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摘  要 

 

此篇論文呈現一個演算法以估測二個頻率非常接近之弦波訊號的參數。由於

此波訊號之頻率太靠近，以致於很難使用濾波器分別濾出其中之一。我們的方法

是設計一種特別的取樣方式來達成零干擾，並且運用統計之概念估測訊號中振幅

和相位的變化。此方法架構於簡單的取樣技術，故可降低接收器之複雜度。此技

術可運用於遙感系統和雷達系統，藉此可以有效偵測信號頻率和相位的訊息。 
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Abstract 

 

   This paper presents an algorithm to estimate the parameters of two closely spaced 

sinusoid signals. Since the frequencies of two sinusoid signals are very close, it is 

difficult to separate them with filtering. Our approach is to design a special sampling 

method to achieve zero interference under ideal conditions, and estimate the 

variations of amplitude and phase with statistic approach. It is based on a simple 

sampling technique, which can reduce the complexity of detection receiver. The 

algorithm can be applied to remote sensing system and radar system, in order to detect 

the desired amplitude and phase information. 
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Chapter 1   

Introduction 

1.1 Problem description 

       

 

Figure 1.1: A simple radar system 

 

   This paper deals with a sinusoidal estimation problem as shown in Figure 1.1, where 

the antenna transmits and receives a special signal consisting of two frequencies. The 

signal is superimposed, including two closely space frequency sinusoids. The frequency 

of two signals is too close to be separated with filtering. Moreover, the frequency of two 

signals may vary on reflecting from the target as a result of Doppler effect when the 

target is moving. Our aim is to detect the phase and amplitude variations of both signals. 

By this information we can estimate distance, position and velocity of the target 

accurately. 

   Currently, a popular approach for resolving this problem is to employ an information 

theoretic criterion, such as the Minimum Description Length (MDL) rule [1,2]. However, 

the results obtained by these methods are not satisfactory, and the computational cost for 
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implementing them is considerably high. Other methods are derived from the maximum 

likelihood function [3-6]. Although they show excellent performance but unfortunately 

are computationally intensive too. In this paper, we develop a new strategy to estimate the 

parameters of two sinusoids. Our method is based on a simple sampling technique and 

statistic concepts, which can reduce the complexity of parameter estimation.   

   The paper is organized as follows. The derivation of the detection algorithm is given 

in Chapter 2. In Chapter 3 we present performance analysis and simulation results of the 

algorithm. Finally, the conclusion is given in Chapter 4.  
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Chapter 2   

Detection Algorithm 

    In this chapter, we will describe the proposed detection algorithm of two signals. 

Both amplitude and phase variations will be estimated in our detection algorithm. In the 

following, detection of )(2 ts  is described first, and then detection of )(1 ts  is given 

next. 

 

Consider two desired signals given as  

 

)cos()( 1111  twAts       (2.1) 

)cos()( 2222  twAts  (2.2)  

 

and for a radar system the received signal is                                

          

)()cos()cos(

)()()()(

222111

21

tntwAtwA

tntststr






   (2.3) 

 

where n(t) is the noise. The information we want to detect is the phase and 

amplitude variations of )(1 ts  and )(2 ts . Since the two frequencies w1 and w2 are 

very close, it is difficult to separate the two signals with filtering. For simplicity, 

we assume 0)t(n  in the following analysis and will include it later. 

 

 

2.1 Detection of )t(s2  

In order to detect )t(s2 , we must eliminate the interference coming from )t(s1 . 

We will achieve the aim with a special sampling technique . Let the sampling interval be 
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chose as  

1

1
T)

N
m(ts   ,                            (2.4) 

where 1T  is the period of )t(s1 , while m, N are integers and 20  N,m .  

 

The received signal )(tr  is sampled at sktt  , 1210  N,...,,k . The kth sample of )(tr  

is 

)()()()( 21 ksksktrkr s   

where                                  

1 1 1 1 1 1

1 1 1 1

1
( ) ( ) cos[2 ( ) ]

cos[2 ( ) ] cos(2 )

ss k s kt A f k m T
N

k k
A km A

N N

 

   

   

    

           (2.5) 

 

From trigonometry, it can be proved:  

 

0
2

1

1

0









)k
N

cos(
N

k

     ,   2N               (2.6) 

 

for any 1 .The reasoning behind Eq. (2.6) is sample. We can look cosine function as a 

unit circle and sample at circumference, as shown in Figure 2.1, and then the sum of x 

axis values of all samples vanishes. 

 

 Figure 2.1: Concept of sampling technique. 

 
1

1 -1 
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From Eqs. (2.5) and (2.6), we obtain 

 

0
2

1

1

0
11

1

0













)k
N

cos(A)k(s
N

k

N

k

   ,  for any 1       (2.7) 

 

Note that Eq. (2.7) is independent of 1 , indicating that we can achieve zero interference 

coming from )t(s1  if st is taken as Eq. (2.4) .  

 

Next we consider the relationship between st and 2T , where 
2T  is the period of 

)t(s2 . Let the sampling interval be  

   2st T   .                           (2.8) 

where   is an integer. 

 

Then the sampled value of )t(s2  is written as 

 

22222222 2  cosA)Tkfcos(A)kt(s)k(s s               (2.9) 

 

In Eqs. (2.4) and (2.8), the sampling interval should be the same, thus we obtain 

 

1
2 1

2

1 1
( )

N

w mN
T m T

w N





                   (2.10) 

                       

Eq.(2.10) is the requirement to optimally detect )t(s2  while completely eliminate the 

interference of )t(s1 . To optimally detect )t(s2  without the interference of )t(s1 , 

Eq.(2.10) should be satisfied. In practice we can design the frequencies of )t(s1  and 

)t(s2  such that Eq. (2.8) is satisfied for some set of ( , , )N m . 

