

 國 立 交 通 大 學

電信工程學系

碩 士 論 文

應用資料探勘的有界時序電路等價驗證之

加速方法設計
Speeding up Bounded Sequential Equivalence

Checking with Data Mining

研究生：張佳伶

指導教授：溫宏斌 教授

中 華 民 國 九 十 八 年 六 月

應用資料探勘的有界時序電路等價驗證之加速方法設計
Speeding up Bounded Sequential Equivalence Checking

with Data Mining

研 究 生：張佳伶 Student：Chia-Ling Chang

指導教授：溫宏斌 Advisor：Hung-Pin Wen

國 立 交 通 大 學
電 信 工 程 系
碩 士 論 文

A Thesis

Submitted to Department of Communication Enginerring

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Communication Engineering

June 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年六月

 i

摘 要

 為了確認二個不同版本的時序電路是否有相同的功能，最常見的方法是將電路展開

到限定的數量進行驗證，此方法稱為有界時序等價驗證。雖然布林可滿足性解答器的大

幅進展已經使得組合電路的等價驗證上，可以應用至大型的電路，但其解答器在解決時

序電路或有界時序電路的問題時仍然非常沒有效率。因此，本論文提出一個利用三階段

的開發方法尋找電路的限制點，如此可以加速布林可滿足性解答器在有界時序電路上的

應用。這些限制點主要由時序電路上的正反器組合而成。首先，我們會利用資料探勘的

方法得到每個正反器的近似函數，再由這些函數的組合找出不會同時發生的狀態組合，

此則稱為限制點。被找出的限制點會再被確認是否與模擬的資料相符。最後，有界時序

電路會針對這些限制點逐一驗證，通過驗證的限制點，才是有界時序電路上真實的限制

點。完成三階段尋找限制點的流程之後，所有的限制點會再被加回有界時序電路中，如

此可以加速布林可滿足性解答器的解答過程。實驗結果證明，對於 ISCAS89 電路的有界

時序驗證可以達到平均 40 倍的加速。

 ii

Abstract

One common practice of checking equivalence for two sequential circuits often limits

the timeframe expansion to a fixed number, and is known as bounded sequential equivalence

checking (BSEC). Although the recent advances of Boolean satisfiability (SAT) solvers make

combinational equivalence checking scalable for large designs, solving BSEC problems by

SAT remains computationally inefficient. Therefore, this paper proposes a 3-stage method to

exploit constraints to facilitate SAT solving for BSEC. The candidate set are first

accumulated by checking each composition of functions derived by a data-mining algorithm

for every two cross-timeframe flip-flop states. Each candidate can be further removed if it

matches simulation data in history and its validity is finally confirmed through gate-level

netlist. The verified set is feedbacked as constraints in SAT solving for the original BSEC

problem. Experimental results show a 40X speedup in average on ISCAS 89 circuits.

 iii

誌 謝

 本論文得以順利完成，首先要感謝的是指導教授溫宏斌老師。感謝老師

在我茫然無所措的時候，擔任我的指導老師。這二年來，老師在專業領域上

悉心的指導、分享待人處事的道理，都使得我不論在研究、個性方面都有相

當的成長。很高興可以成為老師的學生，在未來的研究路上定加倍努力，勉

勵自己可以達到老師的要求。

 另外，要感謝的是趙學永老師。雖然仍然未能在老師的實驗室中畢業，

但是一年來老師的指導、分享學習的經驗，更是使我獲益良多。而更要感謝

HFEDA 實驗室的昱靜學姐、益廷學長、當榮學長，給予我支持與鼓勵，讓我在

懵懂中逐漸成長。

 接著要感謝 CIA 實驗室的成員振源、怡璋、雨欣、千慧、韋廷、彥后、

南旭，謝謝你們一路的陪伴與分享，是我在研究的路途上很好的伙伴。同時

也要感謝資科工所 BSP 實驗室的朋友們，令琤、詠成、士暐，詠恬、姿樺、

開印、煙玉，乙慈、淵耀、郁萱、亮維，永煌、筱苑、柏志，謝謝你們的勉

勵與抵勵，讓我的碩士生涯多了許多豐富色彩，同時也是努力的目標。最後

要感謝摯友慧伶，哲萱，思吟，給予我最多的鼓勵以及最大的包容，支撐我

完成碩士學業。

最後僅以此文獻給我摯愛的父母及弟弟。

Contents

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Functional Verification . 2
1.2 Thesis Scope . 5
1.3 Thesis Organization . 5

2 Background 6
2.1 Bounded Sequential Equivalence Checking 7
2.2 Boolean Satisfiability . 9
2.3 Data Mining . 11

2.3.1 Association Rule Mining . 13
2.3.2 Support-confidence Framework 14

3 Learning Framework 17
3.1 Training Data Collection . 18
3.2 Learning Relaxed Boolean Function . 18

3.2.1 Support-confidence Method . 18
3.2.2 Impurity Measure . 20

4 Constraint Extraction Method 24
4.1 Constraints in BSEC Problem . 25
4.2 3-stage Filtering Method . 28

4.2.1 Functional Filtering . 29
4.2.2 Historical Filtering . 30
4.2.3 Structural Filtering . 30
4.2.4 Constraint insertion . 31

5 Experimental Results 32

iv

6 Conclusion 41

Bibliography 43

v

List of Figures

1.1 Typical design flow overview [1] . 2

2.1 Bounded sequential equivalence checking (BSEC) model 7
2.2 A sample circuit . 10
2.3 Example of ruling cubes . 15

3.1 Flow of random simulation . 18
3.2 Example of support-confidence learning 20
3.3 Example for generating one ruling cube 21

4.1 An example to illusrtate constraint in SAT solving 25
4.2 A learning-and-filtering framework for BSEC 29
4.3 Illustration for structural filtering . 30

5.1 Speedups of 4 large circuits with respect to 10 configurations 38
5.2 Bound for SAT solving of BSEC problems

with and without constraints . 39
5.3 SAT solving time with different # of constraints 40

vi

List of Tables

2.1 Conjunctive normal form of some basic logic gates 9

3.1 Partitioning data into databases . 19

4.1 Clauses for Figure 4.1 . 26

5.1 Characteristics of BSEC models for benchmark circuits 33
5.2 Comparison of numbers of constraint candidates 34
5.3 Runtime for BSEC problems . 35
5.4 Runtime for BSEC problems compare with [20] 36

vii

Chapter 1

Introduction

1

1.1 Functional Verification

In integrated circuit (IC) design flow, shown in Figure 1.1, functional verification in-

volves to different levels of achievement. Since the increasing of circuit size and complex-

ity affect the time-to-market of chip, functional verification has become one of important

bottlenecks in the design process. In most of the industrial designs, more than 70% of

the effort is spent on functional verification. Although it is difficult to detect all design

problems in circuit, fixing the design errors earlier in design cycle or higher level of im-

plementation is first target. If there is an undetected error that remains in circuit after

manufacturing, the loss of cost is uncountable for a company. For example, Intel paid $475

million to recall the floating point division math bugs in Pentium processor.

Figure 1.1: Typical design flow overview [1]

There are two major approaches in functional verification: formal approach and simula-

tion approach. In formal verification, mathematical method is used to prove the correctness

of circuit. Formal verification could discover all the design problems by analyzing the

2

circuit model. However, formal approach applicability in practice is limited due to the in-

crease circuit size and complexity. On the other hand, simulation-based verification can be

scable to larger circuit and it is the most common way to verify the designs in industrial

cases. In simulation approach, it simulates the inputs patterns and then collects the output

responses to analyze the circuit behavior. If all possible input patterns are simulated, it is

easy to discover the corner cases in the design. However, if there are n inputs in circuit, the

number of possible test patterns is 2n. While n is large, it is impossible to simulate such

amount of test patterns in a reasonable time. With large and complex circuits, simulation-

based verification has become ineffective to finding bugs.

In funcational verification, formal-based verification can find all bugs but it is impracti-

cal in modern design, and simulation-based verification is scalable and practical but can not

discover all bugs in circuit. Therefore, to complement strengths and weaknesses in formal

and simulation techniques effectively, hybrid verification provides an immediate practical

solution to overcome the verification problem. Hybrid verification is an approach which

combines at least two techniques in formal and simulation verification method.

