving retransmission

requests, where the initial transmission uses a high rate punctured code and then, if the

transmission is unsuccessful, punctured bits are sent during later transmissions, resulting in

a more powerful lower rate code for decoding.

• General definition of RCPC codes

A family of RCPC codes is described by the mother code of rate R = 1/n where n is the

number of the output bits and the puncturing period p determines the range of code rate

R = p/(p + u) u = 1 . . . (n− 1)p

between p/(p + 1) and 1/n. The RCPC codes are punctured codes of the low rate mother

code with the puncturing tables

A(u) =

⎛
⎜⎜⎝ aij(u)

⎞
⎟⎟⎠ : n× p matrix

with pij(a) ∈ (0, 1) where 0 implies puncturing.

10

Here, we summarize the rate-compatible rule for each element in the puncturing tables

⎧⎪⎪⎨
⎪⎪⎩

if aij(u0) = 1 then pij(u) = 1 for all u ≥ u0 ≥ 1

if aij(u0) = 0 then pij(u) = 0 for all u ≤ u0 ≤ (n− 1)p− 1

Following the rule above, we can guarantee that the high rate coded streams must be

embedded in the low rate coded streams.

Figure 2.4: Example of UEP with RCPC codes according to the error protection require-
ments

The most popular application of RCPC codes is unequal error protection (UEP) which

means an information sequence or block need different levels of error protection ability.

To achieve the goal of UEP, we first divide the information sequences into several groups

according to the need of protection requirements and arrange these groups in the order of

the protection levels. Next, we choose the proper RCPC family with different puncturing

tables A(u) to fit the requirements of each group and transmit the data of groups which

needs the less protection level first and the most one last as in Figure 2.4. Due to the

property of the punctured codes, we only have to prepare the same encoder and decoder

structure in the transmitter and the receiver respectively.

11

While transmitting UEP requested information sequences with RCPC codes, there is

still one criterion that should be considered with the rate-compatible rule, soft-switching

criterion. As we see in Figure 2.4, the UEP information bits are ordered from higher rate

codes to lower rate codes and soft-switching criterion take effect at the boundary of the

adjacent groups. When we transmit the UEP information data, we will find that not all

groups has a data length which equals the period or an integer multiple of the period of the

corresponding puncturing table. If we allow the corresponding tables of the adjacent data

groups switch directly,i.e. hard-switching, it may result in a unpredictable loss of codeword

distance which violates the spirit of UEP that provides enough protection ability each group

needs.

Instead of hard-switching, soft-switching means that even when the adjacent data group

switch, we will keep transmitting data according to higher rate puncturing table and not

switch to lower rate puncturing table immediately until we reach the end of higher rate

puncturing table. If two punctured codes without the restriction of rate-compatible rule

and soft-switching criterion are used at the boundary of the two adjacent UEP groups, it

can happen that a transitional path has a distance which is even lower than the distance

of the same path within the higher rate code. This would lead to a bad behavior in the

transition region. As long as we obey rate-compatible rule and soft-switching criterion, we

can guarantee that the path across the boundary of the adjacent groups has a distance

which is at least the distance of the same path within the higher rate code and at most the

distance of the same path within the lower rate code. In this way, it can be guaranteed that

the request of UEP can be satisfied.

12

Chapter 3

Irregular Punctured Convolutional
Codes and Hybird Puncturing
Techniques

In this chapter, we propose a new method to produce the punctured convolutional codes,

named irregular punctured convolutional codes which is distinguished from the conventional

method. First, we will introduce the concept of the irregular punctured convolutional codes

and the process of producing the irregular punctured convolutional codes will be demon-

strated. With the idea of the irregular punctured convolutional codes is introduced, we will

discuss the difference between the irregular and the conventional method.

Furthermore, the cooperation of the irregular and the conventional punctured convo-

lutional codes will be mentioned and the combining rule is also described. Following the

rule which is designed for the cooperation of the irregular and the conventional punctur-

ing method, we develop a more general view for not only the cooperation of the different

puncturing methods but also the single puncturing method. The details of this chapter are

discussed as follows.

3.1 Introduction of the Irregular Punctured Convolu-

tional Codes

In the beginning, we want to make a definition of the regular punctured convolutional

codes which contrast with the irregular punctured convolutional codes. From what we

13

Figure 3.1: Illustrated example of the regular punctured convolutional codes

mentioned in chapter 2, the example of the conventional punctured convolutional codes is

shown in Figure 3.1 and the puncturing behavior can be described as a 2 × 3 puncturing

matrix A.

Thus, the puncturing table for Figure 3.1 is

A =

⎛
⎝ 1 0 1

1 1 0

⎞
⎠

As we explained in chapter 2, the puncturing table of the conventional punctured con-

volutional codes is a n × p matrix, where n is the number of the output coded bits, often

be 2 and p is the puncturing period. The first row of the matrix indicates the deleting

bits corresponding to the first output bits and the second row indicates the deleting bits

corresponding to the second output bits. When we observe the first and the second row

of the puncturing table corresponding to the Figure 3.1, we can find that these two rows

have the same puncturing period, 3. This observation shows us the basic definition of the

regular punctured convolutional codes is that each row in the matrix has the same punc-

turing period. So far, literatures on puncturing were based on the scheme with the same

puncturing period for all output streams of convolutional encoders. Here, we propose a new

puncturing scheme for convolutional codes which allows each output coded bit has different

14

puncturing period and there will exist rows with different lengths in the puncturing matrix.

For example, a puncturing table

A′ =

⎛
⎝ 1 0 1

0 1 1 1

⎞
⎠

can be used to describe the irregular punctured convolutional codes.

3.2 Analysis of the Irregular Punctured Convolutional

Codes

Consider a (n, k) parent code C with ci,t denoting the output coded bit of the ith

output stream of encoder at time t, ∀ 0 ≤ i ≤ n. For the regular puncturing table A, it can

be defined as a n × p matrix which indicates the transmitting and the deleting positions

corresponding to each output stream. Accordingly, children codes with the following code

rates can be obtained:

kp/(kp + l), ∀ 1 ≤ l ≤ (n− k) (3.1)

However, most research on the regular puncturing often interests in small puncturing pe-

riod, where p ≤ 9 and this causes less variety of code rates [7] -[9]. For the irregular

puncturing, we allow each output stream of the encoder has its own puncturing period.

Let p0, p1, . . . ,pn−1 be the puncturing period corresponding to n output streams of the en-

coder and let φ0, φ1, . . . ,φn−1 be the numbers of non-zero entries in rows of the irregular

puncturing table A′. In general, the child code generated by A′ has code rate

k/

n−1∑
i=0

φi

pi
(3.2)

For example, consider a (2,1) parent code C with the following codeword matrix⎛
⎝ c0,0 c0,1 c0,2 c0,3 c0,4 c0,5 c0,6 c0,7 c0,8 c0,9 c0,10 c0,11 . . .

c1,0 c1,1 c1,2 c1,3 c1,4 c1,5 c1,6 c1,7 c1,8 c1,9 c1,10 c1,11 . . .

⎞
⎠

in which the (i, j)th entry indicates the coded bit of the ith encoder output at time j.

Puncturing C with a single period p = 4 can only generate children codes of code rate

4/5, 2/3, 4/7, and 1/2

15

by (3.1). However, suppose C is now punctured by

A′ =

⎛
⎝ 1 0 1

0 1 1 1

⎞
⎠

with (p0, p1) = (3, 4) and (φ0, φ1) = (2, 3). The codeword matrix after puncturing by A′

turns to be⎛
⎝ c0,0 × c0,2 c0,3 × c0,5 c0,6 × c0,8 c0,9 × c0,11 . . .

× c1,1 c1,2 c1,3 × c1,5 c1,6 c1,7 × c1,9 c1,10 c1,11 . . .

⎞
⎠ (3.3)

where × marked as the deleting coded bits during the transmission. The resulting child

code has code rate 12/17 by (3.2). Moreover, for all possible irregular puncturing tables

with (p0, p1) = (3, 4), the available rates of children codes are

12/13∗, 6/7∗, 4/5, 3/4∗, 12/17∗, 2/3, 3/5∗, 4/7, and 1/2

where the rates marked by ∗ are unavailable for the single puncturing period p = 4 with

the same encoder. It should be mentioned that we have max(p0, p1) = p in this case and

it results in that no extra hardware or computation overheads would be paid compared

with the regular puncturing methods during the process of implementation. In addition, as

shown in Example 1, we can find some child codes under the construction of the irregular

puncturing method which may generate the optimal free distance and are unobtainable by

the conventional puncturing with the same puncturing complexity.

