PR a8 BV kR s
e 3 e ald
Study on Fast Converging Nonlinear Echo

Cancellation Based on Optimum Step Size

and Channel Shortening Approaches

By oA w iR

h B P e L

PoE 3 R T



R S SRR LRI P T S
SR I aaiis g =
B4 Ek RS HE A

R FLTR1IEF kAL

Fl 1 ik
Bh oI ma SR R R R o s TR Volterra il
P Y Hammerstein Ty e sf L5 R R o (13R0EL « SRy gy el iy det = o
ERRERLI RS 18 et (VTR R
ok IHﬁI&TN FIT» =5 (PR e R e %ﬁ&“ﬂ%ﬁ‘biﬁﬁﬁﬁ SVEM]TE Volterra
R - H1 T TSR O L SR B o ]
FRHERREE T84 (MSE) - 5 TR, (770t e SRl 5 -
[N TP B e HE S AT R » A S WU TR
Er] o
E LISFLV**]*’EJPLTFU S EL f[1 98 £ (channel shortening) =1+ H'| s iy
Hammerstein YR d5 1% @ 34 I@é?ﬁ. FFEE UIIRE © 5Pk Least-square 713
PE[*?FGET?*F IR AT 2 SR 2R R PR R RIS -
ISR L SRR [ 50 AT -



Study on Fast Converging Nonlinear
Echo Cancellation Based on
Optimum Step Size and Channel
Shortening Approaches

Student: C. S. Shih Advisor: S. F. Hsieh
Department of Communication Engineering

National Chiao Tung University

Abstract

In order to cancel nonlinear  acoustics _echo in hands-free telephones or
teleconferencing system. In general, ‘adaptive Volterra filter and Hammerstein model
are known to track nonlinear echo path. However, their major drawbacks are slow
convergence rate and high computation complexity.

In this thesis, we propose an optimum time-and tap— variant step-size for
\olterra filter in order to speed up convergence rate. The step-size is based on the
MMSE criterion of coefficients errors. As the optimum step-size needs to know the real
echo path coefficient, we propose the exponential model for practical implementations.

In addition to adaptive step-size control , the channel shortening structure was
proposed to overcome slow convergence rate and high computation complexity in
Hammerstein structure, we perform the least-square and adaptive algorithm

theoretical analysis in channel shortening structure in case of a linear loudspeaker.



From which a multiple stage update scheme is proposed in this structure to speed up
convergence rate. Computer simulations justify our analysis and show the improved

performance of the proposed nonlinear acoustic echo canceller.
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Chapter 1
Introduction

In these years, hands-free system telephone and teleconference systems are
widely used. However, the systems usually suffer from the annoying acoustic echo
problem; the phenomenon occurs that the far end speech is transmitted back to the
microphone at the near end. A hands-free telephone system is shown in Fig 1.1. The
main problem of acoustic echo cancellation (AEC) is to copy the unknown echo path
and subtract the copied echo components, from the microphone output. Since the echo
path may be time-variant due to objects moving around the room, an adaptive filter is
commonly used for tracking the echo path. If AEC estimates the echo path accurately,

the echo would be cancelled and the communication-quality would be enhanced.

g Near-end
Far-end Far-end
talker } MIC Loudspeaker
R e I = I R
@ <t ® - N
\
\ v \ listener
\ AEC ,
Echo\ Echo/
AN
N vy __ /
~ I .
MIC e

Fig 1.1 Hands-free telephone system



There are many adaptive algorithms that have been proposed [13]. The
least-mean-square (LMS) algorithm is famous for its low computational cost, the
affine projection algorithm (APA) and recursive least-squares (RLS) algorithm has its
advantage of fast convergence rate, but they are higher computational complexity than
LMS algorithm.

However, competitive audio consumer products require not only cheap signal
processing hardware but also low-cost analog equipment and sound transducer, the
echo path has nonlinear components caused by the capability of power amplifier (PA)
[1], which can be overdriven and leads to nonlinear distortion in far-end speech.
Therefore, the linear AEC is not sufficient to estimate the acoustic echo path. To
overcome this problem, there are;many methods"that had been proposed. A general
nonlinear AEC system is shown.in Figl.2.»The far-end speech signal is passing
through the nonlinear loudspeaker and the room, impulse response and then picked up

by microphone.

Far-end -
Nonlinear
talker Loudspeaker
K MIC
A R o 74 [
N g .
v listener
Nonlinear
AEC

\ Echo

< w: b < Near end

MI C speech and

noise

Figl.2 Nonlinear acoustic echo cancellation system



In order to overcome the nonlinear acoustic echo caused by power amplifier, the
popular method is via polynomial functions, i.e. Hammerstein model [5], Volterra
[2]-[3], Wiener [17], Wiener and Hammerstein model [18]. Those four of nonlinear
models will be introduced in Chapter 2.

Another approach is using echo suppression method, which is to increase the
attenuation of the nonlinearly distorted residual echo and the convergent speed, but
this approach will cause the near-end speech distortion and not eliminate acoustic
echo completely.

In this thesis, in order to avoid near-end speech and eliminate acoustic
completely, we focus on the nonlinear acoustic cancellation and employ the Volterra
and Hammerstein model to track:the nonlinear echo path. To overcome their slow
convergence rate and high complexity, we propose an optimum time and tap — variant
step-size for Volterra filter to speed up convergence rate in Chapter 3.

The channel shortening structure.has been proposed in [14] to overcome high
computational complexity disadvantage of Hammerstein structure. In chapter 4, we
perform theoretical analysis in the senses of LMS and LS in case of a linear
loudspeaker. In addition to theoretical analysis, we will propose multiple stage update
scheme to speed up convergence rate.

We will provide computer simulations to justify our analysis and show the
improved performance of the proposed nonlinear acoustic echo canceller in Chapter 5.

Finally, we will give a conclusion of our work.



Chapter 2

Adaptive Nonlinear Acoustic echo
cancellation

The loudspeakers for hands-free telephone or teleconferencing are usually small
and cheap, so the loudspeaker will be saturated at high level speech. When the
saturation effect happens, the loudspeaker is not linear any more [1]. The residual
error using only linear acoustic echo cancellation is very large. We will discuss the
nonlinear acoustic echo cancellation, to-overcome, this question.

To some loudspeakers, the’nonlinear effects have memory. If using memoryless
structures to model that, the cancellations don’t elimihate nonlinear echo perfect. The
memory structures for canceling the memory ‘echo are complex in general, i.e.
Volterra model. As shown below, we will introduce and compare the several
memoryless and memory structures in section 2.1.

However, the major drawback of nonlinear models lies in slow convergence rate
and high computation complexity. In section 2.2, the algorithm to improve

convergence rate will also be introduced.



2.1 Nonlinear AEC structure

2.1.1 Memoryless nonlinear AEC

® Hammerstein structure

In the section, we focus on the case that the nonlinearity in the echo can be
considered to be memoryless. The Hammerstein structure [5], a famous memoryless
nonlinearity model is a cascade of a memoryless polynomial filter and a FIR filter. As

shown as Fig 2.1.

Far-end
speech
X(k)
Y y oy
O =@
F_F_________:
: a(k) afk)| - afio| |
[ I s
Rloom impulsq Response
C
| |
| 7 ||
Ml v
— X 2k y(k)
- Y -
e(k)
Microphone

Fig 2.1 Hammerstein structure

In Fig 2.1, the output of K-order Hammerstein model Z( K) canbe expressed by

2(k)= 3 Riu(k D) 2



where the u(k) is polynomial filter output and M is FIR memory length
K .
I
u(k)=> a[xk)] 2.2)
i=1
2.1.2 Memory nonlinear AEC

[A] Volterra structure

Far-end
speech x(k)

ho lfpe |°°° NS

Rloom impulsé\Response
C

Desired
speech
< y(k) <
- Noise
v(k)

Fig 2.2 Volterra structure

As shown in Fig 2.2, another common approach to model the nonlinear behavior
of loudspeakers is given by Volterra [2]-[3]. In the following we assume the unknown
echo path, i.e. the cascade of nonlinear loudspeaker and room impulse response, can
be modeled by a K" -order Volterra filter, thus the output of Volterra filter (k) can

6



be expressed by
K .
z(k)=>7"(k) 2.3)
i=1

where the 1/0 relation of the p’th order Volterra kernel with finite memory length N

yields
Np-1 Np-1 Np-1 D
(p) _
27(K)=D, Y e 2 M, LTIXK=1D o)
|p,1=0|p,2=|p,1 |p,p=|p,p—1 i=1

[B] Wiener Model

In addition to Volterra model, the Wiener model can model memory loudspeaker
[17], it consists of two parts, a cascade of/a FIR filter and a memoryless polynomial

filter, as shown in Fig 2.3.

Far-end
speech x(K)

h

vy X(K)

O 02 .o OK

o
R
o

=

oom impulsé\Response

C

(k) —_ Desired
speech
5 )= + K -—

*Residual U h Noise
error e(k) V(k)

Fig 2.3 Wiener Model



The output of K-order Wiener model Z(K) canbe expressed by

2()= Y a[x, (k)] 23

where the X (k) is FIR output and M is FIR memory length
M
X, (k)= hx(k-1) 2.6)
=1
[C] Wiener and Hammerstein Model
We have already introduced the Wiener structure and the Hammerstein structure,

Bershad [ 18] proposed the combifation of the-two structures, it cascades a FIR filter,

a memoryless polynomial filter-and a FIR filter.

Y
|’.II

Far-end
speech x(k)

A J Xh k)
v v v
@] 02 Ok
] ] ]

a .
a 2 8 Rloom impulsdResponse

C
Y A J
u(k)
h, \j

) — Desired
“( speech
Z - + (k) ———

* Residual U - Noise
error e(k) v (k )

Fig 2.4 Wiener and Hammerstein structure



As shown in Fig 2.4, the Xh(k) denote output of first FIR filter, M, and M,
are memory length of h andh,, respectively. The u(k) denote the output of

memoryless polynomial filter with K™ -order.