In this thesis, hybrid verification method is used to solve the bounded sequential equiv-

alence checking (BSEC) [2] problem. In functional verification, equivalence checking in-

volves to ensure that the current implementation of a design is functionally equivalent to an

earlier version or the specification. Since solving general problem in equivalence checking

is difficult, the target in this thesis is to solve the sequential circuit within a specific time-

frame, which is called bounded sequential equivalence checking. Our hybrid verification

method combines formal technique and constraint extraction from simulation. In general,

the BSEC problem will be formulated as a Boolean satisfiable problem and solved by for-

mal engines. However, the solving process for BSEC problem is still ineffective due to

the increased size of circuits. To speedup the solving process, conflict constraints in BSEC

model are explored to help the formal engines. The following will introduce the formal

engine and constraint extraction method we used, respectively.

The most two popular of formal engines are developed by BDD (Binary decision dia-

gram) and SAT (Boolean satisfiability) based techniques. BDD can work on reachability

analysis by functional dependencies construction or test pattern generation by circuit be-

havior modeling. However, memory in BDD will brow up while circuit size is large or

3

bad variable ordering. With SAT-based verification method, the verification problems such

as equivalence checking and ATPG (automatic test pattern generation) are converted as a

Boolean satistifiability problem and solved by SAT engines. In recent years, SAT-based

verification methods have been more popular than BDD-based verification methods due to

greater improvement of the SAT engine, such as Zchaff [3], BerkMin [4], C-SAT [5] and

MiniSAT [6]. SAT lies at the core of many practical application domains including EDA

(e.g. automatic test generation and logic synthesis) and AI (e.g. automatic theorem prov-

ing). As a result, the subject of practical SAT solvers has received considerable research

attention, and numerous solver algorithms have been proposed and implemented.

Most of SAT solvers are based on conflict-driven technique, which would learn conflict

constraint implicitly. However, only local information is considered as the learnt con-

straints in SAT solving, but no cross-timeframe constraints are explored within SAT en-

gines. Therefore, we propose a new date mining algorithm and constraint filtering method

to exploit cross-timeframe conflict constraints through amount of simulation. Instead of

modifying the kernel of SAT solver, we add the learnt constraints to the original problem

explicitly to facilitate SAT solving.

To explore conflict constraints in circuit, analyzing the structure of circuit is straight-

forward. However, since the complexity of circuit grows in modern design, it is difficult

to analyze the circuit structure directly. An alternative way to obtain circuit information is

to observe the circuit behavior from simulation. Since simulation provides the underlying

mechanism of circuit, it can be used to construct a model to mimic the circuit behavior and

predict results with certain accuracy for a new instance by data mining techniques. The

data mining method is used to explore the information statistically behind the data. In this

work, we integrate the data mining techniques to obtain relaxed Boolean functions for par-

ticular signals. After Boolean function is constructed through simulation, the correlation

of signals can be understood to form conflict constraints.

4

1.2 Thesis Scope

In this work, we integrate the data mining techniques to bounded sequential equivalence

checking problem. To verify if the two circuits are functionally equivalence, a miter cir-

cuit could be constructed by connecting corresponding outputs and expanding to a specific

timeframes. With this transformation, a sequential equivalence problem is converted to a

combinational equivalence problem, which can be solved by start-of-the-art SAT solver.

However, the size of miter circuit is still large. For example, a miter circuit with 40, 000

gates per timeframe, which is expanded to 10 timeframe, requires more than one day to

prove the correctness.

We propose a 3-stage filtering method to explore conflict constraint in miter circuit.

The initial candidates of conflict constraint are constructed by comparing the functional

space of any two signals in circuit. The functional space of each signal is obtained by ex-

tracting Boolean cubes with data mining technique. In this thesis, we also propose a new

data mining algorithm, which combines support-confidence method and impurity measure.

The filtering method starts from functional filtering, and historical filtering and structural

filtering are used to verify the correctness of initial candidates of constraint. The conflict

constraints can be feedbacked into original SAT problem and expected to reduce the run-

time of SAT solving process.

1.3 Thesis Organization

In the first chapter, we introduce the functional verification and different approaches in

verification techniques. The scope of the thesis is also introduced in this chapter. The rest

of the thesis is organized as follows: we introduce the background knowledge of bounded

sequential equivalence checking problem, Boolean satisfiable and data mining technique

in chapter 2. In chapter 3 and 4, the learning framework and constraint extraction will

be introduced, respectively. Then, the experimental results will be shown in chapter 5.

Chapter 6 concludes this thesis.

5

Chapter 2

Background

6

2.1 Bounded Sequential Equivalence Checking

Typically, the problem of sequential equivalence checking (SEC) can be formulated as

checking over time the output of the miter circuit which is composed of two finite state

machines (FSMs). On the other hand, Bounded sequential equivalence checking (BSEC)

[2] as shown in Figure 2.1, is a special case of SEC problems and simplifies the problem

formulation by limiting the timeframes under verification to an affordable number.

PI0 PI1 PIk-1 PIk

C1

C2

C1

C2

C1

C2

C1

C2…
…

…
…

…
…

…
…

…
…

…
…

…

… … … …
…

Figure 2.1: Bounded sequential equivalence checking (BSEC) model

Modeling a BSEC problem consists of two steps: miter construction and timeframe

unfolding. The miter is constructed by linking every pair of two corresponding outputs

from FSMs to one extra XOR gate. The miter is then unfolded to a user-specified number

of timeframes, say k, to form the BSEC model. The combinational logic is duplicated into k

copies. All flop-flops (FFs) are removed and inputs of FFs in one timeframe are connected

to corresponding signals in the next timeframe. After unfolding the miter circuit, one big

OR gate takes the disjunction of every output of added XOR gates from timeframe 1 to

timeframe k.

Since the BSEC model is purely combinational, its satisfiability can be solved by any

formal engine. If the BSEC model is unsatisfiable (UNSAT), then two circuits are proven

to be equivalent under all possible input sequences over the given number of timeframes.

On the other hand, if the result is satisfiable (SAT), at least one input sequence witnesses

the discrepancy in k timeframes. Accordingly, two circuits can also be in-equivalent after

7

relaxing the bounds of timeframes to be checked.

However, the larger number of timeframe unfolding in BSEC, the better quality of ver-

ification. Once the size of the BSEC model goes larger, SAT solving also becomes less

efficient. Many techniques in [3] [6] have been proposed for SAT solvers to extract con-

straints to early stop exploration during SAT solving. Constraint extraction is an important

technique and has also been successfully applied in various electronic design automation

(EDA) problems, such as logic optimization and automatic test pattern generation (ATPG).

Authors in [10] [11] propose an approach of finding internal don’t-care states as constraints

and merging them according to observability for Boolean network optimization. Static and

dynamic learning techniques are applied in [12] [17] to guide pair-wise implications to

assist test pattern generation.

Many recent studies propose different constraint extraction techniques dedicated to

equivalence checking. Binary decision diagram (BDD) techniques are used to estimate

the reachability of states in [23] [24] and derive the don’t care states in [19]. Equivalent

state pairs can be also computed by BDD comparison to facilitate cutpoint finding [8] and

to prove equivalence in a partitioning approach [9]. Association rule mining [28] and logic

implication are combined in [20] [25] to derive 3-node relations among all internal nodes

to facilitate SAT solving for BSEC problems.

Most of previous works [19] [20] [21] focus on the relationship of internal signals

at one single timeframe. However, the primary outputs and register inputs are shown to

have greater impact than internal signals in [22], and multi-timeframe constraints show

to be effective for speeding up SAT solving in [20] [25]. Therefore, we are motivated

to proposed a learning-and-filtering framework as shown in Figure 4.2 to uncover cross-

timeframe state-pair constraints.

To avoid effort on internal signals over timeframes, our framework will learn the relaxed

Boolean functions for flip-flop(FF) state at different timeframes according to a relatively

small number of simulation data. FF states that can learn Boolean functions form the basis

for the initial set of state-pair constraints. Furthermore, although the total number of FFs

is much smaller than that of internal signals, exhaustive checking of all state-pairs is not

necessary either. Multiple filtering strategies is required to reduce the total number of

constraint candidates.

8

2.2 Boolean Satisfiability

Boolean Satisfiability (SAT) problem is a well-known constraint satisfaction problem.

Given a propositional logic formula f , determining whether there exists a variable assign-

ment φ that makes the formula evaluate to true. If such assignment φ exists, it indicates

that f is satisfiable (SAT). Otherwise, f is unsatisfiable (UNSAT). For example, there is

a satisfiable problem f = (¬y + x1)(¬y + x2)(y + ¬x1 + ¬x2), there is a solution φ(f)

satisfied the problem, which is y = 1, x1 = 1, x2. SAT is one of the central NP-complete

problems. [7]

Most solvers operate on problems for which f is specified in conjunctive normal form

(CNF). This form consists of the logical AND of one or more clauses, which consist of the

logical OR of one or more literals. The literal comprises the fundamental logical unit in

the problem, being merely an instance of a variable or its complement denoted as ¬. The

advantage of CNF is that in this form, for f to be satisfied, each individual clause must be

satisfied. If any clause is unsatisfied, f is unsatisfied. Thble 2.1 lists the conjunctive normal

form of some basic logic gates, where x1 and x2 denotes the inputs of a gate, and y denotes

the output.