 

 

 

 



 

6 

If we set 



  m then Eq. (2.10) becomes 

  

                            



w1

w2
1

1

N  .                           (2.11) 

Thus the frequencies (w1, w2) can be very close with a large 



N . 

 

Consider an observation interval ( obT ) consisting of M time blocks, given as 

 

 ob pT M T                              (2.12) 

and  

=Np sT t                               (2.13) 

 

where   is a fixed time delay and st  . Assume )t(s2  slowly varies with time such 

that its phase and amplitude keeps constant within 



Tob . Here we use a non-uniform 

sampling scheme. In the first time block, i.e., pTt 0 , we take N samples at sktt  , 

k=0,1,2,…,N-1, and take zero samples within ps TtNt  . From Eqs. (2.7) and (2.9), the 

average value of these N samples is written as 

 



x0 
1

N
k 0

N1

 r(k) 
1

N
k 0

N1

 [s1(k) s2(k)] A2 cos2 ,         (2.14) 

 

where 



2  is the phase of 



s2(t) at t=0.  

Next consider the time interval pp TtT 2 . Again we take N samples at 

sp jtTt  , j=0,1,2,…,N-1, and have zero samples within psp TtNtT 2 . In this 

case the sampled signal is written as  

 



r( j)  r(Tp  jts)

 A1cos[w1(Tp  jts)  1] A2 cos[w2(Tp  jts)  2]

 A1cos[w1(Nts  jts  ) 1] A2 cos[w2(Nts  jts   )  2]

 .          (2.15) 
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Using Eqs. (2.4) and (2.8), we can reformulate Eq. (2.15) as 

 



r( j)  A1cos(
2

N
j  w1  1) A2 cos(w2  2) .              (2.16) 

 

Since 

 



j 0

N1

 cos(
2

N
j  w1  1)  0                        (2.17) 

for any 



w1 1, the average value of r(j), j=0,1,2,…,N-1, is given as 

 



x1 
1

N
j0

N1

 r( j)  A2 cos(w2  2) .                (2.18) 

 

In general, we will obtain the average for the time block pp T)i(tiT 1  as 

 

2 2 2cos[ ( ) ]ix A w i    .                       (2.19) 

 

If we take   

                         
2T

M
                                (2.20) 

 

Then, Eq. (2.19) becomes 

2 2cos(2 )
M

i

i
x A                            (2.21) 

 

When M is large, from Eq. (2.21) we can look )x,...,x,x( M 110   as the sampled values of 

a slow-varying sinusoid whose frequency is 1/M, with amplitude



A2 and phase



2 . Note 

that 



A2 and 



2  are the amplitude and phase of 



s2(t) too. Apparently, we can obtain 

the information of 



A2 and 



2  from the set of samples )x,...,x,x( M 110  . 
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For a sinusoid we have 

 



1

T
0

T

 [Acos(wt )]2dt 
A2

2
 .                     (2.22) 

 

Mathematically, we have the following approximations when M is large:  

 

  

1
2 2

2

0 0

21
2

0

1 1
[ cos(2 )]

M

1

2

TM

i

i

M

i

i

i
x A dt

M T

A
x

M

 








  

  

 


                (2.23) 

 

Hence, we can estimate A2 as  

 

   
1

2

2

0

2ˆ
M

i

i

A x
M





   .                         (2.24) 

 

From previous results, a set of parameters )x,...,x,x( M 110   is obtained within the 

time interval obT , which reveals the amplitude of )t(s2  during this period. Let the total 

observation time be 



Ttotal  qTob and 1q . Under this circumstance we can obtain q 

sets of parameters, )x,...,x,x( M,i,i,i 110  , i = 0,1,2,..q-1, where



(x i,0,xi,1,..., x i,M 1)  is 

obtained in the time interval ( 1)ob obiT t i T   .  

Let 



2,k  be the phase of 



s2(t) at 



t  kTob  and 



A2,k  be the amplitude, and assume 

they are constants during the time interval obob T)k(tkT 1 . We can estimate 



A2,k  

with the method just derived. As a consequence, we will obtain a set of estimated 

amplitudes 2,0 2,1 2, 1( , ,..., )qA A A  . The sets of data 2,
ˆ

kA will be used to evaluate the phase 

variations of 



s2(t). The figure below explains the method. 
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Figure 2.2: Statistic concepts of the algorithm. 

 

Using the fact that  

 

2 2
2

0

2 2

1 1 '
[ cos( ) 'cos ] 'cos

2

'
'cos

2

T
A A

A wt A wt dt T AA
T T

A A
AA

 



   
        

   


  



        (2.25) 

 

Thus if the integration is available, the phase shift is calculated as  

       

22
2

1 0

' 1
[ cos( ) 'cos ]

2
cos ( )

'

T
A A

A wt A wt dt
T

AA



 


   

 


             (2.26) 

Based on the relationship of Eq. (2.26), we can define the phase shift between obkT  

and ( 1) obk T  as 

 

2, 2, 1

2 2
1

1 2

, 1 , 1,

2, 2, 1 0

1 1
cos [ ( ) ]

2

k k

M

k k k i k i

k k i

A A
x x

MA A







 

 

  
    

  

          (2.27) 

 

Consequently, we can calculate phase variation of )t(s2 from Eq. (2.27). 

total obT qT

  
t

obT

...........

p sT Nt  

.......m

 
0,0x

 

pointN

1,0x

...........

