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Abstract

Nonlinear block codes that combine channel estimation, channel
equalization and error protection have recently been proposed and
confirmed their improvement in'system performance by Skoglund et al in
2002 [10]. The design of Skoglund et al.block codes, however, is based
on computer search, and thus, has no€fficient structure for decoding. In
2007, Wu et al have proposed,a rule-constructed structural block code,
and shown that the code has comparable performance to the
computer-searched non-linear code of equal rate [13]. In this thesis, we
extend the concept of rule-constructed self-orthogonal code design from
the quasi-static fading channel to the non-static fading channel. We then
examine the performance of our extension code over the first-order
Gauss-Markov fading channel, and found that our extension code
performs well not only in the target fast fading channel but also in the
quasi-static fading channel.
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Chapter 1

Introduction

1.1 Background

In communications nowadays, high-quality data transmission usually relies on accurate
knowledge of the channel characteristigsi! The measurement of the channel characteristics
thus becomes an essential technique in real systems. Often, a training sequence that contains
no data information is pre-transmitted before the data entity for the receiver to estimate
the channel characteristics. Alternatively; pilotisignals are inserted within the data entity
to help improving the accuracy of the channelestimation [1, 8]. Recently, there is growing
interest in blind channel estimation, where no training sequence or pilot signals are trans-
mitted [12, 3]. The receiver accordingly has to retreat the data information with an implicit

measurement of the channel characteristics based on the data entity [10].

In a quasi-static block fading environment [10], the channel statistics is assumed to change
at a very slow rate, and hence, remains almost constant within a block transmission period.
Such block-static nature of the channel coefficients facilitates their estimation. However, for
a non-quasi-static block fading channel such as that is experienced by highly mobile devices,
the channel coefficients may vary evidently during a block transmission period. In such

case, to obtain good data transmission quality even by means of blind channel estimation



technique is an engineering challenge.

In this thesis, the channel coefficients within a transmission block are assumed deter-
ministic but unknown. In fact, this should be the case from the stand point of practical
block transmission since the channel coefficients that affect the current decoding are ones
that have already occurred in the past. We further assume that in a static environment,
these deterministic channel coefficients are the same for the entire block, while in a non-
static environment, they are allowed to change several times within a block. Both the static
and non-static situations will be considered in this work. Our target is to design a robust
code that can be simultaneously used in both the quasi-static block fading channels and the

non-static ones.

1.2 Objective of the Research

In 2002, Skoglund et al [10] propesed tolintroduce the computer-searched best non-linear
block code to combine channel estimate, equalization and error protection. In their work, the
channel coefficients were assumed unchanged during.the transmission of each codeword block,
but allow to vary across blocks. Their simulations indicated that the computer-searched
best code can outperform a typical training-sequence-enhanced communication system with
perfect channel estimation by at least 2 dB. Nevertheless, due to the structureless nature
of the computer-searched best code, the time-consuming exhaustive decoding was adopted,

which limited the practical use of their code.

In 2007, Wu et al [13] replaced the computer-optimized non-linear code by a rule-based
constructed code, and showed that the constructed code can yield comparable performance to
the computer-searched best codes. Enforced by the structure of the rule-based construction,
Wu et al subsequently derived a maximum-likelihood recursive metric for use of the priority-

first sequential search decoding, and the decoding complexity when it is compared with the



exhaustive decoding is greatly reduced.

In this thesis, we further extend the idea of Wu et al to the design of a code that per-
forms well not only in quasi-static block fading environment but also in non-static channels.
The only assumption in our extension is that the receiver knows exactly when the channel
coefficients change within a codeword block. We will then examine the robustness of our
rule-based constructed code over the Gauss-Markov fading channels [2] with different channel

parameters.

1.3 Organization of thesis

The organization of the thesis is as follows. In Chapter 2, channel models for quasi-static
block fading channels and their extensions to non-static block fading are described. Also
introduced are the Gauss-Markov fading channels;as well as how to correspond the channel
parameters to different degrees of Doppler:effect.” In Chapter 3, the rule used for code
construction is presented, followed by the‘derivation bf the error probability upper bound.
In Chapter 4, simulation results are summarized and remarked. Chapter ?? concludes this

work.



Chapter 2

System Model

2.1 Overview

Suppose the signal is transmitted through the linear time-invariant filter channel. Then, the
received signal y(t) can be expressed as

y(t) = /_ T ettt <) de+ (o), (2.1)
where x(t) is the transmitted signal, h{¢)dsthe impulse response of the linear time-invariant
channel filter, and n(t) is the additive neise..The discrete equivalence of (2.1) is given by

y(t) = i h(T)x(t — 7) + n(t). (2.2)
In case the channel filter becomes time-variant, (2.1) is refined to

y(t) = i h(r;t)z(t —7) +n(1),
where in h(7;t), T is the convolutional argument for filtering, and ¢ represents the dependence

of the filter on time.