Example 1: Consider a parent code C with the generator matrix [D3 + 1 D3 + D +

1 D3 + D2 + 1] (i.e. ,[11 13 15] in octal). Based on the conventional puncturing with

p = 3, the optimal rate-3/5 child code of free distance 4 is obtained by puncturing C with

[5]

A1 =

⎛
⎜⎜⎝

0 1 0

0 0 1

1 1 1

⎞
⎟⎟⎠

However, suppose C is punctured by

A2 =

⎛
⎜⎜⎝

1 0

0 1 1

0 1 0

⎞
⎟⎟⎠

16

with irregular periods (p0, p1, p2) = (2, 3, 3), which requires the same puncturing complexity

as A1 since max(p0, p1, p2) = p. The resulting child code also has code rate 3/5 but sur-

prisingly achieves a larger free distance 5 and this result shows that we have the chance to

find a child code with a better free distance through the irregular puncturing way under the

same puncturing complexity.

Recall the irregular puncturing table A′ we mentioned above. Repeating its first row

four times and the second row three times, we can obtain a puncturing table with puncturing

period p = 12:⎛
⎝ 1 0 1

0 1 1 1

⎞
⎠ =⇒

⎛
⎝ 1 0 1 1 0 1 1 0 1 1 0 1

0 1 1 1 0 1 1 1 0 1 1 1

⎞
⎠

Suppose a (2, 1) parent code is punctured by the above p = 12 puncturing table; the

consequent child code is equivalent to the punctured code with the codeword matrix in

(3.3). In general, it can be shown that an irregular puncturing matrix A with periods

(p0, p1, · · · , pn−1)is equivalent to the conventional puncturing table with a period of the

least common multiple of (p0, p1, · · · , pn−1) (denoted by lcm(p0, p1, · · · , pn−1)) whose rows

comprise copies of the corresponding rows of A. Therefore, puncturing a parent code with

small irregular puncturing periods can achieve the same puncturing effect as the conventional

puncturing scheme with large periods, which also explains why our design may perform

better under the condition of max(p0, p1, · · · , pn−1)≤ p.

In addition, the most research literatures about the good RCPC codes are focused on

the small puncturing periods (p ≤ 8) because a direct search of the puncturing tables with

large periods usually results in enormous computational complexity which overtakes what

a practical system can afford. However, a special kind of puncturing tables with irregular

periods such as (8, 7) can reach the equivalent puncturing effect made by the conventional

scheme with a large regular period such as 56. If a (n, k) parent code is punctured by

the conventional puncturing table with large period p, we can search the puncturing tables

with irregular periods (p0, p1, · · · , pn−1) under the restriction that pi ≤ p ∀0 ≤ i ≤ n and

lcm(p0, p1, · · · , pn−1)≥ p instead of executing a direct search with large period. In this way,

17

Figure 3.2: Example of the regular and the irregular puncturing table

the search complexity can be reduced substantially. Irregular puncturing thus provides

a practical alternative for searching good high rate punctured codes which are originally

obtained by puncturing in the conventional way with extremely large periods.

3.3 Hybrid Puncturing Techniques

From the previous two sections, we can understand the definition of the irregular punc-

turing convolutional codes and the difference between the irregular and the regular punc-

turing. With the features of the irregular puncturing, more flexible choices of code rates can

be provided and it also gives us more opportunities to find a better free distance than which

the regular puncturing method can achieve under the same puncturing complexity. The

original purpose of puncturing is to reduce the decoding complexity of a high rate code and

we can change the code rates of children codes by adjusting the elements in the puncturing

table, i.e. 0 or 1. Due to the variability of code rate of the punctured codes, the application

to UEP (unequal error protection) has been proposed by Hagenauer, named RCPC codes

[7]. However, the RCPC families which were found in [7] and [9] are all only focused on the

regular puncturing case. In this thesis, the RCPC families based on the irregular puncturing

tables will be presented and we can have more choices to find the suitable RCPC family for

the UEP application.

No matter the RCPC family is found based on the regular or the irregular puncturing

tables, we only pay attention to the unique puncturing method. Therefore, we extend our

research to discuss the possibility of cooperation of these two puncturing methods instead

of concerning single method only. In this way, we can use a more flexible choices to compose

a RCPC family by using different puncturing methods. We begin with Figure 3.2 where

18

Areg means the regular puncturing table with the single puncturing period p1 and table Airr

means the irregular puncturing table with two different period (p1, p2), where p1 > p2. First,

we want to focus on the case which p1 and p2 are not relatively prime (i.e., gcd(p1, p2) �= 1).

To simplify our discussion, let p1 = 6 and p2 = 4. The elements in the rows of length p1

and p2 are

p1 : (a1a2a3a4a5a6)

p2 : (b1b2b3b4)
(3.4)

As we mentioned above, an irregular puncturing table with puncturing period (p0, p1, · · · , pn−1)

has the same puncturing effect as a regular table with period lcm(p0, p1, · · · , pn−1). So, we

expand the length of these two rows to lcm(p0, p1, · · · , pn−1).

(a1a2a3a4a5a6) =⇒ (a1 a2 a3 a4 a5 a6 a1 a2 a3 a4 a5 a6)

(b1b2b3b4) =⇒ (b1 b2 b3 b4 b1 b2 b3 b4 b1 b2 b3 b4)
(3.5)

Let us check the corresponding position of each elements. We can find that b1 will meet a1,

a3 and a5 and the relations of other elements can also be observed.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b1 ↔ a1 a3 a5

b2 ↔ a2 a4 a6

b3 ↔ a1 a3 a5

b4 ↔ a2 a4 a6

(3.6)

Through our observation, b1 and b3 meet the same elements in the rows of ai’s and so as b2

and b4. So, we need to discuss the rate-compatible situation of this group⎧⎨
⎩

(b1 b3) ↔ (a1 a3 a5)

(b2 b4) ↔ (a2 a4 a6)
(3.7)

We can recall the rate-compatible rule which we mentioned before.⎧⎪⎪⎨
⎪⎪⎩

if aij(u0) = 1 then pij(u) = 1 for all u ≥ u0 ≥ 1

if aij(u0) = 0 then pij(u) = 0 for all u ≤ u0 ≤ (n− 1)p− 1

(3.8)

When the row of bj ’s is at higher code rate and we want to make row of ai’s rate-compatible

at lower rate. In such case, (3.8) shows us that ai can be 0 or 1 if bj is 0 and ai can only be

19

1 if bj is 1. Following this rule, we can have the table:

high rate → low rate

p2 p1

(b1b2b3b4) (a1a2a3a4a5a6)

(b1b3) (a1a3a5)

(0 0) all

(0 1) (1 1 1)

(1 0) (1 1 1)

(1 1) (1 1 1)

(b2b4) (a2a4a6)

(0 0) all

(0 1) (1 1 1)

(1 0) (1 1 1)

(1 1) (1 1 1)

(3.9)

When the row of bj ’s is at lower code rate and row of ai’s is at higher rate. The rule tells us

that ai can be 0 or 1 if bj is 1 and ai can only be 0 if bj is 0. Also, we can have the following

table:

low rate → high rate

p2 p1

(b1b2b3b4) (a1a2a3a4a5a6)

(b1b3) (a1a3a5)

(0 0) (0 0 0)

(0 1) (0 0 0)

(1 0) (0 0 0)

(1 1) all

(b2b4) (a2a4a6)

(0 0) (0 0 0)

(0 1) (0 0 0)

(1 0) (0 0 0)

(1 1) all

(3.10)

From (3.9) and (3.10), we can figure out the elements in the rows of p1 and p2 to achieve

the rate-compatible situation like what we demonstrate below and the × mark means that

20

it can be 0 or 1.

high rate → low rate

p2 p1

(b1b2b3b4) (a1a2a3a4a5a6)

(0001)

(0100)

(0101)

(x 1 x 1 x 1)

(0010)

(1000)

(1010)

(1 x 1 x 1 x)

(0011) (0110)

(0111) (1001)

(1100) (1101)

(1011) (1110)

(1 1 1 1 1 1)

low rate → high rate

p2 p1

(b1b2b3b4) (a1a2a3a4a5a6)

(1010)

(1011)

(1110)

(x 0 x 0 x 0)

(0101)

(0111)

(1101)

(0 x 0 x 0 x)

(0001) (0100)

(0010) (0011)

(0110) (1000)

(1001) (1100)

(0 0 0 0 0 0)

(3.11)

As long as the tables of puncturing patterns for two different case are established, the only

thing we have to do is to choose the proper patterns for ai’s and bj ’s and the rate-compatible

rule will be satisfied naturally.

