A Lodm =
ITHEOIE FRUELL S8 R

Parameter estimation-of two closely spaced
frequency signals

kit
o+
|
¥
G-

GRS SRR R FIS

- - R T



ITHEAE S AL Sk iR

(Q

Parameter Estimation of two closely spaced frequency signals

R e L Student: Zhi-Fan Tu
I ERE B HP Advisor: Ming-Seng Kao
Bz 2~ F
ER S R I I G
L o~
A Thesis

Submitted to Department of Communication Engineering
College of Electrical'and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the-Requirements
for the Degree of
Master of Science
in
Communication Engineering
June 2009
Hsinchu, Taiwan, Republic of China

- N = A S S



TERPEFAGE2 28GR

L 1 R BEE B

[

# &

PR IR BIFEE Y GRS B Y BT 2 s Bl S o d 3T
U RUELZ AR SN JAT 0 ORI R gk AR R P 2 - e it 2

AR - AP 2 R N 2 S L BRI R

e O L LEC S SO L L BN S F E Y

YU AT RIS B S fodp e 4 o



Parameter estimation of two closely spaced frequency

signals

Student: Zhi-Fan Tu Advisor: Prof. Ming-Seng Kao

Department of Communication Engineering
National Chiao Tung University

Abstract

This paper presents an algorithm to estimate the parameters of two closely spaced
sinusoid signals. Since the frequencies of two sinusoid signals are very close, it is
difficult to separate them with filtering. Our approach is to design a special sampling
method to achieve zero interference under ideal conditions, and estimate the
variations of amplitude and phase with statistic approach. It is based on a simple
sampling technique, which can reduce the complexity of detection receiver. The
algorithm can be applied to remote sensing system and radar system, in order to detect

the desired amplitude and phase information.
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Chapter 1

Introduction

1.1 Problem description

3 Target

f,"
Antenna /\/

Figure 1.1: A simple radar system

This paper deals with a sinusoidal estimation problem as shown in Figure 1.1, where
the antenna transmits and receives a special signal consisting of two frequencies. The
signal is superimposed, including two closely space frequency sinusoids. The frequency
of two signals is too close to be separated with filtering. Moreover, the frequency of two
signals may vary on reflecting from the target as a result of Doppler effect when the
target is moving. Our aim is to detect the phase and amplitude variations of both signals.
By this information we can estimate distance, position and velocity of the target
accurately.

Currently, a popular approach for resolving this problem is to employ an information
theoretic criterion, such as the Minimum Description Length (MDL) rule [1,2]. However,

the results obtained by these methods are not satisfactory, and the computational cost for



implementing them is considerably high. Other methods are derived from the maximum
likelihood function [3-6]. Although they show excellent performance but unfortunately
are computationally intensive too. In this paper, we develop a new strategy to estimate the
parameters of two sinusoids. Our method is based on a simple sampling technique and
statistic concepts, which can reduce the complexity of parameter estimation.

The paper is organized as follows. The derivation of the detection algorithm is given
in Chapter 2. In Chapter 3 we present performance analysis and simulation results of the

algorithm. Finally, the conclusion is given in Chapter 4.



Chapter 2
Detection Algorithm

In this chapter, we will describe the proposed detection algorithm of two signals.

Both amplitude and phase variations will be estimated in our detection algorithm. In the
following, detection of s,(t) is described first, and then detection of s, (t) is given

next.

Consider two desired signals given as

s,(t) = Arcos(w,t +4) (2.1)
s,(t) = A,cos(W,t +¢,) (2.2)

and for a radar system the.received signal is

rit) = S (t)+ Sy (t).+n(t)
= A cos(wt +4,) + A, cos(w,t +¢,) +n(t) 2.3)

where n(t) is the noise. The information we want to detect is the phase and
amplitude variations of s (t) and s,(t). Since the two frequencies w; and w; are

very close, it is difficult to separate the two signals with filtering. For simplicity,

we assume n(t)=0 in the following analysis and will include it later.

2.1 Detection of S,(t)

In order to detect s,(t), we must eliminate the interference coming from s, (t).

We will achieve the aim with a special sampling technique . Let the sampling interval be



chose as
1
ts =(m+W)Tl y (24)

where T, isthe period of s (t), whilem, N are integersand m>0,N > 2.

The received signal r(t) issampled at t=kt,,k =012,..N —1. The kth sample of r(t)
IS
r(k) =r(kt,) = s, (k) +s,(k)

where

5, (k) =, (kt,) = A cos[27z f,k(m +%)Tl vy

k k (2.5)
= A cos[2z(km+ W) +4]1=A cos(27rW +d)
From trigonometry, it can be proved:
N-1 21
> cos(Wkﬂl)l):O , o N>2 (2.6)
k=0

for any ¢,.The reasoning behind Eq./(2.6) 1s sample. We can look cosine function as a

unit circle and sample at circumference, as shown in Figure 2.1, and then the sum of x

axis values of all samples vanishes.

»
»

_1\\)/1

Figure 2.1: Concept of sampling technique.




From Eqgs. (2.5) and (2.6), we obtain

N-1 N-1 21
> s (k)=A - cos(—k+¢,)=0 , forany ¢, 2.7)
k=0 k=0 N

Note that Eq. (2.7) is independent of ¢, , indicating that we can achieve zero interference

coming from s,(t) if tistakenasEq. (2.4).

Next we consider the relationship between t and T,, where T, is the period of

S,(t). Let the sampling interval be
t,=aT, . (2.8)

where o is an integer.
Then the sampled value of s,(t) s written as

s,(k)=s,(kt,)="A, -cos(2nf,kaT, +¢, )= A, -cosd, (2.9)
In Egs. (2.4) and (2.8), the sampling interval should be the same, thus we obtain

o, =(m+—yT, = M _mN+1
N W, aN

(2.10)

Eq.(2.10) is the requirement to optimally detect s,(t) while completely eliminate the
interference of s,(t). To optimally detect s,(t) without the interference of s,(t),
Eq.(2.10) should be satisfied. In practice we can design the frequencies of s;(t) and

S,(t) such that Eq. (2.8) is satisfied for some set of (o, N,m).



