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Rate-Compatible Punctured Convolutional Codes
Based on Hybrid Puncturing Techniques

Student: Wei-Ting Tsai Advisor: Chung-Hsuan Wang
Department of Communication Engineering

National Chiao Tung University

Abstract

Puncturing is a useful technique to provide more flexible code rates for convolutional
codes by deleting some outputs of the encoder periodically. Conventional puncturing tech-
niques can be divided into two scenarios: the regular or the irregular puncturing. When
each output of the encoder has the same puncturing period, it is called the regular punc-
turing technique. In contrast, the irregular puncturing technique allows that each output of
the encoder can have different puncturing periods. These two puncturing techniques both
can increase the variety of code rates. ;Moreover, some code rates which cannot obtained
with regular puncturing technique can be achieved by applying irregular puncturing tech-
nique. Both of these puncturing techniques can be modified for the generation of a family
of codes by adding a rate-compatible’.rule and these.codes are named as rate-compatible
punctured convolutional (RCPC) codes. Tn this thesis, we show that the regular and the
irregular puncturing technique can be used together to construct a new subclass of RCPC
codes which can further offer more choices of code rates and error-correcting capabilities
can also be improved compared with the conventional RCPC codes. Both of the analytical
discussion and simulation results are also provided. Finally, tables of new RCPC codes are

also presented by computer search.
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Chapter 1

Introduction

1.1 Motivation

As we know, convolutional code is a very popular coding technique which we have
already used in many communication systems. The most common decoding algorithm for
convolutional code is Viterbi decoder which uses trellis structure and add-compare-select
procedure to improve the performance of decoding. However, the decoding complexity of
Viterbi decoder increase with the numbet of input bits exponentially which often comes with
a high code rate and this makes the implementation of Viterbi decoder becomes impractical.
One way to solve this problem is to produce a-high rate code by puncturing. The concept of
puncturing was first proposed by Cain‘et al-*[1] and thebasic idea is to delete certain coded
bits during transmission periodically. Through puncturing, we can generate an equivalent
high rate code from the original encoder and Viterbi decoding process can still be executed
in the original decoder as long as we ignore the deleted coded bits. It is a very important
observation which means we can use a simpler construction to decode a high rate coded
streams and the problem of high decoding complexity can be solved. Thus,it is clear that
puncturing technique is a useful tool for transmission and the later research show many
good high rate codes can be obtained by puncturing low rate codes [2] -[4].

For conventional communication system with channel coding, we often use a fix code
with certain rate and error correction capability to fulfill the required error probability and

achieve the goal of the transmission. Since high rate code can be obtained by puncturing,



we can choose the proper punctured codes to satisfy the need of the communication sys-
tems. However, there are more and more applications where it is required to protect data
with different error sensitivity during transmission. The most common examples include
broadcast channels, multiuser channels, and integrated voice and data transmission over
band-limited channels. Therefore, a channel coding scheme with unequal error protection
(UEP) is needed. One way to achieve an UEP scheme is to group the source output bits
according to their error sensitivity. In this way, we need to prepare different pairs of en-
coder and decoder to satisfy the demand of different protection levels. The complexity of
this scheme becomes impractical when the number of UEP levels increases. To avoid this
problem, a single encoder and decoder structure using puncturing technique can be used.
The advantage of puncturing is which it can flexibly adjust the error correction capability
of a channel code without changing the basic structure of the encoder and decoder and
increase the data rate of the system. We can see clearly that puncturing technique is a good
choice for the application of UEP. This is the basic concept of rate-compatible convolutional
(RCPC) codes which is proposed by Hagenauer [7]. “A RCPC code is composed of a set
of encoder and decoder and a family~of puncturing tables which fulfill the rate-compatible
rule. The rate-compatible rule impliés that all’coded bits-of a high rate punctured code are
used by the lower rate codes; or in other words, the high rate codes are embedded into the
lower rate codes of the family. In this way, mot only the different levels of error protection
of UEP scheme can be satisfied but also the error performance can be guaranteed during
the transition of code rates.

For the conventional punctured convolutional codes which we mentioned above, the
puncturing periods of each output streams are limited to be the same and we call these
regular punctured convolutional codes [1]-[4]. However, a different viewpoint is proposed in
[10] and the idea allows that each output streams has different puncturing period. In this
way, the designing flexibility of puncturing tables and the choices of possible code rates after
puncturing increase significantly. Irregular puncturing technique provides us opportunities

to find some undiscovered punctured codes which may have better performance than regular



punctured ones and shows another way to form a RCPC family. In fact, we will present
many new RCPC families which are found by computer search under the construction of
irregular puncturing in this thesis.

We already know that RCPC codes play an important role in the application of UEP and
a RCPC family can be established by regular or irregular puncturing. However, the previous
research about RCPC family were only focus on single puncturing technique, regular or
irregular [7]-[10]. It means that the puncturing technique and the puncturing period of each
output streams are restricted when we want to form a RCPC family. Here, we propose a new
concept, hybrid puncturing technique, to build a RCPC family with different puncturing
methods. By using hybrid puncturing technique, we can ignore the restrictions of single
puncturing technique and the same period of each output streams. We can choose regular
and irregular puncturing tables together to compose a RCPC family and the puncturing
periods of each output streams do not need to be the same. Obviously, the number of
candidates which can be used to form a RCPC family will be increased and more variety of

combinations will also be presented.

1.2 Organization

The organization of this thesis is as follows. In chapter 2, a review of conventional punc-
tured convolutional codes and RCPC codes is presented. Analysis of irregular puncturing
method and the detail discussion of hybrid puncturing technique is given in chapter 3. Sim-
ulation results are presented in chapter 4. Remarks are given in chapter 5 to conclude this

work.



Chapter 2

A Brief Review of Punctured
Convolutional Codes

2.1 Conventional Punctured Convolutional Codes

As we know,the most common decoding method for convolutional codes is the Viterbi
algorithm. For Viterbi algorithm, the decoding complexity depends on the number of the
states and the number of the branches entering to each state. However, for the standard
convolutional code with the code ratessR = kfmpwhere is the number of input bits and n
is the number of output coded bits, the branch complexity of the decoding trellis increases
exponentially with k. This makes theresulting'comparison and selection of the path with the
best metric much more difficult. To solve the problem of the decoding complexity increasing
for high rate code, a modified form of high rate code, called a punctured convolutional code
was introduced by Cain,Clark, and Geist [1]. A rate R = (n—1)/n punctured convolutional
code is obtained by periodically deleting or puncturing certain bits from the codewords of
rate R = 1/2 mother code. In this way, a punctured convolutional code is based on the trellis
structure of the low rate mother code and remove some coded output bits on the branches
during the state transitions. Hence, the trellis structure of a punctured convolutional code
has only two branches leaving each state and these corresponding output coded bits can then
be decoded using the Viterbi algorithm with roughly the same decoding complexity as the
rate R = 1/2 mother code. It is an exciting observation because, in the rate R = (n —1)/n

punctured code, only two branches enter each state, and thus only one binary comparison



code symbols

Figure 2.1: Encoder trellis for rate 2/3,memory=2 convolutional code.

is performed at each state, rather than 2(*~1) — 1 binary comparisons required to decode a
standard rate R = (n—1)/n code. Therefore, we.can make a high rate code avoid increasing
decoding complexity through the puncturing technique.

