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摘要 

 

在無線傳輸的環境中，傳輸的信號常遭受到惡意的干擾源及通道衰減效應，

導致接收訊號產生嚴重的失真。跳頻展頻系統是一般最常用來抑制干擾效應的技

術，而具有分集增益及編碼增益的時空編碼技術可有效的降低通道衰減效應。因

此，在本篇論文裡吾人便結合了兩者之優點，提出了時空編碼結合跳頻展頻技術

以提升傳輸系統在無線干擾環境中之整體效能。 

為了能夠專注於分析時空碼的解碼設計，吾人考慮了兩種較簡單的跳頻方

式。第一種定義為所有傳送天線的訊號都跳至相同的頻帶上，稱此為最差跳頻。

第二種情形為所有傳送信號皆設計為避免互相發生碰撞，稱此為最佳跳頻。其中

最差及最佳跳頻方式分別代表為此系統效能分析的上界與下界。針對上述跳頻方

式，吾人推導出在路徑增益已知或未知情況下此系統的最大可能性解碼。吾人亦

針對兩種不同的跳頻系統推導出建立適合的空時編碼的準則。此外，吾人亦針對

此系統提出了在無線干擾環境下好的時空碼準則。最後經由模擬結果驗證出，在

相同的訊雜比及頻寬效益的考量之下，此系統比傳統單進單出編碼效能來的更

佳。 

 

 I



Combined Space-Time Coding with
Frequency-Hopping Spread Spectrum for Wireless

Jamming Channels with Multitone Jammers

Student: Yan Lin Shen Advisor: Chung-Hsuan Wang

Department of Communication Engineering

National Chiao Tung University

Abstract

In wireless jamming environments, the transmitted signals usually suffer from hos-

tile jammers and undesired channel impairments, e.g., multipath fading. Conventionally,

frequency-hopping spread spectrum (FHSS) systems are most effective anti-jamming tech-

niques, and space-time coding (STC), which introduces temporal and spatial correlation into

the transmitted signals to achieve transmitter diversity without sacrificing the bandwidth,

has been shown to provide excellent performance against multipath fading. Therefore, in

this thesis, we combine STC with the FHSS to construct a powerful high-rate transmission

scheme for wireless jamming channels.

Two cases of FH are considered here to simplify the design of STC. One is the worst-

case frequency hopping which hops the symbols from all transmitter antennas into the same

frequency band, and the other is the perfect frequency hopping which avoids any possible

collision of the transmitted symbols. The actual performance of the combined STC/FHSS

system with arbitrary hopping patterns can then be upper and lower bounded by the evalu-

ated performance of the worst case and perfect case, respectively. The maximum likelihood

decoding of space-time codes is derived with respect to different reception conditions, and

the design criteria for constructing good space-time codes with respect to two kinds of FH

are also derived. Verified by the simulation results, the proposed system can provide bet-

ter performance than the conventional schemes in terms of both bandwidth efficiency and

signal-to-noise ratio.
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Chapter 1

Introduction

Wireless communication systems have been used for a long time and undergone a notable

development. Wireless communication technology is moving towards higher mobility and

higher data rates. A communication system emploied in wireless channel consists of three

main components: transmitter, receiver, and channel. In general, the signals are transmitted

through a wireless channel by using electromagnetic wave forms from the transmitter to the

receiver. The singals arrived the receiver from different directions with different delays,

that causes the variations in the amplitude and the phase of the composite received signals.

That phenomenon is called multipath fading. The fading channel might bring significant

degradation in the performance of a communication system. In addition, the received signals

are also distorted by channel impairments and the intentional or unintentional interference

signals, such as, thermal noise and the signals transmitted from other users. We can regard

pratial band noise jammer as the unintentional interference, and regard multitone noise

jammer as intentional interference. The thermal noise is caused by the random motion

of the electrons in conductors at the receiver. These factors make the transmitted signals

distort seriously.

Frequency-hopping spread spectrum (FHSS) systems are typically used to against the

jammers in wireless channel environments [1]. TheM -ary frequency-shift-keying modulation

is usually utilized with the FHSS system. The MFSK signals are hopped with a pseudo-

random sequence, and the pseudo-random sequence is used to select a set of the carrier

frequency. Therefore, the signals are pseudo-randomly hopped over the total bandwidth,

and the jammer can not generate the same pseudo-random numbers and frequency hopping

bands which are emploied by the FHSS system. That reduces the effect of the jammers.

FHSS systems usually combine with ordinary singal-input and singal-output channel codes

[2]-[8]. The performance analyses of combining the Reed-Solomon(RS) code scheme and

the fast frequecy hopping spread spectrum system are shown in [2]. In [7][8], convolutional
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codes (CC) are combined with the noise-normalized method in FHSS systems to improve

the system performance. However, the overall performance is not as satisfactory as the

performance with the fading effect considered.

The design of channel codes for providing high date rate and high quality of communi-

cations over fading channels using multiple transmitter antennas have been investigated in

recent years. Tarohk, Seshadri, and Calderbank et al [9][10], first proposed the space-time

coding (STC) scheme, which is an effective way to to make the system data rate closer

to the capacity of multiple-input and multiple-output wireless channels. The STC scheme

introduces a temproal and spatial correlation into the transmitted signals by using multiple

antennas and has been shown to provide excellent performance against multipath fading. It

can achieve the transmit diversity as well as a coding gain without sacrificing the bandwidth.

Generally, the FHSS system is the most effective anti-jamming communication techniques,

and the STC scheme can minimize the effects of multipath fading. Therefore, we combine

the FHSS system with the STC scheme to construct a power transmission scheme which

can mitgate the effect of the multipath fading and the jamming interferences.

An overview of the FHSS system and the jamming environments are given in Chapter

2. The STC schemes are introduced in Chapter 3, and the design criteria for STC system

with MFSK modulation over fading channel is also shown in Chapter 3. The STC/FHSS

systems which combine STC scheme with FHSS systems are proposed in Chapter 4. In

Chapter 4, we focuse on two kinds of FHSS systems. One is the worst case frequency

hopping spread spectrum system which hops the signals from all transmitter antennas into

the same M -ary band, and the other is the optimal case frequency hopping spread spectrum

system which hops the signals from any transmitter antennas into different M -ary band.

The ML decoding schemes with respect to both two STC/FHSS systems are also presented.

The design criteria for constructing good space-time codes and the simulation results are

alse given in this chapter. The conclusions for this thesis are in Chapter 5.
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Chapter 2

Overview of Frequency-Hopping Spread Spectrum Systems and
Jamming Environments

In wireless channels, sometimes the signals we transmitted are interfered by the jammers

[1][11]. FHSS system is one of the most effective anti-jamming communication techniques.

In this chapter, we will discribe FHSS system and the jamming environment.

2.1 FHSS System

Spread spectrum techinques are usually used for anti-jamming [11][12]. For spread

spectrum systems, the bit singal-to-jammer noise ratio is define as

Eb
NJ

=
WsS

RbJ
(2.1)

where Ws is the total spread spectrum signal bandwidth, S is the singal power, Rb is the

data rate for bit per second, Eb = S/Rb is the energy per bit, J is the jamming power, and

NJ = J/Ws is the signal-sided jammer noise power spectral density. We can also define the

processing gain (PG)

PG =
Ws

Rb

. (2.2)

The bit signal-to-jammer noise ratio represented in decibels (dB) is

Eb
NJ (dB)

= (PG)(dB) −
J

S (dB)
(2.3)

where J
S

is the jammer-to-signal power ratio, and we can find that when PG is increasing,

the value of Eb/NJ also increases. Figure 2.1 shows the block diagram of the uncoded FH

system with MFSK modulation. The binary data are fed into the MFSK modulator, then

the modulated signal is hopped pseudo-randomly over the total system bandwidth Ws under

the control of pseudonoise (PN) sequence. In FHSS system, the carrier frequency is changed

3



Figure 2.1: FH/MFSK system model.

periodically, such that the jammers do not konw where to jam. FHSS systems are classified

into slow frequency hopping (SFH) and fast frequency hopping (FFH) [12]. Hop rate Rh

of the FFH system is an multiple of the MFSK symbol rates Rs, and the SFH hops serval

symbols each time. Each symbol of FFH system is hopped into serval chips, and each chip

is transmitted in distinct M -ary band. Symbol can be demodulated after all the chips of

this symbol is being collected and dehopped. Every symbol of SFH system is hopped into

only one chip, and each chip is also transmitted in distinct M -ary band. The complexity of

receiver of the FFH system is much higher than the receiver of the SFH system.

2.2 Jamming Environments

There are a lot of jamming waveforms that could distort the transmitted signal. A class

of jamming waveforms are selected to illustrate in this section, such as broadband noise

jammer, partial-band noise jammer, and multitone noise jammer[1][11].

2.2.1 Broaband Noise Jammer

A broadband noise jammer spreads it’s total power J over the frequency range of the

system bandwidth Ws. The broadband noise jammer can be regard as the additive white

Gaussian nosie (AWGN) channel with zero mean shows in Figure 2.2, but the one-sided

noise power spectral density (PSD) is

NJ =
J

Ws

. (2.4)

A slow frequency hopping with noncoherent MFSK modulation system is used in AWGN

channel without any jammers, and the bit error probability is

Ps =
1

M
exp

(
− Es

2N0

) M∑
q=2

(
M

q

)
(−1)qexp

[
Es(2− q)

2N0q

]
(2.5)

4



Figure 2.2: Power spectral density of broadband noise jammer.

where N0 is the one-sided PSD of AWGN and Es is the energy per symbol. When a symbol

error occurs, the error probability can be regarded as the probability of choosing any other

M − 1 orthogonal symbols. Then the number of bit errors corresponding to a symbol error

is

1

M − 1

1∑
i=1

(
M

q

)
i =

l2l−1

M − 1
=

M

2(M − 1)
l (2.6)

where l is the number of bits per symbol. By (2.5) and (2.6), the bit error probability is

Pb
Eb
N0

=

[
M

2(M − 1)

]
=

M

2(M − 1)
exp

(
− lEb

2N0

) M∑
q=2

(
M

q

)
(−1)qexp

[
Eb(2− q)

2N0q

]
. (2.7)

In a AWGM channel with power J broadband jammer, the one-sided PSD is replaced

by N0 +NJ .Then the bit error probability could be written

Pb =
M

2(M − 1)
exp

(
− lEb

2(N0 +NJ)

) M∑
q=2

(
M

q

)
(−1)qexp

[
Eb(2− q)

2(N0 +NJ)q

]
(2.8)

and it is defined as Pb(
Eb

N0+NJ
). For a special case l = 1, equation (2.8) becomes

Pb =
1

2
exp

(
− Eb

2(N0 +NJ)

)
(2.9)

when NJ decreases, the performance could be better.