If we set @ =m then Eq. (2.10) becomes

ﬁ =1+ L
W, aN (2.11)

Thus the frequencies (w; w,) can be very close with a large a/N .

Consider an observation interval (T,, ) consisting of M time blocks, given as

T,=M-T (2.12)

p
and
T,=Nt, +7 (2.13)

where t is a fixed time delay and z<t,. Assume s,(t) slowly varies with time such
that its phase and amplitude keeps constant -within 7. Here we use a non-uniform

sampling scheme. In the first-time block, i.e.,0<t<T , we take N samples at t=kt,,
k=0,1,2,...,N-1, and take zero samples within _Nt, <t <T . From Egs. (2.7) and (2.9), the

average value of these N samples.is written as
1 N-1 1 N-1

Xo =2, r(k)=—=2 [s(k)+5,(k)]=4,cos, , (2.14)
Nk:O Nk:O

where ¢, isthe phase of s,(7) att=0.

Next consider the time interval T <t<2T . Again we take N samples at
t=T,+jt,, j=0,1,2,...,N-1, and have zero samples within T +Nt, <t<2T . In this

case the sampled signal is written as

r(j)=r(T, + jt,)
:AlcOS[W1(Tp +Jjt)+ @]+ 4, COS[Wz(Y; +Jjt)+ 9] . (2.15)
= A, cos[w,(Nt, + jt. + 1)+ @]+ A, cos[w,(Nt, + jt. + 1)+ &,]



Using Egs. (2.4) and (2.8), we can reformulate Eq. (2.15) as

r(j) =4, cos(%j+wlr+ @)+ A,cos(w, 7+ @,) . (2.16)
Since
& 27
> cos(wj+w,r+ $)=0 (2.17)
j=0

forany w,z+ ¢, the average value of r(j), j=0,1,2,...,N-1, is given as
1 N-1
X, =NZ H(j) = A,cos(w,T+ ¢,) . (2.18)
j=0

In general, we will obtain the average for the time block iT <t <(i+1)T, as

X;.= A, cos[w, (it) +¢,] . (2.19)
If we take
T
M (2.20)
Then, Eq. (2.19) becomes
[
X =A, cos(27zm+¢2) (2.21)

When M is large, from Eq. (2.21) we can look (X,,X;,...,Xy4 ) as the sampled values of
a slow-varying sinusoid whose frequency is 1/M, with amplitude 4, and phase ¢,. Note
that 4, and ¢, are the amplitude and phase of s,(#) too. Apparently, we can obtain

the information of 4, and ¢, from the set of samples (X, X; ..., Xy ) -



For a sinusoid we have

2

%I [Acos(wt+65]2arr=A7 : (2.22)

Mathematically, we have the following approximations when M is large:

1 % 1 i ,
— x* ~—| [Acos(2z—+ dt
IR T![ (27 +4,)] -
2.23
M-1 2
M & 2
Hence, we can estimate Az as
N 2 M -1 p
= _— X: X .
A, M 20 (2.24)

From previous results, a.set of ‘parameters. (X,,X; .« Xy, ) IS obtained within the
time interval T, , which reveals the.amplitude of s,(t) during this period. Let the total

observation time be 7T

total

=gT, and g >>1. Under this circumstance we can obtain q
sets of parameters, (X o,Xi;,nXiyy), | = 0,1,2,.0-1, where (x,,,x,,....x,,,,) IS
obtained in the time interval T, <t<(i+1)T, .

Let ¢,, be the phase of s,(r) at t=kT, and 4,, be the amplitude, and assume
they are constants during the time interval kT, <t<(k+1)T,. We can estimate A,,
with the method just derived. As a consequence, we will obtain a set of estimated
amplitudes (Aco, Azy,..., Ace1) . The sets of data A, will be used to evaluate the phase

variations of s,(¢). The figure below explains the method.



T

total =
Lm/l | | b

Figure 2.2: Statistic concepts of the algorithm.

Using the fact that

T 2 12
%J [Acos(wt+A¢)—A'coswt]Zdt=%{T0[A Ny —AA'cosAgb}}
0
2 12
= b — AA'cosA¢
2 (2.25)
Thus if the integration is available, the phase shift is calculated as
2 2 T
AT+A —%I [Acos(wt + Ag) — A'cos wt]* dt
Ag =cos™( ! ) (2.26)

AA'
Based on the relationship of Eq. (2.26), we can define the phase shift between kT,

and (k+1T, as

2 2
1 A, +A 1
A :COS—l 2,k 2kl - X —X . 2
¢k,k+l AZ’k .A21k+l[ 2 M IZ ( K,i k+1,|) ] (227)

Consequently, we can calculate phase variation of s,(t)from Eq. (2.27).



2.2 Detection of s,(?)

We had derived the method to detect the phase and amplitude of s,(¢) without the
interference coming from s,(#). The same idea can be applied to detect the phase and
amplitude variations of s,(¢) without the interference coming from s,(¢). Let ¢, be the
sampling frequency to be used to detect s,(z) and assume

t,=p- 1, (2.28)

where £ is an integer.

Then the sampled value of s (t) is written as

s, (k) =s,(kt;) = A -cos(2z f,k ST, +¢h) = A -COs ¢ (2.29)

Consider the samples of s,(#). L.et the-sampling interval be chosen as

= L
t —(|+W)T2 , (2.30)

where |, W, h are integers and (W, h) are relative prime numbers . In this case we have

s, (k) =s,(kt,) = A, cos[27 f,k(l +V£V)T2 +¢,]

h h (2.31)
= A, cos[2z (Kl +k V_V) +h]=A COS(Zﬂ'kW+¢2)
It can be proved:
wW-1 w-1
s,(kK)=A,- COS(Zﬂk —+6¢,)=0 , for any ¢, (2.32)
k=0 k=0

Note that Eq. (2.32) is independent of ¢, , indicating that we can achieve zero

interference coming from S, (t) .