Next, we continue to discuss the case which p1 and p2 are relatively prime (i.e., gcd(p1, p2) =

1). Just like gcd(p1, p2) �= 1 case, we let p1 = 4 and p2 = 3 to simplify discussion.

(a1a2a3a4) =⇒ (a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4)

(b1b2b3) =⇒ (b1 b2 b3 b1 b2 b3 b1 b2 b3 b1 b2 b3)
(3.12)

The relations between ai’s and bj ’s can also be explored.

⎧⎪⎪⎨
⎪⎪⎩

b1 ↔ a1 a2 a3 a4

b2 ↔ a1 a2 a3 a4

b3 ↔ a1 a2 a3 a4

(3.13)

From the above relations, there is one group that we need to concern.

(b1 b2 b3) ↔ (a1 a2 a3 a4) (3.14)

21

Figure 3.3: General form of two puncturing tables with hybrid puncturing techniques

The tables of puncturing patterns are listed as:

low rate → high rate

p2 p1

(b1b2b3) (a1a2a3a4)

(1 1 1) all

others (0 0 0 0)

high rate → low rate

p2 p1

(b1b2b3) (a1a2a3a4)

(0 0 0) all

others (1 1 1 1)

(3.15)

From the above example, we can see that no matter gcd(p1, p2) is relatively prime or not, we

still can discuss the rate-compatible condition by dividing the elements into several groups

according to the corresponding position.

3.4 General Form of Hybrid Puncturing Techniques

In the above section, two illustrated examples are proposed to explain how to satisfy rate-

compatible rule between two different puncturing period rows. However, the examples which

we show are limited in the number of output coded bits n = 2. Now, a general form of hybrid

puncturing which composed of two puncturing tables corresponding to n output coded bits.

In A1 and A1, the corresponding puncturing period of each rows are (p11, p12, · · · , p1n) and

(p21, p22, · · · , p2n) respectively as shown in Fig. 3.3. Therefore, the rate-compatible problem

of two puncturing table with different puncturing period is extended to a more general view.

The detail procedure of proof is omitted temporarily and will be presented in appendix later.

Here, we demonstrate the concept about how to achieve rate-compatible situation in general

22

form briefly. In fact, we do not need to be confused with increasing of the number of output

coded bits. When rate-compatible situation is needed to be satisfied, the only thing that

we have to do is take each pair of row p1j and row p2j out and discuss the relations between

the elements in these two rows just like previous section. A result which we found in the

procedure of proof is the elements in row p1j and row p2j can be absolutely divided into

gcd(p1j, p2j) groups. In this way, we only need to consider the different rate-compatible

situations in each corresponding pair of groups and form the possible puncturing patterns

according to the combined result of each groups. With the same procedure, we notice that

the hybrid skill between rows with different periods is not only for regular and irregular case

but also regular and regular case and irregular and irregular case. This discovery allows us

to establish a RCPC family with more choices of puncturing methods and the corresponding

puncturing periods. Here, we present a practical example.

Example:

period=(4,4)

A1 =

⎛
⎝ 0 1 1 1

1 1 1 1

⎞
⎠ rc = 4/7 ∗

A2 =

⎛
⎝ 0 1 0 1

1 1 1 1

⎞
⎠ rc = 4/6

A3 =

⎛
⎝ 0 1 0 0

1 1 1 1

⎞
⎠ rc = 4/5 ∗∗

mark period A possible code rates

∗ (6,6)

⎛
⎝ × 1 × 1 × 1

1 1 1 1 1 1

⎞
⎠ 12/18, 12/20, 12/22, 12/24

∗∗ (4,3) (0101)/(0100)/(0001) 12/14, 12/15, 12/18

(001)/(010)/(100)/(011)/(101)/(110)/(111)

This example shows us a period (4, 4) RCPC family and the mark ∗ and ∗∗ indicates that

23

A1 and A3 can be substituted by other puncturing tables with different puncturing periods.

The table below lists the candidates which can be used to replace A1 and A3 respectively

and the puncturing periods and the possible code rates are also listed in the table. From

the example, a simple and practical application of hybrid puncturing technique is presented

and the choices of puncturing period and code rates which can be used to form a RCPC

family increase certainly. More examples of the application of hybrid puncturing techniques

will be presented in chapter 4.

In the process of our discussion, some useful results such as the above example are

discovered. However, there is an important issue which is deserved to pay our attention.

This issue is that some unreasonable code rates might occur when we try to build a RCPC

family with puncturing tables which have different periods by using hybrid puncturing

techniques. Here, we propose two constructions which are already known that might result

in unreasonable code rates during the process of our discussion.

Figure 3.4: Construction 1 which might cause unreasonable code rates

In Figure 3.4, there are three puncturing tables A1,A2 and A3 which are arranged from

lower code rate to higher code rate and the arrow line connects the two different period

rows which achieve rate-compatible rule. To illustrate this kind of condition, we let p1 = 6

and p2 = 4 and the proper puncturing tables and the possible code rates can be obtained

24

under this assumption.

no. puncturing tables

A1

⎛
⎝ × 1 × 1 × 1

1 0 1 1 /1 1 1 0

⎞
⎠ or

⎛
⎝ 1 × 1 × 1 ×

0 1 1 1 /1 1 0 1

⎞
⎠

possible code rates: 12/15, 12/17,12/19,12/21

A2

⎛
⎝ × 1 × 1 × 1

× 0 × 0 × 0

⎞
⎠ or

⎛
⎝ 1 × 1 × 1 ×

0 × 0 × 0 ×

⎞
⎠

possible code rates: 12/14,12/16,12/18

A3

⎛
⎝ 0 0 0 1 /0 1 0 0

× 0 × 0 × 0

⎞
⎠ or

⎛
⎝ 0 0 1 0 /1 0 0 0

0 × 0 × 0 ×

⎞
⎠

possible code rates: 12/9,12/7,12/5

We notice that the possible code rates of table A3 are all bigger than 1 and these

are all unreasonable rates. As we know, these unreasonable code rates cannot be used

in the practical application due to the bad error protection ability. Furthermore, another

construction which may also cause a unreasonable rate is shown in Figure 3.5.

25

Figure 3.5: Construction 2 which might cause unreasonable code rates

In the construction which we present in Figure 3.5, it is an example that we form a RCPC

family by taking regular puncturing tables with different periods together. For convenience,

we let p1 = 6 and p2 = 4, too.

no. puncturing tables

A1

⎛
⎝ × 1 × 1 × 1

1 0 1 0 1 0 /0 1 0 1 0 1

⎞
⎠ or

⎛
⎝ 1 × 1 × 1 ×

1 0 1 0 1 0 /0 1 0 1 0 1

⎞
⎠

possible code rates: 12/14,12/16,12/18

A2

⎛
⎝ 0 1 0 1

1 0 1 0

⎞
⎠ or

⎛
⎝ 1 0 1 0

0 1 0 1

⎞
⎠

possible code rates: 12/12

A3

⎛
⎝ 1 0 1 0 1 0 /0 1 0 1 0 1

× 0 × 0 × 0

⎞
⎠ or

⎛
⎝ 1 0 1 0 1 0 /0 1 0 1 0 1

0 × 0 × 0 ×

⎞
⎠

possible code rates: 12/12,12/10,12/8

Obviously, not only table A3 but also A2 would cause unreasonable code rates in this

construction. The above two constructions remind us that the unreasonable code rates is

an important issue while using hybrid puncturing techniques because some undesired rates

may be produced under the specific constructions. Due to the amounts of the constructions

which can use hybrid puncturing techniques are huge, we cannot list the all possibilities of

26

the constructions which may result in unreasonable rates. Therefore, the only thing we have

to do to prevent unreasonable code rates is to discuss the possible rates of the puncturing

tables in the construction first. In this way, we can own the benefit of hybrid puncturing

techniques without tolerating the risk of generating the undesired code rates.