X (k)= Mlzlhllx(k—l)

k)= a0, (01

Thus the output of Wiener-Hammerstein structure can be expressed as:
M, -1
z(k)=>_h uk-I)
1=0

We have already introduced general nonlinear structures in this section, we can
summarize and compare those .Structures: (a), The advantage of both Wiener and
Hammerstein models is fewer parameters are needed, the disadvantage is low
convergence rate because the patameters of‘nonlincar and linear (i.e. aandh) are
dependent. (b) The advantage of Volterra imodel is that it can care all terms of
distortion causes by nonlinear loudspeaker, thus the performance of Volterra model is
the best to the other models. The disadvantage is that the computational complexity is
most which causes low convergence rate. (¢) All nonlinear models can be considered
as a particular subclass of Volterra model.

In this thesis, we will focus on Hammerstein and Volterra models, which the
main drawback is low convergence rate. To overcome low convergence rate, many
work has been proposed, for example, input decorrelation[21], Orthogonal
polynomial-basis [22-23], step size control [12],[19], and so on. We will introduce

those approaches in next section.



2.2 Convergence rate speed-up algorithms For NAEC

To accelerate convergence speed, there have been algorithm such as input
decorrelation[21], orthogonal polynomial basis [22], and step sized control [12],[19].
We will discuss the first two algorithms here. In Chapter3, we will introduce step size

control approaches and propose new step size approach for NAEC.

2.2.1 Input Signal decorrelation

In the field of acoustic echo cancellation, such undesired signal components are
removed by adaptive filtering. However, the adaptation performance of the LMS
algorithm suffers form slow convergence if the mnput signal is strongly correlated.

A way to overcome this preblem is first decorrlate the input signal, and then uses
the decorrelated signal as excitation forthe.adaptation of the echo canceller.

Kuech [21] proposed an efficient.configuration of decorrelation filters for use
within nonlinear AEC is derived for second-order Volterra filter, it assumed that the
unknown echo can be modeled by a finite-length second-order Volterra filter. It can be

shown as follows:

10



x(k)

u, (k)
= —

he (k)| | |

: I
[ . lcho path
: I

‘ =+ y(k) '
> T sk

Fig 2.5 Second-order Volterra with decorrelation filter

An optimum decorrelation requires a signal in Kuech [21]

Kar
u(k)=> b x(k—n)
n=0
where K, denotes AR (autoregressive)random proeess order, and
b, =1

b, =-b,, VISN<K,

n

where b is used for the following orthogonality relations hold for u(k)and its
produces U, (K), respectively :

E{uk-ajuk)} =0 Vvr
E{uk-aju(k)} =0 Vr=s
E{uk-ajyuk)} =0 Vaz0
E{u(k-aju ()} =0 Vaz0ar=0

Here, the adaptive equations by means of a joint normalize LMS algorithm read:

h"(k+1)=h" (k) + ge(k)u(k — 1)
he (k+1) =h? (k) + pe(k)u, (k-1,)

where the u (k) denotes input of quadratic kernel

u (k)2 u(kuk —r)

11



2.2.2 Orthogonal polynomial-basis

In [22-23], G Y. Jiang and Kuech proposed an orthogonal polynomial adaptive
filter to accelerate the convergence of the polynomial model. In general, the input
signals of each channel are not mutually orthogonal, i.e. E{x'(k)x’(k)}#0,Vi# j.

Thus, a new set of mutually orthogonal input signal has been introduced [23]:
pl(k) = X(k)
u-1
p, (k) =x"(k)+>_q, x'(k)
i-1

for 1<u<K. The orthogonalization coefficients q,; can be determined using the

Gram-Schmidt orthogonalization processing.

In addition to those approaches, step size. control is also usually used to
overcome the problem of low=convergence-rate. In Chapter 3, we will introduce
several conventional step size algorithms—and proposed new step size control

approach.

12



Chapter 3

Optimum Step Size For Nonlinear
AEC

In addition to [21-23], step size control is also usually used to overcome the
problem of low convergence rate.

In this Chapter, we will focus on step size control in Volterra structure. We know
tradeoft between fast convergence rate and small residual error power. In LMS
algorithm, normally, large step size,gives a faster convergence rate but large residual
error power. Thus the optimum’step sizeé:means:that providing fast convergence rate
and small residual error power at the same time.

In following sections, the conventional step ‘size control is introduced in section
3.1. In Section 3.2, we will derive the optimum time-& tap-variant step-size LMS
(OTTLMYS) algorithm which is derived by introducing an optimality criterion which is
given by MMSE between coefficients errors of real kernel and adaptive coefficients.
Its practical implementations are proposed in Section 3.3. The echo path change and

double talk conditions are considered in Section 3.4.

13



3.1 Conventional step size adjustment

B

ERLE(dB)
&

Small step sizee

Large step size

Iteration X 104

Fig.3.1"Trade off of LMS algorithm

In Fig 3.1, the evaluate of echo returnloss enhancement; we can obtain that due
to tradeoff between fast convergence rate and small residual error in traditional
constant step size, various approaches employing varying step-size in linear echo
cancellation have been proposed, including time-varying [9], tap-varying [10], and
both time- & tap varying [11]. In this thesis, the word “time-varying” represents all
taps use identical step size which is time variant. Similarly, the word “tap-varying”
means each tap has individual and tine-invariant step size, and the word “time- &
tap-varying” means each tap has its individual time-variant step size.

In addition to linear acoustic echo cancellation, Kuech proposed a time-&
tap —varying approach in second- order Volterra structure [12] for nonlinear echo

cancellation field.

14



These typical approaches of step size adjustment for linear AEC are summarized
below:

3.1.1 Linear AEC

[A] Variable step size LMS algorithm

The VSLMS approach [9] employs a time-varying (time-variant) step-size which
is controlled by the power of the error signal. This is based on using large step-size
when the AEC filter coefficient is far from the optimal solution, thus speeding up the
convergence rate. Similarity, when the AEC filter coefficient is near the optimum
solution, small step-size is used to achieve lower MSE, thus achieving better overall
performance. The variable step size LMS algorithm works as follows.

w'(K+1) =au'(K)+yeik) | with ' 0<a <k >0
where the time-variant step size'is controlled-by

lleaX if ﬂ‘(k + 1) > ﬂmax
lu(k + 1) = lumin lf /U'(k + 1) > lumin
w1'(k+1) otherwise

The motivation is that a large residual error i.e., e(k) will cause the large

step-size to provide faster tracking the echo path. Similarity, when the residual error is
small, the step size is decreased to yield smaller residual error.

The constant 4, 1is chosen to ensure that the MSE remains bounded and

is chosen to provide a minimum level of tracking ability.

15



[B] Exponentially weighted step size NLMS algorithm

The exponentially weighted step-size NLMS (ESNLMS) algorithm [10] uses a
different step-size (tap-varying) for each tap of an adaptive filter. These step-sizes are
time-invariant and weighted proportional to the expected variation of a room impulse
response. As a result, the algorithm adjusts coefficients with large echo path variation
in large steps, and coefficients with small echo path variation in small steps. The

ESNLMS algorithm is expressed as:

htk+1)=h(k)+ U~ i

T
where U, i1s the diagonal step-size matrix to account for the tap-variant
step-sizes:
7 0
Ugsivs = =
0 Hyy

where g = g,y' for I =1,...,M and 7y is the room exponential attenuation factor
O<y<l).

The elements g4 are time-invariant and decrease exponentially from g, to
M, with the same ratio y that depends on the decay rate of the real room impulse

response € .

[C] Optimum time-& tap-variant step size algorithm

The OTTLMS approach [11] is employed to minimize each tap coefficient error

variance at each iteration step (i.e.d,(k)). The coefficient error is the difference
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between real kernel and adaptive coefficients. The optimum step size can be obtained
by setting the derivative of tap coefficient error variance formula with respect to

4, (k) equal to zero. The OTTLMS algorithm is expressed as:
h(k +1)= h(k) + UOTTLMS (k)E(k)X(k)
where

Hi oTTLms (k) 0
Uorrivs (k)= ’
0 Un orrims (k)
9,(k)

2079,(k)+0; > g,(k) +o;
1=1

2

Hi orrims (k) =

g (k+1) = (1- 05 torrs (K)) g, (k)

As the optimum step-size needs'to know the room impulse response to evaluate
coefficient error, it is not accessible in general, thus the author employed the recursive
relation of second moment coefficient-€rror and used the room impulse response

exponential decay model for practical. implementation [11].

3.1.2 Nonlinear AEC

We have already introduced step size control applied to linear AEC. However, in
the nonlinear AEC application, it faced low convergence rate badly due to high
computational complexity. In this section, we want to introduce several step size

control approaches applied to nonlinear AEC

[A] Proportionate NLMS for second-order Volterra filters

For acoustic echo cancellation, it is reasonable to assume that the echo path is

sparse, i.e., many coefficients are zeros, therefore only the nonzero active coefficients
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need to be identified (updated). This is the idea behind the proportionate NLMS
(PNLMS) [20] algorithm. It exploits the sparseness of such impulse response to
achieve significantly faster adaptation than NLMS.

Kuech [19] proposed an extension of the proportionate NLMS to second-order
Volterra filters. It assumes that the unknown echo can be modeled by a finite-length
second-order Volterra filter. The nonlinear echo cancellation system model is
summarized in Figure 3.2; the microphone signal y(k) is composed of echo
signal y'(k), the noise signal n(k) accounting for background noise, and the speech

signal of a near-end talkers(k).

x(k)

XV (k) x?(k) / gl _ *&@(k_}_
:—..‘ ..—".—.. . " :

. 1 - | :
! h()(k) h()(k) 5 | c(l) c(z) |

. I
. | i Kcho path
NLMS | : I I

algorithm

Fig 3.2 Second-order Volterra acoustic echo canceller

By (2.3) (2.4), the input/output relation of a second-order Volterra filter is given by
z2(k)=2"(k)+z?(k)

= MZi h? (kx(k =1) + NZI Nzl by (Ox(k = 1)x(k —1,)

2 360K 00+ X (0K )
= [h<1)]T (k)x(l)(k) + [h(Z)]T (k)X(z)(k)

To obtain a compact vector representation, we define
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X () =[X" (K), X (K)svee X (KT
=[x(k),x(k =1),....x(K=M + DT
X (k) =[x (K), X2 (K, oo X ()T
=[x (K), X(K)X(K =1),.... x> (K= N, + )]
h® (k) = [h" (k), h" (K),.......n" ()T
h® (k) =[h" (k), h (K), ... (k)T
= [hy (K), hg? (K)o b (OT

M and N, represent memory lengths of linear and quadratic kernel, the lengths
of x*(k) and h®(k) areboth L, =N,(N,+1)/2

The PNLMS algorithm updates each coefficient of the filter independently of the
others by adjusting the adaptation step-size in proportion to the estimated filter
coefficient. Thus the extension of the proportionate NLMS to second-order Volterra
filters is summarized:

P (k)x"é (k)
[X(i)]T P(i)(k)x(i)
P® (k) =diag { p” (k),.. sy (K)}
P (k) =diag { p” (K)......., p” (k)]

h®(k+1)=hV(k)+ u

I " (k)
P00 =S8 0 3 o]
by l-a h (k)

For ie {1,2} , €(k) isused to avoid unstable behavior [19], o is a scalar.

