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I 

 

數種新型多天線系統分析方法 
 

 

 

學生：莊瑞廷              指導教授：陳富強 博士 

 

 

 

國立交通大學電信工程學系碩士班 

 

 

摘要 
 

  在本論文中，我們研究了兩組評估多天線系統效能的電磁分析。第一項是輻射效率

(Radiation Efficiency)的綜合分析，第二項是新型天線空間相關係數(Antenna 

Spatial Correlation)的計算方法。論文中所有的個案討論都將以偶極天線做分析基準。 

 

  首 先 ， 我 們 綜 合 分 析 了 一 個 全 主 動 反 射 系 數 (Total Active Reflection 

Coefficient,TARC)和輻射效率的表示方式。利用矩陣特徵值分解(Eigenvalue 

Decomposition (EVD))可將 TARC 表示成天線反射功率矩陣特徵值的組合。我們利用此

方法計算反射係數和輻射效率的最大值和最小值,並分析反射係數和輻射效率的特性如

何隨著天線埠饋入不同相位訊號時有所改變,我們也分析不同天線匹配網路如何影響此

反射系數和輻射效率。 

  最後我們提出兩組適用於任意大角度分佈入射角度(Large Angular Spread 

Angle-of-Arrival)的相關係數近似公式。利用此兩組公式，我們進一步計算含天線偶

合效應的相關係數。基於此兩組近似公式的計算方法不僅可以有效降低計算複雜度，在

精確度上也有不錯的表現。 
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Abstract 
 

In the thesis, we focus on two electromagnetic analysis strategies to evaluate the 
performance of multiple antenna systems. The first is composite analysis of radiation 
efficiency. The second is a new calculation method of antenna spatial correlation. All case 
studies are simulated using dipole antennas. 

 
First a composite analysis on total active reflection coefficient (TARC) and radiation 

efficiency are conducted.They can be described as the eigenvalues combination of antenna 
reflection power matrix utilizing eigenvalue decomposition (EVD).We not only evaluate the 
maximum and minimum value of TARC and radiation efficiency,but also their changes in 
characteristics when the antenna ports excite signals with different phases.Furthermore the 
investigations on how antenna termination networks influence TARC and radiation efficiency 
are also analyzed . 
  We further propose two new approximate antenna spatial correlation formulations which 
are suitable for arbitrary large angular spread angle of arrival (AoA) distribution. By using 
these two formulations, we further calculate spatial correlation incorporating antenna mutual 
coupling. Time complexity can be reduced and it still maintain good accuracy by utilizing the 
calculating method based on these two approximate formulations. 
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Chapter 1 
 
Introduction 
 
 

In recent years, there is a great progress of wireless communication technologies which 

have great contributions on the whole communication industry. Wireless communication 

actually has changed the way we live. Standards such as the second-generation (2G) mobile 

communication, bluetooth and wireless local area network (WLAN) have been widely 

implemented since a decade ago. Moreover, some technologies like the third-generation (3G) 

systems, ultra-wideband (UWB), and worldwide interoperability for microwave access 

(WiMAX) have been suggested recently. Such these new technologies blossom on the 

standard platform of the wireless communication. Telecom and datacom have come to aim at 

higher transmission speed and lower transmission error. Mainly owning to the variety of the 

wireless standards, it has become an essential issue to make the best use of the limited 

frequency spectrum efficiently and achieve high performance on the whole communication 

system. 

 

1.1 Motivation 
The concept of multiple antenna technology has offered a solution scheme which can 

reach the goal of high-quality communications. From a theoretical perspective, multiple 

antenna transmission and reception techniques are well known in communication engineering 

[1] and envisioned as the solution for next generation broadband communication systems. It is 

acknowledged for the potential benefits for increasing the coverage, capacity, and data rates 

of the wireless communication systems. 
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Incorporating multiple antenna technology into portable wireless devices means that 

multiple antennas are set in the limited spacing of small devices and impacts system 

performance. At transmitting end, antenna radiation efficiency is an important topic when 

referring to the performance of multiple antenna systems. Realizing multiple antenna systems 

at transmitting end becomes challenging because of the unavoidable mutual coupling effect 

between multiple antennas. Mutual coupling effect has great impact on how much power can 

radiate resulting from the power absorption by adjacent antenna elements without reflection.  

At receiving end, the spatial propagating channel and the characteristics of antennas are 

considered two key factors which actually impact system performance, and antenna spatial 

correlation is the composite representation of these two factors for evaluating the performance 

of the multiple antenna system. In previous work, antenna spatial correlation is defined as the 

Hermitian product of the far-field patterns of two antenna elements. This kind of definition 

may moreover take the probability distribution function (PDF) of angle-of-arrival (AoA) into 

consideration for the evaluation of the antenna spatial correlation coefficient. 

 

1.2 Purpose 
    In the thesis, we propose two new electromagnetic analysis strategies to evaluate the 

performance of multiple antenna systems. The first is a new analysis strategy of antenna 

radiation efficiency. This research is especially more valuable for transmitting end of 

communication system. The new analysis strategy can not only evaluate how the radiation 

efficiency may change when the antenna ports excite signals with different phases but also 

estimate the minimum and maximum values of radiation efficiency quickly when the number 

of antennas increases. The second are two new approximate formulations of antenna spatial 

correlation. These two new approximate formulations not only reduce computation 

complexity of correlation calculation but also maintain good accuracy. It can also apply for 
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the calculation of 2-D and 3-D parameterized spatial correlation formulation taking antenna 

mutual coupling effect into account.  

 

1.3 Organization 
This work will be organized as follows: In Chapter 2, the overview of multiple antenna 

systems is introduced, and the two analysis strategies of multiple antenna systems including 

radiation efficiency and spatial correlation are reviewed for the further investigation in the 

following chapters. In Chapter 3, the newly-defined eigenvalue based reflection coefficient 

and eigenvalue based radiation efficiency are first proposed, and then the investigations on the 

impact of termination networks are further presented in the following sections of this chapter. 

Chapter 4 first describes two new approximate formulations of antenna spatial correlation 

without mutual coupling, and then applies them for the calculation of parameterized spatial 

correlation formulations incorporating antenna mutual coupling, both for 2-D and 3-D cases, 

respectively. 

 
 
 
 
 
 
 
 
Chapter 2 
 
Fundamental Theory of Multiple Antenna 
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Systems 
 
 

Wireless communication systems are becoming more important in our daily lives. The 

need for more data rates, wider signal coverage, larger channel capacity are several challenges 

in communication technologies .Multiple antenna systems have great potential in extending 

the signal coverage of wireless networks, increasing channel  capacity, and reaching high 

information throughput by exploiting the spatial domain. In this chapter, we will first review 

the multiple antenna systems and especially focus on the detailed classification of different 

multiple antenna system schemes. Based on these classifications of multiple antenna systems, 

we further introduce two parameters which have great importance on the performance 

judgments of multiple antenna systems. The first one is the antenna radiation efficiency where 

the general definitions of single antenna and dual antennas cases will be discussed and shown 

why it plays an important role in multiple antenna systems. The second parameter is the 

antenna spatial correlation where we will review several definitions of antenna spatial 

correlations. Finally, because the studies we provide in the whole thesis are simulated using 

dipole antenna, the theory of dipole antenna is briefly introduced as well.    

 

2.1 Overview of Multiple Antenna Systems 
The multiple antenna technologies have been researched and developed for more than a 

decade which is considered substantially beneficial for the wireless communication systems. 

Multiple antenna systems have been implemented by several strategies, and we will introduce 

all of them briefly and summarize their benefits respectively as follow:  

．Beamforming: Beamforming strategies originate from phased array system. The total 

radiation pattern of the phased antenna array system can be controlled by feeding signals with 
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different phase delays and antenna element spacing [2]. With a specific feeding network, the 

total pattern of the array can be directed to the desired direction. Recent researches focus on 

adaptive beamforming strategies more because it can be implemented simply by using 

intelligent algorithm method to steer beams toward desired signals and nulls toward 

interfering signals [3].One of the adaptive beamforming method is called optimal 

beamforming method. Current research about this topic not only takes all electromagnetic 

characteristics like mutual coupling into account but also minimizes the total power radiated 

by the antenna array using optimization method while the response in a desired direction is 

maintained [4]. Beamforming offers interference rejection and antenna gain which have the 

equivalent effects of improving signal-interference-noise ratio (SINR) as well.  

．Diversity: In telecommunications, a diversity scheme refers to a method for improving 

the reliability of a message signal by utilizing two or more communication channels with 

different characteristics. Multiple antenna systems are proposed to create the diversified 

channels including polarization, spatial and pattern diversity. Polarization diversity combines 

pairs of antenna with orthogonal polarizations. By pairing two complementary polarizations, 

this scheme can immunize a system from polarization mismatches that would cause signal 

fading. Spatial diversity systems are designed such that the signals at the different antennas of 

the receiver have low cross correlation with maximum gain achieved for uncorrelated signals. 

