E- B F C 2LL A T PR
On the Construction of a Rate-Two Differential Space-Time Code

Foyod LR Es Student : Cheng-Shung Huang
R LR Advisor : Sau-Hsuan Wu
B o2~ F
TR oeF
2T T I
A-Thesis

Submitted to Department of Communication Engineering
College of Electrical-and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Communication Engineering

September 2008

Hsinchu, Taiwan, Republic of China

PERARAY L E4



2H- BREF LIS ZFEE

B4 gk R LEp #L

MR8~ BT G148 % (1 9) AL

AEHEDN T - BHBI AL FTEB TV R e {38 A 4T
EREERT IR § “f gLz ek s Ay Ja i oA ;ﬂég ;,53—1‘}3 * (pairwise error
probability » f§# PEP) «ht B > v 37 - BEF LI L ZFHB T L2
SHRMHE R SE%RFE S AT RS S AL T BT F R
SHRUHF Rttt B R X A B M o BER
SEEFRF O APRI-SBF RRFEE LAY TR %EBF - 4
m%%mﬁuaAﬁ@g%%ﬁiébﬂﬁﬁ FRER] o KR KB, B

AR DS 5 SR RS EARGF I TREN RO
L s s ,jflgg__/w\vv.],gylp;—k,\,}q@;x;waﬁy 2 S S S QAN =
BV EI G HREHEE o



On the Construction of a Rate-Two Differential Space-Time Code

Student : Cheng-Shung Huang Advisor : Dr. Sau-Hsuan Wu

Department of Communication Engineering
National Chiao Tung University

ABSTRACT

A rate-two differential space-time code (DSTC) is proposed in this work
and is applicable to four and eight transmit antennas. Moreover, the upper bound
of the pairwise error probability (PEP):is also investigated herein, providing a
theoretical justification for the'achievable diversity order of the proposed DSTC
scheme. With the assumption of a full rank data matrix, the derivation results
show that the diversity order equals to the rank of the distance matrix multiplied
by the number of receive antennas M Based on this PEP expression, we provide
a rank criterion on the design. ef the rate-two DSTC. The simulation results
match the analysis obtained from the PEP, and achieve the diversity order of
four for four and eight transmit antennas respectively.
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Chapter 1

Introduction

With the fast development of wireless communication techniques, the demand for
reliable high data rate transmission in fading channel increases significantly. Space-time
block code (STBC) provides an effective approach for exploiting the diversity advantage
of multi-input and multi-output (MIMO) systems [1], [2], [3]. While, for STBC decod-
ing, channel state information (€SI)is often required at the receiver. In practice, it is
estimated with training symbols,~and-thus‘may not- be accurate enough in fast fading
channels. In addition, the training overhead for channel estimation will also sacrifice the
effective throughput, especially when the number of transmit antennas becomes large.
Based on the reasons, it is helpful to consider a noncoherent and differential space-time

coded system which does not require CSI at the receiver.

Various differential space-time codes (DSTC) have been proposed before. For two
transmit antennas, a DSTC based on orthogonal designs was proposed in [4] for slow
fading channels. It features a simple encoding and decoding algorithms, and the per-
formance is 3dB worse than the coherent STBC at high signal to noise ratio (SNR).
In the same year, the results provided in [5] show that the scheme in [4] is optimal

among its unitary group codes. In addition, it also provides some optimal unitary group



codes for different rates. For more than two transmit antennas, a differential unitary
space-time code (DUSTC) was introduced in [6]. Subsequently, a DUSTC based on
unitary group codes was presented in [5]. Both schemes have simple structures at the
transmitter due to the group codes. Although they can be applied to any number of
transmit and receive antennas based on generalized orthogonal designs; however, a high
decoding complexity is inevitable. In [7], a DSTC was extended to multiple transmit
antennas based on generalized orthogonal designs, but it was limited in STBC structure.
Furthermore, the transmission rate is only 1/2, and the decoding complexity is still high.
In the subsequent works, based on a simple orthogonal space-time code (OSTC) [8], a
DSTC is proposed in [9], which achieves the rate 3/4 for four transmit antennas with-
out the structures of group codes. A rate-one quasi-orthogonal space-time block code
(QOSTBC) for four transmit antennas were presented in [10]. The corresponding differ-
ential quasi-orthogonal space-time code (DQOSTE) based on the above QOSTBC was
introduced in [11]. Compared with the differential.orthogonal space-time code (DOSTC)
with maximum achievable rate équal to 3/4, it can dchieve full rate and full diversity
simultaneously by means of constellation rotations (CRs) [12], [13]. Afterward, a single-
symbol decodable DSTC, which can provide full transmit diversity was presented in [14].
Particularly, a special idea of dispersion matrices, which can reduce the complexity sig-
nificantly was introduced. In [15], a rate-2 DSTC with maximin-likelihood (ML) receiver
for four transmit antennas was proposed.

It is undeniable that a reliable fixed or mobile wireless transmission at high transmis-
sion rates will be an important issue for future communication systems. As mentioned
above, DOSTC can provide full transmit diversity as well as lower decoding complexity,
but it has a maximum transmission rate 3/4 when more than two transmit antennas
are considered. DQOSTC with constellation rotations can achieve full diversity and full
rate at the same time. However, these schemes can only provide the transmission rate

at most one. Compared with the rich research results for rate less than or equal to



one, high-rate DSTC is rather less investigated. On the other hand, spatial multiplex-
ing (SM) can provide the highest possible achievable rate but has no transmit diversity
advantage. Furthermore, it requires the number of received antennas greater than or
equal to the number of transmit antennas [16], but there is likely to be asymmetry be-
tween downlinks and uplinks. Therefore, it is valuable to design a generalized high-rate
DSTC with transmission rate greater than one, which is extendable to various number

of transmit antennas.

In this thesis, a rate-two DSTC for four transmit antennas is proposed to achieve
better diversity order, and it is extendable to eight transmit antennas. On the other
hand, based on the approach in [17], the upper bound of the pairwise error probability
(PEP) of the DSTC is derived, which provides a theoretical justification for the achiev-
able diversity of the DSTC scheme.s Based on the. PEP expression, we provide a rank
criterion on the design of the proposed rate-two DSTC, and the simulation results coin-
cide with the noncoherent rate-diversity tradeoff [18) for the case of four transmit and
two receive antennas. The thesis is.organized as follows. In Chapter 2, we will briefly
describe the basic system model. The differential encoding and decoding algorithm for
the DSTC is introduced in Chapter 3. In Chapter 4, an upper bound of the PEP
of the DSTC is derived. Based on the PEP expression, we provide a rank criterion on
the design of the rate-two DSTC in this chapter. Based on the results in Chapter 4,
a rate-one and rate-two DSTCs with more than two transmit antennas is presented in

Chapter 5.



Chapter 2

System Model

A wireless communication system, with /V transmit antennas and M receive antennas
over flat Rayleigh fading channels as illustrated in Figure 2.1. Each receive antenna
responds to each transmit antenna threugh astatistically independent fading coefficient.
We firstly define k, T" as the block index and block dength of the system, in which the
channel coefficients are fixed during the 1° symbol periods.

The signal that arrives at the'm-th receive-anténna is a superposition of the fading
transmitted signals and noise. At each receive antenna, a demodulator samples the
output of the waveform synchronously and produces decision statistics in each symbol
interval. Thus, the relationship between the decision statistics and the transmitted

signals is given by

Figure 2.1: Block diagram of a MIMO system



where p = Es/c? is the ratio of the average received signal energy per symbol period
at each antenna to the noise power spectral density (Signal to Noise Ratio, SNR), Ay
is the complex fading coefficient from n-th transmit antenna to m-th receive antenna,
and n,, is an independent identically distributed (i.i.d.) complex Gaussian noise with
zero mean and unit variance with respect to both m and ¢. The transmit symbols
are modulated and differentially space-time coded in blocks. Each DSTC matrix is of
dimension N x T denoted by Xj, and T is the block length of the system in which
the channel coefficients are invariant. The M x T received signal Y} in block k can be

expressed as

Y = VpHu Xk + Ny (2.2)

Hy is an M x N channel mattix whose entry f,, for m € [1, M] and n € [1, N] is
complex Gaussian distributed. Ny is an“M X T noise matrix which contains the samples
of independent complex Gaussian random variables with zero mean and variance equal to
one denoted by CA/(0,1). For the sake of simplicity, at the beginning of the transmission,
we assume that the initial DSTC matrix Xy is an identity matrix Iy. To maintain a

constant average power, X; should meet the power constraint rule:

EIX By =B LYY P} =T 2 =1 (23)

n=1 t=1

where || - ||z denotes the Frobenius norm of a matrix, and L denotes the number of
modulated symbols to be sent in a block. In other words, we define the transmission

rate R of the DSTC as L/T.