The step-sizes are calculated from the last estimate of the filter coefficients so
that a large coefficient receives a large step-size, it is intuitive that if the someone tap
of adaptive filter coefficient (i.e.h"’(k)) is large value, the coefficient error of this tap
should be large, thus if we give large step size to update, it may be increase the
convergence rate. Hence, PNLMS converges much faster than NLMS.
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We observe that both ESNLMS and PNLMS algorithms rely on the concept of
using large step-size for large tap. It is quite intuitive that large tap will produce large
estimate tap coefficient error and should use a large step-size for fast tracking. This is

appropriate at the stage of initial adaptation.

[B] Optimum step-size for adaptive second-order Volterra filters

The approach [A] is the direct concept of using adaptive filter coefficients to
control step size. In approach [B], Kuech [12] derived the optimum step size
theoretically and proposed approximated model to practical application.

The concept of the optimum step size in Kuech approach [12] is identical to
OTTLMS approach which is derived by introducing minimum MSE between the
coefficient errors of Volterra filter and real echo path.

The desired optimum step sizes forhmearrand quadratic kernel are shown below

respectively
o (k) _ E{[Vl(l)(k)]z}
Aot TR 0+ 0+ 5 (0]
E{[v”(K)]
Hion (K) = —— i L )]}2 (3.1
E{e"(k)+n*(k)+s°(k)}
The linear and quadratic kernel coefficient error in time K can be defined by
v (k)=h"(k)—c? (3.2)
v (k) =h?(k)—c? (3.3)

where

v (k) =V (k), V8" (K),...... v, (OT
v K) =[v? (K),v3? (K), ...V (KT
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The residual echo comes from filter coefficient errors of the linear and quadratic

kernel

e(k)=e"(k)+ &% (k)
= x (K)v (k) + X" (k)v? (k)

For a better understanding of the optimum step size, in [ 12], the author introduced the

auxiliary step size factors:

E{e>(k)+n*(K)} 1 (k)= E{e’(k)}

ﬂdt(k)z E{gZ(k)+n2(k)+Sz(k)} ’ E{gz(k)_'_nz(k)}
0= B oy i = BT
{e"(k)} D E{VOOT HEX ()}
) 2
00— BV (0T}

i E {[vf)(k)]z} E {[xg”(k)]z}

=1

The above definitions of step-size factors are.used. to-factorize the optimum step sizes

according to

210 (K) = 14 (K) 1, (K 2, (R (K
D (K) = 21 ()t (K) 2, (KD (K)

As the parameters E{[¢” (K)]’}, E{[v" (k)'} and E{[V{” (k)'} are not accessible in
general, so the author introduce models for estimating those parameters :

1. The E{[¢"(k)]’} are proportionate to the adaptive filter output of linear and

quadratic kernel, respectively

E{[ (0T} = 7 (0[5, + B0z (0] iel.2}
2. The second-moment of coefficient error is proportionate to the magnitude of the

corresponding adaptive coefficient

E{v" (0T } = 7, (K)o, + 4 (k)| (]
E{V{? (OF | = 7, (), + A4, (k)| (k)]
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For comparison with [11], our work is extending [11] to nonlinear system,
second-order Volterra. We employed the advantage of (second moment of coefficient
error) recursive relation in [11] and proposed a different practical implementation

from Kuech approach [12].

Next, in Section 3.2, we will derive the optimum time-& tap-variant step-size
LMS (OTTLMS) algorithm which is derived by introducing an optimality criterion
which is given by MMSE between coefficients errors of real kernel and adaptive
coefficients. The practical implementation is proposed in section 3.3. The echo path

change and double talk conditions are considered in section 3.4.

3.2 Derivation of optimum time-& ‘tap-variant step-size LMS

(OTTLMS) algorithm

In this section, we will extend [11]| to second-order Volterra filter by getting
recursive relation of coefficient errors. By this extension, we not only speed up the
convergence rate in linear acoustics echo problem, but also in nonlinear echo

cancellation. There our notations are identical to section 3.1 (see Fig 3.2)

We want to find out the step size in time K which can minimize each tap
coefficient error variance in time k+1 i.e. MSE for each iteration step. Hence, we use
diagonal matrixes U (k) and U® (k) to replace the step size of conventional

LMS algorithm [ 13], thus it corresponding LMS algorithm can be rewritten as

h@k+1)=h"K)+ UV (k)ek)x" (k) (3.4)
h?(k +1) =h® (k) + U? (k)e(k)x? (k) (3.5)
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e(k) = y(k)—h"" (k)x® (k) —h" (k)x"* (k) (3.6)

The U"(k) , U® (k) denote linear and quadratic step size matrices our interest:

(2)
LK) ... 0 2 4K ... 0
vhd= o | UP(KR)= :
(2)
0 A 0 4K
where the |" element of step size matrices is chosen to minimize |" coefficient

error variance in time K +1. The criterion is summarized as

#" (k)= arg min E {[hl“)(k +1)— Cl(i)]z}

" (k)

where i<1,2, and it means the linear and quadratic kernel, respectively.
By (3.2), (3.3), (3.6), we get recursive relation of linear kernel:
h® (k +1) = h® k) + U (k)etk)x " (k)
=h" (k) +U" (k) { y'(k)— [V(k) + c]T x(k)+n(k)+ S(k)} x (k)
(3.7)

where

x(K)=[x""(k) x*" (T
v(k) =[v"" (k) v

Using (3.2) and (3.7), we may rewrite the linear kernel coefficient error v (k)

vOk+1) = v (k) - UV (k)x(k)x® (k) + U™ [n(k) + (k)] x (k)
=[1- U )x (k)xT (k)Iv" (k) — U"x (K)xT (k) v (k)
+U (k)X (k) + Us(k)x" (k)

(3.8)
Similar to processing in [11], we can derive the autocorrelation matrix of the

linear kernel coefficient errors as follows, and by the direct-average method [13]
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R, (k+D)=~[I-20" (KR , WIR ,, (K)
U OIEX" (k)x" (kK)v? (v (k)x (k)x" ()} U (k)T
U ROIEX" (k)x" (kv (kK)v" (ox® (k)x" (k)3 [0 ()T
+HUP®IomR , (K)+0cR , (U (KT

(3.9)

From formula (3.9), the E{ . } denotes expectation. By assumption of the mutual

independence of X(K), n(k)ands(k), and probability density function of X(K) is

an even function, as then E{X3(k)} =0 . Thus cross products
terms [I-U" (k)x" (kK)xT (K)]v" (k) , UPx? K)x?T (k)v? (k) , UYn(k)x" (k) and
U%s(k)x”(K) in formula (3.9) could be neglected.

The |’th diagonal term of autocorrelation‘matrix, denoting | ’th mean-square of

linear coefficient error, can be written as:
09"(k+1)=E {[vf”(k > 1)]2}
~(1-244"07)g" (k)
M

+ 1" Om L g )+ 4 Koy > gl (k)

p=1,p=l

L
+ 4 (om g () + 4 Koy Y, 957 (k)

0=0,9#j
12 2 2 12 2 2
+ lul( ) (k)o-x O-n + lul( ) (k)o-s O-X

(3.10)
where o is the far-end input variance. m, = E{X“(k)} and m, = E{X6(k)}
denoting the 4" and 6" moment of X" (k). As the length of linear and quadratic

kernel in VolterraM and L, is sufficiently large, we can approximate m, ~ o)

andm , ~ o, Thus the Eq(3.10) can be rewritten as
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gl(l)(k +1) = (l—2y|(1)(k)0'§)g|(l)(k)
M L,
+ 1 (K)oy | 03> 0" (K +0) > g (K +op + 0!
I=1 j=0

(3.11)

The optimum time-& tap variant step-size can be obtain by taking derivative of

Eq (3.11) with respect to 2" (k) and setting the result equal to zero.

M
V8" (k+) =-2026" () + 244" (K)o7 . 0" (k) + 244" (K)o},

1=1

L2
+24" (K)oros + 24" (K)og > g (k)20

i=1

Thus we can get the optimum time-&tap-variant step-size of linear kernel

O (k)= g’ (k)

Hy otTLms M L
2 1 2 2 4 2
o7 912 (K)¥o, ol +0, > 97 (k)
I=1 1=1

(3.12)
Analogously to linear kernel, we can get-the optimal step size of quadratic kernel

is given by

g;” (k)
/uE,zC))TTLMS (k)= L, :

M
0,297 +o, +0! +0, > 9" (k)
j=1 =1

(3.13)

From the result of (3.12) and (3.13), we can obtain that the optimum step sizes

are direct proportion to the coefficient error variance. If the coefficient error variance
large (i.e. initial state), the optimum step sizes are large; and if the coefficient error
variance small, the optimum steps are become small to get small residual error, the

result fits our intuition.
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The numerator of (3.12) and (3.13) mean that the second moment coefficient

error of linear and quadratic kernel, respectively (i.e. 9" (k)= E{[vf”(k)}z} ,

RIGE E{[vf)(j)]z} ), and the denominator of (3.12) and (3.13) mean the

summation of residual error power and near-end speech power, i.e.

7Y 6002 ([0

T Ty

Thus we can find that the results of (3.12) and (3.13) fit the work (3.1) in [12].

Similar to processing in [11], we substitute the optimum time-&tap-variant step
size of linear and quadratic kernel back to (3.10), thus we can get that the relationship
mean-square coefficient errors

g|(1) k+D=(1- yl(,gTTLMS (k)df)gfl)(k)
0" (k+1) = (1= 1 gmuus (970857 (K)
for I=L..,M,j=1..,L,.

(3.14)

We found the results fit the works on tradition AEC [11].

