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建構一個編碼率二之差分空時碼 

學生：黃建勝 指導教授：伍紹勳  博士

國立交通大學電信工程學系﹙研究所﹚碩士班 

摘 要       

 
本篇論文提出了一個編碼率二之差分空時碼，並且可應用於四根與八根

傳送端天線數。除此之外，我們也推導出成對錯誤機率(pairwise error 

probability，簡稱 PEP) 的上界，它提供了一個針對差分空時碼可達到之

多樣性增益的理論驗證方法。我們的數學結果顯示出差分空時碼可得到的

多樣性增益等同於距離矩陣的秩數與接收端天線個數 M 的乘積。透過使用

成對錯誤機率，我們提出一個用來設計在這篇論文所提出之編碼率二，分

別使用四根以及八根傳送端天線之差分空時碼之秩準則。從實驗模擬也顯

示出我們所提出編碼率二之架構與透過成對錯誤機率所推導出來的分析結

果符合，並且這些分別使用四根與八根傳送端天線之編碼率二之差分空時

碼皆可得到多樣性增益四。 
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ABSTRACT 

 
A rate-two differential space-time code (DSTC) is proposed in this work 

and is applicable to four and eight transmit antennas. Moreover, the upper bound 
of the pairwise error probability (PEP) is also investigated herein, providing a 
theoretical justification for the achievable diversity order of the proposed DSTC 
scheme. With the assumption of a full rank data matrix, the derivation results 
show that the diversity order equals to the rank of the distance matrix multiplied 
by the number of receive antennas M. Based on this PEP expression, we provide 
a rank criterion on the design of the rate-two DSTC. The simulation results 
match the analysis obtained from the PEP, and achieve the diversity order of 
four for four and eight transmit antennas respectively. 
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Chapter 1

Introduction

With the fast development of wireless communication techniques, the demand for

reliable high data rate transmission in fading channel increases significantly. Space-time

block code (STBC) provides an effective approach for exploiting the diversity advantage

of multi-input and multi-output (MIMO) systems [1], [2], [3]. While, for STBC decod-

ing, channel state information (CSI) is often required at the receiver. In practice, it is

estimated with training symbols, and thus may not be accurate enough in fast fading

channels. In addition, the training overhead for channel estimation will also sacrifice the

effective throughput, especially when the number of transmit antennas becomes large.

Based on the reasons, it is helpful to consider a noncoherent and differential space-time

coded system which does not require CSI at the receiver.

Various differential space-time codes (DSTC) have been proposed before. For two

transmit antennas, a DSTC based on orthogonal designs was proposed in [4] for slow

fading channels. It features a simple encoding and decoding algorithms, and the per-

formance is 3dB worse than the coherent STBC at high signal to noise ratio (SNR).

In the same year, the results provided in [5] show that the scheme in [4] is optimal

among its unitary group codes. In addition, it also provides some optimal unitary group
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codes for different rates. For more than two transmit antennas, a differential unitary

space-time code (DUSTC) was introduced in [6]. Subsequently, a DUSTC based on

unitary group codes was presented in [5]. Both schemes have simple structures at the

transmitter due to the group codes. Although they can be applied to any number of

transmit and receive antennas based on generalized orthogonal designs; however, a high

decoding complexity is inevitable. In [7], a DSTC was extended to multiple transmit

antennas based on generalized orthogonal designs, but it was limited in STBC structure.

Furthermore, the transmission rate is only 1/2, and the decoding complexity is still high.

In the subsequent works, based on a simple orthogonal space-time code (OSTC) [8], a

DSTC is proposed in [9], which achieves the rate 3/4 for four transmit antennas with-

out the structures of group codes. A rate-one quasi-orthogonal space-time block code

(QOSTBC) for four transmit antennas were presented in [10]. The corresponding differ-

ential quasi-orthogonal space-time code (DQOSTC) based on the above QOSTBC was

introduced in [11]. Compared with the differential orthogonal space-time code (DOSTC)

with maximum achievable rate equal to 3/4, it can achieve full rate and full diversity

simultaneously by means of constellation rotations (CRs) [12], [13]. Afterward, a single-

symbol decodable DSTC, which can provide full transmit diversity was presented in [14].

Particularly, a special idea of dispersion matrices, which can reduce the complexity sig-

nificantly was introduced. In [15], a rate-2 DSTC with maximin-likelihood (ML) receiver

for four transmit antennas was proposed.

It is undeniable that a reliable fixed or mobile wireless transmission at high transmis-

sion rates will be an important issue for future communication systems. As mentioned

above, DOSTC can provide full transmit diversity as well as lower decoding complexity,

but it has a maximum transmission rate 3/4 when more than two transmit antennas

are considered. DQOSTC with constellation rotations can achieve full diversity and full

rate at the same time. However, these schemes can only provide the transmission rate

at most one. Compared with the rich research results for rate less than or equal to
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one, high-rate DSTC is rather less investigated. On the other hand, spatial multiplex-

ing (SM) can provide the highest possible achievable rate but has no transmit diversity

advantage. Furthermore, it requires the number of received antennas greater than or

equal to the number of transmit antennas [16], but there is likely to be asymmetry be-

tween downlinks and uplinks. Therefore, it is valuable to design a generalized high-rate

DSTC with transmission rate greater than one, which is extendable to various number

of transmit antennas.

In this thesis, a rate-two DSTC for four transmit antennas is proposed to achieve

better diversity order, and it is extendable to eight transmit antennas. On the other

hand, based on the approach in [17], the upper bound of the pairwise error probability

(PEP) of the DSTC is derived, which provides a theoretical justification for the achiev-

able diversity of the DSTC scheme. Based on the PEP expression, we provide a rank

criterion on the design of the proposed rate-two DSTC, and the simulation results coin-

cide with the noncoherent rate-diversity tradeoff [18] for the case of four transmit and

two receive antennas. The thesis is organized as follows. In Chapter 2, we will briefly

describe the basic system model. The differential encoding and decoding algorithm for

the DSTC is introduced in Chapter 3. In Chapter 4, an upper bound of the PEP

of the DSTC is derived. Based on the PEP expression, we provide a rank criterion on

the design of the rate-two DSTC in this chapter. Based on the results in Chapter 4,

a rate-one and rate-two DSTCs with more than two transmit antennas is presented in

Chapter 5.
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Chapter 2

System Model

A wireless communication system, with N transmit antennas and M receive antennas

over flat Rayleigh fading channels as illustrated in Figure 2.1. Each receive antenna

responds to each transmit antenna through a statistically independent fading coefficient.

We firstly define k, T as the block index and block length of the system, in which the

channel coefficients are fixed during the T symbol periods.

The signal that arrives at the m-th receive antenna is a superposition of the fading

transmitted signals and noise. At each receive antenna, a demodulator samples the

output of the waveform synchronously and produces decision statistics in each symbol

interval. Thus, the relationship between the decision statistics and the transmitted

signals is given by

Figure 2.1: Block diagram of a MIMO system
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ym(t) =
N∑

n=1

√
ρhmn(t) xn(t) + nm(t) m = 1, ..., M, t = 1, ..., T (2.1)

where ρ = Es/σ2
n is the ratio of the average received signal energy per symbol period

at each antenna to the noise power spectral density (Signal to Noise Ratio, SNR), hmn

is the complex fading coefficient from n-th transmit antenna to m-th receive antenna,

and nmt is an independent identically distributed (i.i.d.) complex Gaussian noise with

zero mean and unit variance with respect to both m and t. The transmit symbols

are modulated and differentially space-time coded in blocks. Each DSTC matrix is of

dimension N × T denoted by Xk, and T is the block length of the system in which

the channel coefficients are invariant. The M × T received signal Yk in block k can be

expressed as

Yk =
√

ρHkXk + Nk (2.2)

Hk is an M × N channel matrix whose entry hmn for m ∈ [1,M ] and n ∈ [1, N ] is

complex Gaussian distributed. Nk is an M ×T noise matrix which contains the samples

of independent complex Gaussian random variables with zero mean and variance equal to

one denoted by CN (0,1). For the sake of simplicity, at the beginning of the transmission,

we assume that the initial DSTC matrix X0 is an identity matrix IN . To maintain a

constant average power, Xk should meet the power constraint rule:

E { || Xk ||2F } = E {
N∑

n=1

T∑
t=1

|xnt|2 } = T · L

T
= L (2.3)

where || · ||F denotes the Frobenius norm of a matrix, and L denotes the number of

modulated symbols to be sent in a block. In other words, we define the transmission

rate R of the DSTC as L/T .
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Chapter 3

Differential Space-Time Code

3.1 Differential Encoding

One way to communicate with unknown CSI is the DSTC, which can be viewed as a

higher-dimensional extension of the conventional differential phase-shift keying (DPSK)

mostly applied in the signal-input single-output (SISO) systems. Figure 3.1 shows the

block diagram of the differential encoding process. In the k-th block, the transmitter

determines the transmit matrix Xk by the data matrix Sk generated independently in

each block and previously transmit matrix Xk−1 depending on the following differential

Figure 3.1: Differential Encoding Process
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encoding process:

Xk =
1

αk

Xk−1Sk (3.1)

We define Sk as a rate-(L/T ), N × T data matrix which contains L modulated

symbols during T symbol periods. In other words, the transmission rate R of the whole

system is L/T . At the beginning of the transmission (i.e., k=1), we assume that the

transmitter sends the initial transmit matrix X0 to be an identity matrix IN . To assure

that the transmitted signal will not vanish or blow up to infinity, we use the αk as the

normalization factor to keep the mentioned average power constraint.