Table 2.1: Conjunctive normal form of some basic logic gates

Gate type Conjunctive Normal Form

AND (¬y + x1)(¬y + x2)(y + ¬x1 + ¬x2)

OR (y + ¬x1)(y + ¬x2)(¬y + x1 + x2)

NAND (y + x1)(y + x2)(¬y + ¬x1 + ¬x2)

NOR (¬y + ¬x1)(¬y + ¬x2)(y + x1 + x2)

XOR (¬y + x1 + x2)(¬y + ¬x1 + ¬x2)(y + ¬x1 + x2)(y + x1 + ¬x2)

XNOR (y + x1 + x2)(y + ¬x1 + ¬x2)(¬y + ¬x1 + x2)(¬y + x1 + ¬x2)

NOT (¬y + ¬x1)(y + x1)

BUF (¬y + x1)(y + ¬x1)

Figure 2.2 shows a sample circuit, where I1, I2 and I3 are inputs, O is output, and G1,

G2 and G3 are logic gates in this circuit. Table 2.1 is used to convert the circuit to CNF.

9

The formula of the circuit is, fO = (¬G1 + I1)(¬G1 + I2)(G1 +¬I1 +¬I2)(G2 + I2)(G2 +

I3)(¬G2 +¬I2 +¬I3)(G3 +¬G1)(G3 +¬G2)(¬G3 +G1 +G2), which is encoded by each

logic gate.

Figure 2.2: A sample circuit

The popular SAT-solvers based on the DPLL (Davis-Putnam-Logemann-Loveland) al-

gorithm [13] [14], backtracking by conflict analysis and clause recording [18], and Boolean

constraint propagation (BCP) using watched literals [3]. The search procedure in DPLL al-

gorithm is to pick a variable heuristically and assign specific value to the selected variable,

until the propagation detects a conflict. The backtracking process will continue until the

conflict clause becomes unit since the assignment of the unit clause could propagate to

other clauses. The search procedure stops if all variables are assigned or a conflict occurs

in one variable, and the solver returns SAT and UNSAT, respectively.

Algorithm 1 is the basic procedure of DPLL-based SAT solver in MiniSAT [6]. Each

run of outer loop starts from one variable assignment. If one variable has been assigned, the

inner loop could use to examine the variable assignment is legal or not. The loop starts from

unit clause propagation. In the conflict occurs, the algorithm will analyze the conflict and

add a conflict clause to the original problem. If the conflict occurs in top-level, the solver

will return UNSAT. Otherwise, if the conflict does not occur in top-level, the procedure

will backtrack to undo assignments until the conflict clause is unit. If there is no conflict

occurs in this loop, the algorithm will continue to decide the assignment of next variable or

check if all variables are assigned.

MiniSAT [6] is a minimalistic implementation of a Chaff-like SAT solver [3]. Com-

pared with Zchaff, MiniSAT provides the incremental SAT interface and support for user

defined Boolean constraints. Although the performance of Zchaff and MiniSAT are similar,

10

MiniSAT is easy to integrate to larger system with verification techniques due to portable

ability. In this work, we integrate MiniSAT to proposed verification method to solve the

bounded sequential equivalence checking problem.

Algorithm 1 DPLL-based SAT solver in MiniSAT [6]
1: loop

2: propagate() //propagate unit clauses

3: if not conflict then

4: if all variables assigned then

5: return SATISFIABLE

6: else

7: decide() //pick a new variable and assign it

8: else

9: analyze() // analyze conflict and add a conflict clause

10: if top-level conflict found then

11: return UNSATISFIABLE

12: else

13: backtrack() //undo assignments until conflict clause is unit

2.3 Data Mining

Data mining technique is a technique to explore information from data. It utilizes sta-

tistical method to analyze the data and exploit the most frequent pattern to represent the

data. Data mining method is widely used on many fields including marketing, science

and engineering. Data mining techniques incorporated with verification problem will bring

about test vector selection with classification [15], process variation modeling with regres-

sion [16], or constraints extraction with data correlation [20] [25].

The major procedure to apply data mining on specific problem involves the steps: prob-

lem definition, training data collection, data preprocessing and model construction. For ex-

ample, in this work, learning relaxed Boolean function of particular signals in miter circuit

11

is the objective. Training data in this case is the input pattern and response on the particu-

lar signals, which could collect from amount of simulation. Data preprocessing is used to

remove redundant information in training data, for example, the reset signal or clock signal

in circuit. The last step is model construction, which built the simplified model for each

signal through simulation.

We summarize a few examples to illustrate different types of data mining techniques on

simulation data.

• Implication rule: The simplest form of mining may be the extraction of an implica-

tion rule such as (X =⇒ Y). The problem can be harder if we consider finding all

these rules such that both A and B are internal signals whose total amount is large.

We propose to incorporate the concept of support-confidence framework used in as-

sociation rule mining and develop a similar framework to mine implication rules.

• Signal correlation: We may relax the implication rule into signal correlation, denoted

as (X ∼ Y). This means that with a probability of c, signal A and signal B change

their values together. This is another type of association rule mining.

• Clustering: Given K signals, we would like to partition them into groups such that

signals within the same group are highly correlated. Clustering can be an application

from the result of signal correlation mining.

• Association rule: Given K signals, we would like to find a subset of signals S1 and

a subset of signals S2 such that the changes on signals in S2 is most likely due to the

changes of signals in S1 (with a confidence level c). We denote this as (X ⇒ Y).

• Statistical modeling: Given two sets of signals: S1 and S2, we would like to obtain

a statistical model f such that f(S1) can be used to predict values on S2. This is a

typical statistical learning problem. Techniques such as neural networks or compu-

tational learning techniques are suitable for this problem.

12

2.3.1 Association Rule Mining

Association rule mining (ARM) was first introduced by Agrawal et al. in [27], which

aims to extract interesting correlations, frequent patterns, association or casual structures

among sets of items in the transaction database or data repository. By definition, an asso-

ciation rule is an implication of the form X ⇒ Y , where X and Y are frequent itemsets in

a transaction database and X ∩ Y 6= 0. Conventionally, X is called antecedent while Y is

called consequent. An association rule can be further classified into four different forms,

X ⇒ Y , X ⇒ ¬Y , ¬X ⇒ Y and ¬X ⇒ ¬Y . The first form is called a positive rule

while all of the others are called negative rules.

When studying association rules, there are two important basic measures, (1) support

and (2) confidence. Support, denoted as supp, is a statistical measure and sup(X) is defined

as the fraction of records that contains the target itemset, X , to the total number of records

in the database. However, confidence (denoted as conf) of an association rule X ⇒ Y is

a measure of strength and defined as the ratio supp(X ∪ Y)/sup(X) where X ∪ Y means

both X and Y are present.

The support-confidence framework proposed in [27] seeks positive rules of the form

X ⇒ Y with support and confidence greater than, or equal to, user-specified minimum

support (γsup) and minimum confidence (γconf) thresholds, respectively, where

• X and Y are disjoint itemsets; that is, X ∩ Y 6= 0

• sup(X ⇒ Y) = sup(X ∪ Y)

• conf(X ⇒ Y) = sup(X ∪ Y)/sup(X)

The negation of an itemset X is indicated by ¬X . The support of ¬X , sup(¬X), is 1−
sup(X). To take a particular itemset, i1¬i2i3 , for example, supp(i1¬i2i3) = supp(i1i3)−
supp(i1i2i3). Like positive rule, a negative rule (e.g. X ⇒ ¬Y) also has a measure of its

strength, conf , defined as supp(X ∪ ¬Y)/sup(X). By extending the definition, negative

association rule discovery seeks rules of the form X ⇒ ¬Y with support and confidence

greater than, or equal to, user-specified minimum support (γsup) and minimum confidence

(γconf) thresholds, respectively, where

13

• X and Y are disjoint itemsets; that is, X ∩ Y 6= 0

• sup(X) ≥ ms, sup(Y) ≥ ms, and sup(X ∪ Y) < ms

• sup(X ⇒ ¬Y) = sup(X ∪ ¬Y)

• conf(X ⇒ ¬Y) = sup(X ∪ ¬Y)/sup(X)

From the above discussion, we can conclude that association rule mining consists of two

steps: finding frequent itemsets and generating rules. In general, finding frequent itemsets

contains two sub-steps, candidate large itemset generation and frequent itemset generation.