Chapter 3

Differential Space-Time Code

3.1 Differential Encoding

One way to communicate with-unknown CSI'is the DSTC, which can be viewed as a

higher-dimensional extension of the conventional differential phase-shift keying (DPSK)

mostly applied in the signal-input single-output (SISO) systems. Figure 3.1 shows the

block diagram of the differential encoding process. In the k-th block, the transmitter

determines the transmit matrix X by the data matrix Sy generated independently in

each block and previously transmit matrix X,_; depending on the following differential

Binary

EOUTCCE Modulator

Space-Time
Encoder

Differential Encocder

Figure 3.1: Differential Encoding Process



encoding process:

1
Xk = —Xk_lSk (31)
Qg

We define Sy as a rate-(L/T), N x T data matrix which contains L modulated
symbols during 7" symbol periods. In other words, the transmission rate R of the whole
system is L/T. At the beginning of the transmission (i.e., k=1), we assume that the
transmitter sends the initial transmit matrix X, to be an identity matrix Iy. To assure
that the transmitted signal will not vanish or blow up to infinity, we use the a; as the

normalization factor to keep the mentioned average power constraint.

3.2 Differential Decoding

At the receiver, we assume that the channel coefficients remain fixed at two consecu-
tive time blocks, that is, Hy ~ Hy_.{+= H, then.according to (2.2), the received matrices

at time block k£ and k — 1 are respectively given by

Yo = /pHX) 4+ N, (3.2)
Yio1 = VpHX -1 + Ny (3.3)

From (3.1), (3.3) and (3.4), we can rewrite Y in the k-th block as

Y, = JpHX, + N,
1
= VBH(XiaS) + Ny
1 1
—(v/PHX)—1 + Ni—1)Sk + (N — — Nj_1.5k)
ay, ay,
1
= —Y 1S+ Wy (3.4)
ay,

where Wj, = N, — a—lka_ISk. Note that the channel matrix H disappears in (3.4), which

implies that, as long as the channel is approximately constant over two consecutive time



blocks, it is possible for DSTC to decode without knowing the CSI at the receiver.
When the data matrix Sy is unitary, the equivalent Gaussian noise Wy in (3.4) is
statistically independent of Si. Thus, the maximum-likelihood receiver for DUSTC can

be expressed as

Sk = argminHYk——Yk_lSHQ
S (67

1 1
= argmintr{(Vy — —Yp_19) (Vs — —Yi_19)"} (3.5)
S Qg 673

where the operator ¢r{-} denotes the matrix trace. However, for non-unitary data ma-
trix, the equivalent noise W} becomes an colored Gaussian noise with covariance matrix

C,, as

Coy = E[WHEW]

1 1
= B[ (Ng— —NeZiSk)"(Ng— — Ni_15k) |
& Qy;

Y (3.6)
673

and thus the ML receiver can be rewritten as

5 ) 1 1
Sk = arg min { tr[—i(Yk—a—kYk,lS) .
1
Col (Vi — a_kY’“S>H] } (3.7)

Since the ML receiver in (3.7) is complicated to analyze. In the following chapter,
the PEP of the DSTC using ML receiver in (3.6) will be applied to analyze the diversity
order, and then we will have some rules for the design of the DSTC. We note that for

non-unitary condition, the results may not be optimal by using the sub-optimal receiver.



Chapter 4

Diversity Analysis of Differential

Space-Time Code

4.1 Diversity

Spatial diversity and spatialimultiplexing are the two reasons why MIMO systems
offer better performance and higher throughput: Spatial multiplexing involves transmis-
sion of several independent data streams over different transmit antennas simultaneously
to increase the throughput while spatial diversity sends copies of the same information
over different transmit and receive antennas to avoid suffering deep fading simultane-
ously. Multipath fading causes severe degradation of signals in wireless communication
systems. MIMO systems offer a spectacular approach for combating fading due to multi-
path propagation, scattering, refraction, reflection, etc by means of diversity. Diversity
mitigates the effect of fading and hence allows higher level modulation schemes that
increase the capacity and greatly reduce bit error rate (BER). We give an example to

explain the basic idea of diversity below.



Consider a SISO system, and the output signal can be expressed as

y = +/phr +n (4.1)

where h is the Rayleigh flat-fading channel gain, p = F,/0? is the SNR, and n is the
noise at the receiver, which is Gaussian distributed with zero mean and half variance
per real dimension. Therefore, the signal to noise ratio (SNR) at the receiver is p|h|?.
Since h is Rayleigh distributed, |h|? is exponentially distributed with probability density
function (pdf)

p(h) =e" h >0 (4.2)

The probability that the received SNR is less than a small value € is,

€ _€
plplh]* < €) =plihl* < ;) =1l—cv (4.3)

As the transmit power is very large (p— od); (4.3) can be approximated to

plplhf el = (4.4)

A

which is inversely proportional to the SNR.

Similarly, consider a MIMO system, and the output matrix form with the same

transmit power F, can be written as
Y=\/pHX+N (4.5)
where F{ XX# } =1 and the expected received SNR becomes
p N M
p ELIHXIP } = pr B{ o H e} = 2573 [y (4.6)
n=1m=1

10



Note that N, M denote the number of transmit and receive antennas respectively, and
E{-} denotes the mathematical expectation. Thus, the probability that the received

SNR is less than a small value € is

P D Il <€) = (35 fhunf? < =)

n=1m=1 n=1m=1
Ne Ne Ne
< p( |h11’ < —, |h < —,. |hNM|2<_)
P P P
NM
Ne
= H p( ‘hnm|2 <—)
n=1m=1 p
Ne
= (1—e » )M (4.7)

Also, as the transmit power is very large (p — 00), (4.7) can be approximated to

p Y& ) . Ne vy
p( 520 Dbt < die (=) (48)

n=1 m=1

Compared with the results in the SISO system, theé probability in (4.8) is inversely
proportional to pN™. It shows that the MIMO-system offer lower error probability than
SISO system at high SNR. It is commonly investigated by means of calculating the
diversity order. A system which has an average error probability P, as a function of

SNR that behave as

log (%)

im = —d 4.9
p—oo log (p) (49)

is said to have a diversity of order d. In other words, the average error probability in

the high SNR region can be expressed as

P,~C-p° (4.10)

where C'is the coding advantage. We note that the diversity order is a high SNR approx-

11



imation. However, the exact symbol error probability (PEP) and bit error probability
are sometimes too difficult to calculate. In [3], the error probability can be analyzed by
calculating the pair-wise error probability PEP). In the following section, we pay more

attention to the PEP instead to get a basic idea of the error performance.

4.2 Pairwise Error Probability of Differential Space-

Time Code

The general used performance measures for diversity order include the symbol error
probability (SEP) and the outage probability. Unfortunately, the SEP is not always
analytical depending on the design of techniques. However, the pairwise error probability
(PEP), which is commonly used toapper bound the.SEP [3], is more feasible. Moreover,
an advantage of PEP is that it isTnot-related te the symbol constellations. Therefore, in
the following content, we will derive the¢lose form of the PEP based on the approaches
in [17] to analyze the diversity ordér for the design of the proposed DSTC.

Conditioned on y;_;1 at the receiver, based on (3.5), the receiver will erroneously

select ;) = E; when Sy;) = S; was sent if

1 1
Vi — —Yia B> < ||V — —YiaSi|?
(6773 g

1 1 1 1
tr{(Yy — —Yi1 E;) (Vi — _Yk—lEi)H} < tr{(Yx — —Y15) (Vs — _Yk—lsi)H}
g Qg Qg 077
1
o tr{(Ye—1(Si — E)(S;i — )" VI, } < tr{2Re{ Wi(S; — E))"Y,2, }}

1
Oé—tr{(Yk,lDDH YE Y < tr{2Re{ W, DYV 1} (4.11)
k

where D = S; — Ej; is called the error matrix. Concatenating the columns of Y} into a

12



vector by vec(Yy), the received signal can be rewritten as

1
Xy = — X 1S (4.13)
Qp

where vec(+) denotes the vectorization operator. y, = vec(V,1)T, hy = vec(HF)T, n;, =
vec(NDYT, X = Iy @ X, and S, = Iy ® Sy,. Thus, y, becomes a row vector, and we
can simplify the equation in (4.11) for simplicity as

1 1

_ gZ 2 < . Sz 2
||Yk ak}’k—1 || > ||Yk akYk—l ||

1
— v, DDy | < 2Re{ w,D yi | (4.14)
(073

where D = S, — & = Iy @ S; — Ei+:Conditioned on the y,_;, the left hand side of
the inequality in (4.13) is a deterministic variables. Since w; and y,_; are Gaussian
distributed, the linear combinatien of Gaussian random variables are still Gaussian dis-
tributed. Therefore, the right hand side of (4:13) is‘a'colored Gaussian random variable.

