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中文摘要 

   
  無線感測器網路常設置在惡劣的環境中，因此感測器有可能會出現無預警的

故障而導致接收端(fusion center)對環境判斷的準確度不穩定。針對此種情

況，最直接的方式就是感測器先傳送訓練碼(training sequences)讓接收端去偵

測是否有感測器發生故障，但此動作會增加感測器所消耗的能量，而導致由電池

來供應電源的感測器運作壽命降低。 

 

  在此論文中，我們運用編碼的技巧來使無線感測器網路能同時擁有通道估計

與感測器容錯的能力，我們將運用模擬退火法(simulation annealing)來尋找達

到最小的錯誤率聯集上限(union bound)的最佳非線性碼。之後，我們採用量化

器來對抗通道嚴重衰減(deep fading)的情況。模擬結果顯示，我們的方法可以

在不考慮感測器故障、通道估計和等化的情況下，即可於效能上媲美於有傳送訓

練碼的系統。 



Abstract

Wireless sensor networks are usually deployed in a harsh environment. Hence, the perfor-

mance of the final decision at the fusion center is not stable because some of the sensors may

be unexpectedly faulty. A straightforward technique to exclude untrustworth observations

from faulty sensors at the fusion center is to detect them based on the pre-sent training

sequences. However, the transmission of training sequences consumes additional energy, and

shortens the life cycle of the battery-supported sensors.

In this thesis, we proposed to combine channel estimation and sensor fault protection in

wireless sensor networks in terms of the coding technique. Simulation annealing is employed

to search the best non-linear code that minimizes the upper error bound. Quantization is

later added in order to eliminate the sudden performance degradation due to deep fading.

Our results show that the proposed combined scheme can compete with the the conven-

tional training-sequence-based fusion in performance but without the effort of faulty-sensor

detection, channel estimation and equalization.
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Chapter 1

Introduction

The wireless sensor network consists of a number of sensors to, e.g. detect the environmental

variations, and then transmit or relay the detection results to the base station. The base

station, serving as a fusion center, determines what phenomenon has occurred after the col-

lection of these information. A wireless sensor network must be able to function under severe

conditions so as to work in a fireplace, jungle, polluted area, or some harsh environment.

As a result, the channel of the wireless sensor network should be a noisy one. Moreover,

the sensors may be nearly out-of-battery or even faulty, and incorrect information may be

received by the base station [1, 2, 4, 5, 9]. This motivates our research to search for an error

correcting code for use of the wireless sensor network with acceptable performance that is

robust to sensor faults [3, 12].

A straightforward method to prevent the performance degradation from unexpect sensor

faults in a time-varying environment is to transmit a sequence of training bits for faulty

sensor detection. However, the drawback of this method is that part of the transmission

energy that is precious to the battery-supported sensors will be consumed by transmitting

the training sequence.

In 2002, Skoglund et al proposed to use computer-searched nonlinear codes for combined

1



channel estimation and error protection in the slow fading channels [10] in order to release

the power consumption on the training sequence. The nonlinear codes were searched by way

of the simulated annealing technique [8]. They found under the presumption of fixed effective

code rate that the best non-linear code will result in apparently better performance than

a benchmark system with a certain number of training bits. In certain cases, performance

improvement can be up to 2 dB.

In this thesis, we consider to apply Skoglund’s concept to the wireless sensor networks,

i.e. to search for the best code design for combined channel estimation and sensor-fault

protection. The objective is to provide good fault-tolerant capability for the wireless sensor

networks.

The rest of the thesis is organized as follows. In Chapter 2, we will introduce the system

model, derive the union bound of the pairwise error probability, and characterize the method

of the code search. In Chapter 3, numerical results are presented, followed by remarks on

these results. In Chapter 4, quantization in fusion center. Summary and conclusion appear

in Chapter 5.
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Chapter 2

Preliminaries

2.1 System Models

In the system we considered, there are M environmental hypotheses, H1, H2, · · · , HM , and K

sensors. When a sensor realizes that the most probable hypothesis is H` upon the reception

of its observation, it will transmit a codeword corresponding to hypothesis H` according to

the pre-designed codebook. In notations, we employ

C =
[
b1 b2 · · · bK

]
N×K

to represent the transmitted code matrix of the K wireless sensors, where

bi =




bi,1

bi,2
...

bi,N




is the transmitted codeword of sensor i, and bi ∈ {±1}N . Given that the true hypothesis is

H`, the probability of sensor i favoring hypothesis H˜̀ is denoted by P
(i)
˜̀|` .

The received complex matrix at the fusion center is

R =
[
r1 r2 · · · rK

]
L×K

,

3



Figure 2.1: System model of wireless sensor networks

where

ri =




hi,1 0 0 0 · · · 0
...

. . . . . . . . .
...

hi,P · · · hi,1 0 · · · 0

0 hi,P · · · hi,1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 hi,P · · · hi,1
...

. . . . . . . . .
...

0 0 0 · · · 0 hi,P




L×N

bi + ni, (2.1)

L = N + P − 1, the channel coefficients

hi =




hi,1
...

hi,P




are assumed constant over the transmission of codeword bi, and ni is the zero-mean complex

Gaussian noise over the ith wireless channel link. It can be easily verified that we can change

Eq. (2.1) to:

ri = Bihi + ni,

4



where

Bi =




bi,1 0 · · · 0
bi,2 bi,1 · · · 0
...