Here, we propose a example to ilustrate the procedure of making a high rate code by
puncturing the low rate mother code=The, trellis structure for a standard rate R = 2/3 code
is shown in Figure 2.1. In decoding this«cede using the Viterbi algorithm in the conventional
manner,a total of three binary comparisons must be made at each state for decoding every
two information bits. Another trellis structure with the same rate which is obtained by
deleting one transmitted symbol every two branches and the deleted symbol is denoted by
an x is shown in Figure 2.2. A Viterbi decoder for this rate R = 2/3 punctured code would
operate exactly like the decoder for the rate R = 1/2 mother code, except that no metrics
would be computed for the deleted symbols. Thus, the metric computation would involve
two symbols on half the branches, and only one symbol on the other half. In each two branch
section of the decoding trellis for the punctured code, a total of two binary comparisons
per state are required to decode two information bits. Hence, decoding the rate R = 2/3

punctured code, based on the simpler structure of the rate R = 1/2, is less complex than



state state

Figure 2.2: Encoder trellis for rate 1/2,;memory=2 punctured convolutional code.

decoding a standard rate R = 2/3 code.

From above, we know that the puncturing process is to achieve high rate code by deleting
some coded bits of the low rate code periodically and we often use the puncturing tables
to describe the behavior of periodic deletion ot teservation. In most cases, the puncturing
tables is indicated using a 2 x T" binary matrix A where T=is the puncturing period, the first
row of A indicates the bits deleted from: the first-encoded sequence, and the second row of
A indicates the bits to be deleted from the se¢ond encoded sequence. In the matrix A, a
0 indicates a bit to be deleted and a 1 indicates a bit to be transmitted. For example, in
Figure 2.2 , we can see that there are one coded bit to be deleted on every two branches in
the first encoded sequence and all coded bits are reserved in the second encoded sequence.

Thus, the puncturing table are given by

A:

In this way, we can describe the periodic and repeated process of deleting coded bits in a

clear and easy understanding manner.



2.2 Rational Rate Punctured Convolutional Codes

As we mentioned above, a punctured convolutional code with rate (n—1)/n is introduced
to simplify maximum-likelihood (Viterbi) decoding and punctured codes are obtained by
periodically deleting bits from the low rate mother code. In the beginning, the research
about punctured convolutional codes [1] - [4] was only focused on codes with rate (n —1)/n,
n = 3,4,..., and the other rates such as k/n, k = 2,3,..., n > k are not mentioned. It
causes that we may lost some opportunities to find the good punctured convolutional codes
whose performance are as good as the known convolutional codes at the certain rate except
for rate (n — 1)/n. In [5], a punctured convolutional code with rate k/n is proposed as
rational rate punctured convolutional code and it implements by treating the punctured
convolutional code as a convolutional code with the time-varying encoder. In this way,
we can see that there are different output coded bits from the different encoders on the
separate branches and we have different combinations of the number of the coded bits on
each branch according to the puncturing tables. For this kind of coded bits combinations,
we call it branch partitions.

To provide punctured convolutional eode of rate k/n, k = 2,3,..., n > k , we consider all
possible partitions of n by numbers ly,..., {70 &< n-and Zle [; = n. For example, to
obtain k/n = 3/5, we introduce two sets of branch partitions 5 =2+2+1and 5 = 3+1+1.
We can see that there are total 5 output coded bits needed and the numbers on the right
side of the equal mark show us how many coded bits are transmitted together on one
branch. From above, if the partition 5 = 2 + 2 + 1 is used, coded bits corresponding to the
first and the second output are transmitted on the same branch of the trellis; coded bits
corresponding to the third and the fourth output are transmitted on the other branch; and
the fifth output is transmitted on the separate branch. Hence, we produce total 5 output
bits in 3 time units where one information bit incomes the encoder in one time unit and
the needed code rate 3/5 is created successfully. In this way, we can treat this rational rate

punctured convolutional code as a time-varying convolutional code with 3 different encoders



periodically and each encoder may has different number of output bits. The feature of the
rational rate punctured convolutional code is to provide a different view about conventional
punctured convolutional codes. From this viewpoint, what we do to delete or reserve the
output coded bits according to the puncturing tables is similar to transmit output coded
bits from the different encoders on each branch cyclically. Therefore, we can achieve any
rational rate k/n other than (n—1)/n by arranging our branch partitions properly according

to the desired value of k£ and n.

2.3 Rate-Compatible Punctured Convolutional (RCPC)
Codes

From what we mentioned above, we have known that we can reduce the decoding com-
plexity of the high rate code by puncturing the low rate code output bits to achieve the rate
we need with a simpler trellis structure. Furthermore, rational rate punctured convolutional
codes are purposed due to the need of more;flexible choices while choosing the code rate.
Rational rate punctured convolutional codesgprovide us a different viewpoint to describe
the behavior of the punctured convolutienal codes:-No-matter conventional punctured con-
volutional codes or rational punctured convelutional codes, they are only concern about a
system with a particular code rate errot; correcting code.

As we know, the design of an error correction coding system usually consists of select-
ing a fixed code with a certain rate and correction capability matched to the protection
requirement of all the data to be transmitted. However, in many cases, one would like to
be more flexible because the data to be transmitted have different error protection needs,
for example, speech or video transmission. To achieve this goal, we wish to change the
code rate and hence the correction power of the code during transmission of an information
frame according to source and channel needs. The simplest way is that we prepare several
error control codes with different code rates according to the different needs of protection.
However, it will lead us into a situation that the user must prepare many sets of encoder

and decoder at the transmitter and receiver and the system complexity raises as the number
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Figure 2.3: Example of a punctured convolutional code with two rate compatible puncturing
tables

of sets of encoder and decoder increasing. For practical purpose, we would like to have not
just switching between a set of encoders and decoders, but one encoder and one decoder
which can be modified without changing their basic structure. This can be achieved by not
transmitting certain code bits by puncturing the code.

The conventional punctured convolutional code which we mentioned above is to obtain
a certain high rate code by deleting some transmitted code bits of a low rate code. In
applications where it is necessary to support two or.more different code rates, it is sometimes
convenient to make use of rate-compatible punctured convolutional (RCPC) codes [7]. The
word rate-compatible means that the+high”rate coded streams are embedded in the low
rate coded streams. Therefore, a RCPC codeé is 'a set of two or more convolutional codes
punctured from the same mother code in such a way that the codewords of a lower rate
code can be obtained from the codewords of a higher rate code simply by adding additional
bits. In other words, the set of puncturing tables must be such that the puncturing table
of a lower rate code is obtained from the puncturing table of a higher rate code by simply
changing some of 0’s to 1’s.