Let g = 2Re{ w;D"y}’ | } be Gaussian;distributed with conditional mean my, ,

2

and conditional variance o olye_1

for given y,_,. Conditioned on the received signal y,_;,

the conditional mean of g can be defined as

mg|yk,1 = E{ g | Yi—1 }
= E{2Re{ wD"y;", } | yp 1}
= 2Re{ E{y, | yi1 } D" yi',

— 2Ref E{my—msSi | vy } DYyl } (4.15)

13



Note that E{ n; | y,_; } =0, and thus (4.14) can be rewritten as

Myly, ., = 2Re{ E{ np — 1 1S | yiy } Dr YIIj—l }
= 2Re{ E{np1 |y, 1} S DY Yio1 }

= —2Re{ mn,_,1y,_, Si D" yi', (4.16)

where My, |y, , = E{ny_1|y,_; }. Inorder to compute my, ,Jy, ,, we use the theorem
in [19] and introduce in Appendix A. By using the results given in Appendix A,

My, can be expressed as

[Yi—1
mnk—1|yk_1 = E{ ng_q } + Eyk717nk—12;,3,1,yk71 <Yk—1 - E{ yk—l }) (417)

_ H _ 2
where Xy, o, = E{ yi_1 nx1 } = o5 dNaiand

ZYkﬂaYkﬂ = E{ ka—l Yi—1 }
= B{ (/phXzisrmg )" (VohX + ) }

= E (X Xrpytos vy (4.18)
Since E{ ny_; } =0and E{ y,_; } =0, (4.16) can be derived as

mnkfl‘ykfl = E{ ng_; } + Zyk_l,l’lkflz;kl_l,yk_l (Yk—l - E{ Yi—1 })

= 0o Y1 (B Xe1) + 02 Inng) ™ (4.19)

Substituting (4.18) for my,_, in (4.15) gives the conditional mean mgy, | as

[Yi—1

_ CNH H
Myly, ., = —2R€{ My _1ly,_y SlD Yi—1

= —2Re{ (o} yp1 (B(XL1X0) + 05 Ivn) ™) SD"yily } (4.20)

14



Similarly, given the received signal y,_;, the conditional variance of g can be expressed

as

Oglyey — E{ [l g —mygy,_, 11 | yer }

= E{(g— Myly,_q )H( g — Mgly,_, )y } (4.21)

where

g~ Mgly, , = 2Re{ WiDHYkH—1 } + 2Re{ My ly,_, Si DY yilcq—l }
= 2Re{ WDyl | +mn,_py, S DTyl }

= 2Re{ (ny — 0;18) Dy 4 My, Si DTyl

— 2Re{ (g — [yt — Mgy, ISPV (1.22)
Substituting (4.20) for g — Mygly, & N (4.21L) gives the conditional variance U;kafl as
U§|yk,_1 = E{ ( g — m9|yk,1 )H( Jtes mglykq ) ‘ Yi—1 }
= B{ (2Re{ (ng — [0 =0, 1y, ,1S)DTyi )Y
-(2Ref{ (ny, — [0y — My _ypy, LJS)D Y P ) [ yes }
= 2y,d BE{ (0 — [0y — M1y, 1)
(0 — Moy — M,y S |y } A7yl

= 2 ykfllD [ Enlmnk + SzH Ech71|yk_1 S% ] DHYkH—I (423>

where Xy, n, , = 0oy and Yo, 1y, = E{ || ng—1 — mn,_yjy,, ||* | yi_1 } is the

covariance of the noise vector ni_; condition on the received vector y,_,. Similarly,

15



using the results obtained in Appendix A, ¥ can be written as

ng_1]yg_1

E1f11c71|yk71 = E{ H Ng—1 = Mny ly,_, H2 | Yi-1 }
- Enk*hnk*l - 2511@_1711&71 2;13_17yk_1 Zyk—lvnkfl

_ 2 2 -1 2
= JnINM - (O'nINM EYk—lek—l O'n[NM)

= oo [ Inu—02 5,0 o ] (4.24)
Substituting (4.22) for ¥,, ,jy, , in (4.23) gives the conditional variance O'g‘ykil as
0-.§|yk7]_ = E{ (g—myy,_, )H( 9= Mgy, )| Y1 }
= 2y, D [oplyy + S (o} [ Inu — 0 2,0 DS ] Dyl

= 2y,1D [‘7721]NM "’Sz‘H(UZ [INM -

oa( B0 X\ Ximr) 0 Inu) ' ))Si ] Dyl (4.25)

Summery

Let g = 2Re{ w;Dfyl | }  then we have shown that the random variable g which

is Gaussian distributed has the conditional mean

Mgly, , = E{g|y,.}

= —2Re{ My 1 lyey O DH ka_l } (4.26)

where My, 11y, , = 02 Yi_1 | Es(XL X1) + 02 Iy |7, and the conditional variance

Oglykfl = E{|[l g—mgy,_, 1| veor }

= 2y D [onIvu + S S Si ] Dy, (4.27)

Ng—1,Yg—1

16



2 -1 ]

_ 2 _
where ¥y, |y, = 0n [ Inp — 0 S

By the chernoff upper bound, the conditional PEP in (4.13) can be expressed as

1 1
p(Si—=& | yie1) = pllye — —Yer Bl <llyi — —yiiSil]?)
o 677

1
= p( CY_k Yi-1D DHYkH—l < 2Re{ Wz‘DH YkH—l )

1 HyH
o Ye1D DUyl —mygpy,

= Q( )
UQ|Yk—1
< Lot (4.28)
< 5 ea(—3 :
where
Q) = [ el L) d (4.20)
xr) = ; 27T0_ e:Ep 202 y .
h— 2
Q _ H anb’k—l |] (430)
UQ|Yk—1

In fact, it is difficult to analyze (). Moreover, unlike in the coherent STBC, finding
the PEP from (4.27) is a hard problemgbecause of the non-zero mean myy, , and

complicated variance o However, in the high SNR region (i.e., keep the SNR

2
9lyk—1"

p = E,/o2 — ), the conditional mean in (4.25) and the conditional in (4.26) variance

of g approach respectively

Myly, 1 = —2Re{ Muy,_1lys,_, Si pH YkH—1 }
= —2Re{ ( 0721 Yi-1 (Es(X/£1Xk—1) + ai [NM)_1 ) SiDHYkH—1 }
E, _
= —2Re{ (y_ ( ;(X1£1Xk—1) + Inp )7t ) SidHka_1 }

n

— 0 (4.31)
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and

Oy, = 2¥eaD [ opdvn + 8/ By 1y, Si 1Dyl
= 2y, D [onlnm + S (o [ Inn —
on( Bs( XL X1 ) +on Inn) " S ] Dyl
= 2y, D [onlng + S (oh [ Iny —
(SR Xn) + T DS DUy
— 202y, D (Iny+S7 S;) Dyl | (4.32)

Based on the forms in (4.30) and (4.31) as SNR approaches to infinity, Q in (4.29)

reduces to

| h— Mgy ”2

2
g
9lYe—

h2
2
o
91¥h—i

| alk YD Dyl |
2 0'721 yk_1'D ( Inor +S,LH S; ) 'DHka_l

(4.33)

Since SZ-HSi is a hermitian matrix, it can be written as SiH S; = UiH N;U; , where the
matrix of eigenvectors U; obeys UiHUi = UZ-UiH = Iyym, and let A; is a matrix of

eigenvalues of S/’S;. We define ), as the eigenvalues of SIS, form =1, ... ,NM.
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Thus, (4.32) is then given by

| 2 v D Dyl [P
202y D (Inu + SIS ) DHyL
H Vi1 D DHY?A H2
2 (ax)? 02 y D (U (Iny 4+ N)U; ) diy)l
H Vi1 D DHYkH—1 H2
2 (ak)Q 0-721 (1 + ,U/maa:) Yk—lp DHYg_l
Yi1D DHka—l