 

0,1x

2,0A

.............
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2.2 Detection of 



s1(t)  

We had derived the method to detect the phase and amplitude of 



s2(t) without the 

interference coming from 



s1(t) . The same idea can be applied to detect the phase and 

amplitude variations of 



s1(t)  without the interference coming from 



s2(t). Let 



ts
'  be the 

sampling frequency to be used to detect 



s1(t)  and assume  



ts
'  T1                              (2.28) 

where 



  is an integer. 

 

Then the sampled value of 1( )s t  is written as 

 

1 1 1 1 1 2 1 1( ) ( ') cos(2 ) cosss k s kt A f k T A          ,                   (2.29) 

 

Consider the samples of 



s2(t). Let the sampling interval be chosen as  

2' ( )s

h
t l T

W
   ,                          (2.30) 

where l , W , h are integers and (W, h) are relative prime numbers . In this case we have 

 

2 2 2 2 2 2

2 2 2 2

( ) ( ') cos[2 ( ) ]

cos[2 ( ) ] cos(2 )

s

h
s k s kt A f k l T

W

h h
A kl k A k

W W

 

   

   

    
            (2.31) 

                                     

It can be proved: 

 

1 1

2 2 2

0 0

( ) cos(2 ) 0
W W

k k

h
s k A k

W
 

 

 

         , for any 2        (2.32) 

 

Note that Eq. (2.32) is independent of 2 , indicating that we can achieve zero 

interference coming from 2 ( )s t .  
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From Eqs. (2.28) and (2.30), we obtain  

 

1
1 2

2

( )
W

wh W
T l T

w l W h


    

 
 .                (2.33) 

 

Eq. (2.33) is the requirement to optimally detect 1( )s t  while completely eliminate the 

interference of 2 ( )s t . In practice we can design the frequencies of )t(s1  and )t(s2  

such that the equality of Eq. (2.33) is satisfied for some parameters ( , , , )l W h . From 

Eqs. (2.11) and (2.33), we can obtain 

 

1

2

1
1

w W

w N l W h




  

 
 .                (2.34) 

Thus   

 

                ( ) ( ) ( 1 ) ( )W N N l W h                       (2.35) 

Let  

   
1

1
W N

W l W h
N l W h

 




 
    

  
                    (2.36) 

 

We can choose   

1

1

l

h W

  


 
                         (2.37) 

 

Eq. (2.37) is the relationship between the parameters ( , , , )l W h , which satisfies the 

requirement that (W, h) are relative prime numbers. 

 

Consider an observation interval ( 'obT ) consisting of M time blocks, given as 

 

' 'ob pT M T                             (2.38) 
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and  

' = ' 'p sT Wt                             (2.39) 

 

where '  is a fixed time delay and ' 'st  . Assume 1( )s t  slowly varies with time such 

that its phase and amplitude keeps constant within 'obT . Thus, we use a non-uniform 

sampling scheme. In the first time block, i.e., 0 'pt T  , we take W samples at 'st kt , 

k=0,1,2,…,W-1, and take zero samples within ' 's pWt t T  . From Eq. (29) and (32), the 

average value of these W samples is written as 

 

1 1

0 1 2 1 1

0 0

1 1
( ) [ ( ) ( )] cos

W W

k k

y r k s k s k A
W W


 

 

      ,         (2.40) 

where 1  is the phase of 1( )s t  at t=0.  

Next consider the time interval ' 2 'p pT t T  . Again we take W samples at 

' 'p st T jt  ,  j=0,1,2,…,W-1, and have zero samples within ' ' 2 'p s pT Wt t T   . In this 

case the sampled signal is written as  

 

1 1 1 2 2 2

1 1 1 2 2 2

( ) ( ' ')

cos[ ( ' ' ] cos[ ( ' ') ]

cos[ ( ' ' ') ] cos[ ( ' ' ') ]

p s

p s p s

s s s s

r j r T jt

A w T jt A w T jt

A w Wt jt A w Wt jt

 

   

 

     

       

 .     (2.41) 

 

Using Eq. (2.28) and (2.30), we can reformulate Eq. (2.41) as 

 

1 1 1 2 2 2( ) cos( ' ) cos(2 ' )
h

r j A w A j w
W

          .               (2.42) 

 

Since 

 

1

2 2

0

cos(2 ' ) 0
W

j

h
j w
W

  




                      (2.43) 
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for any 2 2'w   , the average value of r(j), j=0,1,2,…,W-1, is given as 

 

1

1 1 1 1

0

1
( ) cos( ' )

W

j

y r j A w
W

 




    .                 (2.44) 

 

In general, we will obtain the average for the time block ' ( 1) 'p piT t i T    as 

 

1 1 1cos[ ( ) ]iy A w i    ,                        (2.45) 

If  we take   

                         
1T

'
M

   ,                              (2.46) 

then 

1 1cos(2 )
M

i

i
y A                           (2.47) 

 

When M is large, from Eq. (2.47) we can look 0 1 1( , ,..., )My y y   as the sampled values of a 

slow-varying sinusoid whose frequency is 1/M, with amplitude 1A  and phase 1  of 1( )s t .  