Minimum support (γsup) is specified from users to decide the itemsets of interest. Finding

frequent itemsets is the focus of all association rule mining algorithms. Generating rules

is relatively straightforward. Possible rules of interest from the frequent itemsets are enu-

merated. Then the specified minimum confidence (γconf) must be satisfied when a rule is

finally derived.

2.3.2 Support-confidence Framework

In conventional decision diagram (DD) based mining algorithm, it used simulation data

to construct a decision diagram to record the functional space, as shown in Figure 2.3(a).

As can be seen in the figure, it is the decision diagram of f = x0x1 + x2x3 and the variable

ordering is x1 > x2 > x3. The solid line and the dotted line indicate the on space (xi = 1)

and the off space (xi = 0), respectively. The decision diagram records the row data in

the truth table of f = x0x1 + x2x3. Although the decision diagram could represent the

functional space of f , there are two weaknesses in DD-based mining algorithm. (1) good

variable ordering requirement and (2) statistical information lack for variable splitting. Al-

though DD-based mining algorithm can handle verification problem such as reachability

analysis, the variable ordering problem is still a bottleneck for such algorithm to drive

the circuit with deeply sequence. During model generation by such mining algorithm, the

learning model may be biased by noise information due to lack the statistical information

for variable splitting. The two weaknesses of DD-based mining approach will limit its

ability to apply on high complexity circuit.

14

To avoid weaknesses of DD-based algorithm, a new mining algorithm considering sta-

tistical information will be developed. This new approach is based on DD-based mining

method and support-confidence method in section 2.3.1. It considers the statistical infor-

mation while variable splitting and generate rule-based model instead of diagram-based

model. The goal of this approach is to extract abstraction view of circuit through simu-

lation, and the ruling results can be taken as bigger Boolean cubes in functional space of

circuit. The ruling results are so called ruling cubes shown in Figure 2.3(b) and 2.3(c). In

Figure 2.3(b), the ruling cubes x0x1 and x2x3 represents the ON space. That is mean both

x0x1 and x2x3 will imply f = 1 . For the same concept, Figure 2.3(c) shows the ruling

cubes for OFF space.

x0

x2 x1

x3 x2

x3

0 1

x0

x2 x1

x3 x2

x3

0 1

x0

x1

x2

x3

0 1 2 3f x x x x= +

x0

x2

x1

x3

x0

x3

x2

x1

(a) Develop by DD-
based algorithm

(b) Ruling cubes for ON space

(c) Ruling cubes for OFF space

Figure 2.3: Example of ruling cubes

The ruling cubes are generated by taking the statistical information into account. First

of all, a supporting variable method will explore the best spilting variable in each process.

Next, the support-confidence measurement introduced in section 2.3.1 will calculate the

sup and conf rate to quantify the ruling cube. If the sup and conf of ruling cube reach

the minimal support (γsup) and minimal confidence (γconf) threshold, the ruling cube will

be extracted. At the same time, the training data explained by the extracted ruling cube

will be removed and the remaining data will continue to extract other ruling cubes. On the

15

other hand, if the sup and conf of ruling cube do not reach the γsup and γconf threshold,

the supporting variable method will be applied to select another spilting variable until the

ruling cube satisfying the ms and mc requirement. The detail algorithm will be introduced

in section 3.2.

Return to the bounded sequential equivalence checking problem. The mined ruling

cubes can be constructed the approximate function for each state (output of flip-flop) at

some timeframe, the unreachable cross-timeframe can be examined by checking the inter-

section of functions for two arbitrary states. If the intersection is empty, then this state pair

can be considered as a candidate of unreachable state pair. These unreachable state pairs

will be set as constraints and apply to facilitate BSEC problem.

16

Chapter 3

Learning Framework

17

3.1 Training Data Collection

random
test

generation
input test
patterns
input test
patterns

logic
simulation simulation

data
simulation

data
data

partitioning

1-timeframe
database

1-timeframe
database

2-timeframe
database

2-timeframe
database

k-timeframe
database

k-timeframe
database

…

Figure 3.1: Flow of random simulation

The flow of random simulation is illustrated in Figure 3.1. First, a small number of

test patterns are randomly generated and run through a logic simulator to collect the data

from I/O and FFs. Then data partitioning prepares k (empirically, k = 10) databases of

different timeframes for later learning. For example, for a finite state machine M with 4

PIs, 1 PO and 3 FFs, table 3.1(a) shows the simulation data after logic simulation. Since

the FFs can be divided into PPOs and PPIs, each PPO value at one timeframe will be PPI

value at the next timeframe. Given k = 2, 1-timeframe database collects PI and PPI data

as input values and PO data as its output value from each single timeframe. 2-timeframe

database collects PI and PPI data from every two consecutive timeframes but only collects

PPO as its output only from the latter timeframe. Table 3.1(b) and Table 3.1(c) show the

1-timeframe database and 2-timeframe database, respectively.

3.2 Learning Relaxed Boolean Function

3.2.1 Support-confidence Method

The original concept the support-confidence framework [27], is the measurement of fre-

quency pattern by counting the simulation data. Applying the support-confidence frame-

work to Boolean data learning, the support sup and the confidence conf denote the fre-

quency and the accuracy for one Boolean cube, respectively, on the basis of the database

M . The formal definitions of support and confidence are given as follows.

18

Table 3.1: Partitioning data into databases

(a) raw data

time PI PPI PO PPO

0 1010 XXX 1 000

1 1111 000 0 101

2 0011 101 0 110

3 1101 110 1 011

4 1011 011 0 001

...

(b) 1-timeframe db. (c) 2-timeframe db.

input output input output

1010XXX 1 1010XXX1111000 0

1111000 0 11110000011101 0

0011101 0 00111011101110 1

1101110 1 11011101011011 0

1011011 0

...

sup ≡ |X|
|M |

& conf ≡ |X ∩ Y |
|X|

where M denotes the set of total tests in the database, X denotes the set of tests covered by

one Boolean cube, Y denotes the set of tests with the target output response (either 0 or 1)

in M , and |.| denotes the size of one set.

Each Boolean function of one FF state can be approximated by a set of Boolean cubes.

For example, in Figure 3.2, {ti} denotes the test set in simulation database M and {ci}
denotes the set of Boolean cubes to be evaluated. For each cube ci, two corresponding

metrics, support and confidence (denoted as supi and confi), are used to quantify the im-

portance of such a cube. If both supi and confi are larger than the threshold values, γsup

and γconf , respectively, then the cube ci is a ruling cube and can be used to construct the

relaxed Boolean function F ∗ later. In contrast, those Boolean cubes that fail to satisfy the

support and confidence criteria will be excluded in F ∗.

19

0 1 1 1 1 0 1

1 0 1 0 0 1 1

0 1 1 0 0 1 0

1 1 1 0 1 0 1

0 0 0 0 1 0 0

x x x x 1 0

x 1 0 x x x

x 1 x x 1 x

sup = 3/5 conf = 2/3

sup = 3/5 conf = 2/3

sup = 2/5 conf = 2/2

t1

t2

t3

t4

t5

c1

c2

c3

Figure 3.2: Example of support-confidence learning

Figure 3.2 shows an example of support-confidence learning. Given the database M =

{t1, ..., t5}, the cube c1 satisfies t1, t4 and t5 and sup1 is 3
5
. However, since only t1 and t4

have the target output response (y = 1), conf1 is 2
3
. supi and confi of any other cube i can

be computed in the same manner. Moreover, suppose that γsup and γconf are 0.05 and 0.95,

only c3 satisfies the support and confidence criteria among three cubes and also is the only

ruling cube on the basis of M in this example.

Support-confidence learning algorithm is proposed to derive the set of ruling cubes for

constructing the relaxed Boolean function for each flip-flip state. In Figure 3.2, c3 = x1xx1x

represents one ruling cube x2x5 where x2 and x5 are support literals which represent the

most important variable states in such a ruling cube. One ruling cube is generated by adding

the support literal one by one until no further support literal can be found.

