L W

B FRFER O ARERETRE B RES
SeAR BUERR T
Speeding up Bounded”Sequential Equivalence
Checking with Data Mining

e FREFM DG RPERE LRI §REZ feid 2 2R3
Speeding up Bounded Sequential Equivalence Checking
with Data Mining

Moyo4 TRiER Student : Chia-Ling Chang
hERE R Advisor : Hung-Pin Wen

A Thesis
Submitted to Department of Communication Enginerring
College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Communication Engineering

June 2009

Hsinchu, Taiwan, Republic of China

PERRA L NER

P

PR BARRANEETREZ T AR AN R L 2 A RTRER
S EL S S NET AREE SR DL A Sohl R R ey - Rl
lFERe gRFLETRDEF SR 7 BT I AT R 2]
BRled i RPFA TR ORI DR2EY LG e o Flt s A R A - B
AP TR B et T U EF T R AR B A AR TR

B o u IR RO PEA TR L F Bl A A & o F Lo AP E T TR D

‘mi

S EEE B R RISk B SESHnR SN § RS PRERLS
ORI S PRI BE o AR5 T BE ¢ AR SR TR B e ts 0 R R
TH G PR U BT - B ERE U 4 LG BEA TR L9 L)
Bk Z [FEFES VR BT (5 St AT B G Rk w d REA TR A
PUF O Aeid W ORT R AR F R R 7 AR i S s kP o 13 ISCAS89 B ehg R

PR 7T 1 E P T3040 13 e o

Abstract

One common practice of checking equivalence for two sequential circuits often limits
the timeframe expansion to a fixed number, and is known as bounded sequential equivalence
checking (BSEC). Although the recent advances of Boolean satisfiability (SAT) solvers make
combinational equivalence checking scalable for large designs, solving BSEC problems by
SAT remains computationally inefficient. Therefore, this paper proposes a 3-stage method to
exploit constraints to facilitate SAT solving for BSEC. The candidate set are first
accumulated by checking each composition of functions derived by a data-mining algorithm
for every two cross-timeframe flip-flop states. Each candidate can be further removed if it
matches simulation data in history and its validity is finally confirmed through gate-level
netlist. The verified set is feedbacked:as constraints:in SAT solving for the original BSEC

problem. Experimental results show-a 40X speedup in.average on ISCAS 89 circuits.

Ay ORI > B AR R MO E A FRRE LTQEE o R
BRI E A PR o BEEN IR o o Bk X AR FARE
Fooidpd s A3 FARFOEIL > R EFAAG[EFY ~ B G 87 4

R E o RBET XL EFOFEL > AARTETRY TR A W

JOEE SRS T S

-

- ‘q\

oo RRSNEAF AT o R RAN AT REY 2 F
R - EFREFTRE-LZFYRGH LEARNEF TS o a { ZEH
HFEDA 1 5 3 chs # 54 ~ FEF &~ §HF L > &3 AL PFAWE - AN L

Bl b £ -

BEERMCIADH 28 RIRA o a o~ F 8 F2 3 2
B0 BHIE P - B MR ARy i BRAF N o e pF
» BRRHTHIATBSP R A& F AN L 0 4R P s L R T

3\ 4R

¥

4
Mo
e

BEr ~ 30 &~ i TN B RE S T3P s A 0 BEHE P e
Foishp BASGHLAES T FIEGEI L B LY iR b
ERMELEL PFE RS I ARSI OEE U A e o AR
EALER &5

B {1 zlbv}gk%;\.gb«m\—a;%% o

Contents

List of Figures

List of Tables

1

Introduction

1.1 Functional Verification
1.2 ThesisScope e
1.3 Thesis Organization . . a®0000les, . o L oL oL L Lo

Background

2.1 Bounded Sequential EquivalenceCheckmg

2.2 Boolean Satisfiability .. . 2. 0 oL el L

23 DataMining . . .5 . CEOETITETE. G oo e
2.3.1 AssociationRule Mining o000
2.3.2 Support-confidence Framework

Learning Framework

3.1 Training Data Collection

3.2 Learning Relaxed Boolean Function
3.2.1 Support-confidence Method
322 Impurity Measure

Constraint Extraction Method

4.1 Constraints in BSEC Problem

4.2 3-stage FilteringMethod,
4.2.1 Functional Filtering
4.2.2 Historical Filtering
4.23 Structural Filtering L oo
424 Constraint inSertiono

Experimental Results

v

vi

vii

11
13
14

17
18
18
18
20

24
25
28
29
30
30
31

32

6 Conclusion

Bibliography

41

43

List of Figures

1.1

2.1
2.2
2.3

3.1
3.2
33

4.1
4.2
4.3

5.1
5.2

53

Typical design flow overview [1] 2
Bounded sequential equivalence checking (BSEC) model 7
Asamplecircuito e e e 10
Example of rulingcubes 15
Flow of random simulation 18
Example of support-confidence learning 20
Example for generatingone rulingeube 21
An example to illusttate eonstraint in SAT solving 25
A learning-and-filtering framework for BSEC 29
[lustration for structural filtefing . . ./=. 30
Speedups of 4 large circuits with respect to 10 configurations 38
Bound for SAT solving of BSEC problems

with and without constraints L L oL, 39
SAT solving time with different # of constraints 40

vi

List of Tables

2.1
3.1
4.1

5.1
5.2
53
54

Conjunctive normal form of some basic logic gates 9
Partitioning data into databases L. 19
Clauses for Figure 4.1 26
Characteristics of BSEC models for benchmark circuits 33
Comparison of numbers of constraint candidates 34
Runtime for BSEC problems 0 %o,o Lo 35
Runtime for BSEC problems.compare with [20] 36

vil

Chapter 1

Introduction

1.1 Functional Verification

In integrated circuit (IC) design flow, shown in Figure 1.1, functional verification in-
volves to different levels of achievement. Since the increasing of circuit size and complex-
ity affect the time-to-market of chip, functional verification has become one of important
bottlenecks in the design process. In most of the industrial designs, more than 70% of
the effort is spent on functional verification. Although it is difficult to detect all design
problems in circuit, fixing the design errors earlier in design cycle or higher level of im-
plementation is first target. If there is an undetected error that remains in circuit after
manufacturing, the loss of cost is uncountable for a company. For example, Intel paid $475

million to recall the floating point division math bugs in Pentium processor.

customer
requirements

v
algorithmic modeling
& simulation

v

system
model

v v
RTL modeling RTL synthesis
& simulation & simulation

v /\ v

RTL gate-level netlist

] v

gate-level simulation
& place and route

v
GDSII

Figure 1.1: Typical design flow overview [1]

There are two major approaches in functional verification: formal approach and simula-
tion approach. In formal verification, mathematical method is used to prove the correctness

of circuit. Formal verification could discover all the design problems by analyzing the

circuit model. However, formal approach applicability in practice is limited due to the in-
crease circuit size and complexity. On the other hand, simulation-based verification can be
scable to larger circuit and it is the most common way to verify the designs in industrial
cases. In simulation approach, it simulates the inputs patterns and then collects the output
responses to analyze the circuit behavior. If all possible input patterns are simulated, it is
easy to discover the corner cases in the design. However, if there are n inputs in circuit, the
number of possible test patterns is 2. While n is large, it is impossible to simulate such
amount of test patterns in a reasonable time. With large and complex circuits, simulation-
based verification has become ineffective to finding bugs.

In funcational verification, formal-based verification can find all bugs but it is impracti-
cal in modern design, and simulation-based verification is scalable and practical but can not
discover all bugs in circuit. Therefore, to complement strengths and weaknesses in formal
and simulation techniques effectively, hybrid verification provides an immediate practical
solution to overcome the verification problem. Hybrid verification is an approach which
combines at least two techniques in-formal and simulation verification method.

In this thesis, hybrid verification method is used to solve the bounded sequential equiv-
alence checking (BSEC) [2];problem.“In functional verification, equivalence checking in-
volves to ensure that the current implementation.of a design is functionally equivalent to an
earlier version or the specification. Since solving general problem in equivalence checking
is difficult, the target in this thesis is to solve the sequential circuit within a specific time-
frame, which is called bounded sequential equivalence checking. Our hybrid verification
method combines formal technique and constraint extraction from simulation. In general,
the BSEC problem will be formulated as a Boolean satisfiable problem and solved by for-
mal engines. However, the solving process for BSEC problem is still ineffective due to
the increased size of circuits. To speedup the solving process, conflict constraints in BSEC
model are explored to help the formal engines. The following will introduce the formal
engine and constraint extraction method we used, respectively.