2.2.2 Partial-Band Noise Jammer

The partial-band noise jammers can be regarded as the signals which are transmitted

by other users and occupy a fraction of the frequency bandwidth. Power of partial-band
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noise jammer is restricted over the frequency range of bandwidth WJ = ρWs, which is a

fraction ρ (0 ≤ ρ ≤ 1) of the total system bandwidth Ws. The power spectral density of

the partial-band nosie jammer is

N
′

J =
J

WJ

=
J

ρWS

. (2.10)

Assume that the partial-band noise jammer can be regarded as AWGN then the average

probability is

P b = (1− ρ)Pb

(
Eb
N0

)
+ ρPb

(
Eb

N0 +NJ

)
(2.11)

In general, we assume the power of the partial-band noise jammer is much larger than the

power of thermal noise, such that NJ is much larger than N0. The bit error probability is

P b = ρPb(
ρEb
NJ

)

=
ρ

2(M − 1)

M∑
q=2

(
M

q

)
(−1)qexp

[
lρEb(1− q)

N0q

]
(2.12)

The worst case partial-band noise jammer chooses ρ to maximize P b with a given M and
Eb

NJ
, and the average performance can be expressed as

(P b)max = max0<ρ≤1

[
ρ

2(M − 1)

M∑
q=2

(
M

q

)
(−1)qexp

(
lρEb(1− q)

N0q

)]
(2.13)

Let ρ0 denote the worst case partial-band noise jammer [1][13] and maximize P b

ρ0 =

{
2

Eb/NJ
, for Eb

NJ
> 2

1, for Eb

NJ
≥ 2

(2.14)

From (2.14), the miximum P b is

(
P b

)
max =


0.3679
Eb/NJ

, for Eb

NJ
> 2

1
2
exp

(
− Eb

2NJ

)
, for Eb

NJ
≥ 2

(2.15)

Figure 2.4 shows the performance curves of an FH/BFSK system in partial-band noise

jammer environment with different factors ρ. When Eb/NJ is small, partial-band jammer

with value of ρ = 1 which can be view as broadband noise jammer has the best efficency to

interfere with the signal. However, when Eb/NJ exceeds a threshold level, the partial-band

jammers with factor ρ (0 < ρ ≤ 1) have better efficency.
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Figure 2.3: Power spectral density of partial-band noise jammer.

Figure 2.4: Performance of FH/MFSK system in partial-band noise jamming environment.
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Figure 2.5: Power spectral density of multitone noise jammer.

2.2.3 Multitone Noise Jammer

We can consider multitone noise jammer as the signals transmitted from other users,

and the frequencies of the carriers are in the range of the system bandwidth. Multitone

noise jammer divides its total power into Q tone jammers with equal power and random

continuous wave. The waveform of multitone noise jammer is

J (t) =

Q∑
l=1

√
2J

Q
cos [ω0t+ φl] (2.16)

where φl is a random varible in (0, 2π] for ∀l. Figure 2. illustrates the PSD of the multitone

noise jammer.

We assume that there is at most one multitone jammer per frequency slot. In general,

there are two kinds of multitone jammers. One is band multitone jammer which places n

jamming tones in each jammed M -ary band. The fraction of the jammed FH slots is defined

as

ρ =
Q

MN
(2.17)

where N is the number of frequency band. The probability of n jamming tones in each

jammed M -ary band is

µ =
Q/n

N
. (2.18)

The other one is called independent multitone noise jammer which places Q equal power

jamming tones into NM FH frequency slots pseudo-randomly. The jamming noise could be

independently hopped over the entire spread-spectrum bandwidth.

Assume the signal power is S, and the fraction of signal power to the power of each

jamming tone is

α =
S

J/Q
. (2.19)
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Figure 2.6: Band multitone noise jammer and independent multitone noise jammer strate-
gies.

When the data symbol is not jammed and any of the other slots in this M -ary band is hit

by a jamming tone, an error will occur if α < 1. In contrast, no error will occur if α > 1.

Therefore, choosing Q appropariately could determine the worst case of α and seriously

degrade the performance of FH/MFSK systems [1][14]. For slow frequency hopping, the

bandwidth of a M -ary band is

Wb = MRs =
MRb

log2M
=
MRb

k
(2.20)

where Rb is the bit rate and Rs = Rb/ log2 is the symbol rate. Then the probability of a

M -ary band being jamming is

µ =
Q

W/Wb

. (2.21)

By (2.4), (2.19), (2.21), and Eb = S/Rb, we can reweite µ as following form

µ =
αM

nkEb/NJ

. (2.22)

When the data symbol is not hit and any other frequency slots in this M -ary band are

jammed, the symbol error probability for α < 1 is

Ps = µ
M − 1

M
. (2.23)
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Figure 2.7: Performance of FH/MFSK in several different jamming environment.

The relation between Ps and Pb is

Ps =
M

2(M − 1)
Ps, (2.24)

so the bit error probability is

Pb =
M

2(M − 1)
µ
M − 1

M

=
αM

2nkEb/NJ

. (2.25)

We can make the system achieve the worst case performance by adjusting α, and we

restrict the number of jamming tones to be smaller than the number of M -ary bands. The

worst case band multitone jammer sets αwc to be

αwc =

{
kEb

MNJ
, for Eb

NJ
< M

k

1, for Eb

NJ
≤ M

k

(2.26)

Figure 2.7 shows that the partial-band and multitone jammers are both significantly

more effective than the broadband noise jammer to against the FH/MFSK system. And

the n = 1 band multitone is the most effective to against the FH/MFSK system.
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Chapter 3

Review of Space-Time Coding

The multiple transmitter antennas system can be used to increase the transmitted data

rate and against the multipath fading [15]. Tarohk, Seshadri, and Calderbank et al proposed

the space-time coding scheme in 1998. Space-time coding scheme is an effective way to

make the system data rate closer to the capacity of multiple-input and multiple-output

wireless channels [9]. Temporal and spatial correlation are introduced into transmitted

signals to achieve transmit diversity and coding gain without sacrificing system bandwith.

This chapter introduces the encoding scheme, the decoding scheme, and the design criteria

over fading channels of space-time coding system.

3.1 STC System Model

A space-time coding system with n transmitter antennas and m receiver antennas is

shown in Figure 3.1. First, the information bits fed into the space-time encoder. After

encoding, the encoded data is divided into n codeword symbols, and the symbols are passed

into the modulator and transmitted by n transmitter antennas. The signal are degraded

by multipath fading at the each m receiver antenna. The received signal is a superposition

of the signals from n transmitter antennas with noise. Assume the wireless channels are a

quasic-static flat fading and memoryless channels. Let Sit with energy Es be the symbol

Figure 3.1: STC system model.
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which is transmitted by the ith antenna at time t. The received signal rqt of the qth receiver

antenna at time t fot all 0 ≤ q ≤ m and 0 ≥ t ≤ L is given by

rqt =
n∑
i=1

αi,qS
i
t + ηqt (3.1)

where αi,q is the fading gain of the multipath from the ith transmitter antenna to qth

receiver antenna and ηqt is the thermal noise of the qth receiver antenna at time t. Assume

αi,q is a constant during a frame L of information sequences and vary from one frame to

another. Assume ηqt are independent Gaussian distribution with zero mean and one-sided

power spectral density N0 for ∀q and ∀t.
STC systems differ with respect to distinct coding schemes, such as space-time block

coding [16][17], space- time trellis coding [18][19], unitary space-time modulation [20][21],

space-time turbo trellis coding [22], differential space-time coding [23][24], layered space-

time coding [25][26], and space-time frequency coding [27][28], etc. The following section

focuses on space-time trellis coding scheme (STTC).

3.2 Encoder Structure and Maximum Likelihood Decoding for
STTC

Space-time trellis codes are provided by Tarohk, Seshadri, and Calderbank et al. STTC

scheme combines the modulation and the trellis coding scheme to transmit data over multiple

antennas. The generator sequences of the system are shown in Figure 3.2

(xt1, x
t
2) = bt−1(1, 1)⊕4 at−1(2, 2)⊕4 bt(2, 1)⊕4 at(3, 2) (3.2)

where (xt1, x
t
2) stand for 2 coded QPSK symbols transmitted through the first antenna and

the second antenna. at and bt represent a pair of input data bits at time t,and ⊕4 is an

operation to take added module 4. For example, assume (at, bt) = (1, 1) and (at−1, bt−1) =

(0, 1) then the output sequence generated by (3.2) at time t is (xt1, x
t
2) = (2, 0).

Let the received signals r = (rqt ∀q, t), the fading gain α = (αi,q ∀q, t), and the

estimated symbols Ŝ = (Ŝit) ∀i, t. Assume α is available at the receiver, and then the ML

decoding is given by

f
(
r|α, Ŝ

)
=

L∏
t=1

m∏
q=1

f

(
ηqt = rqt −

n∑
i=1

αi,qS
i
t |αi,q, Sit ∀i, q, t

)

=
L∏
t=1

m∏
q=1

[
1√
πN0

exp

(
−|r

q
t −

∑n
i=1 αi,qS

i
t |

2

N0

)]
. (3.3)
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Figure 3.2: The encoder of STTC system for two transmitter antennas.

Drop the factors of 1√
πN0

and 1
N0

in (3.4), and apply the log-domain metric:

minŜ

L∑
t=1

m∑
q=1

∣∣∣∣∣rqt −
n∑
i=1

αi,qS
i
t

∣∣∣∣∣
2

. (3.4)

Use the Viterbi algorithm to select the minimum path metric as the decoding sequence

when this ML decoding is used.

3.3 Design Criteria for Constructing Good Space-Time Codes

Conisder the coded communication system with ML decoding shown in (3.5) [29]. A block

of transmitted symbols is denoted by

S =
(
Sit | ∀ i, 1 ≤ t ≤ L

)
(3.5)

and an erroneous sequence selected by the decoder is denoted by

Ŝ =
(
Ŝit | ∀ i, 1 ≤ t ≤ L

)
. (3.6)

Assume αi,q is available at the receiver for ∀i, q, and then the pairwise error probability is

derived as following

13



Pr
(
S → Ŝ|αi,q,∀i, q

)
= Pr

 L∑
t=1

m∑
q=1

∣∣∣∣∣rjt −
n∑
i=1

αi,q
√
EsS

i
t

∣∣∣∣∣
2

≥
L∑
t=1

m∑
q=1

∣∣∣∣∣rjt −
n∑
i=1

αi,q
√
EsŜit

∣∣∣∣∣
2


=

 L∑
t=1

m∑
q=1

2Re

{
ηjt

n∑
i=1

αi,q
√
Es

(
Sit − Ŝit

)}
≥

L∑
t=1

m∑
q=1

∣∣∣∣∣
n∑
i=1

αi,q
√
Es

(
sit − Ŝit

)∣∣∣∣∣
2


= Q

(√
d2
(
S, Ŝ

) Es
2N0

)
(3.7)

where

d2
(
S, Ŝ

)
=

L∑
t=1

m∑
q=1

∣∣∣∣∣
n∑
i=1

αi,q
√
Es

(
Sit − Ŝit

)∣∣∣∣∣
2

(3.8)

and Q(x) is the complementary error function defined by

Q(x) =
1√
2π

∫ ∞
x

exp
(
−x2/2

)
dx. (3.9)

Use the Chernoff Bound inequality

Q(x) ≤ 1

2
e−x

2/2 (3.10)

and then the conditional pairwise error probability can be upper bounded by

Pr
(
S → Ŝ|αi,q ∀i, q

)
≤ 1

2
exp

(
−d2

(
S, Ŝ

) Es
4N0

)
(3.11)

Assume the fading coeficients αi,q are independent Gaussian random variables with zero

mean and varance 1/2. Let “∗” denote the operator of taking complex conjugate, and H

denotes the operator of taking Hermirian, and Ωj = (α1,q, α2,q, . . . , αn,q). Then we can

rewrite equation (3.8) as

d2
(
S, Ŝ

)
=

m∑
q=1

n∑
i=1

n∑
l=1

αi,qα
∗
i,q

L∑
t=1

(
sit − ŝit

) (
slt − ŝlt

)∗
=

m∑
q=1

ΩqB
(
S, Ŝ

)
BH

(
S, Ŝ

)
ΩH
q

=
m∑
q=1

ΩqA
(
S, Ŝ

)
ΩH
q (3.12)
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where

B
(
S, Ŝ

)
=


S1

1 − Ŝ1
1 S1

2 − Ŝ1
2 . . . S1

L − Ŝ1
L

S1
1 − Ŝ2

1 S2
2 − Ŝ2

2 . . . S2
L − Ŝ2

L
...