27

Chapter 4

Simulation Results

In this chapter, we will present the simulation results which correspond to what we

mentioned before. First of all, some examples of better free distance and BER performance

under the irregular puncturing method are presented. Second, new searching results of

irregular RCPC family will be listed. Finally, some results which are based on hybrid

puncturing techniques are presented.

4.1 Better Performance Using Irregular Puncturing

Method

Result 1:

G = [D3 + 1 D3 + D + 1 D3 + D2 + 1] ([11 13 15] in octal)

Areg =

⎛
⎜⎜⎝

0 1 0

0 0 1

1 1 1

⎞
⎟⎟⎠ df = 4 code rate=3/5

Airr =

⎛
⎜⎜⎝

1 0

0 1 1

0 1 0

⎞
⎟⎟⎠ df = 5 code rate=6/9

28

3 3.5 4 4.5 5 5.5 6 6.5 7
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

B
it

E
rr

or
 R

at
e

E
b
/N

0
 (dB)

G=[11 13 15] regular table
G=[11 13 15] irregular table

Figure 4.1: BER performance with regular and irregular puncturing methods for G =
[11 13 15]

Result 2:

G = [D3 + 1 D3 + D +1 D3 +D2 +1 D3 + D2 +D +1] ([11 13 15 17] in octal)

Areg =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 1

0 0 1 0 0

1 1 0 0 0

0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎠ df = 4 code rate=5/7

Airr =

⎛
⎜⎜⎜⎜⎜⎝

0 1

1 0

0 0 1 0 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ df = 5 code rate=5/7

29

4.5 5 5.5 6 6.5 7 7.5 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

B
it

E
rr

or
 R

at
e

E
b
/N

0
 (dB)

G=[11 13 15 17] regular table
G=[11 13 15 17] irregular table

Figure 4.2: BER performance with regular and irregular puncturing methods for G =
[11 13 15 17]

30

4.2 New RCPC Families Based on Irregular Punctur-

ing Method

Here, we present the table of new RCPC families from irregular puncturing method and

the memory of parent code is from 3 to 6.

G(D) = [15 17] , df = 6, rc = 1/2

(p0, p1) A df rc

(3,4)

(
1 1 0
1 1 1 1

)
4 3

5(
1 1 0
1 1 1 0

)
2 12

17(
1 1 0
1 0 1 0

)
1 6

7

(5,4)

(
1 1 0 1 1
1 1 1 1

)
5 5

9(
1 0 0 1 1
1 1 1 1

)
4 5

8(
1 0 0 0 1
1 1 1 1

)
3 5

7(
0 0 0 0 1
1 1 1 1

)
2 5

6

(5,4)

(
1 1 1 1 1
1 0 1 1

)
4 4

7(
1 1 1 1 1
1 0 1 0

)
4 4

6(
0 1 1 1 1
1 0 1 0

)
2 10

13(
0 0 1 1 1
1 0 1 0

)
2 10

11

(6,5)

(
1 0 1 1 1 1
1 1 1 1 1

)
5 6

11(
0 0 1 1 1 1
1 1 1 1 1

)
5 6

10(
0 0 0 1 1 1
1 1 1 1 1

)
4 6

9(
0 0 0 0 1 1
1 1 1 1 1

)
3 6

8(
0 0 0 0 0 1
1 1 1 1 1

)
2 6

7

(6,5)

(
1 1 1 1 1 1
1 1 1 0 1

)
5 5

9(
1 1 1 1 1 1
1 0 1 0 1

)
4 5

8(
1 1 1 1 1 1
0 0 1 0 1

)
3 5

7(
1 1 1 1 1 1
0 0 1 0 0

)
3 5

6

(7,6)

(
1 0 1 1 1 1 1
1 1 1 1 1 1

)
5 7

13(
0 0 1 1 1 1 1
1 1 1 1 1 1

)
5 7

12(
0 0 1 0 1 1 1
1 1 1 1 1 1

)
4 7

11(
0 0 1 0 1 0 1
1 1 1 1 1 1

)
3 7

10(
0 0 1 0 1 0 1
1 1 1 0 1 1

)
2 42

53

(7,6)

(
1 1 1 1 1 1 1
1 1 1 1 0 1

)
5 42

77(
0 1 1 1 1 1 1
1 1 1 1 0 1

)
4 42

71(
0 1 1 1 1 1 1
1 0 1 1 0 1

)
3 42

64(
0 0 1 1 1 1 1
1 0 1 1 0 1

)
2 42

58(
0 0 0 1 1 1 1
1 0 1 1 0 1

)
2 42

52

(a) Parent code of memory 3

G(D) = [23 35] , df = 7, rc = 1/2

(p0, p1) A df rc

(4,3)

(
1 0 1 1
1 1 1

)
5 4

7(
1 0 1 0
1 1 1

)
4 4

6(
1 0 1 0
0 1 1

)
3 6

7

(5,4)

(
1 1 1 1 1
1 1 1 0

)
5 4

7(
1 1 1 1 1
1 0 1 0

)
4 4

6(
1 1 0 1 1
1 0 1 0

)
3 20

26

(5,4)

(
1 1 0 1 1
1 1 1 1

)
5 5

9(
1 1 0 0 1
1 1 1 1

)
3 5

8(
0 1 0 0 1
1 1 1 1

)
3 5

7

(6,5)

(
1 1 1 1 1 1
1 0 1 1 1

)
5 5

9(
1 1 1 1 1 1
1 0 1 1 0

)
5 5

8(
1 1 1 1 1 1
0 0 1 1 0

)
4 5

7(
1 1 1 1 1 1
0 0 1 0 0

)
3 5

6

(6,5)

(
1 1 0 1 1 1
1 1 1 1 1

)
5 6

11(
0 1 0 1 1 1
1 1 1 1 1

)
4 6

10(
0 1 0 1 0 1
1 1 1 1 1

)
4 6

9(
0 1 0 1 0 1
1 1 0 1 1

)
3 10

13

(6,7)

(
1 0 1 1 1 1
1 1 1 1 1 1 1

)
5 6

11(
1 0 1 0 1 1
1 1 1 1 1 1 1

)
4 6

10(
1 0 1 0 1 1
0 1 1 1 1 1 1

)
2 21

32(
1 0 1 0 1 1
0 1 0 1 1 1 1

)
2 21

29(
1 0 1 0 1 0
0 1 0 1 1 1 1

)
2 14

17(
1 0 1 0 1 0
0 1 0 0 1 1 1

)
1 14

15

(7,6)

(
1 1 1 1 1 1 1
1 0 1 1 1 1

)
6 6

11(
1 1 1 1 1 1 1
1 0 1 1 1 0

)
5 6

10(
1 1 1 1 1 1 0
1 0 1 1 1 0

)
4 21

32(
0 1 1 1 1 1 0
1 0 1 1 1 0

)
3 21

29(
0 1 1 1 1 1 0
1 0 1 0 1 0

)
3 14

17

(7,6)

(
1 1 1 1 0 1 1
1 1 1 1 1 1

)
5 7

13(
0 1 1 1 0 1 1
1 1 1 1 1 1

)
5 7

12(
0 1 0 1 0 1 1
1 1 1 1 1 1

)
4 7

11(
0 1 0 0 0 1 1
1 1 1 1 1 1

)
3 7

10(
0 1 0 0 0 0 1
1 1 1 1 1 1

)
3 7

9

(b) Parent code of memory 4

Table 4.1: New RCPC family based on irregular puncturing method with encoder
of memory 3 and 4

31

G(D) = [53 75] , df = 8, rc = 1/2

(p0, p1) A df rc

(4,3)

(
0 1 1 1
1 1 1

)
6 4

7(
0 1 0 1
1 1 1

)
6 4

6(
0 1 0 0
1 1 1

)
4 4

5

(4,3)

(
1 1 1 1
0 1 1

)
5 3

5(
1 1 1 1
0 1 0

)
4 3

4(
1 0 1 1
0 1 0

)
4 12

13

(4,5)

(
1 1 1 0
1 1 1 1 1

)
6 4

7(
1 0 1 0
1 1 1 1 1

)
6 4

6(
1 0 0 0
1 1 1 1 1

)
4 4

5(
1 0 0 0
1 1 1 1 0

)
2 20

21

(5,4)

