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中文摘要 

為了消除免持聽筒或者視訊會議上非線性的迴音，傳統上可以用 Volterra 濾

波器或 Hammerstein 濾波器來追蹤非線性迴音的通道。然而這兩個濾波器最大的

缺點就是收斂速度慢並需要付出高的計算量。 

在此篇論文中，我們提出最佳的可調整式收斂步伐演算法並且應用在 Volterra

濾波器。其目的在於加快收斂速度，此收斂步伐是由估計濾波器與真實的最小閥

係數誤差在均方誤差(MSE)。每一個閥，都隨著係數誤差改變而調整的收斂步伐，

而由於此演算法需要知道真實的迴音通道，所以我們進一步提出模擬通道的實際

的應用。 

除了收斂步伐的控制，通道削減結構 (channel shortening)也被用來解決

Hammerstein 濾波器收斂速度慢與高複雜度的問題。我們做了 Least-square 和適

應性演算法角的理論分析，並且提出多級更新係數的方法來更加快收斂速度。最

後用電腦模擬來支持驗證之前的分析討論。 
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Abstract 
In order to cancel nonlinear acoustics echo in hands-free telephones or 

teleconferencing system. In general, adaptive Volterra filter and Hammerstein model 

are known to track nonlinear echo path. However, their major drawbacks are slow 

convergence rate and high computation complexity. 

 In this thesis, we propose an optimum time–and tap– variant step-size for 

Volterra filter in order to speed up convergence rate. The step-size is based on the 

MMSE criterion of coefficients errors. As the optimum step-size needs to know the real 

echo path coefficient, we propose the exponential model for practical implementations. 

In addition to adaptive step-size control , the channel shortening structure was 

proposed to overcome slow convergence rate and high computation complexity in 

Hammerstein structure, we perform the least-square and adaptive algorithm  

theoretical analysis in channel shortening structure in case of a linear loudspeaker. 
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From which a multiple stage update scheme is proposed in this structure to speed up 

convergence rate. Computer simulations justify our analysis and show the improved 

performance of the proposed nonlinear acoustic echo canceller.  
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Chapter 1 
Introduction 
 

In these years, hands-free system telephone and teleconference systems are 

widely used. However, the systems usually suffer from the annoying acoustic echo 

problem; the phenomenon occurs that the far end speech is transmitted back to the 

microphone at the near end. A hands-free telephone system is shown in Fig 1.1. The 

main problem of acoustic echo cancellation (AEC) is to copy the unknown echo path 

and subtract the copied echo components from the microphone output. Since the echo 

path may be time-variant due to objects moving around the room, an adaptive filter is 

commonly used for tracking the echo path. If AEC estimates the echo path accurately, 

the echo would be cancelled and the communication quality would be enhanced.  

∫∫

∫∫

Fig 1.1 Hands-free telephone system 
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There are many adaptive algorithms that have been proposed [13]. The 

least-mean-square (LMS) algorithm is famous for its low computational cost, the 

affine projection algorithm (APA) and recursive least-squares (RLS) algorithm has its 

advantage of fast convergence rate, but they are higher computational complexity than 

LMS algorithm.  

However, competitive audio consumer products require not only cheap signal 

processing hardware but also low-cost analog equipment and sound transducer, the 

echo path has nonlinear components caused by the capability of power amplifier (PA) 

[1], which can be overdriven and leads to nonlinear distortion in far-end speech. 

Therefore, the linear AEC is not sufficient to estimate the acoustic echo path. To 

overcome this problem, there are many methods that had been proposed. A general 

nonlinear AEC system is shown in Fig1.2. The far-end speech signal is passing 

through the nonlinear loudspeaker and the room impulse response and then picked up 

by microphone. 

 Fig1.2 Nonlinear acoustic echo cancellation system 
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In order to overcome the nonlinear acoustic echo caused by power amplifier, the 

popular method is via polynomial functions, i.e. Hammerstein model [5], Volterra 

[2]-[3], Wiener [17], Wiener and Hammerstein model [18]. Those four of nonlinear 

models will be introduced in Chapter 2. 

Another approach is using echo suppression method, which is to increase the 

attenuation of the nonlinearly distorted residual echo and the convergent speed, but 

this approach will cause the near-end speech distortion and not eliminate acoustic 

echo completely.   

In this thesis, in order to avoid near-end speech and eliminate acoustic 

completely, we focus on the nonlinear acoustic cancellation and employ the Volterra 

and Hammerstein model to track the nonlinear echo path. To overcome their slow 

convergence rate and high complexity, we propose an optimum time and tap – variant 

step-size for Volterra filter to speed up convergence rate in Chapter 3. 

 The channel shortening structure has been proposed in [14] to overcome high 

computational complexity disadvantage of Hammerstein structure. In chapter 4, we 

perform theoretical analysis in the senses of LMS and LS in case of a linear 

loudspeaker. In addition to theoretical analysis, we will propose multiple stage update 

scheme to speed up convergence rate.    

 We will provide computer simulations to justify our analysis and show the 

improved performance of the proposed nonlinear acoustic echo canceller in Chapter 5. 

Finally, we will give a conclusion of our work. 
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Chapter 2 
 
Adaptive Nonlinear Acoustic echo 
cancellation 
 
 

The loudspeakers for hands-free telephone or teleconferencing are usually small 

and cheap, so the loudspeaker will be saturated at high level speech. When the 

saturation effect happens, the loudspeaker is not linear any more [1]. The residual 

error using only linear acoustic echo cancellation is very large. We will discuss the 

nonlinear acoustic echo cancellation to overcome this question. 

To some loudspeakers, the nonlinear effects have memory. If using memoryless 

structures to model that, the cancellations don’t eliminate nonlinear echo perfect. The 

memory structures for canceling the memory echo are complex in general, i.e. 

Volterra model. As shown below, we will introduce and compare the several 

memoryless and memory structures in section 2.1. 

However, the major drawback of nonlinear models lies in slow convergence rate 

and high computation complexity. In section 2.2, the algorithm to improve 

convergence rate will also be introduced. 
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2.1 Nonlinear AEC structure 

 

2.1.1 Memoryless nonlinear AEC 

 

 Hammerstein structure 

In the section, we focus on the case that the nonlinearity in the echo can be 

considered to be memoryless. The Hammerstein structure [5], a famous memoryless 

nonlinearity model is a cascade of a memoryless polynomial filter and a FIR filter. As 

shown as Fig 2.1. 

 

 

Fig 2.1 Hammerstein structure 

In Fig 2.1, the output of K-order Hammerstein model ( )z k  can be expressed by 

1

0

( ) [ ( )]
M

l
l

z k h u k l
−

=

= −∑                                     (2.1) 
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where the ( )u k  is polynomial filter output and M is FIR memory length 

1

( ) [ ( )]
K

i
i

i

u k a x k
=

= ∑                                       (2.2) 

 

2.1.2 Memory nonlinear AEC 

 

[A] Volterra structure 

 

(1)h (2)h ( )Kh

(1) ( )z k (2) ( )z k ( ) ( )Kz k

 

Fig 2.2 Volterra structure 

 

As shown in Fig 2.2, another common approach to model the nonlinear behavior 

of loudspeakers is given by Volterra [2]-[3]. In the following we assume the unknown 

echo path, i.e. the cascade of nonlinear loudspeaker and room impulse response, can 

be modeled by a thK -order Volterra filter, thus the output of Volterra filter ( )z k  can 



 7

be expressed by 

( )

1

( ) ( )
K

i

i

z k z k
=

=∑                                          (2.3) 

where the I/O relation of the p’th order Volterra kernel with finite memory length pN  

yields 

,1 ,2 ,
,1 ,2 ,1 , , 1

1 1 1
( )

, ,..... ,
0 1

( ) ( )
p p p

p p p p
p p p p p p p

N N N p
p

l l l p i
l l l l l i

z k h x k l
−

− − −

= = = =

= −∑ ∑ ∑ ∏""   (2.4) 

 

[B] Wiener Model 

 

In addition to Volterra model, the Wiener model can model memory loudspeaker 

[17], it consists of two parts, a cascade of a FIR filter and a memoryless polynomial 

filter, as shown in Fig 2.3. 

∑

Room impulse Response

+
_

Noise
v(k)

Far-end 
speech x(k)

Desired 
speech 

y(k)
Residual 
error e(k)

z(k)

c

h

( )hx k

…( ) ( )^2 ( )^K

…1a 2a
Ka

∑

 

Fig 2.3 Wiener Model 
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The output of K-order Wiener model ( )z k  can be expressed by 

1

( ) [ ( )]
K

i
i h

i

z k a x k
=

=∑                                       (2.5) 

where the ( )hx k  is FIR output and M is FIR memory length 

1

( ) ( )
M

h l
l

x k h x k l
=

= −∑                                     (2.6) 

                                                              

[C] Wiener and Hammerstein Model 

 

We have already introduced the Wiener structure and the Hammerstein structure,  

Bershad [18] proposed the combination of the two structures, it cascades a FIR filter, 

a memoryless polynomial filter and a FIR filter. 

( )hx k

1a 2a Ka

1h

2h

 
Fig 2.4 Wiener and Hammerstein structure 
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As shown in Fig 2.4, the ( )hx k denote output of first FIR filter, 1M  and 2M  

are memory length of 1h  and 2h , respectively. The ( )u k denote the output of 

memoryless polynomial filter with thK -order. 

1

1

1

0

( ) ( )
M

h l
l

x k h x k l
−

=

= −∑  

1

( ) [ ( )]
K

i
i h

i

u k a x k
=

=∑                                      

Thus the output of Wiener-Hammerstein structure can be expressed as: 

   
2

2

1

0

( ) ( )
M

l
l

z k h u k l
−

=

= −∑  

We have already introduced general nonlinear structures in this section, we can 

summarize and compare those structures. (a) The advantage of both Wiener and 

Hammerstein models is fewer parameters are needed, the disadvantage is low 

convergence rate because the parameters of nonlinear and linear (i.e. a and h ) are 

dependent. (b) The advantage of Volterra model is that it can care all terms of 

distortion causes by nonlinear loudspeaker, thus the performance of Volterra model is 

the best to the other models. The disadvantage is that the computational complexity is 

most which causes low convergence rate. (c) All nonlinear models can be considered 

as a particular subclass of Volterra model. 

In this thesis, we will focus on Hammerstein and Volterra models, which the 

main drawback is low convergence rate. To overcome low convergence rate, many 

work has been proposed, for example, input decorrelation[21], Orthogonal 

polynomial-basis [22-23], step size control [12],[19], and so on. We will introduce 

those approaches in next section. 
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2.2 Convergence rate speed-up algorithms For NAEC 

 

To accelerate convergence speed, there have been algorithm such as input 

decorrelation[21], orthogonal polynomial basis [22], and step sized control [12],[19]. 

We will discuss the first two algorithms here. In Chapter3, we will introduce step size 

control approaches and propose new step size approach for NAEC.   

 

2.2.1 Input Signal decorrelation 

 

In the field of acoustic echo cancellation, such undesired signal components are 

removed by adaptive filtering. However, the adaptation performance of the LMS 

algorithm suffers form slow convergence if the input signal is strongly correlated. 

A way to overcome this problem is first decorrlate the input signal, and then uses 

the decorrelated signal as excitation for the adaptation of the echo canceller.  