Double talk condition is not considered in this section, we sets(k)=0, the
double talk and echo path change conditions will be considered in section 3.5, thus the

approximated OTTLMS algorithm for second-order Volterra filter is summarized in

Table 3.1:
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e(k) = d(k) = x"T (K)h® (k) —x?T (k)h® (k)

gk) ... 0
W k+D)=h@ ) +Au| .1 xP(K)
0 - gy'(k)
97k ... 0
W k+)=h?K) +Ax| o P xP(k)
0 g7k

e(k)
0! 3 g+ 4073 60 ()
j=1 =1
gl(l)(k +1)=(1- /Ul(,gTTLMs (k)af)gl(l)(k)
gﬁz) (k+1)=(1- IUJ(,%TTLMS (k)o_j)g?)(k)
Table 3.1: OTTLMS algorithm

Ap =

3.3 Extension to OTTNLMS algorithm

The above discussions are based on LMS algorithm. However, when the input is
large, the LMS algorithm suffers from a gradient noise amplification problem. In

order to overcome this difficulty, we extend it to the normalized LMS (NLMS)

algorithm. By the approximation [13] of x"T(k)xP(k)=Mo?  and
xTxPT(k)y=Lo! , the step size of OTTNLMS can be shown to
be lul(,l(;TTNLMS (k)=(M Gf + Lzo-;):ul(,gTTLMs (k) and ;u](,zC))TI'NLMS (K)=(Moy + I_ZG:)#J(',ZC))TTLMS (k).

So, we can rewrite (3.12) and (3.13) as:

(Mo + Lot a0

:ul(,lO)TTNLMS (k)= M L,
029" (K)+oy+07> 957 (K)
I=1 I=1
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[ Mo} +L,o} [P (k)

(2) _
Hi otTNLMS (k)= 5 M
4 2 2 2 1
03 .97 (K +0o, +0; .9 (k)
j=l1 I=1
Similarly, the (3.14) can be rewritten as:

|
0 s (K )O'

1) k+1 1 lll| ,OTT! (l) k
9, (k+1)=( M02+L20X) (k)
(
(2)(k+1) (l_ﬂjz(;TTLMS( ) ) (2)(k)
o, +Lo!

for 1=1,....,M,j=1..L,.

Thus the OTTNLMS algorithm for second-order Volterra filter is summarized in

Table 3.2:
e(k) = d(k)—x; (K)h™ (k) <x; (k)h* (k)
gy 1
B (k +1) = h® (k) + A - X0 ()
[ f— “)(k) ”X(k)”
97 (k) ... ,
h?(k+1)=h?(K)+Au| - X2
0 (2>(k) ”X(k)”
A [M02+L0'4}e(k)
ﬂ:
o Zg(z)(k)JrG +0 ng”(k)
)
Mk +1 l_ll'll orrums (K ) M (k
9, (k+1)=( Mo?+ Lo’ =)0, (k)
(2)
(2) K+1 1_,“] OTTNLMS( ) @ (K
(k+1)=( Mo? + Lo? =9 (k)

Table 3.2 OTTNLMS algorithm
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3.4 Practical implementations of OTTLMS algorithm

In Section 3.2, we have already derived optimum time-&tap variant step-size for

LMS and NLMS algorithm in Table 3.1 and Table 3.2. Here, the OTTLMS and

OTTNLMS not only need prior statistics knowledge o, o , and o, , but also the prior

knowledge of second moment of coefficient error g/”(k) and g'(k). Thus we

a

must be known the real room impulse response ¢ and second order kernel caused

by nonlinear loudspeakerc™. In general case, the echo path ¢" and ¢® are not
accessible. In section 3.3.1, we propose a model function to estimate those parameters

for the application in nonlinear acoustics echo cancellation.
3.4.1 Exponential models of linear and quadratic kernel

Unlike the approximation approach of Kuechapproach [12] in Section 3.1.2, we

introduced the recursive formula (3.14), thus we only need to know the real envelope
of real echo path (ie.g"(0)= E{|: h(0) —Cf”]z} 2 [Cf”]z ), thus we proposed an

exponentially models for implementation.

()

Here, we will assume reasonably the real linear and quadratic kernele”, ¢

can be modeled as an exponentially decaying envelope shown in Fig 3.3, and Fig 3.5.

Let the linear and quadratic envelope functions modeled as:
1 DN
W|()=W(())(I‘()) forl=1~M (3.15)
2) _ a2 2)\ (I +1 _
Wl(l’l)2 —W(() '(r®)h L) for l,l,=1~N, (3.16)

where r and r® are linear and quadratic kernel exponential decay factors

respectively.
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sample(time)

Fig 3.3 Real Linearkernel‘and-exponential model of the envelope

sample(time) sample(time)

Fig 3.4 Real quadratic kernel of the nonlinear loudspeaker
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sample sample

Fig 3.5 Exponential model of the envelope of the quadratic kernel

The diagonal elements of tap eoefficient-error-variance matrix Rv<1> (k) and
R (K) are  g(k) = EI(W" ()¢ Jitand (k) =E(h()—c’)]
respectively. We let the initial linear and quadratic tap coefficients to be zero.
ie. hP(0)=0, h®(0)=0 , so gl‘l)(O)zE[(hl(l)(O)—cl(”)z]:[cf“]z z[vw,“]z and
g§2>(0):E[(h1§2>(0)—c§2>)2]:[c?)]zz[w{fﬁj. By (3.12) and (3.13), if we have
9" (0) and g?z)(O) , we can get the initial step-sizes of linear ,ul(,gTTLMS (0) and
quadratic kernel filter {75 (0) , with initial step-size plugged into (3.13) we can
get g”(1) and ¢{’(1) , and so forth . Thus, we can find £ drrs(K)

and 4" ys (K), recursively. The practical OTTLMS algorithm with exponentially

envelope model functions can be summarized as follows:
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1. Measure the exponential decay factor of linear and quadratic kernel r and

r? to get Wl(l) — W(()l)(r(l))| andWl(fl)z — W§2)(r(2))(|l+|z) )

2. Set up initial value g{"(0)~[w" ] for 1=1,...,M and
917 (0)~[w T for for I, =1...,N,
3. According to table.3.1

By using the exponential function to model the linear and quadratic kernel, we
can practically implement the OTTLMS algorithm, whose performance will be

verified in Chapter 5.
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3.4.2 Exponentially approximated temporal function of step-size in OTLMS and

OTNLMS

In Section 3.3, we proposed practical implement in OTTLMS. Now we would

further obtain property of step size in adaptive processing.

! : St : 3. ! )
0.1 h

Step size

tap . iteration

Fig 3.6 Linear kernel steprsize temporal function

Step size

tap o

iteration

Fig 3.7 Quadratic kernel step size temporal function

By Fig 3.6 and 3.7, for our optimum step size in AEC, we obtain that large step

size in initial times and small in converged times.

33



To reduce computation complexity, we want to derive the exponentially
approximation temporal function of step size, with the approximated step size
function, we can abbreviate the calculation of (second moment) coefficient error.

To simplify calculation, we assume that all taps of step size are equal, thus we

can rewrite optimum step sizes (3.12) and (3.13) as

) (k) _ g(l)(k)

Hotrivs O'il\/lg(l)(k)+0'§ +G:ng(2)(k) (3.17)
@) (k
@ (k)= g (k)
Horriws (K) aszg(z’(k)+of +05|\/|g(1)(k) (3.18)
Similarly, the mean-square coefficient error could be rewritten as
gV (k+D)=(1- ﬂ((JlT)TLMs (K)o )g" (k)
(3.19)

g(z) (k+1)=(1- ﬂ((jo)TLMs (k)o'::)g(Z)(k)

We put the recursive relation of mean-square coefficient error (3.19) into (3.17), the

OTLMS of linear kernel can be expressed as :

) = (= tk~1e)g " (k-1)

oM (1- 1" (k-1 g (k=Dto” +6:L,(1-u® (k-1)o))g® (k1)
B ok =g (k=1
oIMa" (k-1)g" (k- *eiaila® (k-1)g® (k1)

|J EROIRO
= — L = (3.20)
M a" ()" O +0; +oiL] [« ()™ )

where common ratios of mean-square coefficient error are defined as

a’(i)=1-u"()o?) and a?(i)=(1-u"?(i)o)) fortime i=1~k-1
By assumption of the common ratios are identical for the whole time (i.e.
ak-D=a"k-2)=.=a0)=a"” and a?k-1)=a?(k-2)=..=a®(0)=a"
(O —
and g7 (0)=g"(0), thus we rewrite (3.16) as

[«"1°9"(0)
(M[a"T +L[a™"])9"(0) +0, + 07

u(k) = (3.21)
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Analogously to linear kernel,

(2] 9" (0)
MIa"T +L[a”)g"(0)+0; + 0

u(k) = (3.22)

Similarly, the exponential approximated OTLMS algorithm for second-order Volterra

filter is summarized in Table 3.3:

e(k) = y(k) - x"" ()" (k) - x7 (k)h (k)

. 21 5" ()
U (k) = (M[aa)]k + Lz[a(Z)]k)g(l)(O)+6:
/u(z)(k) ) [a(Z)]k g(l)(o)

- (M[a"T +L[a®T)g"(0) + 07

h (k +1) =h® (k) + 2 (Ke(k)x? (k)
h® (k+1) =h® (k) + 12 (K)e(k)x® (k)

Table 3.3 Exponentially approximated témporal function of step-size in OTLMS

Similarly, for NLMS algorithm, we have:
Hotruws (K) = (M} + Loy ) tigtrie (K)

ﬂézT)TNLMS (k)=(M Jf + l—zo-:)ﬂgT)TLMS (k)

3.5 Double Talk and Echo Path change conditions

We have already proposed OTTLMS algorithm and assumed single talk case in

Section 3.2. In this section, we consider the double talk (i.e. S(K) # 0) and echo path

change conditions.
From the (3.12) and (3.13), the determination of 4 grr s (K)and 2o s (K),

j,OTTLMS

as statistics knowledge of near-end o are not accessible, it is intuitive that residual
error variance o.(k) is near to o, +o. in converged condition. Thus we
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introduced the estimated residual error variance &.(k) to model the background

noise and near end speech variance for practical implementation which is using the
smoothed recursive algorithm from square of residual error:

52(k) =182 (k—1)+(1-2)e* (k)
where A is constant.