Antenna pattern diversity consists of two or more co-located antennas with different radiation 

patterns. This type of diversity makes use of directive antennas that are physically separated 

by some short distance.  Collectively they are capable of discriminating a large portion of 

angle space and can provide a higher gain versus a single omnidirectional radiator.   

．Spatial Multiplexing: Spatial multiplexing is a transmission technique in MIMO 

wireless communication to transmit independent and separately encoded data signals, so 

called streams, from each of the multiple transmit antennas. Therefore, the space dimension is 
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reused, or multiplexed, more than one time. Spatial multiplexing can reach the goal of higher 

data rate compared to the single-antenna communication systems and it is considered very 

powerful for increasing channel capacity.    

The above three multiple antenna strategies can be called the family of multiple-input 

multiple-output (MIMO) antenna technologies and sometimes have the same characteristics 

of multiple antennas.  Furthermore, a combination of MIMO with orthogonal frequency 

division multiplexing (OFDM) is promising to use the spectrum much more efficiently by 

spacing the channels much closer together, which is achieved by making all the carriers 

orthogonal to one another, preventing interference between the closely spaced carriers.  

No matter what kind of MIMO technology is implemented, antenna radiation efficiency 

and spatial correlation have always been two very important parameters for MIMO systems. 

For a multi-polarization antenna system, radiation efficiency is an important issue because 

how much power will radiate with respect to different polarization states are concerned topics 

on this kind of system. Antenna spatial correlation is another issue we want to take care. For 

beamfoming technology, we always want to design the spatial correlation as high as possible, 

while for diversity and spatial multiplexing techniques demand low correlation antenna setup. 

In the following two sections, we will review the definitions of these two parameters. 

 

 

2.2 Radiation Efficiency 
    For single antenna case, the radiation efficiency is defined and computed by 

implementing the equivalent circuit shown in Figure 2.1[2].We can see that input impedance 

is composed of real part and imaginary parts: 

A A AZ =R +jX                            (2.1) 

The input resistance RA represents dissipation, which occurs in two ways. Power that leaves 
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the antenna and never returns (i.e.,radiation) is a form of dissipation. There is also ohmic loss 

associated with heating on the antenna structure. The input reactance XA represents the power 

stored in the near field of the antenna. 

 

Figure 2.1 The equivalent circuit of single antenna in transmitting mode. 

The average power dissipated in an antenna is: 

21
2in A AP R I                           (2.2)  

where IA is the current at input terminals. Separating the dissipated power into radiative and 

ohmic losses gives: 

2 2 21 1 1
2 2 2

in ohmic

A A r A ohmic A

P P P

R I R I R I

 

 
             (2.3) 

The radiation efficiency is defined as the ratio of total radiated power to the net power accept 

by the antenna, so 

r
oh

in ohm ic r ohm ic

P P Re
P P P R R

  
 

                (2.4) 

The total radiation efficiency must take input mismatch effect into account. Therefore, the full 

expression of radiation efficiency on single antenna case is:  

1 1rad refl ohe e e                              (2.5) 

and                    
2

1 1refle    and 0

0

-A

A

Z Z
Z Z

 


                  (2.6) 

where Γ is the voltage reflection coefficient and Z0 is the characteristic impedance of the 
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transmission line. 

 

Figure 2.2 The equivalent circuit of an antenna pair in transmitting mode. 

We further introduce the general definition of radiation efficiency in multiple antenna 

systems [5]. The radiation efficiency is defined mostly convenient in the transmit mode as the 

equivalent circuit shown in Figure 2.2. The voltage source V and source impedance ZS1 show 

the excitation of the antenna port 1, and the load impedance ZL2 is the termination at the 

second antenna port. Z12 is the mutual impedance which can describe the mutual coupling 

effect between two antennas. For simplicity this equivalent circuit is constructed based on the 

antenna pair with identical structure, which means that Z11=Z22 and Z12=Z21.  

    The equivalent circuit in Figure 2.2 can be used to calculate the input impedance Zin, 

which can further calculate the voltage reflection coefficient Γin. We can determine the input 

impedance Zin as 

1

212
11 I

IZZZ in                               (2.7) 

Equation (2.7) can be further expressed using the circuit loop theory which represents the 

relation between I1 and I2 as: 
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                           1
222

12
2 I

ZZ
ZI

L


                             (2.8) 

As a result, we can finally determine the input impedance Zin as: 

                        
222

2
12

11
L

in ZZ
ZZZ


                          (2.9) 

The total power leaving antenna 1 is shown as PZin=(1/2)Real{Zin}|I1|2, and the power which 

will be absorbed by ZL2 via mutual coupling effect and cause reduction of radiation power is 

PZL2=(1/2)Real{ZL2}|I2|2. The difference between PZin and PZL2 is called the radiation power Pr, 

i.e., Pr= PZin- PZL2. Therefore, the radiation efficiency erad can be derived as 

2LZreflrad eee                           (2.10) 

where 

2 1

1

1   and  in s
refl

in s

Z Ze
Z Z


    


                    (2.11) 

2

1

2

22
2 }{Real

}{Real
1

IZ
IZ

e
in

L
ZL                        (2.12) 

The radiation efficiency is the composite power efficiency representation for it includes not 

only the reflection caused by input mismatch of the excitation port but also the power 

absorption resulting from the termination at the other unexcited antenna branch. 

2.3 Antenna Spatial Correlation 
    Under multiple scattering environments, signal fading is the dominant impairment 

existing in the wireless communication. To overcome this problem multiple antennas are 

typically employed to provide diversity and the performance of the multiple antennas is 

determined by the spatial correlation between the antennas [6]. Antenna spatial correlation 

was first proposed by W. C. Jakes [7]. If a signal of interest arriving at an array can be 
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described by the summation of plane waves arriving from azimuth angle Φ relative to the 

normal between two sources a distance d apart, the spatial correlation can be determined as  

 )())sin(2exp()(   


  


 dpdjd                  (2.13) 

where λ is the wavelength and pΦ(Φ) is the azimuth angular probability distribution function. 

The most special case is when pΦ(Φ)=1/2π which is called the Clarke’s model [8] and the 

antenna spatial correlation has a closed form well-known as the Bessel function. Based on 

equation (2.13), several works on spatial correlation has relied on numerical integration or 

series expansion to evaluate the correlation coefficient between two sources based on 

different azimuth angular probability distribution functions [9-11]. The author in [12] 

especially discussed and derived a simple formula for spatial correlation and showed that it 

provided a good approximation for spatial correlation of small angular spread angular 

distributions. 

    The above definitions of antenna spatial correlation only take the signal phase and the 

angular PDF of the incoming waves in azimuth plane. Therefore, the antenna spatial 

correlation including full antenna patterns and mutual coupling effect was further proposed in 

the literatures. There were two main formulations proposed for the antenna spatial correlation 

including antenna patterns and mutual coupling effect. The first is direct Hermitian product of 

the far-field patterns between two antenna elements. The second is parameterized correlation 

formulation described by scattering matrix. 

．Pattern Multiplication: This is the most direct but also the most complex definition. R. 

G. Vaughan and J. B. Andersen proposed in [6] that the spatial correlation is given by 

 














dFdF

dFF

2
2

2
1

21

12
),(),(

),(),(




                   (2.14) 

where ‧ denotes the Hermitian product and F means the normalize antenna pattern. 
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．Parameterized Formulation: The authors in [13] proposed exact representation of antenna 

envelope correlation in terms of scattering parameter description under the assumption of 

uniformly incoming waves. The approach has the advantage that it is not necessary to known 

the radiation pattern of the antenna system and that the explicit influence of mutual coupling 

and input match is revealed. The formulation is given by   

  2
21

2
22

2
12

2
11

2

222112112
12

11 SSSS

SSSS
env








                (2.15) 

Moreover, C. Waldschmidt and W. Wiesbeck further suggested a more general spatial 

correlation as [14] 

2
2

2
1

12
12 
 R

                              (2.16) 

where  

2 1 2
12 0 0

1 2

2
2  2

20 0
 

( , ) ( , ) ( , )
sin    and   

( , ) ( , ) ( , )

( , ) ( , )
            sin

( , ) ( , )

i
i

i

XPR E E p
R d d

E E p

XPR E p
d d

E p
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  

   

 

     
  

     

   
   

   

   
     

  
 
   

 

 
    (2.17) 

XPR is the cross polarization ratio, E is the far-field E antenna patterns, p(Φ,θ) means the 

AoA distribution, and the subscript Φ/θ denotes the field polarization for both AoA 

distribution and antenna patterns. 