For example, if a puncturing table which result in a rate R = 4/5 for the mother code is

1 110

A1) =
100 1

Suppose the code rate with 4/5 and puncturing table A (1) is not powerful enough to correct

9



the channel errors. A more redundant and therefore more powerful code with lower rate
4/6,4/7, or 4/8 would be necessary. Instead of transmitting all the code bits of a completely
different low rate code, the lower rate code should utilize the bits already transmitted. Then
only additional incremental redundancy bits have to be transmitted. Additional “1” ’s in the
puncturing tables of the lower rate codes can therefore be placed only where zeros appeared

in the puncturing table of the previous higher rate code, for example,

1110 1111 1111
A(2) = A(3) = A(4) =
1101 1101 1111

Thus, for A(1) to A(4), we get a rate-compatible family of codes derived from the mother
code 1/2 with rates 4/5, 4/6, 4/7, 4/8 which use only incremental redundancy. This prop-
erty is particularly convenient in two-way communication systems involving retransmission
requests, where the initial transmission uses a high rate punctured code and then, if the
transmission is unsuccessful, punctured bits are sent during later transmissions, resulting in

a more powerful lower rate code for decoding:

e General definition of RCPC' codes
A family of RCPC codes is described by thermothier code of rate R = 1/n where n is the

number of the output bits and the puncturing period'p determines the range of code rate

R=p/(p+u) wu=1...(n—1)p

between p/(p+ 1) and 1/n. The RCPC codes are punctured codes of the low rate mother

code with the puncturing tables

A(u) = | a;(u) | :nxp matric

with p;;(a) € (0,1) where 0 implies puncturing.

10



Here, we summarize the rate-compatible rule for each element in the puncturing tables

if a;;(up) =1 then p;;(u) =1 for all u > uy >1

if a;;(up) = 0 then p;;(u) =0 forall u <wuy < (n—1)p—1

Following the rule above, we can guarantee that the high rate coded streams must be

embedded in the low rate coded streams.

B < B = B = B
0 —
code
index uy > u; > u, > i,
code » P » »
e ptu, Dt Pt ptu
puncturing _
table Aluy) Aluy) Aly) Aley)
free 7 d ol g
¢ , .
distance 4 3 2 1

Figure 2.4: Example of UEP with RCPC. cedes according to the error protection require-
ments

The most popular application of RCPC codes is unequal error protection (UEP) which
means an information sequence or block need different levels of error protection ability.
To achieve the goal of UEP, we first divide the information sequences into several groups
according to the need of protection requirements and arrange these groups in the order of
the protection levels. Next, we choose the proper RCPC family with different puncturing
tables A(u) to fit the requirements of each group and transmit the data of groups which
needs the less protection level first and the most one last as in Figure 2.4. Due to the
property of the punctured codes, we only have to prepare the same encoder and decoder

structure in the transmitter and the receiver respectively.
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While transmitting UEP requested information sequences with RCPC codes, there is
still one criterion that should be considered with the rate-compatible rule, soft-switching
criterion. As we see in Figure 2.4, the UEP information bits are ordered from higher rate
codes to lower rate codes and soft-switching criterion take effect at the boundary of the
adjacent groups. When we transmit the UEP information data, we will find that not all
groups has a data length which equals the period or an integer multiple of the period of the
corresponding puncturing table. If we allow the corresponding tables of the adjacent data
groups switch directly,i.e. hard-switching, it may result in a unpredictable loss of codeword
distance which violates the spirit of UEP that provides enough protection ability each group
needs.

Instead of hard-switching, soft-switching means that even when the adjacent data group
switch, we will keep transmitting data according to higher rate puncturing table and not
switch to lower rate puncturing table immediately until we reach the end of higher rate
puncturing table. If two punctured codes without the restriction of rate-compatible rule
and soft-switching criterion are used at!the boundary.of the two adjacent UEP groups, it
can happen that a transitional path‘has a distance which is even lower than the distance
of the same path within the higher Tate code. This would lead to a bad behavior in the
transition region. As long as we obey rate-compatible rule and soft-switching criterion, we
can guarantee that the path across the boundary of the adjacent groups has a distance
which is at least the distance of the same path within the higher rate code and at most the
distance of the same path within the lower rate code. In this way, it can be guaranteed that

the request of UEP can be satisfied.
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Chapter 3

Irregular Punctured Convolutional
Codes and Hybird Puncturing
Techniques

In this chapter, we propose a new method to produce the punctured convolutional codes,
named irreqular punctured convolutional codes which is distinguished from the conventional
method. First, we will introduce the concept of the irregular punctured convolutional codes
and the process of producing the irregular punctured-convolutional codes will be demon-
strated. With the idea of the irregular punctured convolutional codes is introduced, we will
discuss the difference between the irregulan and the conventional method.

Furthermore, the cooperation of the.irregular and-the conventional punctured convo-
lutional codes will be mentioned and the combining rule is also described. Following the
rule which is designed for the cooperation of the irregular and the conventional punctur-
ing method, we develop a more general view for not only the cooperation of the different
puncturing methods but also the single puncturing method. The details of this chapter are

discussed as follows.

3.1 Introduction of the Irregular Punctured Convolu-
tional Codes

In the beginning, we want to make a definition of the regular punctured convolutional

codes which contrast with the irregular punctured convolutional codes. From what we

13



Figure 3.1: Ilustrated example of the regular punctured convolutional codes

mentioned in chapter 2, the example of the conventional punctured convolutional codes is
shown in Figure 3.1 and the puncturing behavior can be described as a 2 x 3 puncturing
matrix A.

Thus, the puncturing table for Figure 3.1%s

E=lg= F
Al ]

A

As we explained in chapter 2, the puncturing table*of the conventional punctured con-
volutional codes is a n X p matrix, where n is the number of the output coded bits, often
be 2 and p is the puncturing period. The first row of the matrix indicates the deleting
bits corresponding to the first output bits and the second row indicates the deleting bits
corresponding to the second output bits. When we observe the first and the second row
of the puncturing table corresponding to the Figure 3.1, we can find that these two rows
have the same puncturing period, 3. This observation shows us the basic definition of the
regular punctured convolutional codes is that each row in the matrix has the same punc-
turing period. So far, literatures on puncturing were based on the scheme with the same
puncturing period for all output streams of convolutional encoders. Here, we propose a new

puncturing scheme for convolutional codes which allows each output coded bit has different

14



puncturing period and there will exist rows with different lengths in the puncturing matrix.

For example, a puncturing table

1 01
0111

A=
can be used to describe the irregular punctured convolutional codes.