3.2.2 Impurity Measure

According to [26], the impact of one variable state can be achieved by comparing the

impurity difference between the original database M and the new Mv split with respect

to one variable state v. In short, the support variable with maximum gain is the most

important variable of the given database. For two literals (x and x) of one input variable

and the database M , g(x) and g(x) can be formulated as

g(x) ≡ n11

n10 + n11 + 1
& g(x̄) ≡ n01

n00 + n01 + 1

where n11 is the number of tests with input variable x = 1 and output response y = 1, n10

is the number of tests with x = 1 and y = 0, n01 is the number of tests with x = 0 and

y = 1, and n00 is the number of tests with x = 0 and y = 0.

20

Note that g(x) represents the ratio of the number of tests with x = 1 and y = 1 to

the number of all tests with x = 1 in M ; g(x) can be understood similarly. After the gain

values of all variable states are computed, the variable state with maximum gain will be

selected as the next support literal.

01 1 1

11 1 0
01 0 1

11 0 0

00 1 1

00 1 0
00 0 1

00 0 0

fx1x2x3

01 1 1

11 1 0
01 0 1

11 0 0

00 1 1

00 1 0
00 0 1

00 0 0

fx1x2x3

2/51/52/5

01/50

2/51/52/5
212n11

232n10

010n01

434n00

x3x2x1

2/51/52/5

01/50

2/51/52/5
212n11

232n10

010n01

434n00

x3x2x1

()g x

()g x

()gain x

1v x= 1c x=
1 1

.
2 2

c sup c.conf= =

01 1

11 0
00 1

10 0

fx2x3

01 1

11 0
00 1

10 0

fx2x3

2/31/3

2/31/3

01/3
01n11

21n10

21n01

01n00

x3x2

2/31/3

2/31/3

01/3
01n11

21n10

21n01

01n00

x3x2

()g x

()g x

()gain x

3v x= 1 3c x x=
1

. . 1
4

c sup c conf= =

(a) select the first support variable (b) select the next support variable

Figure 3.3: Example for generating one ruling cube

Figure 3.3(a) illustrates the process for selecting the first support literal. The original

database M has three inputs, x1, x2, and x3. The values of {n00, n01, n10, n11} for each

variable state is first computed. For example, {n00, n01, n10, n11} for x1 is {4, 0, 2, 2}, and

thus, g(x1) = 2
2+2+1

and g(x1) = 0
4+0+1

. g(x2), g(x2), g(x3) and g(x3) can be computed

similarly. After all gain values are available, the variable state with the maximum gain is

selected as the support literal. If two variable states have the maximum gain, the support

literal can be selected arbitrarily. In our example, both x1 and x3 have the maximum gain
2
5
, and x1 is chosen arbitrarily to be the first support literal for the ruling cube c.

Given γsup = 0.05 and γconf = 0.95, for the current rule cube c = x1, supc =
|Mx1=1|
|M | is

4
8

and confc =
|Mx1=1∩y1=1|
|Mx1=1| is 2

4
. Since the current confc is much lower than γconf , the ruling

cube generation will continue to find the next support literal as shown in Figure 3.3(b). Note

that the database M now becomes Mx1=1 since the next support literal needs to be selected

on the basis of all tests with x1 = 1 in M .

21

Once the extracted Boolean cube c meets supc ≥ γsup and confc ≥ γconf , it will be

accumulated in the set of ruling cubes for constructing the approximate function of one

flip-flop state later. However, if no other variable state can be selected and the current

cube fails to meet the support and confidence criteria, the cube will be dropped. To avoid

processing the same cubes, both the tests covered by ruling cubes and dropped cubes will

be removed from the database.

Algorithm 2 shows the overall algorithm to construct the approximate function for one

flip-flop state. Given database M , N is the maximum number of support literals in one

ruling cube since the maximum number of literal to split database M is log2|M |. F ∗ is the

target function to be extracted and D is the set of current tests covered by F ∗.

The algorithm starts from constructing a Boolean cube representing a sub-function f

by adding one variable state one at a time. SupV arSelect() is applied to select the next

support literal x under f . When both the frequency fsup and the accuracy fconf can meet

the criteria, f is updated by conjuncting itself with x. The algorithm keeps finding the next

support literal to update f until the current cube f has met the ruling cube criteria in line 9

or included more than N variable states in line 13. F ∗ continues accumulating ruling cube

f ′s for one flip-flop state until F ∗ covers a percentage γcov of the total tests in the database

M .

Note that according to the learning theory, the quality of a data-mining algorithm de-

pends upon the data complexity, not the structural complexity underlying. Therefore, given

a small number of simulation data, the FF state at the smaller k-th timeframe seems rela-

tively easy to learn its relaxed Boolean function. However, for those FF state at the large

k-th timeframe, more simulation may be needed but not necessary. Since learning for re-

laxed Boolean functions is one-time cost, the user can allocate a sufficient amount of time

for his BSEC problems.

22

Algorithm 2 SupportConfidenceLearning(): a support-confidence learning algorithm with

the impurity measure

1: N = log2|M |;
2: F ∗ ← ∅;
3: while (

∣∣D∣∣ ≤ ∣∣M ∣∣× γcov)

4: f = 1;

5: do {
6: x = SupVarSelect(M, f); // impurity measure

7: f ← f ∩ x;

8: update(fsup,fconf); // update fsup and fconf

9: if (fsup ≥ γsup && fconf ≥ γconf)

10: F ∗ ← F ∗ ∪ f ;

11: update(D); // update by ruling cube

12: break;

13: } while (|f | < N);

14: if (fsup < γsup && fconf < γconf)

15: update(D); // update according to the excluded cube

23

Chapter 4

Constraint Extraction Method

24

4.1 Constraints in BSEC Problem

Figure 4.1 is an example to illustrate how the conflict constraints work on the SAT

solving process, Before the example, let’s recall the basic idea in SAT solving. The DPLL-

based algorithm, introduced in section 2.2, is the core of most start-of-art SAT engines.

The procedure of DPLL-based algorithm is illustrated as follows:

1. Trace from the clause with minimum number of literals, especially in unit clause

Assign value to variable v, and push v into assignment queue

2. Use v to apply implication on other clauses

If variable u could be implied by v, then push u into assignment queue

3. While size of assignment queue is equal to the number of variables, return SAT

if implication v′ 6= v in assignment queue, return UNSAT

In DPLL-based algorithm, the assignment queue is used to record the assigned vari-

ables. Since all clauses in a SAT problem must be satisfable and the problem can be satis-

fiable. DPLL-based algorithm starts from the clause with minimum number of literals. If

one variable v could be assigned the specific value, the variable could be pushed into the as-

signment and propagated to other clauses. The procedure would continue to assigned other

variables. If all variables have been assigned, the problem is satisfiable. If one implied

variable conflicts the results in assignment queue, the problem is unsatisfiable.

V1

V2

V3

V4

V5

V6

V7

V1 V2 V5 V6

0 0
0 1
1 0
1 1

0 0
0 1
1 0
0 0

(a) a simple circuit (b) truth table of V5 and V6

V1

V2

V3

V4

V5

V6

V7

V1 V2 V5 V6

0 0
0 1
1 0
1 1

0 0
0 1
1 0
0 0

V1 V2 V5 V6

0 0
0 1
1 0
1 1

0 0
0 1
1 0
0 0

(a) a simple circuit (b) truth table of V5 and V6

Figure 4.1: An example to illusrtate constraint in SAT solving

25

Figure 4.1(a) is the sample example and Figure 4.1(b) is the truth table of V5 and V6 in

sample circuit. From the truth table, it implies that the logic value of V7 is stuck at 0. If the

circuit is modeled as a SAT problem and target V7 = 1, the SAT engine is expected to return

an unsatisfiable answer. Table 4.1 lists the clauses of the sample circuit in Figure 4.1(a).

Table 4.1: Clauses for Figure 4.1

1 ¬V5 + V1 8 V4 + V2

2 ¬V5 + V4 9 ¬V3 + ¬V1

3 V5 + ¬V1 + ¬V4 10 V3 + V1

4 ¬V6 + V2 11 ¬V7 + V5

5 ¬V6 + V3 12 ¬V7 + V6

6 V6 + V2 + V3 13 V7 + ¬V5 + ¬V6

7 ¬V4 + ¬V2 14 V7

The procedure is used to solve the SAT problem, as follows:

• step1: start from unit clause 14, imply V7 = 1, push V7 into assignment queue

• step2: process V7, imply V5 = 1 in clause 11 and imply V6 = 1 in clause 12,

push V5 and V6 into assignment queue

• step3: process V5, imply V1 = 1 in clause 1 and imply V4 = 1 in clause 2,

push V1 and V4 into assignment queue

• step4: process V6, imply V2 = 1 in clause 4 and imply V3 = 1 in clause 5,

push V2 and V3 into assignment queue

• step5: process V1, imply V3 = 0←→ conflict with V3 = 1,

return UNSAT.