Compared with the pattern multiplication and the correlation represented in S-parameter 

manner, both of them do not take AoA distribution of arriving signals into account. Therefore, 

the spatial correlation in equation (2.17) is considered the most complete and general 

correlation formulation so far because it takes all the possible factors into consideration. 

 

2.4 Dipole Antenna 
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     All the case studies we provide in the whole thesis are simulated using two or more 

half-wave dipole antennas. Therefore, the basic theory of half-wave dipole antenna is 

introduced in this section. The half-wave dipole antenna is the most general antenna structure, 

and the current distribution on the dipole usually assumes that the antenna is center-fed and 

the current vanishes at the end points. Moreover, to reduce the mathematical complexities, the 

diameter of the dipole is ideally much thinner than the wavelength of the operating frequency. 

With the above assumptions, the current distribution is placed along the z-axis and for 

the half-sine wave current on the half-wave dipole. It is written as:   

   sin ,       z
4 4mI z I z 


        

            (2.18) 

where Im is the maximum current occurring at the center-fed point, andβis the phase constant 

in the free space. After the cumbersome mathematical integration, the far-field Eθ pattern is 

shown below:  

 

cos cos
2

2 sin

j r
mI eE j

r





 


 


  

    
 
  

                  (2.19) 

In the similar manner, the total HΦ component can be written as 

cos cos
2

2 sin

j r
mE I eH j

r






 

  


  

     
 
  

              (2.20) 
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(a)                                   (b) 

Figure 2.3 (a) The λ/2 dipole and (b) the Eθ pattern in theta plane (Φ=0°). 

The current distribution of the half-wavelength dipole and the theta-plane E-field pattern is 

plotted in Figure 2.3, and Zin=73+42j [2] .We need to notice that we assume the diameter of 

the dipole is much thinner than the wavelength of the operating frequency, and there exists 

only Eθ and HΦ fields. However, in the chapter 4, EΦ and Hθ fields also exist in the simulation 

results since the diameter of the dipole is not thin enough compared to the wavelength of the 

operating frequency. 
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Chapter 3 
 
Composite Analysis of Radiation Efficiency   
 

 

Antenna arrays play a crucial role in wireless communication over multipath fading 

channels. When using multiple antenna elements for implementation on small personal 

communications devices, the resulting closely spaced antenna elements exhibits well-known 

mutual coupling, which alters radiation pattern characteristics and is obviously impact the 

performance of multiple antenna systems. Radiation efficiency is considered an important 

factor to measure the performance of multiple antenna systems including mutual coupling. In 

this chapter, the analysis of radiation efficiency is in transmitting mode. The general 

definition of radiation efficiency for dual antenna systems has been introduced in Chapter 2 

and we continue this concept for the further investigations on the composite analysis of 

reflection coefficient and radiation efficiency. In Section 3.1, the power representation using 

microwave network theory and TARC are first introduced as well as the concept of [16] . The 

composite analysis of how different kinds of termination network impact on the reflection 

coefficient and radiation efficiency are conducted in Section 3.2.  

 

3.1 Introduction of The Eigenvalue based TARC and 

Radiation Efficiency  

3.1.1 Multi-port Antennas and Total Active Reflection 

Coefficient 
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Assume that the scattering matrix of passive n-port antennas is S. The input excitation 

signals ai incident on each port i is denoted as the form of column vector a= [a1 , a2,…,an]T, 

Similarly, the wave reflected from the antenna is denoted by the column vector b= [b1 , 

b2,…,bn]T [15][16] , the relation between a and b is  

b Sa                                   (3.1) 

The total powers incident on the n-port network is given by 

2 2

1

N

in i
i

P a


   Ha a a                        (3.2) 

and the total power reflected from the n-port network is 

  
2 2

1

N

refl i
i

P b


   Hb b b                       (3.3) 

The total input and reflected power can be represented as the summation of individual power 

incident on and reflected from the port i, respectively. The multiport antennas discount 

antenna ohmic loss for simplicity to analysis. First, we give an alternative expression to total 

reflected power and then we turn to calculate the radiated power. By substituting equation 

(3.1) into equation (3.3), the total reflected power can be written as:    

   
     
     

reflP 



H

H H

H

Sa Sa

= a S Sa
a Ra

                        (3.4) 

,where R we call it reflection power matrix . This expression relates total power generated by 

excitations and the total reflected power. We now want to represent equation (3.4) in an 

alternative way for convenience to later analysis. Since the reflection power matrix is a 

Hermitian matrix, we can perform unitary similarity transformation [16] on R and U is unitary 

(i.e, UUH=I ) as below  
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H
SR = U D U  with  1 2, , ,s s sndiag   SD K where n nR SD     (3.5)  

This transformation is also called eigenvalue decomposition (EVD). Substituting equation 

(3.5) into equation (3.4), an alternative representation of total reflected power is shown as    

 
   

2

1

     

     

refl

N

i si
i

P

q 






 

H H
s

HH H
s

a U D U a

U a D U a                       (3.6) 

where Hq = U a  or iq H
i= u a                       (3.7) 

The i th column vector of matrix U is denoted as Ui . Note that Ui is also an eigenvector of 

reflection power matrix .qi can be viewed as a transformed input signal at port i. Using the 

fact of UUH=I, the total input power can also be derived as 

   
2

1

     

     

in

N

i
i

P

q






 

H

HH H

a a

U a U a                       (3.8) 

The power radiated by the antenna neglecting antenna ohmic loss is the difference between Pin 

and Prefl, further substitution yields as below like [16] 

 2 2 2

1 1 1
     1

rad in refl

N N N

i i si i si
i i i

P P P

q q q 
  

 

                (3.9) 

The behavior of this microwave network is primarily defined by λsi. For a lossless network, 

Prad=0 so that λsi=1 for all i. For a lossy network like multiport antennas, Prad>0 so that 0≤ λsi 

<1 for all i. As a result, EVD for reflection power matrix facilitates analysis and provides a 

useful interpretation of circuits’ fundamental behavior.  

Now we turn to introduce the concept of TARC briefly. For a desired port excitation, the 
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total active reflection coefficient (TARC) [17] is defined as the square root of the available 

power generated from all excitations minus radiated power, divided by the available power as  

 in rad

in

P P
PTARC


                              (3.10) 

For example, if an N-port antenna is excited at ith port and the other ports are connected to the 

matched load, the TARC can be calculated as 

2

1

1   1, .,
N

i
TARC ri ji

j
p s i N



                  (3.11) 

For multiport excitation, the TARC is therefore in the form of 

2

1

2

1

N

i
i

TARC N

i
i

b

a





 



                            (3.12) 

The TARC is a real number between zero to one. When the value of the TARC is equal to 

zero, all the delivered power is radiated and when it is equal to one, all the power either 

reflects back or goes to the other ports. This parameter is developed to describe the properties 

of multi-port antennas like frequency bandwidth and radiation performance, while all ports 

simultaneously excite signals with their own port impedances. In this manner, one is able to 

assess the true bandwidth of the antenna for a desired port excitation. This bandwidth 

information should give the multi-port antenna designer a much better understanding of the 

antenna bandwidth.  

 

3.1.2 Eigenvalue Representation of TARC and Radiation 

Efficiency 

A general definition of radiation efficiency in multiple antenna systems is introduced in 
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Section 2.2.Now the alternative definition of radiation efficiency is discussed in [16]. Before 

the derivation of radiation efficiency, we first give an alternative representation for TARC. 

Substituting equation (3.6) and equation (3.8) into equation (3.12), a new representation of 

TARC is defined as below 

2

1

2

1

N

i si
i

TARC N

i
i

q

q






 



                         (3.13) 

Since this expression is based on the eigenvalues of the reflection power matrix, we redefine 

it as eigenvalue based reflection coefficient (EVRC) for convenient to analysis and further 

derive an alternative representation of radiation efficiency as below which is similar with 

[16]and[20]  

 
 2

2 1

2

1

1
1

N

i si
i

rad EVRE N

i
i

q
e

q







  




                   (3.14) 

We rename this radiation efficiency as eigenvalue based radiation efficiency (EVRE) for 

simplicity of the following writing. It is wondered what is the difference between equation 

(3.14) and equation (2.10). Equation (2.10) is considered the composite power efficiency 

representation. It includes not only the reflection caused by input mismatch of the excitation 

port but also the power absorption resulting from the termination at the other unexcited 

antenna branch. Based on this definition, we may find equation (2.10) is actually a special 

case of equation (3.14). Taking a dual-antenna system for example, equation (2.10) will let 

one branch of the dual antenna system excite signals and the other terminated with impedance 

load. While in equation (3.14), two ports of the antenna system simultaneously excite signal 

with their own port impedances. That exactly means if we determine the radiation efficiency 
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using equation (3.14) but with one branch feeding signals of zero amplitude, the analysis 

result will be the same as that using equation (2.10). 