3.2 Analysis of the Irregular Punctured Convolutional
Codes

Consider a (n,k) parent code C with ¢;; denoting the output coded bit of the ith
output stream of encoder at time ¢, V 0 < ¢ < n. For the regular puncturing table A, it can
be defined as a n X p matrix which indicates the transmitting and the deleting positions
corresponding to each output stream. Accordingly, children codes with the following code
rates can be obtained:

kp/(kp+1), Y L sd < (n—k) (3.1)
However, most research on the regulat: puncturingoften interests in small puncturing pe-
riod, where p < 9 and this causes-less variety -of code rates [7] -[9]. For the irregular
puncturing, we allow each output streani.of-the-encoder has its own puncturing period.
Let po, p1, ... ,pn_1 be the puncturing peried corresponding to n output streams of the en-
coder and let ¢, ¢1, ...,¢,_1 be the numbers of non-zero entries in rows of the irregular

puncturing table A’. In general, the child code generated by A’ has code rate
n—1 ¢
kY (3.2)
im0 i
For example, consider a (2,1) parent code C with the following codeword matrix

€0 Co1 Co2 €Co3 Co4a Cos Co6 Co7 Cos Co9o Coio Coai
Cio €11 C2 €13 Ci4 G5 Cie Ci7 Ci8 Ci9 Crio Ci11
in which the (4, j)th entry indicates the coded bit of the ith encoder output at time j.

Puncturing C' with a single period p = 4 can only generate children codes of code rate
4/5,2/3,4/7, and 1/2
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by (3.1). However, suppose C' is now punctured by

1 01
0111

Al =

with (po,p1) = (3,4) and (¢o, ¢1) = (2,3). The codeword matrix after puncturing by A’
turns to be

Coo X Co2 Co3 X Cos Cog X Cog Copo9 X  Col1

(3.3)

X €1 CGp2 €3 X (5 Cpe C7 X Ci9 Ci10 C1,11
where X marked as the deleting coded bits during the transmission. The resulting child
code has code rate 12/17 by (3.2). Moreover, for all possible irregular puncturing tables

with (po, p1) = (3,4), the available rates of children codes are
12/13%, 6/7%, 4/5, 3/4*, 12/17*, 2/3, 3/5*, 47, and 1/2

where the rates marked by * are unavailable for the single puncturing period p = 4 with
the same encoder. It should be mentioned that we have max(po,p1) = p in this case and
it results in that no extra hardware or computation overheads would be paid compared
with the regular puncturing methods during theprocess of implementation. In addition, as
shown in Example 1, we can find somerchild codes undet the construction of the irregular
puncturing method which may generate the‘optimal free-distance and are unobtainable by
the conventional puncturing with the same puncturing ‘complexity.

Example 1: Consider a parent code C with the generator matrix [D3 +1 D3+ D +
1 D3+ D?+1] (ie. ,[11 13 15] in octal). Based on the conventional puncturing with

p = 3, the optimal rate-3/5 child code of free distance 4 is obtained by puncturing C with

[5]
010
A;=1001
111
However, suppose C' is punctured by
10
A,=10 11
010
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with irregular periods (po, p1, p2) = (2, 3, 3), which requires the same puncturing complexity
as Ap since max(pg,p1,p2) = p. The resulting child code also has code rate 3/5 but sur-
prisingly achieves a larger free distance 5 and this result shows that we have the chance to
find a child code with a better free distance through the irregular puncturing way under the
same puncturing complexity.

Recall the irregular puncturing table A’ we mentioned above. Repeating its first row
four times and the second row three times, we can obtain a puncturing table with puncturing

period p = 12:

1 01 101101101101
—
0111 011101110111

Suppose a (2,1) parent code is punctured by the above p = 12 puncturing table; the
consequent child code is equivalent to the punctured code with the codeword matrix in
(3.3). In general, it can be shown that an irregular puncturing matrix A with periods
(po, P1, "+, Pn_1)is equivalent to the conyentionéal.puncturing table with a period of the
least common multiple of (pg, p1, - - -, Pn_1) (Aénoted by-lem(po, p1, -+, pn_1)) whose rows
comprise copies of the corresponding-rows of A. Therefore, puncturing a parent code with
small irregular puncturing periods can achieve thessame puncturing effect as the conventional
puncturing scheme with large periods, ‘which also-explains why our design may perform
better under the condition of max(pg, p1, -, Pn_1)< P

In addition, the most research literatures about the good RCPC codes are focused on
the small puncturing periods (p < 8) because a direct search of the puncturing tables with
large periods usually results in enormous computational complexity which overtakes what
a practical system can afford. However, a special kind of puncturing tables with irregular
periods such as (8,7) can reach the equivalent puncturing effect made by the conventional
scheme with a large regular period such as 56. If a (n,k) parent code is punctured by
the conventional puncturing table with large period p, we can search the puncturing tables
with irregular periods (po, p1, - - -, pn_1) under the restriction that p; < p V0 < i < n and

lem(po, p1, -+, Pn—1)> p instead of executing a direct search with large period. In this way,
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Figure 3.2: Example of the regular and the irregular puncturing table

the search complexity can be reduced substantially. Irregular puncturing thus provides
a practical alternative for searching good high rate punctured codes which are originally

obtained by puncturing in the conventional way with extremely large periods.

3.3 Hybrid Puncturing Techniques

From the previous two sections, we can understand the definition of the irregular punc-
turing convolutional codes and the difference between the irregular and the regular punc-
turing. With the features of the irregular puncturing, more flexible choices of code rates can
be provided and it also gives us more opportunities to find a better free distance than which
the regular puncturing method can achieve under, the.same puncturing complexity. The
original purpose of puncturing is to reduce the decoding complexity of a high rate code and
we can change the code rates of children codes‘by adjusting the elements in the puncturing
table, i.e. 0 or 1. Due to the variability.of code rate of the punctured codes, the application
to UEP (unequal error protection) has been proposed by Hagenauer, named RCPC codes
[7]. However, the RCPC families which were found in [7] and [9] are all only focused on the
regular puncturing case. In this thesis, the RCPC families based on the irregular puncturing
tables will be presented and we can have more choices to find the suitable RCPC family for
the UEP application.

No matter the RCPC family is found based on the regular or the irregular puncturing
tables, we only pay attention to the unique puncturing method. Therefore, we extend our
research to discuss the possibility of cooperation of these two puncturing methods instead
of concerning single method only. In this way, we can use a more flexible choices to compose

a RCPC family by using different puncturing methods. We begin with Figure 3.2 where
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A,eqg means the regular puncturing table with the single puncturing period p; and table A,
means the irregular puncturing table with two different period (p1, p2), where p; > py. First,
we want to focus on the case which p; and p, are not relatively prime (i.e., ged(p1, p2) # 1).

To simplify our discussion, let p; = 6 and ps = 4. The elements in the rows of length p;

and p, are
‘ b1 ‘ : (aragazasasag) (3.4)
‘ P2 ‘ : (b1b2b3by)
As we mentioned above, an irregular puncturing table with puncturing period (pg, p1, -, Pn-1)
has the same puncturing effect as a regular table with period lem(pg, p1, -+, Pa1). S0, we
expand the length of these two rows to lem(po, p1, « ) Pn_1)-
(araza3a4a5a6) = (a1 ag az a4 as ag ay ag az ag as ag) (3.5)

(brbsbsbs) — (by by by by by by by by by by by by)

Let us check the corresponding position of each elements. We can find that b; will meet aq,

as and as and the relations of other elements can also be observed.