...
. . .

...

S1
1 − Ŝn1 Sn2 − Ŝn2 . . . SnL − ŜnL


and A

(
S, Ŝ

)
= B

(
S, Ŝ

)
BH

(
S, Ŝ

)
. A

(
S, Ŝ

)
is nonnegative definite and Hermitian,

and the eigenvalues of A
(
S, Ŝ

)
are real numbers. Then we have

A
(
S, Ŝ

)
= V DV H (3.13)

where V = (v1, v2, . . . , vn) is a unitary matrix and D is a diagonal matrix, where vi’s are

the eigenvectors of A
(
S, Ŝ

)
. Let λi be the diagonal elements of D, where 1 ≤ i ≤ n, and

ΩqV
H = (β1,q, . . . , βn,q) . (3.14)

From (3.13) and (3.14), we can rewrite the equation (3.8) as following

d2
(
S, Ŝ

)
=

m∑
q=1

n∑
i=1

λi |βi,q|2 . (3.15)

Use equation (3.15) to replace d2
(
S, Ŝ

)
in (3.11), then we have

Pr
(
S → Ŝ|αi,q ∀i, q

)
≤ 1

2
exp

(
− Es

4N0

m∑
q=1

n∑
i=1

λi |βi,q|2
)

(3.16)

Obviously, all of βi,q are independent complex Gaussian random variables with mean µi,q

and variance 1/2 per dimension. The µi,q is given by

µi,q = E [Ωqvi]

= [α1,q, α2,q, . . . , αn,q]vi (3.17)

where E[ ] denotes the expectation. |βi,q| is a Rician distribution demonstrated by following

probability density function

p (|βi,q|) = 2 |βi,q| exp
(
− |βi,q|2 − |µi,q|2

)
I0 (2 |βi,q| |µi,q|) (3.18)
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where I0 represents the zero-order modified Bessel function of the first kind. The pairwise

error probability is derived by averaging |βi,q|, then the pairwise error probability is

Pr
(
S → Ŝ

)
=

∫ ∞
0

· · ·
∫ ∞

0

Pr
(
S → Ŝ|αi,q ∀i, q

)
p(α1,1)p(α1,2) . . . p(αn,m)dα1,1

dα1,2 . . . dαn,m

=

∫ ∞
0

· · ·
∫ ∞

0

Pr
(
S → Ŝ| |βi,q| ∀i, q

)
p (|β1,1|) p (|β1,2|) . . . p (|βn,m|)

d |β1,1| d |β1,2| . . . d |βn,m|

≤
∫ ∞

0

· · ·
∫ ∞

0

1

2
exp

(
− Es

4N0

m∑
q=1

n∑
i=1

λi |βi,q|2
)
p (|β1,1|) p (|β1,2|) . . .

p (|βn,m|) d |β1,1| d |β1,2| . . . d |βn,m|

≤ 1

2

(
n∏
i=1

1

1 + Es

4N0
λi

exp

(
−
|βi,q|2 Es

4N0
λi

1 + Es

4N0
λ

))
. (3.19)

Assume µi,q = 0, then βi,q become a Rayleigh distribution random variable and the proba-

bility density function is

Pr
(
S → Ŝ

)
≤ 1

2

(
n∏
i=1

1

1 + Es

4N0
λi

)m

. (3.20)

When SNR is a big number, (3.20) can be expressed as

Pr
(
S → Ŝ

)
≤ 1

2

(
r∏
i=1

λi

)−m(
Es

4N0

)−rm
. (3.21)

where r is the rank of A
(
S, Ŝ

)
. The exponent of SNR term, rm, is called the diversity

gain, and the product of eigenvalues is called the coding gain. In order to minimize the error

probability, to make the diversity gain and the coding gain as large as posible is necessary.

These are the two criteria which are called rank cirteria and determinant criteria.
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Chapter 4

Design of Space-Time Coding with FHSS Technique in Wireless
Channels

The transmitted signals are commonly distorted by some intentional or unintentional

jamming noise in wireless channels. As disscussed in Chapter 2 and Chapter 3, we know that

spread spectrum systems are the most effective anti-jamming communication techniques,

and the space-time coding schemes effectively minimize the effects of multipath fading. So,

we propose the design schemes combin with space- time coding scheme and the spread

spectrum system. Two kinds of FHSS systems are discussed in this chapter, one is the

worst case frequency hopping spread spectrum (WFHSS) system which hops the symbols

from all transmitter antennas into the same M -ary band. Another is the optimum case

frequency hopping spread spectrum (OFHSS) system which hops the symbols from any

transmitter antennas into different M -ary band. The two system are called STC/WFHSS

and STC/OFHSS systems.

The detailed description of the STC/FHSS system model and the ML decoding are

given in this chapter. The criteria for constructing good space-time codes are also proposed.

Some simulation results are also presented in the last section.

Figure 4.1: The proposed STC/FHSS system.
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Figure 4.2: The STC/WFHSS system model.

4.1 STC/FHSS System Model

The STC/FHSS system model is shown in Figure 4.1. There are n transmitter antennas

and m receiver antennas. Interleaver is inserted to break bust channel errors to guarantee

memoryless channels, and the MFSK modulation is utilized with the FHSS system. The

slow frequency hopping with one hop per symbol is assumed for simplicity, and the hopping

patterns generated from the transmitter are available to the receiver.

The STC/WFHSS system is shown in Figure 4.2. Let the signal of the qth receiver

antenna be

rq (t) =
n∑
i=1

Ai,q (t) si (t) +Bq (t)nJ (t) + n (t) (4.1)

where Ai,q (t) is the fading gain of the multipath from the ith transmitter antenna to qth

receiver antenna, Bq (t) is the fading gain of the multipath from the jamming transmitter

to the qth receiver antenna, nJ (t) is the jammer , and n (t) is statistically independent low

pass white Gaussian noise process with one-side spectral density N0. For the slow fading

channel, assume the fading coefficients are the same during a frame L and vary from one to

frame another. Due to the system has no perfect synchronization, the received signal which

is dehopped and demodulated is composed of cos part and sin part. The cos part of the

recived signal of the qth receiver antenna in the kth frequency slot at time t rkR,q,t is

rkR,q,t =

∫ t+Ts

t

[
M∑
k′=1

(
n∑
i=1

(
Ai,q

√
2

Ts
sk
′

i,t′ cos ((ωb + ωk′) t
′ + θ)

)
+ xk

′

t Bq√
2J

Q
cos ((ωb + ωk′) t

′ + φq,t)

)
+ n (t′)

]√
2

Ts
cos ((ωb + ωk′) t

′) dt′
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=
n∑
i=1

(Ai,q cos (θ)) ski,t + xktBq cos (φq,t)

√
2J

Q
+ nkR,q,t

=
n∑
i=1

αR,i,qs
k
i,t + xktBq cos (φq,t)

√
2J

Q
+ nkR,q,t

=
n∑
i=1

αR,i,qs
k
i,t + nkJ,R,q,t + nkR,q,t (4.2)

where ski,t is the symbol transmitted by the ith antenna in kth slot at time t, θ is the phase

error of signal, φ is the phase error of the jammer, Ts is the bit interval, Q is the number

of tone jammer, and J is the total jamming power, ωk is the particular carrier frequency

for modulation, ωb is the particular carrier frequency for hopping, and xkt is the jamming

state information (JSI) of the multitone noise jammer (MTNJ) taking value from 1 and 0

with probability MQ/Nt and 1−MQ/Nt. x
k
t = 1 means the kth slot of the band which the

signal is transmitted in is jammed at time t. The sin part of the recived signal of the qth

receiver antenna in the kth frequency slot at time t rkI,q,t is

rkI,q,t =

∫ t+Ts

t

[
M∑
k′=1

(
n∑
i=1

(
Ai,q

√
2

Ts
sk
′

i,t′ cos ((ωb + ωk′) t
′ + θ)

)
+ xk

′

t Bq√
2J

Q
cos ((ωb + ωk′) t

′ + φq,t)

)
+ n (t′)

]√
2

Ts
sin ((ωb + ωk′) t

′) dt′

=
n∑
i=1

(Ai,q sin (θ)) ski,t + xktBq sin (φq,t)

√
2J

Q
+ nkI,q,t

=
n∑
i=1

αI,i,qs
k
i,t + xktBq sin (φq,t)

√
2J

Q
+ nkI,q,t

=
n∑
i=1

αI,i,qs
k
i,t + nkJ,I,q,t + nkI,q,t. (4.3)

Therefore the received signal can be expressed as following

rkq,t = rkR,q,t + jrkI,q,t

=
n∑
i=1

αi,qs
k
i,t + xktn

k
J,q,t + nkq,t

=
n∑
i=1

αi,qs
k
i,t + ηkq,t (4.4)

The noise ηkq,t includes the AWGN nkq,t and the MTNJ nkJ,q,t. By observing (4.2), (4.3), and
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Figure 4.3: The STC/OFHSS system model.

(4.4), the MTNJ nkJ,q,t can be written as

nkJ,q,t = nkJ,R,q,t + jnkJ,I,q,t

= xkt (Bq cos (φq,t) + jBq sin (φq,t))

√
2J

Q
. (4.5)

In Rayleigh fading channel, Bq is a Rayleigh random variable. Then nkJ,q,t is a complex

Gaussian random variable with zero mean and variance JTs

Q
σ2
J,q. Assume AWGN nkq,t and

MTNJ nkJ,q,t are independent for ∀ q, t, k. The probability of ηkq,t conditioned on xkt is

f
(
ηkq,t|xkt

)
=

1√
π
(
N0 + xkt 2

JT s
Q
σ2
J,q

)exp

− ∣∣ηkq,t∣∣(
N0 + xkt 2

JTs

Q
σ2
J,q

)
 . (4.6)

The equation (4.6) can be used to derive the likelihood function of the decoding scheme

with respect to the STC/WFHSS system.

The STC/OFHSS is shown in Figure 4.3. The received signal rki,q,t of the qth receiver

antenna and from the ith transmitter antenna in kth slot at time t is

rki,q,t = αi,qs
k
i,t + ηki,q,t (4.7)

where

ηki,q,t = nki,q,t + xki,tn
k
J,i,q,t (4.8)

where xki,t is the jamming state information (JSI) of the MJNJ taking value from 1 and 0

with probability MQ/Nt and 1−MQ/Nt, but xki,t and xki,t′ are not independent for t 6= t′.