The most two popular of formal engines are developed by BDD (Binary decision dia-
gram) and SAT (Boolean satisfiability) based techniques. BDD can work on reachability
analysis by functional dependencies construction or test pattern generation by circuit be-

havior modeling. However, memory in BDD will brow up while circuit size is large or

bad variable ordering. With SAT-based verification method, the verification problems such
as equivalence checking and ATPG (automatic test pattern generation) are converted as a
Boolean satistifiability problem and solved by SAT engines. In recent years, SAT-based
verification methods have been more popular than BDD-based verification methods due to
greater improvement of the SAT engine, such as Zchaff [3], BerkMin [4], C-SAT [5] and
MiniSAT [6]. SAT lies at the core of many practical application domains including EDA
(e.g. automatic test generation and logic synthesis) and Al (e.g. automatic theorem prov-
ing). As a result, the subject of practical SAT solvers has received considerable research
attention, and numerous solver algorithms have been proposed and implemented.

Most of SAT solvers are based on conflict-driven technique, which would learn conflict
constraint implicitly. However, only local information is considered as the learnt con-
straints in SAT solving, but no cross-timeframe constraints are explored within SAT en-
gines. Therefore, we propose a new date mining algorithm and constraint filtering method
to exploit cross-timeframe conflict constraints through amount of simulation. Instead of
modifying the kernel of SAT:solyer,;we add. the learnt constraints to the original problem
explicitly to facilitate SAT solving.

To explore conflict constraints in €ireuit, analyzing the structure of circuit is straight-
forward. However, since the €¢omplexity of circuit grows in modern design, it is difficult
to analyze the circuit structure diréctly.. An alternative way to obtain circuit information is
to observe the circuit behavior from simulation. Since simulation provides the underlying
mechanism of circuit, it can be used to construct a model to mimic the circuit behavior and
predict results with certain accuracy for a new instance by data mining techniques. The
data mining method is used to explore the information statistically behind the data. In this
work, we integrate the data mining techniques to obtain relaxed Boolean functions for par-
ticular signals. After Boolean function is constructed through simulation, the correlation

of signals can be understood to form conflict constraints.

1.2 Thesis Scope

In this work, we integrate the data mining techniques to bounded sequential equivalence
checking problem. To verify if the two circuits are functionally equivalence, a miter cir-
cuit could be constructed by connecting corresponding outputs and expanding to a specific
timeframes. With this transformation, a sequential equivalence problem is converted to a
combinational equivalence problem, which can be solved by start-of-the-art SAT solver.
However, the size of miter circuit is still large. For example, a miter circuit with 40, 000
gates per timeframe, which is expanded to 10 timeframe, requires more than one day to
prove the correctness.

We propose a 3-stage filtering method to explore conflict constraint in miter circuit.
The initial candidates of conflict constraint are constructed by comparing the functional
space of any two signals in circuit. The functional space of each signal is obtained by ex-
tracting Boolean cubes with data mining;technique. In this thesis, we also propose a new
data mining algorithm, which combines support-confidence method and impurity measure.
The filtering method starts from functional filtering, and historical filtering and structural
filtering are used to verify the correctness of initial candidates of constraint. The conflict
constraints can be feedbacked into original-S AT -problem and expected to reduce the run-

time of SAT solving process.

1.3 Thesis Organization

In the first chapter, we introduce the functional verification and different approaches in
verification techniques. The scope of the thesis is also introduced in this chapter. The rest
of the thesis is organized as follows: we introduce the background knowledge of bounded
sequential equivalence checking problem, Boolean satisfiable and data mining technique
in chapter 2. In chapter 3 and 4, the learning framework and constraint extraction will
be introduced, respectively. Then, the experimental results will be shown in chapter 5.

Chapter 6 concludes this thesis.

Chapter 2

Background

2.1 Bounded Sequential Equivalence Checking

Typically, the problem of sequential equivalence checking (SEC) can be formulated as
checking over time the output of the miter circuit which is composed of two finite state
machines (FSMs). On the other hand, Bounded sequential equivalence checking (BSEC)
[2] as shown in Figure 2.1, is a special case of SEC problems and simplifies the problem

formulation by limiting the timeframes under verification to an affordable number.

P[0 P Pk Pk

Wi oy Wl Wi
] C, C, C, ¢, &
e THISTL

Figure 2.1: Bounded sequential equivalence checking (BSEC) model

Modeling a BSEC problem consists of two steps: miter construction and timeframe
unfolding. The miter is constructed by linking every pair of two corresponding outputs
from FSMs to one extra XOR gate. The miter is then unfolded to a user-specified number
of timeframes, say k, to form the BSEC model. The combinational logic is duplicated into &
copies. All flop-flops (FFs) are removed and inputs of FFs in one timeframe are connected
to corresponding signals in the next timeframe. After unfolding the miter circuit, one big
OR gate takes the disjunction of every output of added XOR gates from timeframe 1 to
timeframe k.

Since the BSEC model is purely combinational, its satisfiability can be solved by any
formal engine. If the BSEC model is unsatisfiable (UNSAT), then two circuits are proven
to be equivalent under all possible input sequences over the given number of timeframes.
On the other hand, if the result is satisfiable (SAT), at least one input sequence witnesses

the discrepancy in £ timeframes. Accordingly, two circuits can also be in-equivalent after

relaxing the bounds of timeframes to be checked.

However, the larger number of timeframe unfolding in BSEC, the better quality of ver-
ification. Once the size of the BSEC model goes larger, SAT solving also becomes less
efficient. Many techniques in [3] [6] have been proposed for SAT solvers to extract con-
straints to early stop exploration during SAT solving. Constraint extraction is an important
technique and has also been successfully applied in various electronic design automation
(EDA) problems, such as logic optimization and automatic test pattern generation (ATPG).
Authors in [10] [11] propose an approach of finding internal don’t-care states as constraints
and merging them according to observability for Boolean network optimization. Static and
dynamic learning techniques are applied in [12] [17] to guide pair-wise implications to
assist test pattern generation.

Many recent studies propose different constraint extraction techniques dedicated to
equivalence checking. Binary decision diagram (BDD) techniques are used to estimate
the reachability of states in [23].{24] and detive the don’t care states in [19]. Equivalent
state pairs can be also computed by-BDD comparison to facilitate cutpoint finding [8] and
to prove equivalence in a pattitioning approach[9}: Association rule mining [28] and logic
implication are combined in:[20],[25}to derive 3-node relations among all internal nodes
to facilitate SAT solving for BSEC problem:s.

Most of previous works [19] T20][21] focus on the relationship of internal signals
at one single timeframe. However, the primary outputs and register inputs are shown to
have greater impact than internal signals in [22], and multi-timeframe constraints show
to be effective for speeding up SAT solving in [20] [25]. Therefore, we are motivated
to proposed a learning-and-filtering framework as shown in Figure 4.2 to uncover cross-
timeframe state-pair constraints.

To avoid effort on internal signals over timeframes, our framework will learn the relaxed
Boolean functions for flip-flop(FF) state at different timeframes according to a relatively
small number of simulation data. FF states that can learn Boolean functions form the basis
for the initial set of state-pair constraints. Furthermore, although the total number of FFs
is much smaller than that of internal signals, exhaustive checking of all state-pairs is not
necessary either. Multiple filtering strategies is required to reduce the total number of

constraint candidates.