(
1 1 1 1 0
1 1 1 1

)
6 5

9(
1 1 1 0 0
1 1 1 1

)
5 5

8(
1 0 1 0 0
1 1 1 1

)
5 5

7(
0 0 1 0 0
1 1 1 1

)
4 5

6

(5,4)

(
1 1 1 1 1
1 1 0 1

)
6 4

7(
1 1 1 1 1
0 1 0 1

)
5 4

6(
1 0 1 1 1
0 1 0 1

)
3 20

26(
1 0 0 1 1
0 1 0 1

)
2 20

22

(6,5)

(
1 1 1 1 1 0
1 1 1 1 1

)
6 6

11(
1 0 1 1 1 0
1 1 1 1 1

)
6 6

10(
1 0 1 0 1 0
1 1 1 1 1

)
6 6

9(
1 0 1 0 0 0
1 1 1 1 1

)
4 6

8

(7,6)

(
1 0 1 1 1 1 1
1 1 1 1 1 1

)
6 7

13(
0 0 1 1 1 1 1
1 1 1 1 1 1

)
6 7

12(
0 0 1 1 1 0 1
1 1 1 1 1 1

)
5 7

11(
0 0 1 0 1 0 1
1 1 1 1 1 1

)
5 7

10

(7,6)

(
1 1 1 1 1 1 1
1 1 0 1 1 1

)
6 6

11(
1 1 1 1 1 1 1
0 1 0 1 1 1

)
5 6

10(
1 1 1 1 1 1 1
0 1 0 1 0 1

)
5 6

9(
1 1 1 1 1 1 1
0 0 0 1 0 1

)
4 6

8

(a) Parent code of memory 5

G(D) = [133 171] , df = 10, rc = 1/2

(p0, p1) A df rc

(4,3)

(
1 1 0 1
1 1 1

)
7 4

7(
0 1 0 1
1 1 1

)
5 4

6(
0 0 0 1
1 1 1

)
4 4

5

(4,3)

(
1 1 1 1
1 0 1

)
7 12

20(
1 1 0 1
1 0 1

)
5 12

17(
0 1 0 1
1 0 1

)
3 12

14

(5,4)

(
1 1 1 1 0
1 1 1 1

)
7 5

9(
0 1 1 1 0
1 1 1 1

)
5 5

8(
0 0 1 1 0
1 1 1 1

)
4 5

7(
0 0 1 1 0
1 1 1 0

)
3 20

23

(6,5)

(
1 1 1 1 1 0
1 1 1 1 1

)
8 6

11(
1 1 0 1 1 0
1 1 1 1 1

)
7 6

10(
1 1 0 0 1 0
1 1 1 1 1

)
5 6

9(
0 1 0 0 1 0
1 1 1 1 1

)
4 6

8

(6,5)

(
1 1 1 1 1 1
1 1 1 0 1

)
7 5

9(
1 1 1 1 1 1
1 1 1 0 0

)
6 5

8(
1 1 1 1 1 1
0 1 1 0 0

)
5 5

7(
1 0 1 1 1 1
0 1 1 0 0

)
3 30

37

(7,6)

(
1 1 1 1 1 1 1
1 1 0 1 1 1

)
8 6

11(
1 1 1 1 1 1 1
1 1 0 1 1 0

)
7 6

10(
0 1 1 1 1 1 1
1 1 0 1 1 0

)
5 42

64(
0 1 1 0 1 1 1
1 1 0 1 1 0

)
4 42

58(
0 0 1 0 1 1 1
1 1 0 1 1 0

)
3 42

52

(7,6)

(
0 1 1 1 1 1 1
1 1 1 1 1 1

)
7 7

13(
0 1 1 1 1 1 1
1 1 0 1 1 1

)
6 42

71(
0 1 1 1 1 1 1
1 0 0 1 1 1

)
5 42

64(
0 1 1 1 1 1 1
1 0 0 0 1 1

)
4 42

57(
0 0 1 1 1 1 1
1 0 0 0 1 1

)
3 42

51

(b) Parent code of memory 6

Table 4.2: New RCPC family based on irregular puncturing method with en-
coder of memory 5 and 6

32

4.3 RCPC Families Based on Hybrid Puncturing Tech-

niques

In this part, we present some RCPC families which are searched based on hybrid punc-

turing techniques. The original RCPC families which are composed in single puncturing

method and period are listed and the puncturing tables which can be substituted by dif-

ferent puncturing method or period are also indicated. To achieve better performance,the

puncturing tables which we choose to replace original ones are limited to has a better free

distance than the replaced ones.
G = [23 35]

original family new family
period A df rc period A df rc

(4, 6)
(

1 1 1 0
1 1 1 1 0 1

)
4 12

19 (4, 6)
(

1 1 1 0
1 1 1 1 0 1

)
4 12

19(
1 1 1 0
0 1 1 1 0 1

)
4 12

17 (4, 6)
(

1 1 1 0
0 1 1 1 0 1

)
4 12

17(
1 1 1 0
0 0 1 1 0 1

)
∗ 2 12

15 (4, 4)
(

1 1 1 0
0 1 0 1

)
3 12

15(
1 1 1 0
0 0 0 1 0 1

)
2 12

13 (4, 6)
(

1 1 1 0
0 0 0 1 0 1

)
2 12

13

(4, 6)
(

1 1 0 1
0 1 1 1 1 1

)
4 12

19 (4, 6)
(

1 1 0 1
0 1 1 1 1 1

)
4 12

19(
1 1 0 1
0 1 1 1 0 1

)
3 12

17 (4, 6)
(

1 1 0 1
0 1 1 1 0 1

)
3 12

17(
1 1 0 1
0 0 1 1 0 1

)
∗ 2 12

15 (4, 4)
(

1 1 0 1
1 0 1 0

)
3 12

15(
1 1 0 1
0 0 0 1 0 1

)
1 12

13 (4, 6)
(

1 1 0 1
0 0 0 1 0 1

)
1 12

13

(4, 6)
(

0 1 1 1
1 1 1 0 1 1

)
4 12

19 (4, 6)
(

0 1 1 1
1 1 1 0 1 1

)
4 12

19(
0 1 1 1
1 1 1 0 1 0

)
4 12

17 (4, 6)
(

0 1 1 1
1 1 1 0 1 0

)
4 12

17(
0 1 1 1
1 1 0 0 1 0

)
∗ 3 12

15 (4, 4)
(

0 1 1 1
1 0 1 0

)
3 12

15(
0 1 1 1
1 0 0 0 1 0

)
2 12

13 (4, 6)
(

0 1 1 1
1 0 0 0 1 0

)
2 12

13

(4, 6)
(

1 1 0 1
1 0 1 1 1 1

)
4 12

19 (4, 6)
(

1 1 0 1
1 0 1 1 1 1

)
4 12

19(
1 1 0 1
1 0 1 1 1 0

)
4 12

17 (4, 6)
(

1 1 0 1
1 0 1 1 1 0

)
4 12

17(
1 1 0 1
1 0 1 1 0 0

)
∗ 3 12

15 (4, 4)
(

1 1 0 1
1 0 1 0

)
3 12

15(
1 1 0 1
1 0 1 0 0 0

)
2 12

13 (4, 6)
(

1 1 0 1
1 0 1 0 0 0

)
2 12

13

Table 4.3: RCPC families based on hybrid puncturing techniques of G = [23 35]
with period (4, 6) and (4, 4)