The probability density function of ηki,q,t conditioned on xki,t is

f
(
ηki,q,t|xki,t

)
=

1√
π
(
N0 + xki,t2

JTs

Q
σ2
J,q

)exp

− ∣∣ηki,q,t∣∣(
N0 + xki,t2

JTs

Q
σ2
J,q

)
 . (4.9)
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The likelihood function of the decoding scheme for the STC/OFHSS system can be derived

by the equation (4.9).

Space-time codes achieve the transmit diversity as well as a coding gain. In addition,

the signal transmitted by the frequency hopping system avoid the multitone jammers effec-

tively. Therefore, the STC/FHSS combines with temporal, frequency, and spatial domain

to against the multipath fadding and the multitone jamming interferences. With respect to

the two types of STC/FHSS systems, the performance variation is observed for comparison.

4.2 STC Combined with the Worst Case Frequency Hopping

For STC/WFHSS system which is shown in Figure 4.2, the encoded codewords form

all transmitter antennas are hopped into the same M -ary band at time t. The received

symbols form any receiver antennas are dehopped with the same hopping pattern. Assume

the symbols are transmited in the slow fading channel, and the fading coefficients αi,q are

complexe Gaussian random variable with zero mean and variance σ2
i,q.

4.2.1 Decoing with CSI and JSI Available

The ML decoding scheme will be derived in this section. The derived result is shown here

for discussion and compairson with respect to the proposed system. Let the received signals

r =
(
rkq,t| ∀q, k, 1 ≤ t ≤ L

)
, the jamming state infromation x =

(
xkt | ∀k, 1 ≤ t ≤ L

)
, the

fading coefficients α = (αi,q| ∀i, q), and the estimated symbols ŝ =
(
ski,t| ∀i, 1 ≤ t ≤ L

)
.

Assume the fading coefficients αi,q and the jamming state information xkt are available at

the receiver, the likelihood of r given ŝ, x, and α can be express as

f {r|ŝ,x,α} =
L∏
t=1

M∏
k=1

m∏
q=1

f

{
ηkq,t = rkq,t −

n∑
i=1

αi,qŝ
k
i,t|ŝki,t, αi,q, xkt

}

=
L∏
t=1

M∏
k=1

m∏
q=1

1√
π
(
N0 + xkt 2

JTs

Q
σ2
J,q

)exp

− ∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣2(
N0 + xkt 2

JTs

Q
σ2
J,q

)
 . (4.10)

We can decode the codeword in ML decoding sense by minimizing the following metric

L∑
t=1

M∑
k=1

m∑
q=1

∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣(
N0 + xkt 2

JTs

Q
σ2
J,q

) . (4.11)
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4.2.2 Decoing with CSI but without JSI

Assume the fading coefficients αi,q are available at the receiver, but the jamming state

information xkt are not available at the receiver. The likelihood function of r given ŝ and α

can be obtained by averaging (4.10) with respect to x.

f (r|ŝ,α)

= Ex [f (r|ŝ,x,α)]

= Ex

 L∏
t=1

M∏
k=1

m∏
q=1

1√
π
(
N0 + xkt 2

JTs

Q
σ2
J,q

)exp

− ∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣2(
N0 + xkt 2

JTs

Q
σ2
J,q

)

 (4.12)

where xkt takes value from 1 and 0 with probability MQ/Nt and 1 − MQ/Nt. xkt are

independent for different t , but are not independent for different k. Assume there are

n = 1 band multitone jammers in the channel, the probability density function of xt =(
xkt |1 ≤ k ≤M

)
is

Pr
(
x1
t = 1, x2

t = 0, · · · , xMt = 0
)

=
Q

Nt

Pr
(
x1
t = 0, x2

t = 1, · · · , xMt = 0
)

=
Q

Nt

...

Pr
(
x1
t = 0, x2

t = 0, · · · , xMt = 1
)

=
Q

Nt

Pr
(
x1
t = 0, x2

t = 0, · · · , xMt = 0
)

= 1− MQ

Nt

. (4.13)

After averaging (4.10) with respect to x, the likelihood function of r given ŝ and α is

derived in Appendix A and can be express as

f (r|ŝ,α)

=
L∏
t=1

m∏
q=1

{
exp

[
−

M∑
i=1

∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣2
N0

]{
M∑
i=1

Q

Nt

1√
πa

(
1√
πN0

)M−1

· exp

[
(a−N0)

∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣2
N0a

]
+

(
1− MQ

Nt

)(
1√
πN0

)2
}}

(4.14)
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where a = N0 + 2JTs

Q
σ2
J,q. By taking logarithm on that likelihood function, codewords can

be decoded in the ML decoding sense by maximizing the following metric

L∑
t=1

m∑
q=1

{
−

M∑
k=1

∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣2
N0

+ ln

{
M∑
k=1

Q

Nt

1√
πa

(
1√
πN0

)M−1

· exp

[
(N0 − a)

∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣2
N0a

]
+

(
1− MQ

Nt

)(
1√
πN0

)2
}}

(4.15)

4.2.3 Decoing with JSI but without CSI

Suppose the fading coefficients αi,q are not available at the receiver, and the fading

coefficients are modeled as independent complex Gaussian random variables with zero mean

and variance σ2
i,q per dimension with respect to Rayleigh fading channels. In order to simplify

mathematics, we assume σ2
i,q = 1/2 and σ2

J,q = 1/2 for ∀i, q in this section.

Let akt = N0 + xkt
JTs

Q
, then the likelihood function f (r|ŝ,α,x) can be rewritten as

f (r|ŝ,α,x)

=
L∏
t=1

M∏
k=1

m∏
q=1

1√
πakt

exp

− 1

akt

∣∣∣∣∣rkq,t −
n∑
i=1

αi,qŝ
k
i,t

∣∣∣∣∣
2


=
L∏
t=1

M∏
k=1

m∏
q=1

1√
πakt

exp

{
−

L∑
t=1

M∑
k=1

m∑
q=1

1

akt

[∣∣rkq,t∣∣2 − 2Re

(
rkq,t

n∑
i=1

αi,qŝ
k
i,t

)

+
n∑
i=1

αi,qŝ
k
i,t

n∑
l=1

α∗l,qŝ
k∗
l,t

]}
(4.16)

and the fading coefficients αi,q can be presented as

αi,q = αR,i,q + jαI,i,q (4.17)

where αR,i,q and αI,i,q are statistically independent Gaussian random variables with zero

mean and variance σi,q = 1/2. Rewrite Re
(
rkq,t
∑n

i=1 αi,qŝ
k
i,t

)
and

∑n
i=1 αi,qŝ

k
i,t

∑n
l=1 α

∗
l,qŝ

k∗
l,t

in (4.16) as

Re

(
rkq,t

n∑
i=1

αi,qŝ
k
i,t

)
= Re

(
rkq,t

n∑
i=1

(αR,i,q + jαI,i,q) ŝ
k
i,t

)

= Re

(
rkq,t

n∑
i=1

αR,i,qŝ
k
i,t

)
+ Re

(
rkq,t

n∑
i=1

jαI,i,qŝ
k
i,t

)

= Re

(
rkq,t

n∑
i=1

αR,i,qŝ
k
i,t

)
+ Im

(
rkq,t

n∑
i=1

αI,i,qŝ
k
i,t

)
(4.18)
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and

n∑
i=1

αi,qŝ
k
i,t

n∑
l=1

α∗l,qŝ
k∗
l,t =

n∑
i=1

n∑
l=1

(αR,i,q + jαI,i,q) ŝ
k
i,t (αR,l,q + jαI,l,q) ŝ

k
l,t

=
n∑
i=1

n∑
l=1

(
αR,i,qα

∗
R,l,q + αI,i,qαI,l,q

)
ŝki,tŝ

k
l,t

=
n∑
i=1

α2
R,i,q

∣∣ŝki,t∣∣2 +
n∑
i=1

α2
I,i,q

∣∣ŝki,t∣∣2
+

n∑
i=1
i 6=l

n∑
l=1
l 6=i

αR,i,qαR,l,qŝ
k
i,tŝ

k
l,t +

n∑
i=1
i 6=l

n∑
l=1
l 6=i

αI,i,qαI,l,qŝ
k
i,tŝ

k
l,t. (4.19)

Then (4.15) can be expressed as

f (r|ŝ,α,x)

=
L∏
t=1

M∏
k=1

m∏
q=1

1√
πakt

exp

{
−

L∑
t=1

M∑
k=1

m∑
q=1

1

akt

[∣∣rkq,t∣∣2 − Re

(
rkq,t

n∑
i=1

αR,i,qŝ
k
i,t

)

− Im

(
rkq,t

n∑
i=1

αI,i,qŝ
k
i,t

)
+

n∑
i=1

α2
R,i,q

∣∣ŝki,t∣∣2 +
n∑
i=1

α2
I,i,q

∣∣ŝki,t∣∣2
+

n∑
i=1
i 6=l

n∑
l=1
l6=i

αR,i,qαR,l,qŝ
k
i,tŝ

k
l,t +

n∑
i=1
i 6=l

n∑
l=1
l 6=i

αI,i,qαI,l,qŝ
k
i,tŝ

k
l,t


 . (4.20)

We can get the likelihood function of r given ŝ and x by averaging (4.20) with respect to

the probability density function of αR,i,q and αI,i,q. f (r|ŝ,x) can be written as

f (r|ŝ,x)

=

[
n∏
i=1

m∏
q=1

M∏
k=1

(
akt
)− 1

2 exp

(
−
∣∣rkq,t∣∣2
akt

)][
m∏
q=1

n∏
i=1

(
L∑
t=1

M∑
k=1

1

akt
λki,t + 1

)]−1

· exp


m∑
q=1

n∑
i=1

(∑L
t=1

∑M
k=1

1
ak

t
zki,q,t

)2

+
(∑L

t=1

∑M
k=1

1
ak

t
wki,q,t

)2

4
(∑M

k=1

∑n
i=1

1
ak

t
λki,t + 1

)
 (4.21)

where

zi,q,t =
[
2Re

(
rkq,tŝ

k
1,t

)
, 2Re

(
rkq,tŝ

k
2,t

)
, . . . , 2Re

(
rkq,tŝ

k
n,t

)]
vki,t

wi,q,t =
[
2Im

(
rkq,tŝ

k
1,t

)
, 2Im

(
rkq,tŝ

k
2,t

)
, . . . , 2Im

(
rkq,tŝ

k
n,t

)]
vki,t

24



vki,t and λki,t are the eigenvectors and the eigenvalues of the following matrix, respectively:
∣∣ŝk1,t∣∣2 ŝk1,tŝ

k
2,t . . . ŝk1,tŝ

k
n,t

ŝk2,tŝ
k
1,t

∣∣ŝk2,t∣∣2 . . . ŝk2,tŝ
k
n,t

...
...

. . .
...

ŝkn,tŝ
k
1,t ŝkn,tŝ

k
2,t . . .