 

From Eqs. (2.21) and (2.22), we can estimate A1 as  

 

1
2

1

0

2ˆ
M

i

i

A y
M





   .                        (2.48) 

 

From previous results, a set of parameters 0 1 1( , ,..., )My y y   is obtained within the 

time interval 'obT , which reveals the amplitude of 1( )s t  during this period. Let the total 

observation time be ' '

obtotalT qT  and 1q . Under this circumstance we can obtain q 

sets of parameters, 
,0 ,1 , 1( , ,..., )i i i My y y 

, i =0,1,2,..q-1, where 
,0 ,1 , 1( , ,..., )i i i My y y 

 is obtained in 

the time interval ' '( 1)
ob ob

iT t i T   . Let 
1,k be the phase of 1( )s t  at 'obt kT  and 

1,kA  be 

the amplitude, and assume they are constants during the time interval ' '( 1)
ob ob

kT t k T   . 
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We can estimate 
1,kA  with the method just derived. As a consequence, we will obtain a 

set of estimated amplitudes 1,0 1,1 1, 1( , ,..., )qA A A   . The sets of data 
1,

ˆ
kA  will be used to 

evaluate the phase variations of 1( )s t . 

 

Based on the relationship of Eq. (2.26), we also can define the phase shift of 1( )s t  

between '

ob
kT  and '( 1)

ob
k T  as 

 

1, 1

2 2
1

1,1 2

, 1 , 1,

1, 1, 1 0

1 1
cos [ ( ) ]

2

k

M
k

k k k i k i

k k i

A A
y y

MA A







 

 

  
    

  

           (2.49) 

 

Consequently, we can calculate phase variation of 1( )s t  from Eq. (2.49). 
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2.3 Simulation Results 

2.3.1 Simulation results with detection of 2 ( )s t  

In this section we will use computer simulation results to verify accuracy of the 

detection algorithm. First, we set the parameters used in simulation as the table below:  

 

 

Tab. 2.1: System Parameters for the Simulation of Detection Algorithm for 2 ( )s t . 

 

Number of samples                  N =203 

m                              3 

Phase of 1( )s t                      1 =33° 

Phase of 2 ( )s t                      2 =27° 

Frequency of 1( )s t                  1f =610 MHz 

Frequency of 2 ( )s t                  2f =609 MHz 

Sample interval                    st = 4.9261 ns 

Time blocks                       
pT =1.0001 μs 

Number of 
pT                       M =20 

Time delay                         τ = 0.082102 ns 

Observation interval                 obT = 20.002 μs 

Number of obT                      q =20 

        

 

 

Note that the parameters given above satisfy Eqs. (2.10) and (2.20), and the difference of 

two sinusoid frequencies is 1 MHz. After setting the parameters, we define the Amplitude 

Error Ratio as  
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1

,

0

1 ˆ

i

q

i k i

k
A

i

A A
q

E
A










      , i =1or 2.            (2.50) 

where 
,

ˆ
i kA  is the estimated amplitude while iA  is the actual amplitude. 

And the Phase Shift Error Ratio as 

 

2

,

0

1 ˆ
1

i

q

i k i

k

i

q
E 

 








 






     , i=1or 2.         (2.51) 

where ,
ˆ
i k  is the estimated phase shift while i  is the actual phase shift.   

 

Figure 2.3 and Figure 2.4 show the simulation results under different 2A / 1A  ratio, 

where Amplitude Error Ratio is very small between 10 1110 ~ 10  . It reveals that our 

detection algorithm works accurately.  

 

 

Figure 2.3: The average sampled values of output Xi when 1A = 2A =1. 
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Figure 2.4: Amplitude Error Ratio under different 2A / 1A . 

  

 

Because the radar system receives the signal reflecting from the target, therefore 2A , amplitude of 

2 ( )s t , may vary slowly with time in practice. Thus, we assume 2 ( )A t  is an exponential function 

 

2 2( ) (1 )

t
p

TA t A e


                                  (2.52) 

 

where p and T are constants. We set 1 2 10A A  ,  p=0.07, 0.1 ,0.5 , and 5=4 10xT  s where the 

variables p and T decide the decay of the amplitude variation. The average sampled values of output 

with amplitude variation are shown in Figure 2.5. Figure 2.6 shows the Amplitude Error Ratio of 2 ( )A t  

with different p. The amplitude varies faster when p is large. Thus the Amplitude Error Ratio increases 

in the earlier observation interval, and it becomes smaller in the later observation interval. In all the 

cases, the proposed algorithm can accurately detect the amplitude variation. 
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Figure 2.5: The average sampled values of output with 2 ( )A t  and p=0.07. 

 

 

Figure 2.6: Amplitude Error Ratio with 2 ( )A t  under different p. 
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      Next we will run the simulation for different phase shifts. In practice the phase varies on 

transmitting through air, too. The variation of phase is random. We assume 2,i  in the time interval 

( 1)ob obiT t i T     as 

 

     
2 , 2 , 1

2 , 0 2

, 1 , 2 , . . . .i i ic i q  

 

   



                   (2.53) 

 

where : 1ic   is an random variable and 0 0c  .  

       : The phase shift of each time interval ( 1)ob obiT t i T   . 

 

Note that the phase during each time interval obT  is assumed to be constant, but the phase shifts   in 

the next time interval obT , see Figure 2.7 for the random phase variation. The average sampled values of 

output ix  is shown in Figure 2.8. We find that the algorithm can detect the signal 2 ( )S t  under the 

random variation of phase.   

Figure 2.9 and Figure 2.10 show the simulation results under different   where the Amplitude 

Error Ratio and Phase Shift Error Ratio are small under this case. We can find Phase Shift Error Ratio 

rises when   is close to 180°. It is because the phase varies too large to be detected precisely.  
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Figure 2.7: The variation of phase in each time interval with  =10° and 2 =27°. 