In the procedure, it requires five steps to prove the SAT problem in Table 4.1 is unsat-

isfiable. Although the five steps seems not heavy, it would be difficult as solving larger

circuits. Conflict constraints are one way to speedup the proof. From the truth table in

26

Figure 4.1, it is clearly to observe that the V5 = 1 and V6 = 1 can not happen at the same

time. we call that (V5, V6) is a conflict constraint in the sample circuit and add the conflict

constraint as a conflict clause after original SAT problem. Since (V5, V6) means V5 = 1

and V6 = 1 can not happen at the same time, it indicates V5 = 0 and V6 = 0 may occur

in the circuit. As a result, the clause of (V5, V6) can be written as ¬V5 + ¬V6 and added as

15th clause after original SAT problem. The solving procedure of new SAT problem is as

follows,

• step1: start from unit clause 14, imply V7 = 1, push V7 into assignment queue

• step2: process V7, imply V5 = 1 in clause 11 and imply V6 = 1 in clause 12,

push V5 and V6 into assignment queue

• step3: process V5, imply V1 = 1 in clause 1 and imply V4 = 1 in clause 2,

imply V6 = 0 in clause 15←→ conflict with V6 = 1, return UNSAT.

Compare with solving the original SAT problem, the SAT problem with a conflict con-

straint only requires 3 steps of proof. The example illustrates the power of conflict con-

straints. Since the BSEC problem is a combinational SAT problem and the solving process

is similar to the BCP procedure, and the conflict constraints will also help SAT solving.

One way to find out conflict constraints in BSEC is to list the truth table for all internal

signals and discover the unhappen situation in the truth table. However, it is impossible

to enumerate all input combination to construct such truth table as in Figure 4.1(b). The

alternative method is to construct the relaxed Boolean function of each signal, as mention

in section 3.2. Since the number of combination of internal signals is quite large, in this

work, we only extract the information on flip-flops. The detail explanation is introduced in

section 2.1.

The previous work in [20] is the first study of applying a support-confidence algorithm

named Apriori to explore the implication constraints among 3 internal nodes (a·b→c) for

SAT solving. However, in this work, we do not mine constraints directly from data. Instead,

we propose a new learning algorithm which modifies the notion of support-confidence with

impurity measures [28] to infer the relaxed Boolean functions for each FF state at different

timeframes. Later, conflict constraints will be derived by composing two relaxed Boolean

27

functions.

DEFINITION (Conflict Constraint)

A state-pair (pi,qj), where i, j denote the timeframes and j > i > 0, in a finite state ma-

chine M is a conflict constraint if and only if ∀k > i, qk+j−i can never appear after pk

appears in M for all input sequences.

Such constraints can be used to early stop the random walk during the SAT solving

process, and their effectiveness will be demonstrated through our experiments later. The

proposed method to exploit conflict constraint is introduced in the following section.

4.2 3-stage Filtering Method

Since previous studies [19] [20] that explore the constraints among internal nodes for

SAT solving may suffer from a large number of constraint candidates, the proposed method

instead considers cross-timeframe state-pairs as candidates and prunes the false cases on

the basis of simulation data and the gate-level netlist of the circuit.

Since each state-pair can be validated by running SAT solving on the BSEC model,

one intuitive method is to enumerate all combinations of state-pairs for checking. How-

ever, given n and k are the numbers of flip-flops and the number of timeframe unrolling,

respectively, the combinations for state-pairs will go up to 4×Cnk
2 , where 4 represents dif-

ferent cases of state-pairs including {00}, {01}, {10}, and {11}. Running SAT solving for

4×Cnk
2 times will be prohibitively time-consuming and even worse than solving the BSEC

model directly. Therefore, a 3-stage constraint extraction shown in Figure 4.2 integrates

multiple filtering strategies to help reduce the total number of state-pairs.

The first stage is functional filtering. A data-mining algorithm called the support-

confidence framework is developed to construct the approximate Boolean functions for

each flip-flop state at one specific timeframe by learning the simulation data. Then, the

cross-timeframe state-pair could be a constraint candidate if the conjunction of Boolean

functions for two such flip-flop states is empty. Historical filtering in the second stage scans

28

through the simulation data to prune the rare cases escaped from approximate functional

learned in the first stage. The final stage is structural filtering which validates the candidate

through SAT solving of the augmented miter circuit. Note that functional filtering plays an

important role in the proposed method and needs generating as few candidates as possible

to make the historical filtering and structural filtering efficient in time.

The details of the proposed method, including 3-stage constraint extraction, will be

elaborated as follows.

random simulation

support-confidence
learning

constraint
candidates
constraint
candidates

functional filtering

historical filtering

structural filtering

learning
functions
learning
functions

simulation
data

simulation
data

constraint insertion
& SAT solving

le
ar

ni
ng

 p
ha

se
fil

te
rin

g
ph

as
e

so
lv

in
g

ph
as

e

Figure 4.2: A learning-and-filtering framework for BSEC

4.2.1 Functional Filtering

As defined in the previous section 4.1, conflict constraints can be obtained by taking

the conjunction of the relaxed Boolean functions for two states at different timeframes.

29

SAT solver will be then applied to the conjunctive function. For example, given f(si
p)

and f(sj
q) as the functions for the state si

p of FF p at timeframe i and state sj
q of FF q at

timeframe j, respectively, If f = f(si
p) ∩ f(sj

q) is UNSAT, there exists no input test which

can satisfy both FF states at individual timeframes concurrently. Therefore, (f(si
p), f(sj

q))

is one constraint candidate. Note that, for each FF r at timeframe k, the support-confidence

learning algorithm will run twice: one for ON state sk
r , and the other for OFF state sk

r .

4.2.2 Historical Filtering

After generating the initial set of cross-timeframe state-pairs for constraint candidates,

historical filtering prunes those pairs that have already been seen in simulation data. For

example, given (sk
p, s

k+2
q) as the constraint candidate to be checked, if FF p in some time-

frame k has the state value of 0 and FF q in two timeframes later has the state value of 1,

then (sk
p, s

k+2
q) will be removed from the candidate set. This situation happens because the

support-confidence learning is statistical and may overlook small Boolean cubes resulted

from some patterns.

4.2.3 Structural Filtering

m
ps

n
qs

Figure 4.3: Illustration for structural filtering

At this stage, structural filtering is to ensure the validity of each candidate under the

unfolded miter. The logic cones of individual FF states will be extracted first and combined

by an extra AND gate. Such an augmented circuit is termed augmented constraint circuit

(ACC). SAT solving is performed on the ACC by enforcing the output of the AND gate

30

as one. If the ACC is UNSAT, such a state-pair is a true conflict constraint. Otherwise, it

should be removed from the candidate set. To give an example, if (sm
p , s

n
q) is one constraint

candidate, the inverted output of flip-flop p at timeframe m and the output of flip-flop q

at timeframe n are connected by an extra AND gate. Such an example is illustrated in

Figure 4.3. Next, SAT solving is performed on the corresponding ACC with enforcing 1

on the output of the extra AND gate. If the result is UNSAT, (sm
p , s

n
q) is a true constraint;

otherwise, (sm
p , s

n
q) should be removed.

4.2.4 Constraint insertion

Constraint insertion is the final step in the proposed framework. Given k as the number

of timeframe unfolding in BSEC problems, each extracted constraint will be translated into

multiple CNF constraint clauses of disjunction of inverting two FF states over k timeframes

and appended to the CNF of the original BSEC model. For example, if (s2
1, s

3
5) is one

proven constraint, CNF clauses (s2
1 + s3

5), (s3
1 + s4

5),..., (sk−1
1 + sk

5) will be appended to the

original CNF for final SAT solving.

31

Chapter 5

Experimental Results

32

The proposed method is implemented in C++. The experiments are run on Linux

equipped with a 2.4GHz CPU and 2GB RAM. ISCAS 89 and ITC 99 circuits are used

as benchmarks for bounded sequential equivalence checking. Each circuit is synthesized

with 10 different configurations by Design Complier from Synopsys. MiniSAT 2.0 [3] is

the one of state-of-the-art SAT solvers and applied for SAT solving in our experiments.

The default number of tests for simulation ranges from 1, 000 to 5, 000 depending on the

number of primary inputs of the benchmark circuits. γsup and γconf are by default 0.05 and

0.95, respectively. The number of upper bound for constraint state-pairs to be inserted in

functional filtering is 2, 000.