33

G = [23 35]
original family new family

period A df rc period A df rc

(6, 4)
(

0 1 1 1 1 1
1 0 1 1

)
4 12

19 (6, 4)
(

0 1 1 1 1 1
1 0 1 1

)
4 12

19(
0 1 0 1 1 1
1 0 1 1

)
3 12

17 (6, 4)
(

0 1 0 1 1 1
1 0 1 1

)
3 12

17(
0 1 0 1 1 0
1 0 1 1

)
∗ 2 12

15 (4, 4)
(

0 1 0 1
1 0 1 1

)
3 12

15(
0 1 0 1 0 0
1 0 1 1

)
1 12

13 (6, 4)
(

0 1 0 1 0 0
1 0 1 1

)
1 12

13

(6, 4)
(

1 1 1 1 0 1
1 1 1 0

)
4 12

19 (6, 4)
(

1 1 1 1 0 1
1 1 1 0

)
4 12

19(
1 1 0 1 0 1
1 1 1 0

)
3 12

17 (6, 4)
(

1 1 0 1 0 1
1 1 1 0

)
3 12

17(
1 0 0 1 0 1
1 1 1 0

)
∗ 2 12

15 (4, 4)
(

0 1 0 1
1 1 1 0

)
3 12

15(
0 0 0 1 0 1
1 1 1 0

)
1 12

13 (6, 4)
(

0 0 0 1 0 1
1 1 1 0

)
1 12

13

(6, 4)
(

1 0 1 1 1 1
0 1 1 1

)
4 12

19 (6, 4)
(

1 0 1 1 1 1
0 1 1 1

)
4 12

19(
1 0 1 0 1 1
0 1 1 1

)
3 12

17 (6, 4)
(

1 0 1 0 1 1
0 1 1 1

)
3 12

17(
0 0 1 0 1 1
0 1 1 1

)
∗ 2 12

15 (4, 4)
(

1 0 1 0
0 1 1 1

)
3 12

15(
0 0 1 0 1 0
0 1 1 1

)
1 12

13 (6, 4)
(

0 0 1 0 1 0
0 1 1 1

)
1 12

13

(6, 4)
(

1 1 1 1 1 0
1 1 0 1

)
4 12

19 (6, 4)
(

1 1 1 1 1 0
1 1 0 1

)
4 12

19(
1 0 1 1 1 0
1 1 0 1

)
3 12

17 (6, 4)
(

1 0 1 1 1 0
1 1 0 1

)
3 12

17(
1 0 1 1 0 0
1 1 0 1

)
∗ 2 12

15 (4, 4)
(

1 0 1 0
1 1 0 1

)
3 12

15(
1 0 1 0 0 0
1 1 0 1

)
1 12

13 (6, 4)
(

1 0 1 0 0 0
1 1 0 1

)
1 12

13

Table 4.4: RCPC families based on hybrid puncturing techniques of G = [23 35]
with period (6, 4) and (4, 4)

34

G = [23 35]
original family new family

period A df rc period A df rc

(6, 4)
(

1 1 1 1 1 1
1 0 1 1

)
5 12

21 (6, 4)
(

1 1 1 1 1 1
1 0 1 1

)
5 12

21(
0 1 1 1 1 1
1 0 1 1

)
4 12

19 (6, 4)
(

0 1 1 1 1 1
1 0 1 1

)
4 12

19(
0 1 1 1 1 1
0 0 1 1

)
∗ 2 12

16 (6, 6)
(

0 1 1 1 1 1
1 0 1 0 1 0

)
3 12

16(
0 1 1 1 1 1
0 0 1 0

)
1 12

13 (6, 4)
(

0 1 1 1 1 1
0 0 1 0

)
1 12

13

(6, 4)
(

1 1 1 1 1 1
0 1 1 1

)
5 12

21 (6, 4)
(

1 1 1 1 1 1
0 1 1 1

)
5 12

21(
0 1 1 1 1 1
0 1 1 1

)
4 12

19 (6, 4)
(

0 1 1 1 1 1
0 1 1 1

)
4 12

19(
0 1 1 1 1 1
0 0 1 1

)
∗ 2 12

16 (6, 6)
(

0 1 1 1 1 1
0 1 0 1 0 1

)
3 12

16(
0 1 1 1 1 1
0 0 0 1

)
2 12

13 (6, 4)
(

0 1 1 1 1 1
0 0 0 1

)
2 12

13

(6, 4)
(

1 1 0 1 1 1
1 1 1 1

)
5 12

22 (6, 4)
(

1 1 0 1 1 1
1 1 1 1

)
5 12

22(
1 1 0 1 1 1
0 1 1 1

)
4 12

19 (6, 4)
(

1 1 0 1 1 1
0 1 1 1

)
4 12

19(
1 1 0 0 1 1
0 1 1 1

)
∗ 2 12

17 (6, 6)
(

1 1 0 1 1 1
0 1 0 1 0 1

)
3 12

16(
1 1 0 0 0 1
0 1 1 1

)
∗ 2 12

15 (6, 4)
(

1 1 0 1 1 1
0 1 0 0

)
2 12

13

(6, 4)
(

1 1 1 1 1 1
1 1 0 1

)
5 12

21 (6, 4)
(

1 1 1 1 1 1
1 1 0 1

)
5 12

21(
1 1 0 1 1 1
1 1 0 1

)
4 12

19 (6, 4)
(

1 1 0 1 1 1
1 1 0 1

)
4 12

19(
1 1 0 0 1 1
1 1 0 1

)
∗ 2 12

17 (6, 6)
(

1 1 0 1 1 1
0 1 0 1 0 1

)
3 12

16(
0 1 0 0 1 1
1 1 0 1

)
∗ 2 12

15 (6, 4)
(

1 1 0 1 1 1
0 0 0 1

)
2 12

13

Table 4.5: RCPC families based on hybrid puncturing techniques of G = [23 35]
with period (6, 4) and (6, 6)

35

G = [23 35]
original family new family

period A df rc period A df rc

(4, 6)
(

1 1 1 0
1 1 1 1 0 1

)
4 12

19 (4, 6)
(

1 1 1 0
1 1 1 1 0 1

)
4 12

19(
1 1 1 0
0 1 1 1 0 1

)
4 12

17 (4, 6)
(

1 1 1 0
0 1 1 1 0 1

)
4 12

17(
1 1 1 0
0 0 1 1 0 1

)
∗ 2 12

15 (4, 4)
(

1 1 1 0
0 1 0 1

)
3 12

15(
1 1 1 0
0 0 0 1 0 1

)
2 12

13 (4, 6)
(

1 1 1 0
0 0 0 1 0 1

)
2 12

13

(4, 6)
(

1 1 0 1
0 1 1 1 1 1

)
4 12

19 (4, 6)
(

1 1 0 1
0 1 1 1 1 1

)
4 12

19(
1 1 0 1
0 1 1 1 0 1

)
3 12

17 (4, 6)
(

1 1 0 1
0 1 1 1 0 1

)
3 12

17(
1 1 0 1
0 0 1 1 0 1

)
∗ 2 12

15 (4, 4)
(

1 1 0 1
1 0 1 0

)
3 12

15(
1 1 0 1
0 0 0 1 0 1

)
∗ 1 12

13 (4, 6)
(

1 1 0 1
1 0 0 0 1 0

)
2 12

13

Table 4.6: RCPC families based on hybrid puncturing techniques of G = [23 35]
with period (4, 6) and (4, 4)

36

4.4 UEP Simulations Based on Hybrid Puncturing Tech-

niques

Since we have proposed some RCPC families which are composed by hybrid puncturing

techniques, we want to testify the UEP performance of these families. Here, two simulation

results are demonstrated follows.

Simulation 1:

In this simulation, we use two different RCPC families to satisfy the request of UEP.

One is composite of irregular puncturing tables as follows.

G = [D4 + D + 1 D4 + D3 + D2 + 1]([23 35] in octal)

period=(6, 4)

A1 =

⎛
⎝ 0 1 1 1 1 1

0 0 1 0

⎞
⎠ df = 1 rc = 12/13

A2 =

⎛
⎝ 0 1 1 1 1 1

0 0 1 1

⎞
⎠ df = 2 rc = 12/16

A3 =

⎛
⎝ 0 1 1 1 1 1

1 0 1 1

⎞
⎠ df = 4 rc = 12/19

A4 =

⎛
⎝ 1 1 1 1 1 1

1 0 1 1

⎞
⎠ df = 5 rc = 12/21

Now, we want to build a new RCPC family with hybrid puncturing techniques and a regular

puncturing table Areg is inserted to replace irregular puncturing table A2.

period=(6,6)

Areg =

⎛
⎝ 0 1 1 1 1 1

1 0 1 0 1 0

⎞
⎠ df = 3 rc = 3/4

37

5 10 15 20 25 30 35 40 45
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Bit Number

A
ve

ra
ge

 B
E

R

original RCPC
hybrid RCPC

A
1

A
2

A
reg

A
3 A

4

Figure 4.3: Average BER of source bits in different positions at signal-to-noise ratio 3.0 dB
for UEP simulation 1.