2.2 Boolean Satisfiability

Boolean Satisfiability (SAT) problem is a well-known constraint satisfaction problem.
Given a propositional logic formula f, determining whether there exists a variable assign-
ment ¢ that makes the formula evaluate to true. If such assignment ¢ exists, it indicates
that f is satisfiable (SAT). Otherwise, f is unsatisfiable (UNSAT). For example, there is
a satisfiable problem f = (—y + z1)(—y + 22)(y + -1 + —x2), there is a solution ¢(f)
satisfied the problem, which is y = 1,21 = 1, z5. SAT is one of the central NP-complete
problems. [7]

Most solvers operate on problems for which f is specified in conjunctive normal form
(CNF). This form consists of the logical AND of one or more clauses, which consist of the
logical OR of one or more literals. The literal comprises the fundamental logical unit in
the problem, being merely an instance of a variable or its complement denoted as —. The
advantage of CNF is that in this form, for f to be satisfied, each individual clause must be
satisfied. If any clause is unsatisfied, f.is.unsatisfied. Thble 2.1 lists the conjunctive normal

form of some basic logic gates, where'zy and &, denotes the inputs of a gate, and y denotes

the output.
Table 2.1: Conjunctive normal form of some basic logic gates
Gate type Conjunctive Normal Form
AND (—y + 1) (Y + 22)(y + ~21 + ~a2)
OR (y + —z1)(y + —22) (~y + 21 + T2)
NAND (y+ z1)(y + 22)(—y + ~21 + —x9)
NOR (my + —x1) (~y + ~w2)(y + 1 + 22)

XOR | (—y+ 21 + x2)(—y + ~x1 + —x2)(y + ~21 + 22)(y + 21 + "22)
XNOR | (y 4 1 + x2)(y + —x1 + —22) (—y + —~21 + x2)(—y + 21 + —22)

NOT (—y + —21)(y + 1)

BUF (—y + x1)(y + —21)

Figure 2.2 shows a sample circuit, where 11, I, and I3 are inputs, O is output, and G,

G, and G5 are logic gates in this circuit. Table 2.1 is used to convert the circuit to CNF.

The formula of the circuit is, fo = (=G +1)(=G1+ L) (G1 + -1 + ~ 1) (Ga+) (Ga +
I3)(—~Gy 4+~ 1y + —13)(Gs + =G1)(G3 + —Gy) (-G + G1 + G2), which is encoded by each
logic gate.

Figure 2.2: A sample circuit

The popular SAT-solvers based on the DPLL (Davis-Putnam-Logemann-Loveland) al-
gorithm [13] [14], backtracking by conflict analysis and clause recording [18], and Boolean
constraint propagation (BCP) using watched literals [3]. The search procedure in DPLL al-
gorithm is to pick a variable heuristicallysand assign specific value to the selected variable,
until the propagation detects a.conflict. The backtracking process will continue until the
conflict clause becomes unit since the assignment of the unit clause could propagate to
other clauses. The search procedtre stops if all variables are assigned or a conflict occurs
in one variable, and the solver returnsSAT and UNSAT, respectively.

Algorithm 1 is the basic procedure of DPLL-based SAT solver in MiniSAT [6]. Each
run of outer loop starts from one variable assignment. If one variable has been assigned, the
inner loop could use to examine the variable assignment is legal or not. The loop starts from
unit clause propagation. In the conflict occurs, the algorithm will analyze the conflict and
add a conflict clause to the original problem. If the conflict occurs in top-level, the solver
will return UNSAT. Otherwise, if the conflict does not occur in top-level, the procedure
will backtrack to undo assignments until the conflict clause is unit. If there is no conflict
occurs in this loop, the algorithm will continue to decide the assignment of next variable or
check if all variables are assigned.

MiniSAT [6] is a minimalistic implementation of a Chaff-like SAT solver [3]. Com-
pared with Zchaff, MiniSAT provides the incremental SAT interface and support for user

defined Boolean constraints. Although the performance of Zchaff and MiniSAT are similar,

10

MiniSAT is easy to integrate to larger system with verification techniques due to portable
ability. In this work, we integrate MiniSAT to proposed verification method to solve the

bounded sequential equivalence checking problem.

Algorithm 1 DPLL-based SAT solver in MiniSAT [6]
1: loop

2: propagate() //propagate unit clauses

3. if not conflict then

4 if all variables assigned then

5: return SATISFIABLE

6 else

7 decide() //pick a new variable and assign it

8: else

9: analyze() // analyze conflict and add a conflict clause
10: if top-level conflict found then
11: return UNSATISEIABLE
12: else
13: backtrack() //undo assignments until conflict clause is unit

2.3 Data Mining

Data mining technique is a technique to explore information from data. It utilizes sta-
tistical method to analyze the data and exploit the most frequent pattern to represent the
data. Data mining method is widely used on many fields including marketing, science
and engineering. Data mining techniques incorporated with verification problem will bring
about test vector selection with classification [15], process variation modeling with regres-
sion [16], or constraints extraction with data correlation [20] [25].

The major procedure to apply data mining on specific problem involves the steps: prob-
lem definition, training data collection, data preprocessing and model construction. For ex-

ample, in this work, learning relaxed Boolean function of particular signals in miter circuit

11

is the objective. Training data in this case is the input pattern and response on the particu-
lar signals, which could collect from amount of simulation. Data preprocessing is used to
remove redundant information in training data, for example, the reset signal or clock signal
in circuit. The last step is model construction, which built the simplified model for each
signal through simulation.

We summarize a few examples to illustrate different types of data mining techniques on

simulation data.

e Implication rule: The simplest form of mining may be the extraction of an implica-
tion rule such as (X = Y’). The problem can be harder if we consider finding all
these rules such that both A and B are internal signals whose total amount is large.
We propose to incorporate the concept of support-confidence framework used in as-

sociation rule mining and develop a similar framework to mine implication rules.

e Signal correlation: We may relax the implication rule into signal correlation, denoted
as (X ~ Y'). This means thatjwith a probability of c, signal A and signal B change

their values together. This is another type of association rule mining.

e Clustering: Given K signals,»we"would like to partition them into groups such that
signals within the same group are-highly correlated. Clustering can be an application

from the result of signal correlation mining.

e Association rule: Given K signals, we would like to find a subset of signals .S and
a subset of signals S, such that the changes on signals in S5 is most likely due to the

changes of signals in S; (with a confidence level ¢). We denote this as (X = Y).

e Statistical modeling: Given two sets of signals: S; and S;, we would like to obtain
a statistical model f such that f(S;) can be used to predict values on S,. This is a
typical statistical learning problem. Techniques such as neural networks or compu-

tational learning techniques are suitable for this problem.

12

2.3.1 Association Rule Mining

Association rule mining (ARM) was first introduced by Agrawal et al. in [27], which
aims to extract interesting correlations, frequent patterns, association or casual structures
among sets of items in the transaction database or data repository. By definition, an asso-
ciation rule is an implication of the form X = Y, where X and Y are frequent itemsets in
a transaction database and X N'Y # 0. Conventionally, X is called antecedent while Y is
called consequent. An association rule can be further classified into four different forms,
X =Y, X =-Y,-X = Y and -X = Y. The first form is called a positive rule
while all of the others are called negative rules.

When studying association rules, there are two important basic measures, (1) support
and (2) confidence. Support, denoted as supp, is a statistical measure and sup(X) is defined
as the fraction of records that contains the target itemset, X, to the total number of records
in the database. However, confidence (denoted as con f) of an association rule X = Y is
a measure of strength and defined as the ratio supp(X UY')/sup(X) where X UY means
both X and Y are present.

The support-confidence framework-proposed in [27] seeks positive rules of the form
X =Y with support and confidénce greater than, or equal to, user-specified minimum

support (7Vsy,) and minimum confidence (Yesn) thresholds, respectively, where
e X and Y are disjoint itemsets; that is, X N'Y # 0
o sup(X =Y)=sup(XUY)
o conf(X =Y)=sup(XUY)/sup(X)

The negation of an itemset X is indicated by —X. The support of =X, sup(—X),is 1 —
sup(X). To take a particular itemset, i, i3 , for example, supp(i;—isiz) = supp(iiiz) —
supp(iqizis). Like positive rule, a negative rule (e.g. X = —Y) also has a measure of its
strength, con f, defined as supp(X U —Y')/sup(X). By extending the definition, negative
association rule discovery seeks rules of the form X = —Y with support and confidence
greater than, or equal to, user-specified minimum support (7s,;) and minimum confidence

(7Yeony) thresholds, respectively, where

13

e X and Y are disjoint itemsets; thatis, X NY # 0

o sup(X) > ms, sup(Y) > ms,and sup(X UY') < ms

sup(X = YY) = sup(X U—Y)

conf(X = 2Y) = sup(X U-Y)/sup(X)

From the above discussion, we can conclude that association rule mining consists of two
steps: finding frequent itemsets and generating rules. In general, finding frequent itemsets
contains two sub-steps, candidate large itemset generation and frequent itemset generation.
Minimum support (7,,,) is specified from users to decide the itemsets of interest. Finding
frequent itemsets is the focus of all association rule mining algorithms. Generating rules
is relatively straightforward. Possible rules of interest from the frequent itemsets are enu-
merated. Then the specified minimum confidence (7con¢) must be satisfied when a rule is

finally derived.