= 2 (00 7 (1t ) A

where fi,,q, is the maximum eigenvalue of SHS; (i.e., fmae = max { p1, . ,pinas )
and y, D Dyl | is a quadratic form. In order to obtain the exact form of PEP, we
need to average (4.27) with respect to the distribution of y;_;. The probability density

function (pdf) of yx_; is

1

P(Yi1) = =7 erp(=yi Xy, Vi) (4.35)
mNM[ % | |

Yk—1Yk—1

where Xy, o = E (X X1 ) 4.05 Inm-and the exact pairwise error probability is

given by

p(Si— &) = Ey APr (Skw) — Eray | ve_1)}

1 1 1
< Z ——Q)- exp(—y B° "y d
= / 2 GZL‘p( 2 ) 7TNM| ZYk—lek—l | p( Yy Yik—1:¥k—1 Yy ) Yy
1 / 1 1. H
= - exp(—y X7 y") dy (4.36)
2 WNM' ZYk—laYk—l |
where the operator |- | is the matrix determinant and X! = Z;klfl’ykil—k T(on)? gpl(flwmw)‘

By using the normalization property of Gaussian probability density function,
! (—y Sty dy=1 (4.37)
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(4.35) can be expressed as

1 1 _
p(Si—&) < - /WNM|2 |e:vp(—y2 byt dy

2 Yik—1:Yk—1
| 2|
2| ZYICA:}%A |
1

= (|AB| = |A[-|B])
2| 2_123%717)%71'

1
TN L N—
Yk—1Yk—1 4 (ag)? 02 (14+pmaz)’ YE-1Yk-1
1
2| Uvm + 7am oz ey PP (Bo(XL X)) + 02 Inw))
1
2‘ ([NM + 1 (op)? - (ES/U?J : Xk_lppHXI£1 |

o2 (I4+pmaz)

| M p
_ = 1 -1 4.

where p = E, /02 and )\, is the eigenvalues of matrix- X, DD X,ﬁ 1 - The arrow 7 —"
denotes the approximation as the S N.R —oe: Equa‘tion (4.37) reveals that the error
performance of DSTC depends on the distance matrix D?* = DD = (S;—&)(S; — &)?
and the previously transmit matrix X;_;. In the next section, we will analyze the di-
versity order of the DSTC based on the proposed analytical expression for the PEP and

provide a design criteria to approach the maximum diversity.

4.3 Design Criterion

Recall the general definition of diversity order in (4.9), a system which has an average

error probability P, as a function of SNR (p) that behave as

log (F.)

im = —d 4.39
p—oo log (p) (439)
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is said to have a diversity of order d. In other words, the average error probability in

the high SNR region can be approximated as

P.~C-(p)° (4.40)

where C' is called the coding advantage. We note that the average error probability
can be analyzed by the PEP. We define r as the rank of matrix X, DD X[ |, then
exactly NM —r eigenvalues are zero. Let the nonzero eigenvalues of X DD# X[ | are

A1, A2, ..., A, then it gives from inequality (4.37) that

P -1
A
4 (a)? 02 (1+ Mpaz) )

T - )M @A

4 (ak)z 0721 (1 + ,U/maw)

|
N | —
—Z
—
+

p(Si—&) <

DN | —

Therefore, from (4.39) and (4.40); the diversity order-of a differential space-time code is

log (p(Si—&))

‘- _f’lggo log (p)
o G I (R ) T (07
P log (p)
s ()R
p—oo  log (p)
- (4.42)

and a diversity advantage of rM as well as coding advantage of

s [ T2 ( T Ugr(l wr—" ) |7 is achieved. Particularly, we note that the results for

DSTC are similar to those for coherent scheme. Therefore, from the above analysis, we

have the following design criterions:

Design Criterion of Differential Space-Time Codes
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A. The Rank Criterion

From (4.41), it is obvious that a diversity advantage of rM is achieved, which mainly
depends on the rank of the previously transmit matrix X;_; as well as distance matrix

DD¥ . Based on the above analysis, we arrive at the following design criterion:

max { rank(D(Ski, Sk;) - D(Sks, Sk ))™) }, Vi#j (4.43)

Sk.i

subject to det(Sk) # 0, V k. Recall the differential encoding process in (3.1), assume
that the initial transmit matrix Xy = Iy at the beginning of the transmission (i.e.,

k =1). As the block index k increases, we have

ik 1
kzl, X1:—X081:—Sl
aq (041
1 1 1
k’ = 2 s X2 = —Xlsg = (—Sl) SQ
0y Qo Qg
1
k=1L, X, =—X115;
1 1 1
=— —S1) So---Sp-1) St
ap  op— a1
L

=11 o S, (4.44)

It is easy to show that, at the k-th block, the transmit matrix X} is the product of
the data matrices from S; to Sj. Therefore, full rank X, _; implies that .S; must be full
rank as well, Vi € [1,k — 1]. By making Sy full rank, Vk, the diversity order becomes
related to the rank of D - D only and it simplifies the code design of the DSTC. We
thus focus on maximizing the rank r of the distance matrix, and have the maximum

diversity order of rM.
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B. The Determinant Criterion

In (4.40), the coding advantage that we tend to maximize is

1 i v
¢= 2 [ H( 4 (a)? 02 (1 + fmaz) )| (4.45)

Now we focused on the product of eigenvalues of X;_; DD® X[ . Suppose that a diver-
sity order of rM is the target. The coding advantage mainly depends on the products
AL+ Ag - -+ A\, where r is the rank of X;C_lDDHX,fLI. Our design criteria in this part
is making this eigenvalue products as large as possible. Therefore, if a diversity order
of rM is gained, the minimum of the products of the eigenvalues taken over all pairs
of distinct codewords and must be maximized. Recall that the products of eigenvalues
A1+ Ag-- - - A\, is the determinant of X, .4DDHX ,f_ i.among the pairs of distinct codewords.

Thus, we have the following determinant criteria.

Determinant Criterion:

max min D(S;) — E; Yk

We note that |-| is the matrix determinant. However, compared with the results
for the coherent STBC in [2], it is more difficult to obtain the determinant value of
Xeot DD X[ than D? = (Sk@) — Sk)) (Skiy) — Skeiy)™ since the transmit matrix Xy,
are correlated to St, ..., Sy_1. Therefore, we mainly focus on the diversity behavior rather
than coding advantage in the following contents. On the other hand, since the PEP is
calculated based on the ML receiver in (3.5) rather than that in (3.7) as the noise matrix
Ny, is not white Gaussian distributed, the design criterion is valid for the ML receiver

in (3.5).
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Chapter 5

Extendable High-Rate Differential

Space-Time Code

The priority of the design of high=rate DSTC is to design the data matrix S, with
the transmission rate R greater than one. Moreover, the code structure must be flexible
and simple such that it can be éxtended from the lower to higher dimensions. This is
the point of view when we design the 'extendable high-rate DSTC.

Alamouti STBC [1] for two transmit and one receive antennas is the only orthogo-
nal space-time block code (OSTBC), which achieves the maximum diversity as well as
possible mutual information of a 2 x 2 MIMO system. Unfortunately, it has been shown
that an OSTBC with a transmission rate R equal to one for more than two transmit
antennas does not exist [3]. Furthermore, by increasing the number of transmit anten-
nas, the rate of the OSTBC is significantly decreasing, which makes them unattractive
for systems with a very high number of transmit antennas. One solution to this problem
is to divide the N transmit antennas into groups, where each group employs an OSTBC.
Since the rate increases, there is a loss in the diversity order, which results in poor error
performance. In this section, our objective is to apply the rate-one Alamouti scheme as

our OSTBC and design an extendable high-rate DSTC based on the two rank design
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criterions obtained form the previous section for more than two transmit antennas.

5.1 Rate-One Differential Space-Time Code

5.1.1 Rate-One for Four Transmit Antennas

Quasi-orthogonal space-time block code (QOSTBC) for four transmit and one receive
antennas have been analyzed in [10], [20], [21] and [22]. The basic idea of QOSTBC is to
divide the N transmit antennas into groups, where each group employs an OSTBC (e.q.,
Alamouti STBC). There exist a full-rate QOSTBC which provides without full diversity
and the decoder can work on pairs of modulated data symbols instead of single symbols.
However, by choosing the suitable signal constellations as done in [12], [23], [13], it is
possible to improve the BER performance, with ML detection. For the rate-One DSTC,
we apply the QOSTBC as the codestructusefor four transmit antennas. Unfortunately,
the complete idea of OSTBC is wellunderstood, butfor QOSTBC only some examples
have been proposed before without systematic-analysis and precise definition. Therefore,
we will give a short introduction about. QOSTBC 'and analyze the code construction in
the following content.