3.2 Differential Decoding

At the receiver, we assume that the channel coefficients remain fixed at two consecu-

tive time blocks, that is, Hk ≈ Hk−1 = H, then according to (2.2), the received matrices

at time block k and k − 1 are respectively given by

Yk =
√

ρHXk + Nk (3.2)

Yk−1 =
√

ρHXk−1 + Nk−1 (3.3)

From (3.1), (3.3) and (3.4), we can rewrite Yk in the k-th block as

Yk =
√

ρHXk + Nk

=
√

ρH(
1

αk

Xk−1Sk) + Nk

=
1

αk

(
√

ρHXk−1 + Nk−1)Sk + (Nk − 1

αk

Nk−1Sk)

=
1

αk

Yk−1Sk + Wk (3.4)

where Wk = Nk− 1
αk

Nk−1Sk. Note that the channel matrix H disappears in (3.4), which

implies that, as long as the channel is approximately constant over two consecutive time
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blocks, it is possible for DSTC to decode without knowing the CSI at the receiver.

When the data matrix Sk is unitary, the equivalent Gaussian noise Wk in (3.4) is

statistically independent of Sk. Thus, the maximum-likelihood receiver for DUSTC can

be expressed as

Ŝk = arg min
S
||Yk − 1

αk

Yk−1S||2

= arg min
S

tr{(Yk − 1

αk

Yk−1S)(Yk − 1

αk

Yk−1S)H} (3.5)

where the operator tr{·} denotes the matrix trace. However, for non-unitary data ma-

trix, the equivalent noise Wk becomes an colored Gaussian noise with covariance matrix

Cov as

Cov = E[ WH
k Wk ]

= E[ (Nk − 1

αk

Nk−1Sk)
H(Nk − 1

αk

Nk−1Sk) ]

= σ2
nIN + (

1

αk

)2SH
k Sk (3.6)

and thus the ML receiver can be rewritten as

Ŝk = arg min
S
{ tr[−1

2
(Yk− 1

αk

Yk−1S) ·

C−1
ov · (Yk − 1

αk

Yk−1S)H ] } (3.7)

Since the ML receiver in (3.7) is complicated to analyze. In the following chapter,

the PEP of the DSTC using ML receiver in (3.6) will be applied to analyze the diversity

order, and then we will have some rules for the design of the DSTC. We note that for

non-unitary condition, the results may not be optimal by using the sub-optimal receiver.
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Chapter 4

Diversity Analysis of Differential

Space-Time Code

4.1 Diversity

Spatial diversity and spatial multiplexing are the two reasons why MIMO systems

offer better performance and higher throughput. Spatial multiplexing involves transmis-

sion of several independent data streams over different transmit antennas simultaneously

to increase the throughput while spatial diversity sends copies of the same information

over different transmit and receive antennas to avoid suffering deep fading simultane-

ously. Multipath fading causes severe degradation of signals in wireless communication

systems. MIMO systems offer a spectacular approach for combating fading due to multi-

path propagation, scattering, refraction, reflection, etc by means of diversity. Diversity

mitigates the effect of fading and hence allows higher level modulation schemes that

increase the capacity and greatly reduce bit error rate (BER). We give an example to

explain the basic idea of diversity below.
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Consider a SISO system, and the output signal can be expressed as

y =
√

ρhx + n (4.1)

where h is the Rayleigh flat-fading channel gain, ρ = Es/σ
2
n is the SNR, and n is the

noise at the receiver, which is Gaussian distributed with zero mean and half variance

per real dimension. Therefore, the signal to noise ratio (SNR) at the receiver is ρ|h|2.
Since h is Rayleigh distributed, |h|2 is exponentially distributed with probability density

function (pdf)

p(h) = e−h h > 0 (4.2)

The probability that the received SNR is less than a small value ε is,

p(ρ|h|2 < ε) = p(|h|2 <
ε

ρ
) = 1− e−

ε
ρ (4.3)

As the transmit power is very large (ρ →∞), (4.3) can be approximated to

p(ρ|h|2 < ε) ≈ ε

ρ
(4.4)

which is inversely proportional to the SNR.

Similarly, consider a MIMO system, and the output matrix form with the same

transmit power Es can be written as

Y =
√

ρHX + N (4.5)

where E{ XXH } = 1 and the expected received SNR becomes

ρ · E{ ||HX||2 } = ρ · E{ xHHHxH} =
ρ

N

N∑
n=1

M∑
m=1

|hnm|2 (4.6)

10



Note that N , M denote the number of transmit and receive antennas respectively, and

E{·} denotes the mathematical expectation. Thus, the probability that the received

SNR is less than a small value ε is

p(
ρ

N

N∑
n=1

M∑
m=1

|hnm|2 < ε ) = p(
N∑

n=1

M∑
m=1

|hnm|2 <
Nε

ρ
)

< p( |h11|2 <
Nε

ρ
, |h12|2 <

Nε

ρ
, ..., |hNM |2 <

Nε

ρ
)

=
NM∏

n=1,m=1

p( |hnm|2 <
Nε

ρ
)

= (1− e−
Nε
ρ )NM (4.7)

Also, as the transmit power is very large (ρ →∞), (4.7) can be approximated to

p(
ρ

N

N∑
n=1

M∑
m=1

|hnm|2 < ε ) ≈ (
Nε

ρ
)NM (4.8)

Compared with the results in the SISO system, the probability in (4.8) is inversely

proportional to ρNM . It shows that the MIMO system offer lower error probability than

SISO system at high SNR. It is commonly investigated by means of calculating the

diversity order. A system which has an average error probability Pe as a function of

SNR that behave as

lim
ρ→∞

log (Pe)

log (ρ)
= −d (4.9)

is said to have a diversity of order d. In other words, the average error probability in

the high SNR region can be expressed as

Pe ≈ C · ρ−d (4.10)

where C is the coding advantage. We note that the diversity order is a high SNR approx-
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imation. However, the exact symbol error probability (PEP) and bit error probability

are sometimes too difficult to calculate. In [3], the error probability can be analyzed by

calculating the pair-wise error probability PEP). In the following section, we pay more

attention to the PEP instead to get a basic idea of the error performance.

4.2 Pairwise Error Probability of Differential Space-

Time Code

The general used performance measures for diversity order include the symbol error

probability (SEP) and the outage probability. Unfortunately, the SEP is not always

analytical depending on the design of techniques. However, the pairwise error probability

(PEP), which is commonly used to upper bound the SEP [3], is more feasible. Moreover,

an advantage of PEP is that it is not related to the symbol constellations. Therefore, in

the following content, we will derive the close form of the PEP based on the approaches

in [17] to analyze the diversity order for the design of the proposed DSTC.

Conditioned on yk−1 at the receiver, based on (3.5), the receiver will erroneously

select Ek(i) = Ei when Sk(i) = Si was sent if

||Yk − 1

αk

Yk−1Ei||2 ≤ ||Yk − 1

αk

Yk−1Si||2

tr{(Yk − 1

αk

Yk−1Ei)(Yk − 1

αk

Yk−1Ei)
H} ≤ tr{(Yk − 1

αk

Yk−1Si)(Yk − 1

αk

Yk−1Si)
H}

1

αk

tr{(Yk−1(Si − Ei)(Si − Ei)
H Y H

k−1} ≤ tr{2Re{ Wk(Si − Ei)
HY H

k−1 }}
1

αk

tr{(Yk−1DDH Y H
k−1} ≤ tr{2Re{ WkD

HY H
k−1 }} (4.11)

where D = Si − Ei is called the error matrix. Concatenating the columns of Yk into a
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vector by vec(Yk), the received signal can be rewritten as

yk =
√

ρ hkXk + nk (4.12)

Xk =
1

αk

Xk−1Sk (4.13)

where vec(·) denotes the vectorization operator. yk = vec(Y T
k )T , hk = vec(HT

k )T , nk =

vec(NT
k )T , Xk = IM ⊗ Xk and Sk = IM ⊗ Sk. Thus, yk becomes a row vector, and we

can simplify the equation in (4.11) for simplicity as

||yk −
1

αk

yk−1Ei||2 ≤ ||yk −
1

αk

yk−1Si||2

1

αk

yk−1DDH yH
k−1 ≤ 2Re{ wiDH yH

k−1 } (4.14)

where D = Si − Ei = IM

⊗
Si − Ei. Conditioned on the yk−1, the left hand side of

the inequality in (4.13) is a deterministic variable. Since wi and yk−1 are Gaussian

distributed, the linear combination of Gaussian random variables are still Gaussian dis-

tributed. Therefore, the right hand side of (4.13) is a colored Gaussian random variable.