Table 5.1: Characteristics of BSEC models for benchmark circuits

miter # of PI # of PO # of FF # of k # of FF ×
in miter timeframes k-timeframes

s298 3 6 28 40 1120

s349 9 11 30 40 1200

s713 35 23 36 30 1080

s832 18 19 10 30 300

s1196 14 14 36 30 1080

s1488 8 19 12 30 360

s4863 49 16 169 15 3035

s15850 77 150 1040 15 15600

s35932 35 320 3456 10 34560

s38584 38 304 2690 10 26900

b04 8 11 132 30 3960

b11 7 6 60 30 180

b13 10 10 102 30 3060

b15 36 70 834 15 12510

Table 5.1 shows the characteristics of BSEC models for ISCAS 89 and ITC 99 circuits

in our experiments. # of PI and # of PO are the numbers of primary inputs and primary

outputs for each circuit, respectively. # of FF is the number of the flip-flops in the original

miter. k is # of timeframes to be unrolled in the BSEC model. # of FF × k-timeframe

33

denotes the total numbers of the flip-flops in the BSEC model.

Table 5.2 demonstrates the effectiveness of 3-stage filtering by reporting the numbers

of constraint candidates across different timeframes after each filtering. Column 1 lists the

name of the benchmark circuits while column 2 represents the initial number of constraint

candidates. Column 3, 4 and 5 denote the numbers of candidates after functional, historical

and structural filterings, respectively.

Table 5.2: Comparison of numbers of constraint candidates

miter # of cross-timeframe constraints

initial functional historical structural

filtering filtering filtering

s298 6160 59.3 44.9 27.3

s349 7080 217.8 110.0 109.9

s713 10224 6.2 5.1 5.1

s832 760 88.3 63.3 30

s1196 10224 78.7 57.3 42.9

s1488 1104 88.0 52.9 52.8

s4863 227812 2000 312.9 310.2

s15850 8648640 4000 2631.3 2381.7

s35932 95537664 2000 1336.0 1105.0

s38584 57878040 2000 1214.4 825.6

b04 138864 2000 1783.2 1298.1

b11 28560 2000 1643.9 1138.2

b13 82824 2000 1122.2 939.0

b15 5561112 2000 1238.1 1732.8

Table 5.3 shows the improvement of SAT solving for BSEC problems. Column 1 lists

the name of the benchmark circuits and column 2 is the # of unfolded timeframes. Column

3 represents the combined runtime for both learning and filtering. Column 4 and 5 denote

the runtime of SAT solving without and with constraints, respectively. Column 6 reports

the speedups computed by the original runtime in Column 4 divided by the new runtime in

34

Column 5.

Table 5.3: Runtime for BSEC problems

miter k time- learning original (s) new (s) speedup (X)

frames time (s) [A] [B] [A]/[B]

s298 40 1.0 13.3 0.2 66.5

s349 40 1.5 3.8 0.2 19.0

s713 30 7.7 6328.3 176.2 35.9

s832 30 3.9 8.8 0.4 22.0

s1196 30 8.6 14.4 13.3 1.1

s1488 30 3.9 13.0 2.7 4.8

s4863 15 180.4 7319.9 26.9 272.1

s15850 15 2684.3 7823.1 23.7 330.1

s35932 10 1135.3 7503.9 14.3 524.7

s38584 10 529.9 2077.5 11.8 176.1

b04 30 28.6 3485.2 0.5 6070.4

b11 30 41.2 35.9 0.9 39.9

b13 30 15.6 8.0 0.2 40.0

b15 15 335.1 4897.8 8.1 604.7

Our experimental results show different speedups on SAT solving of benchmark BSEC

circuits with an average as 500X, excluding the time for learning and filtering. Significant

improvement can be observed on the big circuits while minor improvement can be observed

on the small circuits. We also shows the speedups on 4 large circuits, s35932, s38584,

b13 and b15 with respect to 10 configurations in Figure 5.1. Although for each case, 10

configurations result in different speedups but the all speedups are of the same order.

We compare the results with [20], which used association rule to imply three nodes

relation on internal signals. Column 1 lists the name of the benchamrk circuits, which is

the same as in [20]. Column 2 is the # of unrolled timeframes. Column 3, 4 and 5 denote the

runtime of SAT solving without constraint, runtime for SAT solving with constraints, the

combined runtime of mining time and SAT solving time, respectively. Column 6 reports the

35

speedups computed by Column 3/Column 5. Column 7 is the result excerpted from [20].

The results are only from one configuration in circuits.

miter k time origin(s) new(s) mining our speedup

frames +new(s) speedup [20]

s298 40 30.39 0.12 9.25 3.29 3.11

s832 30 2028.65 0.72 6.41 316.48 50.30

s1196 30 96.19 55.78 79.98 1.20 2.59

s1488 30 754.03 5.68 21.70 34.75 33.93

s4863 15 7725.44 4.35 236.02 32.73 15.07

s15850 15 64860 227.63 1593.46 40.71 40.28

s35932 10 51744.3 173.78 1397.12 37.04 4.54

s38584 10 50464.3 19.50 1221.10 41.33 3.43

Table 5.4: Runtime for BSEC problems compare with [20]

Since we do not know the configuration of circuit used in [20], the comparison may

be not faired. However, the results should be focused on the speedup in our approach and

their result. Compared with results from [20], not all of cases with our approach would

have such benefit because the effective of conflict constraints is depended on the property

of circuit. Our approach only finds out constraints between states with different timeframes,

but in [20], they consider about internal nodes. Different circuits may agree with different

approaches. However, the results show that our approach is overall good in most cases. By

the way, in [20], they explained that their approach has less improvement in easy miters, so

they only reported hard miters. The same problem we meet. It is because the complexity is

depended on the number of flip-flops, and the computation time of exploring constraints in

easy miter is almost the same as in hard miters. So there is no obviously improvement in

easy miter with our approach.

To demonstrate the effectiveness of the extracted constraints, we compare the numbers

of timeframe unfolding on 4 large benchmark circuits without and with the extracted con-

straints in a fixed time, say 1200 seconds in our experiments. In Figure 5.2, the dotted

lines denote the original benchmark circuits while the solid lines represent the benchmark

circuits with extracted constraints. Results show that after adding constraints, the bound

36

k can increase from 8X to 20X. It also means that the quality of BSEC can be improved

greatly by applying our framework. However, different time limits may result in different

improvements.

We further investigate the relations between the number of constraints and runtime for

SAT solving on three big ISCAS 89 circuits. Figure 5.3 shows the result where Y-axis

represents the runtime for new SAT solving normalized to the original runtime used by

SAT solving without any constraint. Obviously, s35932 and s38584 converge fast and only

require 500 constraints while s15850 may require 1900 constraints to converge. However,

since not each constraint has same contribution to SAT solving, the efficiency of solving

BSEC may depend on the quality of constraints, not the number of constraints. Therefore,

how to select enough good constraints to fast converge SAT solving is worth investigation

and can be a topic for future research.

37

0

10
0

20
0

30
0

40
0

50
0

1
2

3
4

5
6

7
8

9
10

co
nf

ig
ur

at
io

n
in

de
x

speedup (X)

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

1
2

3
4

5
6

7
8

9
1
0

co
n

fig
u

ra
tio

n
 in

d
e

x

speedup (X)

02040608010
0

1
2

3
4

5
6

7
8

9
10

co
n

fig
u

ra
tio

n
 in

d
e

x

speedup (X)

0

20
0

40
0

60
0

80
0

1
2

3
4

5
6

7
8

9
10

co
nf

ig
ur

at
io

n
in

de
x

speedup (X)

(a
)

s3
59

32
(b

)
s3

85
84

(c
)

b1
3

(d
)

b1
5

Figure 5.1: Speedups of 4 large circuits with respect to 10 configurations

38

0153045607590

1
2

3
4

5
6

7
8

9
10

co
nf

ig
ur

at
io

n
in

de
x

of timeframe

ne
w

or
ig

in
al

05010
0

15
0

20
0

25
0

1
2

3
4

5
6

7
8

9
10

co
nf

ig
ur

at
io

n
in

de
x

of timeframe

ne
w

or
ig

in
al

0408012
0

16
0

20
0

1
2

3
4

5
6

7
8

9
10

co
nf

ig
ur

at
io

n
in

de
x

of timeframe

ne
w

or
ig

in
al

02040608010
0

12
0

14
0

1
2

3
4

5
6

7
8

9
10

co
nf

ig
ur

at
io

n
in

de
x

of timeframe

ne
w

or
ig

in
al

(a
)

s3
59

32
(b

)
s3

85
84

(c
)

b1
3

(d
)

b1
5

Figure 5.2: Bound for SAT solving of BSEC problems

with and without constraints

39

0

0.2

0.4

0.6

0.8

1

0 600 1200 1800 2400 3000

of constraints

N
or

m
al

iz
ed

 ti
m

e
(s

)

s15850

s35932

s38584

Figure 5.3: SAT solving time with different # of constraints

40

Chapter 6

Conclusion

41

The general problem of checking functional equivalence for two sequential circuit

is still far from being solved. In this thesis, we proposed a method which integrates

data mining, simulation and structural analysis techniques to extract unreachable cross-

timeframe state-pairs as constraints to facilitate SAT solving for bounded sequential equiv-

alence checking (BSEC) problems.