Similar to [10], assume a codeword b = [by, ..., by] is transmitted through the so-called

quasi-static block fading channel of which the channel coefficients remain constant within



each block. Denote by P the memory order of the quasi-static fading channel. We can then

re-formulate (2.2) as

y = Hb + n, (2.3)
where y = [y1, s, .. .,yz]T is the complex output vector observed at the receiver,

[y 0 0 0 07

hy  hy 0 0
- hp hp_1 hy |

0 hp hy O
: hp hq
0O ... 0 hp

L 0 0 0 ... 0 hpl

LxN

is formed by L = N+ P—1 shift counterparts of the channel coefficients h = [hy, ho, ..., hp]T,

n = [ny,ny,...,ng]" is the zero-meah complex ‘Gaussian noise vector in which E[nnf] =
021y, and I, is the L x L identity matrix. In the above notations, the superscripts “T” and
“H” respectively represent the matrix transpose and Hermitian matrix transpose operations.
It is assumed that the channel coefficients are flat and normalized in the sense that {h;},

are independent and identically distributed (i.i.d.), and E[h"h] = 1.

Formula (2.3) supposes that a codeword of length NV experiences the same channel char-
acteristics during its transmission. In a non-static environment or for a large N, the channel
coefficients however may vary within the coding block. In such case, (2.3) should be modified

as:

y =H,b+n, (2.4)



where

2
O Ny x (N, —(P-1)) HE\;; wNy  ONyx(N—Ny—Not(P-1))

1
HSV1)><N1 0N1><(N—N1)

3
H, = [On;x (N, +N2—2(P—1)) Hgvsz?, ONy x (N— Ny —No— N342(P—1)) (2.5)
0 H(Q)
Ngx(N—Ng) Ngx Ny

corresponds to ¢ channel coefficient changes during the transmission of codeword b, and 0

denotes the all-zero matrix whose size is indicated by its subscripts. In (2.5), Ny + No+---+

N, =L, and

and for 1 <i < g,

HE;L/)ZXNZ =

and

Hg\(g X Ny

0 hpyl
| 0 0
(hpi hp_1
0  hp;
0
0

—hP,q hP—l,q
0 hp,
0 0
0 0
L0

0

0

hl,l 0]
fiog “whins O
0 “hpy hp i3
hl,i 0 ce
hoi  hi; 0
hpi hp_1,; -
0  hp; hp_1,;

by, 0 0
hoy hi, O
0 hpg hpo14

hi;

1 N1 XNy

N;xXN;

NgxNgq



Here we assume that N; > P for every i, and N; may be different for different i.

As similarly done in [10, 13}, we can re-formulate (2.4) as

Yy = thv +n,
where hy, = [h11,ho1, ... hp, ho, hog, oo hpa ha, e ,hpgl", and
Bﬁéfxp Onyxp -+ Onyxp
2
= | 2oF Biper ot O (26)
g X P Ngx P Ngx P LxqP
In (2.6),
[ by 0 0 ]
b by 0
BY, p= | b by by ,
bpy1 | bp ba
i le le—l y = le_(p_l)_ NyxP
and for 1 <i < g,
b beiine o bniime ey
g0 _ [PSitimee s o OniiNepone
NiXP - . . . Y
i b ... be (P
D k=1 Nk > k=1 Nk—1 Y=t Ne—=(P=1) 1 nosp
and
boa-tyga byaiy, b5 it Ne—(P-1)41
byt e bygtwn byt NP2
BO  _ ' '
NyxP by by—1 by—(p-1)
0 bn bN—(P=1)+1
L 0 0 by 1 NyxP




b Channel filter Yy

h d Joint ML decoder

n

Figure 2.1: System model for combined channel estimation and error protection codes

Since mn is a complex zero-mean Gaussian vector, and h, is assumed unknown constants,

the optimal decision for the transmitted codeword is:

b= inmin ||y — B,h,||”.
arg min min ||y — B,k |

U

For a given b, the least square (LS) estimate of h, is given by
hy — (BXBg)a ' Bly.

Taking the above LS estimate into (2.7) yields

b = argminly —B{(EB,) 'Bly|

= arg r%iﬁn HPéyHQ ,

where P5 £ I, — P and Py = B,(B'B,) 'BT.