10



From Eqgs. (2.28) and (2.30), we obtain

ﬂT1=(l+%)T2 = : (2.33)

Eq. (2.33) is the requirement to optimally detect S(t) while completely eliminate the
interference of s,(t). In practice we can design the frequencies of s,(t) and s,(t)

such that the equality of Eq. (2.33) is satisfied for some parameters (I,W, S,h) . From
Egs. (2.11) and (2.33), we can obtain

W, 1 LW
-1 _1 =
w,  aN T-Wx+h (2.34)
Thus
(BN @N3 N+ 0O1) W+ (2.35)
Let
PW =aN +1
=l-W+h+1
{aN RN Nt = (2.:36)
We can choose
p=1+1
h=W 1 (2.37)

Eq. (2.37) is the relationship between the parameters (I, W, £,h) , which satisfies the

requirement that (W, h) are relative prime numbers.

Consider an observation interval (T, ") consisting of M time blocks, given as

Tp =M-T,' (2.38)

11



and

T, =Wt '+ 7' (2.39)

where ' is a fixed time delay and z'<t,"'. Assume s,(t) slowly varies with time such
that its phase and amplitude keeps constant within T, '. Thus, we use a non-uniform
sampling scheme. In the first time block, i.e.,0<t<T ', we take W samples at t=Kkt",
k=0,1,2,...,W-1, and take zero samples within Wt,'<t<T '. From Eq. (29) and (32), the

average value of these W samples is written as

E
N

W -

1
W k=0

,_\

Yo = r(k) = [s, (k) +s,(k)]=Acosg | (2.40)

15
Wi

Il
o

where ¢ isthe phase of s (t) att=0.
Next consider the time interval T '<t<2T.'.~Again we take W samples at
t=T,+jt,', J=0,1,2,...,W-1, and have zero samples within T '+Wt '<t<2T '. In this

case the sampled signal is written as

r(j)=r(,+jt")
= A cos[w, (T, '+ jt, "+ @]+ Ay cosfw, (T, "+ jt, ) + 4,] ) (2.41)
= A cos[w, Wt, '+ jt, '+ 7°) + 4]+ A, cos[w, (Wt '+ jt,'+7") + ¢,]

Using Eq. (2.28) and (2.30), we can reformulate Eq. (2.41) as
, . h
r(j)=Acos(wz'+ )+ A, cos(2z W +W, T+ 4,) (2.42)

Since

w-1

cos(27rJ —+W,7'+¢,) =0 (2.43)

j=0

12



forany w,r'+4,, the average value of r(j), j=0,1,2,...,W-1, is given as

w-1

Yo=Y 1) = Acos(r'+4) | (2.44)

In general, we will obtain the average for the time block iT '<t<(@i+]T ' as

y; = Acos[wy (i) +¢] | (2.45)
If we take
N
T :W , (2.46)
then
Yi=A 605(27[# +4) (2.47)

When M is large, from Eq. (2:47) we can look™ (y,, ;.- Yy=) as the sampled values of a

slow-varying sinusoid whose frequency is 1/M; with amplitude A and phaseg, of s(t).

From Eqgs. (2.21) and (2.22), we can estimate A; as

A 2 -1 9

A= e 2 i . (2.48)
From previous results, a set of parameters (y,,y,,...Yy.,) IS obtained within the

time interval T,', which reveals the amplitude of s,(t) during this period. Let the total

observation time be T,

total

=qT_ and q>>1. Under this circumstance we can obtain g
sets of parameters, (y,,, i Yiwa) s 1 =0,1,2,..0-1, where (y,o,Vi,,... Vims) 1S Obtained in
the time interval iT <t<(i+1T . Let ¢, be the phase of s (t) at t=kT,' and A, be

the amplitude, and assume they are constants during the time interval kT <t<(k+1)T_.

13



We can estimate A, with the method just derived. As a consequence, we will obtain a

set of estimated amplitudes (Awo,Aus,..., Aq1) . The sets of data A, will be used to

evaluate the phase variations of s (t).

Based on the relationship of Eq. (2.26), we also can define the phase shift of s (t)

between kT and (k +1)T0'b as

2 2
1 Ak +A,, _iM‘l
Avk - Ak 2 M =

Ay ya = Cosl{ (Yes = Yiew)’] (2.49)

Consequently, we can calculate phase variation of s (t) from Eq. (2.49).

14



2.3 Simulation Results

2.3.1 Simulation results with detection of S,(t)

In this section we will use computer simulation results to verify accuracy of the

detection algorithm. First, we set the parameters used in simulation as the table below:

Tab. 2.1: System Parameters for the Simulation of Detection Algorithm for s,(t).
Number of samples N =203
a=m 3
Phase of s,(t) #=33°
Phase of s,(t) ¢, =27°
Frequency of s, (t) f, =610 MHz
Frequency of s, (t) f,=609 MHz
Sample interval t,=4.9261 ns
Time blocks T,=1.0001 us
Number of T, M =20
Time delay 1=0.082102 ns
Observation interval T,, = 20.002 us
Number of T, q=20

Note that the parameters given above satisfy Egs. (2.10) and (2.20), and the difference of
two sinusoid frequencies is 1 MHz. After setting the parameters, we define the Amplitude

Error Ratio as

15



18,
=3 |A A
E L =

B , 1 =1or 2. 2.50
A Aﬁ ( )
where A, is the estimated amplitude while 4 is the actual amplitude.

And the Phase Shift Error Ratio as

-2
:(]1_12 AG,, — g

" Ad  i=lor 2. (2.51)

where Ag, is the estimated phase shift while A¢ is the actual phase shift.