Let g = 2Re{ wiDHyH
k−1 } be Gaussian distributed with conditional mean mg|yk−1

and conditional variance σ2
g|yk−1

for given yk−1. Conditioned on the received signal yk−1,

the conditional mean of g can be defined as

mg|yk−1
= E{ g | yk−1 }

= E{ 2Re{ wiDHyH
k−1 } | yk−1 }

= 2Re{ E{ yi | yk−1 } DH yH
k−1 }

= 2Re{ E{ nk − nk−1Si | yk−1 } DH yH
k−1 } (4.15)
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Note that E{ nk | yk−1 } = 0, and thus (4.14) can be rewritten as

mg|yk−1
= 2Re{ E{ nk − nk−1Si | yk−1 } DH yH

k−1 }

= −2Re{ E{ nk−1 | yk−1 } Si DH yk−1 }

= −2Re{ mnk−1|yk−1
Si DH yH

k−1 } (4.16)

where mnk−1|yk−1
= E{ nk−1 | yk−1 }. In order to compute mnk−1|yk−1

, we use the theorem

in [19] and introduce in Appendix A. By using the results given in Appendix A,

mnk−1|yk−1
can be expressed as

mnk−1|yk−1
= E{ nk−1 }+ Σyk−1,nk−1

Σ−1
yk−1,yk−1

(yk−1 − E{ yk−1 }) (4.17)

where Σyk−1,nk−1
= E{ yH

k−1 nk−1 } = σ2
n INM and

Σyk−1,yk−1
= E{ yH

k−1 yk−1 }

= E{ (
√

ρhXk−1 + nk−1)
H (
√

ρhXk−1 + nk−1) }

= Es(XH
k−1Xk−1) + σ2

n INM (4.18)

Since E{ nk−1 } = 0 and E{ yk−1 } = 0, (4.16) can be derived as

mnk−1|yk−1
= E{ nk−1 }+ Σyk−1,nk−1

Σ−1
yk−1,yk−1

(yk−1 − E{ yk−1 })

= σ2
n yk−1 (Es(XH

k−1Xk−1) + σ2
n INM)−1 (4.19)

Substituting (4.18) for mnk−1|yk−1
in (4.15) gives the conditional mean mg|yk−1

as

mg|yk−1
= −2Re{ mnk−1|yk−1

Si DH yH
k−1 }

= −2Re{ ( σ2
n yk−1 (Es(XH

k−1Xk−1) + σ2
n INM)−1 ) SiDHyH

k−1 } (4.20)
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Similarly, given the received signal yk−1, the conditional variance of g can be expressed

as

σ2
g|yk−1

= E{ || g −mg|yk−1
||2 | yk−1 }

= E{ ( g −mg|yk−1
)H( g −mg|yk−1

) | yk−1 } (4.21)

where

g −mg|yk−1
= 2Re{ wiDHyH

k−1 }+ 2Re{ mnk−1|yk−1
Si DH yH

k−1 }

= 2Re{ wiDHyH
k−1 + mnk−1|yk−1

Si DH yH
k−1 }

= 2Re{ (nk − nk−1Si)DHyH
k−1 + mnk−1|yk−1

Si DH yH
k−1 }

= 2Re{ (nk − [nk−1 −mnk−1|yk−1
]Si)DHyH

k−1} (4.22)

Substituting (4.20) for g −mg|yk−1
in (4.21) gives the conditional variance σ2

g|yk−1
as

σ2
g|yk−1

= E{ ( g −mg|yk−1
)H( g −mg|yk−1

) | yk−1 }

= E{ ( 2Re{ (nk − [nk−1 −mnk−1|yk−1
]Si)DHyH

k−1 } )H

·( 2Re{ (nk − [nk−1 −mnk−1|yk−1
]Si)DHyH

k−1 } ) | yk−1 }

= 2 yk−1d E{ (nk − [nk−1 −mnk−1|yk−1
]Si)

H

·(nk − [nk−1 −mnk−1|yk−1
]Si) | yk−1 } dHyH

k−1

= 2 yk−1D [ Σnk,nk
+ SH

i Σnk−1|yk−1
Si ] DHyH

k−1 (4.23)

where Σnk−1,nk−1
= σ2

nINM and Σnk−1|yk−1
= E{ || nk−1 −mnk−1|yk−1

||2 | yk−1 } is the

covariance of the noise vector nk−1 condition on the received vector yk−1. Similarly,
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using the results obtained in Appendix A, Σnk−1|yk−1
can be written as

Σnk−1|yk−1
= E{ || nk−1 −mnk−1|yk−1

||2 | yk−1 }

= Σnk−1,nk−1
− ΣH

yk−1,nk−1
Σ−1

yk−1,yk−1
Σyk−1,nk−1

= σ2
nINM − (σ2

nINM Σ−1
yk−1,yk−1

σ2
nINM)

= σ2
n [ INM − σ2

n Σ−1
yk−1,yk−1

] (4.24)

Substituting (4.22) for Σnk−1|yk−1
in (4.23) gives the conditional variance σ2

g|yk−1
as

σ2
g|yk−1

= E{ ( g −mg|yk−1
)H( g −mg|yk−1

) | yk−1 }

= 2 yk−1D [ σ2
nINM + SH

i (σ2
n [ INM − σ2

n Σ−1
yk−1,yk−1

])Si ] DHyH
k−1

= 2 yk−1D [ σ2
nINM + SH

i (σ2
n [ INM −

σ2
n( Es( XH

k−1Xk−1 ) + σ2
n INM)−1 ])Si ] DHyH

k−1 (4.25)

Summery

Let g = 2Re{ wiDHyH
k−1 }, then we have shown that the random variable g which

is Gaussian distributed has the conditional mean

mg|yk−1
= E{ g | yk−1 }

= −2Re{ mnk−1|yk−1
Si DH yH

k−1 } (4.26)

where mnk−1|yk−1
= σ2

n yk−1 [ Es(XH
k−1Xk−1) + σ2

n INM ]−1, and the conditional variance

σ2
g|yk−1

= E{ || g −mg|yk−1
||2 | yk−1 }

= 2 yk−1D [ σ2
nINM + SH

i Σnk−1,yk−1
Si ] DHyH

k−1 (4.27)
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where Σnk−1|yk−1
= σ2

n [ INM − σ2
n Σ−1

yk−1,yk−1
].

By the chernoff upper bound, the conditional PEP in (4.13) can be expressed as

p( Si → Ei | yk−1 ) = p( ||yk −
1

αk

yk−1Ei||2 ≤ ||yk −
1

αk

yk−1Si||2 )

= p(
1

αk

yk−1D DHyH
k−1 ≤ 2Re{ wiDH yH

k−1 } )

= Q(
1

αk
yk−1D DHyH

k−1 −mg|yk−1

σg|yk−1

)

≤ 1

2
exp(−1

2
Ω) (4.28)

where

Q(x) =

∫ ∞

x

1√
2π σ

exp(− y2

2σ2
) dy (4.29)

Ω =
|| h−mg|yk−1

||2
σ2

g|yk−1

(4.30)

In fact, it is difficult to analyze Ω. Moreover, unlike in the coherent STBC, finding

the PEP from (4.27) is a hard problem because of the non-zero mean mu|yk−1
and

complicated variance σ2
g|yk−1

. However, in the high SNR region (i.e., keep the SNR

ρ = Es/σ
2
n →∞), the conditional mean in (4.25) and the conditional in (4.26) variance

of g approach respectively

mg|yk−1
= −2Re{ mnk−1|yk−1

Si DH yH
k−1 }

= −2Re{ ( σ2
n yk−1 (Es(XH

k−1Xk−1) + σ2
n INM)−1 ) SiDHyH

k−1 }

= −2Re{ ( yk−1 (
Es

σ2
n

(XH
k−1Xk−1) + INM )−1 ) Sid

HyH
k−1 }

→ 0 (4.31)
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and

σ2
g|yk−1

= 2 yk−1D [ σ2
nINM + SH

i Σnk−1,yk−1
Si ] DHyH

k−1

= 2 yk−1D [ σ2
nINM + SH

i (σ2
n [ INM −

σ2
n( Es( XH

k−1Xk−1 ) + σ2
n INM)−1 ])Si ] DHyH

k−1

= 2 yk−1D [ σ2
nINM + SH

i (σ2
n [ INM −

(
Es

σ2
n

( XH
k−1Xk−1 ) + INM)−1 ])Si ] DHyH

k−1

→ 2 σ2
n yk−1D ( INM + SH

i Si ) DHyH
k−1 (4.32)

Based on the forms in (4.30) and (4.31) as SNR approaches to infinity, Ω in (4.29)

reduces to

Ω =
|| h−mg|yk−1

||2
σ2

g|yk−1

→ h2

σ2
g|yk−1

=
|| 1

αk
yk−1D DHyH

k−1 ||2
2 σ2

n yk−1D ( INM + SH
i Si ) DHyH

k−1

(4.33)

Since SH
i Si is a hermitian matrix, it can be written as SH

i Si = UH
i ΛiUi , where the

matrix of eigenvectors Ui obeys UH
i Ui = UiU

H
i = INM , and let Λi is a matrix of

eigenvalues of SH
i Si. We define λm as the eigenvalues of SH

i Si for m = 1, ... , NM .
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Thus, (4.32) is then given by

Ω =
|| 1

αk
yk−1D DHyH

k−1 ||2
2 σ2

n yk−1D ( INM + SH
i Si ) DHyH

k−1

=
|| yk−1D DHyH

k−1 ||2
2 (αk)2 σ2

n yk−1D ( UH
i (INM + Λi)Ui ) dHyH

k−1

≥ || yk−1D DHyH
k−1 ||2

2 (αk)2 σ2
n (1 + µmax) yk−1D DHyH

k−1

=
yk−1D DHyH

k−1

2 (αk)2 σ2
n (1 + µmax)

(4.34)

where µmax is the maximum eigenvalue of SH
i Si ( i.e., µmax = max { µ1, ... , µNM } )

and yk−1D DHyH
k−1 is a quadratic form. In order to obtain the exact form of PEP, we

need to average (4.27) with respect to the distribution of yk−1. The probability density

function (pdf) of yk−1 is

p(yk−1) =
1

πNM | Σyk−1,yk−1
| exp(−yk−1 Σ−1

yk−1,yk−1
yH

k−1) (4.35)

where Σyk−1,yk−1
= Es(XH

k−1Xk−1) + σ2
n INM and the exact pairwise error probability is

given by

p( Si → Ei ) = Eyk−1
{Pr (Sk(i) → Ek(i) | yk−1)}

≤
∫

1

2
exp(−1

2
Ω) · 1

πNM | Σyk−1,yk−1
| exp(−y Σ−1

yk−1,yk−1
yH) dy

=
1

2

∫
1

πNM | Σyk−1,yk−1
| exp(−y Σ−1 yH) dy (4.36)

where the operator | · | is the matrix determinant and Σ−1 = Σ−1
yk−1,yk−1

+ DDH

4 (αk)2 σ2
n (1+µmax)

.