2.2 Gauss-Markov Model

(2.8)

In the simulations for quasi-static block fading channels in [10, 13|, the channel coefficients

h are generated independently in every block. We can extendedly assume that the sub-

block channel coefficients h; = [hy;, hoy, - ,hp’i]T in the non-static environment are also

independent across sub-blocks.



A more general relationship between consecutive sub-block channel coefficients however is
the first-order Gauss-Markov that is usually adopted in time-varying environment [1, 5, 11, 2].
Specifically,

h;=ah; | +v; =alah; o +v; 1) +v;=...=a'hy+ Z o v (2.9)
j=1
where Pr{hg = Opx1} = 1, and {v;}{_; is zero-mean complex Gaussian distributed with

HY _ 2 ' o2 2
Elvv;'] = o; Ip. The special case is 0, = 07,

since h; equals v;. Notably, the parameter
o charactersizes the rate of channel variation between consecutive sub-blocks. Its value lies

between zero and one, and is controlled by the Doppler spread and transmission bandwidth

[11] as
a = exp(—wyTs) = exp (—mByTs) = exp (—2ﬁf09T5> :
c

where B; = wgy/m denotes the Doppler spread; f. is'the carrier frequency, v is the velocity of
the transmitter, ¢ is the velocity of dight, and- 7% is thie symbol period (i.e. sub-block period
in our case). For vehicle speed v = 180 km/hours, carrier frequency f. = 900 MHz, and

sub-block size 10~* seconds,

180 km/hours
1.08 x 10° km/hours

wyls = QWfCETS = 27 x (900 x 10° Hz) x x 10™* seconds = 0.03.
c

This yields o = exp{—0.037} = 0.910057 [5]. If we increase f. to 2.7 GHz and 5.4 Ghz,
a will become exp(—0.097) = 0.753713 and exp(—0.187) = 0.568084, respectively. These

a-values will be used in our simulations.



Chapter 3

Code Design

In this chapter, the codeword condition under which the signal-to-noise ratio (SNR) is guar-
anteed maximal is derived, followed by the code construction approach proposed based on
the condition. Also derived in this chapter is an error probability upper bound that will be

used as the criterion to search for the best code for comparison with the constructed one.

3.1 Self-orthogonality condition for SNR-optimized code-
words

A known inequality [9] for the multiplication of two positive semi-definite Hermitian matrices

18

tr(AB) < tr(A) - Amax(B), (3.1)

10



where tr(-) represents the matrix trace operation, and Ap.x(B) is the maximal eigenvalue of

B. From the system model defined in (2.4), the average SNR is given by

ET[|H,b*]
Ell[n[[?]
E||tr(hy BY B,k )|
Lo?

(B[R, BTB,)
Lo?

tr(E[h,h,])

- Lo?
N tr(E[h,h!]) 1

— ik St A A —B'B,).
L 0_7% )\max<N v v)

SNR

Amax (B, B,)

The above inequality holds with equality when (1/N)B'B, is an identity matrix [6], namely,

N 0 ... 0
OUIN, ... O
B'B, = Nl,p ' o ‘ (3.2)
0 0 qPxqP
As a result, the maximum SNR equals
N tr(B[k,h]
SR, Pom L@R.h, ) (3.3)

biy o2
3.2 Codeword Selection

The previous section established the self-orthogonal condition under which the system SNR
is maximized. However, the codeword sequences satisfying (3.2) may not exist for certain
N, P and ¢. In such cases, one can only choose codewords that best-approximate (3.2), for

which some examples are given below.

11



Case 1. For P =2 and ¢ = 1, the codewords can be chosen according to:

N 0
0 N} ,  for N odd
BB, =B'B =
[N +1
+1 N} , for N even.
Case 2. For P=2and ¢ > 1 with Ny = Ny =--- = N,_; = (), we observe that
B, = BYeB®qg...q ]]33(‘1)’ (3.4)

where “@” is the direct sum operator of two matrices.! Then, the codewords can be

chosen according to:

Q@ 0
(B(l))TB(l) _O (Q - 1):| ) for Q odd
R
im0 1>} , for @ even
and for 1 <17 < g,
0 il} for Q odd
Cg g} , for () even
and
N —(¢—-1)Q +1 ]
T L +1 N-(¢g-1)Q+1]’ for [N — (¢ — 1)Q] odd
(B(Q)) B@ — ] _
_N ) (%_ e N —(q —O DQ+1) for [N — (¢ — 1)Q)] even.

IFor two matrices A and B, the direct sum of A and B is defined as A @B = [ﬁ ISB)%} .