(

by & _ay aszas
by (= aslay ag
(3.6)
by e ai as as
by > as ay ag

\

Through our observation, b; and b3 meet the same'elements in the rows of a;’s and so as by

and by. So, we need to discuss the rate-compatible situation of this group

(bl 53) = (&1 as @5)

(3.7)
(by b4) — (ag a4 &6)
We can recall the rate-compatible rule which we mentioned before.
if a;;(up) =1 then p;;(u) =1 for all u > uy >1
(3.8)

if a;;(up) = 0 then p;;(u) =0 forall u <wuy < (n—1)p—1
When the row of b;’s is at higher code rate and we want to make row of a;’s rate-compatible

at lower rate. In such case, (3.8) shows us that a; can be 0 or 1 if b; is 0 and a; can only be
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1 if b; is 1. Following this rule, we can have the table:

high rate — low rate
D2 4!

(b1b2b3b4) (a1a2a3a4a5a6)
(blb3> (a1a3a5) (5254) (&2&4(16)
(0 0) all (0 0) all
(0 1) (1 1 1) (O 1) (1 1 1) (3.9)
(1 0) (1 1 1) (1 0) (1 1 1)
(1 1) (1 1 1) (1 1) (1 1 1)

When the row of b;’s is at lower code rate and row of a,’s is at higher rate. The rule tells us

that a; can be 0 or 1 if b; is 1 and a; can only be 0 if b; is 0. Also, we can have the following

20

table:
low rate — high rate
P2 Py

(blbgbgb4) (a1a2a3@4a5a6)
(blbg) (a1a3a5) (b2b4) (&2&4616)
(00) | (0:0:0) (00) |-(000)
(01) | (000) (1) (000) (3.10)
(10) | (000) (10) | (000)
(11) all (11) all

From (3.9) and (3.10), we can figure out the elements in the rows of p; and py to achieve

the rate-compatible situation like what we demonstrate below and the x mark means that



it can be 0 or 1.

high rate — low rate low rate — high rate
P2 D1 P2 D1
(b1b2b3by) (a1azaza4as5a4) (b1b2b3by) (a1azaza4asa4)
(0001) (1010)
(0100) (x1x1x1) (1011) (x0x0x0)
(0101) (1110)
(0010) (0101) (3.11)
(1000) (Ix1x1x) (0111) (0x0x0x)
(1010) (1101)
(0011) (0110) (0001) (0100)
(0111) (1001) 111111) (0010) (0011) (000000)
(1100) (1101) (0110) (1000)
(1011) (1110) (1001) (1100)

As long as the tables of puncturing patterns for two'different case are established, the only
thing we have to do is to choose the propet patterns for a;’s and b;’s and the rate-compatible
rule will be satisfied naturally.

Next, we continue to discuss the casewhich py-and pyare relatively prime (i.e., ged(p1, p2) =

1). Just like ged(py, p2) # 1 case, we let pyi=4-and p, = 3 to simplify discussion.

(araza3ay) = (a1 ag az ag ay ag az ag ay az as ay)

(3.12)
(b1b2b3) = (by by b3 by by b3 by by b3 by by b3)

The relations between a;’s and b;’s can also be explored.

b1 <~ a1 Q9 A3z Q4
by < aiazasay (3'13)

b3 <~ a1 Q9 A3z Q4

From the above relations, there is one group that we need to concern.

(bl b2 bg) — (a1 Q9 ag (l4) (314)
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Figure 3.3: General form of two puncturing tables with hybrid puncturing techniques

The tables of puncturing patterns are listed as:

low rate — high rate high rate — low rate
P2 b1 P2 D1
(515253) (01&2&3(14) (515253) (01&2(13@4) (3'15)
(111) all (000) all
others (0000) others (1111)

From the above example, we can see thatme matter ged(p,, p2) is relatively prime or not, we
still can discuss the rate-compatible condition=hy dividing the elements into several groups

according to the corresponding position.

3.4 General Form of Hybrid Puncturing Techniques

In the above section, two illustrated examples are proposed to explain how to satisfy rate-
compatible rule between two different puncturing period rows. However, the examples which
we show are limited in the number of output coded bits n = 2. Now, a general form of hybrid
puncturing which composed of two puncturing tables corresponding to n output coded bits.
In A; and A;, the corresponding puncturing period of each rows are (p11,p12,- -, pin) and
(p21, Pa2, - -+ , P2n) respectively as shown in Fig. 3.3. Therefore, the rate-compatible problem
of two puncturing table with different puncturing period is extended to a more general view.
The detail procedure of proof is omitted temporarily and will be presented in appendix later.

Here, we demonstrate the concept about how to achieve rate-compatible situation in general
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form briefly. In fact, we do not need to be confused with increasing of the number of output
coded bits. When rate-compatible situation is needed to be satisfied, the only thing that
we have to do is take each pair of row p;; and row po; out and discuss the relations between
the elements in these two rows just like previous section. A result which we found in the
procedure of proof is the elements in row p;; and row ps; can be absolutely divided into
ged(p1j, po;) groups. In this way, we only need to consider the different rate-compatible
situations in each corresponding pair of groups and form the possible puncturing patterns
according to the combined result of each groups. With the same procedure, we notice that
the hybrid skill between rows with different periods is not only for regular and irregular case
but also regular and regular case and irregular and irregular case. This discovery allows us
to establish a RCPC family with more choices of puncturing methods and the corresponding

puncturing periods. Here, we present a practical example.

Example:
period=(4,4)
051 1
A1 = o 4/7 *x
I=§
0 1701
A2 = Ye = 4/6
1111
01 00
Aj = re =4/5 %
1111
mark | period A possible code rates
x 1 x 1 x 1
* 6,6 12/18,12/20,12/22,12/24
(6,6) Dl /18,12/20,12/22,12/
*% (4,3) (0101)/(0100)/(0001) 12/14,12/15,12/18
(001)/(010)/(100)/(011)/(101)/(110)/(111)

This example shows us a period (4,4) RCPC family and the mark % and x indicates that
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A; and Aj can be substituted by other puncturing tables with different puncturing periods.
The table below lists the candidates which can be used to replace A; and Ajg respectively
and the puncturing periods and the possible code rates are also listed in the table. From
the example, a simple and practical application of hybrid puncturing technique is presented
and the choices of puncturing period and code rates which can be used to form a RCPC
family increase certainly. More examples of the application of hybrid puncturing techniques
will be presented in chapter 4.

In the process of our discussion, some useful results such as the above example are
discovered. However, there is an important issue which is deserved to pay our attention.
This issue is that some unreasonable code rates might occur when we try to build a RCPC
family with puncturing tables which have different periods by using hybrid puncturing
techniques. Here, we propose two constructions which are already known that might result

in unreasonable code rates during the process of our discussion.