By using the normalization property of Gaussian probability density function,

∫
1

πNM | Σ | exp(−y Σ−1 yH) dy = 1 (4.37)
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(4.35) can be expressed as

p( Si → Ei ) ≤ 1

2

∫
1

πNM | Σyk−1,yk−1
| exp(−y Σ−1 yH) dy

=
| Σ |

2| Σyk−1,yk−1
|

=
1

2| Σ−1Σyk−1,yk−1
| ( |AB| = |A| · |B| )

=
1

2| (Σ−1
yk−1,yk−1

+ DDH

4 (αk)2 σ2
n (1+µmax)

)Σyk−1,yk−1
|

=
1

2| (INM + 1
4 (αk)2 σ2

n (1+µmax)
DDH(Es(XH

k−1Xk−1) + σ2
n INM)|

→ 1

2| (INM + 1
4 (αk)2 σ2

n (1+µmax)
(Es/σ2

n) · Xk−1DDHXH
k−1 |

=
1

2

NM∏
m=1

( 1 +
ρ

4 (αk)2 σ2
n (1 + µmax)

λm )−1 (4.38)

where ρ = Es/σ
2
n and λm is the eigenvalues of matrix Xk−1DDHXH

k−1 . The arrow ”→”

denotes the approximation as the SNR → ∞. Equation (4.37) reveals that the error

performance of DSTC depends on the distance matrix D2 = DDH = (Si−Ei)(Si−Ei)
H

and the previously transmit matrix Xk−1. In the next section, we will analyze the di-

versity order of the DSTC based on the proposed analytical expression for the PEP and

provide a design criteria to approach the maximum diversity.

4.3 Design Criterion

Recall the general definition of diversity order in (4.9), a system which has an average

error probability Pe as a function of SNR (ρ) that behave as

lim
ρ→∞

log (Pe)

log (ρ)
= −d (4.39)
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is said to have a diversity of order d. In other words, the average error probability in

the high SNR region can be approximated as

Pe ≈ C · (ρ)−d (4.40)

where C is called the coding advantage. We note that the average error probability

can be analyzed by the PEP. We define r as the rank of matrix Xk−1DDHXH
k−1, then

exactly NM−r eigenvalues are zero. Let the nonzero eigenvalues of Xk−1DDHXH
k−1 are

λ1, λ2, ..., λr , then it gives from inequality (4.37) that

p( Si → Ei ) ≤ 1

2

NM∏
m=1

( 1 +
ρ

4 (αk)2 σ2
n (1 + λmax)

λm )−1

=
1

2
[

r∏
i=1

(
λi

4 (αk)2 σ2
n (1 + µmax)

) ]−M · (ρ)−RM (4.41)

Therefore, from (4.39) and (4.40), the diversity order of a differential space-time code is

d = − lim
ρ→∞

log ( p(Si → Ei) )

log (ρ)

= − lim
ρ→∞

log ( 1
2

[
∏R

r=1 ( λr

4 (αk)2 σ2
n (1+µmax)

) ]−M · (ρ)−rM )

log (ρ)

= − lim
ρ→∞

log ( (ρ)−RM )

log (ρ)

= rM (4.42)

and a diversity advantage of rM as well as coding advantage of

1
2

[
∏R

r=1 ( λr

4 (αk)2 σ2
n (1+µmax)

) ]−M is achieved. Particularly, we note that the results for

DSTC are similar to those for coherent scheme. Therefore, from the above analysis, we

have the following design criterions:

Design Criterion of Differential Space-Time Codes
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A. The Rank Criterion

From (4.41), it is obvious that a diversity advantage of rM is achieved, which mainly

depends on the rank of the previously transmit matrix Xk−1 as well as distance matrix

DDH . Based on the above analysis, we arrive at the following design criterion:

max
Sk,i

{ rank(D(Sk,i, Sk,j) ·D(Sk,i, Sk,j)
H) } , ∀ i 6= j (4.43)

subject to det(Sk) 6= 0, ∀ k. Recall the differential encoding process in (3.1), assume

that the initial transmit matrix X0 = IN at the beginning of the transmission (i.e.,

k = 1). As the block index k increases, we have

k = 1 , X1 =
1

α1

X0S1 =
1

α1

S1

k = 2 , X2 =
1

α2

X1S2 =
1

α2

(
1

α1

S1) S2

...
...

k = L , XL =
1

αL

XL−1SL

=
1

αL

(
1

αL−1

· · · ( 1

α1

S1 ) S2 · · ·SL−1 ) SL

=
L∏

l=1

1

αl

Sl (4.44)

It is easy to show that, at the k-th block, the transmit matrix Xk is the product of

the data matrices from S1 to Sk. Therefore, full rank Xk−1 implies that Si must be full

rank as well, ∀i ∈ [1, k − 1]. By making Sk full rank, ∀k, the diversity order becomes

related to the rank of D · DH only and it simplifies the code design of the DSTC. We

thus focus on maximizing the rank r of the distance matrix, and have the maximum

diversity order of rM .
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B. The Determinant Criterion

In (4.40), the coding advantage that we tend to maximize is

C =
1

2
[

r∏
i=1

(
λi

4 (αk)2 σ2
n (1 + µmax)

) ]−M (4.45)

Now we focused on the product of eigenvalues of Xk−1DDHXH
k−1. Suppose that a diver-

sity order of rM is the target. The coding advantage mainly depends on the products

λ1 · λ2 · · · ·λr where r is the rank of Xk−1DDHXH
k−1. Our design criteria in this part

is making this eigenvalue products as large as possible. Therefore, if a diversity order

of rM is gained, the minimum of the products of the eigenvalues taken over all pairs

of distinct codewords and must be maximized. Recall that the products of eigenvalues

λ1 ·λ2 ·· · ·λr is the determinant of Xk−1DDHXH
k−1 among the pairs of distinct codewords.

Thus, we have the following determinant criteria.

Determinant Criterion:

max{ min
∀ (Si(k),Ei(k)), Si(k) 6=Ei(k)

| D̃(Si(k) → Ei(k)) |} , ∀ k

We note that | · | is the matrix determinant. However, compared with the results

for the coherent STBC in [2], it is more difficult to obtain the determinant value of

Xk−1DDHXH
k−1 than D2 = (Sk(i) − Sk(i))(Sk(i) − Sk(i))

H since the transmit matrix Xk−1

are correlated to S1, ..., Sk−1. Therefore, we mainly focus on the diversity behavior rather

than coding advantage in the following contents. On the other hand, since the PEP is

calculated based on the ML receiver in (3.5) rather than that in (3.7) as the noise matrix

Nk is not white Gaussian distributed, the design criterion is valid for the ML receiver

in (3.5).
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Chapter 5

Extendable High-Rate Differential

Space-Time Code

The priority of the design of high-rate DSTC is to design the data matrix Sk with

the transmission rate R greater than one. Moreover, the code structure must be flexible

and simple such that it can be extended from the lower to higher dimensions. This is

the point of view when we design the extendable high-rate DSTC.

Alamouti STBC [1] for two transmit and one receive antennas is the only orthogo-

nal space-time block code (OSTBC), which achieves the maximum diversity as well as

possible mutual information of a 2× 2 MIMO system. Unfortunately, it has been shown

that an OSTBC with a transmission rate R equal to one for more than two transmit

antennas does not exist [3]. Furthermore, by increasing the number of transmit anten-

nas, the rate of the OSTBC is significantly decreasing, which makes them unattractive

for systems with a very high number of transmit antennas. One solution to this problem

is to divide the N transmit antennas into groups, where each group employs an OSTBC.

Since the rate increases, there is a loss in the diversity order, which results in poor error

performance. In this section, our objective is to apply the rate-one Alamouti scheme as

our OSTBC and design an extendable high-rate DSTC based on the two rank design
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criterions obtained form the previous section for more than two transmit antennas.

5.1 Rate-One Differential Space-Time Code

5.1.1 Rate-One for Four Transmit Antennas

Quasi-orthogonal space-time block code (QOSTBC) for four transmit and one receive

antennas have been analyzed in [10], [20], [21] and [22]. The basic idea of QOSTBC is to

divide the N transmit antennas into groups, where each group employs an OSTBC (e.q.,

Alamouti STBC). There exist a full-rate QOSTBC which provides without full diversity

and the decoder can work on pairs of modulated data symbols instead of single symbols.

However, by choosing the suitable signal constellations as done in [12], [23], [13], it is

possible to improve the BER performance with ML detection. For the rate-One DSTC,

we apply the QOSTBC as the code structure for four transmit antennas. Unfortunately,

the complete idea of OSTBC is well understood, but for QOSTBC only some examples

have been proposed before without systematic analysis and precise definition. Therefore,

we will give a short introduction about QOSTBC and analyze the code construction in

the following content.