. . . . . .
...

bi,P bi,P−1 · · · bi,1
...

. . . . . .
...

bi,N bi,N−1 bN−P+1
...

. . . . . .
...

0 0 · · · bi,N




L×P

As a result,

R =
[
r1 r2 · · · rK

]
=

[
B1h1 B2h2 · · · BKhK

]
+ N

where N =
[
n1 n2 · · · nK

]
.

Based upon the received matrix R, the maximum-likelihood (ML) decision for the true

hypothesis is given by:

ˆ̀ = arg min
1≤`≤M

K∑

k=1

∥∥∥rk − B(`)
k hk

∥∥∥
2

= arg min
1≤`≤M

K∑

k=1

∥∥∥rk − P(`)
Bk

rk

∥∥∥
2

, (2.2)

where P(`)
Bk

= B(`)
k [(B(`)

k )TB(`)
k ]−1(B(`)

k )T , and the non-zero column components of matrix B(`)
k

is the codeword b
(`)
k for sensor k with respect to hypothesis H`.

2.2 Pairwise-Error-Probability Union Bound

Under Rayleigh Fadings

In this section, we derive the pairwise error probability bound of the wireless sensor network

considered.

The detection error Pe at the fusion center can be given by:

Pe =
M∑

m=1

Pr(Hm) Pr(ˆ̀ 6= m|Hm).

5



Then, by denoting the local decision at sensor i by si, we obtain:

Pr(ˆ̀ 6= m|Hm)

=
M∑

`1=1

M∑

`2=1

· · ·
M∑

`K=1

Pr(ˆ̀ 6= m|Hm, s1 = H`1 , s2 = H`2 , · · · , sK = H`K
)

×Pr(s1 = H`1 , s2 = H`2 , · · · , sK = H`K
|Hm)

=
M∑

`1=1

M∑

`2=1

· · ·
M∑

`K=1

Pr(ˆ̀ 6= m|Hm, s1 = H`1 , s2 = H`2 , · · · , sK = H`K
)

×Pr(s1 = H`1|Hm) Pr(s2 = H`2|Hm) · · ·Pr(sK = H`K
|Hm)

=
M∑

`1=1

M∑

`2=1

· · ·
M∑

`K=1

Pr(ˆ̀ 6= m|Hm, s1 = H`1 , s2 = H`2 , · · · , sK = H`K
)P

(1)
`1|mP

(2)
`2|m · · ·P

(K)
`K |m

(2.3)

Because the true hypothesis Hm, the transmitted code matrix at the local sensors, and the

received code matrix at the fusion center form a Markov chain, Pr(ˆ̀ 6= m|Hm, s1 = H`1 , s2 =
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H`2 , · · · , sK = H`K
) inside Eq. (2.3) can be further reduced to:

Pr(ˆ̀ 6= m|Hm, s1 = H`1 , s2 = H`2 , · · · , sK = H`K
)

= Pr(ˆ̀ 6= m|s1 = H`1 , s2 = H`2 , · · · , sK = H`K
)

= Pr

(
K∑

k=1

∥∥∥rk − P(m)
Bk

rk

∥∥∥
2

> min
1≤`≤M

K∑

k=1

∥∥∥rk − P(`)
Bk

rk

∥∥∥
2

∣∣∣∣∣s1 = H`1 , s2 = H`2 , · · · , sK = H`K

)

= Pr

(
K∑

k=1

∥∥∥rk − P(m)
Bk

rk

∥∥∥
2

>

K∑

k=1

∥∥∥rk − P(1)
Bk

rk

∥∥∥
2

OR
K∑

k=1

∥∥∥rk − P(m)
Bk

rk

∥∥∥
2

>

K∑

k=1

∥∥∥rk − P(2)
Bk

rk

∥∥∥
2

OR · · · OR
K∑

k=1

∥∥∥rk − P(m)
Bk

rk

∥∥∥
2

>

K∑

k=1

∥∥∥rk − P(M)
Bk

rk

∥∥∥
2

∣∣∣∣∣s1 = H`1 , s2 = H`2 , · · · , sK = H`K

)

≤
M∑

`=1, 6̀=m

Pr

(
K∑

k=1

∥∥∥rk − P(m)
Bk

rk

∥∥∥
2

>

K∑

k=1

∥∥∥rk − P(`)
Bk

rk

∥∥∥
2

∣∣∣∣∣s1 = H`1 , s2 = H`2 , · · · , sK = H`K

)

where rk = B(`k)
k hk + nk is the received vector due to the transmission of codeword b

(`k)
k .

Thus,

Pr(ˆ̀ 6= m|Hm, s1 = H`1 , s2 = H`2 , · · · , sK = H`K
)

≤
M∑

`=1, 6̀=m

Pr

(
K∑

k=1

(∥∥∥rk − P(m)
Bk

rk

∥∥∥
2

−
∥∥∥rk − P(`)

Bk
rk

∥∥∥
2
)

> 0

∣∣∣∣∣s1 = H`1 , s2 = H`2 , · · · , sK = H`K

)

=
M∑

`=1, 6̀=m

Pr

(
K∑

k=1

rH
k

(
P(`)

Bk
− P(m)

Bk

)
rk > 0

∣∣∣∣∣ s1 = H`1 , s2 = H`2 , · · · , sK = H`K

)
(2.4)

Observe that under sk = H`k
, the covariance matrix Srk

of rk is Srk
= B(`k)

k Shk
(B(`k)

k )T +

σ2
nk
IL, where Shk

is the covariance matrix of hk, and IL is the L× L identity matrix. Then,

7



by denoting the eigenvalues and eigenvectors of the real and symmetric matrix S1/2
rk (P(`)

Bk
−

P(m)
Bk

)S1/2
rk by {λn,k = λn,k(`,m|`k)}L

n=1 and {qn,k = qn,k(`, m|`k)}L
n=1 respectively, we have:

S1/2
rk

(P(`)
Bk
− P(m)

Bk
)S1/2

rk
=

L∑
n=1

λn,kqn,kq
T
n,k.