Next, we look at the echo path change condition. When the echo path changes,
our proposed optimum step size is not robust because our step sizes are still restricted
to small value in converged single-talk.

In OTTLMS algorithm, we introduce the recursive relation to evaluate the
optimum step size, rather than calculate step size repetitively. These introduction
constraints that our optimum step sizes are to'be small in converged condition even

echo path changes suddenly.

o
o
w H i
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n g ) 8 7
w { Kuech approach f
1047 ; Ji i
13 ]
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H
5/ ]
ot NLMS |
Echo path chanegefl > OTTINLMS
- L L L L L L L
0 0.5 1 1.5 2 2.5 3 3.5 4
iteration « 10°

Fig 3.8 OTTLMS during echo-path variations
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Fig 3.8 shows the comparison of OTTLMS and LMS during echo-path variations.
The room response is changed after 12000 iterations. According to the simulation, the
convergence rate of OTTLMS algorithm is increased as compared to the LMS
algorithm; however, it can be observed from Fig 3.8, the result is different after echo
path changed. The reason is the recursive characteristic of (3.14), whether echo path
changes or not, the mean-square coefficient errors of linear and quadratic kernel are
smaller and smaller, it leads to our proposed optimum step sizes are smaller and
smaller, so even if the echo path changes after 12000 iterations, the step sizes are still
very small at convergence.

Thus we introduce a detector [16] to detect the echo path change, by a direct
measure of the adaptive filter’s convergence. Referring to Fig 3.2, the cross

correlation between the desired signal y(k), and the residual error e(k) is given by:
r, (k) = E{e()y" (k)]
=E {{[c(” ~h Ok ] k) + n(k)} {eTx" (k) + n(k)}}
=" —n" (k-1 | Ryoe® + o7

(3.23)

The variance of desired signal y(k) and residual error e(k) are expressed by
o, =E{y’(k)}=c""R , (k)" +0; (3.24)
ol =E{e (K} =[c¢" -h"(k-D] R, (K)[c"-h"(k-1)]+0? (3.25)

The proposed convergence statistic definition from [16] is given by:

O _h"(k-1)) R ,h" (k-1
_ (C ( )) NO) ( )} (326)

r,(k)-o;

ey

o) -r,()] (¢") R ,h"(k-1)

g(k)=

We can observe that If the adaptive AEC filter converged (i.e.c” ~h"”(k —1)), the
convergence statistic £(k) in (3.29) is approximately to zero, and ifc” #h" (k —1),
the statistic £(k) is lager than zero (£(k)>0). Thus the proposed statistic is a good
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measure convergence of the adaptive filter.

When the echo path change detector detects the echo path change, we

re-initialize from g”(k) tog"(0), it means that we re-update the linear adaptive

filterh® , thus we can overcome the echo path change condition. The simulation result

will be shown in Section 5.2.7.
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3.6 Computational complexity

We have already discussed OTTLMS algorithm with an increased the
convergence rate. This section we make a computation comparison of OTTLMS,
LMS, and Kuech approach, we examine the number of multiplications required to
make once complete iteration of the algorithm. The recursive relation of second
moment coefficient error in (3.13) is need 2M +2L, multiplications, the update
equation of OTTLMS in Table 3.1 is need 2M +2L, multiplications, thus the total
requirement multiplication of OTTLMS is 5M +5L,

Similarly, the multiplications of [12] are about4M +4L,, and the EAOTTLMS
(Exponentially approximation temporal function of OTTLMS) in Section 3.4.2, it
needs only about2M +2L, .

The computation complexity for OTTLMS atre summarized in Table 3.3

Algorithm+ |- Multiplications/sample
LMS 2M +2L,
Kuech[12] 4M +4L,
OTTLMS 5M +5L,
EAOTTLMS 2M +2L,

Table.3.3 Computation complexity comparison of different algorithms
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3.7 Summary

In this chapter, we propose the optimum step size in second-order Volterra
structure, in section 3.1, we introduced the conventional step size control algorithm, in
section 3.2, and the optimum step-size is derived by introducing an optimality
criterion which is given by MMSE between coefficients errors of real kernel and
adaptive coefficients.

In Section 3.3 we extend to NLMS algorithm. In Section 3.4 we propose
exponentially model function to practical implement because the prior knowledge of
echo path is not easy to be acquired. To save the computational complexity, the
exponentially approximated temporal function was derived in Section 3.5.

In Section 3.6, the echo path change and double talk conditions were considered,
and the computational complexity.was summarized in Section 3.7. The overall of
discussion will be verified in Chapterd:

In addition to step size control of second-order Volterra, the higher-order Volterra
model was not considered here. Because the optimum step size deriving processing is
more complicated, for example, (3.8) will be have many cross term which is leading
to hard to get the second moment of coefficient error in (3.10).

In Hammerstein model, as it is cascade structure, the joint error term produced

by linear and nonlinear term, thus it is difficult to perform its optimum step size.
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Chapter 4
Channel Shortening Structure For
Nonlinear AEC

Another alternative is the channel shortening technique that has been proposed in
[14] to overcome high computational complexity and low convergence rate
disadvantages of Hammerstein structure.

In Chapter 4, we will investigate the issues of channel shortening approach. The
channel shortening approach will be introduced in Section 4.1, in Section 4.2, we will
perform theoretical analysis in the senses of LMS and LS in case of a linear
loudspeaker to obtain the converged. tendency:

In addition to theoretical “linear-analysis;, we will propose multiple nonlinear
stage update scheme to accelerate ‘convergence rate in Section 4.3, and finally we

apply the channel shortening with second-order Volterra filer in Section 4.4.

4.1 Channel shortening approach

Kun Shi [14] proposed a novel algorithm based on Hammerstein model, Fig.4.1
shows the structure of nonlinear acoustics echo cancellation, it introduced an FIR
shortening filter w(k) is introduced after the acoustics path. The purpose of shortening
filter w(k) is to “shorten” the channel, which is the convolution of the room impulse

response and w(k) to have fewer number of non-negligible taps.
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Fig4.1 Channel shortening structure for nonlinear AEC
In [14], the author performed the RLS algorithm for nonlinear polynomial
coefficient a(k) , and NLMS algorithm for adaptive AEC h(k) and shortening

filter w(k) . Here we will focus the NLMS algorithm.

Suppose that the lengths of shortening filter w(k) and the AEC filter ﬁ(k) are

L, and L, ,respectively . Define the vectors

w(k) = W, (). W, (K. w ()|
¥ =[y(k), y(k=D,.... yk—L, +D]

h(k) = [, (k),h, (K),...,h,, (K]
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x(k) = [x(k), x(k =1),...,x(k = L, +1)]'
The reference signal (output of shortening filter) d(k) can be defined as

d(k)=w" (K)y(k)

The nonlinear AEC output signal z(k) can be written as
2(k) =h" (K)s(k)

where the $(K) is the output vector of the nonlinear filter
s(k) =[s(k), s(k-1),....s(k-L, +D)]"

Each g(k) is given by

A 1 2 K A A A T

$(k) =[x (k) X* (k) X* ()[4, (K), &, ()4, (K)]

=x(k) a(k)

where a(k) is the estimated coefficients vector of the nonlinear processor. Therefore,
$(K) can be expressed by

§(K) = [§(K), §(k -1),.... S(K “LEFDT

=[ x(k)"a(k), x(k-D"a(k-1),..., x(k-L, +D"ak-L, +1) T
where p, is the polynomial basis of order 1 , for example
p,(k) =x(k) and p,(k) = x*(k) in case of a power series expansion basis. K is the
order of the polynomials. The estimated error is
e(k)=d(k)-z(k)
=w' (K)y(k)-h" (K)s(k)

The gradient of the error powere®(k), as derived in [15], can be calculated according

to:

v,[e00]= ?ﬁ((:)) — 2e(k)i(k)
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v [£100]= T = 2o (onik

oe” (k)
ow(k)

where P(K) is the expanded nonlinear matrix defined by

pl(k_l) pz(k'l) pK(k'l)

V.[eM)]= =2e(k)y (k)

P(k)=

_pl(k- Ls +1) pz(k_ Ls +1) pK(k_ Ls +1)_
If the coefficients vectors are updated with step size y,, x4, and g, , a joint

NLMS-type adaptive algorithm is given by

h(k +1) = h(k) + —2"_§(k)e(k) (4.1)
s
ak +1)=a(k) + o= ipTohtk)e(k) (4.2)
HPT(k)h(k)H2 +6
w(k +1) = w(k) - ——ek)y(k) (4.3)
[y ol

In order to avoid trivial solutions, the author constrained that two-norm of polynomial

and linear filter are equal to one (i.e. ||?1||2 =1, ﬁH2 =1).Thus, unlike the RLS [14], the

NLMS algorithm for channel shortening structure was summarized as

® ak+l)=ak)+ L PT()h(K)e(k)
P" (Oh(K)| +5
. _ak+1)
() a(k+l)_—ﬁ(k+1)”2
® h(k+1)=h(k)+—"_s(k)e(k)
s,
h(k +1)
® hk+h= 20
D g
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° w(k+1)=w(k)—”yz‘TW)”2e(k)y(k)

We did some simulations to verify that faster converged rate in this structure. The
far end signal x(k) was generated according to an i.i.d Gaussian distribution. The room
impulse response was generated by a random number generator with an exponential
damping factor and we assume the length of room impulse response is equal to 350.

The nonlinear loudspeaker is modeled by polynomial function

f(X) =.89x+0.002x° -0.3x’ +0.001x* +0.5%

The length of shortening filter L, and linear adaptive L, are equal to 250 and
100, respectively, and the nonlinear polynomial filter order isK =5.

To evaluate system performance, residual error power, performance measure of
echo return loss enhancement (ERLE), and coéfficient misalignment are major system
performance measures for comparison purposes.- With the assumption of high SNR,

the (ERLE) can be formulated as

[d (0T
[e(k)T

ERLE (k) =10log,, ( )
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Comparison of channel shortening and classical structure
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Fig 4.2 Comparison of classical Hammerstein and channel shortening structure
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Fig 4.3 Shortening filter,-original channel and ¢channel shortened channel

In Fig 4.3, the coefficients of shottening,-original and shortened channels were
displayed; the shortened channel 1s the convolution of shortening filter and real
original channel, we omit the shortened channel from 351 to 599 taps, which the
amplitude value can be neglected.