A QOSTBC is defined by its data matrix Sk, which is a function of the modulated

data symbol vector s = [ s1 ; s2 ; · · · ; sL ]T . The transmission rate R of a QOSTBC

is defined as R = L/T where T is the block length for which the channel coefficients

are constant during those T channel uses. Now we focus on the rate-One QOSTBC

with block length T = N , therefore L = N .

Overviews of QOSTBCs

A. ABBA Quasi-Orthogonal Space-Time Block Code

The first class of QOSTBC proposed by Tirkkonen et al. [20], where it applies two
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Alamouti STBCs in a block structure resulting in the so called ABBA QOSTBC . Start-

ing two Alamouti schemes for N = 2 transmit antennas as the building blocks,

S12 =




s1 s2

−s∗2 s∗1


 S34 =




s3 s4

−s∗4 s∗3


 (5.1)

and the data matrix Sk = S ABBA
4,rate1 of the ABBA QOSTBC with N = 4 is then given

by

S ABBA
4,rate1 =




S12 S34

S34 S12


 =




s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3

s3 s4 s1 s2

−s∗4 s∗3 −s∗2 s∗1




(5.2)

By multiplying the ABBA QOSTBC by its Hermitian, we have the Grammian matrix

as

S ABBA
4,rate1 · (S ABBA

4,rate1 )H =




α 0 β 0

0 α 0 β

β 0 α 0

0 β 0 α




= α ·




I2 QABBA

QABBA I2


 (5.3)

where the QABBA is defined as

QABBA =




β/α 0

0 β/α


 (5.4)

with

α =
4∑

i=1

| si |2 and β = 2Re{ s1s
∗
3 + s2s

∗
4 } (5.5)
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It can be seen that the S ABBA
4,rate−1 is not a unitary matrix, since α 6= 1 and β 6= 0.

However, from (5.2) it can be seen that the symbols s1, s3 and the symbols s2, s4 appear

in pairs. If conventional memoryless modulation is applied, it is impossible to achieve

the unitary property. Therefore, it is apparent that some relationships between the data

symbols s1 and s3, as well as between s2 and s4, are required to let β be zero.

B. Jafarkhani Quasi-Orthogonal Space-Time Block Code

The second class of QOSTBC was proposed by Jafarkhani [10], where it also uses two

Alamouti STBCs in a block structure and results in the so called Jafarkhani QOSTBC.

The data matrix Sk = S Jafarkhani
4,rate1 generated by two Alamouti STBC S12 and S34 in

(5.1) with N = 4 is

S Jafarkhani
4,rate−1 =




S12 S34

−S∗34 S∗12


 =




s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3

−s∗3 −s∗4 s∗1 s∗2

s4 −s3 −s2 s1




(5.6)

Similar to (5.3), we have the Grammian matrix as follows

S Jafarkhani
4,rate−1 · ( S Jafarkhani

4,rate−1 )H =




α 0 0 β

0 α −β 0

0 −β α 0

β 0 0 α




= α ·




I2 QJaf

−QJaf I2


(5.7)

where QJaf is defined as

QJaf =




0 β/α

−β/α 0


 (5.8)
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with

α =
4∑

i=1

| si |2 and β = 2Re{ s1s
∗
4 − s2s

∗
3 } (5.9)

We note that such structure is strongly related to the concept of complex Hadamard

matrices. The 4× 4 data matrix can be decomposed into four 2× 2 submatrices which

are Alamouti-like structures. Moreover, the columns of the matrix are not orthogonal to

each other, but different Alamouti-like submatrices are orthogonal to each other instead.

Based on the ideas, the following are some transformations of Jafarkhani QOSTBCs.

The first four examples are



−S12 S34

S∗34 S∗12


 ;




S12 −S34

S∗34 S∗12


 ;




S12 S34

−S∗34 S∗12


 ;




S12 S34

S∗34 −S∗12


 (5.10)

Inverting the sign of each code matrix we obtain the other four code matrices:




S12 −S34

−S∗34 −S∗12


 ;



−S12 S34

−S∗34 −S∗12


 ;



−S12 −S34

S∗34 −S∗12


 ;



−S12 −S34

−S∗34 S∗12




(5.11)

The above eight code matrices can be complex conjugated and generate the other

eight code matrices. We note that these codes have a similar structure of the forms

(5.7). Ones in the main diagonal entries and non-zero terms on the off-diagonal entries.

Similarly, (5.6) shows the symbols s1, s4 and the symbols s2, s3 appear in pairs. Some

correlations between the symbols s1 and s4, as well as between s2 and s3, are required.

C. Papadias and Foschini Quasi-Orthogonal Space-Time Block Code

The third class of QOSTBC was presented by Papadias and Foschini [21]. Com-

pared with the above two QOSTBCs, the modulated symbols are arranged in a different

way such that it can not be decomposed as a simple combination of two Alamouti-like
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submatricess , that is, their complex conjugated forms and negative forms. The P.F.

QOSTBC with N = 4 and the data matrix Sk = S P.F.
4,rate1 can be shown as

S P.F.
4,rate−1 =




s1 s2 s3 s4

s∗2 −s∗1 s∗4 −s∗3

s3 −s4 −s1 s2

s∗4 −s∗3 −s∗2 −s∗1




(5.12)

Again, by multiplying the data matrix by its Hermitian, the Grammian matrix can be

expressed as

S P.F.
4,rate−1 · ( S P.F.

4,rate−1 )H =




α 0 −β 0

0 α 0 β

β 0 α 0

0 −β 0 α




= α ·




I2 QP.F.

−QP.F. I2


 (5.13)

where QP.F. is defined as

QP.F. =



−β/α 0

0 β/α


 (5.14)

with

α =
4∑

i=1

| si |2 and β = 2jIm{ s∗1s3 + s∗2s4 } (5.15)

D. STTD-OTD QOSTBC ( ABAB Quasi-Orthogonal Space-Time Block Code )

The forth class of QOSTBC proposed by Jalloul et al. [22], which is called the

ABAB QOSTBC. Using the same Alamouti-like submatrices S12 and S34, the generation
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of Sk = S ABAB
4,rate−1 as

S ABAB
4,rate−1 =




S12 S34

S12 −S34


 =




s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3

s1 s2 −s3 −s4

−s∗2 s∗1 s∗4 −s∗3




(5.16)

and the multiplication of the S ABAB
4,rate−1 by its Hermitian is

S ABAB
4,rate−1 · ( S ABAB

4,rate−1 )H =




α 0 β 0

0 α 0 β

β 0 α 0

0 β 0 α




= α ·




I2 QABAB

QABAB I2


 (5.17)

where QABAB is defined as

QABBA =




β/α 0

0 β/α


 (5.18)

with

α =
4∑

i=1

| si |2 β = ( | s1 |2 + | s2 |2 )− ( | s3 |2|+ | s4 |2 ) (5.19)

Apparently, it has diversity order only two since each symbol passes through only

two of the four transmit antennas. All symbols must be transmitted over every antenna

to achieve full diversity, so it is clear a modification of the code matrix is required. All

previously introduced QOSTBCs have the common design criterion that the data matrix

is divided into groups where the columns of the code matrix are not orthogonal to each

other, but columns of different groups are orthogonal to each other. Moreover, they have
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another property such that it is called ”quasi-orthogonal” space-time code:

Quasi-Orthogonality Property: A QOSTBC of dimension N × N is a ma-

trix that satisfies SkS
H
k =

∑N
i=1 |si|2 · Q where Q is a sparse matrix with ones on its

main diagonal positions and having at least N2/2 zeros at off-diagonal positions.

Conditions for Full Diversity

In order to achieve the maximum diversity, based on the two rank criterions men-

tioned in the chapter 4, we not only make Sk become a full rank matrix but also

maximize the minimum rank of the distance matrix D · DH for all distinct codeword

pairs Sk(i) and Ek(i) as possible. Check the determinant of the distance matrix may

be used as a test to search for the symbol constellations that allow it to achieve full

diversity. Due to the similar code structures of the ABBA, Jafarkhani, Papadias

and Foschini and STTD-OTD QOSTBCs, we will only take ABBA as well as ABAB

QOSTBC as the examples to show how to achieve the maximum diversity by means of

the constellation rotations (CRs).

From (5.2), we can see that it is possible for S ABBA
4,rate1 to lose rank due to the symmetry

of the constellations. Therefore, in order to follow the design criterion I, which avoids

S ABBA
4,rate1 losing rank, some constellation rotations (CRs) are required. Since S ABBA

4,rate1

can be divided into four Alamouti blocks, according to the determinant property, there

exists many ways to make it become full rank. For example, we choose s1 or s2 (or both

of them) from a constellation C and the others from another distinct constellation Cθ

rotated by an angle θ. For the sake of simplicity, we have θ = π/2 for binary phase shift

keying (BPSK) and θ = π/4 for quadrature phase shift keying (QPSK) in this paper.