It immediately follows that:

rH
k (P(`)

Bk
− P(m)

Bk
)rk =

(
S−1/2

rk
rk

)H S1/2
rk

(P(`)
Bk
− P(m)

Bk
)S1/2

rk

(
S−1/2

rk
rk

)

=
L∑

n=1

λn,k

∣∣qT
n,kS−1/2

rk
rk

∣∣2

=
L∑

n=1

λn,k |Xn,k|2 , (2.5)

where

Xn,k = Xn,k(`, m|`k) = qT
n,kS−1/2

rk
rk.

Note that under the premise that {hk}K
k=1 and {nk}K

k=1 are independent zero-mean com-

plex Gaussian random vectors with independent components and are independent to each

other, Xn,k becomes zero-mean complex Gaussian distributed with unit variance, and is in-

dependent for different n and k, which implies that {|Xn,k|2}1≤n≤L,1≤k≤K are independent

χ2-distributed with two degree of freedom.

To continue the derivation, we assume without loss of generality that:

1. there are L̄ different non-zero eigenvalues in {λn,k}1≤n≤L,1≤k≤K , denoted by {λ̄`}L̄
`=1

with λ̄1 > λ̄2 > · · · > λ̄L̄;

2. the individual orders of multiplicity of {λ̄`}L̄
`=1 are {k`}L̄

`=1.

As a result, the sum of (2.5) can be rewritten as:

K∑

k=1

rH
k (P(`)

Bk
− P(m)

Bk
)rk =

K∑

k=1

L∑
n=1

λn,k |Xn,k|2

=
L̄∑

`=1

λ̄` · χ2(2k`),

8



where χ2(2k) is χ2-distributed with 2k degree of freedom, and

E

[
exp

{
jt

K∑

k=1

rH
k (P(`)

Bk
− P(m)

Bk
)rk

}]
=

L̄∏
n=1

(
1− 2jλ̄nt

)−kn/2
, (2.6)

where j denotes the imaginary part. Resume the derivation in (2.5):

Pr(ˆ̀ 6= m|Hm, s1 = H`1 , s2 = H`2 , · · · , sK = H`K
)

≤
M∑

`=1, 6̀=m

Pr

(
K∑

k=1

rH
k

(
P(`)

Bk
− P(m)

Bk

)
rk > 0

∣∣∣∣∣ s1 = H`1 , s2 = H`2 , · · · , sK = H`K

)

=
M∑

`=1, 6̀=m

1

2π

∫ ∞

0

(∫ ∞

−∞

L̄∏
n=1

(
1− 2jλ̄nt

)−kn/2
e−jtrdt

)
dr. (2.7)

Note again that {λ̄n = λ̄n(`,m)}L̄
n=1 is a function of `, m and

s =




s1

s2
...

sK


 .

In the special case of Rayleigh fading channels, where {hk}K
k=1 are assumed zero-mean Gaus-

sian distributed, (2.7) can be further derived as [7]:

Pr(ˆ̀ 6= m|Hm, s1 = H`1 , s2 = H`2 , · · · , sK = H`K
)

≤
M∑

`=1, 6̀=m

1

2π

∫ ∞

0

(∫ ∞

−∞

L̄∏
n=1

(
1− 2jλ̄nt

)−kn/2
e−jtrdt

)
dr

=
M∑

`=1, 6̀=m

L̄∑
n=1

1

(kn − 1)!

[
∂(kn−1)

∂x(kn−1)
Fn(x)

]

x=λ̄n

,

where

Fn(x) = x
∑L̄

i=1 ki−1

L̄∏

u=1,u6=n

(x− λ̄u)
−ku .

We finally conclude:

Pe ≤
M∑

m=1

Pr(Hm)
M∑

`1=1

M∑

`2=1

· · ·
M∑

`K=1

P
(1)
`1|mP

(2)
`2|m · · ·P

(K)
`K |m

M∑

`=1, 6̀=m

L̄∑
n=1

1

(kn − 1)!

[
∂(kn−1)

∂x(kn−1)
Fn(x)

]

x=λ̄n

.

(2.8)
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2.2.1 Union Bound Under Rayleigh Fadings With Perfect Sensor
Observations

By adding the perfect-sensor-observation assumption that P
(i)
`|m = 1 when ` = m, (2.8)

reduces to:

Pe ≤
M∑

m=1

Pr(Hm)
M∑

`=1, 6̀=m

L̄∑
n=1

1

(kn − 1)!

[
∂(kn−1)

∂x(kn−1)
Fn(x)

]

x=λ̄n

, (2.9)

where {λ̄n}L̄
n=1 are now only dependent on ` and m, and the local decisions always equal

s =




s1

s2
...

sK


 =




Hm

Hm
...