A, (| I ‘
X 120,
\‘\ s Y
Az\\!‘l A .
N 2 |
A (| 120, \‘
.1
1 p »

Figure 3.4: Construction 1 which might cause unreasonable code rates

In Figure 3.4, there are three puncturing tables A;,As and Az which are arranged from
lower code rate to higher code rate and the arrow line connects the two different period
rows which achieve rate-compatible rule. To illustrate this kind of condition, we let p; = 6

and p, = 4 and the proper puncturing tables and the possible code rates can be obtained
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under this assumption.

no. puncturing tables
x 1 x 1 x 1 1 x 1 x 1 x
A, or
1011 /1110 01 1 1 /1101
possible code rates: 12/15, 12/17,12/19,12/21
x 1 x 1 x 1 1 x 1 x 1 x
A, or
x 0 x 0 x 0 0 x 0 x 0 x
possible code rates: 12/14,12/16,12/18
0001 /01 00O 0010 /1000
Aj or
x 0 x 0 x O 0 x 0 x 0 x
possible code rates: |12/9,12/7,12/5

We notice that the possible code rates of table Az are all bigger than 1 and these
are all unreasonable rates. As we knowyithese tinreasonable code rates cannot be used
in the practical application due to the bad error protection ability. Furthermore, another

construction which may also cause a-unreasonable rate is"shown in Figure 3.5.
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In the construction which we present in Figure 3.5, it is an example that we form a RCPC

family by taking regular puncturing tables with different periods together. For convenience,

2 |
2 L/
P A

e

we let p; = 6 and py, = 4, too.

Figure 3.5: Construction 2 which might cause unreasonable code rates

no. puncturing tables
X x 1 x 1 1 x 1 x 1 x
A, OF
0 0 0 /0 1 051 0.1 101010 /01 0
possible code rates: 12/14,12/16,12/18
0 1 101 1 010
A, or
L0010 0101
possible code rates: |12/12
0 0 0 /01 0101 101010 /010 0
Aj or
X x 0 x 0 0 x 0 x 0 x

Obviously, not only table Az but also Az would cause unreasonable code rates in this
construction. The above two constructions remind us that the unreasonable code rates is
an important issue while using hybrid puncturing techniques because some undesired rates

may be produced under the specific constructions. Due to the amounts of the constructions

possible code rates:

12/12,12/10,12/8

which can use hybrid puncturing techniques are huge, we cannot list the all possibilities of
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the constructions which may result in unreasonable rates. Therefore, the only thing we have
to do to prevent unreasonable code rates is to discuss the possible rates of the puncturing
tables in the construction first. In this way, we can own the benefit of hybrid puncturing

techniques without tolerating the risk of generating the undesired code rates.
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Chapter 4

Simulation Results

In this chapter, we will present the simulation results which correspond to what we
mentioned before. First of all, some examples of better free distance and BER performance
under the irregular puncturing method are presented. Second, new searching results of
irregular RCPC family will be listed. Finally, some results which are based on hybrid

puncturing techniques are presented.

4.1 Better Performance Using ‘Irregular Puncturing
Method

Result 1:
G=[D*+1 D*+D+1 D*+ D? 5 AJ(ftl; 13 15] in octal)

010

Areg=1 0 0 1 df =4 code rate=3/5
111
10

Appr=| 011 df =5 code rate=6/9
010
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—— G=[11 13 15] regular table | 1
—©6— G=[11 13 15] irregular table| 1
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Figure 4.1: BER performance with regular rand irregular puncturing methods for G =
11 13 15

Result 2:
G=[D*+1 D*+D+1 D3+D*+1""D*%+D*+D+1]([11 13 15 17]in octal)

01 001
0 01 0O
Aseg = df =4 code rate=5/7
11000
00011
01
10
Ay = df =5 code rate=5/7
0010
00 0O0T1
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4.2 New RCPC Families Based on Irregular Punctur-

Method

ing

Here, we present the table of new RCPC families from irregular puncturing method and

the memory of parent code is from 3 to 6.
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(b) Parent code of memory 4

Table 4.1: New RCPC family based on irregular puncturing method with encoder

of memory 3 and 4
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(a) Parent code of memory 5

Table 4.2: New RCPC family based on irregular puncturing method with en-

coder of memory 5 and 6



4.3 RCPC Families Based on Hybrid Puncturing Tech-
niques

In this part, we present some RCPC families which are searched based on hybrid punc-
turing techniques. The original RCPC families which are composed in single puncturing
method and period are listed and the puncturing tables which can be substituted by dif-
ferent puncturing method or period are also indicated. To achieve better performance,the
puncturing tables which we choose to replace original ones are limited to has a better free

distance than the replaced ones.

G =23 35]
original family new family
period ds | re | period A df | e
(4.6) (}}}301>4%(4,@(}}}201)4%
Lo 1a g 0a) [ B@9 (0a1004) 4|8
(oo1ao0a) |2 Bl60] (0101) |28
((1)(1)(1)(1)01>2%(4’6) ((1)(1)(1)(1)01)2%
w0 | (o111 0 0) | tpbilay) (o0 71, ) 4|8
((1)}(1)101>3%(4’6)(812101)3%
(3)2101)*2%_2(4’4) <1(1)(1)(1)> 3| 1
(5(1)8101)1%(476) (338}01)1%
40 | (V01 000 ) || e® ()10, )| |8
(Lo o) [ B0 (V100 0) 4|8
(1(1)(1)10)*3%(4’4) (?éié) 3| 1
HEENID I CENIEE
(4,6) (13?111) | (49) (1(1)(1)111) 415
(1(1)(1)11())4%(4’6)<}(1)?}10)4%
(1(1)(1)10())* 3115 | (44) <1(1)(1)(1)> 3| 1
((1)(1)(1)00)2%(4’6) (1(1)?(1)00)2%
Table 4.3: RCPC families based on hybrid puncturing techniques of G = [23 35]

with period (4, 6) and (4,4)
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G =23 35
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Ol N> b~ Ao ™M [al[e) [a\1ag [ | i) [a ] [an) [a] [} N~ [a] i) e (a\] (o) b~ o o
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Table 4.4: RCPC families based on hybrid puncturing techniques of G

with period (6,4) and (4,4)
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Table 4.5: RCPC families based on hybrid puncturing techniques of G

with period (6,4) and (6, 6)



G =23 35

original family new family
period A dy | 7. | period dy | 7
w0 | (110t oa) [ 2|Bleo (1100 e,)| |8
(o1 noa) [ *[B1@9 (01 1100)]" 8
((1)(1)1(1)01>*2%(4’4> <(1)1(1)(1) 3|
(0oo1oa) 2809 (00010.)]2 )8
@0 | (o1 v a ) |48 @9 (000 100)|4]8
(b1 V1 oq)|2]Blao| (o101, )]s
((1)(1)(1)101>*2%(4’4) (1(1)(1)(1) 3%
(0o0101) [ 869 (1 o00010)| 2|5
Table 4.6: RCPC families based on hybrid puncturing techniques of G = [23 35]

with period (4,6) and (4,4)
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4.4 UEP Simulations Based on Hybrid Puncturing Tech-
niques

Since we have proposed some RCPC families which are composed by hybrid puncturing
techniques, we want to testify the UEP performance of these families. Here, two simulation
results are demonstrated follows.