One of the advantages of the EVRE is it takes into account the effect when ports of the 

multiple antennas system are fed with signals of different phases. EVRC (TARC) is originally 

developed for signals with various phase delays for multi-polarization operations, and this 

concept can be further extended to the multiple antennas system [18]. It is well known that 

mutual coupling causes some portion of signal power within each element to be radiated and 

absorbed by the other elements. The combination of each antenna port’s primary reflected 

signal with the coupled signals can be constructive or destructive depending on the phase of 

the component signals. EVRE of multiple antennas can therefore represent the effect of this 

constructive or destructive signal combination. Another way to show the effect of input excite 

signal phase difference on EVRE is based on the perspective of mathematical formulation as 

below: For dual antennas case and based on equation (3.13), the transformed input excitation 

signal is shown as 

 
 

1 11 2111 21

12 222 22 12

1
1

j

j j

q u u eu u
u u eq u e u



 





  

   

      
         

        

Hq U a
g         (3.15) 

, where θ is the phase difference of input excitation signals and the more explicit EVRC and 

EVRE are shown as 

 

 
   

2 2

11 21 1 22 12 2

2 2

11 21 22 12

2 2

11 21 1 22 12 2
2 2

11 21 22 12

1 1
 

j j
s s

EVRC
j j

j j
s s

rad j j

u u e u e u

u u e u e u

u u e u e u
and e

u u e u e u

 

 

 

 

 


 


   

   

   

   

  
 

  

    


     

     (3.16) 

As a result, it can be obviously viewed from equation (3.16) that EVRC and EVRE are indeed 

a function of input excitation signal phase difference. 
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The most important advantage of EVRC and EVRE are that they provide a simple way to 

estimate the minimum and maximum values of reflection coefficient and radiation efficiency 

quickly, no matter how many number of antennas will be gauged [16]. These advantages are 

revealed by further deriving equation (3.13) as an inequality and it is shown below   

2

1
min max

2

1

N

i si
i

s sN

i
i

q

q


 



 



                   (3.17) 

It is interesting that the minimum and maximum values of EVRC are just the square root of 

minimum and maximum eigenvalues of the reflection power matrix, respectively. The 

significances of the minimum and maximum values of EVRC are that they represent lowest 

reflection power and largest reflection power in the multiple antenna systems, respectively. 

Moreover, there exist no input excitation signal components to reach the EVRC lower than 

mins  or higher than maxs . Furthermore, based on equation (3.17) we can also derive an 

inequality for EVRE and it is shown like [16] as below: 

max min1 1s rad se                       (3.18) 

Equation (3.18) means that the minimum or maximum EVRE occurs when maximum or 

minimum EVRC takes place at the same time. This phenomenon makes sense since the higher 

the reflection power occurs, the lower the power will radiate. Minimum and maximum values 

of EVRE are also considered two important quantities to judge the performance of multiple 

antenna systems. 

  What kinds of input excitation signal components will cause the maximum or minimum 

radiation efficiency is the another important issue. Another important advantage of EVRC and 

EVRE are that they both provide a convenient way to determine the input excitation signal 

components which may cause the best or worst case reflection coefficient and the 
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corresponding radiation efficiency, respectively. A mathematical proving is shown by further 

deriving equation (3.4) and using the result of equation (3.8) as follow: When the ith input 

excitation signal vector is the eigenvector of the reflection power matrix, the ith total 

reflection power can be determined as    

        2 2

1 1

N N
i i i i i i i

refl si si j si j
j j

P a q  
 

    
H H

a Ra a a     (3.19) 

,where ai is the ith input excitation signal vector and λsi is the corresponding eigenvelue. 

Moreover, we further derive the ith EVRC and EVRE as below [16] 

2

1

2

1

  and  1

N
i

si j
ji i

EVRC si rad siN
i
j

j

q
e

q


 



    



           (3.20) 

By comparing the results between equation (3.19) and equation (3.20), we can observe that 

when the input excitation vector is the eigenvector of reflection power matrix, the minimum 

or maximum EVRC has the chance to be excited, and so does the corresponding EVRE. By 

utilizing unitary similarity transformation on reflection power matrix, we can easily find the 

corresponding input excitation signal components with the observation on the transformation 

matrix U when minimum or maximum EVRC takes place, and so does the corresponding 

EVRE. The applications and meanings of this powerful analysis strategy will be shown and 

discussed in the next section.       

3.1.3 Simulation Results and Discussions 
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Figure 3.1 HFSS simulation setup of dual antennas configuration 

Two parts of simulation results are provided in this section. First of all, we compare what is 

difference between conventional radiation efficiency using equation (2.10) and EVRE using 

equation (3.14), respectively. Secondly we offer a case study and show how the quantity of 

antennas affects EVRE. Moreover, we also discuss why EVRE provides powerful analysis for 

multiple antenna systems. We implement the case study with EM simulation software 

Ansoft® HFSS, while simulation programs are written in MATLAB® and run on PC with an 

Intel® Pentium IV 3-GHz CPU. 

For convenience, the simulation environment is set with multiple dipole antennas. Figure 

(3.1) depicts the geometry for dual antennas. For the number of antennas is more than two, the 

setup of multiple antennas follows the same way as Figure (3.1), which is in symmetrical and 

parallel configuration. The radius of the dipole antenna is λ/100 and the dipole length is tuned 

at 0.44λ in order to make the dipole antenna resonant at the desired central frequency. In this 

work the central frequency is 2.45 GHz and the port impedance is set to be 50 Ohm.  
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Figure 3.2 Conventional radiation efficiency analysis using equation (2.10). 
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Figure 3.3 EVRE analysis using equation (3.14) 

Figure 3.2 and Figure 3.3 represent the conventional radiation efficiency analysis using 

equation (2.10) and EVRE analysis using equation (3.14), respectively. We assume port 1 is 

excited with 0.707 amplitude signal and port 2 is excited with 0.707*exp(jxπ/180°) where 
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x={0°,10°, 20°, …,180°}. One reason we let both the amplitudes of the input signals to be 

0.707 is that we want to maintain the summations of all input excitations power unity and 

both ports have equal power. This set up contains a range of excitations with same amplitude 

but different phase offset distribution. By comparing these two figures, we observe that the 

phase difference between two antenna elements deeply affects the radiation performance and 

the newly-defined EVRE has the ability to show this effect. From Figure 3.3, we can observe 

that the performance of EVRE gets worse when the phase difference becomes large. The best 

radiation performance takes place when the two input signals are in phase, while the worst 

performance occurs when the two excitations are out of phase.    
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Figure 3.4 Three elements max. and min. radiation efficiency analysis using equation (3.16) 
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Figure 3.5 Four elements max. and min. radiation efficiency analysis using equation (3.16) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Element Spacing (wavelength)

EV
R

E(
dB

)

EVRE-Five Elements

 

 

minimum EVRE
maximum EVRE

 

Figure 3.6 Five elements max. and min. radiation efficiency analysis using equation (3.16) 
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Finding the best or worst performance of EVRE for the number of multiple antennas more 

than two becomes cumbersome if we use the same way as dual antennas case presented before. 

However, it becomes easily and quickly to obtain the maximum and minimum values of 

EVRE by utilizing equation (3.16), which can be easily derived from equation (3.14) or 

equation (3.15). Figure 3.4 to Figure 3.6 represent the results when the number of antenna 

becomes three to five. We first define a parameter called Maximum Efficiency Ratio (MER), 

which means the ratio in dB between the maximum and the minimum EVRE to facilitate 

analysis. An observation from Figure 3.4 to Figure 3.6 is if the antenna elements are in close 

proximity, the radiation efficiency will have larger MER which means the performance may 

be very good or very bad at a given close antenna element spacing. The MER will become 

smaller as the antenna element spacing increase, which means the performance becomes 

better and more stable as mutual coupling between antenna elements is less strong.     
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Figure 3.7 Maximum Efficiency Ratio for two to five elements 
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As the number of antenna elements increases, the maximum EVRE maintains almost the 

same while the minimum EVRE decreases a lot at fixed element spacing. The MER therefore 

becomes larger as shown in Figure 3.7 and a comparison table is shown as in TABLE 

3.1.Take 0.1λ inter-element spacing as an example, the MER increases from 3.8 dB to 42 dB 

while the number of antenna increases from two to five which show the same tendency as the 

diagram depicted in [16]. The reason for this fact may due to higher mutual coupling and it 

results in more input mismatch effects at the central elements of these symmetrical multiple 

antenna sets when the number of antennas increase. As a result, there exists a set of input 

excitation signal components which cause the minimum EVRE worse. 