A QOSTBC is defined by its data matrix S, which is a function of the modulated
data symbol vector s = [ sy ; so; --+ ; sp ]7. The transmission rate R of a QOSTBC
is defined as R = L/T where T is the block length for which the channel coefficients
are constant during those 7' channel uses. Now we focus on the rate-One QOSTBC

with block length T'= N | therefore L = N.

Overviews of QOSTBCs

A. ABBA Quasi-Orthogonal Space-Time Block Code

The first class of QOSTBC proposed by Tirkkonen et al. [20], where it applies two
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Alamouti STBCs in a block structure resulting in the so called ABBA QOSTBC' . Start-

ing two Alamouti schemes for N =2 transmit antennas as the building blocks,

S1 S2 53 5S4
512: 534: (51)

* * * *
—S3 5 —S4 S3

and the data matrix Sy = S,2884 of the ABBA QOSTBC with N =4 is then given

,ratel

by

G ABBA Stz S B —S3 S| —s; 53
4,ratel - (52)
Sza Sio S3  S4 S1 82

as
a 0 50
0 a 0 § L O
SABEA - (S, ABBAY = Ll R R
B 0 a 0 Qappa Iz
6 0 «
where the Qg4 is defined as
Bla 0
Qappa = (5.4)
0 (/o
with
4
a= Z | s; |  and B =2Re{ s155 + 5955 } (5.5)

i=1

26



It can be seen that the Sﬁﬁf_/‘l is not a unitary matrix, since o # 1 and 3 # 0.
However, from (5.2) it can be seen that the symbols s;, s3 and the symbols sq, s4 appear
in pairs. If conventional memoryless modulation is applied, it is impossible to achieve
the unitary property. Therefore, it is apparent that some relationships between the data

symbols s; and s3, as well as between sy and s4, are required to let § be zero.

B. Jafarkhani Quasi-Orthogonal Space-Time Block Code

The second class of QOSTBC was proposed by Jafarkhani [10], where it also uses two
Alamouti STBCs in a block structure and results in the so called Jafarkhani QOSTBC.
The data matrix S = 54’%{;{ Fhani generated by two Alamouti STBC Sy, and Ssy in

(5.1) with N =4 is

S1 S2 S3  S4
* _oX
g Jafarkhani  _ S12 [ S % S2 51 Sq 83 (5.6)
4, rate—1 - . .
* * * * *
TIP3 P12 P93 TS4 51 S
S4 —S83 —S9 81

« 0 0 I}
. . 0 « -6 0 1 QJa
Supeder - (S ) = —a- | T e
0 _ﬁ a 0 _QJaf [2
16 0 0 Q@
where @) j.r is defined as
0 fla
QJaf = (5.8)
/a0
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with
4

o= Z | si > and B3 =2Re{ sis; — 5255 } (5.9)

i=1

We note that such structure is strongly related to the concept of complex Hadamard
matrices. The 4 x 4 data matrix can be decomposed into four 2 x 2 submatrices which
are Alamouti-like structures. Moreover, the columns of the matrix are not orthogonal to
each other, but different Alamouti-like submatrices are orthogonal to each other instead.
Based on the ideas, the following are some transformations of Jafarkhani QOSTBCs.

The first four examples are

—S12 534 S12 —S34 Sz S S12 S
: : ; (5.10)
* * * * o * * * . *
34 12 34 12 34 P12 34 12
Inverting the sign of each code matrixwe obtainr the other four code matrices:
S12 —S34 . —512' 1S3 . =S5 —Su ' —S12 —Sa4
Y 2 Y
=531 —51 =534 51 S5 —5T =531 Shy
(5.11)

The above eight code matrices can be complex conjugated and generate the other
eight code matrices. We note that these codes have a similar structure of the forms
(5.7). Ones in the main diagonal entries and non-zero terms on the off-diagonal entries.
Similarly, (5.6) shows the symbols s;, s4 and the symbols sy, s3 appear in pairs. Some

correlations between the symbols s; and s4, as well as between s, and s3, are required.

C. Papadias and Foschini Quasi-Orthogonal Space-Time Block Code
The third class of QOSTBC was presented by Papadias and Foschini [21]. Com-
pared with the above two QOSTBCs, the modulated symbols are arranged in a different

way such that it can not be decomposed as a simple combination of two Alamouti-like
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submatricess , that is, their complex conjugated forms and negative forms. The P.F.

QOSTBC with N = 4 and the data matrix S, = 545;5'81 can be shown as

51 82 53 5S4

Sirate—1 = (5.12)

Again, by multiplying the data matrix by its Hermitian, the Grammian matrix can be

expressed as

Q@ 0 -6 0
0 « 0rs, 3 I Qrr.
Sty (S Eh )T = —a-| 0T (5a3)
Jor- e, a —Qrr. D
-0 0 Q
where QQp r is defined as
~Bla 0
Qprr = (5.14)
0 fla
with
4
a= Z | s; > and B =2jIm{ sjs3 + s354 } (5.15)
i=1

D. STTD-OTD QOSTBC ( ABAB Quasi-Orthogonal Space-Time Block Code )
The forth class of QOSTBC proposed by Jalloul et al. [22], which is called the
ABAB QOSTBC. Using the same Alamouti-like submatrices S, and Ss4, the generation

29



_ ABAB
Of Sk - M4 rate—1 as

S1 S22 S3 S4q
* * * *
ABAB 512 Sg4 B —S9 S§1 —84 S3
S4,7”ate—1 - - (516)
Sia —534 S1 S22 —S83 —S4
—s; S1 Sy sy

ABAB

and the multiplication of the 5,777 by its Hermitian is

a 0 g 0
0O a O I
SABAD (5,088 )i T Rl ICRTS
B 0 a 0 Qapap Lo
RROSET Ry
where Qapap is defined as
Bla 40
QapBA= (5.18)
0" G/a
with
4
a=>|s| B=(lsiP+1sa?)=(lss Pl +]sa]?) (5.19)

=1

Apparently, it has diversity order only two since each symbol passes through only
two of the four transmit antennas. All symbols must be transmitted over every antenna
to achieve full diversity, so it is clear a modification of the code matrix is required. All
previously introduced QOSTBCs have the common design criterion that the data matrix
is divided into groups where the columns of the code matrix are not orthogonal to each

other, but columns of different groups are orthogonal to each other. Moreover, they have
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another property such that it is called ”quasi-orthogonal” space-time code:

Quasi-Orthogonality Property: A QOSTBC of dimension N x N is a ma-
triz that satisfies SpSH = Zfil |s;|* - Q where Q is a sparse matriz with ones on its

main diagonal positions and having at least N?/2 zeros at off-diagonal positions.

Conditions for Full Diversity

In order to achieve the maximum diversity, based on the two rank criterions men-
tioned in the chapter 4, we not only make S, become a full rank matrix but also
maximize the minimum rank of the distance matrix D - D for all distinct codeword
pairs Sy and Ej;) as possible. Check the determinant of the distance matrix may
be used as a test to search for thessymbol constellations that allow it to achieve full
diversity. Due to the similar code structures of.the ABBA, Jafarkhani, Papadias
and Foschini and STTD-OTD QOSTBCs; we will only take ABBA as well as ABAB
QOSTBC as the examples to show how to achieve the maximum diversity by means of

the constellation rotations (CRs).