We can obtain that shortening filter reduces the length of room impulse response
from about 250 to 100 taps. As the reduction, the shortening structure reduces length
of adaptive filter h from 350 to 100.

For computational complexity, we examine the number of multiplications

required to make once complete iteration of the algorithm (4.1), (4.2) and (4.3). g(k)

in (4.1) and its 2-norm need nonlinear order K and linear filter tap M multiplications
respectively thus the total requirement multiplication of (4.1) is about 2M + K. For

(4.2), PT(k)h(k) and its 2-norm need MK and K multiplications respectively thus
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the total requirement of (4.2) is about MK+2K. Thus we know that the total
requirement multiplication of classical Hammerstein structure is about MK+2M+3K.
In channel shortening structure, we reduce the linear FIR filter from M (i.e. Ls+Lw) to
Ls. The requirement multiplication of (4.3) is about Lw. In order to avoid trivial
solutions, the renormalized term in channel shortening approach are added, the

requirement multiplication is about Ls+K.

Number of multiplication

Classical Hammerstein structure (Ls+Lw)K+2M+3K

Channel shortening structure KLs+2Ls+3K+Lw+Ls+K

Table 4.1 Computation complexity comparison of classical and shortening

structure

By Table 4.1, it can be obtained'that-the-main computation lies in (4.1) and (4.2),
thus although it increases multiplication.due to shortening filter, it still can reduce the
multiplication complexity, because the dominate term of computation complexity of

classical Hammerstein structure is MK, which was reduced to KLs.
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4.2 Theoretical analysis of linear echo channel

In this section, in order to discuss convergent behavior in the structure, we
analyze the coefficient error under the assumption of linear loudspeaker and. By the

assumption, we simply the system model in Fig 4.4.

Far-end Loudspeaker
speech
x(k)
Norjlinear
polypomial |

filter

/ Room impulse

respongse
/ h®) ¢
FIR filter
z(k)
< im
e d(k) FIR filter

e

Fig 4.4 Shortening structure for the linear loudspeaker

4.2.1 Least-square solutions

In order to discuss the Least-Square solution in this structure, we don’t take
account of time index k.
In our analysis, we use the residual error € defined by the following equation.
e= x*w*c—x*h+n*w (4.4)
where * is linear convolution operator , C is room impulse response with finite

length M, and the n denotes the background noise.
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c, represent i’th tap of ¢, h is FIR filter with length L, to track the shortened
echo path, h, represent ¢’th tap of h, and the wis shortening filter with length
L,, w; represent j’thtapof w.
We extend (4.4) to matrix form
e= X*C*wW—X*h+n*w

= (x*c+n)*w—x*h

=(y)*w—x*h

=Yw-Xh

(4.5)

where Y and X are convolution matrix version‘of microphone input signal y and far

end signal, respectively, andL, =M +L, =1

Y05 0 | X, 00 0]

Y., Y0, . 0 Xs5X,0,.0nnen. 0
y=| X =

0,...... Yipernnn. 01|, 0,...... X pernnns 0

[0 Y, | 0, X,

In order to get the least-square solution of wandh, we assume that the first element

of shortening filter W, =1 to separate (4.5) into two term form, Thus (4.5) can be

rewritten as:

e=b+ As (4.6)
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where

y, 0, 0,.nennn 0 [x,0......... 0 T
Y, Y, O, 0[X,,X ......... 0 ’
. A
Y, Yoo Viseverenenn 0l )
: D e X ...0
b= A= ,S=| W,
0 0,...¥,,0....00................ h
0 O 0 1
...... Y, o _h,
0] |0 0 o | "
The normal equation of (4.6) can be written as
A"As=-A"b (4.7)

Therefore, in order to minimize the coefficient:error, the least-square solution of X

can given by:

s=-(A"A)"A'b (4.8)

4.2.2 Adaptive LMS algorithm and its convergence analysis

In section 4.2.1 , we analyzed the coefficient error in least-square sense , we will
derived the theoretical coefficient error based on the adaptive LMS algorithm , we
want to observe and discuss the result of LMS algorithm in shortening structure to see
if it can achieve the least-square solution or not.

Using (4.5), the coefficient error at timek +1.
_ h(k +1
a(k+1):Cw(k+1)—L)( )}

In the following analysis, we assume the step sizes of shortening filter w and FIR

51



filter h areequal,ie. x4, =4, = . Using LMS algorithm, we have

_ {h(k +1)}
gk+)=Cw(k+1)— 0

_ h(k) - k)e(k
=C[w<k>—uy(k)e(k)]—[0( )= ax()e( )}

= g(k)— u[Cy(K) +x,,(K)Je(k) (4.9)
By the noise-free assumption, the residual error e(k) can be written as
e(k)=d(k)—1z(k)
=y (kKw(K)—x" (k)h(k)

= x, (K)Cw (k) —x" (k)h(k)
=x,, (K)e(k) (4.10)
where
L =M+L, -1

XL (K) =[x(K), x(k = 1),.. 5 Xk — L_+1);0;...0]

IxLy

XTI_q (k) =[x(k),x(k =1),.....x(k = L, + )]
Using (4.9), (4.10), we rewrite the coefficient error as
g(k +1) = &(k) — #[Cy (k) +x,, (K)]x[, (K)&(k)

=[1,.., ~ Ty, () +x,, ()X, ()] Je(k) (4.11)
According to the direct averaging method [13], when & is very small, the coefficient

error €(k+1) can be approximated as follows:

ek +1) = [IquLq - yaqu]a(k) .12)
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Where Rq _CHq +I|—s><|-s ? Hq - . *. .
0y g gy O 0|

By applying the similarity transformation, R, 1is transformed into a simpler
form:
S'quS =E
where Sis a matrix consisting of eigenvectors of R, and E is a diagonal matrix

consisting of the eigen-values 4. Let @(k)=S"g(k) then we may transform (4.12)

into the form

S'e(k+1)=S" [1 - yO'qu]s(k)

ok +1)=[1- uo}E [otk)
The natural mode ¢ (k) denotes: i’th-entry-of@(k) - Let ¢, (0) denote the initial value
of . (k) . We may rewrite ¢,(K) as follows.

¢, (K) = (- o 2)p (k1) s
= (1- 402, 9,(0) @1
Hence, we get the theoretical coefficient error in LMS algorithm sense. In

chapter 5, we would simulate it and compare with the least-square solution.

We will note that the theoretical mean-square error is

J(k)=E{e’(k)} =07 ek, N

4.2.3 Non-unique converged value

To further understand the converged behavior, we discuss the converged value of
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adaptive filter h(k)and shortening filterw(k), we want to discuss the convergence

toward the optimal parameters in the system. Indeed, the mean-square error

J(k)=E{e’(k)} produces some local minima, implying the convergence toward
incorrect parameters depending on the initialization of h(k)and w(k) .We study this

phenomenon in this section. From (4.10), the square of residual error €’(k) can be

expressed as:

e’ (k) =w' )y (k)y' (Kyw(k)+h" (k)x(k)x" (k)h(k)
=2w' (K)y(K)x" (k)h(k)

(4.15)
The squared error can be used to get the optimal parameter set in the minimum
mean-square error sense (MMSE).To simplify analysis, we assume that the other filter

is quasi-constant when we analysés one filter:

For the linear AEC filterh(k), the gradient of 'J(K) tespect toh(k) is given by

V, {30} = 2E | x(K)sL (k) Th(ky=2E{ w' (K)y(k)x(k) | (4.16)

For the shortening filter w(k), the gradient of J(k) respect tow(k) is given by
V 13K} =2E[ y(kK)y' (k) Jw(k)-2E[h' (k)x(K)y(k) ] 4.17)

h,. and Wyyue , both satisfy the equality V,{J(K)} =0 and

h=hymse

vV, {3k}

Wewise 0, respectively. Thus from (4.13) and (4.14), we can obtain that

Wumse 1s function ofh(k), and h,,,. is a function ofw(k).

Thus we can see that initial value of h(k)and w(k) will affect the final

converged value.
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4.3 Multiple stage update in channel shortening structure

As seen (4.16) and (4.17), in linear echo path channel, we can point out several
things. First, the different initial value of filter (whatever AEC or shortening filter)
will cause the shortening structure converge to different value; second, the system is
not able to identify the optimal set of parameters, unless one of filter is know.

It has identical situations in nonlinear channel shortening structure (i.e. Fig 4.1).
In this section, we will try to change the way of updating in channel shortening
structure, rather than joint update.

The Guerin [3] proposed the two-staged strategy which it starts with one filter,

and joint adaption of all filters (i.e. polynomial filter gl(k) , adaptive AEC filterh(k),

and shortening filterw(k)) oncesthe linearfilter has sufficiently converged in first
stage.

In channel shortening structure, the two-staged: strategy means change the initial
value of filters, as when the first stage finished, the initial value is identical to the
converged value in first stage.

By the idea, we want to obtain and compare that the performance of different
multiple update strategies (i.e. different initial value of filters). The overall of

discussion will be verified in Section 5.3.
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4.4 Volterra with channel shortening and OTTLMS

In this section, we try to implement the shortening structure to second order
Volterra, we hope to the shortening filter shorten the linear kernel of echo path and
lead to improve the convergence rate in Volterra structure.

It is identical idea with Hammerstein, the purpose of shortening filter w(k) is
to “shorten” the linear kernel, which is the convolution of the room impulse response
and w(k) to have shorter taps.

In addition to channel approach for Volterra structure, we implement the
OTTLMS algorithm to the combination ( i.e. channel shortening in Volterra filter),

The overall of discussion will be verified in Section 5.3.

56



Chapter 5
Computer Simulation

To evaluate the performance of our proposed nonlinear AEC algorithm, we
provide computer simulations. In Section 5.1, we introduce the parameters of our
simulation. A series of sirhulationsand experiments on the optimum
time-&tap-variant step size, will be compared and discussed in Section 5.2. In Section
5.3 we will compare simulations*results-‘with -theoretical analyses in channel

shortening structure.

5.1 Simulation parameters introduction

The signal to noise ratio at microphone is defined as

SNR = 1010g10(%)

noise

where P is the power of the

> is power of the nonlinear echo and the P

noise

background noise.

For simplicity, we use a 256-tap room impulse response as shown in Fig 5.1.1. It

57



is generated by a random number generator with an exponential damping factor.