 

TABLE 3.1 COMPARISON TABLE OF MER FOR DIFFERENT NUMBER OF 

ANTENNAS. 

 

 

 

 

 

 

 

Finding the corresponding input excitation signal components when the best or the worst 

performance of multiple antenna systems (Maximum EVRE or Minimum EVRE) takes place 

by trying an error is nearly impossible when the number of antennas is more than two. By 

utilizing the eigenvalue decomposition shown in equation (3.17) to equation (3.19), these 

input excitation signal components are easily determined simply by solving the eigenvectors 

of reflection power matrix. The results are shown in Table 3.2 and Table 3.3 taking 

Antenna Number Maximum Efficiency Ratio(MER) 
at 0.1λ 

2 3.83 dB 

3 17.64 dB 

4 30.93 dB 

5 41.75 dB 
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0.1λinter-element spacing as an example. One thing to be mentioned is that the summation 

of the power from every port is equal to unity.  

TABLE 3.2 MAX. EVRE AND CORRESPONDING INPUT EXCITATION 

SIGNAL COMPONENTS. 

Antenna Number Max. EVRE at 0.1λ Input Excitation Signal Components 

2 -0.96 dB 0.707 0 ,0.707 0   
o o  

3 -1.17dB 0.703 0 ,0.013 86 , 0.703 180    
o o o  

4 
-0.72dB 0.654 180 ,0.269 164 ,0.269 16

,0.654 0

   
 

 

o o o

o
 

5 
-1.01dB 0.589 180 , 0.391 153 , 0

, 0.391 27 , 0.589 0

   
 

  

o o

o o
 

 

TABLE 3.3 MIN. EVRE AND CORRESPONDING INPUT EXCITATION SIGNAL 

COMPONENTS. 

Antenna Number Min. EVRE at 0.1λ Input Excitation Signal Components 

2 -4.79 dB 0.707 180 ,0.707 0   
o o  

3 -18.81dB 0.463 0 , 0.756 158 ,0.463 0    
o o o  

4 
-31.65dB 0.275 180 ,0.657 17 ,0.651 164

,0.263 0

   
 

 

o o o

o
 

5 
-42.76dB 0.155 180 ,0.488 12 ,0.69 165

,0.488 12 ,0.155 180

   
 

  

o o o

o o
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An observation from Table 3.2 is that the power and phase of the input excitation signal at 

each port should be properly distributed and adjusted in order to reach the best performance. 

However, Table 3.3 gives us information that we should avoid exciting such input excitation 

signal components which will cause the worst performance. The eigenvalue representations of 

TARC and radiation efficiency in [16] provide us a quickly way to determine the best and 

worst radiation efficiencies and their corresponding input excitation signal components.Based 

on [16] we do further analysis on its characteristics in the following chapter.   

 

3.2 Composite analysis of Termination Networks on TARC 

and Radiation Efficiency 
 It has been shown that different kinds of termination networks may have great impact on 

conventional radiation efficiency [5]. In this section, the impact of termination networks 

including 50-Ohm, self-impedance and input impedance termination networks on EVRC and 

EVRE are investigated accordingly. A thoroughly comparisons about the performances of 

these three termination networks are also conducted in this section.  

 

Figure 3.8 Dual antenna systems setup with load impedance and source impedance 
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3.2.1 50-Ohm Termination Network 

The simulation setup is shown as in Figure 3.8 and both the antennas are identical and have 

the same conditions as the previous section. It means that ZL1(=ZS1 when port 2 excitation) 

and ZL2(=ZS2 when port 1 excitation).ZS1=ZS2=50 Ohm first comes as the first case study. It is 

the most common topology for its wideband characteristic and easier implementation. Figure 

3.9 and Figure 3.10 respectively show the maximum and minimum values of EVRC and 

EVRE using equation (3.15) and equation (3.16). Note that the reflection swing range here is 

defined as the difference between maximum and minimum EVRC, where the radiation swing 

range is defined as the difference between maximum and minimum EVRE. 
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Figure 3.9 Max. and min. EVRC of 50-Ohm termination network 
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   Figure 3.10 Max. and min. EVRE of 50-Ohm termination network 

3.2.2 Self-Impedance Termination Network 
   The termination network such as ZS1=ZS2=Z11* is known as the self-impedance source 

matching (termination) network, which is also known as complex conjugate match and it 

facilitates maximum power transfer to the load when there is no mutual coupling. The 

goodness of the match depends on the behavior of the mutual impedance which is not taken 

into account. What can be mentioned in this simulation procedure is we do not need to 

re-simulate the dual antenna systems which use 50-Ohm port termination in the previous 

section to solve the new scattering matrix. However, by using the formulation as below  

][][][ 111 UZZUZZS portportnew  
           (3.21) 

where Z is the impedance matrix, Zport is the diagonal matrix with diagonal terms(=ZS1 and 

ZS2), and U is the unitary matrix, the new scattering matrix Snew can thus be computed and 

used in the calculation of EVRC and EVRE. Figure 3.11 and Figure 3.12 respectively show 
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the maximum and minimum value of EVRC and EVRE using equation (3.15) and equation 

(3.16). 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Element Spacing (wavelength)

Ei
ge

nv
al

ue
 b

as
ed

 R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t

 

 
Max-EVRC
Min-EVRC

 

Figure 3.11 Max. and min. EVRC of Z11* termination network 
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Figure 3.12 Max. and min. EVRE of Z11* termination network 



 

33 

 

3.2.3 Input-Impedance Termination Network 
Input-impedance matching termination is considered more complete for it takes into 

account not only the reflection from the single antenna element but also the mutual coupling 

effect which results from the adjacent antenna element. It refers to maximum power transfer 

from the single excited source into the corresponding antenna port, which gives no 

consideration to power coupled into adjacent antenna.  Because ZS1 is the function of ZL2 

and vice versa, we may finally derive ZS1, based on equation (2.9) and ZS1=Zin*, as  









 11

11

1212
2

11

2
12

2
122

12
2

12
2

111 X
R

XRj
R

XRXRRZ S        (3.22) 

where R11 and X11 are the real and imaginary part of self impedance, R12 and X12 are the real 

and imaginary part of mutual impedance. Moreover, the new scattering matrix with Zin* port 

termination can also be computed and used in calculation of EVRC and EVRE by equation 

(3.15) and equation (3.16). Figure 3.13 and Figure 3.14 respectively show the maximum and 

minimum value of EVRC and EVRE using equation (3.15) and equation (3.16). 
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Figure 3.13 Max. and min. EVRC of Zin* termination network 
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Figure 3.14 Max. and min. EVRE of Zin* termination network 

 

3.2.4 Analysis and Discussion 
EVRC for three termination cases are shown in Figure 3.9, Figure 3.11 and Figure 3.13. 

EVRE for three termination cases are shown in Figure 3.10, Figure 3.12 and Figure 3.14. For 

a dual antenna systems case, the input excitation signals for port1 and port 2 have equal power 

in order to reach the best or worst performance as shown in TABLE 3.2 and TABLE 

3.3.Therefore, the radiation swing range depends only on the phase difference of two input 

excitation signals. Larger radiation swing range means that EVRE is more sensitive to the 

phase variation of input signals, and on the contrary smaller radiation swing range means that 

EVRE is less sensitive to the phase variation of input signals. EVRC is also an important 

parameter for the performance judgment of multiple antenna systems. For examples, lower or 

higher EVRC means higher or lower EVRE, respectively. Larger reflection swing range or 
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lower reflection swing range for EVRC means larger radiation swing range or lower radiation 

swing range for EVRE, respectively.   

The largest reflection swing range of EVRC and the largest radiation swing range of 

EVRE happens when antenna element spacing is 0.1λ for the first two matching cases. For 

50-Ohm case, the largest swing ranges for EVRC and EVRE are about 0.39 and 0.5, 

respectively. For Z11* case, the largest swing ranges for EVRC and EVRE are about 0.55 and 

0.66, respectively. For Zin* case, we can observe that there exist no swing range for both 

EVRC and EVRE. The reason for this phenomenon results from that Zin* not only takes into 

account the self-impedance of the antenna but also mutual coupling effect. It will cause very 

low S11 and thus results in no swing range for both EVRC and EVRE. Furthermore, we can 

observe that the swing range for both EVRC and EVRE would be greatly reduced as element 

spacing becomes larger. It can be interpreted as when the mutual coupling effect is reduced, 

the EVRC and EVRE both become much less sensitive to the phase variation of input signal. 