∣∣ŝkn,t∣∣2

 . (4.22)

The derivation of (4.21) is in Appendix B. The ML decoding makes the decision by maxi-

mizing (4.21). Take logarithm on this likelihood function, then the codewords can also be

decoded by maximizing the following metric

m∑
q=1

n∑
i=1

(∑L
t=1

∑M
k=1

1
ak

t
zki,q,t

)2

+
(∑L

t=1

∑M
k=1

1
ak

t
wki,q,t

)2

4
(∑M

k=1

∑n
i=1

1
ak

t
λki,t + 1

)
−

m∑
q=1

n∑
i=1

(
L∑
t=1

M∑
k=1

1

akt
λki,t + 1

)
(4.23)

4.2.4 Decoing without JSI and CSI

Suppose the fading coefficients αi,q and the jamming state information xkt are not available

at the receiver.

f (r|ŝ)

=
n∏
i=1

m∏
q=1


M∑
k′=1

Q

Nt

 L∏
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 M∏
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1√
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(
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)
+
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a

exp
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−
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a

)


exp

1
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1

N0
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1

a
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−
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·
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1
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1
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)2( L∑
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1
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λk
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(
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M∑
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1

N0

λk
i,t

) (4.23)

where uki,q,t = rkq,ts
k
i,t. The derivation is the same as Appendix B and Appendix C.
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4.2.5 Design Criteria for Constructing Good Space-Time Codes

We propose a design criteria for constructing good space-time codes of the STC/WFHSS

system with respect to wireless multitone jamming channels. Let s =
(
ski,t|1 ≤ i ≤ n, 1 ≤ t ≤

L, 1 ≤ k ≤M) be the codeword sequence transmitted from transmitter, and s̃ =
(
s̃ki,t|1 ≤ i ≤

n, 1 ≤ t ≤ L, 1 ≤ k ≤M) be the error codeword sequence decided at the receiver. Assume

the perfect estimation of αi,q and xkt are available for ∀ i, q, t, k at the receiver. The con-

ditional pairwise error probability that the decoder decides in favor of s̃ than s is given

by

Pr (s→ s̃|α,x)

= Pr


L∏
t=1

M∏
k=1

m∏
q=1

1√
π
(
N0 + xkt

JTs

Q
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− ∣∣rkq,t −∑n
i=1 αi,qŝ

k
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∣∣2(
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Q

)
 ≤

L∏
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M∏
k=1

m∏
q=1

1√
π
(
N0 + xkt

JTs

Q

)exp

− ∣∣rkq,t −∑n
i=1 αi,qs̃

k
i,t

∣∣2(
N0 + xkt

JTs

Q

)



= Q


√√√√√∑L

t=1

∑m
q=1

∑M
k=1

∣∣∑n
i=1 αi,q

(
ski,t − s̃ki,t

)∣∣2
2
(
N0 + xkt

JTs

Q

)
 (4.24)

where Q(a) is the complementary error function defined by

Q(a) =
1√
2π

∫ ∞
a

e−x
2/2dx. (4.25)

Accroding to the inequality Q(a) ≤ 1
2
exp (−a2/2) ∀a ≥ 0, (4.24) can be upper bounded by

Pr (s→ s̃|α,x) ≤ 1

2
exp

− L∑
t=1

m∑
q=1

M∑
k=1

1

bkt

∣∣∣∣∣
n∑
i=1

αi,q
(
ski,t − s̃ki,t

)∣∣∣∣∣
2
 (4.26)

where bkt = 4
(
N0 + xkt

JTs

Q

)
. By averaging (4.26) with respect to α, the conditional pairwise

error probability given x is

Pr (s→ s̃|x) ≤ 1

2

n∏
i=1

m∏
q=1

(
1 +

L∑
t=1

M∑
k=1

λki,t
bkt

)−1

. (4.27)
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where λki,t ∀i are the eigenvalues of the matrix Akt , and matrix Akt is expressed as
∣∣sk1,t − s̃k1,t∣∣2 (

sk1,t − s̃k1,t
) (
sk2,t − s̃k2,t

)
. . .

(
sk1,t − s̃k1,t

) (
skn,t − s̃kn,t

)(
sk2,t − s̃k2,t

) (
sk1,t − s̃k1,t

) ∣∣sk2,t − s̃k2,t∣∣2 . . .
(
sk2,t − s̃k2,t

) (
skn,t − s̃kn,t

)
...

...
. . .

...(
skn,t − s̃kn,t

) (
sk1,t − s̃k1,t

) (
skn,t − s̃kn,t

) (
sk2,t − s̃k2,t

)
. . .

∣∣skn,t − s̃kn,t∣∣2

 .
(4.28)

Then averaging (4.27) with respect to x, the pairwise error probability is approxmated as

Pr (s→ s̃)

≤ 1

2

n∏
i=1

n∏
q=1

1−
L∑
t−1

(1− Q

Nt

) M∑
k=1

1

4N0

λki,t +
Q

Nt

M∑
k=1

1

4
(
N0 + JTs

Q

)λki,t
 . (4.29)

From (4.29), we konw that we would construct different good space-time codes with

different SNR and SJR. In order to simplify (4.29), assume there are only two transmitter

antennas, the pairwise error probability is

Pr (s→ s̃)

≤ 1

2

n∏
q=1

1 +

(1− Q

Nt

)
1

4N0

+
Q

Nt

1

4
(
N0 + JTs

Q

)
2

2∏
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(
L∑
t=1

M∑
k=1
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)

−

(1− Q

Nt

)
1

4N0

+
Q

Nt

1

4
(
N0 + JTs

Q

)
 L∑

t=1

2∑
i=1

M∑
k=1

λki,t

 (4.30)

Let

v1 =

(1− Q

Nt

)
1

4N0

+
Q

Nt

1

4
(
N0 + JTs

Q

)
2

2∏
i=1

(
L∑
t=1

M∑
k=1

λki,t

)

v2 = 1−

(1− Q

Nt

)
1

4N0

+
Q

Nt

1

4
(
N0 + JTs

Q

)
 L∑

t=1

2∑
i=1

M∑
k=1

λki,t. (4.31)

Assume the multitone jamming power is much larger than the thermal noise power, then

N0 + JTS

Q
� N0 and 1

N0+
JTS

Q

� 1
N0

and we also have following inequality functions

2∏
i=1

(
L∑
t=1

M∑
k=1

λki,t

)
≤ (LMEs)

2

L∑
t=1

2∑
i=1

M∑
k=1

λki,t ≤ 2LMEs. (4.32)
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Base on the above inequality functions, v1 and v2 can be upper bounded by

v1 ≤
((

1− Q

Nt

)
LM

4
SNR

)2

v2 ≤ 1−
(

1− Q

Nt

)
LM

2
SNR. (4.33)

After doing the simulation, we konw that |v1| � |v2|. Then good codes could be constructed

by maximizing m (s, s̃) for all possiable s and s̃, and m (s, s̃) can be expressed as

m (s, s̃) =
2∏
i=1

(
L∑
t=1

M∑
k=1

λki,t

)
. (4.34)

According to the design criteria, good space-time codes are searched by the computer are

given in table (4.1)

Table 4.1: Optimal Space-time codes of the STC/WFHSS system with 4FSK and 2 trans-
mitter antennas for wireless jamming channels.

Memory Generator Sequences
2 (xt1, x

t
2) = bt−1(1, 0)⊕4 at−1(3, 0)⊕4 bt(1, 3)⊕4 at(2, 2)

3 (xt1, x
t
2) = at−2(1, 2)⊕4 bt−1(1, 1)⊕4 at−1(1, 0)⊕4 bt(2, 1)

⊕4at(3, 2)
4 (xt1, x

t
2) = bt−2(1, 1)⊕4 at−2(2, 2)⊕4 bt−1(0, 2)⊕4 at−1(3, 0)

⊕4bt(2, 0)⊕4 at(3, 0)

4.3 STC Combined with the Optimum Case Frequency Hopping

The other system is STC/OFHSS system is shown in Figure4.3. The encoded codewords

from any transmitter antennas are hopped into distinct M -ary bands. The ML decoding

schemes with respect to STC/OFHSS system are derived in this section, and the criteria of

constructing good space-time codes for OFHSS system is also proposed.

4.3.1 Decoing with CSI and JSI Available

The ML decoding of STC/OFHSS system is derived as follow, and the system are

assumed to transmit the signal in slow fading channel with n=1 band multitone jam-

mers. Let the received signals r =
(
rki,q,t| ∀q, k, 1 ≤ t ≤ L

)
, the jamming state infromation

x =
(
xki,t| ∀i, k, 1 ≤ t ≤ L

)
, the fading coefficients α = (αi,q| ∀i, q), and the estimated sym-

bols ŝ =
(
ski,t| ∀i, 1 ≤ t ≤ L

)
. Assume the fading coefficients αi,q and the jamming state
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information xkt are available at the receiver, the likelihood of r given ŝ, x, and α can be

express as

f {r|ŝ,x,α}

=
L∏
t=1

M∏
k=1

m∏
q=1

n∏
i=1

f
{
ηki,q,t = rki,q,t − αi,qŝki,t|ŝki,t, αi,q, xkt

}
=

L∏
t=1

M∏
k=1

m∏
q=1

n∏
i=1

1√
π
(
N0 + xki,t2

JTs

Q
σ2
J,q

)exp

− ∣∣rki,q,t − αi,qŝki,t∣∣2(
N0 + xki,t2

JTs

Q
σ2
J,q

)
 . (4.36)

The codeword can also be decoded in ML decoding sense by minimizing the following metric

L∑
t=1

M∑
k=1

m∑
q=1

n∑
i=1

∣∣rki,q,t − αi,qŝki,t∣∣(
N0 + xki,t2

JTs

Q
σ2
J,q

) . (4.37)

4.3.2 Decoing with CSI but without JSI

Assume the fading coefficients αi,q are available at the receiver, but the jamming state

information xki,t are not available at the receiver. The likelihood function of r given ŝ and

α can be obtained by averaging (4.36) with respect to x.

f (r|ŝ,α)

= Ex [f (r|ŝ,x,α)]

= Ex

 L∏
t=1

M∏
k=1

m∏
q=1

n∏
i=1

1√
π
(
N0 + xki,t2

JTs

Q
σ2
J,q

)exp

− ∣∣rkq,t − αi,qŝki,t∣∣2(
N0 + xki,t2

JTs

Q
σ2
J,q

)

 . (4.38)

The probability of x with respect to two transmitter antennas is

Pr (x1,t = (1, 0, . . . , 0),x2,t = (1, 0, . . . , 0)) =
φ1

M2

Pr (x1,t = (1, 0, . . . , 0),x2,t = (0, 1, . . . , 0)) =
φ1

M2

...

Pr (x1,t = (0, 0, . . . , 1),x2,t = (0, 0, . . . , 1)) =
φ1

M2

Pr (x1,t = (0, 0, . . . , 0),x2,t = (1, 0, . . . , 0)) =
φ2

M

Pr (x1,t = (0, 0, . . . , 0),x2,t = (0, 1, . . . , 0)) =
φ2

M
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...

Pr (x1,t = (0, 0, . . . , 0),x2,t = (0, 0, . . . , 1)) =
φ2

M

Pr (x1,t = (1, 0, . . . , 0),x2,t = (0, 0, . . . , 0)) =
φ3

M

Pr (x1,t = (0, 1, . . . , 0),x2,t = (0, 0, . . . , 0)) =
φ3

M
...