Kuech [21] proposed an efficient configuration of decorrelation filters for use 

within nonlinear AEC is derived for second-order Volterra filter, it assumed that the 

unknown echo can be modeled by a finite-length second-order Volterra filter. It can be 

shown as follows: 
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(1) ( )kh
(2) ( )kh

(1)c (2)c

(1) ( )kx (2) ( )kx

'( )y k

(1) ( )z k (2) ( )z k

( )u k ( )ru k

nb

 

Fig 2.5 Second-order Volterra with decorrelation filter 

An optimum decorrelation requires a signal in Kuech [21]  

0

( ) ( )
ARK

n
n

u k b x k n
=

= −∑  

where ARK  denotes AR (autoregressive) random process order, and  

       0

,

1
 1n AR n AR

b
b b n K
=
= − ∀ ≤ ≤

 

where nb  is used for the following orthogonality relations hold for ( )u k and its 

produces ( )ru k , respectively : 

{ }
{ }
{ }
{ }

( ) ( )   0        

( ) ( )   0       

( ) ( )   0         0

( ) ( )   0       0 0

r

r s

r r

E u k a u k r

E u k a u k r s

E u k a u k a

E u k a u k a r

− = ∀

− = ∀ ≠

− = ∀ ≠

− = ∀ ≠ ∧ ≠

 

Here, the adaptive equations by means of a joint normalize LMS algorithm read: 

  
1 2 1 2 1

(1) (1)

(2) (2)
, , 2

( 1) ( ) ( ) ( )
( 1) ( ) ( ) ( )

l l

l l l l l

h k h k e k u k l
h k h k e k u k l

μ
μ

+ = + −

+ = + −
 

where the ( )ru k  denotes input of quadratic kernel 

( ) ( ) ( )ru k u k u k r−�  
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2.2.2 Orthogonal polynomial-basis 

 

In [22-23], G. Y. Jiang and Kuech proposed an orthogonal polynomial adaptive 

filter to accelerate the convergence of the polynomial model. In general, the input 

signals of each channel are not mutually orthogonal, i.e. { ( ) ( )} 0,i jE x k x k i j≠ ∀ ≠ . 

Thus, a new set of mutually orthogonal input signal has been introduced [23]: 

1

1

,
1

( ) ( )

( ) ( ) ( )
u

u i
u u i

i

p k x k

p k x k q x k
−

=

=

= +∑  

for 1 u K< < . The orthogonalization coefficients ,u iq  can be determined using the 

Gram-Schmidt orthogonalization processing. 

In addition to those approaches, step size control is also usually used to 

overcome the problem of low convergence rate. In Chapter 3, we will introduce 

several conventional step size algorithms and proposed new step size control 

approach. 
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Chapter 3 
 
Optimum Step Size For Nonlinear 
AEC 
 

In addition to [21-23], step size control is also usually used to overcome the 

problem of low convergence rate.  

In this Chapter, we will focus on step size control in Volterra structure. We know 

tradeoff between fast convergence rate and small residual error power. In LMS 

algorithm, normally, large step size gives a faster convergence rate but large residual 

error power. Thus the optimum step size means that providing fast convergence rate 

and small residual error power at the same time.   

In following sections, the conventional step size control is introduced in section 

3.1. In Section 3.2, we will derive the optimum time-& tap-variant step-size LMS 

(OTTLMS) algorithm which is derived by introducing an optimality criterion which is 

given by MMSE between coefficients errors of real kernel and adaptive coefficients. 

Its practical implementations are proposed in Section 3.3. The echo path change and 

double talk conditions are considered in Section 3.4. 
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3.1 Conventional step size adjustment  
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Fig 3.1 Trade off of LMS algorithm 

 

In Fig 3.1, the evaluate of echo return loss enhancement; we can obtain that due 

to tradeoff between fast convergence rate and small residual error in traditional 

constant step size, various approaches employing varying step-size in linear echo 

cancellation have been proposed, including time-varying [9], tap-varying [10], and 

both time- & tap varying [11]. In this thesis, the word “time-varying” represents all 

taps use identical step size which is time variant. Similarly, the word “tap-varying” 

means each tap has individual and tine-invariant step size, and the word “time- & 

tap-varying” means each tap has its individual time-variant step size. 

In addition to linear acoustic echo cancellation, Kuech proposed a time-& 

tap –varying approach in second- order Volterra structure [12] for nonlinear echo 

cancellation field.    
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These typical approaches of step size adjustment for linear AEC are summarized 

below:  

3.1.1 Linear AEC 

 

[A] Variable step size LMS algorithm 

 
The VSLMS approach [9] employs a time-varying (time-variant) step-size which 

is controlled by the power of the error signal. This is based on using large step-size 

when the AEC filter coefficient is far from the optimal solution, thus speeding up the 

convergence rate. Similarity, when the AEC filter coefficient is near the optimum 

solution, small step-size is used to achieve lower MSE, thus achieving better overall 

performance. The variable step size LMS algorithm works as follows. 

2'( 1) '( ) ( )      with  0 1,  0k k e kμ αμ γ α γ+ = + < < >  

where the time-variant step size is controlled by  

max max

min min

            if  '( 1) 
                  ( 1)              if  '( 1)                                           

'( 1)               otherwise

k
k k

k

μ μ μ
μ μ μ μ

μ

+ >⎧
⎪+ = + >⎨
⎪ +⎩  

The motivation is that a large residual error i.e., ( )e k  will cause the large 

step-size to provide faster tracking the echo path. Similarity, when the residual error is 

small, the step size is decreased to yield smaller residual error. 

The constant maxμ  is chosen to ensure that the MSE remains bounded and minμ  

is chosen to provide a minimum level of tracking ability. 
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[B] Exponentially weighted step size NLMS algorithm 

 
 The exponentially weighted step-size NLMS (ESNLMS) algorithm [10] uses a 

different step-size (tap-varying) for each tap of an adaptive filter. These step-sizes are 

time-invariant and weighted proportional to the expected variation of a room impulse 

response. As a result, the algorithm adjusts coefficients with large echo path variation 

in large steps, and coefficients with small echo path variation in small steps. The 

ESNLMS algorithm is expressed as: 

  2

2

( )( 1) ( ) ( )
( )ESNLMS

e kk k k
k

+ = +h h U x
x

                          

where ESNLMSU is the diagonal step-size matrix to account for the tap-variant 

step-sizes: 

1

2

0

                                                                                        

0

ESNLMS

M

μ
μ

μ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

U
%

 

where 0   for  1, ,l
l l Mμ μ γ= = …  and γ is the room exponential attenuation factor 

(0 1)γ< < . 

The elements lμ  are time-invariant and decrease exponentially from 1μ  to 

Mμ  with the same ratio γ  that depends on the decay rate of the real room impulse 

response c .  

[C] Optimum time-& tap-variant step size algorithm 

 
The OTTLMS approach [11] is employed to minimize each tap coefficient error 

variance at each iteration step (i.e. ( )lg k ). The coefficient error is the difference 
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between real kernel and adaptive coefficients. The optimum step size can be obtained 

by setting the derivative of tap coefficient error variance formula with respect to 

( )l kμ  equal to zero. The OTTLMS algorithm is expressed as:  

( 1) ( ) ( ) ( ) ( )OTTLMSk k k e k k+ = +h h U x  

where  

1,

,

( )
( )

( )

0

0

OTTLMS

OTTLMS

M OTTLMS

k
k

u k

μ⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

U % , 

,
2 2 2

1

( )( )
2 ( ) ( )

l
l OTTLMS M

x l x l n
l

g kk
g k g k

μ
σ σ σ

=

=
+ +∑

, 

 2( 1) (1 ( )) ( )l x OTTLMS lg k k g kσ μ+ = −  

As the optimum step-size needs to know the room impulse response to evaluate   

coefficient error, it is not accessible in general, thus the author employed the recursive 

relation of second moment coefficient error and used the room impulse response 

exponential decay model for practical implementation [11].  

 

3.1.2 Nonlinear AEC 

 

   We have already introduced step size control applied to linear AEC. However, in 

the nonlinear AEC application, it faced low convergence rate badly due to high 

computational complexity. In this section, we want to introduce several step size 

control approaches applied to nonlinear AEC 

 

[A] Proportionate NLMS for second-order Volterra filters 

 

For acoustic echo cancellation, it is reasonable to assume that the echo path is 

sparse, i.e., many coefficients are zeros, therefore only the nonzero active coefficients 
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need to be identified (updated). This is the idea behind the proportionate NLMS 

(PNLMS) [20] algorithm. It exploits the sparseness of such impulse response to 

achieve significantly faster adaptation than NLMS. 

Kuech [19] proposed an extension of the proportionate NLMS to second-order 

Volterra filters. It assumes that the unknown echo can be modeled by a finite-length 

second-order Volterra filter. The nonlinear echo cancellation system model is 

summarized in Figure 3.2; the microphone signal ( )y k  is composed of echo 

signal '( )y k , the noise signal ( )n k  accounting for background noise, and the speech 

signal of a near-end talker ( )s k . 

(1) ( )kh (2) ( )kh (1)c (2)c

(1) ( )kx (2) ( )kx (1) ( )kx (2) ( )kx

'( )y k

(1) ( )z k (2) ( )z k

 

Fig 3.2 Second-order Volterra acoustic echo canceller 

 

By (2.3) (2.4), the input/output relation of a second-order Volterra filter is given by 

2 2

1 2
1 2 1

2

(1) (2)

1 11
(1) (2)

, 1 2
0 0

(1) (1) (2) (2)

1 1

(1) (1) (2) (2)

( ) ( ) ( )

       ( ) ( ) ( ) ( ) ( )

       ( ) ( ) ( ) ( )

       [ ] ( ) ( ) [ ] ( ) ( )

N NM

l l l
l l l l

LM

l l j j
l j

T T

z k z k z k

h k x k l h k x k l x k l

h k x k h k x k

k k k k

− −−

= = =

= =

= +

= − + − −

+

+

∑ ∑∑

∑ ∑
h x h x

�

�

        

To obtain a compact vector representation, we define 
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2

(1) (1) (1) (1)
1 2

(2) (2) (2) (2)
1 2

2 2
2

( ) [ ( ), ( ),..... ( )]
          [ ( ), ( 1),..... ( 1)]

( ) [ ( ), ( ),..... ( )]

          [ ( ), ( ) ( 1),..... ( 1)]

T
M

T

T
L

T

k x k x k x k
x k x k x k M

k x k x k x k

x k x k x k x k N

=

= − − +

=

= − − +

x

x  

2

2 2

(1) (1) (1) (1)
1 2

(2) (1) (1) (1)
1 2

(2) (2) (2)
0,0 0,1 1, 1

( ) [ ( ), ( ),....... ( )]

( ) [ ( ), ( ),....... ( )]

           [ ( ), ( ),....... ( )]

T
M

T
L

T
N N

k h k h k h k

k h k h k h k

h k h k h k− −

=

=

=

h

h  

M and 2N  represent memory lengths of linear and quadratic kernel, the lengths 

of (2) ( )kx  and (2) ( )kh  are both 2 2 2( 1) / 2L N N= +  

The PNLMS algorithm updates each coefficient of the filter independently of the 

others by adjusting the adaptation step-size in proportion to the estimated filter 

coefficient. Thus the extension of the proportionate NLMS to second-order Volterra 

filters is summarized: 

{ }
{ }2

( ) ( )
( ) ( )

( ) ( ) ( )

(1) (1) (1)
1

(2) (2) (2)
1

ˆ( ) ( )( 1) ( )
[ ] ( )

( ) ( ), , ( )

( ) ( ), , ( )

i i
i i i

i T i i

M

L

k e kk k
k

k diag p k p k

k diag p k p k

μ+ = +

=

=

P xh h
x P x

P

P

……

……

  

(1)
(1)

(1)

1

(2)
(2)

(2)
2 1

( )1( ) (1 )
2 2 ( )

( )1( ) (1 )
2 2 ( )

l
l

l
l

h k
p k

M k

h k
p k

L k

α α

α α

−
= + +

−
= + +

h

h

 

For { }1, 2i∈ , ˆ ( )ie k  is used to avoid unstable behavior [19], α  is a scalar.  

 
 The step-sizes are calculated from the last estimate of the filter coefficients so 

that a large coefficient receives a large step-size, it is intuitive that if the someone tap 

of adaptive filter coefficient (i.e. ( ) ( )i
lh k ) is large value, the coefficient error of this tap 

should be large, thus if we give large step size to update, it may be increase the 

convergence rate. Hence, PNLMS converges much faster than NLMS. 
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We observe that both ESNLMS and PNLMS algorithms rely on the concept of 

using large step-size for large tap. It is quite intuitive that large tap will produce large 

estimate tap coefficient error and should use a large step-size for fast tracking. This is 

appropriate at the stage of initial adaptation.  

 

[B] Optimum step-size for adaptive second-order Volterra filters 

 

The approach [A] is the direct concept of using adaptive filter coefficients to 

control step size. In approach [B], Kuech [12] derived the optimum step size 

theoretically and proposed approximated model to practical application. 

The concept of the optimum step size in Kuech approach [12] is identical to 

OTTLMS approach which is derived by introducing minimum MSE between the 

coefficient errors of Volterra filter and real echo path.  