Another interesting phenomenon observed from EVRC (Figure 3.9 and Figure 3.12) and 

EVRE (Figure 3.10 and Figure 3.13) for the first two matching cases is that there exist some 

element spacings which are nearly immune from the variation of different phases. For 

50-Ohm and Z11* case the first crossing points both occur at element spaces=0.4 λ. It is an 

important parameter provided for the design of multiple antenna systems since we can find 

the best element spacing which will not be seriously impacted by the unpredicable variation 

of signal exciation phases between two ports. A comparison table is shown as in TABLE 3.4. 

From the comparison we find although the first crossing points of 50-Ohm case is at 0.4λ, the 

corresponding EVRC and EVRE are 0.33 and 0.9, respectively while for  Z11* case the 

corresponding EVRC and EVRE are about 0.27 and 0.93, respectively. It means less than 10 

% of the incident power either reflects back or is absorbed by the load of the adjacent antenna 

element. As a result, 0.4λ is a good candidate for the design of multiple antenna systems for 
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the first two matching cases. For Zin* case it can be immune from phase variation of input 

signals so how much power will radiate is what we may concern more. At 0.1λ,the EVRC 

and EVRE are 0.68 and 0.53, respectively. It means more than 47 % of the incident power 

either reflects back or is absorbed by the load of the adjacent antenna element. That means, 

although the Zin* case can be immune from phase variation of input signals at the very close 

element spacing, it is not a good solution in the desire of high radiation efficiency.  

   TABLE 3.4 COMPARISON ANALYSIS TABLE FOR THREE TERMINATION 
NETWORKS 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

Termination Type First Crossing Point EVRC EVRE 

50-Ohm Case 0.4λ 0.33  0.9 

     Z11* Case 0.4λ 0.27  0.93 

Zin*Case 0.1λ 0.68  0.53 
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Chapter 4 
 
New Spatial Correlation Formulations under 
Arbitrary AoA Scenarios 
 
 

Signal fading due to multipath is the dominant impairment in mobile radio systems. To 

overcome this problem multiple antennas are employed to provide diversity. The performance 

of antenna arrays is evaluated by the spatial correlation between antennas. In this chapter, we 

will discuss antenna spatial correlation including AoA distributions of the spatial channel and 

how mutual coupling affect this parameter. We first introduce the 2-D approximate spatial 

correlation formulation and our proposed approximate spatial correlation formulation under 

arbitrary AoA scenarios in Section 4.1. In Section 4.2, we further combine our proposed 

formulation with the 2-D and 3-D spatial correlations taking antenna mutual coupling effect 

into consideration in the parameterized manner as presented in [19] and [20], respectively. 

The proposed antenna spatial correlation formulations not only reduce time complexity but 

also maintain good accuracy in correlation calculation. Furthermore, all the simulation results 

are provided using the setup like Figure 3.1 in Chapter 3 as the benchmark. 

 

4.1 2-D Approximate Spatial Correlation Formulation 

under Arbitrary AoA Scenarios 

4.1.1 Spatial Correlation under Small Angular Spread 

AoA Scenarios 
A channel model that simultaneously characterizes the AoAs of multipath components is 



 

38 

 

called the spatial channel model and different phi-plane AoA PDFs have been proposed in 

[21].Spatial correlation which incorporate AoA PDF at receiving end will show the 

characteristics of channel and antenna array. In [12], the author presented the approximate 

spatial correlation which is suitable for small angular-spread AoA distribution. If a signal of 

interest arriving at an array can be described by the summation of plane waves arriving from 

angles with AoA distribution pΦ(Φ), then the spatial correlation between two points a distance 

d apart can be determined as [7]  

   ( ) exp( 2 sin( )) ( )  dd j p d



    


                  (4.1) 

where Φ is defined relative to the normal, λ is the wavelength and pΦ(Φ) is the azimuth 

angular PDF. If the angular energy is a raised-cosine distribution, AoA distribution pΦ(Φ) can 

be represented as 

       
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          (4.2) 

where 2∆s is the range of angles about the mean angle Φ0. Another common assumption for 

angular energy distribution is a Laplacian distribution and it is defined as  

  021 exp
2

P
 




 
   

 
                        (4.3) 

where σ is the standard deviation of the distribution and Φ0 is the mean angle of AoA. 

Substituting equation (4.2) into equation (4.1) and making a change of variables, the spatial 

correlation is given by 

        1

01

1 exp 2 sin 1 cos
2 s

dd j z z dz   


     
            (4.4)

 

Under the assumption of small ∆sZ over the integration range, equation (4.4) can be 
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approximated as 
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Similarly substitute equation (4.3) into equation (4.1) and the spatial correlation based on 

Laplacian energy distribution can be approximated as 

  0
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2exp(j2 sin ) 22+( cos )

dd d  
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
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              (4.6) 

    equation (4.5) and equation (4.6) have provided a simple formula for spatial correlation 

calculation. The advantage of equation (4.5) and equation (4.6) is that they have reduced the 

computation time where the calculation of the spatial correlation originally relies on 

numerical integration or infinite series expansion. However, based on the discussion as shown 

in [12], equation (4.5) and equation (4.6) cannot approximate well when the angular spread of 

AoA distribution becomes larger. It is therefore not practical because the angular spread of the 

AoA distribution may become larger in the multiple scattering-rich environment, especially in 

the indoor environment. As a result, we will further propose the spatial correlation 

formulation which is suitable for large angular-spread AoA distribution and even arbitrary 

AoA scenarios. 

 

4.1.2 Spatial Correlation under Arbitrary AoA Scenarios 
The approximate spatial correlation formulations are presented based on raised-cosine 

and Laplacian distributions which are suitable for small angular spread AoA distribution in 

the previous section. However, the approximation may be distorted when the angular spread 
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becomes large and that is the reason why we would like to propose a good approximate 

spatial correlation formulation under large angular spread AoA scenarios.     

Uniform distribution is suitable to describe large angular spread AoA in multiple 

scattering rich environments and its probability density function is presented as 

  


 00               
2
1 p           (4.7) 

,where Φ0 is the mean of the given uniform distribution and 2∆ is the range of angles referred 

to Φ0. If 2∆ is equal to 2π, the spatial correlation has a closed form and is well-known as the 

Bessel function; however, for the case that 2∆ is smaller than 2π, the spatial correlation is not 

a closed form formula and thus the time-consuming numerical integration is needed. Based on 

equation (4.2) and equation (4.3), we further propose two new approximate AoA distributions 

for the uniform distribution and they are shown below  
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and 
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where N is the number of sampling raised-cosine and Laplacian distribution, Φn is the n-th 

sampling mean AoA. 2∆s is the range of angle about sampling mean AoA Φn of raised-cosine 

distribution and σ is the AoA angular spread of Laplacian distribution. Both these 

approximate AoA distributions use the combination of many small angular spread 

raised-cosine and Laplacian distributions to fit a given large angular spread uniform 

distribution as shown in Figure 4.1(a), respectively. Since both raised-cosine and Laplacian 

distributions are general distributions to describe small angular spread AoA scenario and each 
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of them has a generalized approximate formulation like equation (4.5) and equation (4.6), 

they are suitable candidates as a fitting function of uniform distribution.  

By substituting equation (4.8) and equation (4.9) into equation (4.1), we represent these 

two spatial correlations as 
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Using the small angular-spread approximate spatial correlation as shown in equation (4.5) and 

equation (4.6), we may finally respectively represent both of the spatial correlations as 
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(a)                                  (b) 

Figure 4.1 AoA distribution of (a) uniform distribution over   and   and (b) 
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uniform-like distribution. The red dashed line and blue dashed line are the distribution curves 

of raised-cosine and Laplacian distributions, respectively. 

 

The advantage of this approximation is it can be extended to arbitrary AoA scenarios as 

shown in Figure 4.1(b) as an example. For an AoA distribution which is very complex or 

cannot be described by a mathematical formula easily, the discretized summation is needed 

for correlation evaluation. The two approximate formulations we propose only samples 

specific mean AoAs over the distribution.  Computation time of correlation calculation can 

thus be saved using these two proposed approximate formulations. The weighting coefficients 

of the sampling raised-cosine or Laplacian distributions may not equal 1/N and should be 

modified according to the AoA scenario. Equation (4.12) and equation (4.13) should be 

modified as below     
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and      
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,where αn and βn are the weighting coefficients which may modified according to the 

corresponding arbitrary AoA scenario. 

4.1.3 Simulation Results and Discussions  
We first show the performance of 2-D envelope correlation between two ideal sources by 

the conventional numerical integrating method, conventional discretized summation and our 

approximate formulations based on two different basis functions. The envelope correlation 
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can be represented as the absolute square of spatial correlation and it is shown below  

  2
12
env d                              (4.16) 

, which is described as the receive power correlation coefficient on the two branches. 