Hm


 .

2.2.2 Union Bound Under Rayleigh Fadings With Faulty Sensors

In this section, we rederive the union bound under Rayleigh fadings with faulty sensors as

similarly to the previous two sections. For simplicity, we assume that the first sensor is

faulty, namely b1 = c is nothing to do with the local observation and the true hypothesis.

Again, we begin with:

Pe =
M∑

m=1

Pr(Hm) Pr(ˆ̀ 6= m|Hm)
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Then, denoting by si the local decision at sensor i, we obtain:

Pr(ˆ̀ 6= m|Hm)

=
∑

c∈{±1}N

M∑

`2=1

M∑

`3=1

· · ·
M∑

`K=1

Pr(ˆ̀ 6= m|Hm, b1 = c, s2 = H`2 , · · · , sK = H`K
)

×Pr(b1 = c, s2 = H`2 , · · · , sK = H`K
|Hm)

=
∑

c∈{±1}N

M∑

`2=1

M∑

`3=1

· · ·
M∑

`K=1

Pr(ˆ̀ 6= m|Hm, b1 = c, s2 = H`2 , · · · , sK = H`K
)

×Pr(b1 = c) Pr(s2 = H`2|Hm) · · ·Pr(sK = H`K
|Hm)

=
∑

c∈{±1}N

M∑

`2=1

M∑

`3=1

· · ·
M∑

`K=1

Pr(ˆ̀ 6= m|Hm, b1 = c, s2 = H`2 , · · · , sK = H`K
)

×Pr(b1 = c)P
(2)
`2|m · · ·P

(K)
`K |m. (2.10)

Hence, all the procedures of the previous two sections follow except that P
(1)
`1|m is replaced

by Pr(b1 = c).

As an example, for stuck-at-one fault,

Pr


b1 =




−1
−1
...
−1





 = 1.

For random fault,

Pr (b1 = c) =
1

2N

for every c ∈ {±1}N .

2.3 Code Search

Simulated annealing [8] is a popular algorithm for finding the optimum solution of certain

problems. It mimics a physical phenomenon about temperature control. Specifically, a

system containing high entropy at high temperature is set at the beginning. Then, the
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system temperature is cooled down gradually at each iteration until a stable solution at low

temperature is reached.

Here, we employ the simulated annealing algorithm to find the optimum codebook in

our wireless sensor network system. The error probability bound in (2.8) is regarded as the

system entropy. In other words, the codebook has high error probability bound value when

the temperature is high. During the procedure, the error probability bound is supposed to

be cooled down until the target codebook is found.

In order to further simplify the code search process, we found that the bound in (2.4)

(equivalently, (2.11)) can be further upper-bounded by:

Pr(ˆ̀ 6= m|Hm, s1 = H`1 , s2 = H`2 , · · · , sK = H`K
)

≤
M∑

`=1, 6̀=m

Pr

(
K∑

k=1

rH
k

(
P(`)

Bk
− P(m)

Bk

)
rk > 0

∣∣∣∣∣ s1 = H`1 , s2 = H`2 , · · · , sK = H`K

)
(2.11)

≤
M∑

`=1, 6̀=m

K∑

k=1

Pr
(

rH
k

(
P(`)

Bk
− P(m)

Bk

)
rk > 0

∣∣∣ s1 = H`1 , s2 = H`2 , · · · , sK = H`K

)

=
M∑

`=1, 6̀=m

K∑

k=1

Pr
(

rH
k

(
P(`)

Bk
− P(m)

Bk

)
rk > 0

∣∣∣ sk = H`k

)
. (2.12)

Equation (2.12), when it is regarded as an alternative entropy function for simulated an-

nealing, then indicates that the sub-codebook for each sensor can be searched separately,

thereby greatly reducing the complexity for codebook search. Our simulates showed that in

those cases we considered, the resultant codebook by minimizing the global criterion (2.11)

is almost no different from that by minimizing (2.12). As an example, Figure 2.2 shows that

for sixty different codes tested, the two bounds, i.e. (2.11) and (2.12), have the same trend in

their quantities, which confirmed that the code that minimizes either (2.11) or (2.12) should

be the same among these sixty randomly chosen codes. Figure 2.3 indicates that under two

sensors, codeword length N = 5 and two hypothesis (abbreviated as S2N5H2 in the title of

the figure), the best code that minimizes (2.12) performs almost the same as the one that

12
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Figure 2.2: The bounds in (2.11) (red points) and (2.12) (green points) for sixty different
codes.

minimizes (2.11).
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Figure 2.3: Performances of the best codes searched in terms of different union bound
criterions.
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Chapter 3

Simulation Results

In this chapter, we will examine the performance of the design that combines channel esti-

mation and sensor fault protection in wireless sensor network. The channel coefficients hi

in the wireless link between sensor i and the fusion center is assumed to be independently

and identically zero-mean complex Gaussian distributed with memory order (P − 1) = 1

and E[|hi,1|2] = E[|hi,2|2] = 1/2, and {hi}K
i=1 are also independent across sensors. The prior

probability for each hypothesis is assumed equal. The operating signal-to-noise ratio (SNR)

for the codeword search introduced in Section 2.3 is set to be 10 dB. Since

PB = B[BTB]−1BT = (−B)[(−B)T (−B)]−1(−B)T = P−B,

the fusion center cannot differentiate the transmissions between b and −b. For this reason,

we will fix b1 as −1 in the code design. Finally, when sensor faults occur, we assume that

the fusion center is unaware of which one is out of control.