2.3.2 Support-confidence Framework

In conventional decision diagram (DD)based ' mining algorithm, it used simulation data
to construct a decision diagram to.record the functional space, as shown in Figure 2.3(a).
As can be seen in the figure, it is the decision diagram of f = xgx| 4+ xox3 and the variable
ordering is 1 > x9 > wx3. The solid line and the dotted line indicate the on space (z; = 1)
and the off space (z; = 0), respectively. The decision diagram records the row data in
the truth table of f = xgx; 4+ z2x3. Although the decision diagram could represent the
functional space of f, there are two weaknesses in DD-based mining algorithm. (1) good
variable ordering requirement and (2) statistical information lack for variable splitting. Al-
though DD-based mining algorithm can handle verification problem such as reachability
analysis, the variable ordering problem is still a bottleneck for such algorithm to drive
the circuit with deeply sequence. During model generation by such mining algorithm, the
learning model may be biased by noise information due to lack the statistical information
for variable splitting. The two weaknesses of DD-based mining approach will limit its

ability to apply on high complexity circuit.

14

To avoid weaknesses of DD-based algorithm, a new mining algorithm considering sta-
tistical information will be developed. This new approach is based on DD-based mining
method and support-confidence method in section 2.3.1. It considers the statistical infor-
mation while variable splitting and generate rule-based model instead of diagram-based
model. The goal of this approach is to extract abstraction view of circuit through simu-
lation, and the ruling results can be taken as bigger Boolean cubes in functional space of
circuit. The ruling results are so called ruling cubes shown in Figure 2.3(b) and 2.3(c). In
Figure 2.3(b), the ruling cubes xyx; and xsx3 represents the ON space. That is mean both
xory and xoxs will imply f = 1. For the same concept, Figure 2.3(c) shows the ruling

cubes for OFF space.
f= X%+ %%
O OB
' Q Q) S
/ ° Q (b)'Ruling cubes for ON space

! y
1 /
N 1 4 /’
\ 1, - - . - .
S
7 7
/7 7 ’

(a) Develop by DD- (c) Ruling cubes for OFF space
based algorithm

Figure 2.3: Example of ruling cubes

The ruling cubes are generated by taking the statistical information into account. First
of all, a supporting variable method will explore the best spilting variable in each process.
Next, the support-confidence measurement introduced in section 2.3.1 will calculate the
sup and conf rate to quantify the ruling cube. If the sup and conf of ruling cube reach
the minimal support (s,,) and minimal confidence (7Vconf) threshold, the ruling cube will
be extracted. At the same time, the training data explained by the extracted ruling cube

will be removed and the remaining data will continue to extract other ruling cubes. On the

15

other hand, if the sup and conf of ruling cube do not reach the ~,,;, and v..,s threshold,
the supporting variable method will be applied to select another spilting variable until the
ruling cube satisfying the ms and mc requirement. The detail algorithm will be introduced
in section 3.2.

Return to the bounded sequential equivalence checking problem. The mined ruling
cubes can be constructed the approximate function for each state (output of flip-flop) at
some timeframe, the unreachable cross-timeframe can be examined by checking the inter-
section of functions for two arbitrary states. If the intersection is empty, then this state pair
can be considered as a candidate of unreachable state pair. These unreachable state pairs

will be set as constraints and apply to facilitate BSEC problem.

16

Chapter 3

Learning Framework

17

3.1 Training Data Collection

1-timeframe
database

2-timeframe
database

k-timeframe
database

random .
i logic ; - data
gentg;[tion 'Bgﬁgﬁ? simulation S|mduell?6t‘|on " partitioning

Figure 3.1: Flow of random simulation

The flow of random simulation is illustrated in Figure 3.1. First, a small number of
test patterns are randomly generated and run through a logic simulator to collect the data
from I/O and FFs. Then data partitioning prepares k (empirically, & = 10) databases of
different timeframes for later Jearning. For example, for a finite state machine M with 4
PIs, 1 PO and 3 FFs, table 3.1(a) shows:the simulation data after logic simulation. Since
the FFs can be divided into PPOs and PPIs, each PPO value at one timeframe will be PPI
value at the next timeframe. “Given:k = 2.-1-timeframe database collects PI and PPI data
as input values and PO data as its output.value from each single timeframe. 2-timeframe
database collects PI and PPI data from every two consecutive timeframes but only collects
PPO as its output only from the latter timeframe. Table 3.1(b) and Table 3.1(c) show the

1-timeframe database and 2-timeframe database, respectively.

3.2 Learning Relaxed Boolean Function

3.2.1 Support-confidence Method

The original concept the support-confidence framework [27], is the measurement of fre-
quency pattern by counting the simulation data. Applying the support-confidence frame-
work to Boolean data learning, the support sup and the confidence conf denote the fre-
quency and the accuracy for one Boolean cube, respectively, on the basis of the database

M. The formal definitions of support and confidence are given as follows.

18

Table 3.1: Partitioning data into databases

(a) raw data

PPI PO PPO

time | PI
0 1010
1 1111
2 0011
3 1101
4 1011

(b) 1-timeframe db.

XXX 1 000
000 0 101
101 0 110
110 1 011
011 0 001

(c) 2-timeframe db.

input output input output
1010XXX 1 1010XXX1111000 0
1111000 0 11110000011101 0
0011101 0 00111011101110 1
1101110 1 11011101011011 0
1011011 0
RS _ |XnY]
sup = M conf = W

where M denotes the set of total tests in the database, X denotes the set of tests covered by

one Boolean cube, Y denotes the set of tests with the target output response (either O or 1)

in M, and |.| denotes the size of one set.

Each Boolean function of one FF state can be approximated by a set of Boolean cubes.
For example, in Figure 3.2, {¢;} denotes the test set in simulation database M and {c¢;}
denotes the set of Boolean cubes to be evaluated. For each cube ¢;, two corresponding
metrics, support and confidence (denoted as sup; and con f;), are used to quantify the im-
portance of such a cube. If both sup; and conf; are larger than the threshold values, 7,
and Yconf, respectively, then the cube ¢; is a ruling cube and can be used to construct the

relaxed Boolean function £ later. In contrast, those Boolean cubes that fail to satisfy the

support and confidence criteria will be excluded in F™.

19

t, {011110]1 c;|xxxx10| sup=3/5 conf=2/3
t, [101001] 1
t; |]011001|0 C,|x10xxx| sup=3/5 conf=2/3
t, [111010] 1
t; |]000010] O C;|x1xx1x| sup=2/5 conf=2/2

Figure 3.2: Example of support-confidence learning

Figure 3.2 shows an example of support-confidence learning. Given the database M =
{t1, ..., t5}, the cube ¢; satisfies ¢y, t4 and ¢5 and sup; is % However, since only ¢; and 4
have the target output response (y = 1), con f; is % sup; and con f; of any other cube ¢ can
be computed in the same manner. Moreover, suppose that 7, and Yo, ¢ are 0.05 and 0.95,
only c3 satisfies the support and confidence criteria among three cubes and also is the only
ruling cube on the basis of M in this example.

Support-confidence learning algorithm. is proposed to derive the set of ruling cubes for
constructing the relaxed Boolean function for each flip-flip state. In Figure 3.2, c3 = x1xx1x
represents one ruling cube xs3x; where @5 and xs.are support literals which represent the
most important variable states in such atuling cube:. One ruling cube is generated by adding

the support literal one by oné€.until'no further support literal can be found.

3.2.2 Impurity Measure

According to [26], the impact of one variable state can be achieved by comparing the
impurity difference between the original database M and the new M, split with respect
to one variable state v. In short, the support variable with maximum gain is the most
important variable of the given database. For two literals (z and ¥) of one input variable

and the database M, g(z) and ¢(Z) can be formulated as

ni1 _ No1
rN=s———"——&q¢(2)= ———
9(@) nig +mni + 1 9(2) noo + nop + 1
where n4; is the number of tests with input variable + = 1 and output response y = 1, nqg
is the number of tests with x = 1 and y = 0, ng; is the number of tests with x = 0 and

y = 1, and nqq is the number of tests with x = 0 and y = 0.