12



Case 3. For P > 2 and ¢ = 1, the codewords can be chosen according to:

(

BB, =B'B =

\

[N
0

+1
0

+1
0

+1
+1

+1

0

N

0

+1

0

+1

+1

+1

+1

+1
0
N
0

+1
0

+1
+1

+1

+1 0
0 =1
=1 0
0 =1
N 0

0
+1
0
N
0
+1 0 N

+1 +1
+1
+1 +1
+1
+1 +1

+1

, for N odd

PxP

, for N even

1 pxp

Case 4. For P = 3 and ¢ = 2 with Ny= @, the.codewords can be chosen according to:

and

N-@Q

+1
+1

N—-@Q

0
0

(

[ Q 0 +1 ]
e, B 1 |
LR ¢ @ 2
[ +1 0
ottt o |
0 0 Q-2
+1 +1
N-Q+1 0
0 N—-Q+2]
0 0
N-Q+1 +1
+1 N—-Q+2]

for ) odd

for () even

, for (N — @) odd

, for (N — Q) even.

For convenience, the numbers of sequences that satisfy Cases 1 and 2 are listed in the

lemma forms in the following.

13



Lemma 3.1. The number of sequences that fulfill Case 1 and by = —1 is equal to

(2—(Ndnmim)(€&;%). (3.5)

2

Proof. The sequences must satisfy
C = ble—f—bgbg—f— +bN,1bN (36)

where ¢ = 0 for N odd, and ¢ = £1 for N even. Therefore, for N even, there must be
either exactly [(N — 1)/2] terms equal to —1 or exactly |(N — 1)/2] terms equal to 1
among b1bs, bobs, ..., by, by. And for N odd, Case 1 is only satisfied when there are exactly
(N —1)/2 terms equal to —1 among byby, bobs, ..., by, by. The lemma is then completed by
noting that (bybg, babs, ..., by_1by) and (b1, be, ..., by) are one-to-one correspondence given

that b1 = —1. UJ

Lemma 3.2. The number of sequences-that fulfill Case 2 and by = —1 is equal to

it - 9—2
2 — (Q mod )] (Q@ ) [l + (Qmod 2)]*2 < ¢ )
L Z J LQJ
N—(¢—1)Q
1+ (N — (¢ —1H@).mod 2] < LN_((q_l)Q)J ) ) (3.7)
2
Proof. Lemma 3.2 requires

cT = blbg + bgb3 + ...+ bQ_le
2 = bgbgi1 +bgi1bgia + ...+ bag-1b2g

. (3.8)
¢g = bg-1)Qbg-1Q+1 T bg-1)@+1bg-1Q+2 -+ byv-1by

where ¢; = 0 for Q odd and ¢; = +1 for () even, and for 1 < i < ¢q, ¢; = £1 for ) odd and
¢; = 0 for @ even, and ¢, = %1 for [N — (¢ — 1)Q] odd and ¢, = 0 for [N — (¢ — 1)Q] odd.
By following the same reasoning as in Lemma 3.1, the numbers of sequences that make valid

the equations respectively for ¢, {ci}g_l and ¢, are equal to

o e (85

14



[+ (Q mod 2)] (ng)

[\

and

The number of sequences that fulfill Cases 3 and 4 may not have close-form formulas,

and hence, they are omitted.

For clarity, the codeword selection procedure is also given in the end.

Step 1. (Initialization) Let by = —1, and let 1., be the total number of sequences sat-
isfying the required BIB,. Sort the (+1)-sequences according to their lexical order,

starting from all-(—1) sequence, and denete them by b(1),b(2),b(3),. .., b(rmax)

Step 2. (Codeword Selection) For an (N, k) code, compute

A=l

2K

Then, the codewords selected are {b(j x A) 351

3.3 Decoding Criterion

In the previous section, the rule for codeword selection is introduced, and only 2% codewords
are picked and the others are discarded. By assuming that the decoder knows Ny, No, ...,
Ny, the optimal decision criterion in (2.7) are further explored. Notably, there are at least
L? — > | N? zero elements in P, which is of no use in decision, and the computation for
these zero elements are accordingly vanished in the equivalent optimal decoding criterion

derived in this section.
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In the general non-static environment, by the fact that
A eAd-- - BAYC,BCop---dCy) =ACi DA - AC,,

for square A; and C; of the same size, we have from (2.6) that

(B(l))TB(l) 0 e 0
BTR 0 (153(2))T]Bg(2) e 0
0 0 . (B@)TBW

qPxqP

= [(]Bg(l))TIBg(l)] D [(B@))TIB%@)} DD [(B(Q))TB(Q)] .