3.1 Parameter Determination for Least Square (LS)

Estimation

Based upon the channel model in Chapter 2.1, namely,

R =
[
r1 r2 · · · rK

]
=

[
B1h1 B2h2 · · · BKhK

]
+ N,
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Figure 3.1: Performances of hypothesis detection based on LS estimate of channel coefficients
in terms of training sequences. Ten sensors, each transmitting ten bits, and two hypotheses
are assumed. In the legend, LS(x, y) represents that x training bits and y code bits are
transmitted.
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where N are white and Gaussian, we obtain that for known training sequences Bk at sensor

k, the least square (LS) estimate of the channel coefficients are given by [11]:

ĥk = (BT
kBk)

−1BT
k rk

We can then use the estimate channel coefficients to determine the hypothesis as:

ˆ̀= arg min
{H`}

K∑

k=1

∥∥∥rk − B(`)
k hk

∥∥∥
2

.

Figure 3.1 summarizes the simulations for different ratio of training bits subject to fixed

transmission length of 10 bits per sensor. The codewords for two hypotheses are respectively

all-negative-one and all-positive-one sequences. The training sequence is taken to be all-

negative-one. Our result indicates that the choice of four training bits, followed by six

information bits, results in the best performance. We will accordingly adopt this ratio

when the hypothesis-detection-based-on-LS-channel-estimate scheme (hereafter, abbreviated

as the LSE scheme) is compared with the combined-channel-estimation-and-sensor-fault-

protection scheme (hereafter, abbreviated as the COM scheme).

Throughout this chapter, “LS” in the legend of the figure will be reserved to denote the

hypothesis-detection-based-on-LS-channel-estimate scheme except otherwise stated. Specif-

ically, “LS(x, y)” represents the hypothesis-detection-based-on-LS-channel-estimate scheme

with x training bits and y code bits. In addition, “Nx”, “Sy” and “Hz” (either in the figure

title or in the figure legend) will respectively denote “x bits transmitted per sensor”, “y

sensors” and “z hypotheses”.

3.2 Deep Fade Effect Due to Soft-Decision

Figures 3.2–3.9 summarizes the comparison of the hypothesis detection error probabilities

for the LSE and the COM schemes. These results indicate that in fault-free situation, the
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COM scheme always perform better than the respective equal-length LSE scheme, when

the total number of transmitted bits (i.e., the product of the sensor number, S, and the

number of the transmitted bits per sensor, N) is less than 100. Further growth of S×N

up to 100 will induce a sudden performance degradation at SNR= −9 dB for the COM

scheme such as S5H2:N20 in Fig. 3.3. We then notice that the SNR break points of the

sudden performance degradation for the COM scheme will increase as S×N grows (cf. Table

3.1). An interpretation of this sudden performance degradation is that in absence of channel

estimation and equalization, the soft-decision based on the criterion of

ˆ̀= arg min
1≤`≤M

K∑

k=1

∥∥∥rk − P(`)
Bk

rk

∥∥∥
2

(3.1)

may suffer the so-called “deep fading” effect, under which the correct codeword may be

removed simply because its accumulated metric
∑K

k=1 ‖rk − P(`)
Bk

rk‖2 is slightly worse than

that of some other codeword by few unexpected deep fadings. The more the total number of

the transmitted bits, the higher the probability that the deep fading occurs. This explains

the reason why the SNR break points of the sudden performance degradation become larger

when S ×N increases.

Figures 3.10–3.13 also confirm our interpretation on sudden performance degradation of

the soft-decision COM scheme. By employing hard-decision, where {rk}K
k=1 is first binary-

quantized into {±1} before taking into (3.1), the sudden performance degradation of the

COM scheme disappears as anticipated, and therefore, the hard-decision COM scheme always

outperforms the equal-length hard-decision LSE scheme.

Next, we re-perform the simulations in Figs. 3.2–3.9 by introducing one faulty sensor, and

summarize them in Figs. 3.14-3.21. The COM schemes again outperform the LSE schemes

except for the sudden performance degradation due to deep fading effect. The SNR break

points at each figure remains exactly the same. In addition, an error floor phenomenon for

the COM scheme appears due to that the fusion center is unaware of which sensor is faulty.
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Table 3.1: The SNRs corresponding to sudden performance degradation of the COM scheme.

S 5 10 8 5 10 8 8 10 10
N 20 10 15 25 15 20 25 20 25

S×N 100 100 120 125 150 160 200 200 250

Sudden degraded SNR
break point (dB)

-9 -9 -8 -8 -7 -7 -6 -6 -5

See Fig. 3.3 3.5 3.4 3.3 3.5 3.4 3.4 3.5 3.5
Also see Fig. 3.8 3.6 3.7 3.9 3.7 3.8 3.9 3.8 3.9

Since the LSE scheme can detect the faulty sensor by means of the training sequence, the

fusion can exclude those untrustworthy receptions, and hence, no error floor occurs in their

performance curves.