Figure 2.3 and Figure 2.4 show the simulation results under different A,/ A ratio,

where Amplitude Error Ratio is very small between 107° ~10™"

. It reveals that our
detection algorithm works accurately.

Detection of 5,(t)
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Figure 2.3: The average sampled values of output Xi when A =A, =1.
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« 10°7° Detection of S,(t)
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Figure 2.4: Amplitude Error Ratio underdifferent A,/ A .

Because the radar system receives the signal reflecting from the target, therefore A,, amplitude of

s,(t), may vary slowly with time in practice. Thus, we assume A, (t) is an exponential function

A1) = A e (2.52)

where p and T are constants. We set A =A =10, p=0.07, 0.1 ,0.5 , and T=4x10"s where the
variables p and T decide the decay of the amplitude variation. The average sampled values of output
with amplitude variation are shown in Figure 2.5. Figure 2.6 shows the Amplitude Error Ratio of A, (t)
with different p. The amplitude varies faster when p is large. Thus the Amplitude Error Ratio increases
in the earlier observation interval, and it becomes smaller in the later observation interval. In all the

cases, the proposed algorithm can accurately detect the amplitude variation.

17



Amplitude error ratio estimation

Detection of 5,(t)
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Next we will run the simulation for different phase shifts. In practice the phase varies on

transmitting through air, too. The variation of phase is random. We assume ¢,; in the time interval

iT, <t<@i+)T, as

(2.53)

b= @5 +£lA & , =1, 2,¢
¢2,0:¢ 2

where ¢ :£1 isanrandom variable and c,=0.

A¢: The phase shift of each time interval T, <t<(i+1)T,.
Note that the phase during each time interval T, is assumed to be constant, but the phase shiftsag in
the next time interval T, see Figure 2.7 for the-random phase variation. The average sampled values of
output x is shown in Figure 2.8. We find that the algorithm-can detect the signal s,(t) under the
random variation of phase.

Figure 2.9 and Figure 2.10 show the simulation results under differentAg where the Amplitude

Error Ratio and Phase Shift Error Ratio are small-under this case. We can find Phase Shift Error Ratio

rises when A¢ is close to 180°. It is because the phase varies too large to be detected precisely.
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Next we will combine amplitude and phase variations to test our detection algorithm whether it

can work in more complex situations. Thus s,(t) is written as

ot
5,(t) = A (1+e 'T)-cos(wt + g (1)) (2.54)
where ¢,; =4,(iT,) according to Eq. (2.53).

Figure 2.11 shows that the average sampled values of output X , which follows the amplitude

variation of s, (t) accurately with time. The simulation results are shown in Figure 2.12 and Figure 2.13

where the Amplitude Error Ratio and Phase Shift Error Ratio are small under this case.

Detection of 5, (1)
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Observation Interval(B {37 : Tp=1e-5 sec)

Figure 2.11: The average sampled values of output x with p=0.07, T=4X10"s, Ag=10°and ¢,=27°.
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Figure 2.13: Phase Shift Error Ratio under different A¢g.
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2.3.2 Simulation results with detection of Sl(t)

We will follow the same steps as the simulation of detecting $,(t) in this section. In the

beginning, we set the parameters of simulation as the table below:

Tab. 2.2: System Parameters for the Simulation of Detection Algorithm for s, (t).

Number of samples
(B.1,h)

Phase of s,(t)
Phase of s,(t)
Frequency of s,(t)

Frequency of s,(t)

Sample interval
Time blocks

Number of T';

Time delay

Observation interval

Number of T[')b

W =122
(5,4,121)
4,=33°
4,=27°
£,2610 MHz

f,=609 MHz

fs =8.1967 ns
T‘; =1.0001 us
M =20

7 =0.081967 ns

T =20.002 us

q=20

Note that the parameters setting above satisfy Egs. (2.34) and (2.37). The simulation results under

different A /A, ratios are shown in Figure 2.14 and Figure 2.15 where the amplitude and phase are

constants with time. We can find that Amplitude Error Ratio is very small between 10° ~10™, which
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means the amplitude of s, (t) can be accurately detected.
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In the second case, we assume A (t) varies with time as Al(t)zl-\i-(1+e_p%) and A=A =10,
p=0.07 or 0.1 or 0.5, and T=4x10"s. Figure 2.16 shows Amplitude Error Ratio with different p. The
amplitude varies faster when p is large. Thus the Amplitude Error Ratio increases in the earlier
observation interval, and it becomes smaller in the later observation interval. Apparently, the proposed

algorithm still can accurately detect the variation.

Detection of 3, (1)

0.03 T T T T T T T T T
—&—p=05
—»—p=0.1
0025 | — 4 — p=0.07 |-
=
=
£ 002t I
o
1]
e
®
S 0015} 4
5
QO
el
=
= 0.01F —
e
€
P
ooosf S :
Bl
‘"‘G\«.G
= o g e —p— r:Q;;‘?s BT g TR !
b i i i i ok e S

2 4 6 8 10 12 14 16 18 20
Observation Interval(B& {57 : Tob=20.002 psec)

Figure 2.16: Amplitude Error Ratio with A (t) under different p.

Next, we assume ¢, =4, ,+cAgi=12..q, andg, =4 in the time interval iT '<t<(i+1T,",

obh —
where ¢, =+1 is a random variable and c,=0, A¢ is the phase shift of each time interval

iT, ' <t<(@i+DT,"'. Note that the phase during each time interval T, 'is constant, but the phase varies

ol

A¢ in the next time interval. Figure 2.17 and Figure 2.18 show the simulation results under different
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Further, we combine all the cases above to test our detection algorithm in more complex

b
situations. Here S (t) is written as s;(t) = A(l+e pT)-cos(wlt+¢l(t)) , Where 4, =¢(iT,) according to Eq.
(2.53). The simulation results are shown in Figure 2.19 and Figure 2.20. The Amplitude Error Ratio and

Phase Shift Error Ratio are acceptable under this case. Consequently, our algorithm can detect the

amplitude and the phase variations of s,(t) and s,(t) under noiseless environment.
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Figure 2.19: Amplitude Error Ratio under different Ag.
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Figure 2.20: Phase Shift Error Ratio under.different Ag.