   

 

Figure 2.8: The average sampled values of output ix  with  =10°. 
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Figure 2.9: Amplitude Error Ratio under different  . 

 

 

Figure 2.10: Phase Shift Error Ratio under different  . 
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Next we will combine amplitude and phase variations to test our detection algorithm whether it 

can work in more complex situations. Thus 2 ( )s t  is written as  

 

2 2 2 2( ) (1 ) cos( ( ))

t
p

Ts t A e w t t


                            (2.54)  

 

where 
2, 2 ( )i piT   according to Eq. (2.53).  

 

Figure 2.11 shows that the average sampled values of output ix , which follows the amplitude 

variation of 2 ( )s t accurately with time. The simulation results are shown in Figure 2.12 and Figure 2.13 

where the Amplitude Error Ratio and Phase Shift Error Ratio are small under this case.  

 

 

 

Figure 2.11: The average sampled values of output ix with p=0.07, 
5=4 10xT 

s,  =10° and 2 =27°. 
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Figure 2.12: Amplitude Error Ratio under different  . 

 

 

Figure 2.13: Phase Shift Error Ratio under different  . 
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2.3.2 Simulation results with detection of 1s (t)  

 

     We will follow the same steps as the simulation of detecting 2 ( )s t  in this section. In the 

beginning, we set the parameters of simulation as the table below:  

 

Tab. 2.2: System Parameters for the Simulation of Detection Algorithm for 1( )s t . 

 

Number of samples                 W =122 

( , , )l h                            ( 5 , 4, 121 ) 

Phase of 1( )s t                      1 =33° 

Phase of 2 ( )s t                      2 =27° 

Frequency of 1( )s t                  1f =610 MHz 

Frequency of 2 ( )s t                  2f =609 MHz 

Sample interval                    
s

't = 8.1967 ns 

Time blocks                       
p

'T =1.0001 μs 

Number of 
p

'T                      M =20 

Time delay                        τ' = 0.081967 ns 

Observation interval                 '

ob
T = 20.002 μs 

Number of '

ob
T                      q =20 

 

Note that the parameters setting above satisfy Eqs. (2.34) and (2.37). The simulation results under 

different 1A / 2A  ratios are shown in Figure 2.14 and Figure 2.15 where the amplitude and phase are 

constants with time. We can find that Amplitude Error Ratio is very small between 9 1110 ~ 10  , which 
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means the amplitude of 1( )s t can be accurately detected. 

 

Figure 2.14: The average sampled values of output iy when 1A = 2A =1. 

 

 

Figure 2.15: Amplitude Error Ratio under different 1A / 2A . 
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In the second case, we assume 1( )A t varies with time as 
1 1( ) (1 )

t
p

TA t A e


    and 1 2 10A A  ,  

p=0.07 or 0.1 or 0.5, and 5=4 10xT  s. Figure 2.16 shows Amplitude Error Ratio with different p. The 

amplitude varies faster when p is large. Thus the Amplitude Error Ratio increases in the earlier 

observation interval, and it becomes smaller in the later observation interval. Apparently, the proposed 

algorithm still can accurately detect the variation. 

 

 

 

Figure 2.16: Amplitude Error Ratio with 1( )A t  under different p. 

 

 

 Next, we assume 
1, 1, 1 , 1,2,...i i ic i q      , and

1,0 1   in the time interval ' ( 1) 'ob obiT t i T   , 

where 1ic    is a random variable and 0 0c  ,  is the phase shift of each time interval 

' ( 1) 'ob obiT t i T   . Note that the phase during each time interval 'obT is constant, but the phase varies 

  in the next time interval. Figure 2.17 and Figure 2.18 show the simulation results under different 
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 . 

 

Figure 2.17: Amplitude Error Ratio under different  . 

 

 

Figure 2.18: Phase Shift Error Ratio under different  . 
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Further, we combine all the cases above to test our detection algorithm in more complex 

situations. Here 1( )S t is written as 1 1 1 1( ) (1 ) cos( ( ))

t
p

Ts t A e w t t


    , where 
1, 1( )i piT   according to Eq. 

(2.53). The simulation results are shown in Figure 2.19 and Figure 2.20. The Amplitude Error Ratio and 

Phase Shift Error Ratio are acceptable under this case. Consequently, our algorithm can detect the 

amplitude and the phase variations of )(1 ts  and )(2 ts  under noiseless environment.    

 

 

 

 

Figure 2.19: Amplitude Error Ratio under different  . 
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Figure 2.20: Phase Shift Error Ratio under different  . 

 

 

2.4 Summary  

The proposed algorithm has two steps for the detection of the received signal. First s, we estimate 

the amplitude of )(1 ts  or )(2 ts  from the sample values using Eq. (2.24). Second, we estimate the 

phase variations of )(1 ts  or )(2 ts  between the time interval ( 1)ob obiT t i T   . It is important to 

estimate the amplitude accurately in the first step, which will affect the accuracy of phase estimation. 

From the simulation results above, we find the algorithm is more sensitive to the amplitude variation 

than the phase variation. When the amplitude varies with time, the estimation error may increase from 

910  to 310 , especially for the phase shift error. 
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Chapter 3   

Performance Analysis 

In the chapter, we discuss the performance due to frequency offset and noise. We will derive 

frequency offset effect and noise effect of our algorithm in detail, and present some simulation results to 

verify the error performance of the system. 

 

3.1 Frequency Offset Effect    

3.1.1 When 1( )s t has frequency offset 1   

In the receiver, the signal frequency might vary with time. It will affect the accuracy of the detection. 