In Figs. 3.22-3.25, we refine the LSE schemes as the fusion only uses the training bits

to do channel estimation, and no detection of faulty sensors is conducted. As anticipated,

the error floors appear as well for the LSE schemes. Yet, because the information-bearing

bits of the LSE schemes are shorter than those of the COM schemes, the error floor level

of the LSE schemes is considerably higher than the respective COM schemes. This results

hint that without the faulty sensor detection, the COM schemes are indeed more robust at

medium-to-high SNRs.

According to Figs. 3.26-3.29, by ignoring the sudden performance degradation at low

SNRs and the error flooring at high SNRs, the COM schemes survive 20% sensor faulty

ratio when they are compared with the LSE schemes.

Figures 3.30–3.49 repeats the previous simulations with four hypotheses. Since the results

show basically the same behaviors, their remarks are omitted.
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Figure 3.2: Performances of hypothesis detection. “S3H2” represents three sensors and two
hypotheses are assumed in this figure.
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Figure 3.3: Performances of hypothesis detection. “S5H2” represents five sensors and two
hypotheses are assumed in this figure.

21



−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

H
yp

ot
he

se
s 

E
rr

or
 P

ro
ba

bi
lit

y

S8H2

 

 
COM−N10
COM−N15
COM−N20
COM−N25
LSE(4,6)
LSE(6,9)
LSE(8,12)
LSE(10,15)

Figure 3.4: Performances of hypothesis detection. “S8H2” represents eight sensors and two
hypotheses are assumed in this figure.
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Figure 3.5: Performances of hypothesis detection. “S10H2” represents ten sensors and two
hypotheses are assumed in this figure.
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Figure 3.6: Performances of hypothesis detection. “N10H2” represents 10 bits per sensor
and two hypotheses are assumed in this figure.
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Figure 3.7: Performances of hypothesis detection. “N15H2” represents 15 bits per sensor
and two hypotheses are assumed in this figure.
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Figure 3.8: Performances of hypothesis detection. “N20H2” represents 20 bits per sensor
and two hypotheses are assumed in this figure.
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Figure 3.9: Performances of hypothesis detection. “N25H2” represents 25 bits per sensor
and two hypotheses are assumed in this figure.
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Figure 3.10: Performances of hypothesis detection. “S3H2 hard decision” represents three
sensors, two hypotheses, hard-decision fusion are assumed in this figure.
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Figure 3.11: Performances of hypothesis detection. “S5H2 hard decision” represents five
sensors, two hypotheses, hard-decision fusion are assumed in this figure.
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Figure 3.12: Performances of hypothesis detection. “S8H2 hard decision” represents eight
sensors, two hypotheses, hard-decision fusion are assumed in this figure.
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Figure 3.13: Performances of hypothesis detection. “S10H2 hard decision” represents ten
sensors, two hypotheses, hard-decision fusion are assumed in this figure.
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Figure 3.14: Performance of hypothesis detection. “S3H2 random fault” represents three
sensors, two hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.15: Performance of hypothesis detection. “S5H2 random fault” represents five
sensors, two hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.16: Performance of hypothesis detection. “S8H2 random fault” represents eight
sensors, two hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.17: Performance of hypothesis detection. “S10H2 random fault” represents ten
sensors, two hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.18: Performance of hypothesis detection. “N10H2 random fault” represents 10 bits
per sensor, two hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.19: Performance of hypothesis detection. “N15H2 random fault” represents 15 bits
per sensor, two hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.20: Performance of hypothesis detection. “N20H2 random fault” represents 20 bits
per sensor, two hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.21: Performance of hypothesis detection. “N25H2 random fault” represents 25 bits
per sensor, two hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.22: Performance of hypothesis detection. “S3H2 random fault(without sensor fault
detection)” represents three sensors, two hypotheses, one random faulty sensor, and no
faulty-sensor detection at the LSE fusion are assumed in this figure.
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Figure 3.23: Performance of hypothesis detection. “S5H2 random fault(without sensor fault
detection)” represents five sensors, two hypotheses, one random faulty sensor, and no faulty-
sensor detection at the LSE fusion are assumed in this figure.
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Figure 3.24: Performance of hypothesis detection. “S8H2 random fault(without sensor fault
detection)” represents eight sensors, two hypotheses, one random faulty sensor, and no faulty-
sensor detection at the LSE fusion are assumed in this figure.
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Figure 3.25: Performance of hypothesis detection. “S10H2 random fault(without sensor
fault detection)” represents ten sensors, two hypotheses, one random faulty sensor, and no
faulty-sensor detection at the LSE fusion are assumed in this figure.
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Figure 3.26: Performance of hypothesis detection. “S10N10H2” represents ten sensors, 10
bits per sensor and two hypotheses are assumed in this figure.
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Figure 3.27: Performance of hypothesis detection. “S10N15H2” represents ten sensors, 15
bits per sensor and two hypotheses are assumed in this figure.
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Figure 3.28: Performance of hypothesis detection. “S10N20H2” represents ten sensors, 20
bits per sensor and two hypotheses are assumed in this figure.
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Figure 3.29: Performance of hypothesis detection. “S10N25H2” represents ten sensors, 25
bits per sensor and two hypotheses are assumed in this figure.
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Figure 3.30: Performances of hypothesis detection. “S3H4” represents three sensors and four
hypotheses are assumed in this figure.
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Figure 3.31: Performances of hypothesis detection. “S5H4” represents five sensors and four
hypotheses are assumed in this figure.
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Figure 3.32: Performances of hypothesis detection. “S8H4” represents eight sensors and four
hypotheses are assumed in this figure.
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Figure 3.33: Performances of hypothesis detection. “S10H4” represents ten sensors and four
hypotheses are assumed in this figure.
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Figure 3.34: Performances of hypothesis detection. “N10H4” represents 10 bits per sensor
and four hypotheses are assumed in this figure.
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Figure 3.35: Performances of hypothesis detection. “N15H4” represents 15 bits per sensor
and four hypotheses are assumed in this figure.
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Figure 3.36: Performances of hypothesis detection. “N20H4” represents 20 bits per sensor
and four hypotheses are assumed in this figure.
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Figure 3.37: Performances of hypothesis detection. “N25H4” represents 25 bits per sensor
and four hypotheses are assumed in this figure.
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Figure 3.38: Performance of hypothesis detection. “S3H4 random fault” represents three
sensors, four hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.39: Performance of hypothesis detection. “S5H4 random fault” represents five
sensors, four hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.40: Performance of hypothesis detection. “S8H4 random fault” represents eight
sensors, four hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.41: Performance of hypothesis detection. “S10H4 random fault” represents ten
sensors, four hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.42: Performance of hypothesis detection. “N10H4 random fault” represents 10 bits
per sensor, four hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.43: Performance of hypothesis detection. “N15H4 random fault” represents 15 bits
per sensor, four hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.44: Performance of hypothesis detection. “N20H4 random fault” represents 20 bits
per sensor, four hypotheses and one random faulty sensor are assumed in this figure.
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Figure 3.45: Performance of hypothesis detection. “N25H4 random fault” represents 25 bits
per sensor, four hypotheses and one random faulty sensor are assumed in this figure.