20

Note that g(z) represents the ratio of the number of tests with x = 1 and y = 1 to
the number of all tests with z = 1 in M; g(T) can be understood similarly. After the gain
values of all variable states are computed, the variable state with maximum gain will be

selected as the next support literal.

X X,Xg | f X Xg | f

0000 Xy | Xo | X3 00|1 Xy | X3
0010 N | 4 | 314 010 N | 1|0
010]0 Ny | O | 110 101 Ny | 1] 2
011]0 noe | 2 |32 1110 N | 1] 2
1001 n, |2 |1]2 n, |10
1010 9(x) | 2/5|1/5]2/5 g(x) [1/3] 0
1101 gx) | 0 |1/5] 0 g(x) |1/3|2/3
1110 gan(x)|2/5|1/5|2/5 gain(x) | 1/3 | 2/3

VEX, C=X 00, VX, C=XX
c.s;up:1 c.conf g csupzl cconf =1
2 2] ’ 4

(a) select the first support variable ‘(b)-select the next support variable

Figure 3.3: Example-forgenerating one ruling cube

Figure 3.3(a) illustrates the process for selecting the first support literal. The original
database M has three inputs, x1, 9, and x3. The values of {ngg, 791, 710,711} for each
variable state is first computed. For example, {nq, 101, n10, 711 } for 7 is {4,0,2,2}, and
thus, g(z1) = 3757 and g(T1) = 7077 9(22), 9(T2), g(ws) and g(T3) can be computed
similarly. After all gain values are available, the variable state with the maximum gain is
selected as the support literal. If two variable states have the maximum gain, the support

literal can be selected arbitrarily. In our example, both z; and x3 have the maximum gain

2

=, and 1 is chosen arbitrarily to be the first support literal for the ruling cube c.

Given sy = 0.05 and Yeon s = 0.95, for the current rule cube ¢ = x4, sup, = % is
% and conf,. = %&fll is %. Since the current con f. is much lower than 7., ¢, the ruling
cube generation will continue to find the next support literal as shown in Figure 3.3(b). Note
that the database M now becomes M, —; since the next support literal needs to be selected

on the basis of all tests with z; = 1 in M.

21

Once the extracted Boolean cube ¢ meets sup. > 7Yeup and confe. > Yeony, it will be
accumulated in the set of ruling cubes for constructing the approximate function of one
flip-flop state later. However, if no other variable state can be selected and the current
cube fails to meet the support and confidence criteria, the cube will be dropped. To avoid
processing the same cubes, both the tests covered by ruling cubes and dropped cubes will
be removed from the database.

Algorithm 2 shows the overall algorithm to construct the approximate function for one
flip-flop state. Given database M, N is the maximum number of support literals in one
ruling cube since the maximum number of literal to split database M is logs| M |. F* is the
target function to be extracted and D is the set of current tests covered by F™.

The algorithm starts from constructing a Boolean cube representing a sub-function f
by adding one variable state one at a time. SupVarSelect() is applied to select the next
support literal = under f. When both the frequency f;,, and the accuracy f.,,s can meet
the criteria, f is updated by conjuncting itself with x. The algorithm keeps finding the next
support literal to update f until the current'cube f has met the ruling cube criteria in line 9
or included more than N variable states tn‘line*13- /'™ continues accumulating ruling cube
f's for one flip-flop state until F™*,covers a percentage .., of the total tests in the database
M.

Note that according to the learning theory, the quality of a data-mining algorithm de-
pends upon the data complexity, not the structural complexity underlying. Therefore, given
a small number of simulation data, the FF state at the smaller k-th timeframe seems rela-
tively easy to learn its relaxed Boolean function. However, for those FF state at the large
k-th timeframe, more simulation may be needed but not necessary. Since learning for re-
laxed Boolean functions is one-time cost, the user can allocate a sufficient amount of time

for his BSEC problems.

22

Algorithm 2 SupportConfidenceLearning(): a support-confidence learning algorithm with

the impurity measure

L: N = logs| M|;

2 F* 0

3: while (| D] < |M| X 7eon)

4. f=1,;

5: do{

6: x = SupVarSelect(M, f); // impurity:measure
7. fe [N

8: update(fsup,feons); /Aupdate foup and fe,f

if (fsup = Voup && feonf = Heonf)
10: F*— F*U f;
11: update(D); // update by ruling cube
12: break;
13: } while (| f| < N);
14: 0 (foup < Voup && feont < Yeons)
15: update(D); // update according to the excluded cube

23

Chapter 4

Constraint Extraction Method

24

4.1 Constraints in BSEC Problem

Figure 4.1 is an example to illustrate how the conflict constraints work on the SAT
solving process, Before the example, let’s recall the basic idea in SAT solving. The DPLL-
based algorithm, introduced in section 2.2, is the core of most start-of-art SAT engines.

The procedure of DPLL-based algorithm is illustrated as follows:

1. Trace from the clause with minimum number of literals, especially in unit clause

Assign value to variable v, and push v into assignment queue

2. Use v to apply implication on other clauses

If variable u could be implied by v, then push w into assignment queue

3. While size of assignment queue is equal to the number of variables, return SAT

if implication v" # v in assignment queue, return UNSAT

In DPLL-based algorithm, the asSignment queue is used to record the assigned vari-
ables. Since all clauses in a SAT problem-must be.satisfable and the problem can be satis-
fiable. DPLL-based algorithm starts-from the clause with minimum number of literals. If
one variable v could be assigned the specific value, the variable could be pushed into the as-
signment and propagated to other clauses.' The procedure would continue to assigned other
variables. If all variables have been assigned, the problem is satisfiable. If one implied

variable conflicts the results in assignment queue, the problem is unsatisfiable.

Vl V2 V5 V6
0 0 (0 O
0 1|0 1
1 0|1 O
1 1|0 0
(a) a simple circuit (b) truth table of Vg and Vg

Figure 4.1: An example to illusrtate constraint in SAT solving

25

Figure 4.1(a) is the sample example and Figure 4.1(b) is the truth table of V5 and V5 in
sample circuit. From the truth table, it implies that the logic value of V7 is stuck at 0. If the
circuit is modeled as a SAT problem and target V7 = 1, the SAT engine is expected to return

an unsatisfiable answer. Table 4.1 lists the clauses of the sample circuit in Figure 4.1(a).

Table 4.1: Clauses for Figure 4.1

Vs + W1 8 Vi+ Vs
“Vs+Va |9 Va0
Vs + =11+ -V, |10 Vs + W
Ve + Vo 11 —Ve+Vs
Ve + V3 12 Ve+ Vs
Vo+ Vot Vs |13\ Ve +=Vs+ V4
Vi + Vs 14 V7

N | N || W N

The procedure is used to solve the SAT problem, as follows:

e stepl: start from unit clause 14simply V7 =1, push V7 into assignment queue

e step2: process V7, imply'V5 = 1 in clause 11 and imply V5 = 1 in clause 12,

push V5 and Vj into assignment queue

e step3: process V5, imply V; = 1 in clause 1 and imply V; = 1 in clause 2,

push V; and V} into assignment queue

e step4: process Vg, imply V5 = 1 in clause 4 and imply V5 = 1 in clause 5,

push V5 and V3 into assignment queue

e stepS: process V7, imply V3 = 0 «—— conflict with V5 = 1,
return UNSAT.

In the procedure, it requires five steps to prove the SAT problem in Table 4.1 is unsat-
isfiable. Although the five steps seems not heavy, it would be difficult as solving larger

circuits. Conflict constraints are one way to speedup the proof. From the truth table in

26

Figure 4.1, it is clearly to observe that the V5 = 1 and V5 = 1 can not happen at the same
time. we call that (V5, V5) is a conflict constraint in the sample circuit and add the conflict
constraint as a conflict clause after original SAT problem. Since (V5, V) means V5 = 1
and Vs = 1 can not happen at the same time, it indicates V; = 0 and V5 = 0 may occur
in the circuit. As a result, the clause of (V5, V) can be written as —V5 + -V and added as
15th clause after original SAT problem. The solving procedure of new SAT problem is as

follows,
e stepl: start from unit clause 14, imply V7 = 1, push V7 into assignment queue

e step2: process V7, imply V5 = 1 in clause 11 and imply V5 = 1 in clause 12,

push V5 and Vj into assignment queue

e step3: process V5, imply V; = 1 in clause 1 and imply V; = 1 in clause 2,

imply Vg = 0 in clause 15 «— conflict with V4 = 1, return UNSAT.