Secondly, to achieve the maximum diversity, it is necessary to obey the design criterion

II, which maximizes the rank of distance matrix. According to the data matrix in (5.2),
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the error matrix D ABBA
4,rate−1 = Sk(i) − Ek(i) can be easily expressed as

D ABBA
4,rate−1 =




∆1 ∆2 ∆3 ∆4

−∆∗
2 ∆∗

1 −∆∗
4 ∆∗

3

∆3 ∆4 ∆1 ∆2

−∆∗
4 ∆∗

3 −∆∗
2 ∆∗

1




(5.20)

where ∆i = sk(i) − ek(i) for sk(i) 6= ek(i) in the k-th block. Based on the rank criterion,

to achieve full diversity, the error matrix given should be full rank for all possible error

matrix pairs. In other words, its determinant must be nonzero. For ABAB QOSTBC, the

distance matrix D ABBA
4,rate−1·(D ABBA

4,rate−1)
H and its determinant can be expressed respectively

as

D ABBA
4,rate−1 · (D ABBA

4,rate−1)
H =




∆a · I2 ∆b · I2

∆b · I2 ∆a · I2


 (5.21)

where

∆a = Σ4
i=1 | ∆i |2 (5.22)

∆b = Σ2
i=1[ (∆i)

∗(∆i+2) + (∆i+2)(∆i)
∗] (5.23)

and the the determinant of D2 (ABBA) is

det( D2 (ABBA) ) = det(




∆a · I2 ∆b · I2

∆b · I2 ∆a · I2


 )

= ( Σ2
i=1| (∆i) + (∆i+2 ) |2)

· ( Σ2
i=1| (∆i)− (∆i+2) |2 ) (5.24)

It is obvious that the determinant in (5.24) will be zero when ∆1 = ∆2 or ∆3 = ∆4 si-

multaneously. Similarly, based on the data matrix in (5.16), the error matrix D ABAB
4,rate−1 =
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Sk(i) − Ek(i) can be easily expressed as

D ABAB
4,rate−1 =




∆1 ∆2 ∆3 ∆4

−∆∗
2 ∆∗

1 −∆∗
4 ∆∗

3

∆1 ∆2 −∆3 −∆4

−∆∗
2 ∆∗

1 ∆∗
4 −∆∗

3




(5.25)

and the distance matrix D ABAB
4,rate−1 · (D ABAB

4,rate−1)
H and its determinant are

(D ABAB
4,rate−1)

HD ABAB
4,rate−1 =




∆a · I2 ∆b · I2

∆b · I2 ∆a · I2


 (5.26)

where

∆a = Σ4
i=1 | ∆i |2 (5.27)

∆b = (| ∆1 |2 + | ∆2 |2)− (| ∆3 |2 + | ∆4 |2) (5.28)

and the the determinant is given by

det(




∆a · I2 ∆b · I2

∆b · I2 ∆a · I2


 )

= (| s1 − e1 |2 + | s2 − e2 |2) · (| s3 − e3 |2 + | s4 − e4 |2) (5.29)

Note that the same problems occur with Jafarkhani, Papadias and Foschini QOSTBCs

when the conventional memoryless modulation are applied. This means that such space-

time code structures do not have the full diversity. Therefore, in order to follow the design

criterion I, which avoids S ABAB
4,rate2 losing rank, some CRs are required. For example,

it can be seen from (5.29) that some correlation between the modulated symbols are

required. Note that the use of joint modulation with a specially designed constellation
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set was proposed in [24]. In this thesis, we make use of some linear transformations of

symbols to achieve the full diversity order. Now, we will use a short content to describe

this approach. For ABBA QOSTBC, we firstly consider m1, m2, m3,and m4 are four

symbols modulated from the original binary sources, and we encode these symbols by

the following rules:

s1 =
m1 + m2√

2
, s2 =

m1 −m2√
2

s3 =
m3 + m4√

2
, s4 =

m3 −m4√
2

where s1, s2, s3,and s4 are the transmit symbols mapped to the data matrix Sk. The

coefficient
√

2 here is used to normalize the energy. Based on the transformation above,

the determinant of the distance matrix in (5.29) can be reduced to

det( D2 (ABBA) ) = ( Σ2
i=1| (si − ei) + (si+2 − ei+2 ) |2)

· ( Σ2
i=1| (si − ei)− (si+2 − ei+2) |2 )

= ( |(s1 − e1) + (s3 − e3)|2 + |(s2 − e2) + (s4 − e4)|2 )

· ( |(s1 − e1)− (s3 − e3)|2 + |(s2 − e2)− (s4 − e4)|2 )

=
1

2
{ ( |(m1 − e1) + (m2 − e2) + (m3 − e3) + (m4 − e4)|2

+|(m1 − e1)− (m2 − e2) + (m3 − e3)− (m4 − e4)|2 )

· ( |(m1 − e1) + (m2 − e2)− (m3 − e3)− (m4 − e4)|2

+|(m1 − e1)− (m2 − e2)− (m3 − e3) + (m4 − e4)|2 )}

(5.30)

To achieve the full diversity, it is equivalent that the determinant of the distance

matrix must be nonzero, which implies that the original data symbols m1 ∼ m4 shall
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Figure 5.1: (a) BPSK Constellaitons (b) QPSK Constellaitons

follow

(m1 − e1) + (m2 − e2) + (m3 − e3) + (m4 − e4) 6= 0 (5.31)

(m1 − e1)− (m2 − e2) + (m3 − e3)− (m4 − e4) 6= 0 (5.32)

where (5.31) and (5.32) will hold when m1, m3 ∈ C and m2, m4 ∈ Cθ. In other words,

we choose m1 and m2 from C, and the others m3 and m4 from Cθ rotated by an angle

θ. For the sake of simplicity, we choose θ = π/2 and = π/4 for BPSK and QPSK and

the constellation points are shown in Figure.5.1. By choosing the suitable constellations

and phase angle θ,and we can establish a QOSTBC that achieves the full-rate and full-

diversity.

All previously introduced QOSTBCs have similar code structures, and the differ-

ence between them is the non-diagonal parameter in the corresponding non-orthogonal
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Figure 5.2: Bit error rate (BER) against signal to noise ratio (SNR) for rate-1 (R=1)
differential space-time code at 1 and 2 bps/Hz ; four transmit antennas and one receive
antenna ; m1,m2 ∈ C and m3,m4 ∈ Cθ ; rotation angle θ = π/2 and = π/4 for BPSK
and QPSK respectively.

Grammian matrices in (5.3),(5.7),(5.13) and (5.17). Figure 5.2 shows the bit error rate

(BER) as a function of the received SNR for four transmit and one receive antennas,

rate-one DSTC based on the ABBA QOSTBC using two different CRs denoted as CR-

Type1 and CR-Type2. For CR-Type1, we choose s1 and s2 from a constellation C and

the others from another distinct constellation Cθ rotated by an angle θ; for CR-Type2,

we choose s1 from C and the others from Cθ. It shows that the diversity order of DSTC

is four whatever the constellation rotations are. Furthermore, the performance using

QPSK modulation is approximately 3dB worse. The results are similar to the coherent

STBC.
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5.1.2 Rate-One for Eight Transmit Antennas

So far, we have presented the DSTCs based on quasi-orthogonal structures for four

transmit antennas. In this section, we will discuss the case when the number of transmit

antennas is greater than four. According to the code structure from ABBA QOSTBC,

we combine two distinct 4×4 ABBA QOSTBCs to have a 8×8 QOSTBC, while keeping

the transmission rate unchanged. Similarly, we start with the 4× 4 rate-one DSTCs for

four transmit antennas mentioned in the previous section as the building blocks,

S ABBA
4 rate−1(1 : 4) =




s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3

s3 s4 s1 s2

−s∗4 s∗3 −s∗2 s∗1




, S ABBA
4 rate−1(5 : 8) =




s5 s6 s7 s8

−s∗6 s∗5 −s∗8 s∗7

s7 s8 s5 s6

−s∗8 s∗7 −s∗6 s∗5




and for eight transmit antennas, the data matrix Sk = S8,rate1 of the rate-one DSTC is

given by

S8,rate−1 =




S ABBA
4,rate−1(1 : 4) S ABBA

4,rate−1(5 : 8)

S ABBA
4,rate−1(5 : 8) S ABBA

4,rate−1(1 : 4)




=




s1 s2 s3 s4 s5 s6 s7 s8

−s∗2 s∗1 −s∗4 s∗3 −s∗6 s∗5 −s∗8 s∗7

s3 s4 s1 s2 s7 s8 s5 s6

−s∗4 s∗3 −s∗2 s∗1 −s∗8 s∗7 −s∗6 s∗5

s5 s6 s7 s8 s1 s2 s3 s4

−s∗6 s∗5 −s∗8 s∗7 −s∗2 s∗1 −s∗4 s∗3

s7 s8 s5 s6 s3 s4 s1 s2

−s∗8 s∗7 −s∗6 s∗5 −s∗4 s∗3 −s∗2 s∗1




(5.33)
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In order to achieve the full diversity, the rank of the data matrix S8 rate−1 must be

full rank. According to the following determinant property of block matrices

det(




A B

C D


 ) = det(A) · det(D − CA−1B) (5.34)

where A,B,C and D are square matrices respectively. The determinant of the data

matrix S8,rate−1 thus can be expressed as

det(S8,rate−1) = det(S ABBA
4,rate−1(1 : 4))

· det(S ABBA
4,rate−1(1 : 4)− S ABBA

4,rate−1(5 : 8)S ABBA
4,rate−1(1 : 4)−1S ABBA

4,rate−1(5 : 8))

(5.35)

We note that the form S ABBA
4,rate−1(5 : 8)S ABBA

4,rate−1(1 : 4)−1S ABBA
4,rate−1(5 : 8) has an quasi-

orthogonal structure. To maximize the diversity order, it is necessary to follow

det(S ABBA
4,rate−1(1 : 4)) 6= 0 (5.36)

det(S ABBA
4,rate−1(1 : 4)− S ABBA

4,rate−1(5 : 8)S ABBA
4,rate−1(1 : 4)−1S ABBA

4,rate−1(5 : 8)) 6= 0

(5.37)