In this section we intend to analyze the influence arising from frequency offset on detecting 2 ( )s t . When 

there is frequency offset in 1( )s t , the received signal r(t) will be 

 

   1 1 1 1 2 2 2 1 2( ) c o s [ ( ) ] c o s ( ) ( ) ( )r t A w t A w t s t s t                         (3.1) 

  

Assume )(tr  is sampled at sktt  , 1210  N,...,,k   and 1 2

1
( )

N
st m T T   , we obtain  

)()()()( 21 ksksktrkr s   

 

where                                                                                  

1 1 1 1 1

1 1 1 1 1 1 1

( ) cos[( ) ]

cos( ) cos(2 )

s

s s s

s k A w kt

k
A w kt kt A kt

N

 

    

  

     
          (3.2) 
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Consider 

           

 

 

 

(3.3)                                            

                    

Thus we can rewrite Eq. (2.14)   

1 1

0 1 2

0 0

/ 2 1
1

1 1 1 2 2

0

1 1
( ) [ ( ) ( )]

2
sin( ) sin[2 ( / 4) ] cos

4

N N

k k

N

s s

k

x r k s k s k
N N

A N k
t k N t A

N N
    

 

 





  

      

 


        (3.4)                                                                                                                                                                                                                                                     

Next consider the time interval pp TtT 2  and p sT Nt   . Again we take N samples at 

sp jtTt  , j=0,1,2,…,N-1, and have zero samples within psp TtNtT 2 . In this case Eq. (2.15) is 

written as  

 

 

 

(3.5) 

1 1 1 1 2 2 2

1 1 1 1 2 2 2

1 1 1 1 1 2 2 2

( ) ( )

cos[( )( ) ] cos[ ( ) ]

cos[ ( ) ( ) ] cos[ ( ) ]

cos[2 ( ) ( ) ] cos[ ( ) ]

p s

p s p s

s s s s s s

s s s

r j r T jt

A w T jt A w T jt

A w Nt jt Nt jt A w Nt jt

j
A w N j t A w Nt jt

N

  

     

      

 

       

           

           

1 / 2 1

1 1 1

0 0

/ 2 1

1 1 1 1 1

0

/ 2 1

1 1 1 1

0

/ 2 1

1 1

0

( ) [ ( ) ( / 2)]

/ 2
{cos(2 ) cos[2 ( / 2) ]}

2 {cos[2 / 2 ( / 4) ] cos( / 2 )}
4

2 sin( ) sin[2
4

N N

k k

N

s s

k

N

s s

k

N

s

k

s k s k s k N

k k N
A kt k N t

N N

k N
A k N t t

N

N k
A t

N

     
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 

 
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








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 

 





 1 1( / 4) ]sk N t    
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where                                                                           

                                                                                                             

           

 

 

 

 

 

         (3.6) 

 

Thus we can rewrite Eq. (2.18) as 

 

 

(3.7) 

 

In general, we will obtain the average for the time block pp T)i(tiT 1  as 

 

 

(3.8) 

  

where   

                     

/ 2 1
1

1 1 1 1 1

0

2 sin( ) sin[2 ( ) ( / 4) ]
4

N

i s s

j

A N j
x t w i iN j N t

N N
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



                  (3.9) 

 

and the time delay   is still chosen as M/T2 . 

1 / 2 1
1

1 1 1 1 1 1

0 0

2 2 2

1
( ) 2 sin( ) sin[2 ( ) ( / 4) ]

4

cos( )

N N

s s

j j

A N j
x r j t w N j N t

N N N

A w

     

 

 

 

          

 

 

2 2 2

/ 2 1
1

1 1 1 1 1

0

' cos[ ( ) ]

2 sin( ) sin[2 ( ) ( / 4) ]
4

i

N

s s

j

i i

x A w i

A N j
t w i iN j N t

N N

x x

 

     




  

        

  



1

1 1 1 1 1

0

/ 2 1

1 1 1 1 1

0

1 1 1 1

/ 2 1

1 1 1 1 1

0

1

cos[2 ( ) ( ) ]

{cos[2 ( ) ( ) ]

cos[2 / 2 ( ) ( / 2) ]}

2 {cos[2 / 2 ( ) ( / 4) ]

cos( / 2

N

s

j

N

s

j

s

N

s

j

j
A w N j t

N

j
A w N j t

N

j
w N j N t

N

j
A w N j N t

N

    

    

     

     

 













      

       

         

         

 







/ 2 1

1 1 1 1 1 1

0

)}
4

2 sin( ) sin[2 ( ) ( / 4) ]
4

s

N

s s

j

N
t

N j
A t w N j N t

N
     





         



 

33 

From Eq. (2.24) we can estimate A2 as 

 

 

 

 

 

  (3.10)  

 

where                                                   

 

                                          (3.11) 

  

Then we can estimate 
2,' kA  with the method just derived. As a consequence, we will obtain a set 

of estimated amplitudes 2,0 2,1 2, 1( ' , ' ,..., ' )qA A A  . Then we can estimate phase shift using Eq. (2.27) as 
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3.1.2 When 2 ( )s t  has frequency offset 2  

  Next, we consider 2 ( )s t  with the frequency offset 2 . Then the received signal r(t) will be 

 

1 1 1 2 2 2 2 1 2( ) cos( ) cos[( ) ] ( ) ( )r t A w t A w t s t s t                          (3.13) 
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              (3.14) 

 

Thus we can rewrite Eq. (2.14) as 
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Hence  

 

 

 (3.17) 

 

In general, we will obtain the average for the time block pp T)i(tiT 1  as 

 

                        (3.18) 
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Further Eq. (3.18) can be written as 
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pT . Further, we can estimate phase 
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3.1.3 Simulation results with frequency offset 

     After analyzing the algorithm with frequency offset mathematically, we perform the simulation in 

the following. First we consider the detection of 2 ( )s t when )t(s1  has frequency offset 1Δω . 