Compare with solving the-original SAT problem, the SAT problem with a conflict con-
straint only requires 3 steps-of proof. The-example illustrates the power of conflict con-
straints. Since the BSEC problemyis-a-combinational SAT problem and the solving process
is similar to the BCP procedure, and the conflict'constraints will also help SAT solving.

One way to find out conflict constraints in BSEC is to list the truth table for all internal
signals and discover the unhappen situation in the truth table. However, it is impossible
to enumerate all input combination to construct such truth table as in Figure 4.1(b). The
alternative method is to construct the relaxed Boolean function of each signal, as mention
in section 3.2. Since the number of combination of internal signals is quite large, in this
work, we only extract the information on flip-flops. The detail explanation is introduced in
section 2.1.

The previous work in [20] is the first study of applying a support-confidence algorithm
named Apriori to explore the implication constraints among 3 internal nodes (a-b—-c) for
SAT solving. However, in this work, we do not mine constraints directly from data. Instead,
we propose a new learning algorithm which modifies the notion of support-confidence with
impurity measures [28] to infer the relaxed Boolean functions for each FF state at different

timeframes. Later, conflict constraints will be derived by composing two relaxed Boolean

27

functions.

DEFINITION (Conflict Constraint)
A state-pair (p’,q’), where i, j denote the timeframes and j > ¢ > 0, in a finite state ma-
chine M is a conflict constraint if and only if Vk > i, ¢*77=% can never appear after p*

appears in M for all input sequences.

Such constraints can be used to early stop the random walk during the SAT solving
process, and their effectiveness will be demonstrated through our experiments later. The

proposed method to exploit conflict constraint is introduced in the following section.

4.2 3-stage Filtering Method

Since previous studies [19] [20] that explore the constraints among internal nodes for
SAT solving may suffer from.a large number:of constraint candidates, the proposed method
instead considers cross-timeframe state-pairs as candidates and prunes the false cases on
the basis of simulation data and the gate-level netlist of the circuit.

Since each state-pair can be validated by running SAT solving on the BSEC model,
one intuitive method is to enumerate ‘all combinations of state-pairs for checking. How-
ever, given n and k are the numbers of flip-flops and the number of timeframe unrolling,
respectively, the combinations for state-pairs will go up to 4 x C3*, where 4 represents dif-
ferent cases of state-pairs including {00}, {01}, {10}, and {11}. Running SAT solving for
4 x C3* times will be prohibitively time-consuming and even worse than solving the BSEC
model directly. Therefore, a 3-stage constraint extraction shown in Figure 4.2 integrates
multiple filtering strategies to help reduce the total number of state-pairs.

The first stage is functional filtering. A data-mining algorithm called the support-
confidence framework is developed to construct the approximate Boolean functions for
each flip-flop state at one specific timeframe by learning the simulation data. Then, the
cross-timeframe state-pair could be a constraint candidate if the conjunction of Boolean

functions for two such flip-flop states is empty. Historical filtering in the second stage scans

28

through the simulation data to prune the rare cases escaped from approximate functional
learned in the first stage. The final stage is structural filtering which validates the candidate
through SAT solving of the augmented miter circuit. Note that functional filtering plays an
important role in the proposed method and needs generating as few candidates as possible
to make the historical filtering and structural filtering efficient in time.

The details of the proposed method, including 3-stage constraint extraction, will be

elaborated as follows.

simulation
i data J
]

random simulation [

2

support-confidence || | learning
learning 5 ! functions)

learning phase

functional filtering
v

historical filtering
v

structural filtering

constraint I
candidates

filtering phase

.......................................

constraint insertion
& SAT solving

solving phase

Figure 4.2: A learning-and-filtering framework for BSEC

4.2.1 Functional Filtering

As defined in the previous section 4.1, conflict constraints can be obtained by taking

the conjunction of the relaxed Boolean functions for two states at different timeframes.

29

SAT solver will be then applied to the conjunctive function. For example, given f (s;)
and f(s)) as the functions for the state s, of FF p at timeframe ¢ and state s/ of FF ¢ at
timeframe j, respectively, If f = f(s]) N f(s?) is UNSAT, there exists no input test which
can satisfy both FF states at individual timeframes concurrently. Therefore, (f(s}), f(s}))
is one constraint candidate. Note that, for each FF r at timeframe %, the support-confidence

learning algorithm will run twice: one for ON state s¥, and the other for OFF state 5%,

4.2.2 Historical Filtering

After generating the initial set of cross-timeframe state-pairs for constraint candidates,
historical filtering prunes those pairs that have already been seen in simulation data. For

example, given (5%, s**2) as the constraint candidate to be checked, if FF p in some time-

p’7q
frame £ has the state value of 0 and FF ¢ in two timeframes later has the state value of 1,
then (EI;, s’;“) will be removed from,the candidate set. This situation happens because the
support-confidence learning is+statistical and may overlook small Boolean cubes resulted

from some patterns.

4.2.3 Structural Filtering

Figure 4.3: Illustration for structural filtering

At this stage, structural filtering is to ensure the validity of each candidate under the
unfolded miter. The logic cones of individual FF states will be extracted first and combined
by an extra AND gate. Such an augmented circuit is termed augmented constraint circuit

(ACC). SAT solving is performed on the ACC by enforcing the output of the AND gate

30

as one. If the ACC is UNSAT, such a state-pair is a true conflict constraint. Otherwise, it
should be removed from the candidate set. To give an example, if (5}, s;;) is one constraint
candidate, the inverted output of flip-flop p at timeframe m and the output of flip-flop ¢
at timeframe n are connected by an extra AND gate. Such an example is illustrated in
Figure 4.3. Next, SAT solving is performed on the corresponding ACC with enforcing 1
on the output of the extra AND gate. If the result is UNSAT, (5;,”, sZ) 18 a true constraint;
otherwise, (321, sg) should be removed.

4.2.4 Constraint insertion

Constraint insertion is the final step in the proposed framework. Given £ as the number
of timeframe unfolding in BSEC problems, each extracted constraint will be translated into
multiple CNF constraint clauses of disjunction of inverting two FF states over k£ timeframes
and appended to the CNF of the original BSEC model. For example, if (s?,52) is one
proven constraint, CNF clauses (87 + s3), (37 452),..., (37 + s£) will be appended to the

original CNF for final SAT selving.

31

Chapter 5

Experimental Results

32

The proposed method is implemented in C++. The experiments are run on Linux
equipped with a 2.4GHz CPU and 2GB RAM. ISCAS 89 and ITC 99 circuits are used
as benchmarks for bounded sequential equivalence checking. Each circuit is synthesized
with 10 different configurations by Design Complier from Synopsys. MiniSAT 2.0 [3] is
the one of state-of-the-art SAT solvers and applied for SAT solving in our experiments.
The default number of tests for simulation ranges from 1, 000 to 5,000 depending on the
number of primary inputs of the benchmark circuits. 7, and .., are by default 0.05 and
0.95, respectively. The number of upper bound for constraint state-pairs to be inserted in

functional filtering is 2, 000.

Table 5.1: Characteristics of BSEC models for benchmark circuits

miter |# of PI|# of PO |# of FF |# of k # of FF x
in miter | timeframes | k-timeframes
s298 |3 6 28 40 1120
s349 |9 11 30 40 1200
s713 |35 23 36 30 1080
s832 |18 19 10 30 300
s1196 |14 14 36 30 1080
s1488 |8 19 12 30 360
s4863 |49 16 169 15 3035
s15850 |77 150 1040 |15 15600
$35932 (35 320 3456 |10 34560
s38584 |38 304 2690 |10 26900
b04 8 11 132 30 3960
bll 7 6 60 30 180
bl3 10 10 102 30 3060
bl5 36 70 834 15 12510

Table 5.1 shows the characteristics of BSEC models for ISCAS 89 and ITC 99 circuits
in our experiments. # of PI and # of PO are the numbers of primary inputs and primary
outputs for each circuit, respectively. # of FF is the number of the flip-flops in the original

miter. k is # of timeframes to be unrolled in the BSEC model. # of FF x k-timeframe

33

denotes the total numbers of the flip-flops in the BSEC model.