Similarly, Pz is a block matrix satisfying

Py 0 0

o PP - 0 (1) - ) (@)
]PB — ] ] ' a :]PB @PB@"'@PB>

o =P

O 0 PB kS

where

]
Pg) — M [(B(l))TIB%(l)} (]Bg(l))T_
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Putting (3.9) into (2.8) yields that

b = argmin{|ly - Psy||’}
B

= arg

2
min { HLy—(PS;)@Pg)@..-@Pg))yH }

1
1) (2
() PG )

2
= arg  min { (HM@HNZ@--@HNq)y—<P§)@P§’@~'~@P§§))y“}

1
1) (2
() PG )

R ([ Y

1
1) (2
() PG )

2
g @ e @) e o @]}
(@)L @)L (P)L)

= arg

g omin @D 6 @) ) 00 (@)
<(P(B}))L’(P(Bg))J-"” ’(HD(B?))J_>

. 2
— : (W)L, ()
= ar min P ,
° @) {;H( 5 }

(L @)L (P

where
T

Uit Ny

(i), L Ysisi w42

LN N,

represents the i-th sub-block of y.

3.4 Error Rate Evaluation

In this section, we derive the union bound for the error probability.

For convenience, we re-number the selected codewords as by, by, bs, . . ., byx for the (N, K)
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code considered. Then, the error probability P. can be bounded above by

2K
P = oK Z Pr(b # b;|b; transmitted)
1 . . 1 2 i 2 .
< —KZPr 3 j # i such that HPBij < ”PBin b; transmitted
<

SOV

b transmltted)
i= 1] 1]761

- 9K Z Z Pr< PL)HPLZU <y"(Pg) Hpﬁy‘ b; transrmtted)

i= 13 1]#1

_ QKZ Z Pr< [PL)HPL (Pﬁ_)HP;}ySO‘bi transmitted), (3.11)

i=1 j=1,j7#i

where Pﬁi corresponds to the codeword b;.

Since Pﬁi is idempotent for every b;,yand IF’EJ_ —Pﬁi = Pp,—Pg,, (3.11) can be reformulated

as

< %i Zi Pr (0 (B Bl ) v <

P, b; transrmtted)
i=1 j=1,j7#1
1 2K oK
= % > Pr (y" (Pp, — Pp,) y > 0| b; transmitted) . (3.12)
1=1 j=1,j#i

By following similar argument as in [10], the covariance matrix S, (i) of the received vector
y for given transmitted codeword b; and zero-mean complex-Gaussian distributed h is real
and symmetric, and is always positive definite for positive noise variance. We can then define
G; = S;/Q(z’), and obtain that
L
G (PBj - PBi) G; = Z )\e;i,jqe;i,jqu;i,ja
=1

where {Ag; ;12 and {qy.; ;}f-, represent the eigenvalues and eigenvectors of G; (P, — Pg,) G.
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As a result, given that b; is transmitted,
y" (P, ~Pn)y = (G'y)" (Gi(Ps, ~Ps)Gi) (G;'y)

L 2
= D i lal, Gyl
=1

L
= > Aijlzessl
/=1

where {2, ;}, is independent zero-mean complex Gaussian with variance 1, and
1 Ko oK L
2
Pe S 2_K Z Z Pr (Z )\é;i,j|z2;i,j| Z 0) . (313)
i=1 j=1j#i =1
Without loss of generality, we assume that 5\1;1‘,3‘ > Xgm > > E\T;m >0 > 5‘r+1;i,j > e >
AL...; be those eigenvalues by removing the identical ones among {As;;}L ,, and let their
respective orders of multiplicity be {og;;}2,. Then, |24, |? is a central x?-random variable

with 204, ; degree of freedom.

By elementary probabilistic theories, the cumulant distribution function of random vari-

able S°1 ) Aeij| 20

2

S

™

1% 1 [*1 .
Fusv) = 5 =y il (0 (3.14)

where Im{-} represents the imaginary part, and

Lc
i (t) =[] (1 —2itA;) " (3.15)
=1
where i = v/—1. Finally, by denoting d; ; = S5, 04, ;, We obtain [7] that
) s [ e 3.16)
Fij(v) = 1— — Fgl’,’U:| , 3.16
’ =1 (Oé;ivj - 1)! Qo T=MXg;i 5
where
Fy(z,v) = 2% 1e/C0 TT (2= Apyig) 9. (3.17)
m=1,m%#L

Taking (3.16) and (3.17) with v = 0, we yield the upper bound of error probability.
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Chapter 4

Simulation Results

In this chapter, we will examine the robustness of the proposed coding scheme. Specifically,
several designed codes will be simulated over quasi-static Gaussian and non-static Gauss-
Markov block fading channels in order to verify that the codes designed for non-static block
fading channels are robust over both'channels. #.As a convention, the zero-mean channel
coefficients are normalized as E[jh; ;|3 = 1/Pfoxr 1 < i < Pand 1 < j < ¢, and {h;;}7,

are assumed independent.