Simulation programs are written in MATLAB® and run on PC with an Intel® Pentium IV 

3-GHz CPU. A uniformly-distributed AoA scenario over [-150°, 150°] with mean angle 0° is 

chosen as the benchmark to evaluate the envelope correlation. The computation result of the 

numerical integration is chosen as the closed-form solution and is regarded as the benchmark 

for accuracy comparison 

The sampling small angular spread raised-cosine and Laplacian distributions sample their 

mean angles every 10° with 5° standard deviations for both our approximation schemes. 

Moreover, for raised-cosine AoA distribution as shown in equation (4.8), the relation between 

△s and its standard deviation σ is shown as 

2

1 2
3s


                             (4.17) 

The correlations calculated by four different schemes in Figure 4.2 share similar curve trend 

with little variation. Numerical integration costs more time than the other two schemes as 

shown in Table 4.1; the main efficiency comparison is made between discretized summation 

and our two approximate formulations, namely equation (4.12) and equation (4.13). We find 

that the computation time of envelope correlation using equation (4.12) and equation (4.13) is 

reduced 51 % and 76% compared to that of discreitized summation, respectively. We can also 

observe that the envelope correlation using equation (4.13) is faster than that using equation 

(4.12) and it is simply because there are fewer terms in equation (4.13) than in equation 

(4.12).  
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Figure 4.2 Envelope correlation of the given AoA scenario using different calculation 

schemes. 

The accuracies of envelope correlation using equation (4.12) and equation (4.13) are the same 

under the same angular spread as shown in Table 4.2. The reason for this phenomenon is 

discussed as below: It is known that
1
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 .Examining equation (4.12) and 

equation (4.13) using Taylor series expansion, we can find these two formulations are almost 

the same and the approximate result is shown as 
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 .The higher order terms of the 

Taylor series are omitted since we assume the angular spreads of the two AoA distributions 

are small(σ=5°).By this carefully examination, we can know that equation (4.12) and equation 
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(4.13) are almost the same. As a result, the RMS errors of envelope correlation have the same 

values which match the results of Table 4.2. However, the calculation using these two 

approximate formulations still maintains good accuracy compared to numerical integrating 

method. 

TABLE 4.1 EFFICIENCY COMPARISONS OF DIFFERENT SCHEMES IN FIGURE 4.2 

Scheme Computation time 

Numerical Integration 0.250 sec. 

Discretized Summation 0.063 sec. 

Approximation 4.12 

(raised-cosine) 
0.031 sec. 

Approximation 4.13 

(Laplacian) 
0.015 sec. 

 

TABLE 4.2 ACCURACY COMPARISONS OF DIFFERENT SCHEMES IN FIGURE 4.2 

Scheme RMS Error 

Approximation 4.12 

(raised-cosine) 
0.006 

Approximation 4.13 

(Laplacian) 
0.006 

 

4.2 Spatial Correlation Formulation Incorporating 

Antenna Mutual Coupling 
 

4.2.1 2-D Formulation Derivation Incorporating Antenna 
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Mutual Coupling 
    In Section 4.1, we have introduced our proposed approximate spatial correlation 

formulation under arbitrary AoA scenarios and it is shown that the computation time can be 

greatly reduced. Besides AoA distribution, the characteristics of multiple antennas also play 

an important role in the spatial correlation. One of the antenna characteristics like mutual 

coupling effect is considered an important factor in multiple antennas technology. To apply 

multiple antennas technology into devices of limited spacing results in high mutual coupling 

effect and directly impact spatial correlation. In [19], the authors derived an analytical 

expression for both the mean received power of each antenna and the spatial correlation 

between antennas with antenna mutual coupling under small angular spread AoA distribution. 

We want to combine our proposed approximate antenna spatial correlations with the 

analytical spatial correlation expression which is proposed in [19] in order to reach a more 

efficient calculation of the antenna spatial correlation under large angular spread AoA 

scenario. 

    Based on the equivalent circuit network model for multi-antenna array in [22], the 

extension version with incoming waves and load impedances are shown in Figure 4.3, where 

ZL1,….,ZLN are load impedances and ZA1,….,ZAN are antenna impedances. The incoming 

waves impinged on the array are equivalent to N outside sources VS1,….,VSN connected to the 

array elements, respectively. For closely spaced elements, mutual coupling needs to be 

considered and can be achieved by introducing a mutual coupling matrix. Using circuit theory 

the coupling matrix is given by  

    1
L Az z   LC Z + Z                   (4.18) 

where zL and zA are the load impedance and antenna self impedance, and ZL and Z are the 

load impedance matrix and antenna impedance matrix respectively. One thing which should 
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be mentioned is equation (4.18) is under the assumption that the multiple antenna systems is 

composed of identical antenna elements and terminated with the same load impedances. 

For a dual antenna system, the coupling matrix is defined as 

    

a b
b a
 

  
 

C                           (4.19) 

where a and b are called self coupling coefficient and mutual coupling coefficient respectively. 

Consider there is no mutual coupling for the dual antenna system, and the received signal 

vector is given by 

          2 2
1 2  

j jncV g e g e
 

  
 

  
 

                 (4.20) 

where gx(Φ) (x=1, 2) is the radiation pattern of the x-th element without mutual coupling, 

τ=2πdsin(Φ)/λ is the delay between two neighboring elements, d is the element spacing, λ is 

the wavelength and Φ is the AoA. If taking mutual coupling into account, we may get the 

received signal vector as  

  

   
   

   

 
 

2 2
1 2 1

22 2
2 1

j j c
c nc

cj j

ag e bg e V
V V

Vag e ag e

 

 

  
 


 





 
        
    

C      (4.21) 
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Figure 4.3 Equivalent circuit of the multiple antenna system for receiving mode. 

        

Given the azimuth AoA distribution p(Φ), the spatial correlation is therefore shown as 

     12 1 2
1 2

1c c cV V p d
PP 

                     (4.22) 

where 

   2c
i iP V p d



                           (4.23) 

For omnidirectional element patterns (g1(Φ)= g2(Φ)=1) without mutual coupling, the spatial 

correlation is denoted as 

   12 exp 2 sinomn nc
real imag

dj p d R jR


    


     
             (4.24) 

After the cumbersome deduction, the analytical correlation coefficient expression taking 

mutual coupling effect into consideration is represented as 

  

     
   

2 2

12 2 22

2Re 1 1

1 2Re 4 Im

real imagomn c

real imag

c c R j c R

c c R c R
 

      
 
         

       (4.25) 
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where c is the ratio of mutual coupling coefficient b to self coupling coefficient a. 

Equation (4.25) separates the element factors, including antenna mutual coupling and 

AoA scenarios, so that the spatial correlation can be dissected for a more detailed analysis. 

Moreover, another advantage is that we can combine our proposed approximate antenna 

spatial correlation with equation (4.25). That is to say, Rreal and Rimag can be calculated in our 

two proposed approximate formulations and substitute them into equation (4.25) to achieve a 

more efficient calculation of the antenna spatial correlation. 

 

4.2.2 3-D Formulation Derivation Incorporating Antenna 

Mutual Coupling 
Various definitions of antenna spatial correlation have been introduced in Chapter 2. 

However, the above definitions have their limited merits. Equation (2.15) is derived under the 

assumption of the isotropic AoA distribution, but AoA distribution should vary with the 

environmental condition. Equation (4.25) in the previous section is another proposal which 

considers the 2-D antenna pattern and AoA. But the whole antenna pattern should be 3-D case 

and the polarization is not included in the definition. equation (2.17) is the most general 

definition of the spatial correlation; however, compared to equation (2.15) and equation (4.25) 

which both represent spatial correlation in parameterized manner, equation (2.17) is more 

computationally complex because 3-D antenna patterns need to be computed individually. In 

[20] a parameterized antenna spatial correlation formulation is proposed which takes 

individual 3-D antenna pattern and AoA scenarios into consideration .In this section we will 

briefly introduced this 3-D parameterized antenna spatial correlation formulation and show 

how it combines with our proposed approximate methods to reach a more efficient 

calculation.   
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Consider two antennas without mutual coupling, and the 3-D received signal vector of the 

two-element array can be shown as 

   

    

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                   (4.26) 

where gθ(θ,Φ) and gΦ(θ,Φ) are the isolated antenna pattern in theta and phi polarization, and 

τ=2πdsin(Φ)sin(θ)/λ is the three-dimensional signal phase difference between two antenna 

elements. We further incorporate equation (4.19) into equation (4.26), and the signal vector 

can be rewritten as 
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        (4.27) 

where a and b are the self-coupling and mutual coupling coefficient respectively. The spatial 

correlation between two antennas is then defined as 

 

 
ddpCC

PPPP
R sin),(),(),(1    ,2

2

0 0 1
2121

12
12

      (4.28) 

where pθ,Φ(θ,Φ) is the 3-D AoA distribution in theta and phi polarization, and R12 and Pi (i=1, 