Table 5.2 demonstrates the effectiveness of 3-stage filtering by reporting the numbers
of constraint candidates across different timeframes after each filtering. Column 1 lists the
name of the benchmark circuits while column 2 represents the initial number of constraint
candidates. Column 3, 4 and 5 denote the numbers of candidates after functional, historical

and structural filterings, respectively.

Table 5.2: Comparison of numbers of constraint candidates

miter |# of cross-timeframe constraints

initial functional | historical | structural

filtering |filtering |filtering

s298 6160 59.3 44.9 273
s349 |7080 217.8 110.0 109.9
s713 10224 6.2 5.1 5.1
s832 | 760 88.3 63.3 30
s1196 .[10224 78.7 57.3 42.9
s1488 #1104 88.0 52.9 52.8

s4863 2278127 {2000 312.9 310.2
s15850 | 8648640-.1.4000 2631.3 |2381.7
$35932 195537664 | 2000 1336.0 |1105.0
s38584 | 57878040 | 2000 12144 |825.6
b04 138864 2000 1783.2 |1298.1
bll 28560 2000 16439 |1138.2
b13 82824 2000 1122.2 {939.0
bl5 5561112 {2000 1238.1 | 1732.8

Table 5.3 shows the improvement of SAT solving for BSEC problems. Column 1 lists
the name of the benchmark circuits and column 2 is the # of unfolded timeframes. Column
3 represents the combined runtime for both learning and filtering. Column 4 and 5 denote
the runtime of SAT solving without and with constraints, respectively. Column 6 reports

the speedups computed by the original runtime in Column 4 divided by the new runtime in

34

Column 5.

Our experimental results show different speedups on SAT solving of benchmark BSEC
circuits with an average as 500X, excluding the time for learning and filtering. Significant
improvement can be observed on the big circuits while minor improvement can be observed
on the small circuits. We also shows the speedups on 4 large circuits, s35932, s38584,
b13 and b15 with respect to 10 configurations in Figure 5.1. Although for each case, 10
configurations result in different speedups but the all speedups are of the same order.

We compare the results with [20], which used association rule to imply three nodes
relation on internal signals. Column 1 lists the name of the benchamrk circuits, which is
the same as in [20]. Column 2 is the # of unrolled timeframes. Column 3, 4 and 5 denote the
runtime of SAT solving without constraint, runtime for SAT solving with constraints, the

combined runtime of mining time and SAT solving time, respectively. Column 6 reports the

Table 5.3: Runtime for BSEC problems

miter |k time- | learning | original (s) | new (s) | speedup (X)
frames | time (s) | [A] [B] [A]/[B]
s298 |40 1.0 13.3 0.2 66.5
s349 |40 1.5 3.8 0.2 19.0
s713 |30 7.7 6328.3 176.2 (35.9
s832 |30 39 8.8 0.4 22.0
s1196 |30 8.6 14.4 13.3 1.1
s1488 |30 39 13.0 2.7 4.8
s4863 |15 180.4 |7319.9 26.9 272.1
s15850| 15 2684.3 |7823.1 23.7 330.1
$35932|10 1135.3,.17503.9 14.3 524.7
s38584 |10 529.9 20775 11.8 176.1
b04 30 28.6 3485.2 0.5 6070.4
bll 30 41.2 35.9 0.9 39.9
bl3 30 15.6 8:0 0.2 40.0
bl5 15 335.1 48978 8.1 604.7

35

speedups computed by Column 3/Column 5. Column 7 is the result excerpted from [20].

The results are only from one configuration in circuits.

miter |k time | origin(s) | new(s) | mining |our speedup
frames +new(s) | speedup | [20]
s298 |40 3039 |0.12 |9.25 3.29 3.11
s832 |30 2028.65 |0.72 | 6.41 316.48 |50.30
s1196 |30 96.19 [55.78 [79.98 |1.20 2.59
s1488 |30 754.03 [5.68 |21.70 |34.75 |33.93
s4863 |15 7725.44 1435 [236.02 |32.73 |15.07
s15850 15 64860 [227.63|1593.46(40.71 |40.28
$35932|10 51744.3 | 173.78 |1397.12|37.04 |4.54
$38584 |10 50464.3 [19.50 |1221.10(41.33 |3.43

Table 5.4: Runtime for BSEC problems compare with [20]

Since we do not know the configuration of eircuit used in [20], the comparison may
be not faired. However, the tesults should'be focused on the speedup in our approach and
their result. Compared with results-from [20], not all of cases with our approach would
have such benefit because the‘effective of conflict constraints is depended on the property
of circuit. Our approach only finds ‘out'constraints between states with different timeframes,
but in [20], they consider about internal nodes. Different circuits may agree with different
approaches. However, the results show that our approach is overall good in most cases. By
the way, in [20], they explained that their approach has less improvement in easy miters, so
they only reported hard miters. The same problem we meet. It is because the complexity is
depended on the number of flip-flops, and the computation time of exploring constraints in
easy miter is almost the same as in hard miters. So there is no obviously improvement in
easy miter with our approach.

To demonstrate the effectiveness of the extracted constraints, we compare the numbers
of timeframe unfolding on 4 large benchmark circuits without and with the extracted con-
straints in a fixed time, say 1200 seconds in our experiments. In Figure 5.2, the dotted
lines denote the original benchmark circuits while the solid lines represent the benchmark

circuits with extracted constraints. Results show that after adding constraints, the bound

36

k can increase from 8X to 20X. It also means that the quality of BSEC can be improved
greatly by applying our framework. However, different time limits may result in different
improvements.

We further investigate the relations between the number of constraints and runtime for
SAT solving on three big ISCAS 89 circuits. Figure 5.3 shows the result where Y-axis
represents the runtime for new SAT solving normalized to the original runtime used by
SAT solving without any constraint. Obviously, s35932 and s38584 converge fast and only
require 500 constraints while s15850 may require 1900 constraints to converge. However,
since not each constraint has same contribution to SAT solving, the efficiency of solving
BSEC may depend on the quality of constraints, not the number of constraints. Therefore,
how to select enough good constraints to fast converge SAT solving is worth investigation

and can be a topic for future research.

37

G149 ()
Xapul uonelnbiyuod
0T 6 8 L 9 & v € 4 T

AN Y

858¢s (Q)

Xapul uoneinblyuod
OT 6 8 L 9 S 14 € 4 T

00¢

00t

009

008

o O O O O ©o o
o I O 1 O W
M N N o

(X) dnpaads

(X) dnpaads

€1q (9)

X3pul uoneinbyuod

or 6 8 L 9 S ¥ € ¢ 1

2s65¢es (e)

xapul'uoneinbiyuod
O 6 487 2. 9 § ¥ ¢ ¢ 1

e e

0¢
oy
09

(X) dnpaads

08
00T

o o o o o
g 8 & S
(X) dnpaads

o
o
Lo

Figure 5.1: Speedups of 4 large circuits with respect to 10 configurations

38

G149 (P)
Xapul CO_HG._DOE.COO
oT 6 8 L 9 § v € ¢ 1T
P S Iy
feuiblio - ¢— 7
Mau —y— |

1\&\4’!/4[4\4\4’4/14‘

858¢s (q)

Xapul uoneinbipuod
or 6 8 L 9 § ¥ € ¢ 1T

’L.‘L...,,.’.H.‘.,..’.,.,‘.,..‘.,.\’L..’

feuiblio - -¢--
MaU —¥—

Thr|</<\ﬂ\</4\</<\<‘

0¢
ov
09
08
00T
0ct
orT

0S8

00T

0ST

00¢

0S¢

awreJawn Jo #

awreljown Jo #

€1q (9)

Xapul uoneinbijuod
o 6 8 L 9 S v € 2 T

* 0 0 G 0t S 0 00

[euibLio -e¢- -
MaU —y—

MERAERA BTN St b 4

| ze6ses (o)

T %apul ueneinbyuod

OFF | NGRS St /7 9 S 14 € 4 T

R R SRR SR PSR e S

*

[euiblio -¢- -
MOU —¥—

TN Ny

ov
08
0cT
09T
00¢

qT
o€
14
09
7
06

awreljawin Jo #

awreljawin Jo #

Figure 5.2: Bound for SAT solving of BSEC problems

with and without constraints

39

D
- 08 -
= 515850
S 06 & e 535932
N e 538584
g 04
(@)
< 02|
0 NerT e L,
0 600 1200° 1800 2400 3000

of constraints

Figure 5.3: SAT solving time with different # of constraints

40

Chapter 6

Conclusion

41

The general problem of checking functional equivalence for two sequential circuit
is still far from being solved. In this thesis, we proposed a method which integrates
data mining, simulation and structural analysis techniques to extract unreachable cross-
timeframe state-pairs as constraints to facilitate SAT solving for bounded sequential equiv-
alence checking (BSEC) problems.