Pr (x1,t = (0, 0, . . . , 1),x2,t = (0, 0, . . . , 0)) =
φ3

M

Pr (x1,t = (0, 0, . . . , 0),x2,t = (0, 0, . . . , 0)) = φ4 (4.39)

where xi,t =
(
x1
i,t, x

2
i,t, . . . , x

M
i,t

)
, φ1 = Q

Nt/M
Q−1

Nt/M−1
, φ2 = Q

Nt/M

(
1− Q−1

Nt/M−1

)
, φ3 =

(
1− Q

Nt/M

)
· Q
Nt/M−1

, and φ4 =
(

1− Q
Nt/M

)(
1− Q

Nt/M−1

)
. Therefore, a close-form expression of f (r|ŝ,α)

with respect to two transmitter antennas is derived in Appendix D

f (r|ŝ,α)

=
L∏
t=1

m∏
q=1

{
exp

[
−

n∑
i=1

M∑
k=1

∣∣rki,q,t − αi,qŝki,t∣∣2
N0

]{
φ1

M2

(
1√
πN0

)2M−2(
1√
πa

)2

·
M∑
k=1

M∑
k′=1

exp

[
a−N0

aN0

(∣∣rk1,q,t − α1,qŝ
k
1,t

∣∣2 +
∣∣rk2,q,t − α2,qŝ

k
2,t

∣∣2)]+
φ2

M

·
(

1√
πN0

)2M−1(
1√
πa

) M∑
k=1

exp

[
a−N0

aN0

(∣∣rk1,q,t − α1,qŝ
k
1,t

∣∣2)]+
φ3

M

·
(

1√
πN0

)2M−1(
1√
πa

) M∑
k=1

exp

[
a−N0

aN0

(∣∣rk2,q,t − α2,qŝ
k
2,t

∣∣2)]+ φ4

(
1√
πN0

)2M
}}
(4.40)

where a = N0 + 2JTs

Q
σ2
J,q. By taking logarithm on that likelihood function, codewords can

be decoded in the ML decoding sense by maximizing the following metric :

L∑
t=1

m∑
q=1

{
−

n∑
i=1

M∑
k=1

∣∣rki,q,t − αi,qŝki,t∣∣2
N0

+ ln

{
φ1

M2

(
1√
πN0

)2M−2(
1√
πa

)2

·
M∑
k=1

M∑
k′=1

exp

[
a−N0

aN0

(∣∣rk1,q,t − α1,qŝ
k
1,t

∣∣2 +
∣∣rk2,q,t − α2,qŝ

k
2,t

∣∣2)]+
φ2

M

·
(

1√
πN0

)2M−1(
1√
πa

) M∑
k=1

exp

[
a−N0

aN0

(∣∣rk1,q,t − α1,qŝ
k
1,t

∣∣2)]+
φ3

M
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·
(

1√
πN0

)2M−1(
1√
πa

) M∑
k=1

exp

[
a−N0

aN0

(∣∣rk2,q,t − α2,qŝ
k
2,t

∣∣2)]+ φ4

·
(

1√
πN0

)2M
}}

(4.41)

4.3.3 Decoidng with JSI but without CSI

Suppose the fading coefficients αi,q’s are not available at the receiver, and the fading

coefficients are modeled as independent complex Gaussian random variables with zero mean

and variance σ2
i,q per dimension with respect to Rayleigh fading channels. In order to simplify

mathematics, we assume σ2
i,q = 1/2 and σ2

J,q = 1/2 for ∀i, q in this section.

Let aki,t = N0 + xki,t
JTs

Q
, then (4.36) can be rewritten as

f {r|ŝ,x,α}

=


L∏
t=1

M∏
k=1

m∏
q=1

n∏
i=1

1√
πaki,t

 exp

{
−

L∑
t=1

M∑
k=1

m∑
q=1

n∑
i=1

1

aki,t

[∣∣rki,q,t∣∣2
−2Re

(
rki,q,tαi,qŝ

k
i,t

)
+
∣∣αi,qŝki,t∣∣2]} (4.42)

and the fading gain αi,q can be presented as

αi,q = αR,i,q + jαI,i,q

where αR,i,q and αI,i,q are statistically independent Gaussian random variables with zero

mean and variance σi,q = 1/2. Rewrite Re
(
rki,q,tαi,qŝ

k
i,t

)
and

∣∣αi,qŝki,t∣∣2 in (4.42) as

Re
(
rki,q,tαi,qŝ

k
i,t

)
= Re

(
rki,q,t (αR,i,q + jαI,i,q) ŝ

k
i,t

)
= Re

(
rki,q,tαR,i,qŝ

k
i,t

)
+ Re

(
rki,q,tjαI,i,qŝ

k
i,t

)
= Re

(
rki,q,tαR,i,qŝ

k
i,t

)
+ Im

(
rki,q,tαI,i,qŝ

k
i,t

)
(4.43)

and ∣∣αi,qŝki,t∣∣2 = (αR,i,q + jαI,i,q) (αR,i,q − jαI,i,q)
∣∣ŝki,t∣∣2

=
(
α2
R,i,q + α2

I,i,q

) ∣∣ŝki,t∣∣2 . (4.44)
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The likelihood of r given ŝ and x can be derived by averaging α, and can be expressed as

= f {r|ŝ,x}

=

∫ ∞
−∞

f {r|ŝ,x,α} dα

=


L∏
t=1

M∏
k=1

m∏
q=1

n∏
i=1

1√
πaki,t

exp

(
− 1∣∣rki,q,t∣∣2

)
{

m∏
q=1

n∏
i=1

(
L∑
t=1

M∑
k=1

∣∣ŝki,t∣∣2
aki,t

+ 1

)}−1

exp


m∑
q=1

n∑
i=1

∣∣∣∑L
t=1

∑M
k=1

2
ak

i,t
Re
(
rki,q,tŝ

k
i,t

)∣∣∣2 +
∣∣∣∑L

t=1

∑M
k=1

2
ak

i,t
Im
(
rki,q,tŝ

k
i,t

)∣∣∣2
4

(∑L
t=1

∑M
k=1

|ŝk
i,t|2
ak

i,t
+ 1

)
 . (4.45)

The derivation of (4.45) is in Appendix E. The codewords can also be decoded by minimizing

the followind metric:

m∑
q=1

n∑
i=1


∣∣∣∑L

t=1

∑M
k=1

2
ak

i,t
Re
(
rki,q,tŝ

k
i,t

)∣∣∣2 +
∣∣∣∑L

t=1

∑M
k=1

2
ak

i,t
Im
(
rki,q,tŝ

k
i,t

)∣∣∣2
4

(∑L
t=1

∑M
k=1

|ŝk
i,t|2
ak

i,t
+ 1

)


−
m∑
q=1

n∑
i=1

ln

{(
L∑
t=1

M∑
k=1

∣∣ŝki,t∣∣2
aki,t

+ 1

)}
. (4.46)

4.3.4 Design Criteria for Constructing Good Space-Time Codes

We proposed a design criteria for contructing good space-time codes of the STC/OFHSS

system with respect to the wireless channels. To evaluate the performance of the ML

decoding, two transmitted sequences s =
(
ski,t∀i, k, 1 ≤ t ≤ L

)
and ŝ = ŝki,t∀i, k, 1 ≤ t ≤ L.

Assume perfect estimation of αi,q and xki,t are available at the receiver. The conditional

pairwise error probability that the decoder decides in favor of ŝ than s is given by

Pr {s→ ŝ|x,α}

= Pr


L∑
t=1

L∑
k=1

m∑
q=1

n∑
i=1

ln

 1√
π
(
N0 + xki,t

JTs

Q

)exp

− ∣∣rki,q,t − αi,qŝki,t∣∣2(
N0 + xki,t

JTs

Q

)



≤
L∑
t=1

L∑
k=1

m∑
q=1

n∑
i=1

ln

 1√
π
(
N0 + xki,t

JTs

Q

)exp

− ∣∣rki,q,t − αi,qŝki,t∣∣2(
N0 + xki,t

JTs

Q

)



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= Q


√√√√√∑L

t=1

∑M
k=1

∑m
q=1

∑n
i=1

∣∣αi,q (ski,t − ŝki,t)∣∣2
2
(
N0 + xki,t

JTs

Q

)
 . (4.47)

Refer to the inequality Q(a) ≤ 1
2
exp (−a2/2)∀a ≥ 0, the conditional pairwise error proba-

bility (4.47) can be upper bounded by

Pr {s→ ŝ|x,α} ≤ 1

2
exp

−∑L
t=1

∑M
k=1

∑m
q=1

∑n
i=1

∣∣αi,q (ski,t − ŝki,t)∣∣2
4
(
N0 + xki,t

JTs

Q

)
 . (4.48)

By averaging (4.48) with respect to α, the conditional pairwise error probability given x is

approximated as

Pr {s→ ŝ|x} ≤ 1

2

n∏
i=1

m∏
q=1

(
1 +

L∑
t=1

M∑
k=1

aki,t
∣∣ski,t − ŝki,t∣∣2

)−1

(4.49)

where aki,t =
(
N0 + xki,t

JTs

Q

)−1

. Assume there are only two transmitter antennas, then the

conditional pairwise error probability can be approximated as

Pr {s→ ŝ|x} ≤ 1

2

n∏
i=1

m∏
q=1

(
1 +

L∑
t=1

M∑
k=1

aki,t
∣∣ski,t − ŝki,t∣∣2

)−1

=
1

2

m∏
q=1

n∏
i=1

 ∞∑
j=0

(
−

L∑
t=1

M∑
k=1

aki,t
∣∣ski,t − ŝki,t∣∣2

)j


∼=
1

2

m∏
q=1

n∏
i=1

[
1−

L∑
t=1

M∑
k=1

aki,t
∣∣ski,t − ŝki,t∣∣2

]
(4.50)

The probability density function of x for two transmitter antennas is shown in (4.39), then

the pairwise error probability is derived by averaging (4.50) with respect to x. The pairwise

error probability for two transmitter antennas can be written as

Pr {s→ ŝ}

≤ 1

2

m∏
q=1

{
1−

L∑
t=1

M∑
k=1

[(
1− Q

Nt

)
1

N0

∣∣sk1,t − ŝk1,t∣∣2 +
Q

Nt

1

a

∣∣sk1,t − ŝk1,t∣∣2]

−
L∑
t=1

M∑
k=1

[(
1− Q

Nt

)
1

N0

∣∣sk2,t − ŝk2,t∣∣2 +
Q

Nt

1

a

∣∣sk2,t − ŝk2,t∣∣2]

+τ
L∑
t=1

M∑
k=1

L∑
t′=1

M∑
k′=1

∣∣sk1,t − ŝk1,t∣∣2 ∣∣∣sk′2,t′ − ŝk′2,t′∣∣∣2
}

(4.51)
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where

τ =

(
Q

Nt −M
· Q
Nt

)(
1

a

)2

+

(
1− Q

Nt −M

)
Q

Nt

(
1

aN0

)
+

[
Q− 1

Nt −M
Q

Nt

(M − 1) +
Q

Nt −M

(
1− MQ

Nt

)]
1

aN0

+

[(
1− Q− 1

Nt −M

)
Q

Nt

(M − 1) +

(
1− Q

Nt −M

)(
1− MQ

Nt

)](
1

N0

)2

.