2.4 Summary
The proposed algorithm has two steps for the detection of the received signal. First s, we estimate

the amplitude of s,(t) or s,(t) from the sample values using Eq. (2.24). Second, we estimate the

phase variations of s (t) or s,(t) between the time interval iT, <t<(i+1T, . It is important to

estimate the amplitude accurately in the first step, which will affect the accuracy of phase estimation.
From the simulation results above, we find the algorithm is more sensitive to the amplitude variation
than the phase variation. When the amplitude varies with time, the estimation error may increase from

10° to 107, especially for the phase shift error.
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Chapter 3
Performance Analysis

In the chapter, we discuss the performance due to frequency offset and noise. We will derive
frequency offset effect and noise effect of our algorithm in detail, and present some simulation results to

verify the error performance of the system.

3.1 Frequency Offset Effect

3.1.1 When Si(t) has frequency offset Aw,

In the receiver, the signal frequency might vary with time. It will affect the accuracy of the detection.
In this section we intend to analyze the.influence arising from frequency offset on detecting s, (t) . When

there is frequency offset in s, (t), the received signal r(t) will be
r(t)= Acosif & , "1, +14 Cos , = § (3.1)

Assume r(t) issampledat t=kt,,k=012,..N-1 and t = (m+%)Tl =aT,, We obtain

r(k) = r(kt,) = s, (k) +s, (k)

where

8, (k) = A cos[(w; + Ay )kt +¢]

= A cos(wkt, + Ao kt, +¢) = A cos(27r% +Amkt, + ) (3.2)
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Consider

LN

N — N/2-1

D sk = [s,(K)+s,(k+N/2)]

=0 =0

=~

N/2-1
AL {cos(27r%+Aa)1ktS +¢,)+cos[2r

k=0
/2

k+N/2

+Ao (K+N/2)t, +41}

1

QAL {COS[Zﬂ% £ 712+ Mooy (K+ N 14)t, + 4T cos(z/ 2+ Ay %ts)}

k=0
N N/2-1 k
=2A[Sin(Aa;ths)[Z Sin[Zﬂﬁ-i-Aa)l(k-i- N/4)t, +a¢] (3.3)
k=0

Thus we can rewrite Eq. (2.14)

N -

= > 1R =Y [543, (0]

= K=

2A N, N k (3.4)
= Tsin(Awths)D > sin[2ﬂN+Aa)1(k +N/4)t, +¢]+ A, cosg,
k=0

LN

Next consider the time interval T <t<2T .and T, =Nt +7. Again we take N samples at

t=T,+ jt;, j=0,1,2,...,N-1, and have zero samples within T, + Nt, <t <2T . In this case Eq. (2.15) is

written as

r(j)=r(T, + jt)
= A cos[(W, +A@)(T, + jt) + ¢ 1+ A cos[w, (T, + jt) +¢,]
= A cos[w, (Nt, + jt, +7) + Aw, (Nt, + jt, +7)+ @ ]+ A, cos[w, (Nt, + jt, +7) + &,]

= A COS[Zﬂ'ﬁ (W, +A@) T+ Ay (N + Dt + @]+ A, cos[w, (N, + jt, +7) + ] (3.5)
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where

Z Alcos[27z—+(w +A@)T+ Ao, (N + )t + 4]
=0
N/2-1

=AY {cos[27r—+(w1+Aa)l)r+Awl(N + Dt +a]

j=0

+COS[27rﬁ+7r/2+(Wl+Aa)1)r+Aa)1(N L iENIL + 4T}

N/2-1
—2AUY {COS[Zﬂ'ﬁ—f-ﬂ'/Z-&—(W +A@)T+Aw (N + j+ N4, +4]

j=0

cos(x/2+ A, %ts)}

N/2-1

= 2A sin(Aw, ';'1 t )DZ S|n[27r—+(w +A0)T+Aw0 (N + j+N/A), +¢] (3.6)

Thus we can rewrite Eq. (2.18) as

N-1 N/2-1
:i r(j)=2— sm(Aa) t e S|n[27z—+(w +A@)t+Aw,(N+ j+N/4)¢, +4¢]
N 12 i @, | A
=0

j=0

+ A, cos(W,7 +d¢,) (3.7

In general, we will obtain the average for the'time-block iT, <t <(i+1)T, as

X, '= A, cos[w, (i) + ¢,]+

N/2-1
2%sin(Aa)l E )0y S|n[27z—+(w +Aw)it+ Ao (iN+ j+ N /4t +4]
j=0

=X + AX (3.8)

where

N/2-1
AX, =2— A sm(A —t L Sln[272'—+(W +Aw)it+Ao,(IN+ J+N/4)t +¢] 3.9
i 2] 4 1 2 1 ( )

j=0

and the time delay t isstill chosenas =T,/ M.
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From Eq. (2.24) we can estimate A; as

(%% + 2% [AX, +AX”)

\/3

where

M-1

2
— 2% AX; + Ax.>
M & (2X 0% +Ax7) (3.11)

Then we can estimate A',, with-the method just derived.-As a consequence, we will obtain a set

of estimated amplitudes (A20,A%s,.., A%, ;) . Then we can estimate phase shift using Eq. (2.27) as

2 2
A k+A2k+1 1 v

1 _ -1 1 2, ! 1 1 2
A’ 1 = COS AL AL [ 5 —ﬁ; (X i = X'i)]
|2 |2
=cos™ L [A Ao _iMZ‘,l (X = Xieors + A%y =A% )]
Alz,k' Alz,k+1 2 M iz ' ’ | |
1 A & A'2 1 M2
2. k+1
~cos! A AL [ 2 > _MZ_O“ (Xk,i _Xk+1,i)2] (3.12)