The desired optimum step sizes for linear and quadratic kernel are shown below 

respectively  

{ }
{ }

(1) 2
(1)
, 2 2 2

[ ( )]
( )

( ) ( ) ( )
l

l opt

E v k
k

E k n k s k
μ

ε
=

+ +
, 

(2) 2
(2)
, 2 2 2

{[ ( )] }
( )

{ ( ) ( ) ( )}
j

j opt

E v k
k

E k n k s k
μ

ε
=

+ +
                              (3.1) 

The linear and quadratic kernel coefficient error in time k can be defined by 

(1) (1) (1)( ) ( )k k= −v h c                                       (3.2) 

(2) (2) (2)( ) ( )k k= −v h c                                      (3.3) 

where  

2

(1) (1) (1) (1)
1 2

(2) (2) (2) (2)
1 2

( ) [ ( ), ( ),....... ( )]            

( ) [ ( ), ( ),....... ( )]          

T
M

T
L

k v k v k v k

k v k v k v k

=

=

v

v
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The residual echo comes from filter coefficient errors of the linear and quadratic 

kernel  

(1) (2)

(1) (1) (2) (2)

( ) ( ) ( )
       ( ) ( ) ( ) ( )T T

k k k
k k k k

ε ε ε= +

= +x v x v  

For a better understanding of the optimum step size, in [12], the author introduced the 

auxiliary step size factors: 

2 2

2 2 2

{ ( ) ( )}( )
{ ( ) ( ) ( )}dt

E k n kk
E k n k s k

εμ
ε

+
=

+ +
,  

2

2 2

{ ( )}( )
{ ( ) ( )}bn

E kk
E k n k

εμ
ε

=
+  

( ) 2

2

{[ ( )] }( )    {1, 2}
{ ( )}i

iE kk i
E kε
εμ
ε

= ∈  ,  
(1) 2

(1)

(1) 2 (1)

1

{[ ( )] }( )
{[ ( )] } { ( )}

l
l M

l j
l

E v kk
E v k E x k

α

=

=

∑
 

{ } { }2

(2) 2
(2)

2 2(2) (2)

1

{[ ( )] }
( )

( ) ( )

j
j L

j j
j

E v k
k

E v k E x k
α

=

=
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑

 

The above definitions of step-size factors are used to factorize the optimum step sizes 

according to  

1

2

(1) (1)
,

(2) (2)
,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
l opt dt bn l

j opt dt bn j

k k k k k

k k k k k
ε

ε

μ μ μ μ α

μ μ μ μ α

=

=
 

As the parameters ( ) 2{[ ( )] }iE kε , (1) 2{[ ( )] }lE v k and (2) 2{[ ( )] }jE v k  are not accessible in 

general, so the author introduce models for estimating those parameters : 

1. The ( ) 2{[ ( )] }iE kε  are proportionate to the adaptive filter output of linear and 

quadratic kernel, respectively 

( ) 2 ( ){[ ( )] } ( )[ ( ) ( ) ]i i
i iE k k k z kε γ δ β≈ +  {1,2}i∈  

2. The second-moment of coefficient error is proportionate to the magnitude of the 

corresponding adaptive coefficient  

{ }
{ }

(1) 2 (1)
1 1 1

(2) 2 (2)
2 2 2

[ ( )] ( )[ ( ) ( ) ]

[ ( )] ( )[ ( ) ( ) ]

l l

j j

E v k k k h k

E v k k k h k

γ ρ λ

γ ρ λ

≈ +

≈ +
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For comparison with [11], our work is extending [11] to nonlinear system, 

second-order Volterra. We employed the advantage of (second moment of coefficient 

error) recursive relation in [11] and proposed a different practical implementation 

from Kuech approach [12]. 

 

Next, in Section 3.2, we will derive the optimum time-& tap-variant step-size 

LMS (OTTLMS) algorithm which is derived by introducing an optimality criterion 

which is given by MMSE between coefficients errors of real kernel and adaptive 

coefficients. The practical implementation is proposed in section 3.3. The echo path 

change and double talk conditions are considered in section 3.4. 

 

3.2 Derivation of optimum time-& tap-variant step-size LMS 

(OTTLMS) algorithm 

 
In this section, we will extend [11] to second-order Volterra filter by getting 

recursive relation of coefficient errors. By this extension, we not only speed up the 

convergence rate in linear acoustics echo problem, but also in nonlinear echo 

cancellation. There our notations are identical to section 3.1 (see Fig 3.2) 

We want to find out the step size in time k which can minimize each tap 

coefficient error variance in time k+1 i.e. MSE for each iteration step. Hence, we use 

diagonal matrixes (1) ( )kU  and (2) ( )kU  to replace the step size of conventional 

LMS algorithm [13], thus it corresponding LMS algorithm can be rewritten as   

 
(1) (1) (1) (1)( 1) ( ) ( ) ( ) ( )k k k e k k+ = +h h U x                       (3.4) 

(2) (2) (2) (2)( 1) ( ) ( ) ( ) ( )k k k e k k+ = +h h U x                      (3.5) 
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(1) (1) (2) (2)( ) ( ) ( ) ( ) ( ) ( )T Te k y k k k k k= − −h x h x              (3.6) 

The (1) ( )kU  , (2) ( )kU  denote linear and quadratic step size matrices our interest: 

(1)
1

(1)

(1)

( ) 0
( )

0 ( )M

k
k

k

μ

μ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

U
…

# % #
"

 

2

(2)
1

(2)

(2)

( ) 0
( )

0 ( )L

k
k

k

μ

μ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

U
…

# % #
"

 

where the thl  element of step size matrices is chosen to minimize thl  coefficient 

error variance in time 1k + . The criterion is summarized as  

{ }
( )

( ) ( ) ( ) 2

( )

( ) arg min [ ( 1) ]
i

l k

i i i
l l lk kE h c

μ

μ += −  

where 1,2i∈ , and it means the linear and quadratic kernel, respectively.  

By (3.2), (3.3), (3.6), we get recursive relation of linear kernel: 

[ ]{ }
(1) (1) (1) (1)

(1) (1) (1)

( 1) ( ) ( ) ( ) ( )

               ( ) ( ) '( ) ( ) ( ) ( ) ( ) ( )T

k k k e k k

k k y k k k n k s k k

+ = +

= + − + + +

h h U x

h U v c x x

                                                                 (3.7) 

where  

(1) (2)( ) [ ( )   ( )]T T Tk k k=x x x  

(1) (2)( ) [ ( )   ( )]T T Tk k k=v v v  

Using (3.2) and (3.7), we may rewrite the linear kernel coefficient error (1) ( )kv  

[ ](1) (1) (1) (1) (1) (1)

(1) (1) (1) (1) (1) (1) (2) (2)

(1) (1) (1) (1)

( 1)  ( ) ( ) ( ) ( ) ( ) ( ) ( )

               [ ( ) ( ) ( )] ( ) ( ) ( ) ( )
                  ( ) ( ) ( ) ( )

T

T T

k k k k k n k s k k

k k k k k k k
n k k s k k

+ = − + +

= − −

+ +

v v U v x x U x

I U x x v U x x v
U x U x

 

 (3.8) 

Similar to processing in [11], we can derive the autocorrelation matrix of the 

linear kernel coefficient errors as follows, and by the direct-average method [13] 
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(1) (1) (1)
(1)

(1) (1) (1) (1) (1) (1) (1) (1)

(1) (1) (2) (2) (2) (2) (

( 1) [ 2 ( ) ] ( )

                     [ ( )] { ( ) ( ) ( ) ( ) ( ) ( )}[ ( )]

                     [ ( )] { ( ) ( ) ( ) ( ) ( )

T T T T

T T

k k k

k E k k k k k k k

k E k k k k k

+ ≈ −

+

+

v x v
R I U R (k) R

U x x v v x x U

U x x v v x x

(1) (1)

1) (1)

(1) 2 2 (1)

( )}[ ( )]

                     [ ( )] ( ) ( )[ ( )]

T T

T
n s

k k

k k k kσ σ+ +
x x

U

U R R U

(3.9) 

From formula (3.9), the { }. E denotes expectation. By assumption of the mutual 

independence of ( )x k , ( )n k and ( )s k , and probability density function of ( )x k  is 

an even function, as then { }3( ) 0E x k = . Thus cross products 

terms (1) (1) (1) (1)[ ( ) ( ) ( )] ( )Tk k k k−I U x x v , (1) (1) (2) (2)( ) ( ) ( )Tk k kU x x v , (1) (1)( ) ( )n k kU x and 

(1) (1)( ) ( )s k kU x  in formula (3.9) could be neglected. 

The l ’th diagonal term of autocorrelation matrix, denoting l ’th mean-square of 

linear coefficient error, can be written as:  

{ }

4

6

2(1) (1)

(1) 2 (1)

(1)2 (1) (1)2 4 (1)

1,

(1)2 (2) (1)2 6 (2)

0,

( 1) ( 1)

                (1 2 ) ( )

                   ( ) ( ) ( ) ( )

                   ( ) ( ) ( ) ( )

l l

l x l
M

l l l x px
p p l

l j l x qx
q

g k E v k

g k

k m g k k g k

k m g k k g k

μ σ

μ μ σ

μ μ σ

= ≠

=

⎡ ⎤+ = +⎣ ⎦

≈ −

+ +

+ +

∑
2

(1)2 2 2 (1)2 2 2                   ( )  ( )

L

q j

l x n l s xk kμ σ σ μ σ σ
≠

+ +

∑
  

 (3.10)                

where 2
xσ  is the far-end input variance. { }4

4 ( )
x

m E x k=  and { }6
6 ( )

x
m E x k=  

denoting the th4  and th6  moment of (1) ( )x k . As the length of linear and quadratic 

kernel in Volterra M and 2L  is sufficiently large, we can approximate 4
4
xx

m σ≈  

and 6
6
xx

m σ≈ , Thus the Eq(3.10) can be rewritten as 
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2

(1) (1) 2 (1)

(1)2 2 2 (1) 4 (2) 2 2

1 0

( 1) (1 2 ( ) ) ( )

                   ( ) ( ) ( )

l l x l

LM

l x x l x j n s
l j

g k k g k

k g k g k

μ σ

μ σ σ σ σ σ
= =

+ ≈ −

⎡ ⎤
+ + + +⎢ ⎥

⎣ ⎦
∑ ∑

(3.11)    

The optimum time-& tap variant step-size can be obtain by taking derivative of 

Eq (3.11) with respect to (1) ( )l kμ  and setting the result equal to zero. 

(1)

2

(1) 2 (1) (1) 2 (1) (1) 2 2
( )

1

(1) 2 2 (1) 6 (2)

1

( 1) 2 ( ) 2 ( ) ( ) 2 ( )

                          2 ( ) 2 ( ) ( ) 0

l
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l x l l x l l x nk
l

L

l x s l x j
j

g k g k k g k k

k k g k

μ
σ μ σ μ σ σ

μ σ σ μ σ

=

=

∇ + = − + +

+ +

∑

∑ �

Thus we can get the optimum time-&tap-variant step-size of linear kernel 

  2

(1)
(1)
,

2 (1) 2 2 4 (2)

1 1

( )( )
( ) ( )

l
l OTTLMS LM

x l n s x j
l l

g kk
g k g k

μ
σ σ σ σ

= =

=
+ + +∑ ∑

     

(3.12) 

Analogously to linear kernel, we can get the optimal step size of quadratic kernel 

is given by  

 2

(2)
(2)
,

4 (2) 2 2 2 (1)

1 1

( )
( )

( ) ( )

j
j OTTLMS L M

x j n s x l
j l

g k
k

g k g k
μ

σ σ σ σ
= =

=
+ + +∑ ∑

       

(3.13) 

From the result of (3.12) and (3.13), we can obtain that the optimum step sizes 

are direct proportion to the coefficient error variance. If the coefficient error variance 

large (i.e. initial state), the optimum step sizes are large; and if the coefficient error 

variance small, the optimum steps are become small to get small residual error, the 

result fits our intuition. 
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The numerator of (3.12) and (3.13) mean that the second moment coefficient 

error of linear and quadratic kernel, respectively (i.e. { }2(1) (1)( ) ( )l lg k E v k⎡ ⎤⎣ ⎦� , 

{ }2(2) (2)( ) ( )j jg k E v j⎡ ⎤⎣ ⎦�  ), and the denominator of (3.12) and (3.13) mean the 

summation of residual error power and near-end speech power, i.e. 