In Figure 4.3, x-axis represents the position of source bits in a super frame and y-axis

represents average BER corresponding to the ith source bit. The corresponding puncturing

table of each group of data is noted in the bottom of the figure and the solid lines denote

the designed BERs of the children codes. Suppose there are four groups of data and each

contain 12 bits in a super frame and four extra all-zero bits are appended at the end of every

super frame. When the puncturing table A2 is replaced by Areg, the average BER of each

source bits in the second data group decreases. This observation results from the difference

of the free distances which are generated by the child code according to the puncturing table

A2 and Areg. Therefore, we can obtain a new RCPC family which has better performance

as long as we choose the proper puncturing tables based on hybrid puncturing techniques.

The next simulation also demonstrate a improvement of average BER due to replacement

38

of puncturing tables according to hybrid puncturing techniques.

Simulation 2:

We use the same encoder G = [23 35] and the irregular RCPC family is as follows.

period=(4, 6)

A1 =

⎛
⎝ 1 1 0 1

0 0 0 1 0 1

⎞
⎠ df = 1 rc = 12/13

A2 =

⎛
⎝ 1 1 0 1

0 0 1 1 0 1

⎞
⎠ df = 2 rc = 12/15

A3 =

⎛
⎝ 1 1 0 1

0 1 1 1 0 1

⎞
⎠ df = 3 rc = 12/17

A4 =

⎛
⎝ 1 1 0 1

0 1 1 1 1 1

⎞
⎠ df = 4 rc = 12/19

We let puncturing table Areg replace A2 and the simulation result shows in Figure 4.4.

Obviously, we can expect that the improvement of performance due to the increase of free

distance will occur.

period=(4,4)

Areg =

⎛
⎝ 1 1 0 1

1 0 1 0

⎞
⎠ df = 3 rc = 4/5

39

5 10 15 20 25 30 35 40 45
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Bit Number

A
ve

ra
ge

 B
E

R

original RCPC
hybrid RCPC

5 10 15 20 25 30 35 40 45
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Bit Number

A
ve

ra
ge

 B
E

R

A
2

A
regA

1 A
3 A

4

Figure 4.4: Average BER of source bits in different positions at signal-to-noise ratio 3.5 dB
for UEP simulation 2.

40

Chapter 5

Conclusions

As we know, puncturing skill is a popular technique especially for convolutional codes.

By adopting this technique, the high rate code can be achieved from the low rate code

and the increase of decoding complexity can be avoid. The most common application

of punctured convolutional codes is RCPC codes which is composed of one encoder, one

decoder and several puncturing tables. RCPC codes play a huge role in speech and video

transmission especially in UEP. In conventional way, each output stream has the same

puncturing period and this case is named as regular puncturing. On the other side, if we

allow that each output stream has different puncturing period, then irregular puncturing

method is created. A lot of new and undiscovered RCPC families based on the irregular

puncturing method are presented in this thesis.

However, the RCPC families which we discussed so far are focus on single puncturing

method: regular or irregular. Therefor, a new concept named hybrid puncturing techniques

is proposed in our thesis. We can take regular and irregular puncturing tables together

to form a RCPC family easily through the discussion of hybrid puncturing techniques.

Moreover, a general view of hybrid puncturing techniques is explored so that the puncturing

tables with arbitrary puncturing periods can be combined to establish a RCPC family.

Finally, examples of RCPC families which result from hybrid puncturing techniques are

demonstrated and some simple UEP simulations based on hybrid puncturing techniques are

also presented.

41

Appendix A

Proof of General Form of Hybrid
Puncturing Techniques

In chapter 3, we have introduced the concepts of hybrid puncturing techniques and

proposed several examples to illustrate. Those examples which we proposed in chapter 3

were limited the number of the output bits to n = 2 for simplification. Now, we want to

discuss a more general case where the number of the output bits is arbitrary n and present

the detail process of discussion for the arbitrary n case.

Considering two puncturing tables A1 and A2

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p11

...

p1j

...

p1n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p21

...

p2j

...

p2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.1)

where p11, · · · , p1j, · · · , p1n and p21, · · · , p2j , · · · , p2n are the puncturing periods correspond-

ing to each output stream. At the beginning, we need to define some relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1j > p2j

gcd(p1j, p2j) = kj

p1j = kj ·mj

p2j = kj · nj

lcm(p1j , p2j) = kj · (mj · nj)

mj − nj = sj

(A.2)

42

The elements in the jth row of are

elements in p1j of A1: (a1 a2 a3 · · ·au · · ·ap1j
)

elements in p2j of A2: (b1 b2 b3 · · · bv · · · bp2j
)

(A.3)

Then, we expand these two rows to lcm(p1j , p2j)

(

1︷ ︸︸ ︷
a1 a2 a3 · · ·ap1j

2︷ ︸︸ ︷
a1 a2 a3 · · ·ap1j

3︷ ︸︸ ︷
a1 a2 a3 · · ·ap1j

· · ·
nj︷ ︸︸ ︷

a1 a2 a3 · · ·ap1j
)

(b1 b2 b3 · · · bp2j︸ ︷︷ ︸
1

b1 b2 b3 · · · bp2j︸ ︷︷ ︸
2

b1 b2 b3 · · · bp2j︸ ︷︷ ︸
3

· · · b1 b2 b3 · · · bp2j︸ ︷︷ ︸
mj

)
(A.4)

Since the elements in p1j and p2j are repeated to form (A.4), we can figure out the relations

between these elements like follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 ←→ a1 a(1+p2j)mod p1j
a(1+2p2j)mod p1j

· · · a(1+(mj−1)p2j)mod p1j

b2 ←→ a2 a(2+p2j)mod p1j
a(2+2p2j)mod p1j

· · · a(2+(mj−1)p2j)mod p1j

b3 ←→ a3 a(3+p2j)mod p1j
a(3+2p2j)mod p1j

· · · a(3+(mj−1)p2j)mod p1j

...
...

...
...

...

bp2j
←→ ap2j

a(2p2j)mod p1j
a(3p2j)mod p1j

· · · a(mjp2j)mod p1j

(A.5)

From (A.2), we can replace p1j and p2j with kjmj and kjnj respectively.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 ←→ a1 a(1+kjnj)mod kjmj
a(1+2kjnj)mod kjmj

· · · a(1+(mj−1)kjnj)mod kjmj

b2 ←→ a2 a(2+kjnj)mod kjmj
a(2+2kjnj)mod kjmj

· · · a(2+(mj−1)kjnj)mod kjmj

b3 ←→ a3 a(3+kjnj)mod kjmj
a(3+2kjnj)mod kjmj

· · · a(3+(mj−1)kjnj)mod kjmj

...
...

...
...

...

bkjnj
←→ akjnj

a(2kjnj)mod kjmj
a(3kjnj)mod kjmj

· · · a(mjkjnj)mod kjmj

(A.6)

Because (A.2) tells us that mj−nj = sj, it implies that kjmj−kjnj = kjsj. So, we definitely

can find

bkjsjmod kjnj
←→ akjsjmod kjnj

akjsj
a(kjsj+kjnj)mod kjmj

a(kjsj+2kjnj)mod kjmj
· · ·

bkjsj+1mod kjnj
←→ akjsj+1mod kjnj

akjsj+1 a(kjsj+1+kjnj)mod kjmj
a(kjsj+1+2kjnj)mod kjmj

· · ·
(A.7)

in (A.6). Due to kjmj = kjsj + kjnj, we can know

a(kjsj+kjnj)mod kjmj
= akjmj

a(kjsj+1+kjnj)mod kjmj
= a1

(A.8)

43

It is an important observation which means b1 and bkjsj+1mod kjnj
both connect to a1 and it

interests us to search more elements in p2j which might also connect to the same element

in p1j. In this way, we start to find other bv’s which also connect to aklmj
. Because

kjmj = kjsj + kjnj , we can easily have 2kjmj = 2kjsj + 2kjnj . If 2kjmj > kjnj , we need to

change the formula to

2kjmj = 2kjsj + 2kjnj = (2kjsj − kjnj) + 3kjnj . (A.9)

With this concept , we also let

3kjmj = 3kjsj + 3kjnj = (3kjsj − kjnj) + 4kjnj

4kjmj = 4kjsj + 4kjnj = (4kjsj − kjnj) + 5kjnj

...