Simulation 1:

In this simulation, we use two different RCPC families to satisfy the request of UEP.

One is composite of irregular puncturing tables as follows.
G=[D*+D+1 D'+ D*+ D*+1]( [23 35] in octal)

period=(

011111

dp=1 r.=12/13
0010 !

oS O
S =
—_ =
[ P

()
—_
—_
—

di=4 r,=12/19

—_
(e
—
ot

A, = ) df =2 r.=12/16

111111
Ay = df =5 r,=12/21
1011

Now, we want to build a new RCPC family with hybrid puncturing techniques and a regular

puncturing table A,eg is inserted to replace irregular puncturing table A,.

period=(6,6)
011111

Aoy — dy=3 r.=3/4
& 101010 d
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1 1
—6— original RCPC| ]
— B — hybrid RCPC | ]

107

Average BER

10

10

10 | | | | |
5 10 15 20 25 30 35 40 45
Bit Number

Figure 4.3: Average BER of source bitg in*different positions at signal-to-noise ratio 3.0 dB
for UEP simulation 1.

In Figure 4.3, x-axis represents the position of source bits in a super frame and y-axis
represents average BER corresponding to the ¢th source bit. The corresponding puncturing
table of each group of data is noted in the bottom of the figure and the solid lines denote
the designed BERs of the children codes. Suppose there are four groups of data and each
contain 12 bits in a super frame and four extra all-zero bits are appended at the end of every
super frame. When the puncturing table A, is replaced by A,eg, the average BER of each
source bits in the second data group decreases. This observation results from the difference
of the free distances which are generated by the child code according to the puncturing table
A, and A,eg. Therefore, we can obtain a new RCPC family which has better performance
as long as we choose the proper puncturing tables based on hybrid puncturing techniques.

The next simulation also demonstrate a improvement of average BER due to replacement
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of puncturing tables according to hybrid puncturing techniques.

Simulation 2:

We use the same encoder G = [23 35| and the irregular RCPC family is as follows.

period=(4, 6)

1101
A = dp=1 r,=12/13
000101

1101

Ay = df =2 r,=12/15
001101
1101

As = df =3 1, =12/17

A, = dp.—4 r,=12/19

We let puncturing table A,eg replace Ag and-the simulation result shows in Figure 4.4.
Obviously, we can expect that the improvement of performance due to the increase of free
distance will occur.
period=(4,4)
1101

Aoy — dy=3 r.=4/5
s 1010 d
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Figure 4.4: Average BER of source bits in different positions at signal-to-noise ratio 3.5 dB
for UEP simulation 2.
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Chapter 5

Conclusions

As we know, puncturing skill is a popular technique especially for convolutional codes.
By adopting this technique, the high rate code can be achieved from the low rate code
and the increase of decoding complexity can be avoid. The most common application
of punctured convolutional codes is RCPC codes which is composed of one encoder, one
decoder and several puncturing tables. RCPC codes play a huge role in speech and video
transmission especially in UEP. In conventional way, each output stream has the same
puncturing period and this case is named-as regular,puncturing. On the other side, if we
allow that each output stream has differentypuncturing: period, then irregular puncturing
method is created. A lot of new and undiscovered RCPC families based on the irregular
puncturing method are presented in this thesis.

However, the RCPC families which:we discussed 8o far are focus on single puncturing
method: regular or irregular. Therefor, a new ‘concept named hybrid puncturing techniques
is proposed in our thesis. We can take regular and irregular puncturing tables together
to form a RCPC family easily through the discussion of hybrid puncturing techniques.
Moreover, a general view of hybrid puncturing techniques is explored so that the puncturing
tables with arbitrary puncturing periods can be combined to establish a RCPC family.
Finally, examples of RCPC families which result from hybrid puncturing techniques are
demonstrated and some simple UEP simulations based on hybrid puncturing techniques are

also presented.

41



Appendix A

Proof of General Form of Hybrid
Puncturing Techniques

In chapter 3, we have introduced the concepts of hybrid puncturing techniques and

proposed several examples to illustrate. Those examples which we proposed in chapter 3

were limited the number of the output bits to n = 2 for simplification. Now, we want to

discuss a more general case where the number of the output bits is arbitrary n and present

the detail process of discussion for the arbitrary.n case.

Considering two puncturing tables Ay and A,

| D11 ‘ ( ‘ D21 ‘
A, = D1y | A, = P2j (A1)
Pin ‘ Don ‘
where pi1, -+, p1j, -+ ,Din and pai, -+, Paj, - - -, Pon, are the puncturing periods correspond-

ing to each output stream. At the beginning, we need to define some relations:

p

D1j > P2j
ng(pu,sz) =k;
Py = Ky - (A.2)
P2 = kj - n

lem(pij, paj) = k- (mj - ny )

mj—njzsj

42



The elements in the jth row of are

elements in ‘ D1j ‘ of Ay: (a1 ap ag---ay---ap,;) (A3)
elements in m of Ag:  (by by b3+ -by---Dpy,)
Then, we expand these two rows to lem(py;, p2;)
1 2 3 n;
(ay ay ag---ap, a1 ay ag---ap,; @y ay ag---ap,; -+ Ay az---ayp,;)
(A.4)

(?1 by bg...bp%?l by b3"'bp2gf)1 by b3"'bp2@"'f)1 by by---by, )

D2;
>

-~ -~ -~

1 2 3 m;

Since the elements in p;; and py; are repeated to form (A.4), we can figure out the relations

between these elements like follows.

(

bl a1 a(lergj)mod P1j a(1+2p2j)mod P1j Tt a/(1+(mj'71)p2j)m0d P1j

b2 a2 a(2+p2j)mod P1j a(2+2p2j)mod P1j Tt a(2+(mjfl)p2j)mod P1j

b3 a3 a(3+p2j)mod P1j a(3+2p2j)mod P1j Tt a(3+(mjfl)p2j)mod P1j (A5)
L by, Upoj  A(2paj)mod pj A@pa)modma; A(m;p2j)mod pi;

From (A.2), we can replace py; and pyj with kjmjand k;n; respectively.