{ }22 (1) (1)

1
( ) ( )

M

x l
l

g k E kσ ε
=

⎡ ⎤⎣ ⎦∑ �  

{ }2 24 (2) (2)

1

( ) ( )
L

x j
j

g k E kσ ε
=

⎡ ⎤⎣ ⎦∑ �  

Thus we can find that the results of (3.12) and (3.13) fit the work (3.1) in [12]. 

Similar to processing in [11], we substitute the optimum time-&tap-variant step 

size of linear and quadratic kernel back to (3.10), thus we can get that the relationship 

mean-square coefficient errors 

 

(1) (1) 2 (1)
,

(2) (2) 4 (2)
,

( 1) (1 ( ) ) ( )

( 1) (1 ( ) ) ( )
l l OTTLMS x l

j j OTTLMS x j

g k k g k

g k k g k

μ σ

μ σ

+ = −

+ = −                  (3.14) 

for 1,....,l M= , 21,....,j L= . 

We found the results fit the works on tradition AEC [11]. 

Double talk condition is not considered in this section, we set ( ) 0s k = , the 

double talk and echo path change conditions will be considered in section 3.5, thus the 

approximated OTTLMS algorithm for second-order Volterra filter is summarized in 

Table 3.1: 
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(1) (1) (2) (2)( ) ( ) ( ) ( ) ( ) ( )T Te k d k k k k k= − −x h x h
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(1)
1

(1) (1) (1)

(1)

(2)
1

(2) (2) (2)

(2)

4 (2) 2 2 (1)

1 1

( ) 0
( 1) ( ) ( )

0 ( )

( ) 0
( 1) ( ) ( )

0 ( )

( )

( ) ( )

M

L

L M

x j n x l
j l

g k
k k k

g k

g k
k k k

g k

e k

g k g k

μ

μ

μ
σ σ σ

= =

⎛ ⎞
⎜ ⎟

+ = + Δ ⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟

+ = + Δ ⎜ ⎟
⎜ ⎟
⎝ ⎠

Δ =
+ +∑ ∑

h h x

h h x

…
# % #

"

…
# % #

"

(1) (1) 2 (1)
,

(2) (2) 4 (2)
,

( 1) (1 ( ) ) ( )

( 1) (1 ( ) ) ( )
l l OTTLMS x l

j j OTTLMS x j

g k k g k

g k k g k

μ σ

μ σ

+ = −

+ = −  
Table 3.1: OTTLMS algorithm 

 

 

3.3 Extension to OTTNLMS algorithm 

 

The above discussions are based on LMS algorithm. However, when the input is 

large, the LMS algorithm suffers from a gradient noise amplification problem. In 

order to overcome this difficulty, we extend it to the normalized LMS (NLMS) 

algorithm. By the approximation [13] of  (1) (1) 2( ) ( )T
xk k Mσ=x x  and 

(2) (2) 4
2( ) ( )T T

xk k L σ=x x , the step size of OTTNLMS can be shown to 

be (1) 2 4 (1)
, 2 ,( ) ( ) ( )l OTTNLMS x x l OTTLMSk M L kμ σ σ μ= +  and (2) 2 4 (2)

, 2 ,( ) ( ) ( )j OTTNLMS x x j OTTLMSk M L kμ σ σ μ= + . 

So, we can rewrite (3.12) and (3.13) as: 

2

2 4 (1)
2(1)

,
2 (1) 2 4 (2)

1 1

( )
( )

( ) ( )

x x l
l OTTNLMS LM

x l n x j
l l

M L g k
k

g k g k

σ σ
μ

σ σ σ
= =

⎡ ⎤+⎣ ⎦=
+ +∑ ∑
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2

2 4 (2)
2(2)

,
4 (2) 2 2 (1)

1 1

( )
( )

( ) ( )

x x j
j OTTNLMS L M

x j n x l
j l

M L g k
k

g k g k

σ σ
μ

σ σ σ
= =

⎡ ⎤+⎣ ⎦=
+ +∑ ∑

 

Similarly, the (3.14) can be rewritten as: 

(1) 2
,(1) (1)

2 4
2

(2) 4
,(2) (2)

2 4
2

( )
( 1) (1 ) ( )

( )
( 1) (1 ) ( )

l OTTLMS x
l l

x x

j OTTLMS x
j j

x x

k
g k g k

M L

k
g k g k

M L

μ σ
σ σ

μ σ
σ σ

+ = −
+

+ = −
+

 

for 1,....,l M= , 21,....,j L= . 

Thus the OTTNLMS algorithm for second-order Volterra filter is summarized in 

Table 3.2:  

(1) (2)
1 2( ) ( ) ( ) ( ) ( ) ( )T Te k d k k k k k= − −x h x h

(1) 2
,(1) (1)

2 4
2

(2) 4
,(2) (2)

2 4
2
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( 1) (1 ) ( )

( )
( 1) (1 ) ( )

l OTTNLMS x
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x x

j OTTNLMS x
j j

x x
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g k g k

M L

k
g k g k

M L

μ σ
σ σ

μ σ
σ σ
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+

+ = −
+
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1 (1)

(1) (1)
2

(1) 2

(2)
1 (2)

(2) (2)
2

(2) 2
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( )( 1) ( )

( )0 ( )

( ) 0
( )( 1) ( )
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g k
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g k
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kg k

μ

μ

⎛ ⎞
⎜ ⎟

+ = + Δ ⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
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⎜ ⎟
⎝ ⎠

xh h
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xh h
x

…
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…
# % #
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2 4
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4 (2) 2 2 (1)

1 1

( )
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x x
L M

x j n x l
j l

M L e k

g k g k
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μ

σ σ σ
= =

⎡ ⎤+⎣ ⎦Δ =
+ +∑ ∑

 
Table 3.2 OTTNLMS algorithm  
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3.4 Practical implementations of OTTLMS algorithm 

 

In Section 3.2, we have already derived optimum time-&tap variant step-size for 

LMS and NLMS algorithm in Table 3.1 and Table 3.2. Here, the OTTLMS and 

OTTNLMS not only need prior statistics knowledge 2
xσ , 4

xσ , and 2
nσ , but also the prior 

knowledge of second moment of coefficient error (1) ( )lg k  and (2) ( )jg k . Thus we 

must be known the real room impulse response (1)c  and second order kernel caused 

by nonlinear loudspeaker (2)c . In general case, the echo path (1)c  and (2)c  are not 

accessible. In section 3.3.1, we propose a model function to estimate those parameters 

for the application in nonlinear acoustics echo cancellation.  

 

3.4.1 Exponential models of linear and quadratic kernel 

 

Unlike the approximation approach of Kuech approach [12] in Section 3.1.2, we 

introduced the recursive formula (3.14), thus we only need to know the real envelope 

of real echo path (i.e.
2 2(1) (1) (1) (1)(0) { (0) }l l l lg E h c c−⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦� � ), thus we proposed an 

exponentially models for implementation.  

 Here, we will assume reasonably the real linear and quadratic kernel (1)c , (2)c  

can be modeled as an exponentially decaying envelope shown in Fig 3.3, and Fig 3.5. 

Let the linear and quadratic envelope functions modeled as: 

(1) (1) (1)
0 ( )   for 1 ~l

lw w r l M= =   (3.15) 

1 2

1 2

( )(2) (2) (2)
, 0 1 2 2( )   for , 1 ~l l

l lw w r l l N+= =                    (3.16)   

where (1)r  and (2)r  are linear and quadratic kernel exponential decay factors 

respectively.  
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Fig 3.3 Real Linear kernel and exponential model of the envelope 
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Fig 3.4 Real quadratic kernel of the nonlinear loudspeaker 
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Fig 3.5 Exponential model of the envelope of the quadratic kernel 

 

The diagonal elements of tap coefficient error variance matrix (1) ( )R k
v   and 

( 2) ( )R k
v  are (1) (1) (1) 2( ) [( ( ) ) ]l l lg k E h k c= − and (2) (2) (2) 2( ) [( ( ) ) ]j j jg k E h k c= − , 

respectively.  We let the initial linear and quadratic tap coefficients to be zero. 

i.e. (1) (0) 0lh = , (2) (0) 0jh = , so 
2 2(1) (1) (1) 2 (1) (1)(0) [( (0) ) ]l l l l lg E h c c w⎡ ⎤ ⎡ ⎤= − = ≈⎣ ⎦ ⎣ ⎦ and 

1 2

22(2) (2) (2) 2 (2) (2)
,(0) [( (0) ) ]j j j j l lg E h c c w⎡ ⎤⎡ ⎤= − = ≈⎣ ⎦ ⎣ ⎦ . By (3.12) and (3.13), if we have 

(1) (0)lg  and (2) (0)jg  , we can get the initial step-sizes of linear (1)
, (0)l OTTLMSμ  and 

quadratic kernel filter (2)
, (0)j OTTLMSμ  , with initial step-size plugged into (3.13) we can 

get (1) (1)lg and (2) (1)jg  , and so forth . Thus, we can find (1)
, ( )l OTTLMS kμ  

and (2)
, ( )j OTTLMS kμ , recursively. The practical OTTLMS algorithm with exponentially 

envelope model functions can be summarized as follows: 
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1. Measure the exponential decay factor of linear and quadratic kernel (1)r  and 
(2)r  to get (1) (1) (1)

0 ( )l
lw w r=  and 1 2

1 2

( )(2) (2) (2)
, 2 ( ) l l

l lw w r += . 

 

2. Set up initial value 
2(1) (1)(0)l lg w⎡ ⎤≈ ⎣ ⎦  for  1, ,l M= …  and 

1 2

2(2) (2)
,(0)j l lg w⎡ ⎤≈ ⎣ ⎦ for 1 2 2for  , 1, ,l l N= …  

 

3. According to table.3.1 

 

By using the exponential function to model the linear and quadratic kernel, we 

can practically implement the OTTLMS algorithm, whose performance will be 

verified in Chapter 5. 
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3.4.2 Exponentially approximated temporal function of step-size in OTLMS and 

OTNLMS 
 

In Section 3.3, we proposed practical implement in OTTLMS. Now we would 

further obtain property of step size in adaptive processing.  

 
Fig 3.6 Linear kernel step size temporal function 

 
Fig 3.7 Quadratic kernel step size temporal function 

 

By Fig 3.6 and 3.7, for our optimum step size in AEC, we obtain that large step 

size in initial times and small in converged times.  
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To reduce computation complexity, we want to derive the exponentially 

approximation temporal function of step size, with the approximated step size 

function, we can abbreviate the calculation of (second moment) coefficient error.  

To simplify calculation, we assume that all taps of step size are equal, thus we 

can rewrite optimum step sizes (3.12) and (3.13) as 

(1)
(1)

2 (1) 2 4 (2)
2

( )( )
( ) ( )OTTLMS

x n x

g kk
Mg k L g k

μ
σ σ σ

=
+ +              (3.17) 

(2)
(2)

4 (2) 2 2 (1)
2

( )( )
( ) ( )OTTLMS

x n x

g kk
L g k Mg k

μ
σ σ σ

=
+ +              (3.18) 

Similarly, the mean-square coefficient error could be rewritten as  
(1) (1) 2 (1)

(2) (2) 4 (2)

( 1) (1 ( ) ) ( )

( 1) (1 ( ) ) ( )
OTTLMS x

OTTLMS x

g k k g k

g k k g k

μ σ

μ σ

+ = −

+ = −
                   (3.19) 

We put the recursive relation of mean-square coefficient error (3.19) into (3.17), the 

OTLMS of linear kernel can be expressed as : 

(1) 2 (1)
(1)

2 (1) 2 (1) 2 4 (2) 4 (2)
2

(1) (1)

2 (1) (1) 2 4 (2) (2)
2

(1 ( 1) ) ( 1)( )
(1 ( 1) ) ( 1) (1 ( 1) ) ( 1)

( 1) ( 1)          
( 1) ( 1) ( 1) ( 1)

x

x x n x x

x n x

k g kk
M k g k L k g k

k g k
M k g k L k g k

μ σμ
σ μ σ σ σ μ σ

α
σ α σ σ α

− − −
=

− − − + + − − −

− −
=

− − + + − −

  

1
(1) (1)

0
1 1

2 (1) (1) 2 4 (2) (2)
2

0 0

( ) (0)
        

( ) (0) ( ) (0)

k

i
k k

x n x
i i

i g

M i g L i g

α

σ α σ σ α

−

=
− −

= =

=
+ +

∏

∏ ∏
                (3.20)               

where common ratios of mean-square coefficient error are defined as 

(1) (1) 2( ) (1 ( ) )xi iα μ σ= −  and (2) (2) 4( ) (1 ( ) )xi iα μ σ= − ,for time 1 ~ 1i k= −  

By assumption of the common ratios are identical for the whole time (i.e.  