Usually, the frequency offset is small between kT, <t<(k+1T, , thus we can let

AX ;i =M i =0where  A',,, # A2k +AA \,  and Ay, = Ack +AA,, .
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3.1.2 When s,(t) has frequency offset Ao,

Next, we consider s,(t) with the frequency offset Aw, . Then the received signal r(t) will be
r(t) = A cos(wt +d )+ A, cos[(w, + Aw, )t +¢,] =s,(t) +5,(t) (3.13)

Assume r(t) issampledat t=kt,,k=012,.N-1 and t = (m+%)T1 =aT,, then

r(k) = r(kt,) = s, (k) +s,(k)

where

s, (k) = s, (kt,) = A, cos[(w, + Aw,)kt; + ¢, ]
= A, cos(w,kt, +Aa,kt, +¢,) = A, cos(Aw,kt, +¢,)

(3.14)
Thus we can rewrite Eq. (2.14) as
1 N=1 1 N-1
Xy =— Y 1K) = =[5, (k)4s, (K)]
N k=0 N k=0
= imf cos(Aw,kt, + ¢,) (3.15)
N 2N 2 '
k=0

Now consider the time interval T <t<2T  and T,=Nt+z. Again we take N samples at

t=T,+]Jt, j=0,1,2,...,N-1, and have zero samples within T +Nt, <t <2T . In this case Eq. (2.14)
becomes

r(j)=r(, + jt;)
=A COS[WI(Tp + Jtg) + 4]+ A, cos[(w, +Aa)2)(Tp +t) + 4]

- A COS(27Tﬁ+le'+¢1) + A, cos[(W, + Aw, )(NE, + jt, +7) + ]

=A cos(27ri+wlr+¢1) + A, cos[w,7 +Aaw, (N + )t +7)+¢,]
N (3.16)
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Hence

In general, we will obtain the average for the time block iT, <t<(i+1)T, as

X '= %[’jz_: cos[w, (i7) + Aw, ((iN + j)t, +i7) + ¢,]

and

AZDE‘j cos[W,iz + A, (N + j)t, + )+, ]

j=0

¥

cos[(W,iz +¢,) + A, ((IN + Pt +7)]

Z -

= ADY {cos(Wiz +g,) cos[Aw, ((IN'+ )t +ir)]=sin(w,iz+ ¢, )sin[Aa, (N + )L, +iz)]}

j=

o

Further Eq. (3.18) can be written as

X' = XD%NZi cos[Aa, ((iN + j)t, + ir)]—%sin(wzir+¢2)E§ sin[Aa, ((iN + j)t, +ir)]

i
j=0 j=0

and the time delay t isalsochosenas t=T,/M.

(3.17)

(3.18)

(3.19)

(3.20)

Thus, using Eq. (2.23) we can estimate A, between each time interval T,. Further, we can estimate phase

shift Ag,,,, forthetime block kT, <t<(k+1)T, using Eq. (2.27).
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3.1.3 Simulation results with frequency offset

After analyzing the algorithm with frequency offset mathematically, we perform the simulation in

the following. First we consider the detection of s,(t) when s (t) has frequency offset Aw, .

A. Frequency offset Ao,

Figure 3.1 shows the Amplitude Error Ratio versus af,/f, when f =610 MHz and phase shift
A¢=20". The normalized frequency offset Af,/f ranges from 10°~10*, and the Amplitude Error
Ratio is around 10° . The Phase Error Ratio under different Af,/f, is shown in Figure 3.2, where the
error ratio is under 10°~10" and the maximum phase shift error reaches 0.96° when Af,/ f, =4x10°®

(.". Af,=2440 Hz) . The simulation results are acceptable in the case.

3 f1=810 MHz Phase shift=20

Amplitude error ratio estimation

1 1 1 1 1 1
0 0.1 02 03 04 05 0B 07 08 08 1
Frequency offset A, vt

D 1 1 1

Figure 3.1: Amplitude Error Ratio under different Af,/f, .
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f,=610 MHz Phase shift=20
10. I T T I T T T T 1

Phase error ratio estimation

1] 01 02 03 04 05 06 07 08 09 1
Frequency offset A, Fig®

10' ] 1 1

Figure 3.2: Phase Shift Error Ratio under different Af,/ f, .

B. Frequency offset Ao,

Next, we carry out the simulation of detecting s,(t) when s,(t) has frequency offsetAow, .
Figure 3.3 and Figure 3.4 show the Amplitude Error Ratio and Phase Shift Error Ratio with respect to
Af,1f, when f,=609 MHz and phase shift A¢=20" where the normalized frequency offset Af,/f,
ranges between 10° ~10"*. We find the Phase Shift Error Ratio rises obviously, and the phase shift error
is above 4°, even over 40°,when Af,/f,>1x10° (.". Af,>609 Hz). Our algorithm can’t work well in the

condition, thus the simulation results present that the influence on estimating phase shift is large when

s,(t) has frequency offset Ao, .
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Amplitude error ratio estimation

Phhase error ratio estimation
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T T T T T T T T T

1 1 1 1 1 1

1 1 1
0.1 n2 03 04 05 0B 07 08 08 1
Frequency offset Af, gt

Figure 3.3: Amplitude Error Ratio under different Af,/f,.

f2=609 MHz Phase shift=20

T T T T T T T T

1 1 1

1 1 1

1 1 1
0.1 n2 03 04 05 0B 07 08 08 1
Frequency offset Af, gt

Figure 3.4: Phase Shift Error Ratio under different Af,/f,.
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3.2 Noise Analysis

Any communication systems would be affected by noise in reality. In this section, we analyze the
performance of our algorithm in noisy environment. Our discussion is based on the simulation
outcomes of different signal-to-noise ratio (SNR) in dB. We implement Additive white Gaussian noise

(AWGN) to simulate the different SNR in our system.