 

A. Frequency offset 1Δω  

     Figure 3.1 shows the Amplitude Error Ratio versus 1 1/f f  when 
1f =610 MHz and phase shift 

 =20°. The normalized frequency offset 1 1/f f  ranges from 6 410 ~ 10  , and the Amplitude Error 

Ratio is around 310  . The Phase Error Ratio under different 1 1/f f  is shown in Figure 3.2, where the 

error ratio is under 3 110 ~ 10   and the maximum phase shift error reaches 0.96° when 1 1/f f = 5
X4 10  

(∴ 2f =2440 Hz) . The simulation results are acceptable in the case.   

 

 

 

Figure 3.1: Amplitude Error Ratio under different 1 1/f f . 
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Figure 3.2: Phase Shift Error Ratio under different 1 1/f f . 

 

B. Frequency offset 2Δω  

Next, we carry out the simulation of detecting 2 ( )s t  when 2 ( )s t  has frequency offset 2Δω . 

Figure 3.3 and Figure 3.4 show the Amplitude Error Ratio and Phase Shift Error Ratio with respect to 

2 2/f f  when 2f =609 MHz and phase shift  =20° where the normalized frequency offset 2 2/f f  

ranges between 6 410 ~ 10  . We find the Phase Shift Error Ratio rises obviously, and the phase shift error 

is above 4°, even over 40°,when 2 2/f f > 6
X1 10  (∴ 2f >609 Hz). Our algorithm can’t work well in the 

condition, thus the simulation results present that the influence on estimating phase shift is large when 

2 ( )s t  has frequency offset 2Δω .  
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Figure 3.3: Amplitude Error Ratio under different 2 2/f f . 

 

 

Figure 3.4: Phase Shift Error Ratio under different 2 2/f f . 
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3.2 Noise Analysis 

Any communication systems would be affected by noise in reality. In this section, we analyze the 

performance of our algorithm in noisy environment. Our discussion is based on the simulation 

outcomes of different signal-to-noise ratio (SNR) in dB. We implement Additive white Gaussian noise 

(AWGN) to simulate the different SNR in our system.  

 

3.2.1 Noise effect 

Previously, we assume 0)t(n  for simplicity. In practice, noise exists in any communication 

system. We assume the channel is an AWGN channel and the noise ( ) ~ (0, )n t N   is a zero mean 

Gaussian noise with variance 2 . The received signal r(t) is 
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Using Eq. (2.7) and (2.9), we have 
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                    (3.23) 

Thus                                                                                                      

 

 (3.24) 

In general, we will obtain the average for the time block pp T)i(tiT 1 as 
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where   

   ( ) ,      j = 0 , 1 , 2 . . . . . N - 1  i j p sn n i T j t  .                      (3.26) 
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Then we can use equation Eqs. (2.48) and (2.49) to estimate 2,0 2,1 2, 1( ' , ' ,..., ' )qA A A   and
, 1'k k  . 

 

 

3.2.2 SNR analysis 

Here we will analyze SNR (Signal-to-noise ratio) of the proposed system. Since n(t) is a 

Gaussian noise and it’s samples ijn  is also Gaussian noise. Consider 'ix , the output of the system from 
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Consider 
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Because each 
ijn  is an AWGN, and we assume their autocorrelation function 

ijnR is the delta 

function, i.e. ( ) 0
ijnR    forτ ≠0. Thus all the noise samples are un-correlated. Furthermore, ijn  are 

independent for j=0,1,2..N-1. Thus 
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So we get 
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Finally, the SNR is given as 
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3.2.3 Simulation results under noisy environment 

    All the parameters for the simulation in this section are the same as table 2.1. In the following, we 

perform the simulation of detecting 2s (t)  under noisy environment.  

 

A. Detection of 2s (t)  

    Figure 3.5 shows Amplitude Error Ratio under the SNR from -5~ 31 (dB). Next, we test the 

simulation with another case that 2 ( )A t  is the same as Eq. (2.52). The simulation results are shown in 

Figure 3.6. Obviously, the error ratio is smaller when SNR is higher. Note that each point in the figure is 

the average of 1000 simulations.   

 

 

 

Figure 3.5: Amplitude Error Ratio under different SNR and 2A / 1A =1. 



 

43 

 

Figure 3.6: Amplitude Error Ratio with amplitude variation under different SNR and p=0.5 ,
5=4 10xT 

. 

 

 

We simulate the situation in which the variation of phase is random. We assume 2,i  in the time 

interval ( 1)ob obiT t i T     as Eq. (2.53). The simulation results are shown in Figure 3.7 and Figure 3.8. 

The Amplitude Error Ratio is acceptable under this case, but Phase Shift Error Ratio is high at low SNR. 

It presents that the detection of phase variation is more sensitive to noise effect. 
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Figure 3.7: Amplitude Error Ratio with phase variation under different SNR. 

 

 

Figure 3.8: Phase Shift Error Ratio with phase variation under different SNR. 
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In the following, we combine the amplitude and phase variation under noisy environment in the 

simulation. The results are shown in Figure 3.9 and Figure 3.10. We find that the phase shift error  

reaches 3° when SNR= -5(dB). The amplitude and phase variation have larger effect on the accuracy of 

detection algorithm under noisy environment. 