(1) (1) (1) (1)( 1) ( 2) ... (0)k kα α α α− = − = = = and (2) (2) (2) (2)( 1) ( 2) ... (0)k kα α α α− = − = = = , 

and 
(1) (2)(0) (0)g g= , thus we rewrite (3.16) as  

(1) (1)
(1)

(1) (2) (1) 2 2
2

[ ] (0)( )  
( [ ] [ ] ) (0)

k

k k
n s

gk
M L g

αμ
α α σ σ

=
+ + +

            (3.21) 
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Analogously to linear kernel, 
(2) (1)

(2)
(1) (2) (1) 2 2

2

[ ] (0)( )  
( [ ] [ ] ) (0)

k

k k
n s

gk
M L g

αμ
α α σ σ

=
+ + +            (3.22) 

Similarly, the exponential approximated OTLMS algorithm for second-order Volterra 

filter is summarized in Table 3.3: 

(1) (1) (2) (2)( ) ( ) ( ) ( ) ( ) ( )T Te k y k k k k k= − −x h x h
(1) (1)

(1)
(1) (2) (1) 2

2

[ ] (0)( )  
( [ ] [ ] ) (0)

k

k k
n

gk
M L g

αμ
α α σ

=
+ +

(2) (1)
(2)

(1) (2) (1) 2
2

[ ] (0)( )  
( [ ] [ ] ) (0)

k

k k
n

gk
M L g

αμ
α α σ

=
+ +

(1) (1) (1) (1)

(2) (2) (2) (2)

( 1) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( )

k k k e k k

k k k e k k

μ

μ

+ = +

+ = +

h h x

h h x
 

Table 3.3 Exponentially approximated temporal function of step-size in OTLMS 

 

Similarly, for NLMS algorithm, we have:  

(1) 2 4 (1)
2( ) ( ) ( )OTTNLMS x x OTTLMSk M L kμ σ σ μ= +  

(2) 2 4 (2)
2( ) ( ) ( )OTTNLMS x x OTTLMSk M L kμ σ σ μ= +  

3.5  Double Talk and Echo Path change conditions 

 

We have already proposed OTTLMS algorithm and assumed single talk case in 

Section 3.2. In this section, we consider the double talk (i.e. ( ) 0s k ≠ ) and echo path 

change conditions.  

From the (3.12) and (3.13), the determination of (1)
, ( )l OTTLMS kμ and (2)

, ( )j OTTLMS kμ , 

as statistics knowledge of near-end 2
sσ  are not accessible, it is intuitive that residual 

error variance 2 ( )e kσ  is near to 2 2
n sσ σ+  in converged condition. Thus we 
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introduced the estimated residual error variance 2ˆ ( )e kσ  to model the background 

noise and near end speech variance for practical implementation which is using the 

smoothed recursive algorithm from square of residual error: 

  2 2 2ˆ ˆ( ) ( 1) (1 ) ( )e ek k e kσ λσ λ= − + −  

where λ  is constant. 

Next, we look at the echo path change condition. When the echo path changes, 

our proposed optimum step size is not robust because our step sizes are still restricted 

to small value in converged single-talk. 

In OTTLMS algorithm, we introduce the recursive relation to evaluate the 

optimum step size, rather than calculate step size repetitively. These introduction 

constraints that our optimum step sizes are to be small in converged condition even 

echo path changes suddenly. 
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Fig 3.8 OTTLMS during echo-path variations 
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Fig 3.8 shows the comparison of OTTLMS and LMS during echo-path variations. 

The room response is changed after 12000 iterations. According to the simulation, the 

convergence rate of OTTLMS algorithm is increased as compared to the LMS 

algorithm; however, it can be observed from Fig 3.8, the result is different after echo 

path changed. The reason is the recursive characteristic of (3.14), whether echo path 

changes or not, the mean-square coefficient errors of linear and quadratic kernel are 

smaller and smaller, it leads to our proposed optimum step sizes are smaller and 

smaller, so even if the echo path changes after 12000 iterations, the step sizes are still 

very small at convergence. 

Thus we introduce a detector [16] to detect the echo path change, by a direct 

measure of the adaptive filter’s convergence. Referring to Fig 3.2, the cross 

correlation between the desired signal ( )y k , and the residual error ( )e k  is given by:  

 

{ }

{ }{ }{ }
(1)

(1) (1) (1) (1) (1)

(1) (1) (1) 2

( ) ( ) ( )

         ( 1) ( ) ( ) ( ) ( )

         ( 1) ( )

T
ey

T T

T

n

r k E e k y k

E k k n k k n k

k k σ

=

⎡ ⎤= − − + +⎣ ⎦

⎡ ⎤= − − +⎣ ⎦ x

c h x c x

c h R c

 

                                                         (3.23) 

The variance of desired signal ( )y k and residual error ( )e k are expressed by    

{ } (1)
2 2 (1) (1) 2( ) ( )T
y nE y k kσ σ= = +

x
c R c                            (3.24) 

{ } (1)
2 2 (1) (1) (1) (1) 2( ) ( 1) ( ) ( 1)

T

e nE e k k k kσ σ= = − − − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦x
c h R c h      (3.25) 

The proposed convergence statistic definition from [16] is given by: 

( )
( )

(1)

(1)

(1) (1) (1)2

2 (1) (1)

( 1) ( 1)( )
( )

( ) ( 1)

T

ey e
T

y ey

k kr k
k

r k k

σ
ξ

σ
− − −−

= =
− −

x

x

c h R h

c R h
           (3.26)     

We can observe that If the adaptive AEC filter converged (i.e. (1) (1) ( 1)c k≈ −h ), the 

convergence statistic ( )kξ  in (3.29) is approximately to zero, and if (1) (1) ( 1)c k≠ −h , 

the statistic ( )kξ  is lager than zero ( ( )kξ >0). Thus the proposed statistic is a good 
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measure convergence of the adaptive filter.  

When the echo path change detector detects the echo path change, we 

re-initialize from (1) ( )lg k  to (1) (0)lg , it means that we re-update the linear adaptive 

filter (1)h , thus we can overcome the echo path change condition. The simulation result 

will be shown in Section 5.2.7. 
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3.6 Computational complexity 

 

We have already discussed OTTLMS algorithm with an increased the 

convergence rate. This section we make a computation comparison of OTTLMS, 

LMS, and Kuech approach, we examine the number of multiplications required to 

make once complete iteration of the algorithm. The recursive relation of second 

moment coefficient error in (3.13) is need 22 2M L+  multiplications, the update 

equation of OTTLMS in Table 3.1 is need 22 2M L+  multiplications, thus the total 

requirement multiplication of OTTLMS is 25 5M L+  

Similarly, the multiplications of [12] are about 24 4M L+ , and the EAOTTLMS 

(Exponentially approximation temporal function of OTTLMS) in Section 3.4.2, it 

needs only about 22 2M L+ . 

The computation complexity for OTTLMS are summarized in Table 3.3   

 

Algorithm Multiplications/sample

LMS 22 2M L+  

Kuech[12] 24 4M L+  

OTTLMS 25 5M L+  

EAOTTLMS 22 2M L+  

Table.3.3 Computation complexity comparison of different algorithms 
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3.7 Summary 

 

In this chapter, we propose the optimum step size in second-order Volterra 

structure, in section 3.1, we introduced the conventional step size control algorithm, in 

section 3.2, and the optimum step-size is derived by introducing an optimality 

criterion which is given by MMSE between coefficients errors of real kernel and 

adaptive coefficients. 

In Section 3.3 we extend to NLMS algorithm. In Section 3.4 we propose 

exponentially model function to practical implement because the prior knowledge of 

echo path is not easy to be acquired. To save the computational complexity, the 

exponentially approximated temporal function was derived in Section 3.5.  

In Section 3.6, the echo path change and double talk conditions were considered, 

and the computational complexity was summarized in Section 3.7. The overall of 

discussion will be verified in Chapter5.  

In addition to step size control of second-order Volterra, the higher-order Volterra 

model was not considered here. Because the optimum step size deriving processing is 

more complicated, for example, (3.8) will be have many cross term which is leading 

to hard to get the second moment of coefficient error in (3.10).  

In Hammerstein model, as it is cascade structure, the joint error term produced 

by linear and nonlinear term, thus it is difficult to perform its optimum step size. 
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Chapter 4 
Channel Shortening Structure For 
Nonlinear AEC 

 

 

Another alternative is the channel shortening technique that has been proposed in 

[14] to overcome high computational complexity and low convergence rate 

disadvantages of Hammerstein structure. 

In Chapter 4, we will investigate the issues of channel shortening approach. The 

channel shortening approach will be introduced in Section 4.1, in Section 4.2, we will 

perform theoretical analysis in the senses of LMS and LS in case of a linear 

loudspeaker to obtain the converged tendency. 

In addition to theoretical linear analysis, we will propose multiple nonlinear 

stage update scheme to accelerate convergence rate in Section 4.3, and finally we 

apply the channel shortening with second-order Volterra filer in Section 4.4.  

 

4.1 Channel shortening approach 

 

Kun Shi [14] proposed a novel algorithm based on Hammerstein model, Fig.4.1 

shows the structure of nonlinear acoustics echo cancellation, it introduced an FIR 

shortening filter ( )kw is introduced after the acoustics path. The purpose of shortening 

filter ( )kw  is to “shorten” the channel, which is the convolution of the room impulse 

response and ( )kw  to have fewer number of non-negligible taps. 
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Fig4.1 Channel shortening structure for nonlinear AEC 

In [14], the author performed the RLS algorithm for nonlinear polynomial 

coefficient ˆ( )ka , and NLMS algorithm for adaptive AEC ( )kh  and shortening 

filter ( )kw . Here we will focus the NLMS algorithm. 

Suppose that the lengths of shortening filter w(k) and the AEC filter ˆ( )h k  are 

wL  and sL  , respectively . Define the vectors   

[ ]
1 2( ) ( ), ( ), , ( )

( ) ( ), ( 1),. , ( 1)
w

T

L

T
w

k w k w k w k

k y k y k y k L

⎡ ⎤= ⎣ ⎦

= − − +

w

y

…

…
 

[ ]1 2( ) ( ), ( ), , ( ) T
Lsk h k h k h k=h …  
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[ ]( ) ( ), ( 1), , ( 1) T
sk x k x k x k L= − − +x …  

The reference signal (output of shortening filter) d(k) can be defined as  

( ) ( ) ( )Td k k k= w y  

The nonlinear AEC output signal ( )z k  can be written as  

( ) ( ) ( )Tz k k k= h s�  

where the ˆ( )ks  is the output vector of the nonlinear filter  

( ) [ ( ),  ( -1),..., ( - 1)]T
sk s k s k s k L= +s� � � �  

Each ( )s k�  is given by  

1 2
1 2ˆ ˆ ˆ ˆ( ) [ ( ) ( ) ( )][ ( ), ( ) ( )]

ˆ      ( ) ( )

K T
K

T

s k x k x k x k a k a k a k
k k

=

= x a
" "

 

where ˆ( )ka  is the estimated coefficients vector of the nonlinear processor. Therefore, 

ˆ( )ks  can be expressed by  

ˆ ˆ ˆ ˆ( ) [ ( ),  ( -1),..., ( - 1)]
ˆ ˆ ˆ      [ ( ) ( ),  ( -1) ( -1),...,  ( - 1) ( - 1) ]

T
s

T T T T
s s

k s k s k s k L
k k k k k L k L

= +

= + +

s
x a x a x a

 

where ip is the polynomial basis of order i , for example 

2
1 2( ) ( ) and ( ) ( )p k x k p k x k= =  in case of a power series expansion basis. K is the 

order of the polynomials. The estimated error is 

( ) ( ) - ( )