4.1 Codes Designed For Quasi-Static Block Fading Chan-
nels

This section summarizes the simulations over the non-static Gauss-Markov fading channels
with Gaussian distributed channel coefficients. In notations, the designed code of length
N, which targets to be transmitted over the memory-order-(P — 1) non-static fading chan-
nel whose channel coefficients change in every @) symbols, is denoted by Code(N, P, Q).
The simulated channel, whose channel coefficients change in every () symbols, and whose
memory order is (P — 1), are similarly denoted as Channel(P, Q). Five different channel

variation factors (i.e., a-values) of the first-order Gauss-Markov fading channel will be used
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in our simulations, which are respectively 0, 0.568084, 0.753713, 0.910057, and 1. Notably,
Channel(P, @)) reduces to the quasi-static block fading channel of memory order (P — 1)

when oo = 1.

The performance of Code(12,2,12) over Channel(2,6) is shown in Fig. 4.1. The simu-
lations indicate that the code designed for quasi-static fading channels performs well only
over quasi-static fading environment, namely, a = 1. As a decreases, which means that the
degree of channel variations increases, the performance degrades accordingly. Similar simu-
lations have been performed for Code(14, 2, 14), Code(16, 2, 16), Code(18, 2, 18), Code(20,
2, 20), Code(22, 2, 22), Code(24, 2, 24), Code(12, 2, 12), Code(16, 2, 16), Code(20, 2,
20), and Code(24, 2, 24) respectively over Channel(2, 7), Channel(2, 8), Channel(2, 9),
Channel(2, 10), Channel(2, 11), Channel(2, 12), Channel(2, 3), Channel(2, 4), Channel(2,
5), and Channel(2, 6), and are summarized respectively in Figs. 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8
4.9, 4.10, and 4.11. Same performance behaviors ¢an be observed from these figures. As a
consequence, we conclude that Codé(V, P, N)perférms well only over quasi-static block fad-
ing channel (namely, o = 1), and its pérformanee;degrades considerably for moderate-to-high

degree of channel variations.
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Figure 4.1: The maximum-likelihood word error rates for Code(12,2,12) over Channel(2, 6)
with different degree of channel variation factors a.
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Figure 4.2: The maximum-likelihood word error rates for Code(14, 2, 14) over Channel(2,7)
with different degree of channel variation factors a.
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Figure 4.3: The maximum-likelihood word error rates for Code(16, 2, 16) over Channel(2, 8)
with different degree of channel variation factors a.
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Figure 4.4: The maximum-likelihood word error rates for Code(18, 2, 18) over Channel(2,9)
with different degree of channel variation factors a.
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Figure 4.5: The maximum-likelihood word error rates for Code(20, 2, 20) over Channel(2, 10)
with different degree of channel variation factors «.
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Figure 4.6: The maximum-likelihood word error rates for Code(22, 2, 22) over Channel(2, 11)
with different degree of channel variation factors «.
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Figure 4.7: The maximum-likelihood word error rates for Code(24, 2, 24) over Channel(2, 12)
with different degree of channel variation factors «.
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Figure 4.8: The maximum-likelihood word error rates for Code(12,2,12) over Channel(2, 3)
with different degree of channel variation factors a.
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Figure 4.9: The maximum-likelihood word error rates for Code(16, 2, 16) over Channel(2, 4)
with different degree of channel variation factors a.
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Figure 4.10: The maximum-likelihood word error rates for Code(20, 2, 20) over Channel(2, 5)
with different degree of channel variation factors a.
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Figure 4.11: The maximum-likelihood word error rates for Code(24, 2, 24) over Channel(2, 6)
with different degree of channel variation factors a.
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4.2 Codes Designed For Non-Static Fading Channels

In this section, we turn to the examination of codes designed for non-static fading channels.