3.2.1 Noise effect

Previously, we assume n(t)=0 for simplicity. In practice, noise exists in any communication
system. We assume the channel is an AWGN channel and the noise n(t)~N(0,0) is a zero mean

Gaussian noise with variance <. The received signal r(t)is

r(t) = 5,0 + 5, (0 +n(®)

= A cos(Wit +¢)+ A, cos(Wyt+g,) +n(t) (3.21)
Using Eq. (2.7) and (2.9), we have
= A 00 % & (3.22)

where n, =n(kt,) k=0,1,2,...,N-1.

Next consider the time interval T, <t<2T . Again we take N samples at t=T + jt ,

j=0,1,2,...,N-1, and have zero samples within T+ Nt, <t <2T . Therefore

r(j)=r(, + jt,)
= A cos[w, (T, + jt) + @1+ A, cos[w, (T, + jt) + ¢, ]+ n(T, + jt,)
= Aicos(%[ J+wWz+¢)+ A, cos(W,7 +¢,) +n(T, + jt,)
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Thus

N -

H

14 1
=S r cos(w. —
N ,Z_;‘ (1) = Ay cos(Wo +4,) + 1 2.

n(T, + Jt,)
In general, we will obtain the average for the time block T, <t <(i+1)T as

= A, cos(w, (i7) + ¢,) +%TZ=:; n;

=X +AX
where
nij:'(i-léF -Dst1 j=0,1,
and
1 N -1
AX. = — n.: , i=0,1,2....M-1.
i N ij

¥
o

i

Then we can use equation Egs. (2.48)-and (2.49) toestimate (A'2g; A'21,... A%, ) aNd A, .,

3.2.2 SNR analysis

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Here we will analyze SNR (Signal-to-noise ratio) of the proposed system. Since n(t) is a

Gaussian noise and it’s samples n; is also Gaussian noise. Consider x';, the output of the system from

Eq. (3.24) which is also Gaussian distributed. Then we can calculate the mean u and variance o2. And

the signal power is Py, = A’ /2.
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Consider
u=Elx; FEA cwsit +f )3 n

=A,CcOoM,it(+9 ,+ i E n
0
=Acon,it(+9 , ) (3.28)

Because each n; is an AWGN, and we assume their autocorrelation function R, is the delta

function, i.e.R, (r)=0 forr #0. Thus all the noise samples are un-correlated. Furthermore, n; are

independent for j=0,1,2..N-1. Thus

1 N-1
E[(x",)*]1= E[(A, cos(w, (ir) +¢,) + M n;)’]
j=0
N-1 1 N-1
= E[A? cos’ (Wyiz +4,) + 2A, cos(w2|r+¢2)uﬁz n; +(W n;)’1
j=0 j=0
1 N-1 O_Z
=g’ +—> E[n — 3.29
N2 = /u + N ( )
Then
o, =Var(x )= E[(x7) 1-(E[x])
:ﬂz +O-—2—/U2 :G_Z
N N (3.30)
So we get Pncuse = e2 :G_'
N
Finally, the SNR is given as
P. 2
SNR = signal A2 /2 NA22
)« O IN 20 (3.31)

Thus, using our approach, the performance can be improved as we take more samples. Specifically,
under the same amplitude and noise condition, the SNR will increase N times, where N is the number of

samples.
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3.2.3 Simulation results under noisy environment

All the parameters for the simulation in this section are the same as table 2.1. In the following, we

perform the simulation of detecting $,(t) under noisy environment.

A. Detection of $,(!)

Figure 3.5 shows Amplitude Error Ratio under the SNR from -5~ 31 (dB). Next, we test the
simulation with another case that A,(t) is the same as Eq. (2.52). The simulation results are shown in
Figure 3.6. Obviously, the error ratio is smaller when SNR is higher. Note that each point in the figure is

the average of 1000 simulations.

Detection of 5,(t)
0018 T T T T T T T

0.016

0.014

0.012
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0.006

Amplitude error ratio estimation

0.004

0.002

D 1 1 1 1 L 1 1
5 0 5 10 15 20 25 30 35

SNR(dB)

Figure 3.5: Amplitude Error Ratio under different SNR and A,/ A =1.
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Detection of 5,(t)
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Figure 3.6: Amplitude Error Ratio with.amplitude variation under different SNR and p=0.5 , T=4X10"°.

We simulate the situation in which the variation of phase is random. We assume ¢,; in the time
interval iT, <t<(i+)T, as Eq. (2.53). The simulation results are shown in Figure 3.7 and Figure 3.8.
The Amplitude Error Ratio is acceptable under this case, but Phase Shift Error Ratio is high at low SNR.

It presents that the detection of phase variation is more sensitive to noise effect.
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Amplitude error ratio estimation

Phase error ratio estimation

Detection of 5,(t) with Phase shift=20{degree)
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1
5 0 5 10 15 20 25 30
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Figure 3.7: Amplitude Error Ratio with phase variation under different SNR.

Detection of 5,(t) with Phase shift=20(degree)
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Figure 3.8: Phase Shift Error Ratio with phase variation under different SNR.
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In the following, we combine the amplitude and phase variation under noisy environment in the
simulation. The results are shown in Figure 3.9 and Figure 3.10. We find that the phase shift error
reaches 3° when SNR= -5(dB). The amplitude and phase variation have larger effect on the accuracy of

detection algorithm under noisy environment.

Detection of 5,(t) with Phase shift=20{degree)
0025 T T T T T T T

0.02

0.015

0.01
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Figure 3.9: Amplitude Error Ratio with amplitude and phase variation under different SNR.
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Detection of 5,(t) with Phase shift=20{degree)
016 T T T T T T T

0.14

0.12

0.1

0.08

0.06

Phase error ratio estimation

0.04

0.02

D 1 1 1 1 1 1 [l
5 0 5 10 15 20 25 30 35

SNR(dB)

Figure 3.10: Phase Shift Error Ratio with amplitude and'phase variation under different SNR.