(
bl afl a(1+kjnj)mod kjmj a(l+2kjnj)mod kjWLj e a(1+(mjfl)kjnj)mod ijTLj
bQ 0/2 a(2+kjnj)mod kjmj a(2+2kjnj)mod kjWLj e a(2+(m]’*1)]€jn]’)m0d ijTLj
bS 0/3 a(3+kjnj)mod ijTLj a(3+2kjnj)m0d ijTLj e a(3+(m]’*1)]€jn]’)m0d ijTLj
L bk:]-n]- — Qkjn;  Q(2k;nj)mod kjm; Q(3k;nj)ymod kjm; T A(mjking)mod kjm;
(A.6)

Because (A.2) tells us that m; —n; = s;, it implies that k;m; —k;n; = k;s;. So, we definitely

can find

bk?]'S]'mOd kjn; ak:jsj-mod kjn; ak?]'Sj a/(k]'S]'-f—kI]'TLj)mOd kjm; a(kij-f-ijn]-)mod kjm;

bk‘ij-i-lmod k]-nj a/k‘jS]'-f—lmOd k]-nj a/k‘jS]'-f—l a(kjs]--l—l-i-kjnj)mod kjmj a(k]-s]-—l—l—I—ijnj)mod k]-m]-

(A7)

in (A.6). Due to k;m; = k;s; + k;n;j, we can know

&(k:js]-—f—k:jnj)mod kjm; = @kjmj

(A.8)

a(k‘ij-i-l-i-k‘jn]')mOd kjm]- = a1
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It is an important observation which means b; and by s, 1mod &;n, both connect to a; and it
interests us to search more elements in pyj which might also connect to the same element
in pij. In this way, we start to find other b,’s which also connect to am;. Because
kim; = k;s; + kjn;, we can easily have 2k;m; = 2k;s; + 2kjn;. If 2kjm; > k;jn;, we need to

change the formula to
ijmj = ijSj + ijnj = (ijSj — kj?”lj) + 31@”3’- (Ag)
With this concept , we also let

3kjmj = 3]{3]'8]' + Skjnj = (?)kij — kjnj) + 4krjnj
4krjmj = 4]{?]'8]' —f- 4kjnj = (4kj8j — k‘jnj) + 5]{3]‘71]‘

(my = s;)kymy = (my — s;)k;s5 + (my — s5)km; = [(m; — s5)kjs; — kjng] + (my — 55 + 1)k,
(A.10)
The reason why we stop discussion at the value (m; —s;)k;s; is the last element in expanded
P15 1S Upyj = Qnikym; = Q(m,—s;)k;m;- Lherefore, we can collect {bkjsj bok;s;—kjn; D3kjs;—kjn; =
b(mj,sj)kjsj,kjnj} which all connect to g, in one group and there are total m; — s; = n;
elements in this group. Following these steps, thé elements in p;; and py; can be divided

into several groups.

Bl . {bl bkj8j+1 b2k]-s]-—k]-nj+1 b3k]'8j—kjnj+1 3 'b(mj—Sj)kj3j~kjnj+1}

¢ >A1: A1 A14kin;mod kym; A1+42k;n;mod: kims—A143ksn mod kym; ** * Al4+(m;—1)k;n;mod kjm;
AL VAL 3T iyl Ly L J AL A

B2 . {b2 bkj8j+2 kajS]'—ijbj-i-Q b3k]'8j—kj7’bj+2 o 'b(mjfsj)kjs]'fkjanrQ}

¢ 5A2: A2 A24kin;mod kym; A2+42k;n;mod kjm; A2+43k;n;mod kym; *° * A24+(m;—1)k;n;mod kijm;
AL VAL 3T VAL L] L J AL A

By, {bkij Dojs;—km; D3kjs;—kym; Dakys;—hm; - 'b(mrsj)kjsj*k‘j"j}

Ak‘j : {ak]'S]' a/k‘ij-i-k‘jn]'mOd k]-m]- ak]-s]-—f—ijnjmod k]-m]- akjs]-—f—?)kjnjmod k]-mj e akijJr(mjfl)kjnjmod kjmj}

(A.11)
In this way, (a1 as az---ay---ap,,)and (b1 by b3---b, - - by, ) can separate into k; = ged(p1;, p2;)
groups and there are m; and n; elements in each A; and B; respectively. Next, we need

to discuss the rate-compatible situation between each pair of A; and B; group. Then, the
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table of all possible puncturing patterns which satisfy the rate-compatible criterion can be
constructed.

high rate — low rate
P2; P1j
(b1 by b3 - - bpy,) (a1 az as---ap,,)
Bk]. Ak‘j
(bk]'S]' kajs]-—k:jnj b3k‘j8]'—k?]'nj e b(mjfsj)kjs]vfkjnj) (ak‘ij a’k‘ij-i-k‘jn]’mOd kjmj " akijJr(mjfl)kjnjmod kjmj)

(0 0---0) : all zeroes all

else (1 1---1):all ones

(A.12)
The other (k—1) groups also have the same result. What we should do next is to arrange each

elements in A;/B; group according to the above table from the discussion of rate-compatible

situation and the following table of possible puncturing patterns can be established.

(by bo-by) (a1 as---ay,)
Blz{O} BQ,"',BijelSG Alzall A2:A3::Ak]:{1}
BQZ{O} Bl,Bg,---,Bkj:else AQI&H A1:A3::Ak]:{1}
Bk]. = {0} Bl,BQ, cee 7Bk:]-—1 : else Akj all Al = A2 == Akj—l = {1}
BlzBQZ{O} Bg,-~-,Bkj:else Al,AQ:all A3:A4::Akj:{1}
Blngz{O} BQ,B4,~--,Bkj:else Al,AgiaH A2:A4::Akj:{1}
Bkj,1 = Bkj = {0} Bl, BQ, tee 7Bkj72 : else AkjflaAkj all Al = AQ == Akij = {1}
Bl,BQ,~--,Bkj:else A1:A2::Akj:{1}
(A.13)
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Similarly, we can derive the opposite condition easily.

low rate —
D2j
(by by b3 - - -bmj)

By

J

(bk:js]- kajs]-—k:jnj b3kjs]-—k:jnj to b(mjfsj)kjs]'fkjnj)

high rate
P1j

(a1 az ag---ap,;)

(1 1---1): all ones

else

Ay,
(akij Akjsj+kjnjmod kymj; " Qk;si+(mj—1)kjn;mod kjmj)
all
(0 0---0) : all zeros

(A.14)

The other (k—1) groups also have the same result and a similar table can also be constructed.

(bl b2 T prj)

(12 0> ap,)

Blz{]_} BQ,"',BijelSG A1:a11 A2:A3::Ak]:{0}

B2:{1} Bl,Bg,---,Bkj:else AQI&H A1:A3::Ak]:{0}

Bk]. = {1} Bl,BQ, cee 7Bk:]-—1 : else Ak]. s all Al = A2 == Akj—l = {0}
BlzBQZ{l} Bg,"',Bijelse Al,Ag:all A3:A4::Akj:{0}
31283:{1} BQ,B4,~--,Bkj:else Al,Ag:all A2:A4::Akj:{0}
Bkj,1 = Bkj = {1} Bl, BQ, tee 7Bkj72 : else AkjflaAkj all Al = AQ == Akij = {O}

Bl,BQ,~--,Bkj:else A1:A2::Akj:{0}
(A.15)
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