63



−10 −8 −6 −4 −2 0 2 4 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

S10N10H4

SNR(dB)

H
yp

ot
he

se
s 

E
rr

or
 P

ro
ba

bi
lit

y

 

 
COM−correct
COM−1 fault
COM−2 fault
COM−3 fault
LSE−correct
LSE−1 fault
LSE−2 fault
LSE−3 fault

Figure 3.46: Performance of hypothesis detection. “S10N10H4” represents ten sensors, 10
bits per sensor and four hypotheses are assumed in this figure.
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Figure 3.47: Performance of hypothesis detection. “S10N15H4” represents ten sensors, 15
bits per sensor and four hypotheses are assumed in this figure.
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Figure 3.48: Performance of hypothesis detection. “S10N20H4” represents ten sensors, 20
bits per sensor and four hypotheses are assumed in this figure.
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Figure 3.49: Performance of hypothesis detection. “S10N25H4” represents ten sensors, 25
bits per sensor and four hypotheses are assumed in this figure.
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Chapter 4

Amendment to Deep Fading by
Quantization

In chapter 3, we observe the sudden performance degradation due to deep fading at low SNR

in our COM scheme when S × N is more than 100. This observation cut short the value

of the COM scheme at low SNR when it is compared with the conventional LSE scheme.

In principle, the deep fading effect will make the channel coefficients become transiently

small, and hence, contribute a large untrustworthy soft branch metric value to the entire

metric sum on which the soft fusion decision is based. By employing hard-decision fusion,

the influence of such transient fades to the overall metric sum can be limited, and the sudden

performance degradation is anticipated to be alleviated. Simulations in Figs. 3.10-3.13 have

already confirmed our anticipation. However, the hard-decision fusion, although eliminating

the deep-fade sudden performance degradation, unfortunately performs a little worse than

the LSE scheme.

In this chapter, we attempt to perform a finer quantization (than the hard-decision one)

at the fusion center such that better performance for the COM scheme (than the soft-decision

LSE scheme) can be obtained without the deep fading performance degradation.
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Table 4.1: The optimum uniform step size for gaussian random variable

Number of quantization bits 1 2 3 4 5
Number of output levels 2 4 8 16 32

Optimum step size 1.596 0.9957 0.586 0.3352 0.1881

4.1 Quantization of The Reception

According to the channel model in Chapter 2, the received vector r is complex Gaussian

distributed. We can then adopt the method in [6] to find the optimum uniform step size

that minimizes the mean square quantization error as listed in Table 4.1.

Figure 4.1 shows that both 2-bit and 3-bit quantization can help preventing the sudden

performance degradation due to deep fading. Even at high SNRs, the 3-bit quantization at

the fusion center is only 0.2 dB inferior to the soft-decision fusion.

Figures 4.2 and 4.3 compare the performances of 3-bit quantized COM fusion and LSE

fusion with/without sensor fault. As anticipated, the 3-bit quantized COM scheme performs

better than the LSE scheme at medium to high SNR; however, even almost eliminating the

deep fading effect, it still performs a little worse than the LSE scheme at low SNR.

For a fair comparison, we also provide figures in which both COM and LSE fusion deci-

sions are based on 3-bit quantized reception. Figures 4.4 and 4.5 compare the performances

of 3-bit quantized COM fusion and 3-bit quantized LSE fusion with/without sensor fault.

In such case, the performance of the 3-bit quantized COM scheme is apparently better than

the 3-bit quantized LSE scheme except for the SNR range where sudden performance drop

due to deep fading occurs.