ABBA

“rater . t0 lose rank due to the symmetry

From (5.2), we can see that it is possible for S,

of the constellations. Therefore, in order to follow the design criterion I, which avoids

ABBA

ABBA
t;4 ,ratel

Sater . losing rank, some constellation rotations (CRs) are required. Since S,

can be divided into four Alamouti blocks, according to the determinant property, there
exists many ways to make it become full rank. For example, we choose s; or sy (or both
of them) from a constellation C and the others from another distinct constellation Cy
rotated by an angle #. For the sake of simplicity, we have § = 7/2 for binary phase shift
keying (BPSK) and 6§ = 7/4 for quadrature phase shift keying (QPSK) in this paper.
Secondly, to achieve the maximum diversity, it is necessary to obey the design criterion

II, which maximizes the rank of distance matrix. According to the data matrix in (5.2),
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the error matrix Dﬁﬁf_f‘l = Sks) — Ers) can be easily expressed as

Ay Ay Ay Ay

—A; AT AL A
Do = (5.20)
As Ay A A

—AL Ay Ay A

where A; = si;) — er() for sy # ey in the k-th block. Based on the rank criterion,
to achieve full diversity, the error matrix given should be full rank for all possible error

matrix pairs. In other words, its determinant must be nonzero. For ABAB QOSTBC, the

distance matrix Dﬁﬁf_/‘l . (Dﬁﬁf_“l)H and its determinant can be expressed respectively
as
Aa - IQ Ab - _[2
D4ﬁi§—A1 ’ (D4f=a5;§f1)H = (5.21)
Ab-I, Aa-I
where
Aa = S0 A P (5.22)
Ab =37 [ (A) (Ai2) + (Api2)(A0)7] (5.23)
and the the determinant of D? (ABBA) g
Aa-Iy Ab-1
det( D? ABBA) ) gey( ’ ’
Ab - ]2 Aa - [2

= (ZL] (A) +(Ai2) )

(L] (A) = (Aise) ) (5.24)

It is obvious that the determinant in (5.24) will be zero when A; = Ay or Az = Ay si-

multaneously. Similarly, based on the data matrix in (5.16), the error matrix Dﬁftffl =
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Sk(iy — Eruy can be easily expressed as

Ay Ay A Ay

=AYy AT AL A
pamt=| (5.25)
Ay Ay —Ag —Ay

—Ay AT AL 4

D ABAB D ABAB )H

and the distance matrix D527 - (D 5aem1)"  and its determinant are

Aa - ]2 Ab - _[2
(D4¢£?§1)HD4,AT£??1 = (5~26)
Ab - [2 Aa - [2
where
Aa =X A (5.27)
Ab= (| A1 P A )~ (| B3 P+ A ) (5.28)
and the the determinant is given by
Aa-I, Ab-1I
det( ’ ’
Ab - [2 Aa - [2
=(si—er P+ s2—e [*) (| s3—es|*+]|ss—eq|?) (5.29)

Note that the same problems occur with Jafarkhani, Papadias and Foschini QOSTBCs
when the conventional memoryless modulation are applied. This means that such space-

time code structures do not have the full diversity. Therefore, in order to follow the design

ABAB

“atez losing rank, some CRs are required. For example,

criterion I, which avoids S,
it can be seen from (5.29) that some correlation between the modulated symbols are

required. Note that the use of joint modulation with a specially designed constellation
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set was proposed in [24]. In this thesis, we make use of some linear transformations of
symbols to achieve the full diversity order. Now, we will use a short content to describe
this approach. For ABBA QOSTBC, we firstly consider my, ms, ms,and my are four
symbols modulated from the original binary sources, and we encode these symbols by

the following rules:

mi + Mo mi — My

S$1= ——F— ) So = ——F——
V2 V2

ms —+ My ms — My

53:— 84:—

V2

where s1, s9, s3,and s4 are the transmit symbols mapped to the data matrix S;. The
coefficient v/2 here is used to normalize the energy. Based on the transformation above,

the determinant of the distance matrix in (5.29) can be reduced to

det( D* PP ) = (521 45 A S ) P)
(B ) (s cora) )
= (I~ By — )i (52— e2) + (34— )
(v =) = (s — e+ [(s2 = e2) = (51— e)l”)
= LL(0m — )+ (ms — e) + (ms — e3) + (ma — e
Fllms — 1) — (ma — e2) + (ms — e3) — (ma — )
(1 = ex) - (ms — ) = (my — e3) — (i — )
Fllms — 1) = (ma = e2) — (s — e3) + (ma — ea)*))

(5.30)

To achieve the full diversity, it is equivalent that the determinant of the distance

matrix must be nonzero, which implies that the original data symbols m; ~ my shall
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Figure 5.1: (a) BPSK«Constellaitons (b) QPSK Constellaitons

follow

(m1 — 61) + (m2 — 62) + (m3 &~ 63) + (m4 — 64) 7é 0 (531)

(m1 —e1) — (mg —ez) + (m3 —e3) — (my —eq) #0 (5.32)

where (5.31) and (5.32) will hold when my, ms € C and my, my € C?. In other words,
we choose m; and my from C, and the others ms and my4 from C? rotated by an angle
6. For the sake of simplicity, we choose § = 7/2 and = 7/4 for BPSK and QPSK and
the constellation points are shown in Figure.5.1. By choosing the suitable constellations
and phase angle 6,and we can establish a QOSTBC that achieves the full-rate and full-
diversity.

All previously introduced QOSTBCs have similar code structures, and the differ-

ence between them is the non-diagonal parameter in the corresponding non-orthogonal
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Figure 5.2: Bit error rate (BER) against. signal to noise ratio (SNR) for rate-1 (R=1)
differential space-time code at 1 and 2 bpsyHz T four-transmit antennas and one receive
antenna ; my,my € C and ms, my € €7 ; rotation angle § = 7/2 and = 7/4 for BPSK
and QPSK respectively.

Grammian matrices in (5.3),(5.7),(5.13) and (5.17). Figure 5.2 shows the bit error rate
(BER) as a function of the received SNR for four transmit and one receive antennas,
rate-one DSTC based on the ABBA QOSTBC using two different CRs denoted as CR-
Typel and CR-Type2. For CR-Typel, we choose s; and sy from a constellation C and
the others from another distinct constellation Cy rotated by an angle 8; for CR-Type2,
we choose s; from C and the others from Cy. It shows that the diversity order of DSTC
is four whatever the constellation rotations are. Furthermore, the performance using

QPSK modulation is approximately 3dB worse. The results are similar to the coherent

STBC.
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5.1.2 Rate-One for Eight Transmit Antennas

So far, we have presented the DSTCs based on quasi-orthogonal structures for four
transmit antennas. In this section, we will discuss the case when the number of transmit
antennas is greater than four. According to the code structure from ABBA QOSTBC,
we combine two distinct 4 x4 ABBA QOSTBCs to have a 8 x 8 QOSTBC, while keeping
the transmission rate unchanged. Similarly, we start with the 4 x 4 rate-one DSTCs for

four transmit antennas mentioned in the previous section as the building blocks,

S1 S22 83 S4 S5 S¢ St S8
* * * * * * * *
SABBA (1:4) = T2 %1 T 5 , SABBA (5. 8) = —S¢ S5 TS 57
4 rate—1 . - 4 rate—1 . -
S3  S4  S1 S2 St S8 S5 Sg
| s sy —ss s | sy s s st

and for eight transmit antennas,-the data matrix Sj = Ss ae1 0Of the rate-one DSTC is

given by

S4ABBA ( . 4) S4ABBA (5 . 8)

rate—1 rate—1
S&rate—l =
ABBA . ABBA .
S4 rate— 1( . 8) S4 rate— 1(1 . 4)

S1 S9 S3 S4 S5 Sg S S8

* * * * * * *

*

S3 S4 S1 S9 S7 S8 Sy S6

—S)y S5 —S8; S] —S3 Sy —Sg S

= (5.33)

Sy S S7 S8 S1 S92 S3 S4

* * * * * * *

—Sg S5 —Sg S, —S; S —S; 53
87 S8 S5 8¢ S3 S84 S1 52

* * * * * * *

*
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In order to achieve the full diversity, the rank of the data matrix Sg ,qe—1 must be

full rank. According to the following determinant property of block matrices

A B
det( ) = det(A) - det(D — CA™'B) (5.34)
C D

where A,B,C' and D are square matrices respectively. The determinant of the data

matrix Sgrqte—1 thus can be expressed as

det(s&ratefl) = det(Sﬁﬁff‘l(l . 4))
’ det(&,ﬁﬁfﬁﬂ 1 4) — S4ﬁc?t§—A1(5 : 8)54,12(]135141(1 : 4)7154?«5;@3141(5 1 8))

(5.35)

We note that the form S, 2584 (5:5578)S, 2882 (1 4)715,4884 (5 . 8) has an quasi-

orthogonal structure. To maximize the diversity order, it is necessary to follow

det(S 0P (1:4)) #0 (5.36)
det(Sﬁﬁfﬂ(l 14) — 54,12(%5141(5 : 8)S4§‘£ff1(1 : 4)7154712(?;?141(5 :8)) #0