(mj − sj)kjmj = (mj − sj)kjsj + (mj − sj)kjnj = [(mj − sj)kjsj − kjnj] + (mj − sj + 1)kjnj

(A.10)

The reason why we stop discussion at the value (mj−sj)kjsj is the last element in expanded

p1j is ap1j = anjkjmj
= a(mj−sj)kjmj

. Therefore, we can collect
{
bkjsj

b2kjsj−kjnj
b3kjsj−kjnj

· · ·
b(mj−sj)kjsj−kjnj

}
which all connect to akjmj

in one group and there are total mj − sj = nj

elements in this group. Following these steps, the elements in p1j and p2j can be divided

into several groups.

B1 :
{
b1 bkjsj+1 b2kjsj−kjnj+1 b3kjsj−kjnj+1 · · · b(mj−sj)kjsj−kjnj+1

}
←→ A1 :

{
a1 a1+kjnjmod kjmj

a1+2kjnjmod kjmj
a1+3kjnjmod kjmj

· · ·a1+(mj−1)kjnjmod kjmj

}

B2 :
{
b2 bkjsj+2 b2kjsj−kjnj+2 b3kjsj−kjnj+2 · · · b(mj−sj)kjsj−kjnj+2

}
←→ A2 :

{
a2 a2+kjnjmod kjmj

a2+2kjnjmod kjmj
a2+3kjnjmod kjmj

· · ·a2+(mj−1)kjnjmod kjmj

}

...

Bkj
:
{
bkjsj

b2kjsj−kjnj
b3kjsj−kjnj

b4kjsj−kjnj
· · · b(mj−sj)kjsj−kjnj

}
←→ Akj

:
{
akjsj

akjsj+kjnjmod kjmj
akjsj+2kjnjmod kjmj

akjsj+3kjnjmod kjmj
· · ·akjsj+(mj−1)kjnjmod kjmj

}
(A.11)

In this way, (a1 a2 a3 · · ·au · · ·ap1j
) and (b1 b2 b3 · · · bv · · · bp2j

) can separate into kj = gcd(p1j , p2j)

groups and there are mj and nj elements in each Ai and Bi respectively. Next, we need

to discuss the rate-compatible situation between each pair of Ai and Bi group. Then, the

44

table of all possible puncturing patterns which satisfy the rate-compatible criterion can be

constructed.

high rate −→ low rate

p2j p1j

(b1 b2 b3 · · · bp2j
) (a1 a2 a3 · · ·ap1j

)

Bkj
Akj

(bkjsj
b2kjsj−kjnj

b3kjsj−kjnj
· · · b(mj−sj)kjsj−kjnj

) (akjsj
akjsj+kjnjmod kjmj

· · · akjsj+(mj−1)kjnjmod kjmj
)

(0 0 · · · 0) : all zeroes all

else (1 1 · · ·1) : all ones

(A.12)

The other (k−1) groups also have the same result. What we should do next is to arrange each

elements in Ai/Bi group according to the above table from the discussion of rate-compatible

situation and the following table of possible puncturing patterns can be established.

(b1 b2 · · · bp2j
) (a1 a2 · · ·ap1j

)

B1 = {0} B2, · · · , Bkj
: else

B2 = {0} B1, B3, · · · , Bkj
: else

...
...

Bkj
= {0} B1, B2, · · · , Bkj−1 : else

A1 : all A2 = A3 = · · · = Akj
= {1}

A2 : all A1 = A3 = · · · = Akj
= {1}

...
...

Akj
: all A1 = A2 = · · · = Akj−1 = {1}

B1 = B2 = {0} B3, · · · , Bkj
: else

B1 = B3 = {0} B2, B4, · · · , Bkj
: else

...
...

Bkj−1 = Bkj
= {0} B1, B2, · · · , Bkj−2 : else

A1, A2 : all A3 = A4 = · · · = Akj
= {1}

A1, A3 : all A2 = A4 = · · · = Akj
= {1}

...
...

Akj−1, Akj
: all A1 = A2 = · · · = Akj−2 = {1}

...
...

...
...

B1, B2, · · · , Bkj
: else A1 = A2 = · · · = Akj

= {1}
(A.13)

45

Similarly, we can derive the opposite condition easily.

low rate −→ high rate

p2j p1j

(b1 b2 b3 · · · bp2j
) (a1 a2 a3 · · ·ap1j

)

Bkj
Akj

(bkjsj
b2kjsj−kjnj

b3kjsj−kjnj
· · · b(mj−sj)kjsj−kjnj

) (akjsj
akjsj+kjnjmod kjmj

· · · akjsj+(mj−1)kjnjmod kjmj
)

(1 1 · · ·1) : all ones all

else (0 0 · · ·0) : all zeros

(A.14)

The other (k−1) groups also have the same result and a similar table can also be constructed.

(b1 b2 · · · bp2j
) (a1 a2 · · ·ap1j

)

B1 = {1} B2, · · · , Bkj
: else

B2 = {1} B1, B3, · · · , Bkj
: else

...
...

Bkj
= {1} B1, B2, · · · , Bkj−1 : else

A1 : all A2 = A3 = · · · = Akj
= {0}

A2 : all A1 = A3 = · · · = Akj
= {0}

...
...

Akj
: all A1 = A2 = · · · = Akj−1 = {0}

B1 = B2 = {1} B3, · · · , Bkj
: else

B1 = B3 = {1} B2, B4, · · · , Bkj
: else

...
...

Bkj−1 = Bkj
= {1} B1, B2, · · · , Bkj−2 : else

A1, A2 : all A3 = A4 = · · · = Akj
= {0}

A1, A3 : all A2 = A4 = · · · = Akj
= {0}

...
...

Akj−1, Akj
: all A1 = A2 = · · · = Akj−2 = {0}

...
...

...
...

B1, B2, · · · , Bkj
: else A1 = A2 = · · · = Akj

= {0}
(A.15)

46

Bibliography

[1] J. B. Cain, G. C. Clark, Jr., and J. M. Geist, “Punctured convolutional codes of rate

(n−1)/n and simplified maximum likelihood decoding,” IEEE Trans. Inform. Theory,

vol. IT-25, pp. 97-100, Jan. 1979.

[2] Y. Yasuda, K. Kashiki, and Y. Hirata, “High rate punctured convolutional codes for

soft-decision Viterbi decoding,” IEEE Trans. Commun., vol. COM-32, pp. 315-319,

Mar. 1984.

[3] Y. Bian, A. Popplewell, and J. J. O’Reilly, “New very high rate punctured convolutional

codes,” Electron. Lett., vol. 30, pp. 1119-1120, July 1994.

[4] G. Begin and D. Haccoun, “Further results on high-rate punctured convolutional codes

for Viterbi and sequential decoding,” IEEE Trans. Commun., vol. 38, pp. 1922-1928,

Nov. 1990.

[5] I. E. Bocharova and B. D. Kudryashov, “Rational rate punctured convolutional codes

for soft-decision Viterbi decoding,” IEEE Trans. Inform. Theory, vol. 43, pp. 1305-

1313, July 1997.

[6] P. J. Lee, “There are many good periodically time-varying convolutional codes,” IEEE

Trans. Inform. Theory, vol. 35, pp. 460-463, Mar. 1989.

[7] J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and

their applications,” IEEE Trans. Commun., vol. 36, pp. 389-400, Apr. 1988.

[8] J. Hagenauer, N. Seshadri, and C.-E. W. Sundberg, “The performance of rate-

compatible punctured convolutional codes for digital mobile radio,” IEEE Trans. Com-

mun., vol. 38, pp. 966-980, July 1990.

47

[9] L. H. C. Lee, “New rate-compatible punctured convolutional codes for Viterbi decod-

ing,” IEEE Trans. Commun., vol. 42, pp. 3073-3079, Dec. 1994.

[10] C.-H. Wang, S.-C. Wang and Y.-L. Chang, “Irregular puncturing for convolutional

codes and the application to unequal error protection,” in Proc. IEEE Int. Symp.

Inform. Theory, Seattle, USA, July 2006, pp. 1623-1627.

[11] M. Cedervall and R. Johannesson, “A fast algorithm for computing distance spectrum

of convolutional codes,” IEEE Trans. Inform. Theory, vol. 35, no. 6, pp. 1146-1159,

Nov. 1989.

48

	封面.pdf
	書名頁.pdf
	中文摘要.pdf
	Acknoledgement.pdf
	thesis.pdf