2) are the covariance and the mean received power of the i-th antenna, where Pi is defined as 

   
2 2

,0 0
, , sini iP C p d d

 

                      (4.29) 

After a cumbersome derivation, the 3-D analytical correlation coefficient expression taking 

mutual coupling effect into consideration is represented as 



 

51 
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   (4.30) 

where the lowercase c is the coupling ratio whose value is equal to b/a. A is the mean received 

power, Rreal and Rimag are the real and imaginary part of covariance for single antenna pattern 

without mutual coupling, and the subscript θ and Φ are the value in theta and phi polarization 

respectively. A, Rreal and Rimag are listed below     

   
2 2

0 0
, , sinA g p d d

 
                        (4.31) 
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      2

1 20 0
Im , , , sinimagR g g p d d

 
                  (4.33) 

What should be mentioned is the polarization of AoA distribution is defined as 

   ,
1, ,

1
p p

XPR      
                    (4.34) 

   ,, ,
1

XPRp p
XPR      

                    (4.35) 

where XPR denotes the cross polarization ratio and in the later simulation setup we regard 

θ-polarization as the main polarization and Φ-polarization as the cross polarization. 

One advantage of equation (4.30) is that we only have to obtain an isolated 3-D antenna 

pattern and the coupling matrix to compute the antenna spatial correlation. The 

resource-consuming process which records the individual coupling antenna pattern can be 
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avoided. The other advantage of equation (4.30) is that it can be combined with our proposed 

approximate correlation formulations like equation (4.14) and equation (4.15) to perform a 

more efficient correlation calculation.   

 

4.2.3 Simulation Results and Discussions 
According to the discussions in [20], equation (4.25) and equation (4.30) are both good 

candidates for the calculation of 2-D and 3-D antenna spatial correlations incorporating 

antenna mutual coupling, respectively. As a result, we will perform several calculation 

schemes including Numerical integration, Discretized summation and our two proposed 

approximation methods to calculate the envelope correlations using equation (4.25) and 

equation (4.30). Numerical integration method is chosen as the closed-form solution for the 

benchmark of accuracy comparison. Moreover, the HFSS simulation setup of the coupled 

dipole pair is the same as shown in Figure 3.1 in Chapter 3.The port impedance set to be 

50Ohm and the Z-parameter is extracted from this setup, while simulation programs are 

written in MATLAB® and run on PC with an Intel® Pentium IV 3-GHz CPU.  

  First we evaluate 2-D spatial correlation with antenna mutual coupling effect using 

equation (4.25). A uniformly-distributed AoA scenario over [-1500, 1500] is chosen as the 

benchmark to evaluate the spatial correlation. The sampling small angular spread 

raised-cosine and Laplacian AoA distributions sample their mean angles every 100 with 

50standard deviation for both our approximation schemes and they will calculate Rreal and 

Rimag in equation (4.25).Moreover, the 2-D envelope correlation taking mutual coupling effect 

into account is defined as│ρ12
omn-c │2. Figure 4.4 shows the envelope correlations both with 

and without mutual coupling effect by performing different calculation schemes in equation 

(4.25). 
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Figure 4.4 2-D Envelope correlation of the given AoA scenario with and without mutual 

coupling effect using different calculation schemes 

 

TABLE 4.3 ACCURACY COMPARISONS OF DIFFERENT SCHEMES IN FIGURE 4.4 

(COUPLING) 

Scheme RMS Error 

Approximation 4.12 

(raised-cosine) 
0.0035 

Approximation 4.13 

(Laplacian) 
0.0035 
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From the perspective of physical meaning in Figure 4.4, the mutual coupling effect can 

effectively reduce the correlation at close antenna spacings just as the conclusion which [19] 

suggested. For accuracy comparison as shown in Table 4.3, we can find that the two 

approximation schemes have the same RMS errors compared to Numerical integration 

method again. The reason has been discussed in the previous section. However, the two 

proposed approximation methods still maintain good accuracy compared to Numerical 

integration method. 

  We further evaluate 3-D envelope correlation with antenna mutual coupling effect between 

two 2.45GHz dipole antennas using equation (4.30), while the 3-D envelope correlation is 

defined as│ρ12
c│2. Different calculation schemes will also be performed in this parameterized 

spatial correlation formulation. One thing should be mentioned is that for closed-form 

Numerical integration method, we choose theoretical λ/2 dipole pattern function for 

calculation. The 3-D AoA scenario for this case study in Figure 4.5 is a 3-D normalized 

distribution which is an arbitrarily-chosen Rayleigh-Gaussian-distributed PDF in phi plane 

and a 50 standard deviation Gaussian distribution with mean 900 in theta plane, this scenario is 

practical in the indoor NLOS channel and similar to the scenario measured in [23] .XPR is 

assumed to be 0 for this case. Moreover, we can exploit the modified approximate 

formulations (equation (4.14) and equation (4.15)) in phi plane to approximate the 

arbitrary-chosen AoA distribution by using the same antenna setup as 2-D case, while in theta 

plane AoA distribution we choose discretized summation in order to maintain good accuracy.  
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Figure 4.5 The 3-D AoA distribution in Section 4.2.3 
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Figure 4.6 3-D Envelope correlation of the given AoA scenario with and without mutual 

coupling effect using different calculation schemes 
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  TABLE 4.4 EFFICIENCY COMPARISONS OF DIFFERENT SCHEMES IN FIGURE 4.6 

Scheme Computation time 

Numerical Integration 21.8 sec. 

Discretized Summation 4.5 sec. 

Approximation 4.14 

(raised-cosine) 
3.2 sec. 

Approximation 4.15 

(Laplacian) 
1.7 sec. 

 

TABLE 4.5 ACCURACY COMPARISONS OF DIFFERENT SCHEMES IN FIGURE 4.6 

(COUPLING) 

Scheme RMS Error 

Approximation 4.14 

(raised-cosine) 
0.012 

Approximation 4.15 

(Laplacian) 
0.012 

   

  The computation results of the envelope correlation are shown in Figure 4.6.The 

efficiencies comparison for the four calculation schemes are shown in Table 4.4 and the 

accuracies comparison for our two proposed approximate correlations are shown in Table 4.5. 

We can observe that the computation times using two of our proposed approximate 

formulations are greatly reduced (more than 28 %) compared to conventional discretized 

summation method. Moreover, the accuracies still maintain good using our two proposed 

methods. For a given AoA distribution, antenna spatial correlation tends to decrease with 

some oscillation as element spacing increase. On the other hand, mutual coupling again 

reduce the antenna correlation at very close element spacing.  
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  For MIMO operation, mobile devices such as PDA phone or smart phone may contain 

more than two antennas [24].For this kind of antennas setup, spatial correlation matrix is used 

to describe the correlation values between different antenna pairs. By combining equation 

(4.14) and equation (4.15) with the equation (4.30), we can compute each entry in the 

correlation matrix more efficient and the computation time for the calculation of whole spatial 

correlation matrix can be significantly reduced.   
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Chapter 5 
 

Conclusions 
 

In this thesis, we focus on two new electromagnetic analysis strategies to evaluate the 

performance of multiple antenna systems. The first is an analysis strategy of radiation 

efficiency, and the others are two new antenna spatial correlation formulations. All the 

simulation results are provided using dipole antennas as the benchmark. 

   First, the discussion of analysis strategy utilizing EVD on reflection power matrix not 

only evaluate how the radiation efficiency change when the antenna ports excitation signals 

with different phases for dual antenna systems, but also provided a fast way to evaluate the 

minimum and maximum values of reflection coefficient or radiation efficiency and the 

corresponding input excitation signals when the number of antennas is more than two. This 

new analysis strategy is important when MIMO systems operate in transmitting mode. 

Furthermore, the investigation of how termination networks on radiation efficiency are also 

conducted based on dual dipoles system. 

  Secondly, the two new approximate spatial correlation formulations are further proposed 

which are suitable for arbitrary large angular spread AoA distribution, both for 2-D and 3-D 

AoA scenarios. These new approximate formulations are useful when MIMO systems operate 

in receiving mode. Such these formulations can be combined with 2-D and 3-D parameterized 

spatial correlation formulations taking antenna mutual coupling into consideration in order to 

perform a more efficient calculation under arbitrary large AoA scenario. 

  These two new electromagnetic strategies are offered as the gauges to evaluate the 

performances of multiple antenna systems. With the proposed analysis strategies, we can 
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make the design of multiple antenna systems more efficient and persuasive before physical 

hardware implementation. 
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