(5.37)

To satisfy the constraint in (5.35), it requires some constellation rotations of the
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Figure 5.3: BER against SNR for rate-1 (R=1) differential space-time code at 1 bps/Hz ;
eight transmit antennas and one receive antenna ; CR-Typel: s, 5, € C and s3 ~ sg € C?
; CR-Type2: s; € C and sy ~ sg € CY rotation angle § = 7/2 and = 7 /4 for BPSK and
QPSK respectively.
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modulated symbols. We consider the determinant of S;AB54  as

Sia Ssy
det(S,A5P4) = det(| "7 )
Szs Stz
= det(Slg)
. det(Slg — 53451_21334)
S S 1 p p
~ 9. det( 3 S4 | : 1 2 )
—S5) 53 —D; DI
L L
= 2{|33—§p1|+|34—§p2| } (5.38)
where
D1 = —S835153 +.945583 — S38bS; — S4515 (5.39)
Do = —S38784 + S45554 +.835255 + 45153 (5.40)

Therefore, S,4BBA is full rank (det(S,4B54) + 0) as long as

,rate—1 ,rate—1

1 1
S3 # 3 p1 and  S4 # 3 D2 (5.41)

We consider constellations using phase rotations. Conditions (5.41) hold when s3 or
s4 are rotated by an shift angle 6 with respect to s; and s;. On the other hand, we
must maximize the rank of the distance matrix Sgaze—1) * (Ssrate—1)7 to achieve the full
diversity. However, its determinant is hard to derive and analyze. By computer search,
the rank of the distance matrix is four, and then the diversity order of the rate-one
DSTC for eight transmit antennas and one receive antennas is M -4 = 4 . In this case,

we assume that s; and s, are rotated by an shift angle § = 7/2 for BPSK and 6 = 7/4
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for QPSK with respect to s; ~ s5. The constellation points are shown in Figure 5.1.
The simulation results are shown in Figure 5.3. We assume that there are two kinds of
constellation rotations, which are called constellation rotation type 1 (CR-Typel) and
type 2 (CR-Typel) respectively. In CR-Typel, we choose the data symbols s1, so from a
constellation C, and the others s3 ~ sg from another constellation C? rotated by an angle
6. In CR-Type2, we choose s; from C and s, ~ sg from C?. Our simulation shows that
the diversity order using CR-Typel is four, but less than four when using CR-Type2.
The reason is the rank of distance matrix is only two in the case of CR-Type2, and thus
the diversity order is only M -2 = 2. On the other hand, we denote the orthogonal
structure here as another matrix mapping approach for the data matrix Sg,q—1 and it

can shown as follows

S Akd) S, 004 (5:8)

srate—1 ;rate—1

_S4ABBA (5 . 8)H S4ABBA (1 . 4)H

Jratess]t ,rate—1

S&rate—l - (542)

which is Alamouti-like matrix mapping-approach..Compared with our proposed ABBA

QOSTBC, the performance by using this orthogonal structure is 1dB better.

5.2 Rate-Two Differential Space-Time Code

5.2.1 Rate-Two for Four Transmit Antennas

Based on the code structure of the rate-one ABBA QOSTBC in [20], we start with

the Alamouti schemes for two transmit antennas as the building blocks,

51 52 53 54 S5 56 S7 58
Sip = Szq = Ss6 = Sr3 =
—55 8] —5; S3 -85 St —s5 5%
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and the rate-two DSTC defined by its data matrix Sy = S4,ae—2 is given by

512 S34 —Sz ST —SZ S;
S4,rate—2 - = (543)
Ss6 578 S5 S¢St S8

By multiplying the data matrix by its Hermitian, we have the Grammian matrix

Q 0 q1 q2
O « _q* q OéI Q'ra e—

SR ? e (5.44)
qi‘ —q2 B 0 Q%te—2 By

& 0 %]

H
S4,7’ate—2 S4’

rate—2 —

where Q412 is an orthogonal matrix (Alamouti-like-matrix) with

4 8
a=> |s PR =Y [ s P (5.45)
=1 1=5

and q; = 5155+ 5255+ 5355+ 5455 , @2 = —5156+ 5255 — 5353+ 5457. In order to achieve the
maximum diversity, according to the rank criterion in the chapter 4, we not only make
the data matrix S become full rank, but also maximize the minimum of the rank of
distance matrix D47mt6,2(D4,mt6,2)H for all distinct code matrix pairs Sy and Ey)

as possible. At first, we consider the rank of the data matrix Sy = Sy ,qze2. Similarly, due
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to the data matrix can be divided into four submatrices, and its determinant is given by

Sy S
det(Suraes) = det(| = )

556 S78
= det(Sm) : det(S7g — 5565515'34)

S7 S8 1 p1 D2
= 2. det( -3 )
—8y 57 —P2 P
1 9 1 9
= 2{‘37—§P1|+|58—§p2| } (5.46)
where p; = —8557534+ 565553 — 555251 — 56515, and po = —555754+ 565554+ 555255+ 565155 -

Therefore, Sy yqte—2 is full rank (i.e., det(Sy qte—2) 7# 0) as long as

1 1
sy # 5P and ' Sg % 502 (5.47)

We consider constellations using phase-rotations. Conditions (5.49) holds when s; and
sg are rotated by an shift angle 6 with respect to s; ~ sg. For simplicity, we choose
0 = 7/2 and = 7/4 for BPSK and QPSK and the constellation points are shown in
Figure.5.1. Secondly, we take the rank of the distance matrix into consideration. The

error matrix Dy 2 can be easily expressed as

A Ay Az Ay
AL AT A AX
D4,7’ate—2 = ? ' ! ’ (548)
AB AG A7 AS

—A Ay Ay A7
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where A; = sp(;) — ex(), and the distance matrix can then be expressed as

Aa - I2 AQrate—2
Drate—Q : (Drate—Q)H = (549)

AQ{“{H‘G—2 Aﬂ : I2
and its determinant is

Aa-1Iy,  AQrgte—
det( 2 Qrate—2 )

AQfe—s AB- 1
= (AaAB — AQrate—2AQ%,, )
= (AaAf - (AG +Ag))
= (A7 + A3)(A7 + A3) + (A3 + AD (A3 + AF)

— 2Re{ A1 ALAG + A AATI AL (—AR)" + AyAL(Ag)™) (5.50)

where A; = sp) — ey for spu) # ), Ag =A5A7 4+ AsAg and Ah = A;Ag + AgA7.
Unfortunately, it is obvious that-there exists-at-least one condition that makes the re-
sult in (14) become zero whatever the.constellation rotations are. For instance, when
A=Ay = A3 =As=0or As = AG = A? = As =0, det(D4,rate—2 : (D4,mte—2)H) =0
. In other words, it is impossible for rate-two DSTC to achieve full diversity. In gen-
eral, the performance is always bounded by the worst case of the DSTC. By computer
search, the minimum rank of the distance matrix based on the data matrix designed by
the design criterion I is only two, and the diversity order is then 2 - M. Intuitively, a
higher transmission rate corresponds to a smaller diversity order depending on a general
rate-diversity tradeoff. The simulation results are shown in the figure 5.4. We note that
there are two kinds of constellation rotation approaches which are named constellation
rotation type 1 (CR-Typel) and type 2 (CR-Typel) respectively. In CR-Typel, we
choose the data symbols s1, s9, 7, sg from a constellation C, and the others s3 ~ sg from

another constellation C? rotated by an angle §. In CR-Type2, we choose s, s7 from C
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Diversity = 4

10 || —A— Rate-2 CR-Typel 4Tx-2Rx (BPSK)
—A— Rate-2 CR-Typel 4Tx-2Rx (BPSK) with Optimal receiver
- A - Rate-2 CR-Typel 4Tx-2Rx (QPSK)
—#— Rate-2 CR-Type2 4Tx-2Rx (BPSK)
—e— Rate-2 CR-Type3 4Tx-2Rx (BPSK)
_g|| = Rate-2 CR-Type4 4Tx-2Rx (BPSK)

0 5 10 15 20 25 30 35
Eb/No (dB)

10

Figure 5.4: BER against SNR for rate-2 (R=2) differential space-time code at 1 and 2
bps/Hz ; four transmit antennas-and two receive antennas ; CR-Typel: s, 52, 57,55 €
C and s3 ~ s € C? ; CR-Type2: 51,57& Cland-sy 56,55 € C? ; rotation angle § = /2
and = 7/4 for BPSK and QPSK respeetively. ‘

and sy ~ 56,55 from C?. The simulation shows that the diversity order of DSTC using
CR-Typel is four which is better than the case using CR-Type2. It implies that dif-
ferent constellation rotation approaches cause different performance. Moreover, our the
simulation results match to the analytic results obtained form the derivations of pairwise
error probability. Earlier researches show that there is a rate-diversity tradeoff achieved
by the coherent MIMO systems [25]. For noncoherent multiple antenna systems, such a
rate-diversity tradeoff is still an open question, and there is not a formal mathematical

equation to prove this problem. Intuitively, a larger transmission rate corresponds to a

smaller diversity order.
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5.2.2 Rate-2 for Eight Transmit Antennas

Following by the code construction of rate-one DSTC for eight transmit and one

receive antennas, we combine two distinct 4 x 4 rate-two QOSTBCs obtained in the

previous subsection to have a 8 x 8 rate-two DSTC. Since the number of parallel streams

should not exceed min { N, M }, the number of receive antennas must also be equal two.