Nonlinear memory echo path is shown in Fig 5.1.2. In this thesis, we use a
20-memory kernel.

In our experiment, we not only use an i.i.d white Gaussian signal, but also speech
signal as the input signal to examine the performance. The speech signal is sampled
with 8 KHz sampling rate shown in Fig 5.1.3.

To evaluate system performance, residual error power, ERLE, and coefficient
misalignment are major system performances for comparison purposes. The
performance measure of echo return loss enhancement (ERLE) can be formulated in

single talk condition as:

ERLE(dB) =10log,, { Z((:))z}

where the Yy(k) is the microphone signal
In section 5.3, the nonlinéar-loudspeaker in our simulation is modeled as the
polynomial function:

f (X) =.89x+0.002x° -0.3x* +0.001x* +0.5%

In [14], Usually ERLE is usually defined as the ratio of microphone received
echo power to the residual echo power. In Fig4.1, since shortening filter may change

the power of receive echo, the ERLE is redefined as

ERLE(dB)=10log,, {2((—:))22}

where d(k) and e(k) represent the “filtered” received echo signal and residual

echo, respectively.
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5.2 ERLE convergent rate comparison

5.2.1 Comparison of OTTLMS, only linear OTTLMS and LMS

Figure 5.2.1 shows the convergent rate curves of LMS and OTTLMS algorithms.
The parameters settings chosen for Figure 5.2.1 are that the order of linear and
quadratic kernel equal to 256 and 20 respectively, and the signal-to-noise ratio is
30dB. We simulated large and small step size in LMS algorithm, We can see that large
step size provides fast convergence rate but low ERLE performance, and vice versa.
At initial state, LMS algorithm has the slowest convergence rate compared to

OTTLMS with variant step-size algorithms.
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comparsion of OTTLMS and LMS algorithm
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Fig 5.2.1 Comparison of OTTL:MS.and ELMS.algorithms (with white Gaussian input)

From result of Fig 5.2.1, in small.step.size that has identical convergent ERLE
value to OTTLMS, we can obtain that our OTTLMS algorithm provides faster
convergent rate, our approach converged after 3000 iterations which is faster than
10000 iterations in LMS algorithm. Besides compare with small step size, we can see

that even if we use large step size in LMS algorithm, the OTTLMS algorithm still has

a faster convergence rate than LMS algorithm.

In fig 5.2.2, we use the real speech signal in Fig 5.1.3, the parameters settings

chosen for Figure 5.2.2 are as follows:

+ M =256 N,=20 SNR=25 dB

« LMS:u=0.01
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comparison of OTTLMS and LMS
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Fig 5.2.2 Comparison of OTTLMSand EMS algorithm (with real speech)

Fig 5.2.2 show that the optimum time-& tap-variant step-size LMS (OTTLMS)
provides faster convergence rate than LMS algorithm in real speech input. We can
obtain that our OTTLMS algorithm enhance the LMS algorithm about 10dB in initial
state, after 15000 iterations, the OTTLMS still improve LMS algorithm about 5dB.

After the comparison of OTTLMS and LMS algorithm, we want to look the
effect of optimal step size in quadratic kernel, we compare OTTLMS algorithm into
both linear and quadratic kernels with only into linear kernel.

In this thesis, the word “only-linear OTTLMS” represents that the step sizes of
linear adaptive filter are optimal, and the quadratic kernel is fixed (i.e. LMS algorithm
for quadratic kernel).

Fig 5.2.3 shows the convergence rate curve of OTTLMS and
only-linear-OTTLMS algorithm. The parameters settings chosen for Figure 5.2.3 are

the same as Fig 5.2.1.
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Fig 5.2.3 comparison of OTTLMS, only-linear~L. MS, and LMS algorithm (with white

Gaussian input)

From result of Fig 5.2.3, we find the convergent rate of OTTLMS for all kernels
is higher than only-linear OTTLMS, we can obtain that the OTTLMS for all kernels
converged after about 3000 iterations which is faster than 5000 iterations in
only —linear OTTLMS.

In addition to Gaussian input signal, we also simulated in real speech signal to
compare OTTLMS with only-linear-OTTLMS algorithm. The parameters settings

chosen for Figure 5.2.4 are the same as Fig 5.2.2.

63



Comparison of OTTLMS and only lineaer OTTLMS
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only-linear-OTTLMS
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iteration x 10

Fig 5.2.4 comparison of OTTLMS and only linear OTTLMS (with real speech)

Fig 5.2.4 shows that the OTTEMS algorithm provides faster convergence rate
than only-linear OTTLMS algorithm in real speech input. We can obtain that our
OTTLMS algorithm enhance the only-linear-OTTLMS about 4dB in ERLE

performance.
5.2.2 Comparison of OTTLMS and Different parameters of model function

In this section, we will simulate the ERLE performance using different modeling
parameters of model function by (3.14), (3.15), we named “matched model” if model
function close to the real kernel; “under model”, if decay rate of model function faster
than real kernel; “over model” if decay rate of model function is slower than real

kernel.
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We will discuss the case of mismatched model. By Fig5.1.1 and Fig5.1.3, we use

three slope parameters of model function in (3.14), (3.15), by assumption of the

r®

slopes of real linear r” and quadratic kernel are approximately equal to 0.96

and 0.85.

The parameters settings chosen for Figure 5.2.5 and Figure 5.2.6 are as follows:

r =093 ,r2 =0.80

under model :

under > “under
upper model : r') =0.99 ,r» =0.90
0.4 I I
room impulse response
0.3 . e Under model i
X Matched model
02 7‘.“ ........... OVer mode| i

\
0.1 |k | h |
| %/WTVH R — - 7

Amplitude

1 1 1 1
0 50 100 150 200 250 300
sample(time)

Fig5.2.5 RIR and Model function
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Fig 5.2.6 (b) Under Model
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Fig 5.2.6 (c) Matched Model
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Fig 5.2.6 (d) Over Model
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Fig 5.2.8 Comparison of Mismatched model functions (with real speech)
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From result of Fig 5.2.7 and Fig 5.2.8, we obtain that ERLE performance of
closed and Over model are similar to optimum model, even if we use the Under model,

the converged rate still faster than LMS algorithm.

5.2.3 Comparison of OTTLMS and OTLMS

In this section, we want to examine the effect of tap-variant step size. We will
compare tap-variable step size with tap-invariable. Thus we fixed the
The parameters settings chosen for OTLMS are as follows:

- OTLMS: rcng)LMS =1, r(;?LMS =1

Comparison of OTTLMS and OTLMS
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iteration % 10"

Fig 5.2.9 Comparison of OTTLMS and OTLMS (with Gaussian input)
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Fig 5.2.10 Step size of practical OTLMS (with white Gauss input)
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Fig 5.2.11 Comparison of OTTLMS and OTLMS (with real speech)
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Fig 5.2.12 Step size«of practical OTLMS (with real speech)

Fig 5.2.9 and Fig 5.2.11, show in‘either-case of white Gaussian or speech signal,
OTTLMS performs better than OTLMS;=it also demonstrate that the time and
tap-variable step size provides faster convergence rate. Fig 5.2.10 and Fig5.2.12 are
reasonable since the value of step size is large at initial state (i.e. before 5000

iterations), and small if it converged.

5.2.4 Exponentially approximated temporal function and LMS

From Fig 3.5, 3.6, we know that the step size of OTTLMS algorithm is exponential
decay by time, thus we derived the (3.21), (3.22) and compared the temporal curve
with exponentially approximated function. In this section we simulated the ERLE

performance to compare them.
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From Fig 5.2.13 and Fig 5.2.14, we can obtain that the exponentially temporal
model still accelerate convergent rate of LMS algorithm in white Gaussian input,
however, when the far end input is real speech, the EAOTTLMS( exponentially
approximated temporal of OTTLMS ) is failed.

We obtain further the temporal function of step size, in Fig 5.2.15, we can obtain
that step size of linear and quadratic are too large when the speech volume is small,

this out of step size control behavior cause that the EAOTTLMS failed.
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Fig 5.2.15 Step size of EAOTTLMS
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5.2.5 Comparison of OTTNLMS and Kuech’s approach

In section 2, we introduce Kuech approach [14]. OTTNLMS algorithm and
practical implement were proposed in section 3.2 and section 3.3 respectively .This
section we want to make a comparison of them, to compare fairly, we choose some
parameter which make the steady state of Kuech’s ERLE equal to our proposed. The
parameters settings chosen for Figure 5.2.16 are same as Fig 5.2.2, the step sizes of

NLMS are fixed to 0.2, and the parameter of Kuech [14] (i.e. z,,) is equal to 0.2.

comparison of OTTNLMS and Kuech
35 T T T
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25 ‘ .'0 ----------- |
§ —————— Kuech approach
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..... OTTNLMS-practical

20
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OTTNLMS, OTTNLMS-practical, Kuech approach , NLMS

|
0 0.5 1 15 2 2.5 3
iteration % 10°

Fig 5.2.16 Comparison of OTTNLMS and Kuech approach (with white Gauss input)
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Fig 5.2.17 Comparison of QTTNEMS and Kuech approach (with real speech)

5.2.6 Imperfectly model condition

In below sections, we have already verified that our OTTLMS algorithm provide
faster convergence rate than LMS and Kuech approach by computer simulations.

However, we assumed that our filter can perfect model the echo path (i.e. filter
order equals to echo path order), it is not critical in general. Thus in this section, we
want look the case of imperfectly model condition (i.e. filter order smaller than echo
path order), under this condition, we want to compare OTTNLMS to others algorithm
( Kuech approach, NLMS). The memory of linear and quadratic kernel is equal to 100
and 10 respectively, which smaller the real echo path orders 200 and 20. The other

parameters of Fig 5.2.18 are the same as 5.2.16.
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Fig 5.2.18 Comparison of OTTNLMS and Kuech approach in imperfectly model case

From result of Fig 5.2.18, we can obtain that.convergent rate of OTTLMS is still

faster than Kuech, even in imperfectly model condition.

5.2.7 Echo path and Double talk conditions

We have already discussed the echo path and double talk effects in Section 3.5,
which our OTTLMS is not robust to echo path change, thus we added echo path
detector into our OTTLMS to overcome it. In this section, we will provide the
computer simulation to verify the performance of OTTNLMS.