B. Detection of §(t)

We will follow the same steps as the simulation of detection of S,(t). Note the parameters of the

simulation in this section are the same as table 2.2.
Figure 3.11 shows the Amplitude Error Ratio with amplitude variation under different SNR, where

p=0.5and T=4X10". The Amplitude Error Ratio with phase variation under different SNR is shown in

Figure 3.12, and the Phase Shift Error Ratio is shown in Figure 3.13, where the phase shift is 20°. We
find the Phase Shift Error Ratio rises with phase variation, especially at low SNR. All the performances

above are acceptable and reasonable. The error ratio gradually decreases when SNR increase.
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Detection of 5, (1)
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Figure 3.11: Amplitude Error Ratio with amplitude variation underdifferent SNR and p=0.5 , T=4X10"° .

Detection of 5, (t) with phase shift=20{degree)
0.04 1 T T T 1

0.035

o
o]
(]
1
1

0.025

0.02

0.015

Amplitude error ratio estimation

0.01

0.005

5 0 5 10 15 20 25
SNR(dB)

Figure 3.12: Amplitude Error Ratio with phase variation under different SNR.
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Detection of 5, (t) with Phase shift=20(degree)
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Figure 3.13: Phase Shift Error Ratio with phase variation under different SNR.

Next we will combine amplitude and phase variations to test our detection algorithm. The
simulation results are shown in Figure 3.14 and Figure 3.15. Obviously, in this complex situation, the

Amplitude Error Ratio and Phase Shift Error Ratio will rise.
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Detection of 5, (t) with Phase shift=20(degree)
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Figure 3.14: Amplitude Error Ratio with amplitude and phase variations under different SNR.

Detection of 5, {t) with Phase shift=20{degree)
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Figure 3.15: Phase Shift Error Ratio with amplitude and phase variations under different SNR.

49



C. Simulation with frequency offset under noisy environment

In section 3.1.3 the simulation results are under noiseless condition with frequency offsets. Now
we will test the simulation of detecting $,(t) under noisy condition. First, we will perform the
simulation with frequency offset af, ( f, =610 MHz and phase shift=20") under two SNR (SNR=
20 and 10 dB ). Thus, the frequency offset Af, ranges from 61 Hz to 61 KHz. The simulation

results are shown in Figure 3.16 and Figure 3.17. The Amplitude Error Ratio is around 107 at

SNR= 20 dB and 10 dB. But The Phase Error Ratio is around 10*~102 at SNR=20 dB and 10 dB.

5 f,=610 MHz Phase shift=20
10 . . . :

—&— SNR=10(dB)
—+— SNR=20(dB)

Amplitude error ratio estimation

| 1
0 0.2 0.4 06 0.8 1
Frequency offset AfA, x 10

Figure 3.16: Amplitude Error Ratio under different frequency offset Af,/ f, .
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f,=510 MHz Phase shift=20
10 . . ’ ; , ’ ; ’ . :
—&— SNR=10(dB) | 1
—+— SNR=20(dB) | 1

Phase error ratio estimation

1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 08 1
Frequency offset AfA, el ¥

10’ 1 1 1

Figure 3.17: Phase Error Ratio under different frequency offset Af,/f, .

Next, we will present the simulation with frequency offset - Af, ( f,=609 MHz and phase shift=20")
under two SNR (SNR= 20 and 10 dB ). Thus, the frequency offset af, ranges from 60.9 Hz to 60.9
KHz. The simulation results are shown in Figure 3.18 and Figure 3.19. The Amplitude Error Ratio is

around 102~10" at SNR=20 dB and 10 dB. The Phase Error Ratio is near 10"~ 2 at SNR= 20 dB and

10 dB. The two error ratios increase as Af, rises from 60.9 Hz to 60.9 KHz, The Phase Error Ratio

especially. And the maximum phase shift error reaches over 40°. It can be seen that the detection of

5,(t) is more sensitive to frequency offset af, than frequency offset Af,.
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Amplitude error ratio estimation

Phase error ratio estimation

10
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Figure 3.18: Amplitude ErrorRatio under different frequency offset Af,/ f,.
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Figure 3.19: Phase Error Ratio under different frequency offset Af,/f,.
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3.3 Summary

In this chapter, we analyzed the detection algorithm with two different effects: frequency offset
effect, noise effect. We ran simulations with these two effects respectively, and then a combination of
the two. These effects appear in any communication system in practice and affect the accuracy of our
algorithm. It can be shown that our algorithm works in all conditions except for large frequency offset

(Af >609 Hz ) at SNR= 20 dB. The error performance can’s be improved in that case even if increasing

SNR.
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Chapter 4

Conclusions

In this thesis, we develop an algorithm to estimate the parameters of two closely spaced sinusoid
signals. In Chapter 2, we describe in detail the detection algorithm. Our method, based on a simple
sampling technique and statistic concepts, is able to detect two closely spaced sinusoid signals without
mutual interference under ideal condition. The simulation results show that the detection of s,(t) is
more sensitive to amplitude variation than phase variation under noiseless, and better performance is
obtained in detecting s,(t)compared to s (t) due.to.more sampling number. All the simulation results
show that the algorithm work well under ideal situation.

In Chapter 3, we analyze detail performance of our algorithm with frequency offset effect and
noise effect. The frequency offset Af, ranges from 60.9 Hz to 60.9 KHz, and we add AWGN to the
input signal for SNR ranging from 20 dB to 10 dB. It shows that the detecting s,(t) is more sensitive to
frequency offset Af, than frequency offset Af . In addition, the error performance is not acceptable
when frequency offset Af, >609 Hz at SNR= 20 dB.

To sum up, we successfully estimated the parameters of two closely spaced sinusoid signals
without complex calculations, thus low cost for receivers. The frequency difference of two signals we
set was 1 MHz in our simulation. In the future, we will continue to analyze the range of the frequency
difference of two signals and further improve our algorithm to accommodate large frequency offset and

noise.
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