The performance of Code(12,2,6) over Channel(2, 6) is shown in Fig. 4.12. As expected,
the performances remain intact for different values of a. We however observe that for SNR
larger than 5 dB, the best performance is actually obtained at @ = 0 as contrary to that
observed in the previous section, and the performance degrades as a grows. Since the design
of Code(12,2,6) in fact assumes an abrupt change of channel coefficients at the middle of
the codewords, thereby [hy 1, ho1] is allowed to be totally different from [h 2, ko o] in the code
derivation, it is reasonable to yield that the larger the degree of channel variations, the fitter
the simulated channel model to the target one of the code design. Yet, the performance
deviation between o = 0 and o = 1 is very small, and in certain case such as Fig. 4.13, the
performance improves slightly even«with larger o

Simulations for Code(16, 2, 8),:Code(18,.2, 9), Code(20, 2, 10), Code(22, 2, 11), and
Code(24, 2, 12) respectively over-Channel(2,-8), . Channel(2, 9), Channel(2, 10), Channel(2,
11), and Channel(2, 12) are illustratediin Figs. 4.14, 4.15, 4.16, 4.17, and 4.18, respectively.

Same performance behaviors as in Fig. 4.12 can be observed from these figures.
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Figure 4.12: The maximum-likelihood word error rates for Code(12,2,6) over Channel(2, 6)
with different degree of channel variation factors a.
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Figure 4.13: The maximum-likelihood word error rates for Code(14,2,7) over Channel(2,7)
with different degree of channel variation factors a.
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Figure 4.14: The maximum-likelihood word error rates for Code(16, 2,8) over Channel(2, 8)
with different degree of channel variation factors a.
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Figure 4.15: The maximum-likelihood word error rates for Code(18,2,9) over Channel(2,9)
with different degree of channel variation factors a.
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Figure 4.16: The maximum-likelihood word error rates for Code(20,2,10) over
Channel(2, 10) with different degree of channel variation factors a.
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Figure 4.17:  The maximum-likelihood word error rates for Code(22,2,11) over
Channel(2, 11) with different degree of channel variation factors a.
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Figure 4.18: The maximum-likelihood word error rates for Code(24,2,12) over
Channel(2, 12) with different degree of channel variation factors a.
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Figure 4.19: The maximum-likelihood, wovd €iror rates for Code(12,2,6) over Channel(2, 3)
with different degree of channel variation factors as,

Next, we examine the situation where the updaterate of channel coefficients is twice of

that is considered in the code design.

The performance of Code(12,2,6) over Channel(2,3) is shown in Fig. 4.19. The simula-
tions indicate that the code designed for Channel(2, 6) performs well only over Channel(2, 3)
with a = 1, which is equivalent to the code-target Channel(2,6). This is analogous to what
we have obtained in Section 4.1. Similar simulations have been performed for Code(16, 2,
8), Code(20, 2, 10), and Code(24, 2, 12) respectively over Channel(2, 4), Channel(2, 5),
and Channel(2, 6), and are summarized respectively in Figs. 4.20, 4.21, and 4.22. Same

performance behaviors can be observed from these figures.
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Figure 4.20: The maximum-likelihood word error rates for Code(16, 2,8) over Channel(2, 4)
with different degree of channel variation factors a.
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Figure 4.21: The maximum-likelihood word error rates for Code(20, 2, 10) over Channel(2, 5)
with different degree of channel variation factors a.
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Figure 4.22: The maximum-likelihood word error rates for Code(24, 2, 12) over Channel(2, 6)
with different degree of channel variation factors a.
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Now, we demonstrate the performance of Code(12,2,3) over Channel(2,3)in Fig. 4.23.
Again, when the update rate of the channel coefficients fits that of the code-target channel,
the performance remains intact with respect to different values of . Simulations for Code(16,
2, 4), Code(20, 2, 5), and Code(24, 2, 6) over Channel(2, 4), Channel(2, 5), and Channel(2,
6) illustrated in Figs. 4.24, 4.25, and 4.26, respectively. We observe from these figures that
the performances of these codes are the best at @ = 0, since the resultant simulated channel

fits best to the code-target channel.
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Figure 4.23: The maximum-likelihood word error rates for Code(12,2,3) over Channel(2, 3)
with different degree of channel variation factors a.
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Figure 4.24: The maximum-likelihood word error rates for Code(16,2,4) over Channel(2, 4)
with different degree of channel variation factors a.
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Figure 4.25: The maximum-likelihood word error rates for Code(20, 2,5) over Channel(2,5)
with different degree of channel variation factors a.
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Figure 4.26: The maximum-likelihood word error rates for Code(24, 2,6) over Channel(2, 6)
with different degree of channel variation factors a.
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Figure 4.27: The maximum-likelihood, wovd €irer rates for Code(12,2,3) over Channel(2, 6)
with different degree of channel variation factors as,