In our simulation, we changed the room impulse response after 14000 iterations,
and added near end speech from 25000 to 27000 iterations; both far and near end are

white Gaussian noise.
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Fig 5.2.19 Comparison of OTTNLEMS+and.Kuech approach in EPC and DT
condition

In Fig 5.2.19, we assume that the.echo path changed after 15000 iterations, and
double talk happed from 25000 to 27000 iterations.

The Kuech approach, it did not considered the double talk condition in [12], we
assume that the approach knows when the double talk happened here (i.e. know the
real s(k)in (3.1)).

As to our proposed algorithm, we can obtain it maintain on 30 dB, thus our
proposed algorithm still work in double talk period.

In echo path condition, we have already introduced the echo path detector [16]
into our proposed algorithm in Section 3.5. With the echo path detector, our proposed

algorithm can work in echo path condition.
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5.3 Performance comparison for channel shortening structure

We have already proposed the least-square solution and theoretical convergent
analyses in Section 4.2, in this section we want to use the computer simulations to
verify our analyses.

First, we will examine that the least-square solution adaptive AEC filter h and
shortening filter w in (4.10), and make convolution operation of the shortening filter

and RIR (i.e. real room impulse response ), to see if the RIR can be shorten or not. To

examine it more accurately, we define a quantifiable parameter y to obtain it.

The £ is denoted as normalized power:

I£.].
o 1
]

where the f means someone response, and” £, ‘means the first L, elements of f.

In Section 5.3.1, we want to'look the length-effect of the adaptive AEC filter and
shortening filter. By the length effect, we can obtain that how to portion out the
resource of filter order.

In Section 5.3.2, we simulate (4.13), we want to see that curves of simulated and
theoretical are consistent or not. Next, we will observe that the convergent value of

adaptive LMS algorithm and see if it can achieve the least-square solution or not.

5.3.1 Theoretical shortening and original channel

This section corresponds to our analyses in Section 4.2.1, we want to check
accuracy of analysis in least-square solution in Figure 5.1.3 shown the RIR, we made

convolution of room impulse response and shortening filter from least-square solution
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in (4.7).The result of convolution is shown below:

shortening filter
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Fig 5.3.1 Original channel and shortened.channel from Least-Square solution

coefticient

Normalized power

Original channel 0.9852

Shortened channel ~1

Table 5.1 Normalized comparison of original channel and shortened channel

In Fig 5.3.1, the coefficients of shortening, original and shortened channels were
displayed; the shortened channel is the convolution of shortening filter and real
original channel, we omit the shortened channel from 351 to 599 taps, which the
amplitude value can be neglected. In Table 5.1, the effective lengths of original

channel are equal to about 200, and normalized power is equal to 0.9852. After
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passing shortening filter, the effective lengths become 100 (i.e. L ); and the

normalized power is approximately to 1.Thus we can obtain the energy of RIR are

shorten to the firstL .

5.3.2 Different length effect

In this section, we will simulate the performance of coefficient error in different
length of shortening filter w and adaptive AEC filterh, we want to verify the filter

length effect to coefficient.

2

The coefficient error power was defined asHS which the gwas defined in

29

(4.4), (i.e. difference of h and the convolution of RIR andw ).

Fig 5.3.2 shows that the effects of the length.of adaptive AEC filterh, we fixed

shortening filter lengths L, t0-100,200, and.300, and we increased the L _from 10 to

340 to see if the coefficient error power will.decrease or not.
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Fig 5.3.2 Coefficient error power effect of different length in FIR filter
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Fig 5.3.3 shows that the effects of the length of shortening filterw, we fixed

adaptive AEC filter h lengths L  to 100, 200, and 300, and we increased the L,

from 10 to 340 to see if the coefficient error power will decrease or not.

0 | | | | | 1
1 1 1 1 1 Ls=100
|+ Ls=200
A e e — P Ls=300] |

coefficient error power (dB)

-100

-120

-140
0

length of shortening filter Lw

Fig 5.3.3 Coefficient error effect of different length in shortening filter

From Fig 5.3.2 and Fig 5.3.3, we can find that if we increase the length of
shortening filter L and adaptive AEC filterL_, the coefficient error power would
decease, but it has much computational complexity every iteration.

Next, we want see that how to portion out the resource (i.e. length) of filters, we
fixed the summation length of adaptive AEC filter h and shortening filter w to M

which equal to 100, 250, 350. We increase L, from 10 to 340 (i.e. decrease L, 340

to 10) and obtain the value of coefticient error power.
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Fig 5.3.4 Coefficient error effect-of different length in two filters

From Fig 5.3.4, we generalize a conclusion that the lengths of adaptive AEC
filter h(i.e.L,) dominate the performance of coefficient error. In this fig, even though
the lengths of shortening filter L, decrease, the coefficient error power is decease as
long as increase the length of L, in assumption of linear echo channel. However, in
nonlinear echo path case (i.e. Fig 4.1), from (4.2), we can find that the length of h

also dominate the computation complexity.

82



5.3.3 Comparison of LMS convergent analysis and simulated

In Section 5.3.2, we have already checked accuracy of analysis in least-square

solutions. In this section, we want to examine the accuracy of LMS convergent

analysis corresponds to Section 4.2.2. We fixed L, and L, to 250 and 100

respectively, and set the step size in LMS algorithm is equal to 0.0005 and 0.002.

As shown, the first moment of coefficient error (i.e.||8(k)||2) and residual error

power in Fig 5.3.5 and Fig 5.3.6, the theoretical curves are plotted from (4.13) and

(4.14), respectively, the simulation results agree well with the theoretical convergent

curves.

comparison:ef.theoretical and simulated
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Fig 5.3.5 Comparison of theoretical and simulated (coefficient error)
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Residual error power

comparison of theoretical and Simulated
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Fig 5.3.6 Comparisen of theoretical and simulated (Mean-square error)
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5.3.4 Comparison of adaptive LMS algorithm and least-square solution

We have already demonstrated the accuracy of least-square solutions and LMS
convergent analysis, in this section, we want to compare their convergent values to
discuss if the LMS algorithm can achieve the least-square solution or not. The length
of adaptive AEC filter and shortening filter are equal to 100 and 250 respectively, and

signal to noise ratio (SNR) is equal to 20 dB.

joint update

Fixed AEC filter to Least-square , update shortening filter

10 Fixed shortening filter to Least-square, update AEC filter

-12

First moment of coefficient error(dB)

-14

-16 - Least-square solution -

1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4
sample x 10°

-18

Fig 5.3.7 Coefficient error comparison of LMS algorithm and least-square
solution
In Fig 5.3.7, we can obtain that LMS algorithm could not achieve the
least-square solution. The first moment of coefficient error of LMS algorithm only
converged to about -11 dB, but the least-square solution is about -17.5 dB.
Next, to further obtain the convergent behavior in channel shortening approach,
we experimentally fixed one of adaptive AEC filter h(k) and shortening filter w(k)

to least-square solution, and update the other filter.
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And we can obtain that if fix shortening filter w(k) and just update AEC

filterh(k) , the coefficient error LMS algorithm could achieve -14dB, we may

conclude that if two filter(i.e. h(k) and w(k) ) joint update, the LMS algorithm can not

converge to the least-square solution.

5.3.5 Comparison of multiple stage and joint update

The concept of multiple stage have been introduced in Section 4.3, in Section

5.3.4, we have guaranteed that the LMS algorithm can not converge to least-square

solution in joint update, thus we try to perform the multiple stage update in this

section.
30
Linear first I N e
25 | w""' % v, P |
20 ¢ s i i - Joint update 7
o Polynomial and linear first p
L (
_J 14
m f
w N Classical Hammerstein
1548 |
10/ |
L L L L L L L L
1 1.5 2 2.5 3 3.5 4 45
iteration % 10*

Fig 5.3.8 Comparison of different multiple stage update strategies (with white input
Gaussian)
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Fig 5.3.9 Comparison of different.multiple stage update strategies (with real speech)

In Fig 5.3.8 and Fig 5.3.9, the “linear first” means that we only update the
coefficient of linear AEC filter h(k) in first stage, then all filters joint update in the
second stage; the “polynomial and linear first” means that update the Hammerstein
polynomial filter (i.e. polynomial filter a(k) and linear AEC filterh(k)) in first stage,
the joint update in second stage; “Joint update” means all filter joint update for the
whole time.

We can obtain that the multiple stage strategy could not only enhances the
convergent rate, but also the converged value. The ERLE performance of “linear first”
strategy is best; it has 1 dB and about 3 dB enhancement compare with “polynomial

and linear first” and “joint update”, respectively.
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5.3.6 Volterra with channel shortening and OTTLMS

We already introduced the Volterra model and channel approach in Chapter 2 and
Chapter 4 respectively. In this section we want to extend the channel shortening
approach to Volterra model, and combine our optimum step size into second order

Volterra.

30
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Fig 5.3.10 Channel shortening for second-order Volterra structure (with white

Gaussian input)
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Fig 5.3.11 Channel shortening for second-order Volterra structure (with real
speech)

By Fig 5.3.10 and Fig 5.3.11; we.can ebtain that the shortening structure still
work in second order Volterra filter. The combination of Volterra filter and channel
shortening filter improve the convergent rate of classical Volterra structure. If we
further add the OTTLMS algorithm into this structure, we can obtain not only
accelerate the shortening Volterra structure convergence rate, but also ERLE

performance about 3dB.
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Chapter 6

Conclusion

In this thesis, we employ the Volterra and Hammerstein model to track the
nonlinear echo path.

To overcome their slow convergence rate and high complexity, we propose an
optimum time and tap— variant step-size for Volterra filter in order to speed up
convergence rate in Chapter 3. The step-size is derived by introducing an optimality
MMSE criterion between coefficients etrors,of real and adaptive coefficients. As the
optimum step-size need to know the feéalecho path coefficient, we propose the
exponential model for practicalimplementations.

In addition to adaptive step-size control, the channel shortening structure [14]
was proposed to overcome slow convergence rate and high computation complexity.

In Chapter 4, we perform the least-square and adaptive algorithm sense
theoretical analysis in channel shortening structure in case of a linear loudspeaker to
obtain the convergent behavior. We also propose multiple stage update in this
structure to speed up convergence rate.

In Chapter 5, Computer simulations justify our analysis and show the improved

performance of the proposed nonlinear acoustic echo canceller.
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