      ( ) ( ) - ( ) ( )T T

e k d k z k

k k k k

=

= w y h s�
 

The gradient of the error power 2 ( )e k , as derived in [15], can be calculated according 

to: 

�
2

2 ( ) ˆ( ) -2 ( ) ( )
( )h

e ke k e k k
k

∂⎡ ⎤∇ = =⎣ ⎦ ∂
s

h
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2
2 ( )( ) -2 ( ) ( ) ( )

( )
T

a
e ke k e k k k

k
∂⎡ ⎤∇ = =⎣ ⎦ ∂

P h
a�

                        

2
2 ( )( ) 2 ( ) ( )

( )w

e ke k e k k
w k

∂
∇ = =⎡ ⎤⎣ ⎦ ∂

y  

where ( )kP  is the expanded nonlinear matrix defined by 

1 2

1 2

1 2

( )       ( )          ( )   
( -1)    ( -1)      ( -1)

( )
                                        

( - 1) ( - 1)  ( - 1)

K

K

s s K s

p k p k p k
p k p k p k

k

p k L p k L p k L

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

+ + +⎣ ⎦

P

"
"

# # % #
"

 

If the coefficients vectors are updated with step size hμ , aμ and wμ  , a joint 

NLMS-type adaptive algorithm is given by 

2

2

ˆ( 1) ( ) ( ) ( )
( )

hk k k e k
k

μ
+ = +h h s

s�
                            (4.1) 

2T

2

ˆ ˆ( 1) ( ) ( ) ( ) ( )
( ) ( )

Tak k k k e k
k k

μ

δ
+ = +

+
a a P h

P h
                (4.2) 

2

2

( 1) ( ) ( ) ( )
( )

wk k e k k
k
μ

+ = −w w y
y

                          (4.3) 

In order to avoid trivial solutions, the author constrained that two-norm of polynomial 

and linear filter are equal to one (i.e.
2

ˆ 1=a ,
2

ˆ 1=h ).Thus, unlike the RLS [14], the 

NLMS algorithm for channel shortening structure was summarized as  

 
� 2

T

2

( 1) ( ) ( ) ( ) ( )
( ) ( )

Tak k k k e k
k k

μ

δ
+ = +

+
a a P h

P h
� �  
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+
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 2

2

( 1) ( ) ( ) ( )
( )

wk k e k k
k
μ

+ = −w w y
y

 

We did some simulations to verify that faster converged rate in this structure. The 

far end signal ( )x k was generated according to an i.i.d Gaussian distribution. The room 

impulse response was generated by a random number generator with an exponential 

damping factor and we assume the length of room impulse response is equal to 350. 

The nonlinear loudspeaker is modeled by polynomial function  

2 3 4 5( ) .89 0.002 - 0.3 0.001 0.5f x x x x x x= + + +  

    The length of shortening filter wL  and linear adaptive sL  are equal to 250 and 

100, respectively, and the nonlinear polynomial filter order is 5K = . 

To evaluate system performance, residual error power, performance measure of 

echo return loss enhancement (ERLE), and coefficient misalignment are major system 

performance measures for comparison purposes. With the assumption of high SNR, 

the (ERLE) can be formulated as 
2

10 2

[ ( )]( ) 10 log ( )
[ ( )]
d kERLE k
e k

=  
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Fig 4.2 Comparison of classical Hammerstein and channel shortening structure 
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Fig 4.3 Shortening filter, original channel and channel shortened channel  

    In Fig 4.3, the coefficients of shortening, original and shortened channels were 

displayed; the shortened channel is the convolution of shortening filter and real 

original channel, we omit the shortened channel from 351 to 599 taps, which the 

amplitude value can be neglected. 

We can obtain that shortening filter reduces the length of room impulse response 

from about 250 to 100 taps. As the reduction, the shortening structure reduces length 

of adaptive filter h  from 350 to 100. 

For computational complexity, we examine the number of multiplications 

required to make once complete iteration of the algorithm (4.1), (4.2) and (4.3). ( )ks�  

in (4.1) and its 2-norm need nonlinear order K and linear filter tap M multiplications 

respectively thus the total requirement multiplication of (4.1) is about 2M + K. For 

(4.2), ( ) ( )T k kP h  and its 2-norm need MK and K multiplications respectively thus 
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the total requirement of (4.2) is about MK+2K. Thus we know that the total 

requirement multiplication of classical Hammerstein structure is about MK+2M+3K. 

In channel shortening structure, we reduce the linear FIR filter from M (i.e. Ls+Lw) to 

Ls. The requirement multiplication of (4.3) is about Lw. In order to avoid trivial 

solutions, the renormalized term in channel shortening approach are added, the 

requirement multiplication is about Ls+K. 

 

Table 4.1 Computation complexity comparison of classical and shortening 

structure 

 

By Table 4.1, it can be obtained that the main computation lies in (4.1) and (4.2), 

thus although it increases multiplication due to shortening filter, it still can reduce the 

multiplication complexity, because the dominate term of computation complexity of 

classical Hammerstein structure is MK, which was reduced to KLs.   

 

 

 

 

 

 

 

 

 

 Number of multiplication 

Classical Hammerstein structure (Ls+Lw)K+2M+3K 

Channel shortening structure KLs+2Ls+3K+Lw+Ls+K 
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4.2 Theoretical analysis of linear echo channel 

 

In this section, in order to discuss convergent behavior in the structure, we 

analyze the coefficient error under the assumption of linear loudspeaker and. By the 

assumption, we simply the system model in Fig 4.4. 

 

Fig 4.4 Shortening structure for the linear loudspeaker 

 

4.2.1 Least-square solutions 

 

In order to discuss the Least-Square solution in this structure, we don’t take 

account of time index k. 

In our analysis, we use the residual error e  defined by the following equation. 

  * * *= ∗ − +e x w c x h n w                            (4.4)      

where ∗  is linear convolution operator , c is room impulse response with finite 

length M , and the n  denotes the background noise. 

1[ ....... ]T
Mc c=c  
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1[ ....... ]
w

T
Lw w=w  

1[ ....... ]
s

T
Lh h=h  

1 2[ , , ]Te e=e ………  

ic  represent  i’th tap of c, h  is FIR filter with length sL  to track the shortened 

echo path, qh  represent  q’th tap of h , and the w is shortening filter with length 

wL , jw  represent  j’th tap of w . 

We extend (4.4) to matrix form   

 
  ( )
 ( )
 

= ∗ ∗ − ∗ + ∗
= ∗ + ∗ − ∗
= ∗ − ∗

e x c w x h n w
x c n w x h

y w x h
= Yw - Xh

 

(4.5)  

where Y  and X are convolution matrix version of microphone input signal y and far 

end signal, respectively, and 1q wL M L= + −   

1

2 1

1

1

,0, 0
, ,0, 0

     
0, , 0
    

0 .

y
y y

y

y

⎡ ⎤
⎢ ⎥
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= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y

…………
………

# %
…… ……

# %
……………

 , 

1

2 1

1

1

,0, 0
, ,0, 0

     
0, , 0
    

0 .

x
x x

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X

…………
………

# %
…… ……

# %
……………

. 

    By cascading up the unknown vectors w and h , the (4.5) can be written as: 

 ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦

wX
e

h0
Y  

In order to get the least-square solution of w andh , we assume that the first element 

of shortening filter 1 1w =  to separate (4.5) into two term form, Thus (4.5) can be 

rewritten as: 

= +e b As                                             (4.6) 
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where  

1 1
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…………

 

The normal equation of (4.6) can be written as 

T TA As = -A b                                           (4.7) 

Therefore, in order to minimize the coefficient error, the least-square solution of x  

can given by: 

= T -1 Ts -(A A) A b                                           (4.8) 

 

4.2.2 Adaptive LMS algorithm and its convergence analysis 

 

In section 4.2.1 , we analyzed the coefficient error in least-square sense , we will 

derived the theoretical coefficient error based on the adaptive LMS algorithm , we 

want to observe and discuss the result of LMS algorithm in shortening structure to see 

if it can achieve the least-square solution or not. 

Using (4.5), the coefficient error at time 1k + . 

( 1)
( 1) ( 1)

k
k k

+⎡ ⎤
+ = + − ⎢ ⎥

⎣ ⎦

h
ε Cw

0  

In the following analysis, we assume the step sizes of shortening filter w  and FIR 
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filter h  are equal, i.e. w hμ μ μ= =  . Using LMS algorithm, we have 

( 1)
( 1) ( 1)                            

k
k k

+⎡ ⎤
+ = + − ⎢ ⎥

⎣ ⎦

h
ε Cw

0   

              
( )

[ ( ) ]
k k e k

k k e k
μ

μ
−⎡ ⎤

= − − ⎢ ⎥
⎣ ⎦

h x( ) ( )
C w y( ) ( )

0
 

( ) [ ]   Lsk k k e kμ= − +ε Cy( ) x ( ) ( )                        (4.9) 

By the noise-free assumption, the residual error ke( )  can be written as  

( ) ( )k d k z k= −e( )  

      ( ) ( ) ( ) ( )T Tk k k k= −y w x h  

      ( ) ( ) ( ) ( )T T
Lq k k k k= −x Cw x h  

      ( ) ( )T
Lq k k= x ε                                          (4.10) 

where  

1q wL M L= + −  

1

( ) [ ( ), ( 1), , ( 1),0, 0]
q

T
Ls s

L

k x k x k x k L
×

= − − +x … …�������	������
  

( ) [ ( ), ( 1),....., ( 1)]T
Lq qk x k x k x k L= − − +x  

Using (4.9), (4.10), we rewrite the coefficient error as 

( 1) ( ) [ ] ( ) ( )T
Ls Lqk k k k k kμ+ = − +ε ε Cy( ) x ( ) x ε  

            [ ( ) ( )] ( )
q q

T T
L L Lq Ls Lqn k k k kμ×

⎡ ⎤= − +⎣ ⎦I Cy( )x x ( )x ε              (4.11) 

According to the direct averaging method [13], whenμ  is very small, the coefficient 

error ( 1)k +ε  can be approximated as follows: 

2( 1) ( )
q qL L x qk kμσ×

⎡ ⎤+ ≅ −⎣ ⎦ε I R ε                          (4.12) 
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where +
s sq q L L×=R CH I , 

1 2

1 1

1 1

, ,     ,      0 0

0, ,     ,     0 0 

                                 
0 , ,  0 0
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q
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c c c

c c

c c

−

− +
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⎢ ⎥
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⎢ ⎥
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By applying the similarity transformation, qR  is transformed into a simpler 

form: 

-1
qS R S = E  

where S is a matrix consisting of eigenvectors of qR  and E  is a diagonal matrix 

consisting of the eigen-values iλ . Let 1( ) ( )k k−=φ S ε  then we may transform (4.12) 

into the form  

1 1 2( 1) - ( )x qk kμσ− − ⎡ ⎤+ = ⎣ ⎦S ε S I R ε  

2( 1) - ( )xk kμσ⎡ ⎤+ = ⎣ ⎦φ I E φ                              

The natural mode ( )i kϕ  denotes i’th entry of ( )kφ . Let (0)iϕ denote the initial value 

of ( )i kϕ . We may rewrite ( )i kϕ as follows. 

2

2

( ) (1 ) ( 1)
        (1 ) (0)

i x i i

k
x i i

k kϕ μσ λ ϕ
μσ λ ϕ

= − −

= −
                                (4.13) 

Hence, we get the theoretical coefficient error in LMS algorithm sense. In 

chapter 5, we would simulate it and compare with the least-square solution. 

We will note that the theoretical mean-square error is 

{ } 22 2
2

( ) ( ) ( )xJ k E e k kσ ε= =                           (4.14) 

  

4.2.3 Non-unique converged value 

 

To further understand the converged behavior, we discuss the converged value of 
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adaptive filter ( )kh and shortening filter ( )kw , we want to discuss the convergence 

toward the optimal parameters in the system. Indeed, the mean-square error 

2( ) { ( )}J k E e k=  produces some local minima, implying the convergence toward 

incorrect parameters depending on the initialization of ( )kh and ( )kw .We study this 

phenomenon in this section. From (4.10), the square of residual error 2 ( )e k  can be 

expressed as: 

2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
              2 ( ) ( ) ( ) ( )

T T T T

T T

e k k k k k k k k k
k k k k

= +

−

w y y w h x x h
w y x h

 

                                                        (4.15) 

 The squared error can be used to get the optimal parameter set in the minimum 

mean-square error sense (MMSE).To simplify analysis, we assume that the other filter 

is quasi-constant when we analyses one filter.  