Next, we simulate the case that the update rate of the channel coefficients is slower than
that of the code target channel. Figure 4.27 illustrates the performance of Code(12,2,3) over
Channel(2,6). Simulation result is almost the same as that in Fig. 4.23, which indicates the
robustness of the code design over simulated channels with slower coefficient change. Simu-
lations for Code(16, 2, 4), Code(20, 2, 5), and Code(24, 2, 6) respectively over Channel(2,
8), Channel(2, 10), and Channel(2, 12) are then summarized in Figs. 4.28, 4.29, and 4.30,

respectively.
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Figure 4.28: The maximum-likelihood word error rates for Code(16,2,4) over Channel(2, 8)
with different degree of channel variation factors a.
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Figure 4.29: The maximum-likelihood word error rates for Code(20, 2, 5) over Channel(2, 10)
with different degree of channel variation factors «.
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Figure 4.30: The maximum-likelihood word error rates for Code(24,2,12) over
Channel(2, 12) with different degree of channel variation factors a.
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In the end, we simulate the performance of designed codes with block length N = 24 over
different sub-block length @). The performance of Code(24,2,12) over Channel(2,Q) with
different sub-block length ) and channel coefficient factor a = 0 is illustrated in Fig. 4.31.
Simulation results indicate that the code designed for Channel(2,12) performs well only
over Channel(2,12) and Channel(2,24) (i.e., quasi-static channel). As @ differs from 12
or 24, the performance degrades considerably. Similar simulations for Code(24,2,12) over
Channel(2, Q) with different sub-block length @ and three channel coefficient factors a =
0.568084, a = 0.753713, o = 0.910057 are illustrated in Figs. 4.32, 4.33 and 4.34, respectively.
These simulation results show that as « increases, the performance of Code(24,2,12) over

Channel(2, Q) with @ # 24 tends to be closer to that over Channel(2,24).
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Figure 4.31: The maximum-likelihood word error rates for Code(24, 2, 12) over Channel(2, Q)
with channel variation factor a = 0 and different values of Q.
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Figure 4.32: The maximum-likelihood word error rates for Code(24, 2, 12) over Channel(2, Q))
with channel variation factor o = 0.568084 and different values of Q).
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Figure 4.33: The maximum-likelihood word error rates for Code(24, 2, 12) over Channel(2, Q))
with channel variation factor o = 0.753713 and different values of Q.
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Figure 4.34: The maximum-likelihood word error rates for Code(24, 2, 12) over Channel(2, Q)
with channel variation factor o = 0.910057 and different values of Q.
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The performance of Code(24,2,6) over Channel(2,Q) with different sub-block length
@ and channel coefficient factor a = 0 is shown in Fig. 4.35. Simulation results indicate
that the code designed for Channel(2,6) performs well over Channel(2,6), Channel(2,12),
Channel(2, 18), and Channel(2,24). The performance degrades when @ differs from 6, 12,
18 or 24. Similar simulations for Code(24,2,6) over Channel(2, Q)) with different sub-block
length @ and three channel coefficient factors a = 0.568084, o« = 0.753713, a = 0.910057
are illustrated in Figs. 4.36, 4.37 and 4.38. From these simulation results, we found that the
performance remains well no matter what the value of « is when () is a multiple of target

subblock length for code design.
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Figure 4.35: The maximum-likelihood word error rates for Code(24, 2, 6) over Channel(2, Q)
with channel variation factor a = 0 and different values of Q.
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Figure 4.36: The maximum-likelihood word error rates for Code(24, 2, 6) over Channel(2, Q)
with channel variation factor o = 0.568084 and different values of Q).
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Figure 4.37: The maximum-likelihood word error rates for Code(24, 2, 6) over Channel(2, Q)
with channel variation factor o = 0.753713 and different values of Q.
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Figure 4.38: The maximum-likelihood word error rates for Code(24, 2, 6) over Channel(2, Q)
with channel variation factor o = 0.910057 and different values of Q.
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Chapter 5

Conclusions

In this work, a binary block code design for combined channel estimation and error pro-
tection, which is extended from [13] specifically for non-static fading channels, is proposed
and examined. Simulations hint that as long as the update rate of the channel coefficients
is equal to or slower than that of the:¢ode targetichannel, the performance remains robust.
However, when the channel coefficients change faster than those of the channel that the code
design is presumed, the performance degrades considerably. The future work is to examine
whether the code proposed is robust formon-stationary fading channels in which the channel

coefficients change in an non-stationary nen-periodic fashion.
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