 

 

 

Figure 3.9: Amplitude Error Ratio with amplitude and phase variation under different SNR. 
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Figure 3.10: Phase Shift Error Ratio with amplitude and phase variation under different SNR. 

 

 

B. Detection of 1s (t)  

   We will follow the same steps as the simulation of detection of 2 ( )s t . Note the parameters of the 

simulation in this section are the same as table 2.2. 

   Figure 3.11 shows the Amplitude Error Ratio with amplitude variation under different SNR, where 

p=0.5 and 5=4 10xT  . The Amplitude Error Ratio with phase variation under different SNR is shown in 

Figure 3.12, and the Phase Shift Error Ratio is shown in Figure 3.13, where the phase shift is 20°. We 

find the Phase Shift Error Ratio rises with phase variation, especially at low SNR. All the performances 

above are acceptable and reasonable. The error ratio gradually decreases when SNR increase.  



 

47 

 

Figure 3.11: Amplitude Error Ratio with amplitude variation under different SNR and p=0.5 ,
5=4 10xT 

. 

 

 

Figure 3.12: Amplitude Error Ratio with phase variation under different SNR. 
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Figure 3.13: Phase Shift Error Ratio with phase variation under different SNR. 

 

Next we will combine amplitude and phase variations to test our detection algorithm. The 

simulation results are shown in Figure 3.14 and Figure 3.15. Obviously, in this complex situation, the 

Amplitude Error Ratio and Phase Shift Error Ratio will rise.    
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Figure 3.14: Amplitude Error Ratio with amplitude and phase variations under different SNR. 

 

 

Figure 3.15: Phase Shift Error Ratio with amplitude and phase variations under different SNR. 
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C. Simulation with frequency offset under noisy environment  

   In section 3.1.3 the simulation results are under noiseless condition with frequency offsets. Now 

we will test the simulation of detecting 2 ( )s t  under noisy condition. First, we will perform the 

simulation with frequency offset 1f  ( 1f =610 MHz and phase shift=20°) under two SNR (SNR= 

20 and 10 dB ). Thus, the frequency offset 1f  ranges from 61 Hz to 61 KHz. The simulation 

results are shown in Figure 3.16 and Figure 3.17. The Amplitude Error Ratio is around 310  at 

SNR= 20 dB and 10 dB. But The Phase Error Ratio is around 1 210 ~ 10   at SNR= 20 dB and 10 dB.  

 

 

 

Figure 3.16: Amplitude Error Ratio under different frequency offset 1 1/f f . 
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Figure 3.17: Phase Error Ratio under different frequency offset 1 1/f f . 

 

 

Next, we will present the simulation with frequency offset 2f  ( 2f =609 MHz and phase shift=20°) 

under two SNR (SNR= 20 and 10 dB ). Thus, the frequency offset 2f  ranges from 60.9 Hz to 60.9 

KHz. The simulation results are shown in Figure 3.18 and Figure 3.19. The Amplitude Error Ratio is 

around 210 ~ 110  at SNR= 20 dB and 10 dB. The Phase Error Ratio is near 110 ~ 2 at SNR= 20 dB and 

10 dB. The two error ratios increase as 2f  rises from 60.9 Hz to 60.9 KHz, The Phase Error Ratio 

especially. And the maximum phase shift error reaches over 40°. It can be seen that the detection of 

2 ( )s t  is more sensitive to frequency offset 2f  than frequency offset 1f . 
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Figure 3.18: Amplitude Error Ratio under different frequency offset 2 2/f f . 

 

 

Figure 3.19: Phase Error Ratio under different frequency offset 2 2/f f . 
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3.3 Summary 

In this chapter, we analyzed the detection algorithm with two different effects: frequency offset 

effect, noise effect. We ran simulations with these two effects respectively, and then a combination of 

the two. These effects appear in any communication system in practice and affect the accuracy of our 

algorithm. It can be shown that our algorithm works in all conditions except for large frequency offset 

( f ＞609 Hz ) at SNR= 20 dB. The error performance can’s be improved in that case even if increasing 

SNR. 
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Chapter 4   

Conclusions  

 

 

     In this thesis, we develop an algorithm to estimate the parameters of two closely spaced sinusoid 

signals. In Chapter 2, we describe in detail the detection algorithm. Our method, based on a simple 

sampling technique and statistic concepts, is able to detect two closely spaced sinusoid signals without 

mutual interference under ideal condition. The simulation results show that the detection of 2 ( )s t  is 

more sensitive to amplitude variation than phase variation under noiseless, and better performance is 

obtained in detecting 2 ( )s t compared to 1( )s t  due to more sampling number. All the simulation results 

show that the algorithm work well under ideal situation.  

     In Chapter 3, we analyze detail performance of our algorithm with frequency offset effect and 

noise effect. The frequency offset 2f  ranges from 60.9 Hz to 60.9 KHz, and we add AWGN to the 

input signal for SNR ranging from 20 dB to 10 dB. It shows that the detecting 2 ( )s t  is more sensitive to 

frequency offset 2f  than frequency offset 1f . In addition, the error performance is not acceptable 

when frequency offset 2f ＞609 Hz at SNR= 20 dB. 

     To sum up, we successfully estimated the parameters of two closely spaced sinusoid signals 

without complex calculations, thus low cost for receivers. The frequency difference of two signals we 

set was 1 MHz in our simulation. In the future, we will continue to analyze the range of the frequency 

difference of two signals and further improve our algorithm to accommodate large frequency offset and 

noise. 
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