Notably, in the above four figures, when S × N exceeds 250, the sudden performance

degradation still occurs at low SNR. As the decision criterion in (2.2) can be equivalently
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Figure 4.1: Performance of quantized and soft-decision COM fusions. “S10H2” represents
ten sensors and two hypotheses are assumed in this figure. “3bitsQ(r)” means 3-bit quantizer
is used in the quantization of reception r.

transformed to

ˆ̀ = arg min
1≤`≤M

K∑

k=1

∥∥∥rkr
H
k − P(`)

Bk

∥∥∥
2

,

and the contribution of transient untrustworthy metric to the criterion sum is actually

through the product form of two receptions, it is likely that performing quantization on

each product of the receptions would be more reasonable and direct, for which the idea will

be examined in the next section.

70



−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

H
yp

ot
he

se
s 

E
rr

or
 P

ro
ba

bi
lit

y

S10H2 COM 3bitsQ(r) & LSE soft−decision

 

 
COM−N10 3bitsQ(r)
COM−N15 3bitsQ(r)
COM−N20 3bitsQ(r)
COM−N25 3bitsQ(r)
LSE(4,6)
LSE(6,9)
LSE(8,12)
LSE(10,15)

Figure 4.2: Performance of 3-bit quantized COM fusion and LSE fusion. “S10H2” represents
ten sensors and two hypotheses are assumed in this figure. “3bitsQ(r)” means 3-bit quantizer
is used in the quantization of reception r.
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Figure 4.3: Performance of 3-bit quantized COM fusion and LSE fusion. “S10H2 · · · (random
fault)” represents ten sensors, two hypotheses and one random faulty sensor are assumed in
this figure. “3bitsQ(r)” means 3-bit quantizer is used in the quantization of reception r.
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Figure 4.4: Performance of 3-bit quantized COM fusion and 3-bit quantized LSE fusion.
“S10H2” represents ten sensors and two hypotheses are assumed in this figure. “3bitsQ(r)”
means 3-bit quantizer is used in the quantization of reception r.
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Figure 4.5: Performance of 3-bit quantized COM fusion and 3-bit quantized LSE fusion.
“S10H2 · · · (random fault)” represents ten sensors, two hypotheses and one random faulty
sensor are assumed in this figure. “3bitsQ(r)” means 3-bit quantizer is used in the quanti-
zation of reception r.
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4.2 Quantization of the Reception Product

In this section, we try to quantize the product value of rrH , instead of r itself. The same

minimum-square-error method in Section 4.1 is used to find the uniform step size for reception

product.

Figure 4.6 shows that the quantization on rrH can totally eliminate the sudden perfor-

mance degradation due to deep fading.

Figures 4.7 and 4.8 again compare the performances of 3-bit product-quantized COM

fusion and LSE fusion with/without sensor fault. The results indicate that the product-

quantized COM scheme can compete with the LSE fusion in performance but without the

effort of channel estimation and equalization.

For a fair comparison, we also provide figures in which the COM fusion decision is based

on 3-bit product-quantized reception, and the LSE fusion decision is based on 3-bit quan-

tized reception as shown in Figs. 4.9 and 4.10. Note that since the decision criterion of

the LSE fusion is the Euclidean distance between the codeword and the received word, it

is unnecessary to use product-quantization for the LSE fusion. The results indicate that

the product-quantized COM scheme is a better choice than the quantized LSE scheme in

performance.
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Figure 4.6: Performance of reception-quantized and reception-product quantized COM fu-
sions. “S10H2” represents ten sensors and two hypotheses are assumed in this figure.
“3bitsQ(r)” 3-bit quantizer is used in the quantization of reception r, while “3bitsQ(rrH)”
means 3-bit quantizer is used in the quantization of product reception rrH .
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Figure 4.7: Performance of 3-bit reception-product-quantized COM fusion and LSE fusion.
“S10H2” represents ten sensors and two hypotheses are assumed in this figure. “3bitsQ(rrH)”
means 3-bit quantizer is used in the quantization of product reception rrH .
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Figure 4.8: Performance of 3-bit product-quantized COM fusion and LSE fusion. “S10H2
· · · (random fault)” represents ten sensors, two hypotheses and one random faulty sensor
are assumed in this figure. “3bitsQ(rrH)” means 3-bit quantizer is used in the quantization
of product reception rrH .
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Figure 4.9: Performance of 3-bit reception-product-quantized COM fusion and 3-bit quan-
tized LSE fusion. “S10H2” represents ten sensors and two hypotheses are assumed in this
figure. “3bitsQ(rrH)” means 3-bit quantizer is used in the quantization of product reception
rrH .
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Figure 4.10: Performance of 3-bit reception-product-quantized COM fusion and 3-bit quan-
tized LSE fusion. “S10H2 · · · (random fault)” represents ten sensors, two hypotheses and
one random faulty sensor are assumed in this figure. “3bitsQ(rrH)” means 3-bit quantizer
is used in the quantization of product reception rrH .
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Chapter 5

Conclusions

In this thesis, the scheme of combined channel estimation and sensor fault protection in

wireless sensor networks is examined. Since the training sequence is retained for information-

bearing, the simulations indicate that a better performance over the conventional scheme

with training-sequence-based channel estimation is resulted. The error floor levels owing

to random sensor faults are also less severe in the scheme of combined channel estimation

and sensor fault protection. Nevertheless, the sudden performance degradation due to deep

fading suggests that quantization at the fusion is more robust than the soft-decision fusion.

And quantize rrH is more robust than quantize r.
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