To exploit conflict constraints in BSEC problem, we propose a 3-stage filtering method.
They are functional filtering, historical filtering and structural filtering. In functional filter-
ing, we propose a new data mining method to construct relaxed Boolean function for partic-
ular signals. Instead of using decision diagram to construct Boolean function, our support-
confidence method with impurity measure provides statistical perspective on Boolean func-
tions. In historical filtering, we use simulation information to prune the false candidate in
functional filtering since the goal of the learning model is simple instead of precise. The fi-
nal stage is structural filtering. Since the remain constraints behind first two stages are from
limited simulation data, the result‘may be fiot global true in BSEC model. To make sure
the extracted constraints are global true, each of they should be injected into the original
SAT problem to be verified.

Experimental results shows that"the 3-stage filtering can derive the set of unreach-
able cross-timeframe state-paits efficiently. SAT solving with the extracted constraints can
speed up 3X to 300X on most ISCAS 89 and larger ITC 99 circuits. We also demonstrate
that the rate of timeframe expansion could be grown on 8X to 20X.

Future works include the quality analysis of the extracted constraints and a better strat-
egy to exploit constraints efficiently. Moreover, instead of conflict constraints, we will
exploit other kinds of constraint. Since some circuits may be hard to exploit conflict con-
straints, such BSEC problems are difficult to improve. In the future, the procedure of con-
straint extraction can be integrated into sequential SAT solver to improve the performance

the sequential equivalence checking problem.

42

Bibliography

(1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

Charles H.-P. Wen, Li-Chung Wang and Kwang-Ting Cheng, "Chapter 9: Functional
Verification,” in Electronic Design Automation: Synthesis, Verification, and Testing,

Elsevier/Morgan Kaufmann, Oct. 2008

D. Stoffel, M. Wedler, P. Warkentin and W. Kunz, ”Structural FSM Traversal” in IEEE
Trans. Computer Aided Design (TCAD), vol. 23, no. 5, pp. 598-619, 2004.

M.H. Moskewicz, C. F. Madigan, Y, Zhao, L.. Zhang and S. Malik, "ZChaff: Engineer-
ing an Efficient SAT Solver,” in Proc. Design: Automation Conf. (DAC), pp. 530-535,
2001.

E.Goldberg and Y.Novikov, ’BerkMin: a Fast and Robust SAT-Solver,” in Proc. Conf.
Design, Automation and Test in Europe (DATE), pp. 142-149, 2002.

F. Lu, L. C. Wang and K. T. Cheng, ”A Circuit SAT Solver with Signal Correlation
Guided Learning.” in Proc. Conf. Design, Automation and Test in Europe (DATE), pp.
892-897, 2003.

N. Een and N. Sorensson, ”An Extensible SAT-Solver,” Theory and Applications of
Satisfiability Testing, pp. 502-518, 2003.

M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory
of NP-Completeness,” W.H. Freeman, 1979.

S.Y. Huang, K.T. Cheng, K.C. Chen, C.Y. Huang and F. Brewer, ”AQUILA: An Equiv-
alence Checking System for Large Sequential Designs,” in IEEE Trans. Computers
(TC), vol. 49, no.5, 2000.

43

[9] LLH. Moo, P. Bjesse and C. Pixley, ”A Compositional Approach to the Combination of
Combinational and Sequential Equivalence Checking of Circuits without Known Reset
States,” in Proc. Conference on Design, Automation and Test in Europe (DATE), pp.
1170-1175, 2007.

[10] H. Ichihara and K. Kinoshita, ”On Acceleration of Logic Circuit Optimization using
Implication Relations” in Proc. Asian Test Symp. (ATS), pp.222-227, 1997.

[11] W. Kunz, D. Stoffel and P.R. Pradhan, "Logic Optimization and Equivalence Check-
ing by Implication Analysis”, in IEEE Trans. CAD (TCAD), vol. 15, No. 5, pp. 266-
281, 1993.

[12] M.H. Schulz, E. Trischler and T.M. Sarfret, "SOCRATES: A Highly Efficient Auto-
matic Test Pattern Generation System,” in IEEE Trans. CAD (TCAD), vol. 7, No. 1,
pp. 126-137, 1988.

[13] M. Davis and H.Putnamy”A computing precedure for quantification theory,” In Jour-

nal of the ACM, pp. 201-215, 1960.

[14] M. Davis, G. Logeman; and D Leveland, ’’A machine program for theorem proving,”

In Proceedings of the Communications of the ACM, pp. 394-397, 1962.

[15] O. Guzey, L-C. Wang, J. Levitt and H. Foster, "Functional test selection based on
unsupervised support vector analysis,” in Proc. Design Automation Conf. (DAC), pp.
262-267, 2008.

[16] H-K. Peng, H-P. Wen and J. Bhadra, ”On Soft Error Rate Analysis Beyond Deep Sub-
micron - A Statistical Perspective,” submitted to Int’l Conf. Computer Aided Design
(ICCAD’09), Nov. 2009.

[17] W. Kunz and P.R. Pradhan, ”Accelerated Dynamic Learning for Test Pattern Gener-
ation in Combinational Circuits,” in IEEE Trans. CAD (TCAD), vol. 12, No. 5, pp.
684-694, 1993.

[18] J. P. Marques-Silva and K. A. Sakallah, ”A Search Algorithm for Propositional Satis-
fiability,” In IEEE Transactions on Computers, Vol. 48, No. 5, pp. 509-521, 1999

44

[19] S. Safarpour, G. Fey, A. Veneris, and R. Drechsler, ”Utilizing Don’t Care States in
SAT-based Bounded Sequential Problems,” in Proc. VLSI Great Lakes Symposium,
pp- 264-269, 2005.

[20] W. Wu and M. S. Hsiao. "Mining Global Constraints for Improving Bounded Sequen-
tial Equivalence Checking,” in Proc. Design Automation Conf. (DAC), pp. 743-748,
2006

[21] A. Mishchenko and R. K. Brayton, "SAT-Based Complete Don’t-Care Computation
for Network Optimization,” in Proc. Conf. Design, Automation and Test in Europe
(DATE), pp. 412-417, 2005.

[22] M. L. Case, V. N. Kravets, A. Mishchenko and R. K. Brayton, "Merging Nodes Under
Sequential Observability,” in Proc. Design Automation Cconf. (DAC), pp. 540-545,
2008.

[23] G. Cabodi, S. Nocco, S. Quer, “Improving SAT-Based Bounded Model Checking
by Means of BDD-Based ‘Approximate Traversals,” in Proc. Conference on Design,
Automation and Test in Europe (DATE); pp. 898-203, 2003.

[24] A. Gupta, M. Ganai, C. Wang, Z. Yang, P. Ashar, ”Abstraction and BDDs Com-
plement SAT-BasedBMC in DiVer,” in Proc. Computer Aided Verification (CAV), pp.
206-209, 2003.

[25] W. Wu and M. S. Hsiao. "Mining Global Constraints with Domain Knowledge for
Improving Bounded Sequential Equivalence Checking,” in IEEE Trans. CAD (TCAD),
vol. 27, No.1, pp. 197-201, Jan. 2006

[26] H. P. Wen, L. C. Wang and J. Bhadra, ”An Incremental Learning Framework for Esti-
mating Signal Controllability in Unit-Level Verification,” in Proc. Int’]l Conf. Computer
Aided Design ICCAD), pp. 250-257, 2007.

[27] R. Agrawal, T. Imielinski and Swami AN, "Mining Association Rules between Sets of
Items in Large Databases,” In Proc. of the ACM SIGMOD Int. Conf. on Management
of data, Jun. 1993.

45

[28] P.N. Tan, M. Steinbach and V. Kumar. Introduction to Data Mining, Addison Wesley,
May 2005

46