Let

W1 = 1−
L∑
t=1

M∑
k=1

[(
1− Q

Nt

)
1

N0

∣∣sk1,t − ŝk1,t∣∣2 +
Q

Nt

1

a

∣∣sk1,t − ŝk1,t∣∣2]

−
L∑
t=1

M∑
k=1

[(
1− Q

Nt

)
1

N0

∣∣sk2,t − ŝk2,t∣∣2 +
Q

Nt

1

a

∣∣sk2,t − ŝk2,t∣∣2]

W2 = τ
L∑
t=1

M∑
k=1

L∑
t′=1

M∑
k′=1

∣∣sk1,t − ŝk1,t∣∣2 ∣∣∣sk′2,t′ − ŝk′2,t′∣∣∣2 . (4.52)

Assume the power of the multitone jammer is much larger than the power of the thermal

noise, then a� N0 and 1
N0
� 1

a
. Base on the above inequations we have

τ ∼=
[(

1− Q− 1

Nt −M

)
Q

Nt

(M − 1) +

(
1− Q

Nt −M

)(
1− MQ

Nt

)](
1

N0

)2

(5.53)

and

L∑
t=1

M∑
k=1

[(
1− Q

Nt

)
1

N0

∣∣sk1,t − ŝk1,t∣∣2 +
Q

Nt

1

a

∣∣sk1,t − ŝk1,t∣∣2]
∼=

L∑
t=1

M∑
k=1

[(
1− Q

Nt

)
1

N0

∣∣sk1,t − ŝk1,t∣∣2] . (5.54)

Cause
∣∣ski,t − ŝki,t∣∣2 ∈ (0, Es), then W1 and W2 can be bounded as

W1 ≤
(

1− Q

Nt

)
1

N0

LMEs =

(
1− Q

Nt

)
LM (SNR)

W2 ≤
[(

1− Q− 1

Nt −M

)
Q

Nt

(M − 1) +

(
1− Q

Nt −M

)(
1− MQ

Nt

)](
1

N0

)2

2LME2
s

=

[(
1− Q− 1

Nt −M

)
Q

Nt

(M − 1) +

(
1− Q

Nt −M

)(
1− MQ

Nt

)]
2LM (SNR)2 (4.55)

34



After doing the simulation, we konw that |w1| � |w2|. Then good codes could be con-

structed by maximizing m (s, s̃) for all possiable s and s̃, and m (s, s̃) can be expressed

as

m (s, s̃) =
L∑
t=1

M∑
k=1

L∑
t′=1

M∑
k′=1

∣∣sk1,t − ŝk1,t∣∣2 ∣∣∣sk′2,t′ − ŝk′2,t′∣∣∣2 . (4.56)

According to the design criteria, good space-time codes are searched by the computer, and

are given in following table.

Table 4.2: Optimal Space-time codes of the STC/OFHSS system with 4FSK and 2 trans-
mitter antennas for wireless jamming channels.

Memory Generator Sequences
2 (xt1, x

t
2) = bt−1(1, 0)⊕4 at−1(1, 0)⊕4 bt(0, 1)⊕4 at(0, 2)

3 (xt1, x
t
2) = at−2(1, 3)⊕4 bt−1(1, 1)⊕4 at−1(1, 0)⊕4 bt(2, 1)

⊕4at(0, 1)

4.4 Design Criteria for Constructing Good Space-Time Codes
with FSK Modulation

Consider a coded communication system with MFSK modulation and ML decoding. A

block of transmitted symbols is denoted by

s =
(
ski,t|∀i, k, 1 ≤ t ≤ L

)
(4.57)

and an erroneous sequence selected by the decoder is

ŝ =
(
ŝki,t|∀i, k, 1 ≤ t ≤ L

)
. (4.58)

We know that the likelihood function can be expressed as

f (r|α, s) =
L∏
t=1

m∏
q=1

f

(
ηqt = rqt −

n∑
i=1

αi,qs
k
i,t|αi,q, ski,t ∀i, q, t

)

=
L∏
t=1

m∏
q=1

m∏
q=1

[
1√
πN0

exp

(
−
∣∣rqt −∑n

i=1 αi,qs
k
i,t

∣∣2
N0

)]
. (4.59)
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Assume the fading coefficients are available at the receiver, then the pairwise error proba-

bility is

Pr (s→ ŝ|αi,q,∀i, q)

= Pr

 L∑
t=1

m∑
q=1

M∑
k=1

∣∣∣∣∣rjt −
n∑
i=1

αi,q
√
Ess

k
i,t

∣∣∣∣∣
2

≥
L∑
t=1

m∑
q=1

M∑
k=1

∣∣∣∣∣rjt −
n∑
i=1

αi,q
√
Esŝ

k
i,t

∣∣∣∣∣
2


≤ 1

2
exp

(
−d2 (s, ŝ)

Es
4N0

)
(4.60)

where

d2 (s, ŝ) =
L∑
t=1

m∑
q=1

M∑
k=1

∣∣∣∣∣
n∑
i=1

αi,q
√
Es
(
ski,t − ŝki,t

)∣∣∣∣∣
2

. (4.61)

Assume the fading coeficients αi,q are independent Gaussian random variables with zero

mean and varance 1/2. Let “∗” denote the operator of taking complex conjugate, and H

denotes the operator of taking Hermirian, and Ωj = (α1,q, α2,q, . . . , αn,q). Then we can

rewrite equation (4.61) as

d2 (s, ŝ) =
m∑
q=1

n∑
i=1

n∑
l=1

αi,qα
∗
i,q

L∑
t=1

M∑
k=1

(
ski,t − ŝki,t

) (
skl,t − ŝkl,t

)∗
=

m∑
q=1

ΩqB (s, ŝ)BH (s, ŝ) ΩH
q

=
m∑
q=1

ΩqA (s, ŝ) ΩH
q (4.62)

where

B (s, ŝ) =


s1
1,1 − ŝ1

1,1 . . . sM1,1 − ŜM1,1 . . . s1
1,L − ŝ1

1,L . . . sM1,L − ŝM1,L
s1
2,1 − ŝ1

2,1 . . . sM2,1 − ŜM2,1 . . . s1
2,L − ŝ1

2,L . . . sM2,L − ŝM2,L
...

...
...

...
...

...
...

s1
n,1 − ŝ1

n,1 . . . sMn,1 − ŜMn,1 . . . s1
n,L − ŝ1

n,L . . . sMn,L − ŝMn,L



=


s1,1 − ŝ1,1 s1,2 − ŝ1,2 . . . s1,L − ŝ1,L

s2,1 − ŝ2,1 s2,2 − ŝ2,2 . . . s2,L − ŝ2,L

...
...

. . .
...

sn,1 − ŝn,1 sn,2 − ŝn,2 . . . sn,L − ŝn,L


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where sn,1 =
(
s1
i,t, s

2
i,t, · · · , sMi,t

)
, ŝn,1 =

(
ŝ1
i,t, ŝ

2
i,t, · · · , ŝMi,t

)
, and A (s, ŝ) = B (s, ŝ)BH (s, ŝ).

A (s, ŝ) is nonnegative definite and Hermitian, and the eigenvalues of A (s, ŝ) are real num-

bers. Then we have

A (s, ŝ) = V DV H (4.63)

where V = (v1, v2, . . . , vn) is a unitary matrix and D is a diagonal matrix, where vi’s are

the eigenvectors of A (s, ŝ). Let λi be the diagonal elements of D, where 1 ≤ i ≤ n, and

ΩqV
H = (β1,q, . . . , βn,q) . (4.64)

From (4.63) and (4.64), we can rewrite the equation (4.61) as following

d2 (s, ŝ) =
m∑
q=1

n∑
i=1

λi |βi,q|2 . (4.65)

Use equation (4.65) to replace d2 (s, ŝ) in (4.60), then we have

Pr (s→ ŝ|αi,q ∀i, q) ≤
1

2
exp

(
− Es

4N0

m∑
q=1

n∑
i=1

λi |βi,q|2
)

(4.66)

By Using the same derivation in (3.19), we have the pairwise error probability

Pr (s→ ŝ) ≤ 1

2

(
n∏
i=1

1

1 + Es

4N0
λi

)m

. (4.67)

When SNR is a big number, (4.67) can be expressed as

Pr (s→ ŝ) ≤ 1

2

(
r∏
i=1

λi

)−m(
Es

4N0

)−rm
. (4.68)

where r is the rank of A (s, ŝ). In order to minimize the error probability, to make rm and

the the product of eigenvalues as large as posible is necessary. A good space time code with

memory 2 is searched by the computer with these cirteria, and the generator sequence is

Table 4.3: Optimal Space-time codes of the STC/FSK system with 4FSK and 2 transmitter
antennas for wireless jamming channels.

Memory Generator Sequences
2 (xt1, x

t
2) = bt−1(1, 0)⊕4 at−1(2, 0)⊕4 bt(0, 1)⊕4 at(0, 2)
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4.5 Simulation Result

In this sectio, we simulate the 4-state space-time code with two transmitter antennas

and two receiver antennas, 4FSK modulation, and 1000 Mary bands for used over Rayleigh

fading channel with AWGN and n = 1 band multitone jammers to explore the performance

of STC/FHSS system. In Figure 4.3-4.14, the space-time code of STC/WFHSS system we

used for simulation is(
xt1, x

t
2

)
= bt−1(1, 0)⊕ at−1(3, 0)⊕ bt(1, 3)⊕ at(2, 2). (4.69)

Observed from the performance curves in Figures 4.3-4 with Eb/N0 = 5dB and ML

decoding with CSI and JSI available. Figure 4.3 shows the performance curves with µ = 0.2,

µ = 0.5, µ = 0.7, and µ = 1. Figure 4.4 shows the performance curves with Eb/NJ = 0dB,

Eb/NJ = 10dB, Eb/NJ = 15dB, and Eb/NJ = 20dB. The performance curves shown in

Figures 4.5-6 are simulated with ML decoding with JSI available but without JSI available.

Figure 4.5 shows the performance curves with Eb/NJ = 10dB, µ = 0.1, µ = 0.4, µ = 0.7,

and µ = 1. Figure 4.6 shows the performance curves with Eb/N0 = 10dB, Eb/NJ = 0dB,

Eb/NJ = 5dB, Eb/NJ = 10dB, and Eb/NJ = 15dB. The performance plots of the ML

decoding with CSI available without JSI available are shown in Figures 4.7-8. Figure 4.7

show the performance with diferent values of /mu, and Figure 4.8 shows the perfromance

with different values of Eb/NJ . When the value of Eb/NJ is small, the worst performance

is located at µ = 1. When the value of Eb/NJ gets larger, the worst performance is located

at lower µ. Figures 4.9-10 show two performance curves with Eb/N0 = 12dB, µ = 0.3,

µ = 1. One is simulated with ML decoding with JSI and CSI available, and the other is

simulated with CSI available but without JSI available. We can find that the system with

JSI available is much better than the system without JSI available.

Finally, two systems are compared with STC/WFHSS. One is the system with the

original space-time coding which is designed with FSK modulation. The other one is the

system with the convolutional coding and the Alamouti coding, and we combine convolu-

tional code scheme and Alamouti code scheme for this system. The generator equation of

the space-time code used in the first system is(
xt1, x

t
2

)
= bt−1(1, 0)⊕ at−1(2, 0)⊕ bt(0, 1)⊕ at(0, 2). (4.70)

A (4, 2) convolutional code is emploied for the second system with memory 2 and following

generator matrix

G(D) =

[
1 +D D D 1 +D

1 +D 1 +D 1 0

]
. (4.71)
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Figure 4.4: Performance plots of STC/WFHSS with CSI and JSI available for Eb/N0 = 5dB.