To satisfy the constraint in (5.35), it requires some constellation rotations of the
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modulated symbols. We consider the determinant of S ABBA
4 rate−1 as

det(S ABBA
4,rate−1) = det(




S12 S34

S34 S12


)

= det(S12)

· det(S12 − S34S
−1
12 S34)

= 2 · det(




s3 s4

−s∗4 s∗3


− 1

2




p1 p2

−p∗2 p∗1


)

= 2 { | s3 − 1

2
p1 |2 + | s4 − 1

2
p2 |2 } (5.38)

where

p1 = −s3s
∗
1s3 + s4s

∗
2s3 − s3s2s

∗
4 − s4s1s

∗
4 (5.39)

p2 = −s3s
∗
1s4 + s4s

∗
2s4 + s3s2s

∗
3 + s4s1s

∗
3 (5.40)

Therefore, S ABBA
4,rate−1 is full rank (det(S ABBA

4,rate−1) 6= 0) as long as

s3 6= 1

2
p1 and s4 6= 1

2
p2 (5.41)

We consider constellations using phase rotations. Conditions (5.41) hold when s3 or

s4 are rotated by an shift angle θ with respect to s1 and s2. On the other hand, we

must maximize the rank of the distance matrix S8,rate−1) · (S8,rate−1)
H to achieve the full

diversity. However, its determinant is hard to derive and analyze. By computer search,

the rank of the distance matrix is four, and then the diversity order of the rate-one

DSTC for eight transmit antennas and one receive antennas is M · 4 = 4 . In this case,

we assume that s3 and s4 are rotated by an shift angle θ = π/2 for BPSK and θ = π/4
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for QPSK with respect to s1 ∼ s2. The constellation points are shown in Figure 5.1.

The simulation results are shown in Figure 5.3. We assume that there are two kinds of

constellation rotations, which are called constellation rotation type 1 (CR-Type1) and

type 2 (CR-Type1) respectively. In CR-Type1, we choose the data symbols s1, s2 from a

constellation C, and the others s3 ∼ s8 from another constellation Cθ rotated by an angle

θ. In CR-Type2, we choose s1 from C and s2 ∼ s8 from Cθ. Our simulation shows that

the diversity order using CR-Type1 is four, but less than four when using CR-Type2.

The reason is the rank of distance matrix is only two in the case of CR-Type2, and thus

the diversity order is only M · 2 = 2. On the other hand, we denote the orthogonal

structure here as another matrix mapping approach for the data matrix S8,rate−1 and it

can shown as follows

S8,rate−1 =




S ABBA
4,rate−1(1 : 4) S ABBA

4,rate−1(5 : 8)

−S ABBA
4,rate−1(5 : 8)H S ABBA

4,rate−1(1 : 4)H


 (5.42)

which is Alamouti-like matrix mapping approach. Compared with our proposed ABBA

QOSTBC, the performance by using this orthogonal structure is 1dB better.

5.2 Rate-Two Differential Space-Time Code

5.2.1 Rate-Two for Four Transmit Antennas

Based on the code structure of the rate-one ABBA QOSTBC in [20], we start with

the Alamouti schemes for two transmit antennas as the building blocks,

S12 =




s1 s2

−s∗2 s∗1


 S34 =




s3 s4

−s∗4 s∗3


 S56 =




s5 s6

−s∗6 s∗5


 S78 =




s7 s8

−s∗8 s∗7




41



and the rate-two DSTC defined by its data matrix Sk = S4,rate−2 is given by

S4,rate−2 =




S12 S34

S56 S78


 =




s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3

s5 s6 s7 s8

−s∗6 s∗5 −s∗8 s∗7




(5.43)

By multiplying the data matrix by its Hermitian, we have the Grammian matrix

S4,rate−2S
H
4,rate−2 =




α 0 q1 q2

0 α −q∗2 q∗1

q∗1 −q2 β 0

q∗2 q1 0 β




=




αI2 Qrate−2

QH
rate−2 βI2


 (5.44)

where Qrate−2 is an orthogonal matrix (Alamouti-like matrix) with

α =
4∑

i=1

| si |2 , β =
8∑

i=5

| si |2 (5.45)

and q1 = s1s
∗
5+s2s

∗
6+s3s

∗
7+s4s

∗
8 , q2 = −s1s6+s2s5−s3s8+s4s7. In order to achieve the

maximum diversity, according to the rank criterion in the chapter 4, we not only make

the data matrix Sk become full rank, but also maximize the minimum of the rank of

distance matrix D4,rate−2(D4,rate−2)
H for all distinct code matrix pairs Sk(i) and Ek(i)

as possible. At first, we consider the rank of the data matrix Sk = S4,rate2. Similarly, due
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to the data matrix can be divided into four submatrices, and its determinant is given by

det(S4,rate−2) = det(




S12 S34

S56 S78


)

= det(S12) · det(S78 − S56S
−1
12 S34)

= 2 · det(




s7 s8

−s∗8 s∗7


− 1

2




p1 p2

−p∗2 p∗1


)

= 2 { | s7 − 1

2
p1 |2 + | s8 − 1

2
p2 |2 } (5.46)

where p1 = −s5s
∗
1s3+s6s

∗
2s3−s5s2s

∗
4−s6s1s

∗
4 and p2 = −s5s

∗
1s4+s6s

∗
2s4+s5s2s

∗
3+s6s1s

∗
3.

Therefore, S4,rate−2 is full rank (i.e., det(S4,rate−2) 6= 0) as long as

s7 6= 1

2
p1 and s8 6= 1

2
p2 (5.47)

We consider constellations using phase rotations. Conditions (5.49) holds when s7 and

s8 are rotated by an shift angle θ with respect to s1 ∼ s6. For simplicity, we choose

θ = π/2 and = π/4 for BPSK and QPSK and the constellation points are shown in

Figure.5.1. Secondly, we take the rank of the distance matrix into consideration. The

error matrix D4,rate2 can be easily expressed as

D4,rate−2 =




∆1 ∆2 ∆3 ∆4

−∆∗
2 ∆∗

1 −∆∗
4 ∆∗

3

∆5 ∆6 ∆7 ∆8

−∆∗
6 ∆∗

5 −∆∗
8 ∆∗

7




(5.48)
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where ∆i = sk(i) − ek(i), and the distance matrix can then be expressed as

Drate−2 · (Drate−2)
H =




∆α · I2 ∆Qrate−2

∆QH
rate−2 ∆β · I2


 (5.49)

and its determinant is

det(




∆α · I2 ∆Qrate−2

∆QH
rate−2 ∆β · I2


 )

= ( ∆α∆β −∆Qrate−2∆QH
rate−2 )

= ( ∆α∆β − ( ∆q2
1 + ∆q2

2 ))

= (∆2
1 + ∆2

2)(∆
2
7 + ∆2

8) + (∆2
3 + ∆2

4)(∆
2
5 + ∆2

6)

− 2Re{∆1∆
∗
3∆g + ∆1∆

∗
4∆h + ∆2∆

∗
3(−∆h)∗ + ∆2∆

∗
4(∆g)∗} (5.50)

where ∆i = sk(i) − ek(i) for sk(i) 6= ek(i), ∆g = ∆∗
5∆7 + ∆6∆

∗
8 and ∆h = ∆∗

5∆8 + ∆6∆
∗
7.

Unfortunately, it is obvious that there exists at least one condition that makes the re-

sult in (14) become zero whatever the constellation rotations are. For instance, when

∆1 = ∆2 = ∆3 = ∆4 = 0 or ∆5 = ∆6 = ∆7 = ∆8 = 0, det(D4,rate−2 · (D4,rate−2)
H) = 0

. In other words, it is impossible for rate-two DSTC to achieve full diversity. In gen-

eral, the performance is always bounded by the worst case of the DSTC. By computer

search, the minimum rank of the distance matrix based on the data matrix designed by

the design criterion I is only two, and the diversity order is then 2 ·M . Intuitively, a

higher transmission rate corresponds to a smaller diversity order depending on a general

rate-diversity tradeoff. The simulation results are shown in the figure 5.4. We note that

there are two kinds of constellation rotation approaches which are named constellation

rotation type 1 (CR-Type1) and type 2 (CR-Type1) respectively. In CR-Type1, we

choose the data symbols s1, s2, s7, s8 from a constellation C, and the others s3 ∼ s6 from

another constellation Cθ rotated by an angle θ. In CR-Type2, we choose s1, s7 from C
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Figure 5.4: BER against SNR for rate-2 (R=2) differential space-time code at 1 and 2
bps/Hz ; four transmit antennas and two receive antennas ; CR-Type1: s1, s2, s7, s8 ∈
C and s3 ∼ s6 ∈ Cθ ; CR-Type2: s1, s7 ∈ C and s2 ∼ s6, s8 ∈ Cθ ; rotation angle θ = π/2
and = π/4 for BPSK and QPSK respectively.

and s2 ∼ s6, s8 from Cθ. The simulation shows that the diversity order of DSTC using

CR-Type1 is four which is better than the case using CR-Type2. It implies that dif-

ferent constellation rotation approaches cause different performance. Moreover, our the

simulation results match to the analytic results obtained form the derivations of pairwise

error probability. Earlier researches show that there is a rate-diversity tradeoff achieved

by the coherent MIMO systems [25]. For noncoherent multiple antenna systems, such a

rate-diversity tradeoff is still an open question, and there is not a formal mathematical

equation to prove this problem. Intuitively, a larger transmission rate corresponds to a

smaller diversity order.
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5.2.2 Rate-2 for Eight Transmit Antennas

Following by the code construction of rate-one DSTC for eight transmit and one

receive antennas, we combine two distinct 4 × 4 rate-two QOSTBCs obtained in the

previous subsection to have a 8×8 rate-two DSTC. Since the number of parallel streams

should not exceed min {N,M }, the number of receive antennas must also be equal two.