To exploit conflict constraints in BSEC problem, we propose a 3-stage filtering method.

They are functional filtering, historical filtering and structural filtering. In functional filter-

ing, we propose a new data mining method to construct relaxed Boolean function for partic-

ular signals. Instead of using decision diagram to construct Boolean function, our support-

confidence method with impurity measure provides statistical perspective on Boolean func-

tions. In historical filtering, we use simulation information to prune the false candidate in

functional filtering since the goal of the learning model is simple instead of precise. The fi-

nal stage is structural filtering. Since the remain constraints behind first two stages are from

limited simulation data, the result may be not global true in BSEC model. To make sure

the extracted constraints are global true, each of they should be injected into the original

SAT problem to be verified.

Experimental results shows that the 3-stage filtering can derive the set of unreach-

able cross-timeframe state-pairs efficiently. SAT solving with the extracted constraints can

speed up 3X to 300X on most ISCAS 89 and larger ITC 99 circuits. We also demonstrate

that the rate of timeframe expansion could be grown on 8X to 20X.

Future works include the quality analysis of the extracted constraints and a better strat-

egy to exploit constraints efficiently. Moreover, instead of conflict constraints, we will

exploit other kinds of constraint. Since some circuits may be hard to exploit conflict con-

straints, such BSEC problems are difficult to improve. In the future, the procedure of con-

straint extraction can be integrated into sequential SAT solver to improve the performance

the sequential equivalence checking problem.

42

Bibliography

[1] Charles H.-P. Wen, Li-Chung Wang and Kwang-Ting Cheng, ”Chapter 9: Functional

Verification,” in Electronic Design Automation: Synthesis, Verification, and Testing,

Elsevier/Morgan Kaufmann, Oct. 2008

[2] D. Stoffel, M. Wedler, P. Warkentin and W. Kunz, ”Structural FSM Traversal” in IEEE

Trans. Computer Aided Design (TCAD), vol. 23, no. 5, pp. 598-619, 2004.

[3] M.H. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang and S. Malik, ”ZChaff: Engineer-

ing an Efficient SAT Solver,” in Proc. Design Automation Conf. (DAC), pp. 530-535,

2001.

[4] E.Goldberg and Y.Novikov, ”BerkMin: a Fast and Robust SAT-Solver,” in Proc. Conf.

Design, Automation and Test in Europe (DATE), pp. 142-149, 2002.

[5] F. Lu, L. C. Wang and K. T. Cheng, ”A Circuit SAT Solver with Signal Correlation

Guided Learning.” in Proc. Conf. Design, Automation and Test in Europe (DATE), pp.

892-897, 2003.

[6] N. Een and N. Sorensson, ”An Extensible SAT-Solver,” Theory and Applications of

Satisfiability Testing, pp. 502-518, 2003.

[7] M. R. Garey and D. S. Johnson, ”Computers and Intractability: A Guide to the Theory

of NP-Completeness,” W.H. Freeman, 1979.

[8] S.Y. Huang, K.T. Cheng, K.C. Chen, C.Y. Huang and F. Brewer, ”AQUILA: An Equiv-

alence Checking System for Large Sequential Designs,” in IEEE Trans. Computers

(TC), vol. 49, no.5, 2000.

43

[9] I.H. Moo, P. Bjesse and C. Pixley, ”A Compositional Approach to the Combination of

Combinational and Sequential Equivalence Checking of Circuits without Known Reset

States,” in Proc. Conference on Design, Automation and Test in Europe (DATE), pp.

1170-1175, 2007.

[10] H. Ichihara and K. Kinoshita, ”On Acceleration of Logic Circuit Optimization using

Implication Relations” in Proc. Asian Test Symp. (ATS), pp.222-227, 1997.

[11] W. Kunz, D. Stoffel and P.R. Pradhan, ”Logic Optimization and Equivalence Check-

ing by Implication Analysis”, in IEEE Trans. CAD (TCAD), vol. 15, No. 5, pp. 266-

281, 1993.

[12] M.H. Schulz, E. Trischler and T.M. Sarfret, ”SOCRATES: A Highly Efficient Auto-

matic Test Pattern Generation System,” in IEEE Trans. CAD (TCAD), vol. 7, No. 1,

pp. 126-137, 1988.

[13] M. Davis and H.Putnam, ”A computing procedure for quantification theory,” In Jour-

nal of the ACM, pp. 201-215, 1960.

[14] M. Davis, G. Logeman, and D. Loveland, ”A machine program for theorem proving,”

In Proceedings of the Communications of the ACM, pp. 394-397, 1962.

[15] O. Guzey, L-C. Wang, J. Levitt and H. Foster, ”Functional test selection based on

unsupervised support vector analysis,” in Proc. Design Automation Conf. (DAC), pp.

262-267, 2008.

[16] H-K. Peng, H-P. Wen and J. Bhadra, ”On Soft Error Rate Analysis Beyond Deep Sub-

micron - A Statistical Perspective,” submitted to Int’l Conf. Computer Aided Design

(ICCAD’09), Nov. 2009.

[17] W. Kunz and P.R. Pradhan, ”Accelerated Dynamic Learning for Test Pattern Gener-

ation in Combinational Circuits,” in IEEE Trans. CAD (TCAD), vol. 12, No. 5, pp.

684-694, 1993.

[18] J. P. Marques-Silva and K. A. Sakallah, ”A Search Algorithm for Propositional Satis-

fiability,” In IEEE Transactions on Computers, Vol. 48, No. 5, pp. 509-521, 1999

44

[19] S. Safarpour, G. Fey, A. Veneris, and R. Drechsler, ”Utilizing Don’t Care States in

SAT-based Bounded Sequential Problems,” in Proc. VLSI Great Lakes Symposium,

pp. 264-269, 2005.

[20] W. Wu and M. S. Hsiao. ”Mining Global Constraints for Improving Bounded Sequen-

tial Equivalence Checking,” in Proc. Design Automation Conf. (DAC), pp. 743-748,

2006

[21] A. Mishchenko and R. K. Brayton, ”SAT-Based Complete Don’t-Care Computation

for Network Optimization,” in Proc. Conf. Design, Automation and Test in Europe

(DATE), pp. 412-417, 2005.

[22] M. L. Case, V. N. Kravets, A. Mishchenko and R. K. Brayton, ”Merging Nodes Under

Sequential Observability,” in Proc. Design Automation Cconf. (DAC), pp. 540-545,

2008.

[23] G. Cabodi, S. Nocco, S. Quer, ”Improving SAT-Based Bounded Model Checking

by Means of BDD-Based Approximate Traversals,” in Proc. Conference on Design,

Automation and Test in Europe (DATE), pp. 898-203, 2003.

[24] A. Gupta, M. Ganai, C. Wang, Z. Yang, P. Ashar, ”Abstraction and BDDs Com-

plement SAT-BasedBMC in DiVer,” in Proc. Computer Aided Verification (CAV), pp.

206-209, 2003.

[25] W. Wu and M. S. Hsiao. ”Mining Global Constraints with Domain Knowledge for

Improving Bounded Sequential Equivalence Checking,” in IEEE Trans. CAD (TCAD),

vol. 27, No.1, pp. 197-201, Jan. 2006

[26] H. P. Wen, L. C. Wang and J. Bhadra, ”An Incremental Learning Framework for Esti-

mating Signal Controllability in Unit-Level Verification,” in Proc. Int’l Conf. Computer

Aided Design (ICCAD), pp. 250-257, 2007.

[27] R. Agrawal, T. Imielinski and Swami AN, ”Mining Association Rules between Sets of

Items in Large Databases,” In Proc. of the ACM SIGMOD Int. Conf. on Management

of data, Jun. 1993.

45

[28] P.N. Tan, M. Steinbach and V. Kumar. Introduction to Data Mining, Addison Wesley,

May 2005

46