For the linear AEC filter ( )kh , the gradient of ( )J k  respect to ( )kh  is given by  

{ ( )} 2 ( ) ( ) ( ) 2 ( ) ( ) ( )T TJ k E k k k E k k k∇ = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦h x x h w y x     (4.16) 

For the shortening filter ( )kw , the gradient of ( )J k  respect to ( )kw  is given by 

{ ( )} 2 ( ) ( ) ( ) 2 ( ) ( ) ( )T TJ k E k k k E k k k∇ = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦w y y w h x y     (4.17) 

MMSEh and MMSEw , both satisfy the equality ˆ ˆ ˆ{ ( )} 0
MMSE

J k
=

∇ =
h h h  and 

{ ( )} 0
MMSE

J k =∇ =w w w , respectively. Thus from (4.13) and (4.14), we can obtain that 

MMSEw  is function of ( )kh , and MMSEh  is a function of ( )kw . 

Thus we can see that initial value of ( )kh and ( )kw will affect the final 

converged value.  
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4.3 Multiple stage update in channel shortening structure 

 

As seen (4.16) and (4.17), in linear echo path channel, we can point out several 

things. First, the different initial value of filter (whatever AEC or shortening filter) 

will cause the shortening structure converge to different value; second, the system is 

not able to identify the optimal set of parameters, unless one of filter is know. 

It has identical situations in nonlinear channel shortening structure (i.e. Fig 4.1). 

In this section, we will try to change the way of updating in channel shortening 

structure, rather than joint update. 

The Guerin [3] proposed the two-staged strategy which it starts with one filter, 

and joint adaption of all filters (i.e. polynomial filter ( )ka� , adaptive AEC filter ( )kh , 

and shortening filter ( )kw ) once the linear filter has sufficiently converged in first 

stage.  

In channel shortening structure, the two-staged strategy means change the initial 

value of filters, as when the first stage finished, the initial value is identical to the 

converged value in first stage.  

By the idea, we want to obtain and compare that the performance of different 

multiple update strategies (i.e. different initial value of filters). The overall of 

discussion will be verified in Section 5.3.  
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4.4 Volterra with channel shortening and OTTLMS 

 

In this section, we try to implement the shortening structure to second order 

Volterra, we hope to the shortening filter shorten the linear kernel of echo path and 

lead to improve the convergence rate in Volterra structure. 

It is identical idea with Hammerstein, the purpose of shortening filter ( )w k  is 

to “shorten” the linear kernel, which is the convolution of the room impulse response 

and ( )w k  to have shorter taps. 

In addition to channel approach for Volterra structure, we implement the 

OTTLMS algorithm to the combination ( i.e. channel shortening in Volterra filter), 

The overall of discussion will be verified in Section 5.3.  
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Chapter 5 
Computer Simulation 
 
 

To evaluate the performance of our proposed nonlinear AEC algorithm, we 

provide computer simulations. In Section 5.1, we introduce the parameters of our 

simulation. A series of simulations and experiments on the optimum 

time-&tap-variant step size, will be compared and discussed in Section 5.2. In Section 

5.3 we will compare simulations results with theoretical analyses in channel 

shortening structure.  

 

 

5.1 Simulation parameters introduction 

 

The signal to noise ratio at microphone is defined as  

1010 log ( )echo

noise

PSNR
P

=  

where 
echoP  is power of the nonlinear echo and the noiseP  is the power of the 

background noise.  

For simplicity, we use a 256-tap room impulse response as shown in Fig 5.1.1. It 
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is generated by a random number generator with an exponential damping factor. 

Nonlinear memory echo path is shown in Fig 5.1.2. In this thesis, we use a 

20-memory kernel. 

In our experiment, we not only use an i.i.d white Gaussian signal, but also speech 

signal as the input signal to examine the performance. The speech signal is sampled 

with 8 KHz sampling rate shown in Fig 5.1.3. 

To evaluate system performance, residual error power, ERLE, and coefficient 

misalignment are major system performances for comparison purposes. The 

performance measure of echo return loss enhancement (ERLE) can be formulated in 

single talk condition as: 
2

10 2

( )( ) 10log
( )

y kERLE dB
e k

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 

where the ( )y k  is the microphone signal  

In section 5.3, the nonlinear loudspeaker in our simulation is modeled as the 

polynomial function:  

2 3 4 5( ) .89 0.002 - 0.3 0.001 0.5f x x x x x x= + + +  

In [14], Usually ERLE is usually defined as the ratio of microphone received 

echo power to the residual echo power. In Fig4.1, since shortening filter may change 

the power of receive echo, the ERLE is redefined as  

2

10 2

( )( ) 10log
( )

d kERLE dB
e k

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 

where ( )d k  and ( )e k  represent the “filtered” received echo signal and residual 

echo, respectively. 
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Figure 5.1.1 Room impulse response 
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Figure 5.1.2 Quadratic kernel 
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Fig 5.1.3 Speech signal 

 

 

5.2 ERLE convergent rate comparison 

 

5.2.1 Comparison of OTTLMS, only linear OTTLMS and LMS 

 

Figure 5.2.1 shows the convergent rate curves of LMS and OTTLMS algorithms. 

The parameters settings chosen for Figure 5.2.1 are that the order of linear and 

quadratic kernel equal to 256 and 20 respectively, and the signal-to-noise ratio is 

30dB. We simulated large and small step size in LMS algorithm, We can see that large 

step size provides fast convergence rate but low ERLE performance, and vice versa. 

At initial state, LMS algorithm has the slowest convergence rate compared to 

OTTLMS with variant step-size algorithms.  
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Fig 5.2.1 Comparison of OTTLMS and LMS algorithms (with white Gaussian input) 

 

From result of Fig 5.2.1, in small step size that has identical convergent ERLE 

value to OTTLMS, we can obtain that our OTTLMS algorithm provides faster 

convergent rate, our approach converged after 3000 iterations which is faster than 

10000 iterations in LMS algorithm. Besides compare with small step size, we can see 

that even if we use large step size in LMS algorithm, the OTTLMS algorithm still has 

a faster convergence rate than LMS algorithm. 

 

In fig 5.2.2, we use the real speech signal in Fig 5.1.3, the parameters settings 

chosen for Figure 5.2.2 are as follows: 

‧ 2256  N =20 SNR=25 dBM =  

‧ LMS : 0.01u =  
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Fig 5.2.2 Comparison of OTTLMS and LMS algorithm (with real speech) 

Fig 5.2.2 show that the optimum time-& tap-variant step-size LMS (OTTLMS) 

provides faster convergence rate than LMS algorithm in real speech input. We can 

obtain that our OTTLMS algorithm enhance the LMS algorithm about 10dB in initial 

state, after 15000 iterations, the OTTLMS still improve LMS algorithm about 5dB.   

After the comparison of OTTLMS and LMS algorithm, we want to look the 

effect of optimal step size in quadratic kernel, we compare OTTLMS algorithm into 

both linear and quadratic kernels with only into linear kernel. 

In this thesis, the word “only-linear OTTLMS” represents that the step sizes of 

linear adaptive filter are optimal, and the quadratic kernel is fixed (i.e. LMS algorithm 

for quadratic kernel). 

Fig 5.2.3 shows the convergence rate curve of OTTLMS and 

only-linear-OTTLMS algorithm. The parameters settings chosen for Figure 5.2.3 are 

the same as Fig 5.2.1. 
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Fig 5.2.3 comparison of OTTLMS, only-linear-LMS, and LMS algorithm (with white 

Gaussian input) 

 

From result of Fig 5.2.3, we find the convergent rate of OTTLMS for all kernels 

is higher than only-linear OTTLMS, we can obtain that the OTTLMS for all kernels 

converged after about 3000 iterations which is faster than 5000 iterations in 

only –linear OTTLMS.  

In addition to Gaussian input signal, we also simulated in real speech signal to 

compare OTTLMS with only-linear-OTTLMS algorithm. The parameters settings 

chosen for Figure 5.2.4 are the same as Fig 5.2.2. 
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Fig 5.2.4 comparison of OTTLMS and only linear OTTLMS (with real speech) 

 

Fig 5.2.4 shows that the OTTLMS algorithm provides faster convergence rate 

than only-linear OTTLMS algorithm in real speech input. We can obtain that our 

OTTLMS algorithm enhance the only-linear-OTTLMS about 4dB in ERLE 

performance. 

 

5.2.2 Comparison of OTTLMS and Different parameters of model function 
 

In this section, we will simulate the ERLE performance using different modeling 

parameters of model function by (3.14), (3.15), we named “matched model” if model 

function close to the real kernel; “under model”, if decay rate of model function faster 

than real kernel; “over model” if decay rate of model function is slower than real 

kernel.  
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We will discuss the case of mismatched model. By Fig5.1.1 and Fig5.1.3, we use 

three slope parameters of model function in (3.14), (3.15), by assumption of the 

slopes of real linear (1)r  and quadratic kernel (2)r  are approximately equal to 0.96 

and 0.85.  

The parameters settings chosen for Figure 5.2.5 and Figure 5.2.6 are as follows: 
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Fig5.2.5 RIR and Model function 
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Fig 5.2.6 (a) Quadratic kernel 
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Fig 5.2.6 (b) Under Model 
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Fig 5.2.6 (c) Matched Model 
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Fig 5.2.6 (d) Over Model 
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Fig 5.2.7 Comparison of mismatched model functions (with white Gaussian input)   
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Fig 5.2.8 Comparison of Mismatched model functions (with real speech)   
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From result of Fig 5.2.7 and Fig 5.2.8, we obtain that ERLE performance of 

closed and Over model are similar to optimum model, even if we use the Under model, 

the converged rate still faster than LMS algorithm. 

 

5.2.3 Comparison of OTTLMS and OTLMS 
 

In this section, we want to examine the effect of tap-variant step size. We will 

compare tap-variable step size with tap-invariable. Thus we fixed the   

The parameters settings chosen for OTLMS are as follows: 

‧
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Fig 5.2.9 Comparison of OTTLMS and OTLMS (with Gaussian input) 
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Fig 5.2.10 Step size of practical OTLMS (with white Gauss input) 
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 Fig 5.2.11 Comparison of OTTLMS and OTLMS (with real speech) 
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Fig 5.2.12 Step size of practical OTLMS (with real speech) 

 

Fig 5.2.9 and Fig 5.2.11, show in either case of white Gaussian or speech signal, 

OTTLMS performs better than OTLMS, it also demonstrate that the time and 

tap-variable step size provides faster convergence rate. Fig 5.2.10 and Fig5.2.12 are 

reasonable since the value of step size is large at initial state (i.e. before 5000 

iterations), and small if it converged.   

 

5.2.4 Exponentially approximated temporal function and LMS 
 

From Fig 3.5, 3.6, we know that the step size of OTTLMS algorithm is exponential 

decay by time, thus we derived the (3.21), (3.22) and compared the temporal curve 

with exponentially approximated function. In this section we simulated the ERLE 

performance to compare them. 
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Fig 5.2.13 Comparison of OTTLMS and Exponentially approximation function 
(with white Gaussian input) 
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Fig 5.2.14 Comparison of OTTLMS and Exponentially approximation function 

(with real speech signal) 
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From Fig 5.2.13 and Fig 5.2.14, we can obtain that the exponentially temporal 

model still accelerate convergent rate of LMS algorithm in white Gaussian input, 

however, when the far end input is real speech, the EAOTTLMS( exponentially 

approximated temporal of OTTLMS ) is failed.  