For eight transmit antennas, the data matrix S8 rate−2 of the rate-two DSTC is

S8,rate2 =




S4,rate2(1 : 8) S4,rate1(9 : 16)

S4,rate2(9 : 16) S4,rate1(1 : 8)




=




s1 s2 s3 s4 s9 s10 s11 s12

−s∗2 s∗1 −s∗4 s∗3 −s∗11 s∗10 −s∗12 s∗11

s5 s6 s7 s8 s13 s14 s15 s16

−s∗6 s∗5 −s∗8 s∗7 −s∗14 s∗13 −s∗16 s∗15

s9 s10 s11 s12 s1 s2 s3 s4

−s∗10 s∗9 −s∗12 s∗11 −s∗2 s∗1 −s∗4 s∗3

s13 s14 s15 s16 s5 s6 s7 s8

−s∗14 s∗13 −s∗16 s∗15 −s∗6 s∗5 −s∗8 s∗7




(5.51)

where S4,rate2(1 : 8) and S4,rate2(9 : 16) are defined as

S4,rate2(1 : 8) =




s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3

s5 s6 s7 s8

−s∗6 s∗5 −s∗8 s∗7




, S4,rate2(9 : 16) =




s9 s10 s11 s12

−s∗10 s∗9 −s∗12 s∗11

s13 s14 s15 s16

−s∗14 s∗13 −s∗16 s∗15



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In order to achieve the full diversity, the rank of the data matrix S8,rate2 must be full

rank. Similarly, the determinant of S8,rate2 is given by

det(S8,rate2) = det(S4,rate2(1 : 8)) ·

det(S4,rate2(1 : 8)− S4,rate2(9 : 16)S4 rate2(1 : 8)−1S4,rate2(9 : 16))

(5.52)

Due to the quaternion property, S4,rate2(9 : 16)S4,rate2(1 : 8)−1S4,rate2(9 : 16) is still an

quasi-orthogonal structure. Therefore, to maximize the diversity order, it is necessary

to follow

det(S4,rate2(1 : 8)) 6= 0 (5.53)

det(S4,rate2(1 : 8)− S4,rate2(9 : 16)S4,rate2(1 : 8)−1S4,rate2(9 : 16)) 6= 0

(5.54)

Based on the results in the rate-two DSTC for four transmit antennas, (5.53) and (5.54)

will hold when s7 and s8 are rotated by an shift angle θ = π/2 for BPSK and θ = π/4 for

QPSK with respect to s1 ∼ s6. Similarly, since the determinant of the distance matrix

is hard to analyze, the rank of the distance matrix is two such that the diversity order

is M · 2 = 4. The simulation results are shown in Figure 5.5. We only the constellation

rotation type 1 (CR-Type1) in this case since it has better performance than the other

constellation rotation approaches. In CR-Type1, we choose the data symbols s1, s2, s7, s8

from a constellation C, and the others s3 ∼ s6 from another constellation Cθ rotated by

an angle θ. The simulation shows that the diversity order using CR-Type1 is four that

matches to the analytical results obtained from PEP. The reason is that the rank of

distance matrix is only two, and thus the diversity order is only M · 2 = 4. Also, we

denote the orthogonal structure here as another matrix mapping approach for the data
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Figure 5.5: BER against SNR for rate-1 (R=1) differential space-time code at 1 bps/Hz ;
eight transmit antennas and two receive antennas ; CR-Type1: s1, s2, s7, s8 ∈ C and s3 ∼
s6 ∈ Cθ ; rotation angle θ = π/2 and = π/4 for BPSK and QPSK respectively

matrix S8,rate2 and it can shown as follows

S8,rate2 =




S4,rate2(1 : 8) S4,rate1(9 : 16)

−S4,rate2(9 : 16)H S4,rate1(1 : 8)H


 (5.55)

which is Alamouti-like matrix mapping approach. Compared with our proposed ABBA

structure, the performance by using this orthogonal structure is approximately the same;

however, this structure has no quaternion property such that some lower complexity

receivers are not feasible under this approach.
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Chapter 6

Conclusions

A rate-two DSTC is proposed in this work and is applicable to four and eight

transmit antennas. Furthermore, the upper bound of the PEP is also derived, and it

gives a theoretical justification for the achievable diversity order of the proposed DSTC

scheme. With the assumption of a full rank data matrix Sk, the derivations show that

the diversity order is equal to the rank of the distance matrix multiplied by the number

of receive antennas M . Based on the PEP expression, we provide a rank design criterion

on the construction of the rate-two DSTC for four and eight transmit antennas. The

simulation results match the analysis obtained from the PEP, and achieve the diversity

order of four for four and eight transmit antennas respectively. Particularly, it coincides

with the noncoherent rate-diversity tradeoff in [18] for the case of four transmit and two

receive antennas and T=4.

49



Appendix A

Let X and Y be two random variables. Supposed that before we know that Y = y,

the random variable X has a probability density function (pdf) pX(x). Being told that

Y = y has the effect of modifying the probability density. The modified probability

density function (pdf) is

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
(A.1)

assuming that pY (y) 6= 0. Consider a simple communication system as follows

y = x + n (A.2)

where x, y, n the values of scalar random variables Y , X, and noise.

Let the pair of vectors X and Y be jointly Gaussian, i.e., with Z = [ XT Y T ]T ; Z

is gaussian with mean and covariance

m =




E[x]

E[y]


 =




x̄

ȳ


 and Σ =




Σxx Σxy

Σyx Σyy


 (A.3)
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respectively. Thus, the probability of X conditioned on Y = y is given by

pX|Y (x|y) =
pX,Y (x, y)

pY (y)

=
1

(2π)N/2
· | Σyy |1/2

| Σ |1/2
·

exp(−1
2
[xT − x̄T yT − ȳT ] Σ−1[xT − x̄T yT − ȳT ]T )

exp(−1
2
(y − ȳ)T Σ−1

yy (y − ȳ))
(A.4)

where N is the dimension of X. By using the simple check formula




I −ΣxyΣ
−1
yy

0 I


 Σ




I 0

−Σ−1
yy ΣT

xy I


 =




Σxx − ΣxyΣ
−1
yy Σyx 0

0 Σyy


 (A.5)

Σ in (4.20) can be expressed as

Σ =




I ΣxyΣ
−1
yy

0 I







Σxx − ΣxyΣ
−1
yy Σyx 0

0 Σyy







I 0

Σ−1
yy ΣT

xy I


 (A.6)

and the inverse of Σ is

Σ−1 =




I 0

−Σ−1
yy ΣT

xy I







(Σxx − ΣxyΣ
−1
yy Σyx)

−1 0

0 Σ−1
yy







I −ΣxyΣ
−1
yy

0 I




(A.7)

Taking the determinants in (4.21) based on the determinant property (i.e., |ABC| =

|A| · |B| · |C|), we have

| Σ | = | Σxx − ΣxyΣ
−1
yy Σyx | · | Σyy | (A.8)

Therefore, it yields
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[xT − x̄T yT − ȳT ] Σ−1[xT − x̄T yT − ȳT ]T

= [xT − x̄T yT − ȳT ]




I 0

−Σ−1
yy ΣT

xy I







(Σxx − ΣxyΣ
−1
yy Σyx)

−1 0

0 Σ−1
yy




×




I −ΣxyΣ
−1
yy

0 I


 [xT − x̄T yT − ȳT ]T (A.9)

= ( xT − x̄T − Σ−1
yy ΣT

xy (yT − ȳT ) )(Σxx − ΣxyΣ
−1
yy Σyx)

−1

· ( x− x̄− Σ−1
yy ΣT

xy (y − ȳ) ) + (yT − ȳ−1) Σ−1
yy (y − ȳ) (A.10)

= (xT − x̂T ) (Σxx − ΣxyΣ
−1
yy Σyx)

−1(X − X̂) + (yT − ŷT )Σ−1
yy (y − ŷ) (A.11)

where x̂ = x̄ + ΣxyΣ
−1
yy (y − ȳ). Substituting (4.26) in (4.19) gives the conditional

probability of X given for Y = y

pX|Y (x|y) =
pX,Y (x, y)

pY (y)

=
1

(2π)N/2
· | ΣY Y |1/2

| Σ |1/2

· exp(−1
2
[xT − x̄T yT − ȳT ] Σ−1[xT − x̄T yT − ȳT ]T )

exp(−1
2
(y − ȳ)T Σ−1

yy (y − ȳ))

=
1

(2π)N/2 · | Σxx − ΣxyΣ−1
yy Σyx |1/2

· exp( −1

2
(xT − x̂T ) (Σxx − ΣxyΣ

−1
yy Σyx)−1 (x− x̂) ) (A.12)

As claimed then, X is indeed conditionally Gaussian. In fact, this is true even when Σ

and Σyy are singular. The result shows that the random variable X conditioned on Y = y

has conditional mean x̄ + ΣxyΣ
−1
yy (y−ȳ) and conditional covariance Σxx−ΣxyΣ

−1
yy Σyx .
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