For eight transmit antennas, the data matrix Sy .qp_2 of the rate-two DSTC is

SS,rateQ =

S1

*

S5

*

S9

*

—S10

513

*
—S14

where Sy yqte2(1 : 8) and Sy rate2(9 :

S4,rat62(1 . 8) =

S2
s

S6

S14

*
S13

*
—S16 S15 —S¢ S5  —Sg Sy

S4,rate2(]- : 8) S4,7‘ate1 (9 . 16)
S4,rat62<9 : 16) S4,ratel<1 : 8)

53 S4 S9 S10  S11 S12

* * * * *

*
=S4 Sz —S11 S0 —Si12 Su

S7 58 513 S14  S15 Si16

£ 3 * * * * *
T88  Sg aS14 S13 —S16 515 (5.51)
511+ 512 S1 52 53 5S4

£ £ * * * *
8125911 S22 81 TSy S3

515516 S5 S6 S7 S8

* * * * *

16) are defined as

S9 510  S11 S12

* * * *

—S S —S S
10 9 12 11

754,rat62(9 : 16) -

S13  S14  S15  Si6

* *

* *
—S14 S13 —S16 Si5
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In order to achieve the full diversity, the rank of the data matrix Sg 42 must be full

rank. Similarly, the determinant of Sg 42 is given by

det(SS,rateQ) = det(S4,rat62<1 : 8)) :
det(Sél,rateQ(l : 8) - S4,7’ate2(9 . ]-6)54 Tate?(]- : 8)_154,7"111562(9 : 16))

(5.52)

Due to the quaternion property, Sy ae2(9 : 16)Ss atea(1 : 8) 1S4 atea(9 : 16) is still an
quasi-orthogonal structure. Therefore, to maximize the diversity order, it is necessary

to follow

det(S4,mt62(1 . 8)) # 0 (553)
det(s4,rate2(1 : 8) - S4,rat62(9 . 16)54,rat62(1 : 8)7154,7'111562(9 : 16)) 7£ 0

(5.54)

Based on the results in the rate-two DSTCfor four transmit antennas, (5.53) and (5.54)
will hold when s7 and sg are rotated by ‘anshift'angle ¢ = 7 /2 for BPSK and 6 = 7/4 for
QPSK with respect to s; ~ s¢. Similarly, since the determinant of the distance matrix
is hard to analyze, the rank of the distance matrix is two such that the diversity order
is M -2 = 4. The simulation results are shown in Figure 5.5. We only the constellation
rotation type 1 (CR-Typel) in this case since it has better performance than the other
constellation rotation approaches. In CR-Typel, we choose the data symbols s1, so, 57, Sg
from a constellation C, and the others s5 ~ sg from another constellation C? rotated by
an angle . The simulation shows that the diversity order using CR-Typel is four that
matches to the analytical results obtained from PEP. The reason is that the rank of
distance matrix is only two, and thus the diversity order is only M -2 = 4. Also, we

denote the orthogonal structure here as another matrix mapping approach for the data
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Figure 5.5: BER against SNR for-rate-1 (R=1) differential space-time code at 1 bps/Hz ;
eight transmit antennas and two teceive antennas ; CR-Typel: sy, s2, 57,85 € C and s3 ~
s¢ € CY ; rotation angle § = /2 and = 7 /4 for BPSK and QPSK respectively

matrix Sgrqte2 and it can shown as follows

S4,rate2<1 . 8) S4,rate1 (9 : 16)
SS,rateQ = (555)

_54,rat52(9 . 16)H S4,ratel(1 : 8)H

which is Alamouti-like matrix mapping approach. Compared with our proposed ABBA
structure, the performance by using this orthogonal structure is approximately the same;
however, this structure has no quaternion property such that some lower complexity

receivers are not feasible under this approach.
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Chapter 6

Conclusions

A rate-two DSTC is proposed in this work and is applicable to four and eight
transmit antennas. Furthermore, the upper bound of the PEP is also derived, and it
gives a theoretical justification for thesachievable diversity order of the proposed DSTC
scheme. With the assumption of -a full rank-data matrix S, the derivations show that
the diversity order is equal to the rank of the distance matrix multiplied by the number
of receive antennas M. Based on the PEP expression, we provide a rank design criterion
on the construction of the rate-two DSTC for four and eight transmit antennas. The
simulation results match the analysis obtained from the PEP, and achieve the diversity
order of four for four and eight transmit antennas respectively. Particularly, it coincides
with the noncoherent rate-diversity tradeoff in [18] for the case of four transmit and two

receive antennas and 1T=4.
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Appendix A

Let X and Y be two random variables. Supposed that before we know that Y =y,
the random variable X has a probability density function (pdf) px(z). Being told that
Y = y has the effect of modifying the probability density. The modified probability

density function (pdf) is
pX,Y(x7y> (Al)

pxv(@|y)= Py)

assuming that py (y) # 0. Consider a simple-communication system as follows
y=z+n (A.2)

where x, y, n the values of scalar random variables Y, X, and noise.
Let the pair of vectors X and Y be jointly Gaussian, i.e., with Z = [ X7 YT |T; Z

is gaussian with mean and covariance

=
B
Kl

sz Eacy

(A.3)

m = = and Y=

&)
=
Y|

\g|

yx vy

20



respectively. Thus, the probability of X conditioned on Y = y is given by

pX,Y(xv y)
pxiy\2lYy) = ——— —~
v {ly) py (y)
S S B e
2m)N2 | n 1/2
cap(—5la" — " y" —gT| St — 2" yT — g7 (A4)
exp(—3(y — 97" Ty (y —9))
where N is the dimension of X. By using the simple check formula
I -x,,xX! 1 0 Yw — Ly t8,, 0
Wy = e (A.5)
0 I —E;;ny I 0 Xyy
¥ in (4.20) can be expressed as
5 1 ExyZ;yl i T ExyE;ylZyx 0 1 0 (A6)
0 I 0 B, Z;;Egy I
and the inverse of X is
— 1 0 (Xpz — nyE;ylZyx)_l 0 I —ExyE;yl
1T _
—EyylZw I 0 Eyyl 0 I
(A.7)

Taking the determinants in (4.21) based on the determinant property (i.e., |ABC| =
|A|-|B| - |C]), we have

| 2 =1 o — Day Xy Dy | - | Sy | (A.8)

Therefore, it yields
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-1 -1
et g I 0| (-0 S 0
—15T -1
—Zyy Zzy 1 0 Eyy
I -3, Y1
% Y=gy [QZT . .CI?T yT gT]T (A 9)

(z—z2-%, % w—9)+W -7 "%, -7 (A.10)
C T ) (B = ST X - X+ (- S —g) (A

where & = T 4+ ¥,,%, (y — 7). Substituting, (4:26) in (4.19) gives the conditional

probability of X given for Y =y

pxy(7,9)
py(y)

1 [ Zyy |2
COREIRE

exp(—zla" —a" y" — g ST 3" y" - g")")

exp(—3(y — )7 X3} (y — 7))
1

2m)N2 | B, — Yoy Yigy Yya |1/2

pxy(zly) =

1 . _ _ .
- exp( . (.CET — wT) (Xee — ExyEyylny) Yr—2)) (A12)

As claimed then, X is indeed conditionally Gaussian. In fact, this is true even when X
and X, are singular. The result shows that the random variable X conditioned on Y =y

has conditional mean Z + Y., %, ! (y—7) and conditional covariance ¥, — ¥, X, ¥,z .
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