We obtain further the temporal function of step size, in Fig 5.2.15, we can obtain 

that step size of linear and quadratic are too large when the speech volume is small, 

this out of step size control behavior cause that the EAOTTLMS failed.  
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Fig 5.2.15 Step size of EAOTTLMS 
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5.2.5 Comparison of OTTNLMS and Kuech’s approach 
 

In section 2, we introduce Kuech approach [14]. OTTNLMS algorithm and 

practical implement were proposed in section 3.2 and section 3.3 respectively .This 

section we want to make a comparison of them, to compare fairly, we choose some 

parameter which make the steady state of Kuech’s ERLE equal to our proposed. The 

parameters settings chosen for Figure 5.2.16 are same as Fig 5.2.2, the step sizes of 

NLMS are fixed to 0.2, and the parameter of Kuech [14] (i.e. bnμ ) is equal to 0.2.  

0 0.5 1 1.5 2 2.5 3

x 104

0

5

10

15

20

25

30

35

iteration

E
R

LE
(d

B
)

comparison of OTTNLMS and Kuech

 

 

NLMS
Kuech approach
OTTNLMS
OTTNLMS-practical

OTTNLMS, OTTNLMS-practical, Kuech approach , NLMS

 
Fig 5.2.16 Comparison of OTTNLMS and Kuech approach (with white Gauss input) 
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Fig 5.2.17 Comparison of OTTNLMS and Kuech approach (with real speech) 

 
 

5.2.6 Imperfectly model condition 
 

In below sections, we have already verified that our OTTLMS algorithm provide 

faster convergence rate than LMS and Kuech approach by computer simulations. 

However, we assumed that our filter can perfect model the echo path (i.e. filter 

order equals to echo path order), it is not critical in general. Thus in this section, we 

want look the case of imperfectly model condition (i.e. filter order smaller than echo 

path order), under this condition, we want to compare OTTNLMS to others algorithm 

( Kuech approach, NLMS). The memory of linear and quadratic kernel is equal to 100 

and 10 respectively, which smaller the real echo path orders 200 and 20. The other 

parameters of Fig 5.2.18 are the same as 5.2.16. 
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Fig 5.2.18 Comparison of OTTNLMS and Kuech approach in imperfectly model case 

 

From result of Fig 5.2.18, we can obtain that convergent rate of OTTLMS is still 

faster than Kuech, even in imperfectly model condition. 

 

5.2.7 Echo path and Double talk conditions 

 

We have already discussed the echo path and double talk effects in Section 3.5, 

which our OTTLMS is not robust to echo path change, thus we added echo path 

detector into our OTTLMS to overcome it. In this section, we will provide the 

computer simulation to verify the performance of OTTNLMS. 

In our simulation, we changed the room impulse response after 14000 iterations, 

and added near end speech from 25000 to 27000 iterations; both far and near end are 

white Gaussian noise. 
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Fig 5.2.19 Comparison of OTTNLMS and Kuech approach in EPC and DT 

condition       

In Fig 5.2.19, we assume that the echo path changed after 15000 iterations, and 

double talk happed from 25000 to 27000 iterations.  

The Kuech approach, it did not considered the double talk condition in [12], we 

assume that the approach knows when the double talk happened here (i.e. know the 

real ( )s k in (3.1)).  

As to our proposed algorithm, we can obtain it maintain on 30 dB, thus our 

proposed algorithm still work in double talk period. 

In echo path condition, we have already introduced the echo path detector [16] 

into our proposed algorithm in Section 3.5. With the echo path detector, our proposed 

algorithm can work in echo path condition.  
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5.3 Performance comparison for channel shortening structure 

 

We have already proposed the least-square solution and theoretical convergent 

analyses in Section 4.2, in this section we want to use the computer simulations to 

verify our analyses. 

First, we will examine that the least-square solution adaptive AEC filter h  and 

shortening filter w  in (4.10), and make convolution operation of the shortening filter 

and RIR (i.e. real room impulse response ), to see if the RIR can be shorten or not. To 

examine it more accurately, we define a quantifiable parameter χ  to obtain it. 

The χ is denoted as normalized power: 

2

2
2

2

Lsχ =
f
f  

where the f  means someone response, and Lsf  means the first sL  elements of f . 

In Section 5.3.1, we want to look the length effect of the adaptive AEC filter and 

shortening filter. By the length effect, we can obtain that how to portion out the 

resource of filter order. 

In Section 5.3.2, we simulate (4.13), we want to see that curves of simulated and 

theoretical are consistent or not. Next, we will observe that the convergent value of 

adaptive LMS algorithm and see if it can achieve the least-square solution or not. 

 

5.3.1 Theoretical shortening and original channel 

 

This section corresponds to our analyses in Section 4.2.1, we want to check 

accuracy of analysis in least-square solution in Figure 5.1.3 shown the RIR, we made 

convolution of room impulse response and shortening filter from least-square solution 
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in (4.7).The result of convolution is shown below: 
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Fig 5.3.1 Original channel and shortened channel from Least-Square solution 

coefficient 

 

 

 

 

Table 5.1 Normalized comparison of original channel and shortened channel 

 

In Fig 5.3.1, the coefficients of shortening, original and shortened channels were 

displayed; the shortened channel is the convolution of shortening filter and real 

original channel, we omit the shortened channel from 351 to 599 taps, which the 

amplitude value can be neglected. In Table 5.1, the effective lengths of original 

channel are equal to about 200, and normalized power is equal to 0.9852. After 

 Normalized power 

Original channel 0.9852 

Shortened channel 1≈  
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passing shortening filter, the effective lengths become 100 (i.e. sL ); and the 

normalized power is approximately to 1.Thus we can obtain the energy of RIR are 

shorten to the first sL .  

 

5.3.2 Different length effect 

 

In this section, we will simulate the performance of coefficient error in different 

length of shortening filter w and adaptive AEC filterh , we want to verify the filter 

length effect to coefficient. 

The coefficient error power was defined as
2

2
ε , which the ε was defined in 

(4.4), (i.e. difference of h  and the convolution of RIR and w ).  

Fig 5.3.2 shows that the effects of the length of adaptive AEC filterh , we fixed 

shortening filter lengths wL  to 100, 200, and 300, and we increased the sL from 10 to 

340 to see if the coefficient error power will decrease or not. 
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Fig 5.3.2 Coefficient error power effect of different length in FIR filter 
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Fig 5.3.3 shows that the effects of the length of shortening filter w , we fixed 

adaptive AEC filter h  lengths sL  to 100, 200, and 300, and we increased the wL  

from 10 to 340 to see if the coefficient error power will decrease or not. 
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Fig 5.3.3 Coefficient error effect of different length in shortening filter 

 

From Fig 5.3.2 and Fig 5.3.3, we can find that if we increase the length of 

shortening filter wL and adaptive AEC filter sL , the coefficient error power would 

decease, but it has much computational complexity every iteration. 

Next, we want see that how to portion out the resource (i.e. length) of filters, we 

fixed the summation length of adaptive AEC filter h  and shortening filter w  to M 

which equal to 100, 250, 350. We increase sL  from 10 to 340 (i.e. decrease wL  340 

to 10) and obtain the value of coefficient error power. 
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Fig 5.3.4 Coefficient error effect of different length in two filters 

    

From Fig 5.3.4, we generalize a conclusion that the lengths of adaptive AEC 

filter h (i.e. sL ) dominate the performance of coefficient error. In this fig, even though 

the lengths of shortening filter wL  decrease, the coefficient error power is decease as 

long as increase the length of sL  in assumption of linear echo channel. However, in 

nonlinear echo path case (i.e. Fig 4.1), from (4.2), we can find that the length of h  

also dominate the computation complexity. 
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5.3.3 Comparison of LMS convergent analysis and simulated  

 

In Section 5.3.2, we have already checked accuracy of analysis in least-square 

solutions. In this section, we want to examine the accuracy of LMS convergent 

analysis corresponds to Section 4.2.2. We fixed wL  and sL  to 250 and 100 

respectively, and set the step size in LMS algorithm is equal to 0.0005 and 0.002. 

As shown, the first moment of coefficient error (i.e.
2

( )kε ) and residual error 

power in Fig 5.3.5 and Fig 5.3.6, the theoretical curves are plotted from (4.13) and 

(4.14), respectively, the simulation results agree well with the theoretical convergent 

curves. 
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Fig 5.3.5 Comparison of theoretical and simulated (coefficient error) 
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   Fig 5.3.6 Comparison of theoretical and simulated (Mean-square error) 
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5.3.4 Comparison of adaptive LMS algorithm and least-square solution 

We have already demonstrated the accuracy of least-square solutions and LMS 

convergent analysis, in this section, we want to compare their convergent values to 

discuss if the LMS algorithm can achieve the least-square solution or not. The length 

of adaptive AEC filter and shortening filter are equal to 100 and 250 respectively, and 

signal to noise ratio (SNR) is equal to 20 dB. 
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Fig 5.3.7 Coefficient error comparison of LMS algorithm and least-square 

solution 

In Fig 5.3.7, we can obtain that LMS algorithm could not achieve the 

least-square solution. The first moment of coefficient error of LMS algorithm only 

converged to about -11 dB, but the least-square solution is about -17.5 dB. 

Next, to further obtain the convergent behavior in channel shortening approach, 

we experimentally fixed one of adaptive AEC filter ( )kh  and shortening filter ( )kw  

to least-square solution, and update the other filter.  
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And we can obtain that if fix shortening filter ( )kw and just update AEC 

filter ( )kh  , the coefficient error LMS algorithm could achieve -14dB, we may 

conclude that if two filter(i.e. ( )kh and ( )kw ) joint update, the LMS algorithm can not 

converge to the least-square solution. 

 

5.3.5 Comparison of multiple stage and joint update 

 

The concept of multiple stage have been introduced in Section 4.3, in Section 

5.3.4, we have guaranteed that the LMS algorithm can not converge to least-square 

solution in joint update, thus we try to perform the multiple stage update in this 

section.  
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Fig 5.3.8 Comparison of different multiple stage update strategies (with white input 

Gaussian)  
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Fig 5.3.9 Comparison of different multiple stage update strategies (with real speech) 

 

In Fig 5.3.8 and Fig 5.3.9, the “linear first” means that we only update the 

coefficient of linear AEC filter ( )kh  in first stage, then all filters joint update in the 

second stage; the “polynomial and linear first” means that update the Hammerstein 

polynomial filter (i.e. polynomial filter ˆ( )ka  and linear AEC filter ( )kh ) in first stage, 

the joint update in second stage; “Joint update” means all filter joint update for the 

whole time. 

We can obtain that the multiple stage strategy could not only enhances the 

convergent rate, but also the converged value. The ERLE performance of “linear first” 

strategy is best; it has 1 dB and about 3 dB enhancement compare with “polynomial 

and linear first” and “joint update”, respectively.  
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5.3.6 Volterra with channel shortening and OTTLMS 

 

We already introduced the Volterra model and channel approach in Chapter 2 and 

Chapter 4 respectively. In this section we want to extend the channel shortening 

approach to Volterra model, and combine our optimum step size into second order 

Volterra. 

 

Fig 5.3.10 Channel shortening for second-order Volterra structure (with white 

Gaussian input) 
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Fig 5.3.11 Channel shortening for second-order Volterra structure (with real 

speech) 

By Fig 5.3.10 and Fig 5.3.11, we can obtain that the shortening structure still 

work in second order Volterra filter. The combination of Volterra filter and channel 

shortening filter improve the convergent rate of classical Volterra structure. If we 

further add the OTTLMS algorithm into this structure, we can obtain not only 

accelerate the shortening Volterra structure convergence rate, but also ERLE 

performance about 3dB.  
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Chapter 6 
 
Conclusion 
 

In this thesis, we employ the Volterra and Hammerstein model to track the 

nonlinear echo path.  

To overcome their slow convergence rate and high complexity, we propose an 

optimum time and tap– variant step-size for Volterra filter in order to speed up 

convergence rate in Chapter 3. The step-size is derived by introducing an optimality 

MMSE criterion between coefficients errors of real and adaptive coefficients. As the 

optimum step-size need to know the real echo path coefficient, we propose the 

exponential model for practical implementations. 

In addition to adaptive step-size control, the channel shortening structure [14] 

was proposed to overcome slow convergence rate and high computation complexity.           

In Chapter 4, we perform the least-square and adaptive algorithm sense 

theoretical analysis in channel shortening structure in case of a linear loudspeaker to 

obtain the convergent behavior. We also propose multiple stage update in this 

structure to speed up convergence rate.  

In Chapter 5, Computer simulations justify our analysis and show the improved 

performance of the proposed nonlinear acoustic echo canceller.  
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