Perfomance of these two system and STC/WFHSS system with Eb/NJ = 15dB, µ = 0.1,

µ = 0.4, µ = 0.7, and µ = 1 are shown in Figure 4.11-4.14. We can find that STC/WFHSS

system provides better performance than the others.
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Figure 4.5: Performance plots of STC/WFHSS with CSI and JSI available for Eb/N0 = 5dB.

Figure 4.6: Performance plots of STC/WFHSS with JSI available but without CSI available
for Eb/N0 = 10dB.
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Figure 4.7: Performance plots of STC/WFHSS with JSI available but without CSI available
for Eb/N0 = 10dB.

Figure 4.8: Performance plots of STC/WFHSS with CSI available but without JSI available
for Eb/N0 = 15dB.
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Figure 4.9: Performance plots of STC/WFHSS with CSI available but without JSI available
for Eb/N0 = 15dB.

Figure 4.10: Performance of STC/WFHSS with CSI and JSI available and STC/WFHSS
with CSI available but without JSI available for Eb/N0 = 12dB and µ = 1.
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Figure 4.11: Performance of STC/WFHSS with CSI and JSI available and STC/WFHSS
with CSI available but without JSI available for Eb/N0 = 12dB and µ = 0.3.

Figure 4.12: Performance of STC/WFHSS, original STC, and CC/Alamouti systems for
Eb/N0 = 15dB and µ = 0.1.
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Figure 4.13: Performance of STC/WFHSS, original STC, and CC/Alamouti systems for
Eb/N0 = 15dB and µ = 0.4.

Figure 4.14: Performance of STC/WFHSS, original STC, and CC/Alamouti systems for
Eb/N0 = 15dB and µ = 0.7.
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Figure 4.15: Performance of STC/WFHSS, original STC, and CC/Alamouti systems for
Eb/N0 = 15dB and µ = 1.

45



Chapter 5

Conclusion

In this thesis, we investigate issues related to the performance of the STC/FHSS system in

wireless MTNJ environments. There are two types of STC/FHSS systems we proposed for

performance evaluation: STC/WFHSS system and STC/OFHSS system. The actural per-

formance of STC/FHSS system can be upper bounded by the performance of STC/OFHSS

system, and can be lower bounded by the performance of STC/WFHSS system. Based on

these proposed system model, the corresponding ML decoding is derived. Although the ML

decoding with respect to different conditions has benn derived, however, the decoding com-

plexity of the optimum decodings are too high. Beside, the complicated arithmetic of ML

decoding with JSI available but without CSI available not only requires high computational

complexity but also excudes the use of the efficient Viterbi algorithm. Therefore, we have

to find some suboptimal decoding scheme in the future. We also present two design criteria

for constructing good space-time codes with respect to the wireless channel with n = 1

band multitone jammers. Good space time codes are also given via a computer search.

Verified by the simulation result, the performance of our system is better than the system

with space-time coding which is designed with FSK modulation. The performance of our

system is also better than the system employs both convolution code and Alamouti code.

We can also find that when Eb/NJ is large, the performance of the system with space-time

coding is worse than the system uses both convolution code and Alamouti code. That means

the system with space-time coding but without any designs which in connection wiht the

environments is not good enought to be used for the wireless channels with multitone noise

jammers.

Although we have persented two types of STC/FHSS systems for wireless chan-

nel with multitone nosie jammers, there are still serveral related issues that remain to be

investigated. The coding scheme we consider in the proposed system is the space-time

block coding scheme. We can consider other coding scheme, e.g., space-time trellis coding
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scheme, differential space-time coding scheme, and space-time turbo trellis coding scheme

for wireless channel with jammers. The frequency hopping we used in this thesis is slow

frequency hopping. Fast frequency hopping could also be used for high frequency dievesity

gain. Therefore, we could use the STC/FHSS system with different coding scheme and

fast frequency hopping to improve the perfromance in the wireless channels with jamming

environments.
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Appendix A

Derivation of the ML Decoding of STC/WFHSS System without
JSI

The derivation in (4.14) is discussed in this appendix. (4.14) is derived by averaging

(4.10) with respect to x. Let xt =
(
x1
t , x

2
t , . . . , x

M
t

)
, then we have following function

f (r|ŝ,α)

= Ex [f (r|ŝ,x,α)]

= Ex

 L∏
t=1

M∏
k=1

m∏
q=1

1√
π
(
N0 + xkt 2

JTs

Q
σ2
J,q

)exp

− ∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣2(
N0 + xkt 2

JTs

Q
σ2
J,q

)



=
L∏
t=1

m∏
q=1

Ext

 M∏
k=1

1√
π
(
N0 + xkt 2

JTs

Q
σ2
J,q

)exp

− ∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣2(
N0 + xkt 2

JTs

Q
σ2
J,q

)



=
L∏
t=1

m∏
q=1

{
Q

Nt

1√
πa

(
1√
πN0

)M−1

exp

[
−

M∑
k=2

∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣2
N0

−
∣∣r1
q,t −

∑n
i=1 αi,qŝ

1
i,t

∣∣2
a

]

+ · · ·+ Q

Nt

1√
πa

(
1√
πN0

)M−1

exp

[
−

M−1∑
k=1

∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣2
N0

−
∣∣rMq,t −∑n

i=1 αi,qŝ
M
i,t

∣∣2
a

]

+

(
1− MQ

Nt

)(
1√
πN0

)M
exp

[
−

M∑
k=1

∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣2
N0

]}
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=
L∏
t=1

m∏
q=1

{
exp

[
−

M∑
k=1

∣∣rkq,t −∑n
i=1 αi,qŝ

k
i,t

∣∣2
N0

]{
Q

Nt

1√
πa

(
1√
πN0

)M−1

· exp

[∣∣r1
q,t −
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i=1 αi,qŝ

1
i,t

∣∣2
N0

−
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q,t −
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i=1 αi,qŝ

1
i,t

∣∣2
a

]
+ · · ·+ Q

Nt

1√
πa

(
1√
πN0

)M−1
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[∣∣rMq,t −∑n
i=1 αi,qŝ
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M
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)(
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=
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exp

[
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Q
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(
1√
πN0
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·exp

a−N0
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∣∣∣∣∣
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1− MQ
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)(
1√
πN0

)M
 (A.1)

where a = N0 + 2JTs

Q
σ2
J,q.
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Appendix B

Derivation of the ML Decoding of STC/WFHSS System with JSI
but without CSI

The derivation in (4.21) is discussed in this appendix. (4.21) is derived by averaging

(4.20) with respect to α. Then we got

f (r|ŝ,α,x)

=

∫ ∞
−∞
· · ·
∫ ∞
−∞
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M∏
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For the real part of the exponent could be represented by R (αR,1,q, αR,2,q, . . . , αR,n,q)
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ŝki,tŝ
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where

ΛR,i,q = (αR,1,q, αR,2,q, . . . , αR,n,q)
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and
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k
2,t . . .
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It is clear that Akt is nonnegative definite Hermitian, and the eigenvalues of Akt are nonneg-

ative real numbers. Therefore, we have

Akt = V k
t D

k
t V

kH

t (B.5)

where V k
t is a unitary matrix and Dk

t is a real diagonal matrix. The rows of V k
t , forming a

complete orthonormal basis of an N -dimensional vector space, are eigenvectors of Akt . The
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diagonal elements of Dk
t are the eigenvalues λki,t of Akt . (B.2) can be rewirtten as
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where
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]
and
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t = [yR,1,q, yR,2,q, . . . , yR,n,q].

We can average αR,i,q for the real part of the exponent in (B.1)
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The imaginary part of the exponent in (B.1) are defined by I (αI,1,q, αI,2,q, . . . , αI,n,q)
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where
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k
n,t

)]
=

L∑
t=1

M∑
k=1

1

aKt
Bk
I,q,t.

54



Then (B.2) can be rewirtten as
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where
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Therefore, the likelihood function can be expressed as
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Appendix C

Derivation of the Design Criteria of STC/WFHSS System

The derivation in (4.29) is discussed in this appendix. (4.29) is derived by averaging

(4.26) with respect to x and α. Then (4.27) is derived first by averaging (4.26) with respect

to α.
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where

Λq = (α1,q, α2,q, . . . , αn,q)

and
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It is clear that Akt is nonnegative definite Hermitian. Therefore,we have

Akt = V k
t D

k
t V

kH

t (C.3)

where V k
t is a unitary matrix and Dk

t is a diagonal matrix. The diagonal elements of Dk
t

are the eigenvalues λki,t of Akt . Then, (C.2) can be rewritten as
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where Yq = ΛqV
k
t = (y1,q, y2,q, . . . , yn,q). yi,q are complex Gaussian random variable with

zero mean and variance 1/2 for ∀i, q. Then |yi,q| is a Rayleigh distribution random variable

and the probability density function is

p (|yi,q|) = 2 |yi,q| exp
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. (C.4)

The conditional pairwise error probability can be expressed as
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The pairwise error probability can be derived by averaging (C.5) with respect to x
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Appendix D

Derivation of the ML Decoding of STC/OFHSS System without
JSI

The derivation in (4.40) is discussed in this appendix. (4.40) is derived by averaging (4.36)

with respect to x. Let xt =
(
xki,t|∀i, k

)
, Assume there are only two transmitter antennas,

then we have following function
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M
1,t

∣∣2
a

−
M−1∑
k=1

∣∣rk2,q,t − α2,qŝ
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1
1,t

∣∣2
N0

−
∣∣r1

1,q,t − α1,qŝ
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1
2,t

∣∣2
N0

−
∣∣r1

2,q,t − α2,qŝ
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where a = N0 + 2JTs

Q
σ2
J,q.
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Appendix E

Derivation of the ML Decoding of STC/OFHSS System with JSI
but without CSI

The derivation in (4.45) is discussed in this appendix. (4.45) is derived by averaging

(4.36) with respect to α. Then we got
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k
i,t

)
− α2

R,i,q
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∣∣ŝki,t∣∣2]
−
α2
R,i,q

2σ2
i,q

−
α2
I,i,q

2σ2
i,q

]}( n∏
i=1

m∏
q=1

1

2πσi,q

)
dαR,1,1 · · · dαI,n,m (E.1)

where ai,tk = N0 + xki,t2
JTs

Q
σ2
J,q. The real part of the exponent could be represented by
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By equation (E.1) with σi,q = 1/2 ∀i, q. The real part of exponent can be averaged with

respect to αR,i,q, then we got
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The imaginary part of the exponent could also be represented by
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Next, the imaginary part of exponent can be averaged with respect to αI,i,q.

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

{
n∑
i=1

m∑
q=1

[
αI,i,q

L∑
t=1

M∑
k=1

2

aki,t
Im
(
rki,q,tŝ

k
i,t

)
− α2

I,i,q

(
L∑
t=1

M∑
k=1

1

aki,t
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Hance, the conditional likelihood function f {r|ŝ,x} can be expressed as

= f {r|ŝ,x}

=
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Appendix F

Derivation of the Design Criteria of STC/OFHSS System

The derivation in (4.51) is discussed in this appendix. (4.51) is derived by averaging

(4.48) with respect to x and α. Then (4.49) is derived first by averaging (4.48) with respect

to α.
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Then the conditional pairwise error probability can be derived as
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Assume there are only two transmitter antennas, the probability density of xt =
(
xki,t|∀i, k

)
is presented in (4.39). Then we have the pairwise error probability by averaging (F.3) with

respect to x.
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(F.4)

where
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a
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